1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Resizable virtual memory filesystem for Linux. 4 * 5 * Copyright (C) 2000 Linus Torvalds. 6 * 2000 Transmeta Corp. 7 * 2000-2001 Christoph Rohland 8 * 2000-2001 SAP AG 9 * 2002 Red Hat Inc. 10 * Copyright (C) 2002-2011 Hugh Dickins. 11 * Copyright (C) 2011 Google Inc. 12 * Copyright (C) 2002-2005 VERITAS Software Corporation. 13 * Copyright (C) 2004 Andi Kleen, SuSE Labs 14 * 15 * Extended attribute support for tmpfs: 16 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 17 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 18 * 19 * tiny-shmem: 20 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 21 */ 22 23 #include <linux/fs.h> 24 #include <linux/init.h> 25 #include <linux/vfs.h> 26 #include <linux/mount.h> 27 #include <linux/ramfs.h> 28 #include <linux/pagemap.h> 29 #include <linux/file.h> 30 #include <linux/fileattr.h> 31 #include <linux/filelock.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include <linux/unicode.h> 44 #include "swap.h" 45 46 static struct vfsmount *shm_mnt __ro_after_init; 47 48 #ifdef CONFIG_SHMEM 49 /* 50 * This virtual memory filesystem is heavily based on the ramfs. It 51 * extends ramfs by the ability to use swap and honor resource limits 52 * which makes it a completely usable filesystem. 53 */ 54 55 #include <linux/xattr.h> 56 #include <linux/exportfs.h> 57 #include <linux/posix_acl.h> 58 #include <linux/posix_acl_xattr.h> 59 #include <linux/mman.h> 60 #include <linux/string.h> 61 #include <linux/slab.h> 62 #include <linux/backing-dev.h> 63 #include <linux/writeback.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/leafops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 #include <linux/quotaops.h> 83 #include <linux/rcupdate_wait.h> 84 85 #include <linux/uaccess.h> 86 87 #include "internal.h" 88 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #if IS_ENABLED(CONFIG_UNICODE) 127 struct unicode_map *encoding; 128 bool strict_encoding; 129 #endif 130 #define SHMEM_SEEN_BLOCKS 1 131 #define SHMEM_SEEN_INODES 2 132 #define SHMEM_SEEN_HUGE 4 133 #define SHMEM_SEEN_INUMS 8 134 #define SHMEM_SEEN_QUOTA 16 135 }; 136 137 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 138 static unsigned long huge_shmem_orders_always __read_mostly; 139 static unsigned long huge_shmem_orders_madvise __read_mostly; 140 static unsigned long huge_shmem_orders_inherit __read_mostly; 141 static unsigned long huge_shmem_orders_within_size __read_mostly; 142 static bool shmem_orders_configured __initdata; 143 #endif 144 145 #ifdef CONFIG_TMPFS 146 static unsigned long shmem_default_max_blocks(void) 147 { 148 return totalram_pages() / 2; 149 } 150 151 static unsigned long shmem_default_max_inodes(void) 152 { 153 unsigned long nr_pages = totalram_pages(); 154 155 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 156 ULONG_MAX / BOGO_INODE_SIZE); 157 } 158 #endif 159 160 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 161 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 162 struct vm_area_struct *vma, vm_fault_t *fault_type); 163 164 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 165 { 166 return sb->s_fs_info; 167 } 168 169 /* 170 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 171 * for shared memory and for shared anonymous (/dev/zero) mappings 172 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 173 * consistent with the pre-accounting of private mappings ... 174 */ 175 static inline int shmem_acct_size(unsigned long flags, loff_t size) 176 { 177 return (flags & SHMEM_F_NORESERVE) ? 178 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 179 } 180 181 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 182 { 183 if (!(flags & SHMEM_F_NORESERVE)) 184 vm_unacct_memory(VM_ACCT(size)); 185 } 186 187 static inline int shmem_reacct_size(unsigned long flags, 188 loff_t oldsize, loff_t newsize) 189 { 190 if (!(flags & SHMEM_F_NORESERVE)) { 191 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 192 return security_vm_enough_memory_mm(current->mm, 193 VM_ACCT(newsize) - VM_ACCT(oldsize)); 194 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 195 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 196 } 197 return 0; 198 } 199 200 /* 201 * ... whereas tmpfs objects are accounted incrementally as 202 * pages are allocated, in order to allow large sparse files. 203 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 204 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 205 */ 206 static inline int shmem_acct_blocks(unsigned long flags, long pages) 207 { 208 if (!(flags & SHMEM_F_NORESERVE)) 209 return 0; 210 211 return security_vm_enough_memory_mm(current->mm, 212 pages * VM_ACCT(PAGE_SIZE)); 213 } 214 215 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 216 { 217 if (flags & SHMEM_F_NORESERVE) 218 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 219 } 220 221 int shmem_inode_acct_blocks(struct inode *inode, long pages) 222 { 223 struct shmem_inode_info *info = SHMEM_I(inode); 224 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 225 int err = -ENOSPC; 226 227 if (shmem_acct_blocks(info->flags, pages)) 228 return err; 229 230 might_sleep(); /* when quotas */ 231 if (sbinfo->max_blocks) { 232 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 233 sbinfo->max_blocks, pages)) 234 goto unacct; 235 236 err = dquot_alloc_block_nodirty(inode, pages); 237 if (err) { 238 percpu_counter_sub(&sbinfo->used_blocks, pages); 239 goto unacct; 240 } 241 } else { 242 err = dquot_alloc_block_nodirty(inode, pages); 243 if (err) 244 goto unacct; 245 } 246 247 return 0; 248 249 unacct: 250 shmem_unacct_blocks(info->flags, pages); 251 return err; 252 } 253 254 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 255 { 256 struct shmem_inode_info *info = SHMEM_I(inode); 257 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 258 259 might_sleep(); /* when quotas */ 260 dquot_free_block_nodirty(inode, pages); 261 262 if (sbinfo->max_blocks) 263 percpu_counter_sub(&sbinfo->used_blocks, pages); 264 shmem_unacct_blocks(info->flags, pages); 265 } 266 267 static const struct super_operations shmem_ops; 268 static const struct address_space_operations shmem_aops; 269 static const struct file_operations shmem_file_operations; 270 static const struct inode_operations shmem_inode_operations; 271 static const struct inode_operations shmem_dir_inode_operations; 272 static const struct inode_operations shmem_special_inode_operations; 273 static const struct vm_operations_struct shmem_vm_ops; 274 static const struct vm_operations_struct shmem_anon_vm_ops; 275 static struct file_system_type shmem_fs_type; 276 277 bool shmem_mapping(const struct address_space *mapping) 278 { 279 return mapping->a_ops == &shmem_aops; 280 } 281 EXPORT_SYMBOL_GPL(shmem_mapping); 282 283 bool vma_is_anon_shmem(const struct vm_area_struct *vma) 284 { 285 return vma->vm_ops == &shmem_anon_vm_ops; 286 } 287 288 bool vma_is_shmem(const struct vm_area_struct *vma) 289 { 290 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 291 } 292 293 static LIST_HEAD(shmem_swaplist); 294 static DEFINE_SPINLOCK(shmem_swaplist_lock); 295 296 #ifdef CONFIG_TMPFS_QUOTA 297 298 static int shmem_enable_quotas(struct super_block *sb, 299 unsigned short quota_types) 300 { 301 int type, err = 0; 302 303 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 304 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 305 if (!(quota_types & (1 << type))) 306 continue; 307 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 308 DQUOT_USAGE_ENABLED | 309 DQUOT_LIMITS_ENABLED); 310 if (err) 311 goto out_err; 312 } 313 return 0; 314 315 out_err: 316 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 317 type, err); 318 for (type--; type >= 0; type--) 319 dquot_quota_off(sb, type); 320 return err; 321 } 322 323 static void shmem_disable_quotas(struct super_block *sb) 324 { 325 int type; 326 327 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 328 dquot_quota_off(sb, type); 329 } 330 331 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 332 { 333 return SHMEM_I(inode)->i_dquot; 334 } 335 #endif /* CONFIG_TMPFS_QUOTA */ 336 337 /* 338 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 339 * produces a novel ino for the newly allocated inode. 340 * 341 * It may also be called when making a hard link to permit the space needed by 342 * each dentry. However, in that case, no new inode number is needed since that 343 * internally draws from another pool of inode numbers (currently global 344 * get_next_ino()). This case is indicated by passing NULL as inop. 345 */ 346 #define SHMEM_INO_BATCH 1024 347 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 348 { 349 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 350 ino_t ino; 351 352 if (!(sb->s_flags & SB_KERNMOUNT)) { 353 raw_spin_lock(&sbinfo->stat_lock); 354 if (sbinfo->max_inodes) { 355 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 356 raw_spin_unlock(&sbinfo->stat_lock); 357 return -ENOSPC; 358 } 359 sbinfo->free_ispace -= BOGO_INODE_SIZE; 360 } 361 if (inop) { 362 ino = sbinfo->next_ino++; 363 if (unlikely(is_zero_ino(ino))) 364 ino = sbinfo->next_ino++; 365 if (unlikely(!sbinfo->full_inums && 366 ino > UINT_MAX)) { 367 /* 368 * Emulate get_next_ino uint wraparound for 369 * compatibility 370 */ 371 if (IS_ENABLED(CONFIG_64BIT)) 372 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 373 __func__, MINOR(sb->s_dev)); 374 sbinfo->next_ino = 1; 375 ino = sbinfo->next_ino++; 376 } 377 *inop = ino; 378 } 379 raw_spin_unlock(&sbinfo->stat_lock); 380 } else if (inop) { 381 /* 382 * __shmem_file_setup, one of our callers, is lock-free: it 383 * doesn't hold stat_lock in shmem_reserve_inode since 384 * max_inodes is always 0, and is called from potentially 385 * unknown contexts. As such, use a per-cpu batched allocator 386 * which doesn't require the per-sb stat_lock unless we are at 387 * the batch boundary. 388 * 389 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 390 * shmem mounts are not exposed to userspace, so we don't need 391 * to worry about things like glibc compatibility. 392 */ 393 ino_t *next_ino; 394 395 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 396 ino = *next_ino; 397 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 398 raw_spin_lock(&sbinfo->stat_lock); 399 ino = sbinfo->next_ino; 400 sbinfo->next_ino += SHMEM_INO_BATCH; 401 raw_spin_unlock(&sbinfo->stat_lock); 402 if (unlikely(is_zero_ino(ino))) 403 ino++; 404 } 405 *inop = ino; 406 *next_ino = ++ino; 407 put_cpu(); 408 } 409 410 return 0; 411 } 412 413 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 414 { 415 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 416 if (sbinfo->max_inodes) { 417 raw_spin_lock(&sbinfo->stat_lock); 418 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 419 raw_spin_unlock(&sbinfo->stat_lock); 420 } 421 } 422 423 /** 424 * shmem_recalc_inode - recalculate the block usage of an inode 425 * @inode: inode to recalc 426 * @alloced: the change in number of pages allocated to inode 427 * @swapped: the change in number of pages swapped from inode 428 * 429 * We have to calculate the free blocks since the mm can drop 430 * undirtied hole pages behind our back. 431 * 432 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 433 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 434 * 435 * Return: true if swapped was incremented from 0, for shmem_writeout(). 