1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45
46 static struct vfsmount *shm_mnt __ro_after_init;
47
48 #ifdef CONFIG_SHMEM
49 /*
50 * This virtual memory filesystem is heavily based on the ramfs. It
51 * extends ramfs by the ability to use swap and honor resource limits
52 * which makes it a completely usable filesystem.
53 */
54
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/leafops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84
85 #include <linux/uaccess.h>
86
87 #include "internal.h"
88
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99
100 /*
101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via
102 * inode->i_private (with i_rwsem making sure that it has only one user at
103 * a time): we would prefer not to enlarge the shmem inode just for that.
104 */
105 struct shmem_falloc {
106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 pgoff_t start; /* start of range currently being fallocated */
108 pgoff_t next; /* the next page offset to be fallocated */
109 pgoff_t nr_falloced; /* how many new pages have been fallocated */
110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */
111 };
112
113 struct shmem_options {
114 unsigned long long blocks;
115 unsigned long long inodes;
116 struct mempolicy *mpol;
117 kuid_t uid;
118 kgid_t gid;
119 umode_t mode;
120 bool full_inums;
121 int huge;
122 int seen;
123 bool noswap;
124 unsigned short quota_types;
125 struct shmem_quota_limits qlimits;
126 #if IS_ENABLED(CONFIG_UNICODE)
127 struct unicode_map *encoding;
128 bool strict_encoding;
129 #endif
130 #define SHMEM_SEEN_BLOCKS 1
131 #define SHMEM_SEEN_INODES 2
132 #define SHMEM_SEEN_HUGE 4
133 #define SHMEM_SEEN_INUMS 8
134 #define SHMEM_SEEN_QUOTA 16
135 };
136
137 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
138 static unsigned long huge_shmem_orders_always __read_mostly;
139 static unsigned long huge_shmem_orders_madvise __read_mostly;
140 static unsigned long huge_shmem_orders_inherit __read_mostly;
141 static unsigned long huge_shmem_orders_within_size __read_mostly;
142 static bool shmem_orders_configured __initdata;
143 #endif
144
145 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)146 static unsigned long shmem_default_max_blocks(void)
147 {
148 return totalram_pages() / 2;
149 }
150
shmem_default_max_inodes(void)151 static unsigned long shmem_default_max_inodes(void)
152 {
153 unsigned long nr_pages = totalram_pages();
154
155 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
156 ULONG_MAX / BOGO_INODE_SIZE);
157 }
158 #endif
159
160 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
161 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
162 struct vm_area_struct *vma, vm_fault_t *fault_type);
163
SHMEM_SB(struct super_block * sb)164 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
165 {
166 return sb->s_fs_info;
167 }
168
169 /*
170 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
171 * for shared memory and for shared anonymous (/dev/zero) mappings
172 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
173 * consistent with the pre-accounting of private mappings ...
174 */
shmem_acct_size(unsigned long flags,loff_t size)175 static inline int shmem_acct_size(unsigned long flags, loff_t size)
176 {
177 return (flags & SHMEM_F_NORESERVE) ?
178 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
179 }
180
shmem_unacct_size(unsigned long flags,loff_t size)181 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
182 {
183 if (!(flags & SHMEM_F_NORESERVE))
184 vm_unacct_memory(VM_ACCT(size));
185 }
186
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)187 static inline int shmem_reacct_size(unsigned long flags,
188 loff_t oldsize, loff_t newsize)
189 {
190 if (!(flags & SHMEM_F_NORESERVE)) {
191 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
192 return security_vm_enough_memory_mm(current->mm,
193 VM_ACCT(newsize) - VM_ACCT(oldsize));
194 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
195 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
196 }
197 return 0;
198 }
199
200 /*
201 * ... whereas tmpfs objects are accounted incrementally as
202 * pages are allocated, in order to allow large sparse files.
203 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
204 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
205 */
shmem_acct_blocks(unsigned long flags,long pages)206 static inline int shmem_acct_blocks(unsigned long flags, long pages)
207 {
208 if (!(flags & SHMEM_F_NORESERVE))
209 return 0;
210
211 return security_vm_enough_memory_mm(current->mm,
212 pages * VM_ACCT(PAGE_SIZE));
213 }
214
shmem_unacct_blocks(unsigned long flags,long pages)215 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
216 {
217 if (flags & SHMEM_F_NORESERVE)
218 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
219 }
220
shmem_inode_acct_blocks(struct inode * inode,long pages)221 int shmem_inode_acct_blocks(struct inode *inode, long pages)
222 {
223 struct shmem_inode_info *info = SHMEM_I(inode);
224 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
225 int err = -ENOSPC;
226
227 if (shmem_acct_blocks(info->flags, pages))
228 return err;
229
230 might_sleep(); /* when quotas */
231 if (sbinfo->max_blocks) {
232 if (!percpu_counter_limited_add(&sbinfo->used_blocks,
233 sbinfo->max_blocks, pages))
234 goto unacct;
235
236 err = dquot_alloc_block_nodirty(inode, pages);
237 if (err) {
238 percpu_counter_sub(&sbinfo->used_blocks, pages);
239 goto unacct;
240 }
241 } else {
242 err = dquot_alloc_block_nodirty(inode, pages);
243 if (err)
244 goto unacct;
245 }
246
247 return 0;
248
249 unacct:
250 shmem_unacct_blocks(info->flags, pages);
251 return err;
252 }
253
shmem_inode_unacct_blocks(struct inode * inode,long pages)254 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
255 {
256 struct shmem_inode_info *info = SHMEM_I(inode);
257 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
258
259 might_sleep(); /* when quotas */
260 dquot_free_block_nodirty(inode, pages);
261
262 if (sbinfo->max_blocks)
263 percpu_counter_sub(&sbinfo->used_blocks, pages);
264 shmem_unacct_blocks(info->flags, pages);
265 }
266
267 static const struct super_operations shmem_ops;
268 static const struct address_space_operations shmem_aops;
269 static const struct file_operations shmem_file_operations;
270 static const struct inode_operations shmem_inode_operations;
271 static const struct inode_operations shmem_dir_inode_operations;
272 static const struct inode_operations shmem_special_inode_operations;
273 static const struct vm_operations_struct shmem_vm_ops;
274 static const struct vm_operations_struct shmem_anon_vm_ops;
275 static struct file_system_type shmem_fs_type;
276
shmem_mapping(const struct address_space * mapping)277 bool shmem_mapping(const struct address_space *mapping)
278 {
279 return mapping->a_ops == &shmem_aops;
280 }
281 EXPORT_SYMBOL_GPL(shmem_mapping);
282
vma_is_anon_shmem(const struct vm_area_struct * vma)283 bool vma_is_anon_shmem(const struct vm_area_struct *vma)
284 {
285 return vma->vm_ops == &shmem_anon_vm_ops;
286 }
287
vma_is_shmem(const struct vm_area_struct * vma)288 bool vma_is_shmem(const struct vm_area_struct *vma)
289 {
290 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
291 }
292
293 static LIST_HEAD(shmem_swaplist);
294 static DEFINE_SPINLOCK(shmem_swaplist_lock);
295
296 #ifdef CONFIG_TMPFS_QUOTA
297
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)298 static int shmem_enable_quotas(struct super_block *sb,
299 unsigned short quota_types)
300 {
301 int type, err = 0;
302
303 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
304 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
305 if (!(quota_types & (1 << type)))
306 continue;
307 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
308 DQUOT_USAGE_ENABLED |
309 DQUOT_LIMITS_ENABLED);
310 if (err)
311 goto out_err;
312 }
313 return 0;
314
315 out_err:
316 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
317 type, err);
318 for (type--; type >= 0; type--)
319 dquot_quota_off(sb, type);
320 return err;
321 }
322
shmem_disable_quotas(struct super_block * sb)323 static void shmem_disable_quotas(struct super_block *sb)
324 {
325 int type;
326
327 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
328 dquot_quota_off(sb, type);
329 }
330
shmem_get_dquots(struct inode * inode)331 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
332 {
333 return SHMEM_I(inode)->i_dquot;
334 }
335 #endif /* CONFIG_TMPFS_QUOTA */
336
337 /*
338 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
339 * produces a novel ino for the newly allocated inode.
340 *
341 * It may also be called when making a hard link to permit the space needed by
342 * each dentry. However, in that case, no new inode number is needed since that
343 * internally draws from another pool of inode numbers (currently global
344 * get_next_ino()). This case is indicated by passing NULL as inop.
345 */
346 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)347 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
348 {
349 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
350 ino_t ino;
351
352 if (!(sb->s_flags & SB_KERNMOUNT)) {
353 raw_spin_lock(&sbinfo->stat_lock);
354 if (sbinfo->max_inodes) {
355 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
356 raw_spin_unlock(&sbinfo->stat_lock);
357 return -ENOSPC;
358 }
359 sbinfo->free_ispace -= BOGO_INODE_SIZE;
360 }
361 if (inop) {
362 ino = sbinfo->next_ino++;
363 if (unlikely(is_zero_ino(ino)))
364 ino = sbinfo->next_ino++;
365 if (unlikely(!sbinfo->full_inums &&
366 ino > UINT_MAX)) {
367 /*
368 * Emulate get_next_ino uint wraparound for
369 * compatibility
370 */
371 if (IS_ENABLED(CONFIG_64BIT))
372 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
373 __func__, MINOR(sb->s_dev));
374 sbinfo->next_ino = 1;
375 ino = sbinfo->next_ino++;
376 }
377 *inop = ino;
378 }
379 raw_spin_unlock(&sbinfo->stat_lock);
380 } else if (inop) {
381 /*
382 * __shmem_file_setup, one of our callers, is lock-free: it
383 * doesn't hold stat_lock in shmem_reserve_inode since
384 * max_inodes is always 0, and is called from potentially
385 * unknown contexts. As such, use a per-cpu batched allocator
386 * which doesn't require the per-sb stat_lock unless we are at
387 * the batch boundary.
388 *
389 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
390 * shmem mounts are not exposed to userspace, so we don't need
391 * to worry about things like glibc compatibility.
392 */
393 ino_t *next_ino;
394
395 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
396 ino = *next_ino;
397 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
398 raw_spin_lock(&sbinfo->stat_lock);
399 ino = sbinfo->next_ino;
400 sbinfo->next_ino += SHMEM_INO_BATCH;
401 raw_spin_unlock(&sbinfo->stat_lock);
402 if (unlikely(is_zero_ino(ino)))
403 ino++;
404 }
405 *inop = ino;
406 *next_ino = ++ino;
407 put_cpu();
408 }
409
410 return 0;
411 }
412
shmem_free_inode(struct super_block * sb,size_t freed_ispace)413 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
414 {
415 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
416 if (sbinfo->max_inodes) {
417 raw_spin_lock(&sbinfo->stat_lock);
418 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
419 raw_spin_unlock(&sbinfo->stat_lock);
420 }
421 }
422
423 /**
424 * shmem_recalc_inode - recalculate the block usage of an inode
425 * @inode: inode to recalc
426 * @alloced: the change in number of pages allocated to inode
427 * @swapped: the change in number of pages swapped from inode
428 *
429 * We have to calculate the free blocks since the mm can drop
430 * undirtied hole pages behind our back.
431 *
432 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
433 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
434 *
435 * Return: true if swapped was incremented from 0, for shmem_writeout().
436 */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)437 bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
438 {
439 struct shmem_inode_info *info = SHMEM_I(inode);
440 bool first_swapped = false;
441 long freed;
442
443 spin_lock(&info->lock);
444 info->alloced += alloced;
445 info->swapped += swapped;
446 freed = info->alloced - info->swapped -
447 READ_ONCE(inode->i_mapping->nrpages);
448 /*
449 * Special case: whereas normally shmem_recalc_inode() is called
450 * after i_mapping->nrpages has already been adjusted (up or down),
451 * shmem_writeout() has to raise swapped before nrpages is lowered -
452 * to stop a racing shmem_recalc_inode() from thinking that a page has
453 * been freed. Compensate here, to avoid the need for a followup call.
454 */
455 if (swapped > 0) {
456 if (info->swapped == swapped)
457 first_swapped = true;
458 freed += swapped;
459 }
460 if (freed > 0)
461 info->alloced -= freed;
462 spin_unlock(&info->lock);
463
464 /* The quota case may block */
465 if (freed > 0)
466 shmem_inode_unacct_blocks(inode, freed);
467 return first_swapped;
468 }
469
shmem_charge(struct inode * inode,long pages)470 bool shmem_charge(struct inode *inode, long pages)
471 {
472 struct address_space *mapping = inode->i_mapping;
473
474 if (shmem_inode_acct_blocks(inode, pages))
475 return false;
476
477 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
478 xa_lock_irq(&mapping->i_pages);
479 mapping->nrpages += pages;
480 xa_unlock_irq(&mapping->i_pages);
481
482 shmem_recalc_inode(inode, pages, 0);
483 return true;
484 }
485
shmem_uncharge(struct inode * inode,long pages)486 void shmem_uncharge(struct inode *inode, long pages)
487 {
488 /* pages argument is currently unused: keep it to help debugging */
489 /* nrpages adjustment done by __filemap_remove_folio() or caller */
490
491 shmem_recalc_inode(inode, 0, 0);
492 }
493
494 /*
495 * Replace item expected in xarray by a new item, while holding xa_lock.
496 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)497 static int shmem_replace_entry(struct address_space *mapping,
498 pgoff_t index, void *expected, void *replacement)
499 {
500 XA_STATE(xas, &mapping->i_pages, index);
501 void *item;
502
503 VM_BUG_ON(!expected);
504 VM_BUG_ON(!replacement);
505 item = xas_load(&xas);
506 if (item != expected)
507 return -ENOENT;
508 xas_store(&xas, replacement);
509 return 0;
510 }
511
512 /*
513 * Sometimes, before we decide whether to proceed or to fail, we must check
514 * that an entry was not already brought back or split by a racing thread.
515 *
516 * Checking folio is not enough: by the time a swapcache folio is locked, it
517 * might be reused, and again be swapcache, using the same swap as before.
518 * Returns the swap entry's order if it still presents, else returns -1.
519 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)520 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index,
521 swp_entry_t swap)
522 {
523 XA_STATE(xas, &mapping->i_pages, index);
524 int ret = -1;
525 void *entry;
526
527 rcu_read_lock();
528 do {
529 entry = xas_load(&xas);
530 if (entry == swp_to_radix_entry(swap))
531 ret = xas_get_order(&xas);
532 } while (xas_retry(&xas, entry));
533 rcu_read_unlock();
534 return ret;
535 }
536
537 /*
538 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
539 *
540 * SHMEM_HUGE_NEVER:
541 * disables huge pages for the mount;
542 * SHMEM_HUGE_ALWAYS:
543 * enables huge pages for the mount;
544 * SHMEM_HUGE_WITHIN_SIZE:
545 * only allocate huge pages if the page will be fully within i_size,
546 * also respect madvise() hints;
547 * SHMEM_HUGE_ADVISE:
548 * only allocate huge pages if requested with madvise();
549 */
550
551 #define SHMEM_HUGE_NEVER 0
552 #define SHMEM_HUGE_ALWAYS 1
553 #define SHMEM_HUGE_WITHIN_SIZE 2
554 #define SHMEM_HUGE_ADVISE 3
555
556 /*
557 * Special values.
558 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
559 *
560 * SHMEM_HUGE_DENY:
561 * disables huge on shm_mnt and all mounts, for emergency use;
562 * SHMEM_HUGE_FORCE:
563 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
564 *
565 */
566 #define SHMEM_HUGE_DENY (-1)
567 #define SHMEM_HUGE_FORCE (-2)
568
569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
570 /* ifdef here to avoid bloating shmem.o when not necessary */
571
572 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_NEVER)
573 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER
574 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ALWAYS)
575 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ALWAYS
576 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_WITHIN_SIZE)
577 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE
578 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ADVISE)
579 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ADVISE
580 #else
581 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER
582 #endif
583
584 static int shmem_huge __read_mostly = SHMEM_HUGE_DEFAULT;
585
586 #undef SHMEM_HUGE_DEFAULT
587
588 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_NEVER)
589 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER
590 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ALWAYS)
591 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ALWAYS
592 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_WITHIN_SIZE)
593 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE
594 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ADVISE)
595 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ADVISE
596 #else
597 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER
598 #endif
599
600 static int tmpfs_huge __read_mostly = TMPFS_HUGE_DEFAULT;
601
602 #undef TMPFS_HUGE_DEFAULT
603
shmem_get_orders_within_size(struct inode * inode,unsigned long within_size_orders,pgoff_t index,loff_t write_end)604 static unsigned int shmem_get_orders_within_size(struct inode *inode,
605 unsigned long within_size_orders, pgoff_t index,
606 loff_t write_end)
607 {
608 pgoff_t aligned_index;
609 unsigned long order;
610 loff_t i_size;
611
612 order = highest_order(within_size_orders);
613 while (within_size_orders) {
614 aligned_index = round_up(index + 1, 1 << order);
615 i_size = max(write_end, i_size_read(inode));
616 i_size = round_up(i_size, PAGE_SIZE);
617 if (i_size >> PAGE_SHIFT >= aligned_index)
618 return within_size_orders;
619
620 order = next_order(&within_size_orders, order);
621 }
622
623 return 0;
624 }
625
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,vm_flags_t vm_flags)626 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
627 loff_t write_end, bool shmem_huge_force,
628 struct vm_area_struct *vma,
629 vm_flags_t vm_flags)
630 {
631 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
632 0 : BIT(HPAGE_PMD_ORDER);
633 unsigned long within_size_orders;
634
635 if (!S_ISREG(inode->i_mode))
636 return 0;
637 if (shmem_huge == SHMEM_HUGE_DENY)
638 return 0;
639 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
640 return maybe_pmd_order;
641
642 /*
643 * The huge order allocation for anon shmem is controlled through
644 * the mTHP interface, so we still use PMD-sized huge order to
645 * check whether global control is enabled.
646 *
647 * For tmpfs with 'huge=always' or 'huge=within_size' mount option,
648 * we will always try PMD-sized order first. If that failed, it will
649 * fall back to small large folios.
650 */
651 switch (SHMEM_SB(inode->i_sb)->huge) {
652 case SHMEM_HUGE_ALWAYS:
653 return THP_ORDERS_ALL_FILE_DEFAULT;
654 case SHMEM_HUGE_WITHIN_SIZE:
655 within_size_orders = shmem_get_orders_within_size(inode,
656 THP_ORDERS_ALL_FILE_DEFAULT, index, write_end);
657 if (within_size_orders > 0)
658 return within_size_orders;
659
660 fallthrough;
661 case SHMEM_HUGE_ADVISE:
662 if (vm_flags & VM_HUGEPAGE)
663 return THP_ORDERS_ALL_FILE_DEFAULT;
664 fallthrough;
665 default:
666 return 0;
667 }
668 }
669
shmem_parse_huge(const char * str)670 static int shmem_parse_huge(const char *str)
671 {
672 int huge;
673
674 if (!str)
675 return -EINVAL;
676
677 if (!strcmp(str, "never"))
678 huge = SHMEM_HUGE_NEVER;
679 else if (!strcmp(str, "always"))
680 huge = SHMEM_HUGE_ALWAYS;
681 else if (!strcmp(str, "within_size"))
682 huge = SHMEM_HUGE_WITHIN_SIZE;
683 else if (!strcmp(str, "advise"))
684 huge = SHMEM_HUGE_ADVISE;
685 else if (!strcmp(str, "deny"))
686 huge = SHMEM_HUGE_DENY;
687 else if (!strcmp(str, "force"))
688 huge = SHMEM_HUGE_FORCE;
689 else
690 return -EINVAL;
691
692 if (!has_transparent_hugepage() &&
693 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
694 return -EINVAL;
695
696 /* Do not override huge allocation policy with non-PMD sized mTHP */
697 if (huge == SHMEM_HUGE_FORCE &&
698 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
699 return -EINVAL;
700
701 return huge;
702 }
703
704 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)705 static const char *shmem_format_huge(int huge)
706 {
707 switch (huge) {
708 case SHMEM_HUGE_NEVER:
709 return "never";
710 case SHMEM_HUGE_ALWAYS:
711 return "always";
712 case SHMEM_HUGE_WITHIN_SIZE:
713 return "within_size";
714 case SHMEM_HUGE_ADVISE:
715 return "advise";
716 case SHMEM_HUGE_DENY:
717 return "deny";
718 case SHMEM_HUGE_FORCE:
719 return "force";
720 default:
721 VM_BUG_ON(1);
722 return "bad_val";
723 }
724 }
725 #endif
726
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)727 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
728 struct shrink_control *sc, unsigned long nr_to_free)
729 {
730 LIST_HEAD(list), *pos, *next;
731 struct inode *inode;
732 struct shmem_inode_info *info;
733 struct folio *folio;
734 unsigned long batch = sc ? sc->nr_to_scan : 128;
735 unsigned long split = 0, freed = 0;
736
737 if (list_empty(&sbinfo->shrinklist))
738 return SHRINK_STOP;
739
740 spin_lock(&sbinfo->shrinklist_lock);
741 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
742 info = list_entry(pos, struct shmem_inode_info, shrinklist);
743
744 /* pin the inode */
745 inode = igrab(&info->vfs_inode);
746
747 /* inode is about to be evicted */
748 if (!inode) {
749 list_del_init(&info->shrinklist);
750 goto next;
751 }
752
753 list_move(&info->shrinklist, &list);
754 next:
755 sbinfo->shrinklist_len--;
756 if (!--batch)
757 break;
758 }
759 spin_unlock(&sbinfo->shrinklist_lock);
760
761 list_for_each_safe(pos, next, &list) {
762 pgoff_t next, end;
763 loff_t i_size;
764 int ret;
765
766 info = list_entry(pos, struct shmem_inode_info, shrinklist);
767 inode = &info->vfs_inode;
768
769 if (nr_to_free && freed >= nr_to_free)
770 goto move_back;
771
772 i_size = i_size_read(inode);
773 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
774 if (!folio || xa_is_value(folio))
775 goto drop;
776
777 /* No large folio at the end of the file: nothing to split */
778 if (!folio_test_large(folio)) {
779 folio_put(folio);
780 goto drop;
781 }
782
783 /* Check if there is anything to gain from splitting */
784 next = folio_next_index(folio);
785 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
786 if (end <= folio->index || end >= next) {
787 folio_put(folio);
788 goto drop;
789 }
790
791 /*
792 * Move the inode on the list back to shrinklist if we failed
793 * to lock the page at this time.
794 *
795 * Waiting for the lock may lead to deadlock in the
796 * reclaim path.
797 */
798 if (!folio_trylock(folio)) {
799 folio_put(folio);
800 goto move_back;
801 }
802
803 ret = split_folio(folio);
804 folio_unlock(folio);
805 folio_put(folio);
806
807 /* If split failed move the inode on the list back to shrinklist */
808 if (ret)
809 goto move_back;
810
811 freed += next - end;
812 split++;
813 drop:
814 list_del_init(&info->shrinklist);
815 goto put;
816 move_back:
817 /*
818 * Make sure the inode is either on the global list or deleted
819 * from any local list before iput() since it could be deleted
820 * in another thread once we put the inode (then the local list
821 * is corrupted).