436 */ 437 bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 438 { 439 struct shmem_inode_info *info = SHMEM_I(inode); 440 bool first_swapped = false; 441 long freed; 442 443 spin_lock(&info->lock); 444 info->alloced += alloced; 445 info->swapped += swapped; 446 freed = info->alloced - info->swapped - 447 READ_ONCE(inode->i_mapping->nrpages); 448 /* 449 * Special case: whereas normally shmem_recalc_inode() is called 450 * after i_mapping->nrpages has already been adjusted (up or down), 451 * shmem_writeout() has to raise swapped before nrpages is lowered - 452 * to stop a racing shmem_recalc_inode() from thinking that a page has 453 * been freed. Compensate here, to avoid the need for a followup call. 454 */ 455 if (swapped > 0) { 456 if (info->swapped == swapped) 457 first_swapped = true; 458 freed += swapped; 459 } 460 if (freed > 0) 461 info->alloced -= freed; 462 spin_unlock(&info->lock); 463 464 /* The quota case may block */ 465 if (freed > 0) 466 shmem_inode_unacct_blocks(inode, freed); 467 return first_swapped; 468 } 469 470 bool shmem_charge(struct inode *inode, long pages) 471 { 472 struct address_space *mapping = inode->i_mapping; 473 474 if (shmem_inode_acct_blocks(inode, pages)) 475 return false; 476 477 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 478 xa_lock_irq(&mapping->i_pages); 479 mapping->nrpages += pages; 480 xa_unlock_irq(&mapping->i_pages); 481 482 shmem_recalc_inode(inode, pages, 0); 483 return true; 484 } 485 486 void shmem_uncharge(struct inode *inode, long pages) 487 { 488 /* pages argument is currently unused: keep it to help debugging */ 489 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 490 491 shmem_recalc_inode(inode, 0, 0); 492 } 493 494 /* 495 * Replace item expected in xarray by a new item, while holding xa_lock. 496 */ 497 static int shmem_replace_entry(struct address_space *mapping, 498 pgoff_t index, void *expected, void *replacement) 499 { 500 XA_STATE(xas, &mapping->i_pages, index); 501 void *item; 502 503 VM_BUG_ON(!expected); 504 VM_BUG_ON(!replacement); 505 item = xas_load(&xas); 506 if (item != expected) 507 return -ENOENT; 508 xas_store(&xas, replacement); 509 return 0; 510 } 511 512 /* 513 * Sometimes, before we decide whether to proceed or to fail, we must check 514 * that an entry was not already brought back or split by a racing thread. 515 * 516 * Checking folio is not enough: by the time a swapcache folio is locked, it 517 * might be reused, and again be swapcache, using the same swap as before. 518 * Returns the swap entry's order if it still presents, else returns -1. 519 */ 520 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index, 521 swp_entry_t swap) 522 { 523 XA_STATE(xas, &mapping->i_pages, index); 524 int ret = -1; 525 void *entry; 526 527 rcu_read_lock(); 528 do { 529 entry = xas_load(&xas); 530 if (entry == swp_to_radix_entry(swap)) 531 ret = xas_get_order(&xas); 532 } while (xas_retry(&xas, entry)); 533 rcu_read_unlock(); 534 return ret; 535 } 536 537 /* 538 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 539 * 540 * SHMEM_HUGE_NEVER: 541 * disables huge pages for the mount; 542 * SHMEM_HUGE_ALWAYS: 543 * enables huge pages for the mount; 544 * SHMEM_HUGE_WITHIN_SIZE: 545 * only allocate huge pages if the page will be fully within i_size, 546 * also respect madvise() hints; 547 * SHMEM_HUGE_ADVISE: 548 * only allocate huge pages if requested with madvise(); 549 */ 550 551 #define SHMEM_HUGE_NEVER 0 552 #define SHMEM_HUGE_ALWAYS 1 553 #define SHMEM_HUGE_WITHIN_SIZE 2 554 #define SHMEM_HUGE_ADVISE 3 555 556 /* 557 * Special values. 558 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 559 * 560 * SHMEM_HUGE_DENY: 561 * disables huge on shm_mnt and all mounts, for emergency use; 562 * SHMEM_HUGE_FORCE: 563 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 564 * 565 */ 566 #define SHMEM_HUGE_DENY (-1) 567 #define SHMEM_HUGE_FORCE (-2) 568 569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 570 /* ifdef here to avoid bloating shmem.o when not necessary */ 571 572 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_NEVER) 573 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER 574 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ALWAYS) 575 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ALWAYS 576 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_WITHIN_SIZE) 577 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE 578 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ADVISE) 579 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ADVISE 580 #else 581 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER 582 #endif 583 584 static int shmem_huge __read_mostly = SHMEM_HUGE_DEFAULT; 585 586 #undef SHMEM_HUGE_DEFAULT 587 588 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_NEVER) 589 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER 590 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ALWAYS) 591 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ALWAYS 592 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_WITHIN_SIZE) 593 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE 594 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ADVISE) 595 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ADVISE 596 #else 597 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER 598 #endif 599 600 static int tmpfs_huge __read_mostly = TMPFS_HUGE_DEFAULT; 601 602 #undef TMPFS_HUGE_DEFAULT 603 604 static unsigned int shmem_get_orders_within_size(struct inode *inode, 605 unsigned long within_size_orders, pgoff_t index, 606 loff_t write_end) 607 { 608 pgoff_t aligned_index; 609 unsigned long order; 610 loff_t i_size; 611 612 order = highest_order(within_size_orders); 613 while (within_size_orders) { 614 aligned_index = round_up(index + 1, 1 << order); 615 i_size = max(write_end, i_size_read(inode)); 616 i_size = round_up(i_size, PAGE_SIZE); 617 if (i_size >> PAGE_SHIFT >= aligned_index) 618 return within_size_orders; 619 620 order = next_order(&within_size_orders, order); 621 } 622 623 return 0; 624 } 625 626 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 627 loff_t write_end, bool shmem_huge_force, 628 struct vm_area_struct *vma, 629 vm_flags_t vm_flags) 630 { 631 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ? 632 0 : BIT(HPAGE_PMD_ORDER); 633 unsigned long within_size_orders; 634 635 if (!S_ISREG(inode->i_mode)) 636 return 0; 637 if (shmem_huge == SHMEM_HUGE_DENY) 638 return 0; 639 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 640 return maybe_pmd_order; 641 642 /* 643 * The huge order allocation for anon shmem is controlled through 644 * the mTHP interface, so we still use PMD-sized huge order to 645 * check whether global control is enabled. 646 * 647 * For tmpfs with 'huge=always' or 'huge=within_size' mount option, 648 * we will always try PMD-sized order first. If that failed, it will 649 * fall back to small large folios. 650 */ 651 switch (SHMEM_SB(inode->i_sb)->huge) { 652 case SHMEM_HUGE_ALWAYS: 653 return THP_ORDERS_ALL_FILE_DEFAULT; 654 case SHMEM_HUGE_WITHIN_SIZE: 655 within_size_orders = shmem_get_orders_within_size(inode, 656 THP_ORDERS_ALL_FILE_DEFAULT, index, write_end); 657 if (within_size_orders > 0) 658 return within_size_orders; 659 660 fallthrough; 661 case SHMEM_HUGE_ADVISE: 662 if (vm_flags & VM_HUGEPAGE) 663 return THP_ORDERS_ALL_FILE_DEFAULT; 664 fallthrough; 665 default: 666 return 0; 667 } 668 } 669 670 static int shmem_parse_huge(const char *str) 671 { 672 int huge; 673 674 if (!str) 675 return -EINVAL; 676 677 if (!strcmp(str, "never")) 678 huge = SHMEM_HUGE_NEVER; 679 else if (!strcmp(str, "always")) 680 huge = SHMEM_HUGE_ALWAYS; 681 else if (!strcmp(str, "within_size")) 682 huge = SHMEM_HUGE_WITHIN_SIZE; 683 else if (!strcmp(str, "advise")) 684 huge = SHMEM_HUGE_ADVISE; 685 else if (!strcmp(str, "deny")) 686 huge = SHMEM_HUGE_DENY; 687 else if (!strcmp(str, "force")) 688 huge = SHMEM_HUGE_FORCE; 689 else 690 return -EINVAL; 691 692 if (!has_transparent_hugepage() && 693 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 694 return -EINVAL; 695 696 /* Do not override huge allocation policy with non-PMD sized mTHP */ 697 if (huge == SHMEM_HUGE_FORCE && 698 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 699 return -EINVAL; 700 701 return huge; 702 } 703 704 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 705 static const char *shmem_format_huge(int huge) 706 { 707 switch (huge) { 708 case SHMEM_HUGE_NEVER: 709 return "never"; 710 case SHMEM_HUGE_ALWAYS: 711 return "always"; 712 case SHMEM_HUGE_WITHIN_SIZE: 713 return "within_size"; 714 case SHMEM_HUGE_ADVISE: 715 return "advise"; 716 case SHMEM_HUGE_DENY: 717 return "deny"; 718 case SHMEM_HUGE_FORCE: 719 return "force"; 720 default: 721 VM_BUG_ON(1); 722 return "bad_val"; 723 } 724 } 725 #endif 726 727 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 728 struct shrink_control *sc, unsigned long nr_to_free) 729 { 730 LIST_HEAD(list), *pos, *next; 731 struct inode *inode; 732 struct shmem_inode_info *info; 733 struct folio *folio; 734 unsigned long batch = sc ? sc->nr_to_scan : 128; 735 unsigned long split = 0, freed = 0; 736 737 if (list_empty(&sbinfo->shrinklist)) 738 return SHRINK_STOP; 739 740 spin_lock(&sbinfo->shrinklist_lock); 741 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 742 info = list_entry(pos, struct shmem_inode_info, shrinklist); 743 744 /* pin the inode */ 745 inode = igrab(&info->vfs_inode); 746 747 /* inode is about to be evicted */ 748 if (!inode) { 749 list_del_init(&info->shrinklist); 750 goto next; 751 } 752 753 list_move(&info->shrinklist, &list); 754 next: 755 sbinfo->shrinklist_len--; 756 if (!--batch) 757 break; 758 } 759 spin_unlock(&sbinfo->shrinklist_lock); 760 761 list_for_each_safe(pos, next, &list) { 762 pgoff_t next, end; 763 loff_t i_size; 764 int ret; 765 766 info = list_entry(pos, struct shmem_inode_info, shrinklist); 767 inode = &info->vfs_inode; 768 769 if (nr_to_free && freed >= nr_to_free) 770 goto move_back; 771 772 i_size = i_size_read(inode); 773 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 774 if (!folio || xa_is_value(folio)) 775 goto drop; 776 777 /* No large folio at the end of the file: nothing to split */ 778 if (!folio_test_large(folio)) { 779 folio_put(folio); 780 goto drop; 781 } 782 783 /* Check if there is anything to gain from splitting */ 784 next = folio_next_index(folio); 785 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 786 if (end <= folio->index || end >= next) { 787 folio_put(folio); 788 goto drop; 789 } 790 791 /* 792 * Move the inode on the list back to shrinklist if we failed 793 * to lock the page at this time. 794 * 795 * Waiting for the lock may lead to deadlock in the 796 * reclaim path. 797 */ 798 if (!folio_trylock(folio)) { 799 folio_put(folio); 800 goto move_back; 801 } 802 803 ret = split_folio(folio); 804 folio_unlock(folio); 805 folio_put(folio); 806 807 /* If split failed move the inode on the list back to shrinklist */ 808 if (ret) 809 goto move_back; 810 811 freed += next - end; 812 split++; 813 drop: 814 list_del_init(&info->shrinklist); 815 goto put; 816 move_back: 817 /* 818 * Make sure the inode is either on the global list or deleted 819 * from any local list before iput() since it could be deleted 820 * in another thread once we put the inode (then the local list 821 * is corrupted). 822 */ 823 spin_lock(&sbinfo->shrinklist_lock); 824 list_move(&info->shrinklist, &sbinfo->shrinklist); 825 sbinfo->shrinklist_len++; 826 spin_unlock(&sbinfo->shrinklist_lock); 827 put: 828 iput(inode); 829 } 830 831 return split; 832 } 833 834 static long shmem_unused_huge_scan(struct super_block *sb, 835 struct shrink_control *sc) 836 { 837 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 838 839 if (!READ_ONCE(sbinfo->shrinklist_len)) 840 return SHRINK_STOP; 841 842 return shmem_unused_huge_shrink(sbinfo, sc, 0); 843 } 844 845 static long shmem_unused_huge_count(struct super_block *sb, 846 struct shrink_control *sc) 847 { 848 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 849 return READ_ONCE(sbinfo->shrinklist_len); 850 } 851 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 852 853 #define shmem_huge SHMEM_HUGE_DENY 854 855 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 856 struct shrink_control *sc, unsigned long nr_to_free) 857 { 858 return 0; 859 } 860 861 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 862 loff_t write_end, bool shmem_huge_force, 863 struct vm_area_struct *vma, 864 vm_flags_t vm_flags) 865 { 866 return 0; 867 } 868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 869 870 static void shmem_update_stats(struct folio *folio, int nr_pages) 871 { 872 if (folio_test_pmd_mappable(folio)) 873 lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 874 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 875 lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 876 } 877 878 /* 879 * Somewhat like filemap_add_folio, but error if expected item has gone. 880 */ 881 int shmem_add_to_page_cache(struct folio *folio, 882 struct address_space *mapping, 883 pgoff_t index, void *expected, gfp_t gfp) 884 { 885 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 886 unsigned long nr = folio_nr_pages(folio); 887 swp_entry_t iter, swap; 888 void *entry; 889 890 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 891 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 892 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 893 894 folio_ref_add(folio, nr); 895 folio->mapping = mapping; 896 folio->index = index; 897 898 gfp &= GFP_RECLAIM_MASK; 899 folio_throttle_swaprate(folio, gfp); 900 swap = radix_to_swp_entry(expected); 901 902 do { 903 iter = swap; 904 xas_lock_irq(&xas); 905 xas_for_each_conflict(&xas, entry) { 906 /* 907 * The range must either be empty, or filled with 908 * expected swap entries. Shmem swap entries are never 909 * partially freed without split of both entry and 910 * folio, so there shouldn't be any holes. 