822 */
823 spin_lock(&sbinfo->shrinklist_lock);
824 list_move(&info->shrinklist, &sbinfo->shrinklist);
825 sbinfo->shrinklist_len++;
826 spin_unlock(&sbinfo->shrinklist_lock);
827 put:
828 iput(inode);
829 }
830
831 return split;
832 }
833
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)834 static long shmem_unused_huge_scan(struct super_block *sb,
835 struct shrink_control *sc)
836 {
837 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
838
839 if (!READ_ONCE(sbinfo->shrinklist_len))
840 return SHRINK_STOP;
841
842 return shmem_unused_huge_shrink(sbinfo, sc, 0);
843 }
844
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)845 static long shmem_unused_huge_count(struct super_block *sb,
846 struct shrink_control *sc)
847 {
848 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
849 return READ_ONCE(sbinfo->shrinklist_len);
850 }
851 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
852
853 #define shmem_huge SHMEM_HUGE_DENY
854
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)855 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
856 struct shrink_control *sc, unsigned long nr_to_free)
857 {
858 return 0;
859 }
860
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,vm_flags_t vm_flags)861 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
862 loff_t write_end, bool shmem_huge_force,
863 struct vm_area_struct *vma,
864 vm_flags_t vm_flags)
865 {
866 return 0;
867 }
868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
869
shmem_update_stats(struct folio * folio,int nr_pages)870 static void shmem_update_stats(struct folio *folio, int nr_pages)
871 {
872 if (folio_test_pmd_mappable(folio))
873 lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
874 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
875 lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
876 }
877
878 /*
879 * Somewhat like filemap_add_folio, but error if expected item has gone.
880 */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)881 int shmem_add_to_page_cache(struct folio *folio,
882 struct address_space *mapping,
883 pgoff_t index, void *expected, gfp_t gfp)
884 {
885 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
886 unsigned long nr = folio_nr_pages(folio);
887 swp_entry_t iter, swap;
888 void *entry;
889
890 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
891 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
892 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
893
894 folio_ref_add(folio, nr);
895 folio->mapping = mapping;
896 folio->index = index;
897
898 gfp &= GFP_RECLAIM_MASK;
899 folio_throttle_swaprate(folio, gfp);
900 swap = radix_to_swp_entry(expected);
901
902 do {
903 iter = swap;
904 xas_lock_irq(&xas);
905 xas_for_each_conflict(&xas, entry) {
906 /*
907 * The range must either be empty, or filled with
908 * expected swap entries. Shmem swap entries are never
909 * partially freed without split of both entry and
910 * folio, so there shouldn't be any holes.
911 */
912 if (!expected || entry != swp_to_radix_entry(iter)) {
913 xas_set_err(&xas, -EEXIST);
914 goto unlock;
915 }
916 iter.val += 1 << xas_get_order(&xas);
917 }
918 if (expected && iter.val - nr != swap.val) {
919 xas_set_err(&xas, -EEXIST);
920 goto unlock;
921 }
922 xas_store(&xas, folio);
923 if (xas_error(&xas))
924 goto unlock;
925 shmem_update_stats(folio, nr);
926 mapping->nrpages += nr;
927 unlock:
928 xas_unlock_irq(&xas);
929 } while (xas_nomem(&xas, gfp));
930
931 if (xas_error(&xas)) {
932 folio->mapping = NULL;
933 folio_ref_sub(folio, nr);
934 return xas_error(&xas);
935 }
936
937 return 0;
938 }
939
940 /*
941 * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
942 */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)943 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
944 {
945 struct address_space *mapping = folio->mapping;
946 long nr = folio_nr_pages(folio);
947 int error;
948
949 xa_lock_irq(&mapping->i_pages);
950 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
951 folio->mapping = NULL;
952 mapping->nrpages -= nr;
953 shmem_update_stats(folio, -nr);
954 xa_unlock_irq(&mapping->i_pages);
955 folio_put_refs(folio, nr);
956 BUG_ON(error);
957 }
958
959 /*
960 * Remove swap entry from page cache, free the swap and its page cache. Returns
961 * the number of pages being freed. 0 means entry not found in XArray (0 pages
962 * being freed).
963 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,pgoff_t end,void * radswap)964 static long shmem_free_swap(struct address_space *mapping,
965 pgoff_t index, pgoff_t end, void *radswap)
966 {
967 XA_STATE(xas, &mapping->i_pages, index);
968 unsigned int nr_pages = 0;
969 pgoff_t base;
970 void *entry;
971
972 xas_lock_irq(&xas);
973 entry = xas_load(&xas);
974 if (entry == radswap) {
975 nr_pages = 1 << xas_get_order(&xas);
976 base = round_down(xas.xa_index, nr_pages);
977 if (base < index || base + nr_pages - 1 > end)
978 nr_pages = 0;
979 else
980 xas_store(&xas, NULL);
981 }
982 xas_unlock_irq(&xas);
983
984 if (nr_pages)
985 free_swap_and_cache_nr(radix_to_swp_entry(radswap), nr_pages);
986
987 return nr_pages;
988 }
989
990 /*
991 * Determine (in bytes) how many of the shmem object's pages mapped by the
992 * given offsets are swapped out.
993 *
994 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
995 * as long as the inode doesn't go away and racy results are not a problem.
996 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)997 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
998 pgoff_t start, pgoff_t end)
999 {
1000 XA_STATE(xas, &mapping->i_pages, start);
1001 struct folio *folio;
1002 unsigned long swapped = 0;
1003 unsigned long max = end - 1;
1004
1005 rcu_read_lock();
1006 xas_for_each(&xas, folio, max) {
1007 if (xas_retry(&xas, folio))
1008 continue;
1009 if (xa_is_value(folio))
1010 swapped += 1 << xas_get_order(&xas);
1011 if (xas.xa_index == max)
1012 break;
1013 if (need_resched()) {
1014 xas_pause(&xas);
1015 cond_resched_rcu();
1016 }
1017 }
1018 rcu_read_unlock();
1019
1020 return swapped << PAGE_SHIFT;
1021 }
1022
1023 /*
1024 * Determine (in bytes) how many of the shmem object's pages mapped by the
1025 * given vma is swapped out.
1026 *
1027 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
1028 * as long as the inode doesn't go away and racy results are not a problem.
1029 */
shmem_swap_usage(struct vm_area_struct * vma)1030 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
1031 {
1032 struct inode *inode = file_inode(vma->vm_file);
1033 struct shmem_inode_info *info = SHMEM_I(inode);
1034 struct address_space *mapping = inode->i_mapping;
1035 unsigned long swapped;
1036
1037 /* Be careful as we don't hold info->lock */
1038 swapped = READ_ONCE(info->swapped);
1039
1040 /*
1041 * The easier cases are when the shmem object has nothing in swap, or
1042 * the vma maps it whole. Then we can simply use the stats that we
1043 * already track.
1044 */
1045 if (!swapped)
1046 return 0;
1047
1048 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
1049 return swapped << PAGE_SHIFT;
1050
1051 /* Here comes the more involved part */
1052 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
1053 vma->vm_pgoff + vma_pages(vma));
1054 }
1055
1056 /*
1057 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
1058 */
shmem_unlock_mapping(struct address_space * mapping)1059 void shmem_unlock_mapping(struct address_space *mapping)
1060 {
1061 struct folio_batch fbatch;
1062 pgoff_t index = 0;
1063
1064 folio_batch_init(&fbatch);
1065 /*
1066 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
1067 */
1068 while (!mapping_unevictable(mapping) &&
1069 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
1070 check_move_unevictable_folios(&fbatch);
1071 folio_batch_release(&fbatch);
1072 cond_resched();
1073 }
1074 }
1075
shmem_get_partial_folio(struct inode * inode,pgoff_t index)1076 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
1077 {
1078 struct folio *folio;
1079
1080 /*
1081 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
1082 * beyond i_size, and reports fallocated folios as holes.
1083 */
1084 folio = filemap_get_entry(inode->i_mapping, index);
1085 if (!folio)
1086 return folio;
1087 if (!xa_is_value(folio)) {
1088 folio_lock(folio);
1089 if (folio->mapping == inode->i_mapping)
1090 return folio;
1091 /* The folio has been swapped out */
1092 folio_unlock(folio);
1093 folio_put(folio);
1094 }
1095 /*
1096 * But read a folio back from swap if any of it is within i_size
1097 * (although in some cases this is just a waste of time).
1098 */
1099 folio = NULL;
1100 shmem_get_folio(inode, index, 0, &folio, SGP_READ);
1101 return folio;
1102 }
1103
1104 /*
1105 * Remove range of pages and swap entries from page cache, and free them.
1106 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1107 */
shmem_undo_range(struct inode * inode,loff_t lstart,uoff_t lend,bool unfalloc)1108 static void shmem_undo_range(struct inode *inode, loff_t lstart, uoff_t lend,
1109 bool unfalloc)
1110 {
1111 struct address_space *mapping = inode->i_mapping;
1112 struct shmem_inode_info *info = SHMEM_I(inode);
1113 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1114 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1115 struct folio_batch fbatch;
1116 pgoff_t indices[PAGEVEC_SIZE];
1117 struct folio *folio;
1118 bool same_folio;
1119 long nr_swaps_freed = 0;
1120 pgoff_t index;
1121 int i;
1122
1123 if (lend == -1)
1124 end = -1; /* unsigned, so actually very big */
1125
1126 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1127 info->fallocend = start;
1128
1129 folio_batch_init(&fbatch);
1130 index = start;
1131 while (index < end && find_lock_entries(mapping, &index, end - 1,
1132 &fbatch, indices)) {
1133 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1134 folio = fbatch.folios[i];
1135
1136 if (xa_is_value(folio)) {
1137 if (unfalloc)
1138 continue;
1139 nr_swaps_freed += shmem_free_swap(mapping, indices[i],
1140 end - 1, folio);
1141 continue;
1142 }
1143
1144 if (!unfalloc || !folio_test_uptodate(folio))
1145 truncate_inode_folio(mapping, folio);
1146 folio_unlock(folio);
1147 }
1148 folio_batch_remove_exceptionals(&fbatch);
1149 folio_batch_release(&fbatch);
1150 cond_resched();
1151 }
1152
1153 /*
1154 * When undoing a failed fallocate, we want none of the partial folio
1155 * zeroing and splitting below, but shall want to truncate the whole
1156 * folio when !uptodate indicates that it was added by this fallocate,
1157 * even when [lstart, lend] covers only a part of the folio.
1158 */
1159 if (unfalloc)
1160 goto whole_folios;
1161
1162 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1163 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1164 if (folio) {
1165 same_folio = lend < folio_next_pos(folio);
1166 folio_mark_dirty(folio);
1167 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1168 start = folio_next_index(folio);
1169 if (same_folio)
1170 end = folio->index;
1171 }
1172 folio_unlock(folio);
1173 folio_put(folio);
1174 folio = NULL;
1175 }
1176
1177 if (!same_folio)
1178 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1179 if (folio) {
1180 folio_mark_dirty(folio);
1181 if (!truncate_inode_partial_folio(folio, lstart, lend))
1182 end = folio->index;
1183 folio_unlock(folio);
1184 folio_put(folio);
1185 }
1186
1187 whole_folios:
1188
1189 index = start;
1190 while (index < end) {
1191 cond_resched();
1192
1193 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1194 indices)) {
1195 /* If all gone or hole-punch or unfalloc, we're done */
1196 if (index == start || end != -1)
1197 break;
1198 /* But if truncating, restart to make sure all gone */
1199 index = start;
1200 continue;
1201 }
1202 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1203 folio = fbatch.folios[i];
1204
1205 if (xa_is_value(folio)) {
1206 int order;
1207 long swaps_freed;
1208
1209 if (unfalloc)
1210 continue;
1211 swaps_freed = shmem_free_swap(mapping, indices[i],
1212 end - 1, folio);
1213 if (!swaps_freed) {
1214 /*
1215 * If found a large swap entry cross the end border,
1216 * skip it as the truncate_inode_partial_folio above
1217 * should have at least zerod its content once.
1218 */
1219 order = shmem_confirm_swap(mapping, indices[i],
1220 radix_to_swp_entry(folio));
1221 if (order > 0 && indices[i] + (1 << order) > end)
1222 continue;
1223 /* Swap was replaced by page: retry */
1224 index = indices[i];
1225 break;
1226 }
1227 nr_swaps_freed += swaps_freed;
1228 continue;
1229 }
1230
1231 folio_lock(folio);
1232
1233 if (!unfalloc || !folio_test_uptodate(folio)) {
1234 if (folio_mapping(folio) != mapping) {
1235 /* Page was replaced by swap: retry */
1236 folio_unlock(folio);
1237 index = indices[i];
1238 break;
1239 }
1240 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1241 folio);
1242
1243 if (!folio_test_large(folio)) {
1244 truncate_inode_folio(mapping, folio);
1245 } else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1246 /*
1247 * If we split a page, reset the loop so
1248 * that we pick up the new sub pages.
1249 * Otherwise the THP was entirely
1250 * dropped or the target range was
1251 * zeroed, so just continue the loop as
1252 * is.
1253 */
1254 if (!folio_test_large(folio)) {
1255 folio_unlock(folio);
1256 index = start;
1257 break;
1258 }
1259 }
1260 }
1261 folio_unlock(folio);
1262 }
1263 folio_batch_remove_exceptionals(&fbatch);
1264 folio_batch_release(&fbatch);
1265 }
1266
1267 shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1268 }
1269
shmem_truncate_range(struct inode * inode,loff_t lstart,uoff_t lend)1270 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend)
1271 {
1272 shmem_undo_range(inode, lstart, lend, false);
1273 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1274 inode_inc_iversion(inode);
1275 }
1276 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1277
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1278 static int shmem_getattr(struct mnt_idmap *idmap,
1279 const struct path *path, struct kstat *stat,
1280 u32 request_mask, unsigned int query_flags)
1281 {
1282 struct inode *inode = path->dentry->d_inode;
1283 struct shmem_inode_info *info = SHMEM_I(inode);
1284
1285 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1286 shmem_recalc_inode(inode, 0, 0);
1287
1288 if (info->fsflags & FS_APPEND_FL)
1289 stat->attributes |= STATX_ATTR_APPEND;
1290 if (info->fsflags & FS_IMMUTABLE_FL)
1291 stat->attributes |= STATX_ATTR_IMMUTABLE;
1292 if (info->fsflags & FS_NODUMP_FL)
1293 stat->attributes |= STATX_ATTR_NODUMP;
1294 stat->attributes_mask |= (STATX_ATTR_APPEND |
1295 STATX_ATTR_IMMUTABLE |
1296 STATX_ATTR_NODUMP);
1297 generic_fillattr(idmap, request_mask, inode, stat);
1298
1299 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1300 stat->blksize = HPAGE_PMD_SIZE;
1301
1302 if (request_mask & STATX_BTIME) {
1303 stat->result_mask |= STATX_BTIME;
1304 stat->btime.tv_sec = info->i_crtime.tv_sec;
1305 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1306 }
1307
1308 return 0;
1309 }
1310
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1311 static int shmem_setattr(struct mnt_idmap *idmap,
1312 struct dentry *dentry, struct iattr *attr)
1313 {
1314 struct inode *inode = d_inode(dentry);
1315 struct shmem_inode_info *info = SHMEM_I(inode);
1316 int error;
1317 bool update_mtime = false;
1318 bool update_ctime = true;
1319
1320 error = setattr_prepare(idmap, dentry, attr);
1321 if (error)
1322 return error;
1323
1324 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1325 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1326 return -EPERM;
1327 }
1328 }
1329
1330 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1331 loff_t oldsize = inode->i_size;
1332 loff_t newsize = attr->ia_size;
1333
1334 /* protected by i_rwsem */
1335 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1336 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1337 return -EPERM;
1338
1339 if (newsize != oldsize) {
1340 if (info->flags & SHMEM_F_MAPPING_FROZEN)
1341 return -EPERM;
1342 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1343 oldsize, newsize);
1344 if (error)
1345 return error;
1346 i_size_write(inode, newsize);
1347 update_mtime = true;
1348 } else {
1349 update_ctime = false;
1350 }
1351 if (newsize <= oldsize) {
1352 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1353 if (oldsize > holebegin)
1354 unmap_mapping_range(inode->i_mapping,
1355 holebegin, 0, 1);
1356 if (info->alloced)
1357 shmem_truncate_range(inode,
1358 newsize, (loff_t)-1);
1359 /* unmap again to remove racily COWed private pages */
1360 if (oldsize > holebegin)
1361 unmap_mapping_range(inode->i_mapping,
1362 holebegin, 0, 1);
1363 }
1364 }
1365
1366 if (is_quota_modification(idmap, inode, attr)) {
1367 error = dquot_initialize(inode);
1368 if (error)
1369 return error;
1370 }
1371
1372 /* Transfer quota accounting */
1373 if (i_uid_needs_update(idmap, attr, inode) ||
1374 i_gid_needs_update(idmap, attr, inode)) {
1375 error = dquot_transfer(idmap, inode, attr);
1376 if (error)
1377 return error;
1378 }
1379
1380 setattr_copy(idmap, inode, attr);
1381 if (attr->ia_valid & ATTR_MODE)
1382 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1383 if (!error && update_ctime) {
1384 inode_set_ctime_current(inode);
1385 if (update_mtime)
1386 inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1387 inode_inc_iversion(inode);
1388 }
1389 return error;
1390 }
1391
shmem_evict_inode(struct inode * inode)1392 static void shmem_evict_inode(struct inode *inode)
1393 {
1394 struct shmem_inode_info *info = SHMEM_I(inode);
1395 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1396 size_t freed = 0;
1397
1398 if (shmem_mapping(inode->i_mapping)) {
1399 shmem_unacct_size(info->flags, inode->i_size);
1400 inode->i_size = 0;
1401 mapping_set_exiting(inode->i_mapping);
1402 shmem_truncate_range(inode, 0, (loff_t)-1);
1403 if (!list_empty(&info->shrinklist)) {
1404 spin_lock(&sbinfo->shrinklist_lock);
1405 if (!list_empty(&info->shrinklist)) {
1406 list_del_init(&info->shrinklist);
1407 sbinfo->shrinklist_len--;
1408 }
1409 spin_unlock(&sbinfo->shrinklist_lock);
1410 }
1411 while (!list_empty(&info->swaplist)) {
1412 /* Wait while shmem_unuse() is scanning this inode... */
1413 wait_var_event(&info->stop_eviction,
1414 !atomic_read(&info->stop_eviction));
1415 spin_lock(&shmem_swaplist_lock);
1416 /* ...but beware of the race if we peeked too early */
1417 if (!atomic_read(&info->stop_eviction))
1418 list_del_init(&info->swaplist);
1419 spin_unlock(&shmem_swaplist_lock);
1420 }
1421 }
1422
1423 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1424 shmem_free_inode(inode->i_sb, freed);
1425 WARN_ON(inode->i_blocks);
1426 clear_inode(inode);
1427 #ifdef CONFIG_TMPFS_QUOTA
1428 dquot_free_inode(inode);
1429 dquot_drop(inode);
1430 #endif
1431 }
1432
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1433 static unsigned int shmem_find_swap_entries(struct address_space *mapping,
1434 pgoff_t start, struct folio_batch *fbatch,
1435 pgoff_t *indices, unsigned int type)
1436 {
1437 XA_STATE(xas, &mapping->i_pages, start);
1438 struct folio *folio;
1439 swp_entry_t entry;
1440
1441 rcu_read_lock();
1442 xas_for_each(&xas, folio, ULONG_MAX) {
1443 if (xas_retry(&xas, folio))
1444 continue;
1445
1446 if (!xa_is_value(folio))
1447 continue;
1448
1449 entry = radix_to_swp_entry(folio);
1450 /*
1451 * swapin error entries can be found in the mapping. But they're
1452 * deliberately ignored here as we've done everything we can do.
1453 */
1454 if (swp_type(entry) != type)
1455 continue;
1456
1457 indices[folio_batch_count(fbatch)] = xas.xa_index;
1458 if (!folio_batch_add(fbatch, folio))
1459 break;
1460
1461 if (need_resched()) {
1462 xas_pause(&xas);
1463 cond_resched_rcu();
1464 }
1465 }
1466 rcu_read_unlock();
1467
1468 return folio_batch_count(fbatch);
1469 }
1470
1471 /*
1472 * Move the swapped pages for an inode to page cache. Returns the count
1473 * of pages swapped in, or the error in case of failure.
1474 */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1475 static int shmem_unuse_swap_entries(struct inode *inode,
1476 struct folio_batch *fbatch, pgoff_t *indices)
1477 {
1478 int i = 0;
1479 int ret = 0;
1480 int error = 0;
1481 struct address_space *mapping = inode->i_mapping;
1482
1483 for (i = 0; i < folio_batch_count(fbatch); i++) {
1484 struct folio *folio = fbatch->folios[i];
1485
1486 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1487 mapping_gfp_mask(mapping), NULL, NULL);
1488 if (error == 0) {
1489 folio_unlock(folio);
1490 folio_put(folio);
1491 ret++;
1492 }
1493 if (error == -ENOMEM)
1494 break;
1495 error = 0;
1496 }
1497 return error ? error : ret;
1498 }
1499
1500 /*
1501 * If swap found in inode, free it and move page from swapcache to filecache.
1502 */
shmem_unuse_inode(struct inode * inode,unsigned int type)1503 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1504 {
1505 struct address_space *mapping = inode->i_mapping;
1506 pgoff_t start = 0;
1507 struct folio_batch fbatch;
1508 pgoff_t indices[PAGEVEC_SIZE];
1509 int ret = 0;
1510
1511 do {
1512 folio_batch_init(&fbatch);
1513 if (!shmem_find_swap_entries(mapping, start, &fbatch,
1514 indices, type)) {
1515 ret = 0;
1516 break;
1517 }
1518
1519 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1520 if (ret < 0)
1521 break;
1522
1523 start = indices[folio_batch_count(&fbatch) - 1];
1524 } while (true);
1525
1526 return ret;
1527 }
1528
1529 /*
1530 * Read all the shared memory data that resides in the swap
1531 * device 'type' back into memory, so the swap device can be
1532 * unused.
1533 */
shmem_unuse(unsigned int type)1534 int shmem_unuse(unsigned int type)
1535 {
1536 struct shmem_inode_info *info, *next;
1537 int error = 0;
1538
1539 if (list_empty(&shmem_swaplist))
1540 return 0;
1541
1542 spin_lock(&shmem_swaplist_lock);
1543 start_over:
1544 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1545 if (!info->swapped) {
1546 list_del_init(&info->swaplist);
1547 continue;
1548 }
1549 /*
1550 * Drop the swaplist mutex while searching the inode for swap;
1551 * but before doing so, make sure shmem_evict_inode() will not
1552 * remove placeholder inode from swaplist, nor let it be freed
1553 * (igrab() would protect from unlink, but not from unmount).
1554 */
1555 atomic_inc(&info->stop_eviction);
1556 spin_unlock(&shmem_swaplist_lock);
1557
1558 error = shmem_unuse_inode(&info->vfs_inode, type);
1559 cond_resched();
1560
1561 spin_lock(&shmem_swaplist_lock);
1562 if (atomic_dec_and_test(&info->stop_eviction))
1563 wake_up_var(&info->stop_eviction);
1564 if (error)
1565 break;
1566 if (list_empty(&info->swaplist))
1567 goto start_over;
1568 next = list_next_entry(info, swaplist);
1569 if (!info->swapped)
1570 list_del_init(&info->swaplist);
1571 }
1572 spin_unlock(&shmem_swaplist_lock);
1573
1574 return error;
1575 }
1576
1577 /**
1578 * shmem_writeout - Write the folio to swap
1579 * @folio: The folio to write
1580 * @plug: swap plug
1581 * @folio_list: list to put back folios on split
1582 *
1583 * Move the folio from the page cache to the swap cache.
1584 */
shmem_writeout(struct folio * folio,struct swap_iocb ** plug,struct list_head * folio_list)1585 int shmem_writeout(struct folio *folio, struct swap_iocb **plug,
1586 struct list_head *folio_list)
1587 {
1588 struct address_space *mapping = folio->mapping;
1589 struct inode *inode = mapping->host;
1590 struct shmem_inode_info *info = SHMEM_I(inode);
1591 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1592 pgoff_t index;
1593 int nr_pages;
1594 bool split = false;
1595
1596 if ((info->flags & SHMEM_F_LOCKED) || sbinfo->noswap)
1597 goto redirty;
1598
1599 if (!total_swap_pages)
1600 goto redirty;
1601
1602 /*
1603 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1604 * split when swapping.
1605 *
1606 * And shrinkage of pages beyond i_size does not split swap, so
1607 * swapout of a large folio crossing i_size needs to split too
1608 * (unless fallocate has been used to preallocate beyond EOF).