911 */ 912 if (!expected || entry != swp_to_radix_entry(iter)) { 913 xas_set_err(&xas, -EEXIST); 914 goto unlock; 915 } 916 iter.val += 1 << xas_get_order(&xas); 917 } 918 if (expected && iter.val - nr != swap.val) { 919 xas_set_err(&xas, -EEXIST); 920 goto unlock; 921 } 922 xas_store(&xas, folio); 923 if (xas_error(&xas)) 924 goto unlock; 925 shmem_update_stats(folio, nr); 926 mapping->nrpages += nr; 927 unlock: 928 xas_unlock_irq(&xas); 929 } while (xas_nomem(&xas, gfp)); 930 931 if (xas_error(&xas)) { 932 folio->mapping = NULL; 933 folio_ref_sub(folio, nr); 934 return xas_error(&xas); 935 } 936 937 return 0; 938 } 939 940 /* 941 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 942 */ 943 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 944 { 945 struct address_space *mapping = folio->mapping; 946 long nr = folio_nr_pages(folio); 947 int error; 948 949 xa_lock_irq(&mapping->i_pages); 950 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 951 folio->mapping = NULL; 952 mapping->nrpages -= nr; 953 shmem_update_stats(folio, -nr); 954 xa_unlock_irq(&mapping->i_pages); 955 folio_put_refs(folio, nr); 956 BUG_ON(error); 957 } 958 959 /* 960 * Remove swap entry from page cache, free the swap and its page cache. Returns 961 * the number of pages being freed. 0 means entry not found in XArray (0 pages 962 * being freed). 963 */ 964 static long shmem_free_swap(struct address_space *mapping, 965 pgoff_t index, pgoff_t end, void *radswap) 966 { 967 XA_STATE(xas, &mapping->i_pages, index); 968 unsigned int nr_pages = 0; 969 pgoff_t base; 970 void *entry; 971 972 xas_lock_irq(&xas); 973 entry = xas_load(&xas); 974 if (entry == radswap) { 975 nr_pages = 1 << xas_get_order(&xas); 976 base = round_down(xas.xa_index, nr_pages); 977 if (base < index || base + nr_pages - 1 > end) 978 nr_pages = 0; 979 else 980 xas_store(&xas, NULL); 981 } 982 xas_unlock_irq(&xas); 983 984 if (nr_pages) 985 swap_put_entries_direct(radix_to_swp_entry(radswap), nr_pages); 986 987 return nr_pages; 988 } 989 990 /* 991 * Determine (in bytes) how many of the shmem object's pages mapped by the 992 * given offsets are swapped out. 993 * 994 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 995 * as long as the inode doesn't go away and racy results are not a problem. 996 */ 997 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 998 pgoff_t start, pgoff_t end) 999 { 1000 XA_STATE(xas, &mapping->i_pages, start); 1001 struct folio *folio; 1002 unsigned long swapped = 0; 1003 unsigned long max = end - 1; 1004 1005 rcu_read_lock(); 1006 xas_for_each(&xas, folio, max) { 1007 if (xas_retry(&xas, folio)) 1008 continue; 1009 if (xa_is_value(folio)) 1010 swapped += 1 << xas_get_order(&xas); 1011 if (xas.xa_index == max) 1012 break; 1013 if (need_resched()) { 1014 xas_pause(&xas); 1015 cond_resched_rcu(); 1016 } 1017 } 1018 rcu_read_unlock(); 1019 1020 return swapped << PAGE_SHIFT; 1021 } 1022 1023 /* 1024 * Determine (in bytes) how many of the shmem object's pages mapped by the 1025 * given vma is swapped out. 1026 * 1027 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 1028 * as long as the inode doesn't go away and racy results are not a problem. 1029 */ 1030 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 1031 { 1032 struct inode *inode = file_inode(vma->vm_file); 1033 struct shmem_inode_info *info = SHMEM_I(inode); 1034 struct address_space *mapping = inode->i_mapping; 1035 unsigned long swapped; 1036 1037 /* Be careful as we don't hold info->lock */ 1038 swapped = READ_ONCE(info->swapped); 1039 1040 /* 1041 * The easier cases are when the shmem object has nothing in swap, or 1042 * the vma maps it whole. Then we can simply use the stats that we 1043 * already track. 1044 */ 1045 if (!swapped) 1046 return 0; 1047 1048 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 1049 return swapped << PAGE_SHIFT; 1050 1051 /* Here comes the more involved part */ 1052 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 1053 vma->vm_pgoff + vma_pages(vma)); 1054 } 1055 1056 /* 1057 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 1058 */ 1059 void shmem_unlock_mapping(struct address_space *mapping) 1060 { 1061 struct folio_batch fbatch; 1062 pgoff_t index = 0; 1063 1064 folio_batch_init(&fbatch); 1065 /* 1066 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 1067 */ 1068 while (!mapping_unevictable(mapping) && 1069 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 1070 check_move_unevictable_folios(&fbatch); 1071 folio_batch_release(&fbatch); 1072 cond_resched(); 1073 } 1074 } 1075 1076 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 1077 { 1078 struct folio *folio; 1079 1080 /* 1081 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 1082 * beyond i_size, and reports fallocated folios as holes. 1083 */ 1084 folio = filemap_get_entry(inode->i_mapping, index); 1085 if (!folio) 1086 return folio; 1087 if (!xa_is_value(folio)) { 1088 folio_lock(folio); 1089 if (folio->mapping == inode->i_mapping) 1090 return folio; 1091 /* The folio has been swapped out */ 1092 folio_unlock(folio); 1093 folio_put(folio); 1094 } 1095 /* 1096 * But read a folio back from swap if any of it is within i_size 1097 * (although in some cases this is just a waste of time). 1098 */ 1099 folio = NULL; 1100 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 1101 return folio; 1102 } 1103 1104 /* 1105 * Remove range of pages and swap entries from page cache, and free them. 1106 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1107 */ 1108 static void shmem_undo_range(struct inode *inode, loff_t lstart, uoff_t lend, 1109 bool unfalloc) 1110 { 1111 struct address_space *mapping = inode->i_mapping; 1112 struct shmem_inode_info *info = SHMEM_I(inode); 1113 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1114 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1115 struct folio_batch fbatch; 1116 pgoff_t indices[PAGEVEC_SIZE]; 1117 struct folio *folio; 1118 bool same_folio; 1119 long nr_swaps_freed = 0; 1120 pgoff_t index; 1121 int i; 1122 1123 if (lend == -1) 1124 end = -1; /* unsigned, so actually very big */ 1125 1126 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1127 info->fallocend = start; 1128 1129 folio_batch_init(&fbatch); 1130 index = start; 1131 while (index < end && find_lock_entries(mapping, &index, end - 1, 1132 &fbatch, indices)) { 1133 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1134 folio = fbatch.folios[i]; 1135 1136 if (xa_is_value(folio)) { 1137 if (unfalloc) 1138 continue; 1139 nr_swaps_freed += shmem_free_swap(mapping, indices[i], 1140 end - 1, folio); 1141 continue; 1142 } 1143 1144 if (!unfalloc || !folio_test_uptodate(folio)) 1145 truncate_inode_folio(mapping, folio); 1146 folio_unlock(folio); 1147 } 1148 folio_batch_remove_exceptionals(&fbatch); 1149 folio_batch_release(&fbatch); 1150 cond_resched(); 1151 } 1152 1153 /* 1154 * When undoing a failed fallocate, we want none of the partial folio 1155 * zeroing and splitting below, but shall want to truncate the whole 1156 * folio when !uptodate indicates that it was added by this fallocate, 1157 * even when [lstart, lend] covers only a part of the folio. 1158 */ 1159 if (unfalloc) 1160 goto whole_folios; 1161 1162 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1163 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1164 if (folio) { 1165 same_folio = lend < folio_next_pos(folio); 1166 folio_mark_dirty(folio); 1167 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1168 start = folio_next_index(folio); 1169 if (same_folio) 1170 end = folio->index; 1171 } 1172 folio_unlock(folio); 1173 folio_put(folio); 1174 folio = NULL; 1175 } 1176 1177 if (!same_folio) 1178 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1179 if (folio) { 1180 folio_mark_dirty(folio); 1181 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1182 end = folio->index; 1183 folio_unlock(folio); 1184 folio_put(folio); 1185 } 1186 1187 whole_folios: 1188 1189 index = start; 1190 while (index < end) { 1191 cond_resched(); 1192 1193 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1194 indices)) { 1195 /* If all gone or hole-punch or unfalloc, we're done */ 1196 if (index == start || end != -1) 1197 break; 1198 /* But if truncating, restart to make sure all gone */ 1199 index = start; 1200 continue; 1201 } 1202 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1203 folio = fbatch.folios[i]; 1204 1205 if (xa_is_value(folio)) { 1206 int order; 1207 long swaps_freed; 1208 1209 if (unfalloc) 1210 continue; 1211 swaps_freed = shmem_free_swap(mapping, indices[i], 1212 end - 1, folio); 1213 if (!swaps_freed) { 1214 pgoff_t base = indices[i]; 1215 1216 order = shmem_confirm_swap(mapping, indices[i], 1217 radix_to_swp_entry(folio)); 1218 /* 1219 * If found a large swap entry cross the end or start 1220 * border, skip it as the truncate_inode_partial_folio 1221 * above should have at least zerod its content once. 1222 */ 1223 if (order > 0) { 1224 base = round_down(base, 1 << order); 1225 if (base < start || base + (1 << order) > end) 1226 continue; 1227 } 1228 /* Swap was replaced by page or extended, retry */ 1229 index = base; 1230 break; 1231 } 1232 nr_swaps_freed += swaps_freed; 1233 continue; 1234 } 1235 1236 folio_lock(folio); 1237 1238 if (!unfalloc || !folio_test_uptodate(folio)) { 1239 if (folio_mapping(folio) != mapping) { 1240 /* Page was replaced by swap: retry */ 1241 folio_unlock(folio); 1242 index = indices[i]; 1243 break; 1244 } 1245 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1246 folio); 1247 1248 if (!folio_test_large(folio)) { 1249 truncate_inode_folio(mapping, folio); 1250 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1251 /* 1252 * If we split a page, reset the loop so 1253 * that we pick up the new sub pages. 1254 * Otherwise the THP was entirely 1255 * dropped or the target range was 1256 * zeroed, so just continue the loop as 1257 * is. 1258 */ 1259 if (!folio_test_large(folio)) { 1260 folio_unlock(folio); 1261 index = start; 1262 break; 1263 } 1264 } 1265 } 1266 folio_unlock(folio); 1267 } 1268 folio_batch_remove_exceptionals(&fbatch); 1269 folio_batch_release(&fbatch); 1270 } 1271 1272 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1273 } 1274 1275 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend) 1276 { 1277 shmem_undo_range(inode, lstart, lend, false); 1278 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1279 inode_inc_iversion(inode); 1280 } 1281 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1282 1283 static int shmem_getattr(struct mnt_idmap *idmap, 1284 const struct path *path, struct kstat *stat, 1285 u32 request_mask, unsigned int query_flags) 1286 { 1287 struct inode *inode = path->dentry->d_inode; 1288 struct shmem_inode_info *info = SHMEM_I(inode); 1289 1290 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1291 shmem_recalc_inode(inode, 0, 0); 1292 1293 if (info->fsflags & FS_APPEND_FL) 1294 stat->attributes |= STATX_ATTR_APPEND; 1295 if (info->fsflags & FS_IMMUTABLE_FL) 1296 stat->attributes |= STATX_ATTR_IMMUTABLE; 1297 if (info->fsflags & FS_NODUMP_FL) 1298 stat->attributes |= STATX_ATTR_NODUMP; 1299 stat->attributes_mask |= (STATX_ATTR_APPEND | 1300 STATX_ATTR_IMMUTABLE | 1301 STATX_ATTR_NODUMP); 1302 generic_fillattr(idmap, request_mask, inode, stat); 1303 1304 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1305 stat->blksize = HPAGE_PMD_SIZE; 1306 1307 if (request_mask & STATX_BTIME) { 1308 stat->result_mask |= STATX_BTIME; 1309 stat->btime.tv_sec = info->i_crtime.tv_sec; 1310 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1311 } 1312 1313 return 0; 1314 } 1315 1316 static int shmem_setattr(struct mnt_idmap *idmap, 1317 struct dentry *dentry, struct iattr *attr) 1318 { 1319 struct inode *inode = d_inode(dentry); 1320 struct shmem_inode_info *info = SHMEM_I(inode); 1321 int error; 1322 bool update_mtime = false; 1323 bool update_ctime = true; 1324 1325 error = setattr_prepare(idmap, dentry, attr); 1326 if (error) 1327 return error; 1328 1329 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1330 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1331 return -EPERM; 1332 } 1333 } 1334 1335 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1336 loff_t oldsize = inode->i_size; 1337 loff_t newsize = attr->ia_size; 1338 1339 /* protected by i_rwsem */ 1340 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1341 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1342 return -EPERM; 1343 1344 if (newsize != oldsize) { 1345 if (info->flags & SHMEM_F_MAPPING_FROZEN) 1346 return -EPERM; 1347 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1348 oldsize, newsize); 1349 if (error) 1350 return error; 1351 i_size_write(inode, newsize); 1352 update_mtime = true; 1353 } else { 1354 update_ctime = false; 1355 } 1356 if (newsize <= oldsize) { 1357 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1358 if (oldsize > holebegin) 1359 unmap_mapping_range(inode->i_mapping, 1360 holebegin, 0, 1); 1361 if (info->alloced) 1362 shmem_truncate_range(inode, 1363 newsize, (loff_t)-1); 1364 /* unmap again to remove racily COWed private pages */ 1365 if (oldsize > holebegin) 1366 unmap_mapping_range(inode->i_mapping, 1367 holebegin, 0, 1); 1368 } 1369 } 1370 1371 if (is_quota_modification(idmap, inode, attr)) { 1372 error = dquot_initialize(inode); 1373 if (error) 1374 return error; 1375 } 1376 1377 /* Transfer quota accounting */ 1378 if (i_uid_needs_update(idmap, attr, inode) || 1379 i_gid_needs_update(idmap, attr, inode)) { 1380 error = dquot_transfer(idmap, inode, attr); 1381 if (error) 1382 return error; 1383 } 1384 1385 setattr_copy(idmap, inode, attr); 1386 if (attr->ia_valid & ATTR_MODE) 1387 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1388 if (!error && update_ctime) { 1389 inode_set_ctime_current(inode); 1390 if (update_mtime) 1391 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1392 inode_inc_iversion(inode); 1393 } 1394 return error; 1395 } 1396 1397 static void shmem_evict_inode(struct inode *inode) 1398 { 1399 struct shmem_inode_info *info = SHMEM_I(inode); 1400 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1401 size_t freed = 0; 1402 1403 if (shmem_mapping(inode->i_mapping)) { 1404 shmem_unacct_size(info->flags, inode->i_size); 1405 inode->i_size = 0; 1406 mapping_set_exiting(inode->i_mapping); 1407 shmem_truncate_range(inode, 0, (loff_t)-1); 1408 if (!list_empty(&info->shrinklist)) { 1409 spin_lock(&sbinfo->shrinklist_lock); 1410 if (!list_empty(&info->shrinklist)) { 1411 list_del_init(&info->shrinklist); 1412 sbinfo->shrinklist_len--; 1413 } 1414 spin_unlock(&sbinfo->shrinklist_lock); 1415 } 1416 while (!list_empty(&info->swaplist)) { 1417 /* Wait while shmem_unuse() is scanning this inode... */ 1418 wait_var_event(&info->stop_eviction, 1419 !atomic_read(&info->stop_eviction)); 1420 spin_lock(&shmem_swaplist_lock); 1421 /* ...but beware of the race if we peeked too early */ 1422 if (!atomic_read(&info->stop_eviction)) 1423 list_del_init(&info->swaplist); 1424 spin_unlock(&shmem_swaplist_lock); 1425 } 1426 } 1427 1428 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1429 shmem_free_inode(inode->i_sb, freed); 1430 WARN_ON(inode->i_blocks); 1431 clear_inode(inode); 1432 #ifdef CONFIG_TMPFS_QUOTA 1433 dquot_free_inode(inode); 1434 dquot_drop(inode); 1435 #endif 1436 } 1437 1438 static unsigned int shmem_find_swap_entries(struct address_space *mapping, 1439 pgoff_t start, struct folio_batch *fbatch, 1440 pgoff_t *indices, unsigned int type) 1441 { 1442 XA_STATE(xas, &mapping->i_pages, start); 1443 struct folio *folio; 1444 swp_entry_t entry; 1445 1446 rcu_read_lock(); 1447 xas_for_each(&xas, folio, ULONG_MAX) { 1448 if (xas_retry(&xas, folio)) 1449 continue; 1450 1451 if (!xa_is_value(folio)) 1452 continue; 1453 1454 entry = radix_to_swp_entry(folio); 1455 /* 1456 * swapin error entries can be found in the mapping. But they're 1457 * deliberately ignored here as we've done everything we can do. 1458 */ 1459 if (swp_type(entry) != type) 1460 continue; 1461 1462 indices[folio_batch_count(fbatch)] = xas.xa_index; 1463 if (!folio_batch_add(fbatch, folio)) 1464 break; 1465 1466 if (need_resched()) { 1467 xas_pause(&xas); 1468 cond_resched_rcu(); 1469 } 1470 } 1471 rcu_read_unlock(); 1472 1473 return folio_batch_count(fbatch); 1474 } 1475 1476 /* 1477 * Move the swapped pages for an inode to page cache. Returns the count 1478 * of pages swapped in, or the error in case of failure. 1479 */ 1480 static int shmem_unuse_swap_entries(struct inode *inode, 1481 struct folio_batch *fbatch, pgoff_t *indices) 1482 { 1483 int i = 0; 1484 int ret = 0; 1485 int error = 0; 1486 struct address_space *mapping = inode->i_mapping; 1487 1488 for (i = 0; i < folio_batch_count(fbatch); i++) { 1489 struct folio *folio = fbatch->folios[i]; 1490 1491 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1492 mapping_gfp_mask(mapping), NULL, NULL); 1493 if (error == 0) { 1494 folio_unlock(folio); 1495 folio_put(folio); 1496 ret++; 1497 } 1498 if (error == -ENOMEM) 1499 break; 1500 error = 0; 1501 } 1502 return error ? error : ret; 1503 } 1504 1505 /* 1506 * If swap found in inode, free it and move page from swapcache to filecache. 1507 */ 1508 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1509 { 1510 struct address_space *mapping = inode->i_mapping; 1511 pgoff_t start = 0; 1512 struct folio_batch fbatch; 1513 pgoff_t indices[PAGEVEC_SIZE]; 1514 int ret = 0; 1515 1516 do { 1517 folio_batch_init(&fbatch); 1518 if (!shmem_find_swap_entries(mapping, start, &fbatch, 1519 indices, type)) { 1520 ret = 0; 1521 break; 1522 } 1523 1524 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1525 if (ret < 0) 1526 break; 1527 1528 start = indices[folio_batch_count(&fbatch) - 1]; 1529 } while (true); 1530 1531 return ret; 1532 } 1533 1534 /* 1535 * Read all the shared memory data that resides in the swap 1536 * device 'type' back into memory, so the swap device can be 1537 * unused. 1538 */ 1539 int shmem_unuse(unsigned int type) 1540 { 1541 struct shmem_inode_info *info, *next; 1542 int error = 0; 1543 1544 if (list_empty(&shmem_swaplist)) 1545 return 0; 1546 1547 spin_lock(&shmem_swaplist_lock); 1548 start_over: 1549 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1550 if (!info->swapped) { 1551 list_del_init(&info->swaplist); 1552 continue; 1553 } 1554 /* 1555 * Drop the swaplist mutex while searching the inode for swap; 1556 * but before doing so, make sure shmem_evict_inode() will not 1557 * remove placeholder inode from swaplist, nor let it be freed 1558 * (igrab() would protect from unlink, but not from unmount). 1559 */ 1560 atomic_inc(&info->stop_eviction); 1561 spin_unlock(&shmem_swaplist_lock); 1562 1563 error = shmem_unuse_inode(&info->vfs_inode, type); 1564 cond_resched(); 1565 1566 spin_lock(&shmem_swaplist_lock); 1567 if (atomic_dec_and_test(&info->stop_eviction)) 1568 wake_up_var(&info->stop_eviction); 1569 if (error) 1570 break; 1571 if (list_empty(&info->swaplist)) 1572 goto start_over; 1573 next = list_next_entry(info, swaplist); 1574 if (!info->swapped) 1575 list_del_init(&info->swaplist); 1576 } 1577 spin_unlock(&shmem_swaplist_lock); 1578 1579 return error; 1580 } 1581 1582 /** 1583 * shmem_writeout - Write the folio to swap 1584 * @folio: The folio to write 1585 * @plug: swap plug 1586 * @folio_list: list to put back folios on split 1587 * 1588 * Move the folio from the page cache to the swap cache. 1589 */ 1590 int shmem_writeout(struct folio *folio, struct swap_iocb **plug, 1591 struct list_head *folio_list) 1592 { 1593 struct address_space *mapping = folio->mapping; 1594 struct inode *inode = mapping->host; 1595 struct shmem_inode_info *info = SHMEM_I(inode); 1596 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1597 pgoff_t index; 1598 int nr_pages; 1599 bool split = false; 1600 1601 if ((info->flags & SHMEM_F_LOCKED) || sbinfo->noswap) 1602 goto redirty; 1603 1604 if (!total_swap_pages) 1605 goto redirty; 1606 1607 /* 1608 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1609 * split when swapping. 1610 * 1611 * And shrinkage of pages beyond i_size does not split swap, so 1612 * swapout of a large folio crossing i_size needs to split too 1613 * (unless fallocate has been used to preallocate beyond EOF). 1614 */ 1615 if (folio_test_large(folio)) { 1616 index = shmem_fallocend(inode, 1617 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1618 if ((index > folio->index && index < folio_next_index(folio)) || 1619 !IS_ENABLED(CONFIG_THP_SWAP)) 1620 split = true; 1621 } 1622 1623 if (split) { 1624 int order; 1625 1626 try_split: 1627 order = folio_order(folio); 1628 /* Ensure the subpages are still dirty */ 1629 folio_test_set_dirty(folio); 1630 if (split_folio_to_list(folio, folio_list)) 1631 goto redirty; 1632 1633 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1634 if (order >= HPAGE_PMD_ORDER) { 1635 count_memcg_folio_events(folio, THP_SWPOUT_FALLBACK, 1); 1636 count_vm_event(THP_SWPOUT_FALLBACK); 1637 } 1638 #endif 1639 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); 1640 1641 folio_clear_dirty(folio); 1642 } 1643 1644 index = folio->index; 1645 nr_pages = folio_nr_pages(folio); 1646 1647 /* 1648 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1649 * value into swapfile.c, the only way we can correctly account for a 1650 * fallocated folio arriving here is now to initialize it and write it. 1651 * 1652 * That's okay for a folio already fallocated earlier, but if we have 1653 * not yet completed the fallocation, then (a) we want to keep track 1654 * of this folio in case we have to undo it, and (b) it may not be a 1655 * good idea to continue anyway, once we're pushing into swap. So 1656 * reactivate the folio, and let shmem_fallocate() quit when too many. 1657 */ 1658 if (!folio_test_uptodate(folio)) { 1659 if (inode->i_private) { 1660 struct shmem_falloc *shmem_falloc; 1661 spin_lock(&inode->i_lock); 1662 shmem_falloc = inode->i_private; 1663 if (shmem_falloc && 1664 !shmem_falloc->waitq && 1665 index >= shmem_falloc->start && 1666 index < shmem_falloc->next) 1667 shmem_falloc->nr_unswapped += nr_pages; 1668 else 1669 shmem_falloc = NULL; 1670 spin_unlock(&inode->i_lock); 1671 if (shmem_falloc) 1672 goto redirty; 1673 } 1674 folio_zero_range(folio, 0, folio_size(folio)); 1675 flush_dcache_folio(folio); 1676 folio_mark_uptodate(folio); 1677 } 1678 1679 if (!folio_alloc_swap(folio)) { 1680 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages); 1681 int error; 1682 1683 /* 1684 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1685 * if it's not already there. Do it now before the folio is 1686 * removed from page cache, when its pagelock no longer 1687 * protects the inode from eviction. And do it now, after 1688 * we've incremented swapped, because shmem_unuse() will 1689 * prune a !swapped inode from the swaplist. 1690 */ 1691 if (first_swapped) { 1692 spin_lock(&shmem_swaplist_lock); 1693 if (list_empty(&info->swaplist)) 1694 list_add(&info->swaplist, &shmem_swaplist); 1695 spin_unlock(&shmem_swaplist_lock); 1696 } 1697 1698 folio_dup_swap(folio, NULL); 1699 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap)); 1700 1701 BUG_ON(folio_mapped(folio)); 1702 error = swap_writeout(folio, plug); 1703 if (error != AOP_WRITEPAGE_ACTIVATE) { 1704 /* folio has been unlocked */ 1705 return error; 1706 } 1707 1708 /* 1709 * The intention here is to avoid holding on to the swap when 1710 * zswap was unable to compress and unable to writeback; but 1711 * it will be appropriate if other reactivate cases are added. 