1609 */
1610 if (folio_test_large(folio)) {
1611 index = shmem_fallocend(inode,
1612 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1613 if ((index > folio->index && index < folio_next_index(folio)) ||
1614 !IS_ENABLED(CONFIG_THP_SWAP))
1615 split = true;
1616 }
1617
1618 if (split) {
1619 try_split:
1620 /* Ensure the subpages are still dirty */
1621 folio_test_set_dirty(folio);
1622 if (split_folio_to_list(folio, folio_list))
1623 goto redirty;
1624 folio_clear_dirty(folio);
1625 }
1626
1627 index = folio->index;
1628 nr_pages = folio_nr_pages(folio);
1629
1630 /*
1631 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1632 * value into swapfile.c, the only way we can correctly account for a
1633 * fallocated folio arriving here is now to initialize it and write it.
1634 *
1635 * That's okay for a folio already fallocated earlier, but if we have
1636 * not yet completed the fallocation, then (a) we want to keep track
1637 * of this folio in case we have to undo it, and (b) it may not be a
1638 * good idea to continue anyway, once we're pushing into swap. So
1639 * reactivate the folio, and let shmem_fallocate() quit when too many.
1640 */
1641 if (!folio_test_uptodate(folio)) {
1642 if (inode->i_private) {
1643 struct shmem_falloc *shmem_falloc;
1644 spin_lock(&inode->i_lock);
1645 shmem_falloc = inode->i_private;
1646 if (shmem_falloc &&
1647 !shmem_falloc->waitq &&
1648 index >= shmem_falloc->start &&
1649 index < shmem_falloc->next)
1650 shmem_falloc->nr_unswapped += nr_pages;
1651 else
1652 shmem_falloc = NULL;
1653 spin_unlock(&inode->i_lock);
1654 if (shmem_falloc)
1655 goto redirty;
1656 }
1657 folio_zero_range(folio, 0, folio_size(folio));
1658 flush_dcache_folio(folio);
1659 folio_mark_uptodate(folio);
1660 }
1661
1662 if (!folio_alloc_swap(folio)) {
1663 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages);
1664 int error;
1665
1666 /*
1667 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1668 * if it's not already there. Do it now before the folio is
1669 * removed from page cache, when its pagelock no longer
1670 * protects the inode from eviction. And do it now, after
1671 * we've incremented swapped, because shmem_unuse() will
1672 * prune a !swapped inode from the swaplist.
1673 */
1674 if (first_swapped) {
1675 spin_lock(&shmem_swaplist_lock);
1676 if (list_empty(&info->swaplist))
1677 list_add(&info->swaplist, &shmem_swaplist);
1678 spin_unlock(&shmem_swaplist_lock);
1679 }
1680
1681 swap_shmem_alloc(folio->swap, nr_pages);
1682 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap));
1683
1684 BUG_ON(folio_mapped(folio));
1685 error = swap_writeout(folio, plug);
1686 if (error != AOP_WRITEPAGE_ACTIVATE) {
1687 /* folio has been unlocked */
1688 return error;
1689 }
1690
1691 /*
1692 * The intention here is to avoid holding on to the swap when
1693 * zswap was unable to compress and unable to writeback; but
1694 * it will be appropriate if other reactivate cases are added.
1695 */
1696 error = shmem_add_to_page_cache(folio, mapping, index,
1697 swp_to_radix_entry(folio->swap),
1698 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
1699 /* Swap entry might be erased by racing shmem_free_swap() */
1700 if (!error) {
1701 shmem_recalc_inode(inode, 0, -nr_pages);
1702 swap_free_nr(folio->swap, nr_pages);
1703 }
1704
1705 /*
1706 * The swap_cache_del_folio() below could be left for
1707 * shrink_folio_list()'s folio_free_swap() to dispose of;
1708 * but I'm a little nervous about letting this folio out of
1709 * shmem_writeout() in a hybrid half-tmpfs-half-swap state
1710 * e.g. folio_mapping(folio) might give an unexpected answer.
1711 */
1712 swap_cache_del_folio(folio);
1713 goto redirty;
1714 }
1715 if (nr_pages > 1)
1716 goto try_split;
1717 redirty:
1718 folio_mark_dirty(folio);
1719 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1720 }
1721 EXPORT_SYMBOL_GPL(shmem_writeout);
1722
1723 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1724 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1725 {
1726 char buffer[64];
1727
1728 if (!mpol || mpol->mode == MPOL_DEFAULT)
1729 return; /* show nothing */
1730
1731 mpol_to_str(buffer, sizeof(buffer), mpol);
1732
1733 seq_printf(seq, ",mpol=%s", buffer);
1734 }
1735
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1736 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1737 {
1738 struct mempolicy *mpol = NULL;
1739 if (sbinfo->mpol) {
1740 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1741 mpol = sbinfo->mpol;
1742 mpol_get(mpol);
1743 raw_spin_unlock(&sbinfo->stat_lock);
1744 }
1745 return mpol;
1746 }
1747 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1748 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1749 {
1750 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1751 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1752 {
1753 return NULL;
1754 }
1755 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1756
1757 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1758 pgoff_t index, unsigned int order, pgoff_t *ilx);
1759
shmem_swapin_cluster(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1760 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1761 struct shmem_inode_info *info, pgoff_t index)
1762 {
1763 struct mempolicy *mpol;
1764 pgoff_t ilx;
1765 struct folio *folio;
1766
1767 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1768 folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1769 mpol_cond_put(mpol);
1770
1771 return folio;
1772 }
1773
1774 /*
1775 * Make sure huge_gfp is always more limited than limit_gfp.
1776 * Some of the flags set permissions, while others set limitations.
1777 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1778 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1779 {
1780 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1781 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1782 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1783 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1784
1785 /* Allow allocations only from the originally specified zones. */
1786 result |= zoneflags;
1787
1788 /*
1789 * Minimize the result gfp by taking the union with the deny flags,
1790 * and the intersection of the allow flags.
1791 */
1792 result |= (limit_gfp & denyflags);
1793 result |= (huge_gfp & limit_gfp) & allowflags;
1794
1795 return result;
1796 }
1797
1798 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_hpage_pmd_enabled(void)1799 bool shmem_hpage_pmd_enabled(void)
1800 {
1801 if (shmem_huge == SHMEM_HUGE_DENY)
1802 return false;
1803 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1804 return true;
1805 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1806 return true;
1807 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1808 return true;
1809 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1810 shmem_huge != SHMEM_HUGE_NEVER)
1811 return true;
1812
1813 return false;
1814 }
1815
shmem_allowable_huge_orders(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,loff_t write_end,bool shmem_huge_force)1816 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1817 struct vm_area_struct *vma, pgoff_t index,
1818 loff_t write_end, bool shmem_huge_force)
1819 {
1820 unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1821 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1822 vm_flags_t vm_flags = vma ? vma->vm_flags : 0;
1823 unsigned int global_orders;
1824
1825 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force)))
1826 return 0;
1827
1828 global_orders = shmem_huge_global_enabled(inode, index, write_end,
1829 shmem_huge_force, vma, vm_flags);
1830 /* Tmpfs huge pages allocation */
1831 if (!vma || !vma_is_anon_shmem(vma))
1832 return global_orders;
1833
1834 /*
1835 * Following the 'deny' semantics of the top level, force the huge
1836 * option off from all mounts.
1837 */
1838 if (shmem_huge == SHMEM_HUGE_DENY)
1839 return 0;
1840
1841 /*
1842 * Only allow inherit orders if the top-level value is 'force', which
1843 * means non-PMD sized THP can not override 'huge' mount option now.
1844 */
1845 if (shmem_huge == SHMEM_HUGE_FORCE)
1846 return READ_ONCE(huge_shmem_orders_inherit);
1847
1848 /* Allow mTHP that will be fully within i_size. */
1849 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0);
1850
1851 if (vm_flags & VM_HUGEPAGE)
1852 mask |= READ_ONCE(huge_shmem_orders_madvise);
1853
1854 if (global_orders > 0)
1855 mask |= READ_ONCE(huge_shmem_orders_inherit);
1856
1857 return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1858 }
1859
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1860 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1861 struct address_space *mapping, pgoff_t index,
1862 unsigned long orders)
1863 {
1864 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1865 pgoff_t aligned_index;
1866 unsigned long pages;
1867 int order;
1868
1869 if (vma) {
1870 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1871 if (!orders)
1872 return 0;
1873 }
1874
1875 /* Find the highest order that can add into the page cache */
1876 order = highest_order(orders);
1877 while (orders) {
1878 pages = 1UL << order;
1879 aligned_index = round_down(index, pages);
1880 /*
1881 * Check for conflict before waiting on a huge allocation.
1882 * Conflict might be that a huge page has just been allocated
1883 * and added to page cache by a racing thread, or that there
1884 * is already at least one small page in the huge extent.
1885 * Be careful to retry when appropriate, but not forever!
1886 * Elsewhere -EEXIST would be the right code, but not here.
1887 */
1888 if (!xa_find(&mapping->i_pages, &aligned_index,
1889 aligned_index + pages - 1, XA_PRESENT))
1890 break;
1891 order = next_order(&orders, order);
1892 }
1893
1894 return orders;
1895 }
1896 #else
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1897 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1898 struct address_space *mapping, pgoff_t index,
1899 unsigned long orders)
1900 {
1901 return 0;
1902 }
1903 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1904
shmem_alloc_folio(gfp_t gfp,int order,struct shmem_inode_info * info,pgoff_t index)1905 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1906 struct shmem_inode_info *info, pgoff_t index)
1907 {
1908 struct mempolicy *mpol;
1909 pgoff_t ilx;
1910 struct folio *folio;
1911
1912 mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1913 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1914 mpol_cond_put(mpol);
1915
1916 return folio;
1917 }
1918
shmem_alloc_and_add_folio(struct vm_fault * vmf,gfp_t gfp,struct inode * inode,pgoff_t index,struct mm_struct * fault_mm,unsigned long orders)1919 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1920 gfp_t gfp, struct inode *inode, pgoff_t index,
1921 struct mm_struct *fault_mm, unsigned long orders)
1922 {
1923 struct address_space *mapping = inode->i_mapping;
1924 struct shmem_inode_info *info = SHMEM_I(inode);
1925 unsigned long suitable_orders = 0;
1926 struct folio *folio = NULL;
1927 pgoff_t aligned_index;
1928 long pages;
1929 int error, order;
1930
1931 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1932 orders = 0;
1933
1934 if (orders > 0) {
1935 suitable_orders = shmem_suitable_orders(inode, vmf,
1936 mapping, index, orders);
1937
1938 order = highest_order(suitable_orders);
1939 while (suitable_orders) {
1940 pages = 1UL << order;
1941 aligned_index = round_down(index, pages);
1942 folio = shmem_alloc_folio(gfp, order, info, aligned_index);
1943 if (folio) {
1944 index = aligned_index;
1945 goto allocated;
1946 }
1947
1948 if (pages == HPAGE_PMD_NR)
1949 count_vm_event(THP_FILE_FALLBACK);
1950 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1951 order = next_order(&suitable_orders, order);
1952 }
1953 } else {
1954 pages = 1;
1955 folio = shmem_alloc_folio(gfp, 0, info, index);
1956 }
1957 if (!folio)
1958 return ERR_PTR(-ENOMEM);
1959
1960 allocated:
1961 __folio_set_locked(folio);
1962 __folio_set_swapbacked(folio);
1963
1964 gfp &= GFP_RECLAIM_MASK;
1965 error = mem_cgroup_charge(folio, fault_mm, gfp);
1966 if (error) {
1967 if (xa_find(&mapping->i_pages, &index,
1968 index + pages - 1, XA_PRESENT)) {
1969 error = -EEXIST;
1970 } else if (pages > 1) {
1971 if (pages == HPAGE_PMD_NR) {
1972 count_vm_event(THP_FILE_FALLBACK);
1973 count_vm_event(THP_FILE_FALLBACK_CHARGE);
1974 }
1975 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1976 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1977 }
1978 goto unlock;
1979 }
1980
1981 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1982 if (error)
1983 goto unlock;
1984
1985 error = shmem_inode_acct_blocks(inode, pages);
1986 if (error) {
1987 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1988 long freed;
1989 /*
1990 * Try to reclaim some space by splitting a few
1991 * large folios beyond i_size on the filesystem.
1992 */
1993 shmem_unused_huge_shrink(sbinfo, NULL, pages);
1994 /*
1995 * And do a shmem_recalc_inode() to account for freed pages:
1996 * except our folio is there in cache, so not quite balanced.
1997 */
1998 spin_lock(&info->lock);
1999 freed = pages + info->alloced - info->swapped -
2000 READ_ONCE(mapping->nrpages);
2001 if (freed > 0)
2002 info->alloced -= freed;
2003 spin_unlock(&info->lock);
2004 if (freed > 0)
2005 shmem_inode_unacct_blocks(inode, freed);
2006 error = shmem_inode_acct_blocks(inode, pages);
2007 if (error) {
2008 filemap_remove_folio(folio);
2009 goto unlock;
2010 }
2011 }
2012
2013 shmem_recalc_inode(inode, pages, 0);
2014 folio_add_lru(folio);
2015 return folio;
2016
2017 unlock:
2018 folio_unlock(folio);
2019 folio_put(folio);
2020 return ERR_PTR(error);
2021 }
2022
shmem_swap_alloc_folio(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,swp_entry_t entry,int order,gfp_t gfp)2023 static struct folio *shmem_swap_alloc_folio(struct inode *inode,
2024 struct vm_area_struct *vma, pgoff_t index,
2025 swp_entry_t entry, int order, gfp_t gfp)
2026 {
2027 struct shmem_inode_info *info = SHMEM_I(inode);
2028 int nr_pages = 1 << order;
2029 struct folio *new;
2030 gfp_t alloc_gfp;
2031 void *shadow;
2032
2033 /*
2034 * We have arrived here because our zones are constrained, so don't
2035 * limit chance of success with further cpuset and node constraints.
2036 */
2037 gfp &= ~GFP_CONSTRAINT_MASK;
2038 alloc_gfp = gfp;
2039 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
2040 if (WARN_ON_ONCE(order))
2041 return ERR_PTR(-EINVAL);
2042 } else if (order) {
2043 /*
2044 * If uffd is active for the vma, we need per-page fault
2045 * fidelity to maintain the uffd semantics, then fallback
2046 * to swapin order-0 folio, as well as for zswap case.
2047 * Any existing sub folio in the swap cache also blocks
2048 * mTHP swapin.
2049 */
2050 if ((vma && unlikely(userfaultfd_armed(vma))) ||
2051 !zswap_never_enabled() ||
2052 non_swapcache_batch(entry, nr_pages) != nr_pages)
2053 goto fallback;
2054
2055 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp);
2056 }
2057 retry:
2058 new = shmem_alloc_folio(alloc_gfp, order, info, index);
2059 if (!new) {
2060 new = ERR_PTR(-ENOMEM);
2061 goto fallback;
2062 }
2063
2064 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL,
2065 alloc_gfp, entry)) {
2066 folio_put(new);
2067 new = ERR_PTR(-ENOMEM);
2068 goto fallback;
2069 }
2070
2071 /*
2072 * Prevent parallel swapin from proceeding with the swap cache flag.
2073 *
2074 * Of course there is another possible concurrent scenario as well,
2075 * that is to say, the swap cache flag of a large folio has already
2076 * been set by swapcache_prepare(), while another thread may have
2077 * already split the large swap entry stored in the shmem mapping.
2078 * In this case, shmem_add_to_page_cache() will help identify the
2079 * concurrent swapin and return -EEXIST.
2080 */
2081 if (swapcache_prepare(entry, nr_pages)) {
2082 folio_put(new);
2083 new = ERR_PTR(-EEXIST);
2084 /* Try smaller folio to avoid cache conflict */
2085 goto fallback;
2086 }
2087
2088 __folio_set_locked(new);
2089 __folio_set_swapbacked(new);
2090 new->swap = entry;
2091
2092 memcg1_swapin(entry, nr_pages);
2093 shadow = swap_cache_get_shadow(entry);
2094 if (shadow)
2095 workingset_refault(new, shadow);
2096 folio_add_lru(new);
2097 swap_read_folio(new, NULL);
2098 return new;
2099 fallback:
2100 /* Order 0 swapin failed, nothing to fallback to, abort */
2101 if (!order)
2102 return new;
2103 entry.val += index - round_down(index, nr_pages);
2104 alloc_gfp = gfp;
2105 nr_pages = 1;
2106 order = 0;
2107 goto retry;
2108 }
2109
2110 /*
2111 * When a page is moved from swapcache to shmem filecache (either by the
2112 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
2113 * shmem_unuse_inode()), it may have been read in earlier from swap, in
2114 * ignorance of the mapping it belongs to. If that mapping has special
2115 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
2116 * we may need to copy to a suitable page before moving to filecache.
2117 *
2118 * In a future release, this may well be extended to respect cpuset and
2119 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
2120 * but for now it is a simple matter of zone.
2121 */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)2122 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
2123 {
2124 return folio_zonenum(folio) > gfp_zone(gfp);
2125 }
2126
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index,struct vm_area_struct * vma)2127 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
2128 struct shmem_inode_info *info, pgoff_t index,
2129 struct vm_area_struct *vma)
2130 {
2131 struct swap_cluster_info *ci;
2132 struct folio *new, *old = *foliop;
2133 swp_entry_t entry = old->swap;
2134 int nr_pages = folio_nr_pages(old);
2135 int error = 0;
2136
2137 /*
2138 * We have arrived here because our zones are constrained, so don't
2139 * limit chance of success by further cpuset and node constraints.
2140 */
2141 gfp &= ~GFP_CONSTRAINT_MASK;
2142 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2143 if (nr_pages > 1) {
2144 gfp_t huge_gfp = vma_thp_gfp_mask(vma);
2145
2146 gfp = limit_gfp_mask(huge_gfp, gfp);
2147 }
2148 #endif
2149
2150 new = shmem_alloc_folio(gfp, folio_order(old), info, index);
2151 if (!new)
2152 return -ENOMEM;
2153
2154 folio_ref_add(new, nr_pages);
2155 folio_copy(new, old);
2156 flush_dcache_folio(new);
2157
2158 __folio_set_locked(new);
2159 __folio_set_swapbacked(new);
2160 folio_mark_uptodate(new);
2161 new->swap = entry;
2162 folio_set_swapcache(new);
2163
2164 ci = swap_cluster_get_and_lock_irq(old);
2165 __swap_cache_replace_folio(ci, old, new);
2166 mem_cgroup_replace_folio(old, new);
2167 shmem_update_stats(new, nr_pages);
2168 shmem_update_stats(old, -nr_pages);
2169 swap_cluster_unlock_irq(ci);
2170
2171 folio_add_lru(new);
2172 *foliop = new;
2173
2174 folio_clear_swapcache(old);
2175 old->private = NULL;
2176
2177 folio_unlock(old);
2178 /*
2179 * The old folio are removed from swap cache, drop the 'nr_pages'
2180 * reference, as well as one temporary reference getting from swap
2181 * cache.
2182 */
2183 folio_put_refs(old, nr_pages + 1);
2184 return error;
2185 }
2186
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap,bool skip_swapcache)2187 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2188 struct folio *folio, swp_entry_t swap,
2189 bool skip_swapcache)
2190 {
2191 struct address_space *mapping = inode->i_mapping;
2192 swp_entry_t swapin_error;
2193 void *old;
2194 int nr_pages;
2195
2196 swapin_error = make_poisoned_swp_entry();
2197 old = xa_cmpxchg_irq(&mapping->i_pages, index,
2198 swp_to_radix_entry(swap),
2199 swp_to_radix_entry(swapin_error), 0);
2200 if (old != swp_to_radix_entry(swap))
2201 return;
2202
2203 nr_pages = folio_nr_pages(folio);
2204 folio_wait_writeback(folio);
2205 if (!skip_swapcache)
2206 swap_cache_del_folio(folio);
2207 /*
2208 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2209 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2210 * in shmem_evict_inode().
2211 */
2212 shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2213 swap_free_nr(swap, nr_pages);
2214 }
2215
shmem_split_large_entry(struct inode * inode,pgoff_t index,swp_entry_t swap,gfp_t gfp)2216 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2217 swp_entry_t swap, gfp_t gfp)
2218 {
2219 struct address_space *mapping = inode->i_mapping;
2220 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2221 int split_order = 0;
2222 int i;
2223
2224 /* Convert user data gfp flags to xarray node gfp flags */
2225 gfp &= GFP_RECLAIM_MASK;
2226
2227 for (;;) {
2228 void *old = NULL;
2229 int cur_order;
2230 pgoff_t swap_index;
2231
2232 xas_lock_irq(&xas);
2233 old = xas_load(&xas);
2234 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2235 xas_set_err(&xas, -EEXIST);
2236 goto unlock;
2237 }
2238
2239 cur_order = xas_get_order(&xas);
2240 if (!cur_order)
2241 goto unlock;
2242
2243 /* Try to split large swap entry in pagecache */
2244 swap_index = round_down(index, 1 << cur_order);
2245 split_order = xas_try_split_min_order(cur_order);
2246
2247 while (cur_order > 0) {
2248 pgoff_t aligned_index =
2249 round_down(index, 1 << cur_order);
2250 pgoff_t swap_offset = aligned_index - swap_index;
2251
2252 xas_set_order(&xas, index, split_order);
2253 xas_try_split(&xas, old, cur_order);
2254 if (xas_error(&xas))
2255 goto unlock;
2256
2257 /*
2258 * Re-set the swap entry after splitting, and the swap
2259 * offset of the original large entry must be continuous.
2260 */
2261 for (i = 0; i < 1 << cur_order;
2262 i += (1 << split_order)) {
2263 swp_entry_t tmp;
2264
2265 tmp = swp_entry(swp_type(swap),
2266 swp_offset(swap) + swap_offset +
2267 i);
2268 __xa_store(&mapping->i_pages, aligned_index + i,
2269 swp_to_radix_entry(tmp), 0);
2270 }
2271 cur_order = split_order;
2272 split_order = xas_try_split_min_order(split_order);
2273 }
2274
2275 unlock:
2276 xas_unlock_irq(&xas);
2277
2278 if (!xas_nomem(&xas, gfp))
2279 break;
2280 }
2281
2282 if (xas_error(&xas))
2283 return xas_error(&xas);
2284
2285 return 0;
2286 }
2287
2288 /*
2289 * Swap in the folio pointed to by *foliop.
2290 * Caller has to make sure that *foliop contains a valid swapped folio.
2291 * Returns 0 and the folio in foliop if success. On failure, returns the
2292 * error code and NULL in *foliop.