1712 */ 1713 error = shmem_add_to_page_cache(folio, mapping, index, 1714 swp_to_radix_entry(folio->swap), 1715 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 1716 /* Swap entry might be erased by racing shmem_free_swap() */ 1717 if (!error) { 1718 shmem_recalc_inode(inode, 0, -nr_pages); 1719 folio_put_swap(folio, NULL); 1720 } 1721 1722 /* 1723 * The swap_cache_del_folio() below could be left for 1724 * shrink_folio_list()'s folio_free_swap() to dispose of; 1725 * but I'm a little nervous about letting this folio out of 1726 * shmem_writeout() in a hybrid half-tmpfs-half-swap state 1727 * e.g. folio_mapping(folio) might give an unexpected answer. 1728 */ 1729 swap_cache_del_folio(folio); 1730 goto redirty; 1731 } 1732 if (nr_pages > 1) 1733 goto try_split; 1734 redirty: 1735 folio_mark_dirty(folio); 1736 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1737 } 1738 EXPORT_SYMBOL_GPL(shmem_writeout); 1739 1740 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1741 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1742 { 1743 char buffer[64]; 1744 1745 if (!mpol || mpol->mode == MPOL_DEFAULT) 1746 return; /* show nothing */ 1747 1748 mpol_to_str(buffer, sizeof(buffer), mpol); 1749 1750 seq_printf(seq, ",mpol=%s", buffer); 1751 } 1752 1753 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1754 { 1755 struct mempolicy *mpol = NULL; 1756 if (sbinfo->mpol) { 1757 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1758 mpol = sbinfo->mpol; 1759 mpol_get(mpol); 1760 raw_spin_unlock(&sbinfo->stat_lock); 1761 } 1762 return mpol; 1763 } 1764 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1765 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1766 { 1767 } 1768 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1769 { 1770 return NULL; 1771 } 1772 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1773 1774 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1775 pgoff_t index, unsigned int order, pgoff_t *ilx); 1776 1777 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1778 struct shmem_inode_info *info, pgoff_t index) 1779 { 1780 struct mempolicy *mpol; 1781 pgoff_t ilx; 1782 struct folio *folio; 1783 1784 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1785 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1786 mpol_cond_put(mpol); 1787 1788 return folio; 1789 } 1790 1791 /* 1792 * Make sure huge_gfp is always more limited than limit_gfp. 1793 * Some of the flags set permissions, while others set limitations. 1794 */ 1795 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1796 { 1797 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1798 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1799 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1800 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1801 1802 /* Allow allocations only from the originally specified zones. */ 1803 result |= zoneflags; 1804 1805 /* 1806 * Minimize the result gfp by taking the union with the deny flags, 1807 * and the intersection of the allow flags. 1808 */ 1809 result |= (limit_gfp & denyflags); 1810 result |= (huge_gfp & limit_gfp) & allowflags; 1811 1812 return result; 1813 } 1814 1815 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1816 bool shmem_hpage_pmd_enabled(void) 1817 { 1818 if (shmem_huge == SHMEM_HUGE_DENY) 1819 return false; 1820 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1821 return true; 1822 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1823 return true; 1824 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1825 return true; 1826 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1827 shmem_huge != SHMEM_HUGE_NEVER) 1828 return true; 1829 1830 return false; 1831 } 1832 1833 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1834 struct vm_area_struct *vma, pgoff_t index, 1835 loff_t write_end, bool shmem_huge_force) 1836 { 1837 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1838 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1839 vm_flags_t vm_flags = vma ? vma->vm_flags : 0; 1840 unsigned int global_orders; 1841 1842 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force))) 1843 return 0; 1844 1845 global_orders = shmem_huge_global_enabled(inode, index, write_end, 1846 shmem_huge_force, vma, vm_flags); 1847 /* Tmpfs huge pages allocation */ 1848 if (!vma || !vma_is_anon_shmem(vma)) 1849 return global_orders; 1850 1851 /* 1852 * Following the 'deny' semantics of the top level, force the huge 1853 * option off from all mounts. 1854 */ 1855 if (shmem_huge == SHMEM_HUGE_DENY) 1856 return 0; 1857 1858 /* 1859 * Only allow inherit orders if the top-level value is 'force', which 1860 * means non-PMD sized THP can not override 'huge' mount option now. 1861 */ 1862 if (shmem_huge == SHMEM_HUGE_FORCE) 1863 return READ_ONCE(huge_shmem_orders_inherit); 1864 1865 /* Allow mTHP that will be fully within i_size. */ 1866 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0); 1867 1868 if (vm_flags & VM_HUGEPAGE) 1869 mask |= READ_ONCE(huge_shmem_orders_madvise); 1870 1871 if (global_orders > 0) 1872 mask |= READ_ONCE(huge_shmem_orders_inherit); 1873 1874 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1875 } 1876 1877 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1878 struct address_space *mapping, pgoff_t index, 1879 unsigned long orders) 1880 { 1881 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1882 pgoff_t aligned_index; 1883 unsigned long pages; 1884 int order; 1885 1886 if (vma) { 1887 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1888 if (!orders) 1889 return 0; 1890 } 1891 1892 /* Find the highest order that can add into the page cache */ 1893 order = highest_order(orders); 1894 while (orders) { 1895 pages = 1UL << order; 1896 aligned_index = round_down(index, pages); 1897 /* 1898 * Check for conflict before waiting on a huge allocation. 1899 * Conflict might be that a huge page has just been allocated 1900 * and added to page cache by a racing thread, or that there 1901 * is already at least one small page in the huge extent. 1902 * Be careful to retry when appropriate, but not forever! 1903 * Elsewhere -EEXIST would be the right code, but not here. 1904 */ 1905 if (!xa_find(&mapping->i_pages, &aligned_index, 1906 aligned_index + pages - 1, XA_PRESENT)) 1907 break; 1908 order = next_order(&orders, order); 1909 } 1910 1911 return orders; 1912 } 1913 #else 1914 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1915 struct address_space *mapping, pgoff_t index, 1916 unsigned long orders) 1917 { 1918 return 0; 1919 } 1920 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1921 1922 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1923 struct shmem_inode_info *info, pgoff_t index) 1924 { 1925 struct mempolicy *mpol; 1926 pgoff_t ilx; 1927 struct folio *folio; 1928 1929 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1930 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1931 mpol_cond_put(mpol); 1932 1933 return folio; 1934 } 1935 1936 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1937 gfp_t gfp, struct inode *inode, pgoff_t index, 1938 struct mm_struct *fault_mm, unsigned long orders) 1939 { 1940 struct address_space *mapping = inode->i_mapping; 1941 struct shmem_inode_info *info = SHMEM_I(inode); 1942 unsigned long suitable_orders = 0; 1943 struct folio *folio = NULL; 1944 pgoff_t aligned_index; 1945 long pages; 1946 int error, order; 1947 1948 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1949 orders = 0; 1950 1951 if (orders > 0) { 1952 suitable_orders = shmem_suitable_orders(inode, vmf, 1953 mapping, index, orders); 1954 1955 order = highest_order(suitable_orders); 1956 while (suitable_orders) { 1957 pages = 1UL << order; 1958 aligned_index = round_down(index, pages); 1959 folio = shmem_alloc_folio(gfp, order, info, aligned_index); 1960 if (folio) { 1961 index = aligned_index; 1962 goto allocated; 1963 } 1964 1965 if (pages == HPAGE_PMD_NR) 1966 count_vm_event(THP_FILE_FALLBACK); 1967 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1968 order = next_order(&suitable_orders, order); 1969 } 1970 } else { 1971 pages = 1; 1972 folio = shmem_alloc_folio(gfp, 0, info, index); 1973 } 1974 if (!folio) 1975 return ERR_PTR(-ENOMEM); 1976 1977 allocated: 1978 __folio_set_locked(folio); 1979 __folio_set_swapbacked(folio); 1980 1981 gfp &= GFP_RECLAIM_MASK; 1982 error = mem_cgroup_charge(folio, fault_mm, gfp); 1983 if (error) { 1984 if (xa_find(&mapping->i_pages, &index, 1985 index + pages - 1, XA_PRESENT)) { 1986 error = -EEXIST; 1987 } else if (pages > 1) { 1988 if (pages == HPAGE_PMD_NR) { 1989 count_vm_event(THP_FILE_FALLBACK); 1990 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1991 } 1992 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1993 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1994 } 1995 goto unlock; 1996 } 1997 1998 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1999 if (error) 2000 goto unlock; 2001 2002 error = shmem_inode_acct_blocks(inode, pages); 2003 if (error) { 2004 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2005 long freed; 2006 /* 2007 * Try to reclaim some space by splitting a few 2008 * large folios beyond i_size on the filesystem. 2009 */ 2010 shmem_unused_huge_shrink(sbinfo, NULL, pages); 2011 /* 2012 * And do a shmem_recalc_inode() to account for freed pages: 2013 * except our folio is there in cache, so not quite balanced. 2014 */ 2015 spin_lock(&info->lock); 2016 freed = pages + info->alloced - info->swapped - 2017 READ_ONCE(mapping->nrpages); 2018 if (freed > 0) 2019 info->alloced -= freed; 2020 spin_unlock(&info->lock); 2021 if (freed > 0) 2022 shmem_inode_unacct_blocks(inode, freed); 2023 error = shmem_inode_acct_blocks(inode, pages); 2024 if (error) { 2025 filemap_remove_folio(folio); 2026 goto unlock; 2027 } 2028 } 2029 2030 shmem_recalc_inode(inode, pages, 0); 2031 folio_add_lru(folio); 2032 return folio; 2033 2034 unlock: 2035 folio_unlock(folio); 2036 folio_put(folio); 2037 return ERR_PTR(error); 2038 } 2039 2040 static struct folio *shmem_swap_alloc_folio(struct inode *inode, 2041 struct vm_area_struct *vma, pgoff_t index, 2042 swp_entry_t entry, int order, gfp_t gfp) 2043 { 2044 struct shmem_inode_info *info = SHMEM_I(inode); 2045 struct folio *new, *swapcache; 2046 int nr_pages = 1 << order; 2047 gfp_t alloc_gfp; 2048 2049 /* 2050 * We have arrived here because our zones are constrained, so don't 2051 * limit chance of success with further cpuset and node constraints. 2052 */ 2053 gfp &= ~GFP_CONSTRAINT_MASK; 2054 alloc_gfp = gfp; 2055 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 2056 if (WARN_ON_ONCE(order)) 2057 return ERR_PTR(-EINVAL); 2058 } else if (order) { 2059 /* 2060 * If uffd is active for the vma, we need per-page fault 2061 * fidelity to maintain the uffd semantics, then fallback 2062 * to swapin order-0 folio, as well as for zswap case. 2063 * Any existing sub folio in the swap cache also blocks 2064 * mTHP swapin. 2065 */ 2066 if ((vma && unlikely(userfaultfd_armed(vma))) || 2067 !zswap_never_enabled() || 2068 non_swapcache_batch(entry, nr_pages) != nr_pages) 2069 goto fallback; 2070 2071 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp); 2072 } 2073 retry: 2074 new = shmem_alloc_folio(alloc_gfp, order, info, index); 2075 if (!new) { 2076 new = ERR_PTR(-ENOMEM); 2077 goto fallback; 2078 } 2079 2080 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL, 2081 alloc_gfp, entry)) { 2082 folio_put(new); 2083 new = ERR_PTR(-ENOMEM); 2084 goto fallback; 2085 } 2086 2087 swapcache = swapin_folio(entry, new); 2088 if (swapcache != new) { 2089 folio_put(new); 2090 if (!swapcache) { 2091 /* 2092 * The new folio is charged already, swapin can 2093 * only fail due to another raced swapin. 2094 */ 2095 new = ERR_PTR(-EEXIST); 2096 goto fallback; 2097 } 2098 } 2099 return swapcache; 2100 fallback: 2101 /* Order 0 swapin failed, nothing to fallback to, abort */ 2102 if (!order) 2103 return new; 2104 entry.val += index - round_down(index, nr_pages); 2105 alloc_gfp = gfp; 2106 nr_pages = 1; 2107 order = 0; 2108 goto retry; 2109 } 2110 2111 /* 2112 * When a page is moved from swapcache to shmem filecache (either by the 2113 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 2114 * shmem_unuse_inode()), it may have been read in earlier from swap, in 2115 * ignorance of the mapping it belongs to. If that mapping has special 2116 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 2117 * we may need to copy to a suitable page before moving to filecache. 