2293 */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)2294 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2295 struct folio **foliop, enum sgp_type sgp,
2296 gfp_t gfp, struct vm_area_struct *vma,
2297 vm_fault_t *fault_type)
2298 {
2299 struct address_space *mapping = inode->i_mapping;
2300 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2301 struct shmem_inode_info *info = SHMEM_I(inode);
2302 swp_entry_t swap;
2303 softleaf_t index_entry;
2304 struct swap_info_struct *si;
2305 struct folio *folio = NULL;
2306 bool skip_swapcache = false;
2307 int error, nr_pages, order;
2308 pgoff_t offset;
2309
2310 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2311 index_entry = radix_to_swp_entry(*foliop);
2312 swap = index_entry;
2313 *foliop = NULL;
2314
2315 if (softleaf_is_poison_marker(index_entry))
2316 return -EIO;
2317
2318 si = get_swap_device(index_entry);
2319 order = shmem_confirm_swap(mapping, index, index_entry);
2320 if (unlikely(!si)) {
2321 if (order < 0)
2322 return -EEXIST;
2323 else
2324 return -EINVAL;
2325 }
2326 if (unlikely(order < 0)) {
2327 put_swap_device(si);
2328 return -EEXIST;
2329 }
2330
2331 /* index may point to the middle of a large entry, get the sub entry */
2332 if (order) {
2333 offset = index - round_down(index, 1 << order);
2334 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2335 }
2336
2337 /* Look it up and read it in.. */
2338 folio = swap_cache_get_folio(swap);
2339 if (!folio) {
2340 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
2341 /* Direct swapin skipping swap cache & readahead */
2342 folio = shmem_swap_alloc_folio(inode, vma, index,
2343 index_entry, order, gfp);
2344 if (IS_ERR(folio)) {
2345 error = PTR_ERR(folio);
2346 folio = NULL;
2347 goto failed;
2348 }
2349 skip_swapcache = true;
2350 } else {
2351 /* Cached swapin only supports order 0 folio */
2352 folio = shmem_swapin_cluster(swap, gfp, info, index);
2353 if (!folio) {
2354 error = -ENOMEM;
2355 goto failed;
2356 }
2357 }
2358 if (fault_type) {
2359 *fault_type |= VM_FAULT_MAJOR;
2360 count_vm_event(PGMAJFAULT);
2361 count_memcg_event_mm(fault_mm, PGMAJFAULT);
2362 }
2363 } else {
2364 swap_update_readahead(folio, NULL, 0);
2365 }
2366
2367 if (order > folio_order(folio)) {
2368 /*
2369 * Swapin may get smaller folios due to various reasons:
2370 * It may fallback to order 0 due to memory pressure or race,
2371 * swap readahead may swap in order 0 folios into swapcache
2372 * asynchronously, while the shmem mapping can still stores
2373 * large swap entries. In such cases, we should split the
2374 * large swap entry to prevent possible data corruption.
2375 */
2376 error = shmem_split_large_entry(inode, index, index_entry, gfp);
2377 if (error)
2378 goto failed_nolock;
2379 }
2380
2381 /*
2382 * If the folio is large, round down swap and index by folio size.
2383 * No matter what race occurs, the swap layer ensures we either get
2384 * a valid folio that has its swap entry aligned by size, or a
2385 * temporarily invalid one which we'll abort very soon and retry.
2386 *
2387 * shmem_add_to_page_cache ensures the whole range contains expected
2388 * entries and prevents any corruption, so any race split is fine
2389 * too, it will succeed as long as the entries are still there.
2390 */
2391 nr_pages = folio_nr_pages(folio);
2392 if (nr_pages > 1) {
2393 swap.val = round_down(swap.val, nr_pages);
2394 index = round_down(index, nr_pages);
2395 }
2396
2397 /*
2398 * We have to do this with the folio locked to prevent races.
2399 * The shmem_confirm_swap below only checks if the first swap
2400 * entry matches the folio, that's enough to ensure the folio
2401 * is not used outside of shmem, as shmem swap entries
2402 * and swap cache folios are never partially freed.
2403 */
2404 folio_lock(folio);
2405 if ((!skip_swapcache && !folio_test_swapcache(folio)) ||
2406 shmem_confirm_swap(mapping, index, swap) < 0 ||
2407 folio->swap.val != swap.val) {
2408 error = -EEXIST;
2409 goto unlock;
2410 }
2411 if (!folio_test_uptodate(folio)) {
2412 error = -EIO;
2413 goto failed;
2414 }
2415 folio_wait_writeback(folio);
2416
2417 /*
2418 * Some architectures may have to restore extra metadata to the
2419 * folio after reading from swap.
2420 */
2421 arch_swap_restore(folio_swap(swap, folio), folio);
2422
2423 if (shmem_should_replace_folio(folio, gfp)) {
2424 error = shmem_replace_folio(&folio, gfp, info, index, vma);
2425 if (error)
2426 goto failed;
2427 }
2428
2429 error = shmem_add_to_page_cache(folio, mapping, index,
2430 swp_to_radix_entry(swap), gfp);
2431 if (error)
2432 goto failed;
2433
2434 shmem_recalc_inode(inode, 0, -nr_pages);
2435
2436 if (sgp == SGP_WRITE)
2437 folio_mark_accessed(folio);
2438
2439 if (skip_swapcache) {
2440 folio->swap.val = 0;
2441 swapcache_clear(si, swap, nr_pages);
2442 } else {
2443 swap_cache_del_folio(folio);
2444 }
2445 folio_mark_dirty(folio);
2446 swap_free_nr(swap, nr_pages);
2447 put_swap_device(si);
2448
2449 *foliop = folio;
2450 return 0;
2451 failed:
2452 if (shmem_confirm_swap(mapping, index, swap) < 0)
2453 error = -EEXIST;
2454 if (error == -EIO)
2455 shmem_set_folio_swapin_error(inode, index, folio, swap,
2456 skip_swapcache);
2457 unlock:
2458 if (folio)
2459 folio_unlock(folio);
2460 failed_nolock:
2461 if (skip_swapcache)
2462 swapcache_clear(si, folio->swap, folio_nr_pages(folio));
2463 if (folio)
2464 folio_put(folio);
2465 put_swap_device(si);
2466
2467 return error;
2468 }
2469
2470 /*
2471 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2472 *
2473 * If we allocate a new one we do not mark it dirty. That's up to the
2474 * vm. If we swap it in we mark it dirty since we also free the swap
2475 * entry since a page cannot live in both the swap and page cache.
2476 *
2477 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2478 */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_fault * vmf,vm_fault_t * fault_type)2479 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2480 loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2481 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2482 {
2483 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2484 struct mm_struct *fault_mm;
2485 struct folio *folio;
2486 int error;
2487 bool alloced;
2488 unsigned long orders = 0;
2489
2490 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2491 return -EINVAL;
2492
2493 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2494 return -EFBIG;
2495 repeat:
2496 if (sgp <= SGP_CACHE &&
2497 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2498 return -EINVAL;
2499
2500 alloced = false;
2501 fault_mm = vma ? vma->vm_mm : NULL;
2502
2503 folio = filemap_get_entry(inode->i_mapping, index);
2504 if (folio && vma && userfaultfd_minor(vma)) {
2505 if (!xa_is_value(folio))
2506 folio_put(folio);
2507 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2508 return 0;
2509 }
2510
2511 if (xa_is_value(folio)) {
2512 error = shmem_swapin_folio(inode, index, &folio,
2513 sgp, gfp, vma, fault_type);
2514 if (error == -EEXIST)
2515 goto repeat;
2516
2517 *foliop = folio;
2518 return error;
2519 }
2520
2521 if (folio) {
2522 folio_lock(folio);
2523
2524 /* Has the folio been truncated or swapped out? */
2525 if (unlikely(folio->mapping != inode->i_mapping)) {
2526 folio_unlock(folio);
2527 folio_put(folio);
2528 goto repeat;
2529 }
2530 if (sgp == SGP_WRITE)
2531 folio_mark_accessed(folio);
2532 if (folio_test_uptodate(folio))
2533 goto out;
2534 /* fallocated folio */
2535 if (sgp != SGP_READ)
2536 goto clear;
2537 folio_unlock(folio);
2538 folio_put(folio);
2539 }
2540
2541 /*
2542 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2543 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2544 */
2545 *foliop = NULL;
2546 if (sgp == SGP_READ)
2547 return 0;
2548 if (sgp == SGP_NOALLOC)
2549 return -ENOENT;
2550
2551 /*
2552 * Fast cache lookup and swap lookup did not find it: allocate.
2553 */
2554
2555 if (vma && userfaultfd_missing(vma)) {
2556 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2557 return 0;
2558 }
2559
2560 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2561 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2562 if (orders > 0) {
2563 gfp_t huge_gfp;
2564
2565 huge_gfp = vma_thp_gfp_mask(vma);
2566 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2567 folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2568 inode, index, fault_mm, orders);
2569 if (!IS_ERR(folio)) {
2570 if (folio_test_pmd_mappable(folio))
2571 count_vm_event(THP_FILE_ALLOC);
2572 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2573 goto alloced;
2574 }
2575 if (PTR_ERR(folio) == -EEXIST)
2576 goto repeat;
2577 }
2578
2579 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2580 if (IS_ERR(folio)) {
2581 error = PTR_ERR(folio);
2582 if (error == -EEXIST)
2583 goto repeat;
2584 folio = NULL;
2585 goto unlock;
2586 }
2587
2588 alloced:
2589 alloced = true;
2590 if (folio_test_large(folio) &&
2591 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2592 folio_next_index(folio)) {
2593 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2594 struct shmem_inode_info *info = SHMEM_I(inode);
2595 /*
2596 * Part of the large folio is beyond i_size: subject
2597 * to shrink under memory pressure.
2598 */
2599 spin_lock(&sbinfo->shrinklist_lock);
2600 /*
2601 * _careful to defend against unlocked access to
2602 * ->shrink_list in shmem_unused_huge_shrink()
2603 */
2604 if (list_empty_careful(&info->shrinklist)) {
2605 list_add_tail(&info->shrinklist,
2606 &sbinfo->shrinklist);
2607 sbinfo->shrinklist_len++;
2608 }
2609 spin_unlock(&sbinfo->shrinklist_lock);
2610 }
2611
2612 if (sgp == SGP_WRITE)
2613 folio_set_referenced(folio);
2614 /*
2615 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2616 */
2617 if (sgp == SGP_FALLOC)
2618 sgp = SGP_WRITE;
2619 clear:
2620 /*
2621 * Let SGP_WRITE caller clear ends if write does not fill folio;
2622 * but SGP_FALLOC on a folio fallocated earlier must initialize
2623 * it now, lest undo on failure cancel our earlier guarantee.
2624 */
2625 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2626 long i, n = folio_nr_pages(folio);
2627
2628 for (i = 0; i < n; i++)
2629 clear_highpage(folio_page(folio, i));
2630 flush_dcache_folio(folio);
2631 folio_mark_uptodate(folio);
2632 }
2633
2634 /* Perhaps the file has been truncated since we checked */
2635 if (sgp <= SGP_CACHE &&
2636 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2637 error = -EINVAL;
2638 goto unlock;
2639 }
2640 out:
2641 *foliop = folio;
2642 return 0;
2643
2644 /*
2645 * Error recovery.
2646 */
2647 unlock:
2648 if (alloced)
2649 filemap_remove_folio(folio);
2650 shmem_recalc_inode(inode, 0, 0);
2651 if (folio) {
2652 folio_unlock(folio);
2653 folio_put(folio);
2654 }
2655 return error;
2656 }
2657
2658 /**
2659 * shmem_get_folio - find, and lock a shmem folio.
2660 * @inode: inode to search
2661 * @index: the page index.
2662 * @write_end: end of a write, could extend inode size
2663 * @foliop: pointer to the folio if found
2664 * @sgp: SGP_* flags to control behavior
2665 *
2666 * Looks up the page cache entry at @inode & @index. If a folio is
2667 * present, it is returned locked with an increased refcount.
2668 *
2669 * If the caller modifies data in the folio, it must call folio_mark_dirty()
2670 * before unlocking the folio to ensure that the folio is not reclaimed.
2671 * There is no need to reserve space before calling folio_mark_dirty().
2672 *
2673 * When no folio is found, the behavior depends on @sgp:
2674 * - for SGP_READ, *@foliop is %NULL and 0 is returned
2675 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2676 * - for all other flags a new folio is allocated, inserted into the
2677 * page cache and returned locked in @foliop.
2678 *
2679 * Context: May sleep.
2680 * Return: 0 if successful, else a negative error code.
2681 */
shmem_get_folio(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp)2682 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2683 struct folio **foliop, enum sgp_type sgp)
2684 {
2685 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2686 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2687 }
2688 EXPORT_SYMBOL_GPL(shmem_get_folio);
2689
2690 /*
2691 * This is like autoremove_wake_function, but it removes the wait queue
2692 * entry unconditionally - even if something else had already woken the
2693 * target.
2694 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)2695 static int synchronous_wake_function(wait_queue_entry_t *wait,
2696 unsigned int mode, int sync, void *key)
2697 {
2698 int ret = default_wake_function(wait, mode, sync, key);
2699 list_del_init(&wait->entry);
2700 return ret;
2701 }
2702
2703 /*
2704 * Trinity finds that probing a hole which tmpfs is punching can
2705 * prevent the hole-punch from ever completing: which in turn
2706 * locks writers out with its hold on i_rwsem. So refrain from
2707 * faulting pages into the hole while it's being punched. Although
2708 * shmem_undo_range() does remove the additions, it may be unable to
2709 * keep up, as each new page needs its own unmap_mapping_range() call,
2710 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2711 *
2712 * It does not matter if we sometimes reach this check just before the
2713 * hole-punch begins, so that one fault then races with the punch:
2714 * we just need to make racing faults a rare case.
2715 *
2716 * The implementation below would be much simpler if we just used a
2717 * standard mutex or completion: but we cannot take i_rwsem in fault,
2718 * and bloating every shmem inode for this unlikely case would be sad.
2719 */
shmem_falloc_wait(struct vm_fault * vmf,struct inode * inode)2720 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2721 {
2722 struct shmem_falloc *shmem_falloc;
2723 struct file *fpin = NULL;
2724 vm_fault_t ret = 0;
2725
2726 spin_lock(&inode->i_lock);
2727 shmem_falloc = inode->i_private;
2728 if (shmem_falloc &&
2729 shmem_falloc->waitq &&
2730 vmf->pgoff >= shmem_falloc->start &&
2731 vmf->pgoff < shmem_falloc->next) {
2732 wait_queue_head_t *shmem_falloc_waitq;
2733 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2734
2735 ret = VM_FAULT_NOPAGE;
2736 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2737 shmem_falloc_waitq = shmem_falloc->waitq;
2738 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2739 TASK_UNINTERRUPTIBLE);
2740 spin_unlock(&inode->i_lock);
2741 schedule();
2742
2743 /*
2744 * shmem_falloc_waitq points into the shmem_fallocate()
2745 * stack of the hole-punching task: shmem_falloc_waitq
2746 * is usually invalid by the time we reach here, but
2747 * finish_wait() does not dereference it in that case;
2748 * though i_lock needed lest racing with wake_up_all().
2749 */
2750 spin_lock(&inode->i_lock);
2751 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2752 }
2753 spin_unlock(&inode->i_lock);
2754 if (fpin) {
2755 fput(fpin);
2756 ret = VM_FAULT_RETRY;
2757 }
2758 return ret;
2759 }
2760
shmem_fault(struct vm_fault * vmf)2761 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2762 {
2763 struct inode *inode = file_inode(vmf->vma->vm_file);
2764 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2765 struct folio *folio = NULL;
2766 vm_fault_t ret = 0;
2767 int err;
2768
2769 /*
2770 * Trinity finds that probing a hole which tmpfs is punching can
2771 * prevent the hole-punch from ever completing: noted in i_private.
2772 */
2773 if (unlikely(inode->i_private)) {
2774 ret = shmem_falloc_wait(vmf, inode);
2775 if (ret)
2776 return ret;
2777 }
2778
2779 WARN_ON_ONCE(vmf->page != NULL);
2780 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2781 gfp, vmf, &ret);
2782 if (err)
2783 return vmf_error(err);
2784 if (folio) {
2785 vmf->page = folio_file_page(folio, vmf->pgoff);
2786 ret |= VM_FAULT_LOCKED;
2787 }
2788 return ret;
2789 }
2790
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2791 unsigned long shmem_get_unmapped_area(struct file *file,
2792 unsigned long uaddr, unsigned long len,
2793 unsigned long pgoff, unsigned long flags)
2794 {
2795 unsigned long addr;
2796 unsigned long offset;
2797 unsigned long inflated_len;
2798 unsigned long inflated_addr;
2799 unsigned long inflated_offset;
2800 unsigned long hpage_size;
2801
2802 if (len > TASK_SIZE)
2803 return -ENOMEM;
2804
2805 addr = mm_get_unmapped_area(file, uaddr, len, pgoff, flags);
2806
2807 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2808 return addr;
2809 if (IS_ERR_VALUE(addr))
2810 return addr;
2811 if (addr & ~PAGE_MASK)
2812 return addr;
2813 if (addr > TASK_SIZE - len)
2814 return addr;
2815
2816 if (shmem_huge == SHMEM_HUGE_DENY)
2817 return addr;
2818 if (flags & MAP_FIXED)
2819 return addr;
2820 /*
2821 * Our priority is to support MAP_SHARED mapped hugely;
2822 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2823 * But if caller specified an address hint and we allocated area there
2824 * successfully, respect that as before.
2825 */
2826 if (uaddr == addr)
2827 return addr;
2828
2829 hpage_size = HPAGE_PMD_SIZE;
2830 if (shmem_huge != SHMEM_HUGE_FORCE) {
2831 struct super_block *sb;
2832 unsigned long __maybe_unused hpage_orders;
2833 int order = 0;
2834
2835 if (file) {
2836 VM_BUG_ON(file->f_op != &shmem_file_operations);
2837 sb = file_inode(file)->i_sb;
2838 } else {
2839 /*
2840 * Called directly from mm/mmap.c, or drivers/char/mem.c
2841 * for "/dev/zero", to create a shared anonymous object.
2842 */
2843 if (IS_ERR(shm_mnt))
2844 return addr;
2845 sb = shm_mnt->mnt_sb;
2846
2847 /*
2848 * Find the highest mTHP order used for anonymous shmem to
2849 * provide a suitable alignment address.
2850 */
2851 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2852 hpage_orders = READ_ONCE(huge_shmem_orders_always);
2853 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2854 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2855 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2856 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2857
2858 if (hpage_orders > 0) {
2859 order = highest_order(hpage_orders);
2860 hpage_size = PAGE_SIZE << order;
2861 }
2862 #endif
2863 }
2864 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2865 return addr;
2866 }
2867
2868 if (len < hpage_size)
2869 return addr;
2870
2871 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2872 if (offset && offset + len < 2 * hpage_size)
2873 return addr;
2874 if ((addr & (hpage_size - 1)) == offset)
2875 return addr;
2876
2877 inflated_len = len + hpage_size - PAGE_SIZE;
2878 if (inflated_len > TASK_SIZE)
2879 return addr;
2880 if (inflated_len < len)
2881 return addr;
2882
2883 inflated_addr = mm_get_unmapped_area(NULL, uaddr, inflated_len, 0, flags);
2884 if (IS_ERR_VALUE(inflated_addr))
2885 return addr;
2886 if (inflated_addr & ~PAGE_MASK)
2887 return addr;
2888
2889 inflated_offset = inflated_addr & (hpage_size - 1);
2890 inflated_addr += offset - inflated_offset;
2891 if (inflated_offset > offset)
2892 inflated_addr += hpage_size;
2893
2894 if (inflated_addr > TASK_SIZE - len)
2895 return addr;
2896 return inflated_addr;
2897 }
2898
2899 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2900 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2901 {
2902 struct inode *inode = file_inode(vma->vm_file);
2903 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2904 }
2905
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)2906 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2907 unsigned long addr, pgoff_t *ilx)
2908 {
2909 struct inode *inode = file_inode(vma->vm_file);
2910 pgoff_t index;
2911
2912 /*
2913 * Bias interleave by inode number to distribute better across nodes;
2914 * but this interface is independent of which page order is used, so
2915 * supplies only that bias, letting caller apply the offset (adjusted
2916 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2917 */
2918 *ilx = inode->i_ino;
2919 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2920 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2921 }
2922
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2923 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2924 pgoff_t index, unsigned int order, pgoff_t *ilx)
2925 {
2926 struct mempolicy *mpol;
2927
2928 /* Bias interleave by inode number to distribute better across nodes */
2929 *ilx = info->vfs_inode.i_ino + (index >> order);
2930
2931 mpol = mpol_shared_policy_lookup(&info->policy, index);
2932 return mpol ? mpol : get_task_policy(current);
2933 }
2934 #else
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2935 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2936 pgoff_t index, unsigned int order, pgoff_t *ilx)
2937 {
2938 *ilx = 0;
2939 return NULL;
2940 }
2941 #endif /* CONFIG_NUMA */
2942
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2943 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2944 {
2945 struct inode *inode = file_inode(file);
2946 struct shmem_inode_info *info = SHMEM_I(inode);
2947 int retval = -ENOMEM;
2948
2949 /*
2950 * What serializes the accesses to info->flags?
2951 * ipc_lock_object() when called from shmctl_do_lock(),
2952 * no serialization needed when called from shm_destroy().
2953 */
2954 if (lock && !(info->flags & SHMEM_F_LOCKED)) {
2955 if (!user_shm_lock(inode->i_size, ucounts))
2956 goto out_nomem;
2957 info->flags |= SHMEM_F_LOCKED;
2958 mapping_set_unevictable(file->f_mapping);
2959 }
2960 if (!lock && (info->flags & SHMEM_F_LOCKED) && ucounts) {
2961 user_shm_unlock(inode->i_size, ucounts);
2962 info->flags &= ~SHMEM_F_LOCKED;
2963 mapping_clear_unevictable(file->f_mapping);
2964 }
2965 retval = 0;
2966
2967 out_nomem:
2968 return retval;
2969 }
2970
shmem_mmap_prepare(struct vm_area_desc * desc)2971 static int shmem_mmap_prepare(struct vm_area_desc *desc)
2972 {
2973 struct file *file = desc->file;
2974 struct inode *inode = file_inode(file);
2975
2976 file_accessed(file);
2977 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2978 if (inode->i_nlink)
2979 desc->vm_ops = &shmem_vm_ops;
2980 else
2981 desc->vm_ops = &shmem_anon_vm_ops;
2982 return 0;
2983 }
2984
shmem_file_open(struct inode * inode,struct file * file)2985 static int shmem_file_open(struct inode *inode, struct file *file)
2986 {
2987 file->f_mode |= FMODE_CAN_ODIRECT;
2988 return generic_file_open(inode, file);
2989 }
2990
2991 #ifdef CONFIG_TMPFS_XATTR
2992 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2993
2994 #if IS_ENABLED(CONFIG_UNICODE)
2995 /*
2996 * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2997 *
2998 * The casefold file attribute needs some special checks. I can just be added to
2999 * an empty dir, and can't be removed from a non-empty dir.
3000 */
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)3001 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
3002 struct dentry *dentry, unsigned int *i_flags)
3003 {
3004 unsigned int old = inode->i_flags;
3005 struct super_block *sb = inode->i_sb;
3006
3007 if (fsflags & FS_CASEFOLD_FL) {
3008 if (!(old & S_CASEFOLD)) {
3009 if (!sb->s_encoding)
3010 return -EOPNOTSUPP;
3011
3012 if (!S_ISDIR(inode->i_mode))
3013 return -ENOTDIR;
3014
3015 if (dentry && !simple_empty(dentry))
3016 return -ENOTEMPTY;
3017 }
3018
3019 *i_flags = *i_flags | S_CASEFOLD;
3020 } else if (old & S_CASEFOLD) {
3021 if (dentry && !simple_empty(dentry))
3022 return -ENOTEMPTY;
3023 }
3024
3025 return 0;
3026 }
3027 #else
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)3028 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
3029 struct dentry *dentry, unsigned int *i_flags)
3030 {
3031 if (fsflags & FS_CASEFOLD_FL)
3032 return -EOPNOTSUPP;
3033
3034 return 0;
3035 }
3036 #endif
3037
3038 /*
3039 * chattr's fsflags are unrelated to extended attributes,
3040 * but tmpfs has chosen to enable them under the same config option.
3041 */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3042 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3043 {
3044 unsigned int i_flags = 0;
3045 int ret;
3046
3047 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
3048 if (ret)
3049 return ret;
3050
3051 if (fsflags & FS_NOATIME_FL)
3052 i_flags |= S_NOATIME;
3053 if (fsflags & FS_APPEND_FL)
3054 i_flags |= S_APPEND;
3055 if (fsflags & FS_IMMUTABLE_FL)
3056 i_flags |= S_IMMUTABLE;
3057 /*
3058 * But FS_NODUMP_FL does not require any action in i_flags.
3059 */
3060 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
3061
3062 return 0;
3063 }
3064 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3065 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3066 {
3067 }
3068 #define shmem_initxattrs NULL
3069 #endif
3070
shmem_get_offset_ctx(struct inode * inode)3071 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
3072 {
3073 return &SHMEM_I(inode)->dir_offsets;
3074 }
3075
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3076 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
3077 struct super_block *sb,
3078 struct inode *dir, umode_t mode,
3079 dev_t dev, unsigned long flags)
3080 {
3081 struct inode *inode;
3082 struct shmem_inode_info *info;
3083 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3084 ino_t ino;
3085 int err;
3086
3087 err = shmem_reserve_inode(sb, &ino);
3088 if (err)
3089 return ERR_PTR(err);
3090
3091 inode = new_inode(sb);
3092 if (!inode) {
3093 shmem_free_inode(sb, 0);
3094 return ERR_PTR(-ENOSPC);
3095 }
3096
3097 inode->i_ino = ino;
3098 inode_init_owner(idmap, inode, dir, mode);
3099 inode->i_blocks = 0;
3100 simple_inode_init_ts(inode);
3101 inode->i_generation = get_random_u32();
3102 info = SHMEM_I(inode);
3103 memset(info, 0, (char *)inode - (char *)info);
3104 spin_lock_init(&info->lock);
3105 atomic_set(&info->stop_eviction, 0);
3106 info->seals = F_SEAL_SEAL;
3107 info->flags = (flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0;
3108 info->i_crtime = inode_get_mtime(inode);
3109 info->fsflags = (dir == NULL) ? 0 :
3110 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
3111 if (info->fsflags)
3112 shmem_set_inode_flags(inode, info->fsflags, NULL);
3113 INIT_LIST_HEAD(&info->shrinklist);
3114 INIT_LIST_HEAD(&info->swaplist);
3115 simple_xattrs_init(&info->xattrs);
3116 cache_no_acl(inode);
3117 if (sbinfo->noswap)
3118 mapping_set_unevictable(inode->i_mapping);
3119
3120 /* Don't consider 'deny' for emergencies and 'force' for testing */
3121 if (sbinfo->huge)
3122 mapping_set_large_folios(inode->i_mapping);
3123
3124 switch (mode & S_IFMT) {
3125 default:
3126 inode->i_op = &shmem_special_inode_operations;
3127 init_special_inode(inode, mode, dev);
3128 break;
3129 case S_IFREG:
3130 inode->i_mapping->a_ops = &shmem_aops;
3131 inode->i_op = &shmem_inode_operations;
3132 inode->i_fop = &shmem_file_operations;
3133 mpol_shared_policy_init(&info->policy,
3134 shmem_get_sbmpol(sbinfo));
3135 break;
3136 case S_IFDIR:
3137 inc_nlink(inode);
3138 /* Some things misbehave if size == 0 on a directory */
3139 inode->i_size = 2 * BOGO_DIRENT_SIZE;
3140 inode->i_op = &shmem_dir_inode_operations;
3141 inode->i_fop = &simple_offset_dir_operations;
3142 simple_offset_init(shmem_get_offset_ctx(inode));
3143 break;
3144 case S_IFLNK:
3145 /*
3146 * Must not load anything in the rbtree,
3147 * mpol_free_shared_policy will not be called.
3148 */
3149 mpol_shared_policy_init(&info->policy, NULL);
3150 break;
3151 }
3152
3153 lockdep_annotate_inode_mutex_key(inode);
3154 return inode;
3155 }
3156
3157 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3158 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3159 struct super_block *sb, struct inode *dir,
3160 umode_t mode, dev_t dev, unsigned long flags)
3161 {
3162 int err;
3163 struct inode *inode;
3164
3165 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3166 if (IS_ERR(inode))
3167 return inode;
3168
3169 err = dquot_initialize(inode);
3170 if (err)
3171 goto errout;
3172
3173 err = dquot_alloc_inode(inode);
3174 if (err) {
3175 dquot_drop(inode);
3176 goto errout;
3177 }
3178 return inode;
3179
3180 errout:
3181 inode->i_flags |= S_NOQUOTA;
3182 iput(inode);
3183 return ERR_PTR(err);
3184 }
3185 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3186 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3187 struct super_block *sb, struct inode *dir,
3188 umode_t mode, dev_t dev, unsigned long flags)
3189 {
3190 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3191 }
3192 #endif /* CONFIG_TMPFS_QUOTA */
3193
3194 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)3195 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
3196 struct vm_area_struct *dst_vma,
3197 unsigned long dst_addr,
3198 unsigned long src_addr,
3199 uffd_flags_t flags,
3200 struct folio **foliop)
3201 {
3202 struct inode *inode = file_inode(dst_vma->vm_file);
3203 struct shmem_inode_info *info = SHMEM_I(inode);
3204 struct address_space *mapping = inode->i_mapping;
3205 gfp_t gfp = mapping_gfp_mask(mapping);
3206 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
3207 void *page_kaddr;
3208 struct folio *folio;
3209 int ret;
3210 pgoff_t max_off;
3211
3212 if (shmem_inode_acct_blocks(inode, 1)) {
3213 /*
3214 * We may have got a page, returned -ENOENT triggering a retry,
3215 * and now we find ourselves with -ENOMEM. Release the page, to
3216 * avoid a BUG_ON in our caller.
3217 */
3218 if (unlikely(*foliop)) {
3219 folio_put(*foliop);
3220 *foliop = NULL;
3221 }
3222 return -ENOMEM;
3223 }
3224
3225 if (!*foliop) {
3226 ret = -ENOMEM;
3227 folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3228 if (!folio)
3229 goto out_unacct_blocks;
3230
3231 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3232 page_kaddr = kmap_local_folio(folio, 0);
3233 /*
3234 * The read mmap_lock is held here. Despite the
3235 * mmap_lock being read recursive a deadlock is still
3236 * possible if a writer has taken a lock. For example:
3237 *
3238 * process A thread 1 takes read lock on own mmap_lock
3239 * process A thread 2 calls mmap, blocks taking write lock
3240 * process B thread 1 takes page fault, read lock on own mmap lock
3241 * process B thread 2 calls mmap, blocks taking write lock
3242 * process A thread 1 blocks taking read lock on process B
3243 * process B thread 1 blocks taking read lock on process A
3244 *
3245 * Disable page faults to prevent potential deadlock
3246 * and retry the copy outside the mmap_lock.
3247 */
3248 pagefault_disable();
3249 ret = copy_from_user(page_kaddr,
3250 (const void __user *)src_addr,
3251 PAGE_SIZE);
3252 pagefault_enable();
3253 kunmap_local(page_kaddr);
3254
3255 /* fallback to copy_from_user outside mmap_lock */
3256 if (unlikely(ret)) {
3257 *foliop = folio;
3258 ret = -ENOENT;
3259 /* don't free the page */
3260 goto out_unacct_blocks;
3261 }
3262
3263 flush_dcache_folio(folio);
3264 } else { /* ZEROPAGE */
3265 clear_user_highpage(&folio->page, dst_addr);
3266 }
3267 } else {
3268 folio = *foliop;
3269 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3270 *foliop = NULL;
3271 }
3272
3273 VM_BUG_ON(folio_test_locked(folio));
3274 VM_BUG_ON(folio_test_swapbacked(folio));
3275 __folio_set_locked(folio);
3276 __folio_set_swapbacked(folio);
3277 __folio_mark_uptodate(folio);
3278
3279 ret = -EFAULT;
3280 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3281 if (unlikely(pgoff >= max_off))
3282 goto out_release;
3283
3284 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3285 if (ret)
3286 goto out_release;
3287 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3288 if (ret)
3289 goto out_release;
3290
3291 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3292 &folio->page, true, flags);
3293 if (ret)
3294 goto out_delete_from_cache;
3295
3296 shmem_recalc_inode(inode, 1, 0);
3297 folio_unlock(folio);
3298 return 0;
3299 out_delete_from_cache:
3300 filemap_remove_folio(folio);
3301 out_release:
3302 folio_unlock(folio);
3303 folio_put(folio);
3304 out_unacct_blocks:
3305 shmem_inode_unacct_blocks(inode, 1);
3306 return ret;
3307 }
3308 #endif /* CONFIG_USERFAULTFD */
3309
3310 #ifdef CONFIG_TMPFS
3311 static const struct inode_operations shmem_symlink_inode_operations;
3312 static const struct inode_operations shmem_short_symlink_operations;
3313
3314 static int
shmem_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3315 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping,
3316 loff_t pos, unsigned len,
3317 struct folio **foliop, void **fsdata)
3318 {
3319 struct inode *inode = mapping->host;
3320 struct shmem_inode_info *info = SHMEM_I(inode);
3321 pgoff_t index = pos >> PAGE_SHIFT;
3322 struct folio *folio;
3323 int ret = 0;
3324
3325 /* i_rwsem is held by caller */
3326 if (unlikely(info->seals & (F_SEAL_GROW |
3327 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3328 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3329 return -EPERM;
3330 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3331 return -EPERM;
3332 }
3333
3334 if (unlikely((info->flags & SHMEM_F_MAPPING_FROZEN) &&
3335 pos + len > inode->i_size))
3336 return -EPERM;
3337
3338 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3339 if (ret)
3340 return ret;
3341
3342 if (folio_contain_hwpoisoned_page(folio)) {
3343 folio_unlock(folio);
3344 folio_put(folio);
3345 return -EIO;
3346 }
3347
3348 *foliop = folio;
3349 return 0;
3350 }
3351
3352 static int
shmem_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3353 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping,
3354 loff_t pos, unsigned len, unsigned copied,
3355 struct folio *folio, void *fsdata)
3356 {
3357 struct inode *inode = mapping->host;
3358
3359 if (pos + copied > inode->i_size)
3360 i_size_write(inode, pos + copied);
3361
3362 if (!folio_test_uptodate(folio)) {
3363 if (copied < folio_size(folio)) {
3364 size_t from = offset_in_folio(folio, pos);
3365 folio_zero_segments(folio, 0, from,
3366 from + copied, folio_size(folio));
3367 }
3368 folio_mark_uptodate(folio);
3369 }
3370 folio_mark_dirty(folio);
3371 folio_unlock(folio);
3372 folio_put(folio);
3373
3374 return copied;
3375 }
3376
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3377 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3378 {
3379 struct file *file = iocb->ki_filp;
3380 struct inode *inode = file_inode(file);
3381 struct address_space *mapping = inode->i_mapping;
3382 pgoff_t index;
3383 unsigned long offset;
3384 int error = 0;
3385 ssize_t retval = 0;
3386
3387 for (;;) {
3388 struct folio *folio = NULL;
3389 struct page *page = NULL;
3390 unsigned long nr, ret;
3391 loff_t end_offset, i_size = i_size_read(inode);
3392 bool fallback_page_copy = false;
3393 size_t fsize;
3394
3395 if (unlikely(iocb->ki_pos >= i_size))
3396 break;
3397
3398 index = iocb->ki_pos >> PAGE_SHIFT;
3399 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3400 if (error) {
3401 if (error == -EINVAL)
3402 error = 0;
3403 break;
3404 }
3405 if (folio) {
3406 folio_unlock(folio);
3407
3408 page = folio_file_page(folio, index);
3409 if (PageHWPoison(page)) {
3410 folio_put(folio);
3411 error = -EIO;
3412 break;
3413 }
3414
3415 if (folio_test_large(folio) &&
3416 folio_test_has_hwpoisoned(folio))
3417 fallback_page_copy = true;
3418 }
3419
3420 /*
3421 * We must evaluate after, since reads (unlike writes)
3422 * are called without i_rwsem protection against truncate
3423 */
3424 i_size = i_size_read(inode);
3425 if (unlikely(iocb->ki_pos >= i_size)) {
3426 if (folio)
3427 folio_put(folio);
3428 break;
3429 }
3430 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3431 if (folio && likely(!fallback_page_copy))
3432 fsize = folio_size(folio);
3433 else
3434 fsize = PAGE_SIZE;
3435 offset = iocb->ki_pos & (fsize - 1);
3436 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3437
3438 if (folio) {
3439 /*
3440 * If users can be writing to this page using arbitrary
3441 * virtual addresses, take care about potential aliasing
3442 * before reading the page on the kernel side.
3443 */
3444 if (mapping_writably_mapped(mapping)) {
3445 if (likely(!fallback_page_copy))
3446 flush_dcache_folio(folio);
3447 else
3448 flush_dcache_page(page);
3449 }
3450
3451 /*
3452 * Mark the folio accessed if we read the beginning.
3453 */
3454 if (!offset)
3455 folio_mark_accessed(folio);
3456 /*
3457 * Ok, we have the page, and it's up-to-date, so
3458 * now we can copy it to user space...
3459 */
3460 if (likely(!fallback_page_copy))
3461 ret = copy_folio_to_iter(folio, offset, nr, to);
3462 else
3463 ret = copy_page_to_iter(page, offset, nr, to);
3464 folio_put(folio);
3465 } else if (user_backed_iter(to)) {
3466 /*
3467 * Copy to user tends to be so well optimized, but
3468 * clear_user() not so much, that it is noticeably
3469 * faster to copy the zero page instead of clearing.
3470 */
3471 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3472 } else {
3473 /*
3474 * But submitting the same page twice in a row to
3475 * splice() - or others? - can result in confusion:
3476 * so don't attempt that optimization on pipes etc.
3477 */
3478 ret = iov_iter_zero(nr, to);
3479 }
3480
3481 retval += ret;
3482 iocb->ki_pos += ret;
3483
3484 if (!iov_iter_count(to))
3485 break;
3486 if (ret < nr) {
3487 error = -EFAULT;
3488 break;
3489 }
3490 cond_resched();
3491 }
3492
3493 file_accessed(file);
3494 return retval ? retval : error;
3495 }
3496
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3497 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3498 {
3499 struct file *file = iocb->ki_filp;
3500 struct inode *inode = file->f_mapping->host;
3501 ssize_t ret;
3502
3503 inode_lock(inode);
3504 ret = generic_write_checks(iocb, from);
3505 if (ret <= 0)
3506 goto unlock;
3507 ret = file_remove_privs(file);
3508 if (ret)
3509 goto unlock;
3510 ret = file_update_time(file);
3511 if (ret)
3512 goto unlock;
3513 ret = generic_perform_write(iocb, from);
3514 unlock:
3515 inode_unlock(inode);
3516 return ret;
3517 }
3518
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3519 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3520 struct pipe_buffer *buf)
3521 {
3522 return true;
3523 }
3524
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3525 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3526 struct pipe_buffer *buf)
3527 {
3528 }
3529
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3530 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3531 struct pipe_buffer *buf)
3532 {
3533 return false;
3534 }
3535
3536 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3537 .release = zero_pipe_buf_release,
3538 .try_steal = zero_pipe_buf_try_steal,
3539 .get = zero_pipe_buf_get,
3540 };
3541
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)3542 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3543 loff_t fpos, size_t size)
3544 {
3545 size_t offset = fpos & ~PAGE_MASK;
3546
3547 size = min_t(size_t, size, PAGE_SIZE - offset);
3548
3549 if (!pipe_is_full(pipe)) {
3550 struct pipe_buffer *buf = pipe_head_buf(pipe);
3551
3552 *buf = (struct pipe_buffer) {
3553 .ops = &zero_pipe_buf_ops,
3554 .page = ZERO_PAGE(0),
3555 .offset = offset,
3556 .len = size,
3557 };
3558 pipe->head++;
3559 }
3560
3561 return size;
3562 }
3563
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3564 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3565 struct pipe_inode_info *pipe,
3566 size_t len, unsigned int flags)
3567 {
3568 struct inode *inode = file_inode(in);
3569 struct address_space *mapping = inode->i_mapping;
3570 struct folio *folio = NULL;
3571 size_t total_spliced = 0, used, npages, n, part;
3572 loff_t isize;
3573 int error = 0;
3574
3575 /* Work out how much data we can actually add into the pipe */
3576 used = pipe_buf_usage(pipe);
3577 npages = max_t(ssize_t, pipe->max_usage - used, 0);
3578 len = min_t(size_t, len, npages * PAGE_SIZE);
3579
3580 do {
3581 bool fallback_page_splice = false;
3582 struct page *page = NULL;
3583 pgoff_t index;
3584 size_t size;
3585
3586 if (*ppos >= i_size_read(inode))
3587 break;
3588
3589 index = *ppos >> PAGE_SHIFT;
3590 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3591 if (error) {
3592 if (error == -EINVAL)
3593 error = 0;
3594 break;
3595 }
3596 if (folio) {
3597 folio_unlock(folio);
3598
3599 page = folio_file_page(folio, index);
3600 if (PageHWPoison(page)) {
3601 error = -EIO;
3602 break;
3603 }
3604
3605 if (folio_test_large(folio) &&
3606 folio_test_has_hwpoisoned(folio))
3607 fallback_page_splice = true;
3608 }
3609
3610 /*
3611 * i_size must be checked after we know the pages are Uptodate.
3612 *
3613 * Checking i_size after the check allows us to calculate
3614 * the correct value for "nr", which means the zero-filled
3615 * part of the page is not copied back to userspace (unless
3616 * another truncate extends the file - this is desired though).
3617 */
3618 isize = i_size_read(inode);
3619 if (unlikely(*ppos >= isize))
3620 break;
3621 /*
3622 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3623 * pages.
3624 */
3625 size = len;
3626 if (unlikely(fallback_page_splice)) {
3627 size_t offset = *ppos & ~PAGE_MASK;
3628
3629 size = umin(size, PAGE_SIZE - offset);
3630 }
3631 part = min_t(loff_t, isize - *ppos, size);
3632
3633 if (folio) {
3634 /*
3635 * If users can be writing to this page using arbitrary
3636 * virtual addresses, take care about potential aliasing
3637 * before reading the page on the kernel side.
3638 */
3639 if (mapping_writably_mapped(mapping)) {
3640 if (likely(!fallback_page_splice))
3641 flush_dcache_folio(folio);
3642 else
3643 flush_dcache_page(page);
3644 }
3645 folio_mark_accessed(folio);
3646 /*
3647 * Ok, we have the page, and it's up-to-date, so we can
3648 * now splice it into the pipe.
3649 */
3650 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3651 folio_put(folio);
3652 folio = NULL;
3653 } else {
3654 n = splice_zeropage_into_pipe(pipe, *ppos, part);
3655 }
3656
3657 if (!n)
3658 break;
3659 len -= n;
3660 total_spliced += n;
3661 *ppos += n;
3662 in->f_ra.prev_pos = *ppos;
3663 if (pipe_is_full(pipe))
3664 break;
3665
3666 cond_resched();
3667 } while (len);
3668
3669 if (folio)
3670 folio_put(folio);
3671
3672 file_accessed(in);
3673 return total_spliced ? total_spliced : error;
3674 }
3675
shmem_file_llseek(struct file * file,loff_t offset,int whence)3676 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3677 {
3678 struct address_space *mapping = file->f_mapping;
3679 struct inode *inode = mapping->host;
3680
3681 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3682 return generic_file_llseek_size(file, offset, whence,
3683 MAX_LFS_FILESIZE, i_size_read(inode));
3684 if (offset < 0)
3685 return -ENXIO;
3686
3687 inode_lock(inode);
3688 /* We're holding i_rwsem so we can access i_size directly */
3689 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3690 if (offset >= 0)
3691 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3692 inode_unlock(inode);
3693 return offset;
3694 }
3695
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3696 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3697 loff_t len)
3698 {
3699 struct inode *inode = file_inode(file);
3700 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3701 struct shmem_inode_info *info = SHMEM_I(inode);
3702 struct shmem_falloc shmem_falloc;
3703 pgoff_t start, index, end, undo_fallocend;
3704 int error;
3705
3706 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3707 return -EOPNOTSUPP;
3708
3709 inode_lock(inode);
3710
3711 if (info->flags & SHMEM_F_MAPPING_FROZEN) {
3712 error = -EPERM;
3713 goto out;
3714 }
3715
3716 if (mode & FALLOC_FL_PUNCH_HOLE) {
3717 struct address_space *mapping = file->f_mapping;
3718 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3719 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3720 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3721
3722 /* protected by i_rwsem */
3723 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3724 error = -EPERM;
3725 goto out;
3726 }
3727
3728 shmem_falloc.waitq = &shmem_falloc_waitq;
3729 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3730 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3731 spin_lock(&inode->i_lock);
3732 inode->i_private = &shmem_falloc;
3733 spin_unlock(&inode->i_lock);
3734
3735 if ((u64)unmap_end > (u64)unmap_start)
3736 unmap_mapping_range(mapping, unmap_start,
3737 1 + unmap_end - unmap_start, 0);
3738 shmem_truncate_range(inode, offset, offset + len - 1);
3739 /* No need to unmap again: hole-punching leaves COWed pages */
3740
3741 spin_lock(&inode->i_lock);
3742 inode->i_private = NULL;
3743 wake_up_all(&shmem_falloc_waitq);
3744 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3745 spin_unlock(&inode->i_lock);
3746 error = 0;
3747 goto out;
3748 }
3749
3750 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3751 error = inode_newsize_ok(inode, offset + len);
3752 if (error)
3753 goto out;
3754
3755 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3756 error = -EPERM;
3757 goto out;
3758 }
3759
3760 start = offset >> PAGE_SHIFT;
3761 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3762 /* Try to avoid a swapstorm if len is impossible to satisfy */
3763 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3764 error = -ENOSPC;
3765 goto out;
3766 }
3767
3768 shmem_falloc.waitq = NULL;
3769 shmem_falloc.start = start;
3770 shmem_falloc.next = start;
3771 shmem_falloc.nr_falloced = 0;
3772 shmem_falloc.nr_unswapped = 0;
3773 spin_lock(&inode->i_lock);
3774 inode->i_private = &shmem_falloc;
3775 spin_unlock(&inode->i_lock);
3776
3777 /*
3778 * info->fallocend is only relevant when huge pages might be
3779 * involved: to prevent split_huge_page() freeing fallocated
3780 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3781 */
3782 undo_fallocend = info->fallocend;
3783 if (info->fallocend < end)
3784 info->fallocend = end;
3785
3786 for (index = start; index < end; ) {
3787 struct folio *folio;
3788
3789 /*
3790 * Check for fatal signal so that we abort early in OOM
3791 * situations. We don't want to abort in case of non-fatal
3792 * signals as large fallocate can take noticeable time and
3793 * e.g. periodic timers may result in fallocate constantly
3794 * restarting.
3795 */
3796 if (fatal_signal_pending(current))
3797 error = -EINTR;
3798 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3799 error = -ENOMEM;
3800 else
3801 error = shmem_get_folio(inode, index, offset + len,
3802 &folio, SGP_FALLOC);
3803 if (error) {
3804 info->fallocend = undo_fallocend;
3805 /* Remove the !uptodate folios we added */
3806 if (index > start) {
3807 shmem_undo_range(inode,
3808 (loff_t)start << PAGE_SHIFT,
3809 ((loff_t)index << PAGE_SHIFT) - 1, true);
3810 }
3811 goto undone;
3812 }
3813
3814 /*
3815 * Here is a more important optimization than it appears:
3816 * a second SGP_FALLOC on the same large folio will clear it,
3817 * making it uptodate and un-undoable if we fail later.
3818 */
3819 index = folio_next_index(folio);
3820 /* Beware 32-bit wraparound */
3821 if (!index)
3822 index--;
3823
3824 /*
3825 * Inform shmem_writeout() how far we have reached.
3826 * No need for lock or barrier: we have the page lock.
3827 */
3828 if (!folio_test_uptodate(folio))
3829 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3830 shmem_falloc.next = index;
3831
3832 /*
3833 * If !uptodate, leave it that way so that freeable folios
3834 * can be recognized if we need to rollback on error later.
3835 * But mark it dirty so that memory pressure will swap rather
3836 * than free the folios we are allocating (and SGP_CACHE folios
3837 * might still be clean: we now need to mark those dirty too).