2118 * 2119 * In a future release, this may well be extended to respect cpuset and 2120 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 2121 * but for now it is a simple matter of zone. 2122 */ 2123 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 2124 { 2125 return folio_zonenum(folio) > gfp_zone(gfp); 2126 } 2127 2128 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 2129 struct shmem_inode_info *info, pgoff_t index, 2130 struct vm_area_struct *vma) 2131 { 2132 struct swap_cluster_info *ci; 2133 struct folio *new, *old = *foliop; 2134 swp_entry_t entry = old->swap; 2135 int nr_pages = folio_nr_pages(old); 2136 int error = 0; 2137 2138 /* 2139 * We have arrived here because our zones are constrained, so don't 2140 * limit chance of success by further cpuset and node constraints. 2141 */ 2142 gfp &= ~GFP_CONSTRAINT_MASK; 2143 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2144 if (nr_pages > 1) { 2145 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 2146 2147 gfp = limit_gfp_mask(huge_gfp, gfp); 2148 } 2149 #endif 2150 2151 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 2152 if (!new) 2153 return -ENOMEM; 2154 2155 folio_ref_add(new, nr_pages); 2156 folio_copy(new, old); 2157 flush_dcache_folio(new); 2158 2159 __folio_set_locked(new); 2160 __folio_set_swapbacked(new); 2161 folio_mark_uptodate(new); 2162 new->swap = entry; 2163 folio_set_swapcache(new); 2164 2165 ci = swap_cluster_get_and_lock_irq(old); 2166 __swap_cache_replace_folio(ci, old, new); 2167 mem_cgroup_replace_folio(old, new); 2168 shmem_update_stats(new, nr_pages); 2169 shmem_update_stats(old, -nr_pages); 2170 swap_cluster_unlock_irq(ci); 2171 2172 folio_add_lru(new); 2173 *foliop = new; 2174 2175 folio_clear_swapcache(old); 2176 old->private = NULL; 2177 2178 folio_unlock(old); 2179 /* 2180 * The old folio are removed from swap cache, drop the 'nr_pages' 2181 * reference, as well as one temporary reference getting from swap 2182 * cache. 2183 */ 2184 folio_put_refs(old, nr_pages + 1); 2185 return error; 2186 } 2187 2188 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2189 struct folio *folio, swp_entry_t swap) 2190 { 2191 struct address_space *mapping = inode->i_mapping; 2192 swp_entry_t swapin_error; 2193 void *old; 2194 int nr_pages; 2195 2196 swapin_error = make_poisoned_swp_entry(); 2197 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2198 swp_to_radix_entry(swap), 2199 swp_to_radix_entry(swapin_error), 0); 2200 if (old != swp_to_radix_entry(swap)) 2201 return; 2202 2203 nr_pages = folio_nr_pages(folio); 2204 folio_wait_writeback(folio); 2205 folio_put_swap(folio, NULL); 2206 swap_cache_del_folio(folio); 2207 /* 2208 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2209 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2210 * in shmem_evict_inode(). 2211 */ 2212 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2213 } 2214 2215 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2216 swp_entry_t swap, gfp_t gfp) 2217 { 2218 struct address_space *mapping = inode->i_mapping; 2219 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2220 int split_order = 0; 2221 int i; 2222 2223 /* Convert user data gfp flags to xarray node gfp flags */ 2224 gfp &= GFP_RECLAIM_MASK; 2225 2226 for (;;) { 2227 void *old = NULL; 2228 int cur_order; 2229 pgoff_t swap_index; 2230 2231 xas_lock_irq(&xas); 2232 old = xas_load(&xas); 2233 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2234 xas_set_err(&xas, -EEXIST); 2235 goto unlock; 2236 } 2237 2238 cur_order = xas_get_order(&xas); 2239 if (!cur_order) 2240 goto unlock; 2241 2242 /* Try to split large swap entry in pagecache */ 2243 swap_index = round_down(index, 1 << cur_order); 2244 split_order = xas_try_split_min_order(cur_order); 2245 2246 while (cur_order > 0) { 2247 pgoff_t aligned_index = 2248 round_down(index, 1 << cur_order); 2249 pgoff_t swap_offset = aligned_index - swap_index; 2250 2251 xas_set_order(&xas, index, split_order); 2252 xas_try_split(&xas, old, cur_order); 2253 if (xas_error(&xas)) 2254 goto unlock; 2255 2256 /* 2257 * Re-set the swap entry after splitting, and the swap 2258 * offset of the original large entry must be continuous. 2259 */ 2260 for (i = 0; i < 1 << cur_order; 2261 i += (1 << split_order)) { 2262 swp_entry_t tmp; 2263 2264 tmp = swp_entry(swp_type(swap), 2265 swp_offset(swap) + swap_offset + 2266 i); 2267 __xa_store(&mapping->i_pages, aligned_index + i, 2268 swp_to_radix_entry(tmp), 0); 2269 } 2270 cur_order = split_order; 2271 split_order = xas_try_split_min_order(split_order); 2272 } 2273 2274 unlock: 2275 xas_unlock_irq(&xas); 2276 2277 if (!xas_nomem(&xas, gfp)) 2278 break; 2279 } 2280 2281 if (xas_error(&xas)) 2282 return xas_error(&xas); 2283 2284 return 0; 2285 } 2286 2287 /* 2288 * Swap in the folio pointed to by *foliop. 2289 * Caller has to make sure that *foliop contains a valid swapped folio. 2290 * Returns 0 and the folio in foliop if success. On failure, returns the 2291 * error code and NULL in *foliop. 2292 */ 2293 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2294 struct folio **foliop, enum sgp_type sgp, 2295 gfp_t gfp, struct vm_area_struct *vma, 2296 vm_fault_t *fault_type) 2297 { 2298 struct address_space *mapping = inode->i_mapping; 2299 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2300 struct shmem_inode_info *info = SHMEM_I(inode); 2301 swp_entry_t swap; 2302 softleaf_t index_entry; 2303 struct swap_info_struct *si; 2304 struct folio *folio = NULL; 2305 int error, nr_pages, order; 2306 pgoff_t offset; 2307 2308 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2309 index_entry = radix_to_swp_entry(*foliop); 2310 swap = index_entry; 2311 *foliop = NULL; 2312 2313 if (softleaf_is_poison_marker(index_entry)) 2314 return -EIO; 2315 2316 si = get_swap_device(index_entry); 2317 order = shmem_confirm_swap(mapping, index, index_entry); 2318 if (unlikely(!si)) { 2319 if (order < 0) 2320 return -EEXIST; 2321 else 2322 return -EINVAL; 2323 } 2324 if (unlikely(order < 0)) { 2325 put_swap_device(si); 2326 return -EEXIST; 2327 } 2328 2329 /* index may point to the middle of a large entry, get the sub entry */ 2330 if (order) { 2331 offset = index - round_down(index, 1 << order); 2332 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2333 } 2334 2335 /* Look it up and read it in.. */ 2336 folio = swap_cache_get_folio(swap); 2337 if (!folio) { 2338 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 2339 /* Direct swapin skipping swap cache & readahead */ 2340 folio = shmem_swap_alloc_folio(inode, vma, index, 2341 index_entry, order, gfp); 2342 if (IS_ERR(folio)) { 2343 error = PTR_ERR(folio); 2344 folio = NULL; 2345 goto failed; 2346 } 2347 } else { 2348 /* Cached swapin only supports order 0 folio */ 2349 folio = shmem_swapin_cluster(swap, gfp, info, index); 2350 if (!folio) { 2351 error = -ENOMEM; 2352 goto failed; 2353 } 2354 } 2355 if (fault_type) { 2356 *fault_type |= VM_FAULT_MAJOR; 2357 count_vm_event(PGMAJFAULT); 2358 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2359 } 2360 } else { 2361 swap_update_readahead(folio, NULL, 0); 2362 } 2363 2364 if (order > folio_order(folio)) { 2365 /* 2366 * Swapin may get smaller folios due to various reasons: 2367 * It may fallback to order 0 due to memory pressure or race, 2368 * swap readahead may swap in order 0 folios into swapcache 2369 * asynchronously, while the shmem mapping can still stores 2370 * large swap entries. In such cases, we should split the 2371 * large swap entry to prevent possible data corruption. 2372 */ 2373 error = shmem_split_large_entry(inode, index, index_entry, gfp); 2374 if (error) 2375 goto failed_nolock; 2376 } 2377 2378 /* 2379 * If the folio is large, round down swap and index by folio size. 2380 * No matter what race occurs, the swap layer ensures we either get 2381 * a valid folio that has its swap entry aligned by size, or a 2382 * temporarily invalid one which we'll abort very soon and retry. 2383 * 2384 * shmem_add_to_page_cache ensures the whole range contains expected 2385 * entries and prevents any corruption, so any race split is fine 2386 * too, it will succeed as long as the entries are still there. 2387 */ 2388 nr_pages = folio_nr_pages(folio); 2389 if (nr_pages > 1) { 2390 swap.val = round_down(swap.val, nr_pages); 2391 index = round_down(index, nr_pages); 2392 } 2393 2394 /* 2395 * We have to do this with the folio locked to prevent races. 2396 * The shmem_confirm_swap below only checks if the first swap 2397 * entry matches the folio, that's enough to ensure the folio 2398 * is not used outside of shmem, as shmem swap entries 2399 * and swap cache folios are never partially freed. 2400 */ 2401 folio_lock(folio); 2402 if (!folio_matches_swap_entry(folio, swap) || 2403 shmem_confirm_swap(mapping, index, swap) < 0) { 2404 error = -EEXIST; 2405 goto unlock; 2406 } 2407 if (!folio_test_uptodate(folio)) { 2408 error = -EIO; 2409 goto failed; 2410 } 2411 folio_wait_writeback(folio); 2412 2413 /* 2414 * Some architectures may have to restore extra metadata to the 2415 * folio after reading from swap. 2416 */ 2417 arch_swap_restore(folio_swap(swap, folio), folio); 2418 2419 if (shmem_should_replace_folio(folio, gfp)) { 2420 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2421 if (error) 2422 goto failed; 2423 } 2424 2425 error = shmem_add_to_page_cache(folio, mapping, index, 2426 swp_to_radix_entry(swap), gfp); 2427 if (error) 2428 goto failed; 2429 2430 shmem_recalc_inode(inode, 0, -nr_pages); 2431 2432 if (sgp == SGP_WRITE) 2433 folio_mark_accessed(folio); 2434 2435 folio_put_swap(folio, NULL); 2436 swap_cache_del_folio(folio); 2437 folio_mark_dirty(folio); 2438 put_swap_device(si); 2439 2440 *foliop = folio; 2441 return 0; 2442 failed: 2443 if (shmem_confirm_swap(mapping, index, swap) < 0) 2444 error = -EEXIST; 2445 if (error == -EIO) 2446 shmem_set_folio_swapin_error(inode, index, folio, swap); 2447 unlock: 2448 if (folio) 2449 folio_unlock(folio); 2450 failed_nolock: 2451 if (folio) 2452 folio_put(folio); 2453 put_swap_device(si); 2454 2455 return error; 2456 } 2457 2458 /* 2459 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2460 * 2461 * If we allocate a new one we do not mark it dirty. That's up to the 2462 * vm. If we swap it in we mark it dirty since we also free the swap 2463 * entry since a page cannot live in both the swap and page cache. 2464 * 2465 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2466 */ 2467 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2468 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2469 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2470 { 2471 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2472 struct mm_struct *fault_mm; 2473 struct folio *folio; 2474 int error; 2475 bool alloced; 2476 unsigned long orders = 0; 2477 2478 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2479 return -EINVAL; 2480 2481 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2482 return -EFBIG; 2483 repeat: 2484 if (sgp <= SGP_CACHE && 2485 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2486 return -EINVAL; 2487 2488 alloced = false; 2489 fault_mm = vma ? vma->vm_mm : NULL; 2490 2491 folio = filemap_get_entry(inode->i_mapping, index); 2492 if (folio && vma && userfaultfd_minor(vma)) { 2493 if (!xa_is_value(folio)) 2494 folio_put(folio); 2495 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2496 return 0; 2497 } 2498 2499 if (xa_is_value(folio)) { 2500 error = shmem_swapin_folio(inode, index, &folio, 2501 sgp, gfp, vma, fault_type); 2502 if (error == -EEXIST) 2503 goto repeat; 2504 2505 *foliop = folio; 2506 return error; 2507 } 2508 2509 if (folio) { 2510 folio_lock(folio); 2511 2512 /* Has the folio been truncated or swapped out? */ 2513 if (unlikely(folio->mapping != inode->i_mapping)) { 2514 folio_unlock(folio); 2515 folio_put(folio); 2516 goto repeat; 2517 } 2518 if (sgp == SGP_WRITE) 2519 folio_mark_accessed(folio); 2520 if (folio_test_uptodate(folio)) 2521 goto out; 2522 /* fallocated folio */ 2523 if (sgp != SGP_READ) 2524 goto clear; 2525 folio_unlock(folio); 2526 folio_put(folio); 2527 } 2528 2529 /* 2530 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2531 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2532 */ 2533 *foliop = NULL; 2534 if (sgp == SGP_READ) 2535 return 0; 2536 if (sgp == SGP_NOALLOC) 2537 return -ENOENT; 2538 2539 /* 2540 * Fast cache lookup and swap lookup did not find it: allocate. 2541 */ 2542 2543 if (vma && userfaultfd_missing(vma)) { 2544 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2545 return 0; 2546 } 2547 2548 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2549 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2550 if (orders > 0) { 2551 gfp_t huge_gfp; 2552 2553 huge_gfp = vma_thp_gfp_mask(vma); 2554 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2555 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2556 inode, index, fault_mm, orders); 2557 if (!IS_ERR(folio)) { 2558 if (folio_test_pmd_mappable(folio)) 2559 count_vm_event(THP_FILE_ALLOC); 2560 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2561 goto alloced; 2562 } 2563 if (PTR_ERR(folio) == -EEXIST) 2564 goto repeat; 2565 } 2566 2567 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2568 if (IS_ERR(folio)) { 2569 error = PTR_ERR(folio); 2570 if (error == -EEXIST) 2571 goto repeat; 2572 folio = NULL; 2573 goto unlock; 2574 } 2575 2576 alloced: 2577 alloced = true; 2578 if (folio_test_large(folio) && 2579 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2580 folio_next_index(folio)) { 2581 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2582 struct shmem_inode_info *info = SHMEM_I(inode); 2583 /* 2584 * Part of the large folio is beyond i_size: subject 2585 * to shrink under memory pressure. 2586 */ 2587 spin_lock(&sbinfo->shrinklist_lock); 2588 /* 2589 * _careful to defend against unlocked access to 2590 * ->shrink_list in shmem_unused_huge_shrink() 2591 */ 2592 if (list_empty_careful(&info->shrinklist)) { 2593 list_add_tail(&info->shrinklist, 2594 &sbinfo->shrinklist); 2595 sbinfo->shrinklist_len++; 2596 } 2597 spin_unlock(&sbinfo->shrinklist_lock); 2598 } 2599 2600 if (sgp == SGP_WRITE) 2601 folio_set_referenced(folio); 2602 /* 2603 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2604 */ 2605 if (sgp == SGP_FALLOC) 2606 sgp = SGP_WRITE; 2607 clear: 2608 /* 2609 * Let SGP_WRITE caller clear ends if write does not fill folio; 2610 * but SGP_FALLOC on a folio fallocated earlier must initialize 2611 * it now, lest undo on failure cancel our earlier guarantee. 2612 */ 2613 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2614 long i, n = folio_nr_pages(folio); 2615 2616 for (i = 0; i < n; i++) 2617 clear_highpage(folio_page(folio, i)); 2618 flush_dcache_folio(folio); 2619 folio_mark_uptodate(folio); 2620 } 2621 2622 /* Perhaps the file has been truncated since we checked */ 2623 if (sgp <= SGP_CACHE && 2624 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2625 error = -EINVAL; 2626 goto unlock; 2627 } 2628 out: 2629 *foliop = folio; 2630 return 0; 2631 2632 /* 2633 * Error recovery. 2634 */ 2635 unlock: 2636 if (alloced) 2637 filemap_remove_folio(folio); 2638 shmem_recalc_inode(inode, 0, 0); 2639 if (folio) { 2640 folio_unlock(folio); 2641 folio_put(folio); 2642 } 2643 return error; 2644 } 2645 2646 /** 2647 * shmem_get_folio - find, and lock a shmem folio. 2648 * @inode: inode to search 2649 * @index: the page index. 2650 * @write_end: end of a write, could extend inode size 2651 * @foliop: pointer to the folio if found 2652 * @sgp: SGP_* flags to control behavior 2653 * 2654 * Looks up the page cache entry at @inode & @index. If a folio is 2655 * present, it is returned locked with an increased refcount. 2656 * 2657 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2658 * before unlocking the folio to ensure that the folio is not reclaimed. 2659 * There is no need to reserve space before calling folio_mark_dirty(). 2660 * 2661 * When no folio is found, the behavior depends on @sgp: 2662 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2663 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2664 * - for all other flags a new folio is allocated, inserted into the 2665 * page cache and returned locked in @foliop. 2666 * 2667 * Context: May sleep. 2668 * Return: 0 if successful, else a negative error code. 2669 */ 2670 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2671 struct folio **foliop, enum sgp_type sgp) 2672 { 2673 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2674 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2675 } 2676 EXPORT_SYMBOL_GPL(shmem_get_folio); 2677 2678 /* 2679 * This is like autoremove_wake_function, but it removes the wait queue 2680 * entry unconditionally - even if something else had already woken the 2681 * target. 2682 */ 2683 static int synchronous_wake_function(wait_queue_entry_t *wait, 2684 unsigned int mode, int sync, void *key) 2685 { 2686 int ret = default_wake_function(wait, mode, sync, key); 2687 list_del_init(&wait->entry); 2688 return ret; 2689 } 2690 2691 /* 2692 * Trinity finds that probing a hole which tmpfs is punching can 2693 * prevent the hole-punch from ever completing: which in turn 2694 * locks writers out with its hold on i_rwsem. So refrain from 2695 * faulting pages into the hole while it's being punched. Although 2696 * shmem_undo_range() does remove the additions, it may be unable to 2697 * keep up, as each new page needs its own unmap_mapping_range() call, 2698 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2699 * 2700 * It does not matter if we sometimes reach this check just before the 2701 * hole-punch begins, so that one fault then races with the punch: 2702 * we just need to make racing faults a rare case. 2703 * 2704 * The implementation below would be much simpler if we just used a 2705 * standard mutex or completion: but we cannot take i_rwsem in fault, 2706 * and bloating every shmem inode for this unlikely case would be sad. 2707 */ 2708 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2709 { 2710 struct shmem_falloc *shmem_falloc; 2711 struct file *fpin = NULL; 2712 vm_fault_t ret = 0; 2713 2714 spin_lock(&inode->i_lock); 2715 shmem_falloc = inode->i_private; 2716 if (shmem_falloc && 2717 shmem_falloc->waitq && 2718 vmf->pgoff >= shmem_falloc->start && 2719 vmf->pgoff < shmem_falloc->next) { 2720 wait_queue_head_t *shmem_falloc_waitq; 2721 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2722 2723 ret = VM_FAULT_NOPAGE; 2724 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2725 shmem_falloc_waitq = shmem_falloc->waitq; 2726 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2727 TASK_UNINTERRUPTIBLE); 2728 spin_unlock(&inode->i_lock); 2729 schedule(); 2730 2731 /* 2732 * shmem_falloc_waitq points into the shmem_fallocate() 2733 * stack of the hole-punching task: shmem_falloc_waitq 2734 * is usually invalid by the time we reach here, but 2735 * finish_wait() does not dereference it in that case; 2736 * though i_lock needed lest racing with wake_up_all(). 2737 */ 2738 spin_lock(&inode->i_lock); 2739 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2740 } 2741 spin_unlock(&inode->i_lock); 2742 if (fpin) { 2743 fput(fpin); 2744 ret = VM_FAULT_RETRY; 2745 } 2746 return ret; 2747 } 2748 2749 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2750 { 2751 struct inode *inode = file_inode(vmf->vma->vm_file); 2752 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2753 struct folio *folio = NULL; 2754 vm_fault_t ret = 0; 2755 int err; 2756 2757 /* 2758 * Trinity finds that probing a hole which tmpfs is punching can 2759 * prevent the hole-punch from ever completing: noted in i_private. 2760 */ 2761 if (unlikely(inode->i_private)) { 2762 ret = shmem_falloc_wait(vmf, inode); 2763 if (ret) 2764 return ret; 2765 } 2766 2767 WARN_ON_ONCE(vmf->page != NULL); 2768 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2769 gfp, vmf, &ret); 2770 if (err) 2771 return vmf_error(err); 2772 if (folio) { 2773 vmf->page = folio_file_page(folio, vmf->pgoff); 2774 ret |= VM_FAULT_LOCKED; 2775 } 2776 return ret; 2777 } 2778 2779 unsigned long shmem_get_unmapped_area(struct file *file, 2780 unsigned long uaddr, unsigned long len, 2781 unsigned long pgoff, unsigned long flags) 2782 { 2783 unsigned long addr; 2784 unsigned long offset; 2785 unsigned long inflated_len; 2786 unsigned long inflated_addr; 2787 unsigned long inflated_offset; 2788 unsigned long hpage_size; 2789 2790 if (len > TASK_SIZE) 2791 return -ENOMEM; 2792 2793 addr = mm_get_unmapped_area(file, uaddr, len, pgoff, flags); 2794 2795 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2796 return addr; 2797 if (IS_ERR_VALUE(addr)) 2798 return addr; 2799 if (addr & ~PAGE_MASK) 2800 return addr; 2801 if (addr > TASK_SIZE - len) 2802 return addr; 2803 2804 if (shmem_huge == SHMEM_HUGE_DENY) 2805 return addr; 2806 if (flags & MAP_FIXED) 2807 return addr; 2808 /* 2809 * Our priority is to support MAP_SHARED mapped hugely; 2810 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2811 * But if caller specified an address hint and we allocated area there 2812 * successfully, respect that as before. 2813 */ 2814 if (uaddr == addr) 2815 return addr; 2816 2817 hpage_size = HPAGE_PMD_SIZE; 2818 if (shmem_huge != SHMEM_HUGE_FORCE) { 2819 struct super_block *sb; 2820 unsigned long __maybe_unused hpage_orders; 2821 int order = 0; 2822 2823 if (file) { 2824 VM_BUG_ON(file->f_op != &shmem_file_operations); 2825 sb = file_inode(file)->i_sb; 2826 } else { 2827 /* 2828 * Called directly from mm/mmap.c, or drivers/char/mem.c 2829 * for "/dev/zero", to create a shared anonymous object. 2830 */ 2831 if (IS_ERR(shm_mnt)) 2832 return addr; 2833 sb = shm_mnt->mnt_sb; 2834 2835 /* 2836 * Find the highest mTHP order used for anonymous shmem to 2837 * provide a suitable alignment address. 2838 */ 2839 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2840 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2841 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2842 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2843 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2844 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2845 2846 if (hpage_orders > 0) { 2847 order = highest_order(hpage_orders); 2848 hpage_size = PAGE_SIZE << order; 2849 } 2850 #endif 2851 } 2852 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2853 return addr; 2854 } 2855 2856 if (len < hpage_size) 2857 return addr; 2858 2859 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2860 if (offset && offset + len < 2 * hpage_size) 2861 return addr; 2862 if ((addr & (hpage_size - 1)) == offset) 2863 return addr; 2864 2865 inflated_len = len + hpage_size - PAGE_SIZE; 2866 if (inflated_len > TASK_SIZE) 2867 return addr; 2868 if (inflated_len < len) 2869 return addr; 2870 2871 inflated_addr = mm_get_unmapped_area(NULL, uaddr, inflated_len, 0, flags); 2872 if (IS_ERR_VALUE(inflated_addr)) 2873 return addr; 2874 if (inflated_addr & ~PAGE_MASK) 2875 return addr; 2876 2877 inflated_offset = inflated_addr & (hpage_size - 1); 2878 inflated_addr += offset - inflated_offset; 2879 if (inflated_offset > offset) 2880 inflated_addr += hpage_size; 2881 2882 if (inflated_addr > TASK_SIZE - len) 2883 return addr; 2884 return inflated_addr; 2885 } 2886 2887 #ifdef CONFIG_NUMA 2888 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2889 { 2890 struct inode *inode = file_inode(vma->vm_file); 2891 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2892 } 2893 2894 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2895 unsigned long addr, pgoff_t *ilx) 2896 { 2897 struct inode *inode = file_inode(vma->vm_file); 2898 pgoff_t index; 2899 2900 /* 2901 * Bias interleave by inode number to distribute better across nodes; 2902 * but this interface is independent of which page order is used, so 2903 * supplies only that bias, letting caller apply the offset (adjusted 2904 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2905 */ 2906 *ilx = inode->i_ino; 2907 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2908 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2909 } 2910 2911 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2912 pgoff_t index, unsigned int order, pgoff_t *ilx) 2913 { 2914 struct mempolicy *mpol; 2915 2916 /* Bias interleave by inode number to distribute better across nodes */ 2917 *ilx = info->vfs_inode.i_ino + (index >> order); 2918 2919 mpol = mpol_shared_policy_lookup(&info->policy, index); 2920 return mpol ? mpol : get_task_policy(current); 2921 } 2922 #else 2923 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2924 pgoff_t index, unsigned int order, pgoff_t *ilx) 2925 { 2926 *ilx = 0; 2927 return NULL; 2928 } 2929 #endif /* CONFIG_NUMA */ 2930 2931 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2932 { 2933 struct inode *inode = file_inode(file); 2934 struct shmem_inode_info *info = SHMEM_I(inode); 2935 int retval = -ENOMEM; 2936 2937 /* 2938 * What serializes the accesses to info->flags? 