3838 */
3839 folio_mark_dirty(folio);
3840 folio_unlock(folio);
3841 folio_put(folio);
3842 cond_resched();
3843 }
3844
3845 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3846 i_size_write(inode, offset + len);
3847 undone:
3848 spin_lock(&inode->i_lock);
3849 inode->i_private = NULL;
3850 spin_unlock(&inode->i_lock);
3851 out:
3852 if (!error)
3853 file_modified(file);
3854 inode_unlock(inode);
3855 return error;
3856 }
3857
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3858 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3859 {
3860 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3861
3862 buf->f_type = TMPFS_MAGIC;
3863 buf->f_bsize = PAGE_SIZE;
3864 buf->f_namelen = NAME_MAX;
3865 if (sbinfo->max_blocks) {
3866 buf->f_blocks = sbinfo->max_blocks;
3867 buf->f_bavail =
3868 buf->f_bfree = sbinfo->max_blocks -
3869 percpu_counter_sum(&sbinfo->used_blocks);
3870 }
3871 if (sbinfo->max_inodes) {
3872 buf->f_files = sbinfo->max_inodes;
3873 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3874 }
3875 /* else leave those fields 0 like simple_statfs */
3876
3877 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3878
3879 return 0;
3880 }
3881
3882 /*
3883 * File creation. Allocate an inode, and we're done..
3884 */
3885 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3886 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3887 struct dentry *dentry, umode_t mode, dev_t dev)
3888 {
3889 struct inode *inode;
3890 int error;
3891
3892 if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3893 return -EINVAL;
3894
3895 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3896 if (IS_ERR(inode))
3897 return PTR_ERR(inode);
3898
3899 error = simple_acl_create(dir, inode);
3900 if (error)
3901 goto out_iput;
3902 error = security_inode_init_security(inode, dir, &dentry->d_name,
3903 shmem_initxattrs, NULL);
3904 if (error && error != -EOPNOTSUPP)
3905 goto out_iput;
3906
3907 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3908 if (error)
3909 goto out_iput;
3910
3911 dir->i_size += BOGO_DIRENT_SIZE;
3912 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3913 inode_inc_iversion(dir);
3914
3915 d_make_persistent(dentry, inode);
3916 return error;
3917
3918 out_iput:
3919 iput(inode);
3920 return error;
3921 }
3922
3923 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3924 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3925 struct file *file, umode_t mode)
3926 {
3927 struct inode *inode;
3928 int error;
3929
3930 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3931 if (IS_ERR(inode)) {
3932 error = PTR_ERR(inode);
3933 goto err_out;
3934 }
3935 error = security_inode_init_security(inode, dir, NULL,
3936 shmem_initxattrs, NULL);
3937 if (error && error != -EOPNOTSUPP)
3938 goto out_iput;
3939 error = simple_acl_create(dir, inode);
3940 if (error)
3941 goto out_iput;
3942 d_tmpfile(file, inode);
3943
3944 err_out:
3945 return finish_open_simple(file, error);
3946 out_iput:
3947 iput(inode);
3948 return error;
3949 }
3950
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3951 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3952 struct dentry *dentry, umode_t mode)
3953 {
3954 int error;
3955
3956 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3957 if (error)
3958 return ERR_PTR(error);
3959 inc_nlink(dir);
3960 return NULL;
3961 }
3962
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3963 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3964 struct dentry *dentry, umode_t mode, bool excl)
3965 {
3966 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3967 }
3968
3969 /*
3970 * Link a file..
3971 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3972 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3973 struct dentry *dentry)
3974 {
3975 struct inode *inode = d_inode(old_dentry);
3976 int ret;
3977
3978 /*
3979 * No ordinary (disk based) filesystem counts links as inodes;
3980 * but each new link needs a new dentry, pinning lowmem, and
3981 * tmpfs dentries cannot be pruned until they are unlinked.
3982 * But if an O_TMPFILE file is linked into the tmpfs, the
3983 * first link must skip that, to get the accounting right.
3984 */
3985 if (inode->i_nlink) {
3986 ret = shmem_reserve_inode(inode->i_sb, NULL);
3987 if (ret)
3988 return ret;
3989 }
3990
3991 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3992 if (ret) {
3993 if (inode->i_nlink)
3994 shmem_free_inode(inode->i_sb, 0);
3995 return ret;
3996 }
3997
3998 dir->i_size += BOGO_DIRENT_SIZE;
3999 inode_inc_iversion(dir);
4000 return simple_link(old_dentry, dir, dentry);
4001 }
4002
shmem_unlink(struct inode * dir,struct dentry * dentry)4003 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
4004 {
4005 struct inode *inode = d_inode(dentry);
4006
4007 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
4008 shmem_free_inode(inode->i_sb, 0);
4009
4010 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4011
4012 dir->i_size -= BOGO_DIRENT_SIZE;
4013 inode_inc_iversion(dir);
4014 simple_unlink(dir, dentry);
4015
4016 /*
4017 * For now, VFS can't deal with case-insensitive negative dentries, so
4018 * we invalidate them
4019 */
4020 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
4021 d_invalidate(dentry);
4022
4023 return 0;
4024 }
4025
shmem_rmdir(struct inode * dir,struct dentry * dentry)4026 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
4027 {
4028 if (!simple_empty(dentry))
4029 return -ENOTEMPTY;
4030
4031 drop_nlink(d_inode(dentry));
4032 drop_nlink(dir);
4033 return shmem_unlink(dir, dentry);
4034 }
4035
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)4036 static int shmem_whiteout(struct mnt_idmap *idmap,
4037 struct inode *old_dir, struct dentry *old_dentry)
4038 {
4039 struct dentry *whiteout;
4040 int error;
4041
4042 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
4043 if (!whiteout)
4044 return -ENOMEM;
4045 error = shmem_mknod(idmap, old_dir, whiteout,
4046 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4047 dput(whiteout);
4048 return error;
4049 }
4050
4051 /*
4052 * The VFS layer already does all the dentry stuff for rename,
4053 * we just have to decrement the usage count for the target if
4054 * it exists so that the VFS layer correctly free's it when it
4055 * gets overwritten.
4056 */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)4057 static int shmem_rename2(struct mnt_idmap *idmap,
4058 struct inode *old_dir, struct dentry *old_dentry,
4059 struct inode *new_dir, struct dentry *new_dentry,
4060 unsigned int flags)
4061 {
4062 struct inode *inode = d_inode(old_dentry);
4063 int they_are_dirs = S_ISDIR(inode->i_mode);
4064 bool had_offset = false;
4065 int error;
4066
4067 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4068 return -EINVAL;
4069
4070 if (flags & RENAME_EXCHANGE)
4071 return simple_offset_rename_exchange(old_dir, old_dentry,
4072 new_dir, new_dentry);
4073
4074 if (!simple_empty(new_dentry))
4075 return -ENOTEMPTY;
4076
4077 error = simple_offset_add(shmem_get_offset_ctx(new_dir), new_dentry);
4078 if (error == -EBUSY)
4079 had_offset = true;
4080 else if (unlikely(error))
4081 return error;
4082
4083 if (flags & RENAME_WHITEOUT) {
4084 error = shmem_whiteout(idmap, old_dir, old_dentry);
4085 if (error) {
4086 if (!had_offset)
4087 simple_offset_remove(shmem_get_offset_ctx(new_dir),
4088 new_dentry);
4089 return error;
4090 }
4091 }
4092
4093 simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
4094 if (d_really_is_positive(new_dentry)) {
4095 (void) shmem_unlink(new_dir, new_dentry);
4096 if (they_are_dirs) {
4097 drop_nlink(d_inode(new_dentry));
4098 drop_nlink(old_dir);
4099 }
4100 } else if (they_are_dirs) {
4101 drop_nlink(old_dir);
4102 inc_nlink(new_dir);
4103 }
4104
4105 old_dir->i_size -= BOGO_DIRENT_SIZE;
4106 new_dir->i_size += BOGO_DIRENT_SIZE;
4107 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
4108 inode_inc_iversion(old_dir);
4109 inode_inc_iversion(new_dir);
4110 return 0;
4111 }
4112
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)4113 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
4114 struct dentry *dentry, const char *symname)
4115 {
4116 int error;
4117 int len;
4118 struct inode *inode;
4119 struct folio *folio;
4120 char *link;
4121
4122 len = strlen(symname) + 1;
4123 if (len > PAGE_SIZE)
4124 return -ENAMETOOLONG;
4125
4126 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
4127 VM_NORESERVE);
4128 if (IS_ERR(inode))
4129 return PTR_ERR(inode);
4130
4131 error = security_inode_init_security(inode, dir, &dentry->d_name,
4132 shmem_initxattrs, NULL);
4133 if (error && error != -EOPNOTSUPP)
4134 goto out_iput;
4135
4136 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
4137 if (error)
4138 goto out_iput;
4139
4140 inode->i_size = len-1;
4141 if (len <= SHORT_SYMLINK_LEN) {
4142 link = kmemdup(symname, len, GFP_KERNEL);
4143 if (!link) {
4144 error = -ENOMEM;
4145 goto out_remove_offset;
4146 }
4147 inode->i_op = &shmem_short_symlink_operations;
4148 inode_set_cached_link(inode, link, len - 1);
4149 } else {
4150 inode_nohighmem(inode);
4151 inode->i_mapping->a_ops = &shmem_aops;
4152 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
4153 if (error)
4154 goto out_remove_offset;
4155 inode->i_op = &shmem_symlink_inode_operations;
4156 memcpy(folio_address(folio), symname, len);
4157 folio_mark_uptodate(folio);
4158 folio_mark_dirty(folio);
4159 folio_unlock(folio);
4160 folio_put(folio);
4161 }
4162 dir->i_size += BOGO_DIRENT_SIZE;
4163 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
4164 inode_inc_iversion(dir);
4165 d_make_persistent(dentry, inode);
4166 return 0;
4167
4168 out_remove_offset:
4169 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4170 out_iput:
4171 iput(inode);
4172 return error;
4173 }
4174
shmem_put_link(void * arg)4175 static void shmem_put_link(void *arg)
4176 {
4177 folio_mark_accessed(arg);
4178 folio_put(arg);
4179 }
4180
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)4181 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
4182 struct delayed_call *done)
4183 {
4184 struct folio *folio = NULL;
4185 int error;
4186
4187 if (!dentry) {
4188 folio = filemap_get_folio(inode->i_mapping, 0);
4189 if (IS_ERR(folio))
4190 return ERR_PTR(-ECHILD);
4191 if (PageHWPoison(folio_page(folio, 0)) ||
4192 !folio_test_uptodate(folio)) {
4193 folio_put(folio);
4194 return ERR_PTR(-ECHILD);
4195 }
4196 } else {
4197 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4198 if (error)
4199 return ERR_PTR(error);
4200 if (!folio)
4201 return ERR_PTR(-ECHILD);
4202 if (PageHWPoison(folio_page(folio, 0))) {
4203 folio_unlock(folio);
4204 folio_put(folio);
4205 return ERR_PTR(-ECHILD);
4206 }
4207 folio_unlock(folio);
4208 }
4209 set_delayed_call(done, shmem_put_link, folio);
4210 return folio_address(folio);
4211 }
4212
4213 #ifdef CONFIG_TMPFS_XATTR
4214
shmem_fileattr_get(struct dentry * dentry,struct file_kattr * fa)4215 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
4216 {
4217 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4218
4219 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4220
4221 return 0;
4222 }
4223
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct file_kattr * fa)4224 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4225 struct dentry *dentry, struct file_kattr *fa)
4226 {
4227 struct inode *inode = d_inode(dentry);
4228 struct shmem_inode_info *info = SHMEM_I(inode);
4229 int ret, flags;
4230
4231 if (fileattr_has_fsx(fa))
4232 return -EOPNOTSUPP;
4233 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4234 return -EOPNOTSUPP;
4235
4236 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4237 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
4238
4239 ret = shmem_set_inode_flags(inode, flags, dentry);
4240
4241 if (ret)
4242 return ret;
4243
4244 info->fsflags = flags;
4245
4246 inode_set_ctime_current(inode);
4247 inode_inc_iversion(inode);
4248 return 0;
4249 }
4250
4251 /*
4252 * Superblocks without xattr inode operations may get some security.* xattr
4253 * support from the LSM "for free". As soon as we have any other xattrs
4254 * like ACLs, we also need to implement the security.* handlers at
4255 * filesystem level, though.
4256 */
4257
4258 /*
4259 * Callback for security_inode_init_security() for acquiring xattrs.
4260 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)4261 static int shmem_initxattrs(struct inode *inode,
4262 const struct xattr *xattr_array, void *fs_info)
4263 {
4264 struct shmem_inode_info *info = SHMEM_I(inode);
4265 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4266 const struct xattr *xattr;
4267 struct simple_xattr *new_xattr;
4268 size_t ispace = 0;
4269 size_t len;
4270
4271 if (sbinfo->max_inodes) {
4272 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4273 ispace += simple_xattr_space(xattr->name,
4274 xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4275 }
4276 if (ispace) {
4277 raw_spin_lock(&sbinfo->stat_lock);
4278 if (sbinfo->free_ispace < ispace)
4279 ispace = 0;
4280 else
4281 sbinfo->free_ispace -= ispace;
4282 raw_spin_unlock(&sbinfo->stat_lock);
4283 if (!ispace)
4284 return -ENOSPC;
4285 }
4286 }
4287
4288 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4289 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4290 if (!new_xattr)
4291 break;
4292
4293 len = strlen(xattr->name) + 1;
4294 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4295 GFP_KERNEL_ACCOUNT);
4296 if (!new_xattr->name) {
4297 kvfree(new_xattr);
4298 break;
4299 }
4300
4301 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4302 XATTR_SECURITY_PREFIX_LEN);
4303 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4304 xattr->name, len);
4305
4306 simple_xattr_add(&info->xattrs, new_xattr);
4307 }
4308
4309 if (xattr->name != NULL) {
4310 if (ispace) {
4311 raw_spin_lock(&sbinfo->stat_lock);
4312 sbinfo->free_ispace += ispace;
4313 raw_spin_unlock(&sbinfo->stat_lock);
4314 }
4315 simple_xattrs_free(&info->xattrs, NULL);
4316 return -ENOMEM;
4317 }
4318
4319 return 0;
4320 }
4321
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)4322 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4323 struct dentry *unused, struct inode *inode,
4324 const char *name, void *buffer, size_t size)
4325 {
4326 struct shmem_inode_info *info = SHMEM_I(inode);
4327
4328 name = xattr_full_name(handler, name);
4329 return simple_xattr_get(&info->xattrs, name, buffer, size);
4330 }
4331
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)4332 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4333 struct mnt_idmap *idmap,
4334 struct dentry *unused, struct inode *inode,
4335 const char *name, const void *value,
4336 size_t size, int flags)
4337 {
4338 struct shmem_inode_info *info = SHMEM_I(inode);
4339 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4340 struct simple_xattr *old_xattr;
4341 size_t ispace = 0;
4342
4343 name = xattr_full_name(handler, name);
4344 if (value && sbinfo->max_inodes) {
4345 ispace = simple_xattr_space(name, size);
4346 raw_spin_lock(&sbinfo->stat_lock);
4347 if (sbinfo->free_ispace < ispace)
4348 ispace = 0;
4349 else
4350 sbinfo->free_ispace -= ispace;
4351 raw_spin_unlock(&sbinfo->stat_lock);
4352 if (!ispace)
4353 return -ENOSPC;
4354 }
4355
4356 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4357 if (!IS_ERR(old_xattr)) {
4358 ispace = 0;
4359 if (old_xattr && sbinfo->max_inodes)
4360 ispace = simple_xattr_space(old_xattr->name,
4361 old_xattr->size);
4362 simple_xattr_free(old_xattr);
4363 old_xattr = NULL;
4364 inode_set_ctime_current(inode);
4365 inode_inc_iversion(inode);
4366 }
4367 if (ispace) {
4368 raw_spin_lock(&sbinfo->stat_lock);
4369 sbinfo->free_ispace += ispace;
4370 raw_spin_unlock(&sbinfo->stat_lock);
4371 }
4372 return PTR_ERR(old_xattr);
4373 }
4374
4375 static const struct xattr_handler shmem_security_xattr_handler = {
4376 .prefix = XATTR_SECURITY_PREFIX,
4377 .get = shmem_xattr_handler_get,
4378 .set = shmem_xattr_handler_set,
4379 };
4380
4381 static const struct xattr_handler shmem_trusted_xattr_handler = {
4382 .prefix = XATTR_TRUSTED_PREFIX,
4383 .get = shmem_xattr_handler_get,
4384 .set = shmem_xattr_handler_set,
4385 };
4386
4387 static const struct xattr_handler shmem_user_xattr_handler = {
4388 .prefix = XATTR_USER_PREFIX,
4389 .get = shmem_xattr_handler_get,
4390 .set = shmem_xattr_handler_set,
4391 };
4392
4393 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4394 &shmem_security_xattr_handler,
4395 &shmem_trusted_xattr_handler,
4396 &shmem_user_xattr_handler,
4397 NULL
4398 };
4399
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)4400 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4401 {
4402 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4403 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4404 }
4405 #endif /* CONFIG_TMPFS_XATTR */
4406
4407 static const struct inode_operations shmem_short_symlink_operations = {
4408 .getattr = shmem_getattr,
4409 .setattr = shmem_setattr,
4410 .get_link = simple_get_link,
4411 #ifdef CONFIG_TMPFS_XATTR
4412 .listxattr = shmem_listxattr,
4413 #endif
4414 };
4415
4416 static const struct inode_operations shmem_symlink_inode_operations = {
4417 .getattr = shmem_getattr,
4418 .setattr = shmem_setattr,
4419 .get_link = shmem_get_link,
4420 #ifdef CONFIG_TMPFS_XATTR
4421 .listxattr = shmem_listxattr,
4422 #endif
4423 };
4424
shmem_get_parent(struct dentry * child)4425 static struct dentry *shmem_get_parent(struct dentry *child)
4426 {
4427 return ERR_PTR(-ESTALE);
4428 }
4429
shmem_match(struct inode * ino,void * vfh)4430 static int shmem_match(struct inode *ino, void *vfh)
4431 {
4432 __u32 *fh = vfh;
4433 __u64 inum = fh[2];
4434 inum = (inum << 32) | fh[1];
4435 return ino->i_ino == inum && fh[0] == ino->i_generation;
4436 }
4437
4438 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)4439 static struct dentry *shmem_find_alias(struct inode *inode)
4440 {
4441 struct dentry *alias = d_find_alias(inode);
4442
4443 return alias ?: d_find_any_alias(inode);
4444 }
4445
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)4446 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4447 struct fid *fid, int fh_len, int fh_type)
4448 {
4449 struct inode *inode;
4450 struct dentry *dentry = NULL;
4451 u64 inum;
4452
4453 if (fh_len < 3)
4454 return NULL;
4455
4456 inum = fid->raw[2];
4457 inum = (inum << 32) | fid->raw[1];
4458
4459 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4460 shmem_match, fid->raw);
4461 if (inode) {
4462 dentry = shmem_find_alias(inode);
4463 iput(inode);
4464 }
4465
4466 return dentry;
4467 }
4468
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)4469 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4470 struct inode *parent)
4471 {
4472 if (*len < 3) {
4473 *len = 3;
4474 return FILEID_INVALID;
4475 }
4476
4477 if (inode_unhashed(inode)) {
4478 /* Unfortunately insert_inode_hash is not idempotent,
4479 * so as we hash inodes here rather than at creation
4480 * time, we need a lock to ensure we only try
4481 * to do it once
4482 */
4483 static DEFINE_SPINLOCK(lock);
4484 spin_lock(&lock);
4485 if (inode_unhashed(inode))
4486 __insert_inode_hash(inode,
4487 inode->i_ino + inode->i_generation);
4488 spin_unlock(&lock);
4489 }
4490
4491 fh[0] = inode->i_generation;
4492 fh[1] = inode->i_ino;
4493 fh[2] = ((__u64)inode->i_ino) >> 32;
4494
4495 *len = 3;
4496 return 1;
4497 }
4498
4499 static const struct export_operations shmem_export_ops = {
4500 .get_parent = shmem_get_parent,
4501 .encode_fh = shmem_encode_fh,
4502 .fh_to_dentry = shmem_fh_to_dentry,
4503 };
4504
4505 enum shmem_param {
4506 Opt_gid,
4507 Opt_huge,
4508 Opt_mode,
4509 Opt_mpol,
4510 Opt_nr_blocks,
4511 Opt_nr_inodes,
4512 Opt_size,
4513 Opt_uid,
4514 Opt_inode32,
4515 Opt_inode64,
4516 Opt_noswap,
4517 Opt_quota,
4518 Opt_usrquota,
4519 Opt_grpquota,
4520 Opt_usrquota_block_hardlimit,
4521 Opt_usrquota_inode_hardlimit,
4522 Opt_grpquota_block_hardlimit,
4523 Opt_grpquota_inode_hardlimit,
4524 Opt_casefold_version,
4525 Opt_casefold,
4526 Opt_strict_encoding,
4527 };
4528
4529 static const struct constant_table shmem_param_enums_huge[] = {
4530 {"never", SHMEM_HUGE_NEVER },
4531 {"always", SHMEM_HUGE_ALWAYS },
4532 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
4533 {"advise", SHMEM_HUGE_ADVISE },
4534 {}
4535 };
4536
4537 const struct fs_parameter_spec shmem_fs_parameters[] = {
4538 fsparam_gid ("gid", Opt_gid),
4539 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
4540 fsparam_u32oct("mode", Opt_mode),
4541 fsparam_string("mpol", Opt_mpol),
4542 fsparam_string("nr_blocks", Opt_nr_blocks),
4543 fsparam_string("nr_inodes", Opt_nr_inodes),
4544 fsparam_string("size", Opt_size),
4545 fsparam_uid ("uid", Opt_uid),
4546 fsparam_flag ("inode32", Opt_inode32),
4547 fsparam_flag ("inode64", Opt_inode64),
4548 fsparam_flag ("noswap", Opt_noswap),
4549 #ifdef CONFIG_TMPFS_QUOTA
4550 fsparam_flag ("quota", Opt_quota),
4551 fsparam_flag ("usrquota", Opt_usrquota),
4552 fsparam_flag ("grpquota", Opt_grpquota),
4553 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4554 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4555 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4556 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4557 #endif
4558 fsparam_string("casefold", Opt_casefold_version),
4559 fsparam_flag ("casefold", Opt_casefold),
4560 fsparam_flag ("strict_encoding", Opt_strict_encoding),
4561 {}
4562 };
4563
4564 #if IS_ENABLED(CONFIG_UNICODE)
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4565 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4566 bool latest_version)
4567 {
4568 struct shmem_options *ctx = fc->fs_private;
4569 int version = UTF8_LATEST;
4570 struct unicode_map *encoding;
4571 char *version_str = param->string + 5;
4572
4573 if (!latest_version) {
4574 if (strncmp(param->string, "utf8-", 5))
4575 return invalfc(fc, "Only UTF-8 encodings are supported "
4576 "in the format: utf8-<version number>");
4577
4578 version = utf8_parse_version(version_str);
4579 if (version < 0)
4580 return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4581 }
4582
4583 encoding = utf8_load(version);
4584
4585 if (IS_ERR(encoding)) {
4586 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4587 unicode_major(version), unicode_minor(version),
4588 unicode_rev(version));
4589 }
4590
4591 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4592 unicode_major(version), unicode_minor(version), unicode_rev(version));
4593
4594 ctx->encoding = encoding;
4595
4596 return 0;
4597 }
4598 #else
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4599 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4600 bool latest_version)
4601 {
4602 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4603 }
4604 #endif
4605
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)4606 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4607 {
4608 struct shmem_options *ctx = fc->fs_private;
4609 struct fs_parse_result result;
4610 unsigned long long size;
4611 char *rest;
4612 int opt;
4613 kuid_t kuid;
4614 kgid_t kgid;
4615
4616 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4617 if (opt < 0)
4618 return opt;
4619
4620 switch (opt) {
4621 case Opt_size:
4622 size = memparse(param->string, &rest);
4623 if (*rest == '%') {
4624 size <<= PAGE_SHIFT;
4625 size *= totalram_pages();
4626 do_div(size, 100);
4627 rest++;
4628 }
4629 if (*rest)
4630 goto bad_value;
4631 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4632 ctx->seen |= SHMEM_SEEN_BLOCKS;
4633 break;
4634 case Opt_nr_blocks:
4635 ctx->blocks = memparse(param->string, &rest);
4636 if (*rest || ctx->blocks > LONG_MAX)
4637 goto bad_value;
4638 ctx->seen |= SHMEM_SEEN_BLOCKS;
4639 break;
4640 case Opt_nr_inodes:
4641 ctx->inodes = memparse(param->string, &rest);
4642 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4643 goto bad_value;
4644 ctx->seen |= SHMEM_SEEN_INODES;
4645 break;
4646 case Opt_mode:
4647 ctx->mode = result.uint_32 & 07777;
4648 break;
4649 case Opt_uid:
4650 kuid = result.uid;
4651
4652 /*
4653 * The requested uid must be representable in the
4654 * filesystem's idmapping.
4655 */
4656 if (!kuid_has_mapping(fc->user_ns, kuid))
4657 goto bad_value;
4658
4659 ctx->uid = kuid;
4660 break;
4661 case Opt_gid:
4662 kgid = result.gid;
4663
4664 /*
4665 * The requested gid must be representable in the
4666 * filesystem's idmapping.
4667 */
4668 if (!kgid_has_mapping(fc->user_ns, kgid))
4669 goto bad_value;
4670
4671 ctx->gid = kgid;
4672 break;
4673 case Opt_huge:
4674 ctx->huge = result.uint_32;
4675 if (ctx->huge != SHMEM_HUGE_NEVER &&
4676 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4677 has_transparent_hugepage()))
4678 goto unsupported_parameter;
4679 ctx->seen |= SHMEM_SEEN_HUGE;
4680 break;
4681 case Opt_mpol:
4682 if (IS_ENABLED(CONFIG_NUMA)) {
4683 mpol_put(ctx->mpol);
4684 ctx->mpol = NULL;
4685 if (mpol_parse_str(param->string, &ctx->mpol))
4686 goto bad_value;
4687 break;
4688 }
4689 goto unsupported_parameter;
4690 case Opt_inode32:
4691 ctx->full_inums = false;
4692 ctx->seen |= SHMEM_SEEN_INUMS;
4693 break;
4694 case Opt_inode64:
4695 if (sizeof(ino_t) < 8) {
4696 return invalfc(fc,
4697 "Cannot use inode64 with <64bit inums in kernel\n");
4698 }
4699 ctx->full_inums = true;
4700 ctx->seen |= SHMEM_SEEN_INUMS;
4701 break;
4702 case Opt_noswap:
4703 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4704 return invalfc(fc,
4705 "Turning off swap in unprivileged tmpfs mounts unsupported");
4706 }
4707 ctx->noswap = true;
4708 break;
4709 case Opt_quota:
4710 if (fc->user_ns != &init_user_ns)
4711 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4712 ctx->seen |= SHMEM_SEEN_QUOTA;
4713 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4714 break;
4715 case Opt_usrquota:
4716 if (fc->user_ns != &init_user_ns)
4717 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4718 ctx->seen |= SHMEM_SEEN_QUOTA;
4719 ctx->quota_types |= QTYPE_MASK_USR;
4720 break;
4721 case Opt_grpquota:
4722 if (fc->user_ns != &init_user_ns)
4723 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4724 ctx->seen |= SHMEM_SEEN_QUOTA;
4725 ctx->quota_types |= QTYPE_MASK_GRP;
4726 break;
4727 case Opt_usrquota_block_hardlimit:
4728 size = memparse(param->string, &rest);
4729 if (*rest || !size)
4730 goto bad_value;
4731 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4732 return invalfc(fc,
4733 "User quota block hardlimit too large.");
4734 ctx->qlimits.usrquota_bhardlimit = size;
4735 break;
4736 case Opt_grpquota_block_hardlimit:
4737 size = memparse(param->string, &rest);
4738 if (*rest || !size)
4739 goto bad_value;
4740 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4741 return invalfc(fc,
4742 "Group quota block hardlimit too large.");
4743 ctx->qlimits.grpquota_bhardlimit = size;
4744 break;
4745 case Opt_usrquota_inode_hardlimit:
4746 size = memparse(param->string, &rest);
4747 if (*rest || !size)
4748 goto bad_value;
4749 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4750 return invalfc(fc,
4751 "User quota inode hardlimit too large.");
4752 ctx->qlimits.usrquota_ihardlimit = size;
4753 break;
4754 case Opt_grpquota_inode_hardlimit:
4755 size = memparse(param->string, &rest);
4756 if (*rest || !size)
4757 goto bad_value;
4758 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4759 return invalfc(fc,
4760 "Group quota inode hardlimit too large.");
4761 ctx->qlimits.grpquota_ihardlimit = size;
4762 break;
4763 case Opt_casefold_version:
4764 return shmem_parse_opt_casefold(fc, param, false);
4765 case Opt_casefold:
4766 return shmem_parse_opt_casefold(fc, param, true);
4767 case Opt_strict_encoding:
4768 #if IS_ENABLED(CONFIG_UNICODE)
4769 ctx->strict_encoding = true;
4770 break;
4771 #else
4772 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4773 #endif
4774 }
4775 return 0;
4776
4777 unsupported_parameter:
4778 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4779 bad_value:
4780 return invalfc(fc, "Bad value for '%s'", param->key);
4781 }
4782
shmem_next_opt(char ** s)4783 static char *shmem_next_opt(char **s)
4784 {
4785 char *sbegin = *s;
4786 char *p;
4787
4788 if (sbegin == NULL)
4789 return NULL;
4790
4791 /*
4792 * NUL-terminate this option: unfortunately,
4793 * mount options form a comma-separated list,
4794 * but mpol's nodelist may also contain commas.
4795 */
4796 for (;;) {
4797 p = strchr(*s, ',');
4798 if (p == NULL)
4799 break;
4800 *s = p + 1;
4801 if (!isdigit(*(p+1))) {
4802 *p = '\0';
4803 return sbegin;
4804 }
4805 }
4806
4807 *s = NULL;
4808 return sbegin;
4809 }
4810
shmem_parse_monolithic(struct fs_context * fc,void * data)4811 static int shmem_parse_monolithic(struct fs_context *fc, void *data)
4812 {
4813 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt);
4814 }
4815
4816 /*
4817 * Reconfigure a shmem filesystem.
4818 */
shmem_reconfigure(struct fs_context * fc)4819 static int shmem_reconfigure(struct fs_context *fc)
4820 {
4821 struct shmem_options *ctx = fc->fs_private;
4822 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4823 unsigned long used_isp;
4824 struct mempolicy *mpol = NULL;
4825 const char *err;
4826
4827 raw_spin_lock(&sbinfo->stat_lock);
4828 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4829
4830 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4831 if (!sbinfo->max_blocks) {
4832 err = "Cannot retroactively limit size";
4833 goto out;
4834 }
4835 if (percpu_counter_compare(&sbinfo->used_blocks,
4836 ctx->blocks) > 0) {
4837 err = "Too small a size for current use";
4838 goto out;
4839 }
4840 }
4841 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4842 if (!sbinfo->max_inodes) {
4843 err = "Cannot retroactively limit inodes";
4844 goto out;
4845 }
4846 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4847 err = "Too few inodes for current use";
4848 goto out;
4849 }
4850 }
4851
4852 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4853 sbinfo->next_ino > UINT_MAX) {
4854 err = "Current inum too high to switch to 32-bit inums";
4855 goto out;
4856 }
4857
4858 /*
4859 * "noswap" doesn't use fsparam_flag_no, i.e. there's no "swap"
4860 * counterpart for (re-)enabling swap.
4861 */
4862 if (ctx->noswap && !sbinfo->noswap) {
4863 err = "Cannot disable swap on remount";
4864 goto out;
4865 }
4866
4867 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4868 !sb_any_quota_loaded(fc->root->d_sb)) {
4869 err = "Cannot enable quota on remount";
4870 goto out;
4871 }
4872
4873 #ifdef CONFIG_TMPFS_QUOTA
4874 #define CHANGED_LIMIT(name) \
4875 (ctx->qlimits.name## hardlimit && \
4876 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4877
4878 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4879 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4880 err = "Cannot change global quota limit on remount";
4881 goto out;
4882 }
4883 #endif /* CONFIG_TMPFS_QUOTA */
4884
4885 if (ctx->seen & SHMEM_SEEN_HUGE)
4886 sbinfo->huge = ctx->huge;
4887 if (ctx->seen & SHMEM_SEEN_INUMS)
4888 sbinfo->full_inums = ctx->full_inums;
4889 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4890 sbinfo->max_blocks = ctx->blocks;
4891 if (ctx->seen & SHMEM_SEEN_INODES) {
4892 sbinfo->max_inodes = ctx->inodes;
4893 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4894 }
4895
4896 /*
4897 * Preserve previous mempolicy unless mpol remount option was specified.
4898 */
4899 if (ctx->mpol) {
4900 mpol = sbinfo->mpol;
4901 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4902 ctx->mpol = NULL;
4903 }
4904
4905 if (ctx->noswap)
4906 sbinfo->noswap = true;
4907
4908 raw_spin_unlock(&sbinfo->stat_lock);
4909 mpol_put(mpol);
4910 return 0;
4911 out:
4912 raw_spin_unlock(&sbinfo->stat_lock);
4913 return invalfc(fc, "%s", err);
4914 }
4915
shmem_show_options(struct seq_file * seq,struct dentry * root)4916 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4917 {
4918 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4919 struct mempolicy *mpol;
4920
4921 if (sbinfo->max_blocks != shmem_default_max_blocks())
4922 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4923 if (sbinfo->max_inodes != shmem_default_max_inodes())
4924 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4925 if (sbinfo->mode != (0777 | S_ISVTX))
4926 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4927 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4928 seq_printf(seq, ",uid=%u",
4929 from_kuid_munged(&init_user_ns, sbinfo->uid));
4930 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4931 seq_printf(seq, ",gid=%u",
4932 from_kgid_munged(&init_user_ns, sbinfo->gid));
4933
4934 /*
4935 * Showing inode{64,32} might be useful even if it's the system default,
4936 * since then people don't have to resort to checking both here and
4937 * /proc/config.gz to confirm 64-bit inums were successfully applied
4938 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4939 *
4940 * We hide it when inode64 isn't the default and we are using 32-bit
4941 * inodes, since that probably just means the feature isn't even under
4942 * consideration.
4943 *
4944 * As such:
4945 *
4946 * +-----------------+-----------------+
4947 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4948 * +------------------+-----------------+-----------------+
4949 * | full_inums=true | show | show |
4950 * | full_inums=false | show | hide |
4951 * +------------------+-----------------+-----------------+
4952 *
4953 */
4954 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4955 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4956 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4957 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4958 if (sbinfo->huge)
4959 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4960 #endif
4961 mpol = shmem_get_sbmpol(sbinfo);
4962 shmem_show_mpol(seq, mpol);
4963 mpol_put(mpol);
4964 if (sbinfo->noswap)
4965 seq_printf(seq, ",noswap");
4966 #ifdef CONFIG_TMPFS_QUOTA
4967 if (sb_has_quota_active(root->d_sb, USRQUOTA))
4968 seq_printf(seq, ",usrquota");
4969 if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4970 seq_printf(seq, ",grpquota");
4971 if (sbinfo->qlimits.usrquota_bhardlimit)
4972 seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4973 sbinfo->qlimits.usrquota_bhardlimit);
4974 if (sbinfo->qlimits.grpquota_bhardlimit)
4975 seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4976 sbinfo->qlimits.grpquota_bhardlimit);
4977 if (sbinfo->qlimits.usrquota_ihardlimit)
4978 seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4979 sbinfo->qlimits.usrquota_ihardlimit);
4980 if (sbinfo->qlimits.grpquota_ihardlimit)
4981 seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4982 sbinfo->qlimits.grpquota_ihardlimit);
4983 #endif
4984 return 0;
4985 }
4986
4987 #endif /* CONFIG_TMPFS */
4988
shmem_put_super(struct super_block * sb)4989 static void shmem_put_super(struct super_block *sb)
4990 {
4991 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4992
4993 #if IS_ENABLED(CONFIG_UNICODE)
4994 if (sb->s_encoding)
4995 utf8_unload(sb->s_encoding);
4996 #endif
4997
4998 #ifdef CONFIG_TMPFS_QUOTA
4999 shmem_disable_quotas(sb);
5000 #endif
5001 free_percpu(sbinfo->ino_batch);
5002 percpu_counter_destroy(&sbinfo->used_blocks);
5003 mpol_put(sbinfo->mpol);
5004 kfree(sbinfo);
5005 sb->s_fs_info = NULL;
5006 }
5007
5008 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
5009 static const struct dentry_operations shmem_ci_dentry_ops = {
5010 .d_hash = generic_ci_d_hash,
5011 .d_compare = generic_ci_d_compare,
5012 };
5013 #endif
5014
shmem_fill_super(struct super_block * sb,struct fs_context * fc)5015 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
5016 {
5017 struct shmem_options *ctx = fc->fs_private;
5018 struct inode *inode;
5019 struct shmem_sb_info *sbinfo;
5020 int error = -ENOMEM;
5021
5022 /* Round up to L1_CACHE_BYTES to resist false sharing */
5023 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
5024 L1_CACHE_BYTES), GFP_KERNEL);
5025 if (!sbinfo)
5026 return error;
5027
5028 sb->s_fs_info = sbinfo;
5029
5030 #ifdef CONFIG_TMPFS
5031 /*
5032 * Per default we only allow half of the physical ram per
5033 * tmpfs instance, limiting inodes to one per page of lowmem;
5034 * but the internal instance is left unlimited.
5035 */
5036 if (!(sb->s_flags & SB_KERNMOUNT)) {
5037 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
5038 ctx->blocks = shmem_default_max_blocks();
5039 if (!(ctx->seen & SHMEM_SEEN_INODES))
5040 ctx->inodes = shmem_default_max_inodes();
5041 if (!(ctx->seen & SHMEM_SEEN_INUMS))
5042 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
5043 sbinfo->noswap = ctx->noswap;
5044 } else {
5045 sb->s_flags |= SB_NOUSER;
5046 }
5047 sb->s_export_op = &shmem_export_ops;
5048 sb->s_flags |= SB_NOSEC;
5049
5050 #if IS_ENABLED(CONFIG_UNICODE)
5051 if (!ctx->encoding && ctx->strict_encoding) {
5052 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
5053 error = -EINVAL;
5054 goto failed;
5055 }
5056
5057 if (ctx->encoding) {
5058 sb->s_encoding = ctx->encoding;
5059 set_default_d_op(sb, &shmem_ci_dentry_ops);
5060 if (ctx->strict_encoding)
5061 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
5062 }
5063 #endif
5064
5065 #else
5066 sb->s_flags |= SB_NOUSER;
5067 #endif /* CONFIG_TMPFS */
5068 sb->s_d_flags |= DCACHE_DONTCACHE;
5069 sbinfo->max_blocks = ctx->blocks;
5070 sbinfo->max_inodes = ctx->inodes;
5071 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
5072 if (sb->s_flags & SB_KERNMOUNT) {
5073 sbinfo->ino_batch = alloc_percpu(ino_t);
5074 if (!sbinfo->ino_batch)
5075 goto failed;
5076 }
5077 sbinfo->uid = ctx->uid;
5078 sbinfo->gid = ctx->gid;
5079 sbinfo->full_inums = ctx->full_inums;
5080 sbinfo->mode = ctx->mode;
5081 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5082 if (ctx->seen & SHMEM_SEEN_HUGE)
5083 sbinfo->huge = ctx->huge;
5084 else
5085 sbinfo->huge = tmpfs_huge;
5086 #endif
5087 sbinfo->mpol = ctx->mpol;
5088 ctx->mpol = NULL;
5089
5090 raw_spin_lock_init(&sbinfo->stat_lock);
5091 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
5092 goto failed;
5093 spin_lock_init(&sbinfo->shrinklist_lock);
5094 INIT_LIST_HEAD(&sbinfo->shrinklist);
5095
5096 sb->s_maxbytes = MAX_LFS_FILESIZE;
5097 sb->s_blocksize = PAGE_SIZE;
5098 sb->s_blocksize_bits = PAGE_SHIFT;
5099 sb->s_magic = TMPFS_MAGIC;
5100 sb->s_op = &shmem_ops;
5101 sb->s_time_gran = 1;
5102 #ifdef CONFIG_TMPFS_XATTR
5103 sb->s_xattr = shmem_xattr_handlers;
5104 #endif
5105 #ifdef CONFIG_TMPFS_POSIX_ACL
5106 sb->s_flags |= SB_POSIXACL;
5107 #endif
5108 uuid_t uuid;
5109 uuid_gen(&uuid);
5110 super_set_uuid(sb, uuid.b, sizeof(uuid));
5111
5112 #ifdef CONFIG_TMPFS_QUOTA
5113 if (ctx->seen & SHMEM_SEEN_QUOTA) {
5114 sb->dq_op = &shmem_quota_operations;
5115 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5116 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
5117
5118 /* Copy the default limits from ctx into sbinfo */
5119 memcpy(&sbinfo->qlimits, &ctx->qlimits,
5120 sizeof(struct shmem_quota_limits));
5121
5122 if (shmem_enable_quotas(sb, ctx->quota_types))
5123 goto failed;
5124 }
5125 #endif /* CONFIG_TMPFS_QUOTA */
5126
5127 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
5128 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
5129 if (IS_ERR(inode)) {
5130 error = PTR_ERR(inode);
5131 goto failed;
5132 }
5133 inode->i_uid = sbinfo->uid;
5134 inode->i_gid = sbinfo->gid;
5135 sb->s_root = d_make_root(inode);
5136 if (!sb->s_root)
5137 goto failed;
5138 return 0;
5139
5140 failed:
5141 shmem_put_super(sb);
5142 return error;
5143 }
5144
shmem_get_tree(struct fs_context * fc)5145 static int shmem_get_tree(struct fs_context *fc)
5146 {
5147 return get_tree_nodev(fc, shmem_fill_super);
5148 }
5149
shmem_free_fc(struct fs_context * fc)5150 static void shmem_free_fc(struct fs_context *fc)
5151 {
5152 struct shmem_options *ctx = fc->fs_private;
5153
5154 if (ctx) {
5155 mpol_put(ctx->mpol);
5156 kfree(ctx);
5157 }
5158 }
5159
5160 static const struct fs_context_operations shmem_fs_context_ops = {
5161 .free = shmem_free_fc,
5162 .get_tree = shmem_get_tree,
5163 #ifdef CONFIG_TMPFS
5164 .parse_monolithic = shmem_parse_monolithic,
5165 .parse_param = shmem_parse_one,
5166 .reconfigure = shmem_reconfigure,
5167 #endif
5168 };
5169
5170 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
5171
shmem_alloc_inode(struct super_block * sb)5172 static struct inode *shmem_alloc_inode(struct super_block *sb)
5173 {
5174 struct shmem_inode_info *info;
5175 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
5176 if (!info)
5177 return NULL;
5178 return &info->vfs_inode;
5179 }
5180
shmem_free_in_core_inode(struct inode * inode)5181 static void shmem_free_in_core_inode(struct inode *inode)
5182 {
5183 if (S_ISLNK(inode->i_mode))
5184 kfree(inode->i_link);
5185 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
5186 }
5187
shmem_destroy_inode(struct inode * inode)5188 static void shmem_destroy_inode(struct inode *inode)
5189 {
5190 if (S_ISREG(inode->i_mode))
5191 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5192 if (S_ISDIR(inode->i_mode))
5193 simple_offset_destroy(shmem_get_offset_ctx(inode));
5194 }
5195
shmem_init_inode(void * foo)5196 static void shmem_init_inode(void *foo)
5197 {
5198 struct shmem_inode_info *info = foo;
5199 inode_init_once(&info->vfs_inode);
5200 }
5201
shmem_init_inodecache(void)5202 static void __init shmem_init_inodecache(void)
5203 {
5204 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5205 sizeof(struct shmem_inode_info),
5206 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5207 }
5208
shmem_destroy_inodecache(void)5209 static void __init shmem_destroy_inodecache(void)
5210 {
5211 kmem_cache_destroy(shmem_inode_cachep);
5212 }
5213
5214 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_folio(struct address_space * mapping,struct folio * folio)5215 static int shmem_error_remove_folio(struct address_space *mapping,
5216 struct folio *folio)
5217 {
5218 return 0;
5219 }
5220
5221 static const struct address_space_operations shmem_aops = {
5222 .dirty_folio = noop_dirty_folio,
5223 #ifdef CONFIG_TMPFS
5224 .write_begin = shmem_write_begin,
5225 .write_end = shmem_write_end,
5226 #endif
5227 #ifdef CONFIG_MIGRATION
5228 .migrate_folio = migrate_folio,
5229 #endif
5230 .error_remove_folio = shmem_error_remove_folio,
5231 };
5232
5233 static const struct file_operations shmem_file_operations = {
5234 .mmap_prepare = shmem_mmap_prepare,
5235 .open = shmem_file_open,
5236 .get_unmapped_area = shmem_get_unmapped_area,
5237 #ifdef CONFIG_TMPFS
5238 .llseek = shmem_file_llseek,
5239 .read_iter = shmem_file_read_iter,
5240 .write_iter = shmem_file_write_iter,
5241 .fsync = noop_fsync,
5242 .splice_read = shmem_file_splice_read,
5243 .splice_write = iter_file_splice_write,
5244 .fallocate = shmem_fallocate,
5245 #endif
5246 };
5247
5248 static const struct inode_operations shmem_inode_operations = {
5249 .getattr = shmem_getattr,
5250 .setattr = shmem_setattr,
5251 #ifdef CONFIG_TMPFS_XATTR
5252 .listxattr = shmem_listxattr,
5253 .set_acl = simple_set_acl,
5254 .fileattr_get = shmem_fileattr_get,
5255 .fileattr_set = shmem_fileattr_set,
5256 #endif
5257 };
5258
5259 static const struct inode_operations shmem_dir_inode_operations = {
5260 #ifdef CONFIG_TMPFS
5261 .getattr = shmem_getattr,
5262 .create = shmem_create,
5263 .lookup = simple_lookup,
5264 .link = shmem_link,
5265 .unlink = shmem_unlink,
5266 .symlink = shmem_symlink,
5267 .mkdir = shmem_mkdir,
5268 .rmdir = shmem_rmdir,
5269 .mknod = shmem_mknod,
5270 .rename = shmem_rename2,
5271 .tmpfile = shmem_tmpfile,
5272 .get_offset_ctx = shmem_get_offset_ctx,
5273 #endif
5274 #ifdef CONFIG_TMPFS_XATTR
5275 .listxattr = shmem_listxattr,
5276 .fileattr_get = shmem_fileattr_get,
5277 .fileattr_set = shmem_fileattr_set,
5278 #endif
5279 #ifdef CONFIG_TMPFS_POSIX_ACL
5280 .setattr = shmem_setattr,
5281 .set_acl = simple_set_acl,
5282 #endif
5283 };
5284
5285 static const struct inode_operations shmem_special_inode_operations = {
5286 .getattr = shmem_getattr,
5287 #ifdef CONFIG_TMPFS_XATTR
5288 .listxattr = shmem_listxattr,
5289 #endif
5290 #ifdef CONFIG_TMPFS_POSIX_ACL
5291 .setattr = shmem_setattr,
5292 .set_acl = simple_set_acl,
5293 #endif
5294 };
5295
5296 static const struct super_operations shmem_ops = {
5297 .alloc_inode = shmem_alloc_inode,
5298 .free_inode = shmem_free_in_core_inode,
5299 .destroy_inode = shmem_destroy_inode,
5300 #ifdef CONFIG_TMPFS
5301 .statfs = shmem_statfs,
5302 .show_options = shmem_show_options,
5303 #endif
5304 #ifdef CONFIG_TMPFS_QUOTA
5305 .get_dquots = shmem_get_dquots,
5306 #endif
5307 .evict_inode = shmem_evict_inode,
5308 .drop_inode = inode_just_drop,
5309 .put_super = shmem_put_super,
5310 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5311 .nr_cached_objects = shmem_unused_huge_count,
5312 .free_cached_objects = shmem_unused_huge_scan,
5313 #endif
5314 };
5315
5316 static const struct vm_operations_struct shmem_vm_ops = {
5317 .fault = shmem_fault,
5318 .map_pages = filemap_map_pages,
5319 #ifdef CONFIG_NUMA
5320 .set_policy = shmem_set_policy,
5321 .get_policy = shmem_get_policy,
5322 #endif
5323 };
5324
5325 static const struct vm_operations_struct shmem_anon_vm_ops = {
5326 .fault = shmem_fault,
5327 .map_pages = filemap_map_pages,
5328 #ifdef CONFIG_NUMA
5329 .set_policy = shmem_set_policy,
5330 .get_policy = shmem_get_policy,
5331 #endif
5332 };
5333
shmem_init_fs_context(struct fs_context * fc)5334 int shmem_init_fs_context(struct fs_context *fc)
5335 {
5336 struct shmem_options *ctx;
5337
5338 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5339 if (!ctx)
5340 return -ENOMEM;
5341
5342 ctx->mode = 0777 | S_ISVTX;
5343 ctx->uid = current_fsuid();
5344 ctx->gid = current_fsgid();
5345
5346 #if IS_ENABLED(CONFIG_UNICODE)
5347 ctx->encoding = NULL;
5348 #endif
5349
5350 fc->fs_private = ctx;
5351 fc->ops = &shmem_fs_context_ops;
5352 #ifdef CONFIG_TMPFS
5353 fc->sb_flags |= SB_I_VERSION;
5354 #endif
5355 return 0;
5356 }
5357
5358 static struct file_system_type shmem_fs_type = {
5359 .owner = THIS_MODULE,
5360 .name = "tmpfs",
5361 .init_fs_context = shmem_init_fs_context,
5362 #ifdef CONFIG_TMPFS
5363 .parameters = shmem_fs_parameters,
5364 #endif
5365 .kill_sb = kill_anon_super,
5366 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5367 };
5368
5369 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5370
5371 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \
5372 { \
5373 .attr = { .name = __stringify(_name), .mode = _mode }, \
5374 .show = _show, \
5375 .store = _store, \
5376 }
5377
5378 #define TMPFS_ATTR_W(_name, _store) \
5379 static struct kobj_attribute tmpfs_attr_##_name = \
5380 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5381
5382 #define TMPFS_ATTR_RW(_name, _show, _store) \
5383 static struct kobj_attribute tmpfs_attr_##_name = \
5384 __INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5385
5386 #define TMPFS_ATTR_RO(_name, _show) \
5387 static struct kobj_attribute tmpfs_attr_##_name = \
5388 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5389
5390 #if IS_ENABLED(CONFIG_UNICODE)
casefold_show(struct kobject * kobj,struct kobj_attribute * a,char * buf)5391 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5392 char *buf)
5393 {
5394 return sysfs_emit(buf, "supported\n");
5395 }
5396 TMPFS_ATTR_RO(casefold, casefold_show);
5397 #endif
5398
5399 static struct attribute *tmpfs_attributes[] = {
5400 #if IS_ENABLED(CONFIG_UNICODE)
5401 &tmpfs_attr_casefold.attr,
5402 #endif
5403 NULL
5404 };
5405
5406 static const struct attribute_group tmpfs_attribute_group = {
5407 .attrs = tmpfs_attributes,
5408 .name = "features"
5409 };
5410
5411 static struct kobject *tmpfs_kobj;
5412
tmpfs_sysfs_init(void)5413 static int __init tmpfs_sysfs_init(void)
5414 {
5415 int ret;
5416
5417 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5418 if (!tmpfs_kobj)
5419 return -ENOMEM;
5420
5421 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5422 if (ret)
5423 kobject_put(tmpfs_kobj);
5424
5425 return ret;
5426 }
5427 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5428
shmem_init(void)5429 void __init shmem_init(void)
5430 {
5431 int error;
5432
5433 shmem_init_inodecache();
5434
5435 #ifdef CONFIG_TMPFS_QUOTA
5436 register_quota_format(&shmem_quota_format);
5437 #endif
5438
5439 error = register_filesystem(&shmem_fs_type);
5440 if (error) {
5441 pr_err("Could not register tmpfs\n");
5442 goto out2;
5443 }
5444
5445 shm_mnt = kern_mount(&shmem_fs_type);
5446 if (IS_ERR(shm_mnt)) {
5447 error = PTR_ERR(shm_mnt);
5448 pr_err("Could not kern_mount tmpfs\n");
5449 goto out1;
5450 }
5451
5452 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5453 error = tmpfs_sysfs_init();
5454 if (error) {
5455 pr_err("Could not init tmpfs sysfs\n");
5456 goto out1;
5457 }
5458 #endif
5459
5460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5461 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5462 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5463 else
5464 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5465
5466 /*
5467 * Default to setting PMD-sized THP to inherit the global setting and
5468 * disable all other multi-size THPs.
5469 */
5470 if (!shmem_orders_configured)
5471 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5472 #endif
5473 return;
5474
5475 out1:
5476 unregister_filesystem(&shmem_fs_type);
5477 out2:
5478 #ifdef CONFIG_TMPFS_QUOTA
5479 unregister_quota_format(&shmem_quota_format);
5480 #endif
5481 shmem_destroy_inodecache();
5482 shm_mnt = ERR_PTR(error);
5483 }
5484
5485 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5486 static ssize_t shmem_enabled_show(struct kobject *kobj,
5487 struct kobj_attribute *attr, char *buf)
5488 {
5489 static const int values[] = {
5490 SHMEM_HUGE_ALWAYS,
5491 SHMEM_HUGE_WITHIN_SIZE,
5492 SHMEM_HUGE_ADVISE,
5493 SHMEM_HUGE_NEVER,
5494 SHMEM_HUGE_DENY,
5495 SHMEM_HUGE_FORCE,
5496 };
5497 int len = 0;
5498 int i;
5499
5500 for (i = 0; i < ARRAY_SIZE(values); i++) {
5501 len += sysfs_emit_at(buf, len,
5502 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5503 i ? " " : "", shmem_format_huge(values[i]));
5504 }
5505 len += sysfs_emit_at(buf, len, "\n");
5506
5507 return len;
5508 }
5509
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5510 static ssize_t shmem_enabled_store(struct kobject *kobj,
5511 struct kobj_attribute *attr, const char *buf, size_t count)
5512 {
5513 char tmp[16];
5514 int huge, err;
5515
5516 if (count + 1 > sizeof(tmp))
5517 return -EINVAL;
5518 memcpy(tmp, buf, count);
5519 tmp[count] = '\0';
5520 if (count && tmp[count - 1] == '\n')
5521 tmp[count - 1] = '\0';
5522
5523 huge = shmem_parse_huge(tmp);
5524 if (huge == -EINVAL)
5525 return huge;
5526
5527 shmem_huge = huge;
5528 if (shmem_huge > SHMEM_HUGE_DENY)
5529 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5530
5531 err = start_stop_khugepaged();
5532 return err ? err : count;
5533 }
5534
5535 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5536 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5537
thpsize_shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5538 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5539 struct kobj_attribute *attr, char *buf)
5540 {
5541 int order = to_thpsize(kobj)->order;
5542 const char *output;
5543
5544 if (test_bit(order, &huge_shmem_orders_always))
5545 output = "[always] inherit within_size advise never";
5546 else if (test_bit(order, &huge_shmem_orders_inherit))
5547 output = "always [inherit] within_size advise never";
5548 else if (test_bit(order, &huge_shmem_orders_within_size))
5549 output = "always inherit [within_size] advise never";
5550 else if (test_bit(order, &huge_shmem_orders_madvise))
5551 output = "always inherit within_size [advise] never";
5552 else
5553 output = "always inherit within_size advise [never]";
5554
5555 return sysfs_emit(buf, "%s\n", output);
5556 }
5557
thpsize_shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5558 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5559 struct kobj_attribute *attr,
5560 const char *buf, size_t count)
5561 {
5562 int order = to_thpsize(kobj)->order;
5563 ssize_t ret = count;
5564
5565 if (sysfs_streq(buf, "always")) {
5566 spin_lock(&huge_shmem_orders_lock);
5567 clear_bit(order, &huge_shmem_orders_inherit);
5568 clear_bit(order, &huge_shmem_orders_madvise);
5569 clear_bit(order, &huge_shmem_orders_within_size);
5570 set_bit(order, &huge_shmem_orders_always);
5571 spin_unlock(&huge_shmem_orders_lock);
5572 } else if (sysfs_streq(buf, "inherit")) {
5573 /* Do not override huge allocation policy with non-PMD sized mTHP */
5574 if (shmem_huge == SHMEM_HUGE_FORCE &&
5575 order != HPAGE_PMD_ORDER)
5576 return -EINVAL;
5577
5578 spin_lock(&huge_shmem_orders_lock);
5579 clear_bit(order, &huge_shmem_orders_always);
5580 clear_bit(order, &huge_shmem_orders_madvise);
5581 clear_bit(order, &huge_shmem_orders_within_size);
5582 set_bit(order, &huge_shmem_orders_inherit);
5583 spin_unlock(&huge_shmem_orders_lock);
5584 } else if (sysfs_streq(buf, "within_size")) {
5585 spin_lock(&huge_shmem_orders_lock);
5586 clear_bit(order, &huge_shmem_orders_always);
5587 clear_bit(order, &huge_shmem_orders_inherit);
5588 clear_bit(order, &huge_shmem_orders_madvise);
5589 set_bit(order, &huge_shmem_orders_within_size);
5590 spin_unlock(&huge_shmem_orders_lock);
5591 } else if (sysfs_streq(buf, "advise")) {
5592 spin_lock(&huge_shmem_orders_lock);
5593 clear_bit(order, &huge_shmem_orders_always);
5594 clear_bit(order, &huge_shmem_orders_inherit);
5595 clear_bit(order, &huge_shmem_orders_within_size);
5596 set_bit(order, &huge_shmem_orders_madvise);
5597 spin_unlock(&huge_shmem_orders_lock);
5598 } else if (sysfs_streq(buf, "never")) {
5599 spin_lock(&huge_shmem_orders_lock);
5600 clear_bit(order, &huge_shmem_orders_always);
5601 clear_bit(order, &huge_shmem_orders_inherit);
5602 clear_bit(order, &huge_shmem_orders_within_size);
5603 clear_bit(order, &huge_shmem_orders_madvise);
5604 spin_unlock(&huge_shmem_orders_lock);
5605 } else {
5606 ret = -EINVAL;
5607 }
5608
5609 if (ret > 0) {
5610 int err = start_stop_khugepaged();
5611
5612 if (err)
5613 ret = err;
5614 }
5615 return ret;
5616 }
5617
5618 struct kobj_attribute thpsize_shmem_enabled_attr =
5619 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5620 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5621
5622 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5623
setup_transparent_hugepage_shmem(char * str)5624 static int __init setup_transparent_hugepage_shmem(char *str)
5625 {
5626 int huge;
5627
5628 huge = shmem_parse_huge(str);
5629 if (huge == -EINVAL) {
5630 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5631 return huge;
5632 }
5633
5634 shmem_huge = huge;
5635 return 1;
5636 }
5637 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5638
setup_transparent_hugepage_tmpfs(char * str)5639 static int __init setup_transparent_hugepage_tmpfs(char *str)
5640 {
5641 int huge;
5642
5643 huge = shmem_parse_huge(str);
5644 if (huge < 0) {
5645 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
5646 return huge;
5647 }
5648
5649 tmpfs_huge = huge;
5650 return 1;
5651 }
5652 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
5653
5654 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_shmem(char * str)5655 static int __init setup_thp_shmem(char *str)
5656 {
5657 char *token, *range, *policy, *subtoken;
5658 unsigned long always, inherit, madvise, within_size;
5659 char *start_size, *end_size;
5660 int start, end, nr;
5661 char *p;
5662
5663 if (!str || strlen(str) + 1 > PAGE_SIZE)
5664 goto err;
5665 strscpy(str_dup, str);
5666
5667 always = huge_shmem_orders_always;
5668 inherit = huge_shmem_orders_inherit;
5669 madvise = huge_shmem_orders_madvise;
5670 within_size = huge_shmem_orders_within_size;
5671 p = str_dup;
5672 while ((token = strsep(&p, ";")) != NULL) {
5673 range = strsep(&token, ":");
5674 policy = token;
5675
5676 if (!policy)
5677 goto err;
5678
5679 while ((subtoken = strsep(&range, ",")) != NULL) {
5680 if (strchr(subtoken, '-')) {
5681 start_size = strsep(&subtoken, "-");
5682 end_size = subtoken;
5683
5684 start = get_order_from_str(start_size,
5685 THP_ORDERS_ALL_FILE_DEFAULT);
5686 end = get_order_from_str(end_size,
5687 THP_ORDERS_ALL_FILE_DEFAULT);
5688 } else {
5689 start_size = end_size = subtoken;
5690 start = end = get_order_from_str(subtoken,
5691 THP_ORDERS_ALL_FILE_DEFAULT);
5692 }
5693
5694 if (start < 0) {
5695 pr_err("invalid size %s in thp_shmem boot parameter\n",
5696 start_size);
5697 goto err;
5698 }
5699
5700 if (end < 0) {
5701 pr_err("invalid size %s in thp_shmem boot parameter\n",
5702 end_size);
5703 goto err;
5704 }
5705
5706 if (start > end)
5707 goto err;
5708
5709 nr = end - start + 1;
5710 if (!strcmp(policy, "always")) {
5711 bitmap_set(&always, start, nr);
5712 bitmap_clear(&inherit, start, nr);
5713 bitmap_clear(&madvise, start, nr);
5714 bitmap_clear(&within_size, start, nr);
5715 } else if (!strcmp(policy, "advise")) {
5716 bitmap_set(&madvise, start, nr);
5717 bitmap_clear(&inherit, start, nr);
5718 bitmap_clear(&always, start, nr);
5719 bitmap_clear(&within_size, start, nr);
5720 } else if (!strcmp(policy, "inherit")) {
5721 bitmap_set(&inherit, start, nr);
5722 bitmap_clear(&madvise, start, nr);
5723 bitmap_clear(&always, start, nr);
5724 bitmap_clear(&within_size, start, nr);
5725 } else if (!strcmp(policy, "within_size")) {
5726 bitmap_set(&within_size, start, nr);
5727 bitmap_clear(&inherit, start, nr);
5728 bitmap_clear(&madvise, start, nr);
5729 bitmap_clear(&always, start, nr);
5730 } else if (!strcmp(policy, "never")) {
5731 bitmap_clear(&inherit, start, nr);
5732 bitmap_clear(&madvise, start, nr);
5733 bitmap_clear(&always, start, nr);
5734 bitmap_clear(&within_size, start, nr);
5735 } else {
5736 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5737 goto err;
5738 }
5739 }
5740 }
5741
5742 huge_shmem_orders_always = always;
5743 huge_shmem_orders_madvise = madvise;
5744 huge_shmem_orders_inherit = inherit;
5745 huge_shmem_orders_within_size = within_size;
5746 shmem_orders_configured = true;
5747 return 1;
5748
5749 err:
5750 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5751 return 0;
5752 }
5753 __setup("thp_shmem=", setup_thp_shmem);
5754
5755 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5756
5757 #else /* !CONFIG_SHMEM */
5758
5759 /*
5760 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5761 *
5762 * This is intended for small system where the benefits of the full
5763 * shmem code (swap-backed and resource-limited) are outweighed by
5764 * their complexity. On systems without swap this code should be
5765 * effectively equivalent, but much lighter weight.
5766 */
5767
5768 static struct file_system_type shmem_fs_type = {
5769 .name = "tmpfs",
5770 .init_fs_context = ramfs_init_fs_context,
5771 .parameters = ramfs_fs_parameters,
5772 .kill_sb = ramfs_kill_sb,
5773 .fs_flags = FS_USERNS_MOUNT,
5774 };
5775
shmem_init(void)5776 void __init shmem_init(void)
5777 {
5778 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5779
5780 shm_mnt = kern_mount(&shmem_fs_type);
5781 BUG_ON(IS_ERR(shm_mnt));
5782 }
5783
shmem_unuse(unsigned int type)5784 int shmem_unuse(unsigned int type)
5785 {
5786 return 0;
5787 }
5788
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)5789 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5790 {
5791 return 0;
5792 }
5793
shmem_unlock_mapping(struct address_space * mapping)5794 void shmem_unlock_mapping(struct address_space *mapping)
5795 {
5796 }
5797
5798 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)5799 unsigned long shmem_get_unmapped_area(struct file *file,
5800 unsigned long addr, unsigned long len,
5801 unsigned long pgoff, unsigned long flags)
5802 {
5803 return mm_get_unmapped_area(file, addr, len, pgoff, flags);
5804 }
5805 #endif
5806
shmem_truncate_range(struct inode * inode,loff_t lstart,uoff_t lend)5807 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend)
5808 {
5809 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5810 }
5811 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5812
5813 #define shmem_vm_ops generic_file_vm_ops
5814 #define shmem_anon_vm_ops generic_file_vm_ops
5815 #define shmem_file_operations ramfs_file_operations
5816
shmem_acct_size(unsigned long flags,loff_t size)5817 static inline int shmem_acct_size(unsigned long flags, loff_t size)
5818 {
5819 return 0;
5820 }
5821
shmem_unacct_size(unsigned long flags,loff_t size)5822 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
5823 {
5824 }
5825
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)5826 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5827 struct super_block *sb, struct inode *dir,
5828 umode_t mode, dev_t dev, unsigned long flags)
5829 {
5830 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5831 return inode ? inode : ERR_PTR(-ENOSPC);
5832 }
5833
5834 #endif /* CONFIG_SHMEM */
5835
5836 /* common code */
5837
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long vm_flags,unsigned int i_flags)5838 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5839 loff_t size, unsigned long vm_flags,
5840 unsigned int i_flags)
5841 {
5842 unsigned long flags = (vm_flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0;
5843 struct inode *inode;
5844 struct file *res;
5845
5846 if (IS_ERR(mnt))
5847 return ERR_CAST(mnt);
5848
5849 if (size < 0 || size > MAX_LFS_FILESIZE)
5850 return ERR_PTR(-EINVAL);
5851
5852 if (is_idmapped_mnt(mnt))
5853 return ERR_PTR(-EINVAL);
5854
5855 if (shmem_acct_size(flags, size))
5856 return ERR_PTR(-ENOMEM);
5857
5858 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5859 S_IFREG | S_IRWXUGO, 0, vm_flags);
5860 if (IS_ERR(inode)) {
5861 shmem_unacct_size(flags, size);
5862 return ERR_CAST(inode);
5863 }
5864 inode->i_flags |= i_flags;
5865 inode->i_size = size;
5866 clear_nlink(inode); /* It is unlinked */
5867 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5868 if (!IS_ERR(res))
5869 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5870 &shmem_file_operations);
5871 if (IS_ERR(res))
5872 iput(inode);
5873 return res;
5874 }
5875
5876 /**
5877 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5878 * kernel internal. There will be NO LSM permission checks against the
5879 * underlying inode. So users of this interface must do LSM checks at a
5880 * higher layer. The users are the big_key and shm implementations. LSM
5881 * checks are provided at the key or shm level rather than the inode.
5882 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5883 * @size: size to be set for the file
5884 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5885 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)5886 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5887 {
5888 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5889 }
5890 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5891
5892 /**
5893 * shmem_file_setup - get an unlinked file living in tmpfs
5894 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5895 * @size: size to be set for the file
5896 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5897 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)5898 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5899 {
5900 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5901 }
5902 EXPORT_SYMBOL_GPL(shmem_file_setup);
5903
5904 /**
5905 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5906 * @mnt: the tmpfs mount where the file will be created
5907 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5908 * @size: size to be set for the file
5909 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5910 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)5911 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5912 loff_t size, unsigned long flags)
5913 {
5914 return __shmem_file_setup(mnt, name, size, flags, 0);
5915 }
5916 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5917
__shmem_zero_setup(unsigned long start,unsigned long end,vm_flags_t vm_flags)5918 static struct file *__shmem_zero_setup(unsigned long start, unsigned long end, vm_flags_t vm_flags)
5919 {
5920 loff_t size = end - start;
5921
5922 /*
5923 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5924 * between XFS directory reading and selinux: since this file is only
5925 * accessible to the user through its mapping, use S_PRIVATE flag to
5926 * bypass file security, in the same way as shmem_kernel_file_setup().
5927 */
5928 return shmem_kernel_file_setup("dev/zero", size, vm_flags);
5929 }
5930
5931 /**
5932 * shmem_zero_setup - setup a shared anonymous mapping
5933 * @vma: the vma to be mmapped is prepared by do_mmap
5934 * Returns: 0 on success, or error
5935 */
shmem_zero_setup(struct vm_area_struct * vma)5936 int shmem_zero_setup(struct vm_area_struct *vma)
5937 {
5938 struct file *file = __shmem_zero_setup(vma->vm_start, vma->vm_end, vma->vm_flags);
5939
5940 if (IS_ERR(file))
5941 return PTR_ERR(file);
5942
5943 if (vma->vm_file)
5944 fput(vma->vm_file);
5945 vma->vm_file = file;
5946 vma->vm_ops = &shmem_anon_vm_ops;
5947
5948 return 0;
5949 }
5950
5951 /**
5952 * shmem_zero_setup_desc - same as shmem_zero_setup, but determined by VMA
5953 * descriptor for convenience.
5954 * @desc: Describes VMA
5955 * Returns: 0 on success, or error
5956 */
shmem_zero_setup_desc(struct vm_area_desc * desc)5957 int shmem_zero_setup_desc(struct vm_area_desc *desc)
5958 {
5959 struct file *file = __shmem_zero_setup(desc->start, desc->end, desc->vm_flags);
5960
5961 if (IS_ERR(file))
5962 return PTR_ERR(file);
5963
5964 desc->vm_file = file;
5965 desc->vm_ops = &shmem_anon_vm_ops;
5966
5967 return 0;
5968 }
5969
5970 /**
5971 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5972 * @mapping: the folio's address_space
5973 * @index: the folio index
5974 * @gfp: the page allocator flags to use if allocating
5975 *
5976 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5977 * with any new page allocations done using the specified allocation flags.
5978 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5979 * suit tmpfs, since it may have pages in swapcache, and needs to find those
5980 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5981 *
5982 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5983 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5984 */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5985 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5986 pgoff_t index, gfp_t gfp)
5987 {
5988 #ifdef CONFIG_SHMEM
5989 struct inode *inode = mapping->host;
5990 struct folio *folio;
5991 int error;
5992
5993 error = shmem_get_folio_gfp(inode, index, i_size_read(inode),
5994 &folio, SGP_CACHE, gfp, NULL, NULL);
5995 if (error)
5996 return ERR_PTR(error);
5997
5998 folio_unlock(folio);
5999 return folio;
6000 #else
6001 /*
6002 * The tiny !SHMEM case uses ramfs without swap
6003 */
6004 return mapping_read_folio_gfp(mapping, index, gfp);
6005 #endif
6006 }
6007 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
6008
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)6009 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
6010 pgoff_t index, gfp_t gfp)
6011 {
6012 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
6013 struct page *page;
6014
6015 if (IS_ERR(folio))
6016 return &folio->page;
6017
6018 page = folio_file_page(folio, index);
6019 if (PageHWPoison(page)) {
6020 folio_put(folio);
6021 return ERR_PTR(-EIO);
6022 }
6023
6024 return page;
6025 }
6026 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
6027