2939 * ipc_lock_object() when called from shmctl_do_lock(), 2940 * no serialization needed when called from shm_destroy(). 2941 */ 2942 if (lock && !(info->flags & SHMEM_F_LOCKED)) { 2943 if (!user_shm_lock(inode->i_size, ucounts)) 2944 goto out_nomem; 2945 info->flags |= SHMEM_F_LOCKED; 2946 mapping_set_unevictable(file->f_mapping); 2947 } 2948 if (!lock && (info->flags & SHMEM_F_LOCKED) && ucounts) { 2949 user_shm_unlock(inode->i_size, ucounts); 2950 info->flags &= ~SHMEM_F_LOCKED; 2951 mapping_clear_unevictable(file->f_mapping); 2952 } 2953 retval = 0; 2954 2955 out_nomem: 2956 return retval; 2957 } 2958 2959 static int shmem_mmap_prepare(struct vm_area_desc *desc) 2960 { 2961 struct file *file = desc->file; 2962 struct inode *inode = file_inode(file); 2963 2964 file_accessed(file); 2965 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2966 if (inode->i_nlink) 2967 desc->vm_ops = &shmem_vm_ops; 2968 else 2969 desc->vm_ops = &shmem_anon_vm_ops; 2970 return 0; 2971 } 2972 2973 static int shmem_file_open(struct inode *inode, struct file *file) 2974 { 2975 file->f_mode |= FMODE_CAN_ODIRECT; 2976 return generic_file_open(inode, file); 2977 } 2978 2979 #ifdef CONFIG_TMPFS_XATTR 2980 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2981 2982 #if IS_ENABLED(CONFIG_UNICODE) 2983 /* 2984 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 2985 * 2986 * The casefold file attribute needs some special checks. I can just be added to 2987 * an empty dir, and can't be removed from a non-empty dir. 2988 */ 2989 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2990 struct dentry *dentry, unsigned int *i_flags) 2991 { 2992 unsigned int old = inode->i_flags; 2993 struct super_block *sb = inode->i_sb; 2994 2995 if (fsflags & FS_CASEFOLD_FL) { 2996 if (!(old & S_CASEFOLD)) { 2997 if (!sb->s_encoding) 2998 return -EOPNOTSUPP; 2999 3000 if (!S_ISDIR(inode->i_mode)) 3001 return -ENOTDIR; 3002 3003 if (dentry && !simple_empty(dentry)) 3004 return -ENOTEMPTY; 3005 } 3006 3007 *i_flags = *i_flags | S_CASEFOLD; 3008 } else if (old & S_CASEFOLD) { 3009 if (dentry && !simple_empty(dentry)) 3010 return -ENOTEMPTY; 3011 } 3012 3013 return 0; 3014 } 3015 #else 3016 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 3017 struct dentry *dentry, unsigned int *i_flags) 3018 { 3019 if (fsflags & FS_CASEFOLD_FL) 3020 return -EOPNOTSUPP; 3021 3022 return 0; 3023 } 3024 #endif 3025 3026 /* 3027 * chattr's fsflags are unrelated to extended attributes, 3028 * but tmpfs has chosen to enable them under the same config option. 3029 */ 3030 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3031 { 3032 unsigned int i_flags = 0; 3033 int ret; 3034 3035 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 3036 if (ret) 3037 return ret; 3038 3039 if (fsflags & FS_NOATIME_FL) 3040 i_flags |= S_NOATIME; 3041 if (fsflags & FS_APPEND_FL) 3042 i_flags |= S_APPEND; 3043 if (fsflags & FS_IMMUTABLE_FL) 3044 i_flags |= S_IMMUTABLE; 3045 /* 3046 * But FS_NODUMP_FL does not require any action in i_flags. 3047 */ 3048 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 3049 3050 return 0; 3051 } 3052 #else 3053 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3054 { 3055 } 3056 #define shmem_initxattrs NULL 3057 #endif 3058 3059 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 3060 { 3061 return &SHMEM_I(inode)->dir_offsets; 3062 } 3063 3064 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 3065 struct super_block *sb, 3066 struct inode *dir, umode_t mode, 3067 dev_t dev, unsigned long flags) 3068 { 3069 struct inode *inode; 3070 struct shmem_inode_info *info; 3071 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3072 ino_t ino; 3073 int err; 3074 3075 err = shmem_reserve_inode(sb, &ino); 3076 if (err) 3077 return ERR_PTR(err); 3078 3079 inode = new_inode(sb); 3080 if (!inode) { 3081 shmem_free_inode(sb, 0); 3082 return ERR_PTR(-ENOSPC); 3083 } 3084 3085 inode->i_ino = ino; 3086 inode_init_owner(idmap, inode, dir, mode); 3087 inode->i_blocks = 0; 3088 simple_inode_init_ts(inode); 3089 inode->i_generation = get_random_u32(); 3090 info = SHMEM_I(inode); 3091 memset(info, 0, (char *)inode - (char *)info); 3092 spin_lock_init(&info->lock); 3093 atomic_set(&info->stop_eviction, 0); 3094 info->seals = F_SEAL_SEAL; 3095 info->flags = (flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0; 3096 info->i_crtime = inode_get_mtime(inode); 3097 info->fsflags = (dir == NULL) ? 0 : 3098 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 3099 if (info->fsflags) 3100 shmem_set_inode_flags(inode, info->fsflags, NULL); 3101 INIT_LIST_HEAD(&info->shrinklist); 3102 INIT_LIST_HEAD(&info->swaplist); 3103 simple_xattrs_init(&info->xattrs); 3104 cache_no_acl(inode); 3105 if (sbinfo->noswap) 3106 mapping_set_unevictable(inode->i_mapping); 3107 3108 /* Don't consider 'deny' for emergencies and 'force' for testing */ 3109 if (sbinfo->huge) 3110 mapping_set_large_folios(inode->i_mapping); 3111 3112 switch (mode & S_IFMT) { 3113 default: 3114 inode->i_op = &shmem_special_inode_operations; 3115 init_special_inode(inode, mode, dev); 3116 break; 3117 case S_IFREG: 3118 inode->i_mapping->a_ops = &shmem_aops; 3119 inode->i_op = &shmem_inode_operations; 3120 inode->i_fop = &shmem_file_operations; 3121 mpol_shared_policy_init(&info->policy, 3122 shmem_get_sbmpol(sbinfo)); 3123 break; 3124 case S_IFDIR: 3125 inc_nlink(inode); 3126 /* Some things misbehave if size == 0 on a directory */ 3127 inode->i_size = 2 * BOGO_DIRENT_SIZE; 3128 inode->i_op = &shmem_dir_inode_operations; 3129 inode->i_fop = &simple_offset_dir_operations; 3130 simple_offset_init(shmem_get_offset_ctx(inode)); 3131 break; 3132 case S_IFLNK: 3133 /* 3134 * Must not load anything in the rbtree, 3135 * mpol_free_shared_policy will not be called. 3136 */ 3137 mpol_shared_policy_init(&info->policy, NULL); 3138 break; 3139 } 3140 3141 lockdep_annotate_inode_mutex_key(inode); 3142 return inode; 3143 } 3144 3145 #ifdef CONFIG_TMPFS_QUOTA 3146 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3147 struct super_block *sb, struct inode *dir, 3148 umode_t mode, dev_t dev, unsigned long flags) 3149 { 3150 int err; 3151 struct inode *inode; 3152 3153 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3154 if (IS_ERR(inode)) 3155 return inode; 3156 3157 err = dquot_initialize(inode); 3158 if (err) 3159 goto errout; 3160 3161 err = dquot_alloc_inode(inode); 3162 if (err) { 3163 dquot_drop(inode); 3164 goto errout; 3165 } 3166 return inode; 3167 3168 errout: 3169 inode->i_flags |= S_NOQUOTA; 3170 iput(inode); 3171 return ERR_PTR(err); 3172 } 3173 #else 3174 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3175 struct super_block *sb, struct inode *dir, 3176 umode_t mode, dev_t dev, unsigned long flags) 3177 { 3178 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3179 } 3180 #endif /* CONFIG_TMPFS_QUOTA */ 3181 3182 #ifdef CONFIG_USERFAULTFD 3183 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 3184 struct vm_area_struct *dst_vma, 3185 unsigned long dst_addr, 3186 unsigned long src_addr, 3187 uffd_flags_t flags, 3188 struct folio **foliop) 3189 { 3190 struct inode *inode = file_inode(dst_vma->vm_file); 3191 struct shmem_inode_info *info = SHMEM_I(inode); 3192 struct address_space *mapping = inode->i_mapping; 3193 gfp_t gfp = mapping_gfp_mask(mapping); 3194 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 3195 void *page_kaddr; 3196 struct folio *folio; 3197 int ret; 3198 pgoff_t max_off; 3199 3200 if (shmem_inode_acct_blocks(inode, 1)) { 3201 /* 3202 * We may have got a page, returned -ENOENT triggering a retry, 3203 * and now we find ourselves with -ENOMEM. Release the page, to 3204 * avoid a BUG_ON in our caller. 3205 */ 3206 if (unlikely(*foliop)) { 3207 folio_put(*foliop); 3208 *foliop = NULL; 3209 } 3210 return -ENOMEM; 3211 } 3212 3213 if (!*foliop) { 3214 ret = -ENOMEM; 3215 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3216 if (!folio) 3217 goto out_unacct_blocks; 3218 3219 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3220 page_kaddr = kmap_local_folio(folio, 0); 3221 /* 3222 * The read mmap_lock is held here. Despite the 3223 * mmap_lock being read recursive a deadlock is still 3224 * possible if a writer has taken a lock. For example: 3225 * 3226 * process A thread 1 takes read lock on own mmap_lock 3227 * process A thread 2 calls mmap, blocks taking write lock 3228 * process B thread 1 takes page fault, read lock on own mmap lock 3229 * process B thread 2 calls mmap, blocks taking write lock 3230 * process A thread 1 blocks taking read lock on process B 3231 * process B thread 1 blocks taking read lock on process A 3232 * 3233 * Disable page faults to prevent potential deadlock 3234 * and retry the copy outside the mmap_lock. 3235 */ 3236 pagefault_disable(); 3237 ret = copy_from_user(page_kaddr, 3238 (const void __user *)src_addr, 3239 PAGE_SIZE); 3240 pagefault_enable(); 3241 kunmap_local(page_kaddr); 3242 3243 /* fallback to copy_from_user outside mmap_lock */ 3244 if (unlikely(ret)) { 3245 *foliop = folio; 3246 ret = -ENOENT; 3247 /* don't free the page */ 3248 goto out_unacct_blocks; 3249 } 3250 3251 flush_dcache_folio(folio); 3252 } else { /* ZEROPAGE */ 3253 clear_user_highpage(&folio->page, dst_addr); 3254 } 3255 } else { 3256 folio = *foliop; 3257 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3258 *foliop = NULL; 3259 } 3260 3261 VM_BUG_ON(folio_test_locked(folio)); 3262 VM_BUG_ON(folio_test_swapbacked(folio)); 3263 __folio_set_locked(folio); 3264 __folio_set_swapbacked(folio); 3265 __folio_mark_uptodate(folio); 3266 3267 ret = -EFAULT; 3268 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3269 if (unlikely(pgoff >= max_off)) 3270 goto out_release; 3271 3272 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3273 if (ret) 3274 goto out_release; 3275 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3276 if (ret) 3277 goto out_release; 3278 3279 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3280 &folio->page, true, flags); 3281 if (ret) 3282 goto out_delete_from_cache; 3283 3284 shmem_recalc_inode(inode, 1, 0); 3285 folio_unlock(folio); 3286 return 0; 3287 out_delete_from_cache: 3288 filemap_remove_folio(folio); 3289 out_release: 3290 folio_unlock(folio); 3291 folio_put(folio); 3292 out_unacct_blocks: 3293 shmem_inode_unacct_blocks(inode, 1); 3294 return ret; 3295 } 3296 #endif /* CONFIG_USERFAULTFD */ 3297 3298 #ifdef CONFIG_TMPFS 3299 static const struct inode_operations shmem_symlink_inode_operations; 3300 static const struct inode_operations shmem_short_symlink_operations; 3301 3302 static int 3303 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping, 3304 loff_t pos, unsigned len, 3305 struct folio **foliop, void **fsdata) 3306 { 3307 struct inode *inode = mapping->host; 3308 struct shmem_inode_info *info = SHMEM_I(inode); 3309 pgoff_t index = pos >> PAGE_SHIFT; 3310 struct folio *folio; 3311 int ret = 0; 3312 3313 /* i_rwsem is held by caller */ 3314 if (unlikely(info->seals & (F_SEAL_GROW | 3315 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3316 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3317 return -EPERM; 3318 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3319 return -EPERM; 3320 } 3321 3322 if (unlikely((info->flags & SHMEM_F_MAPPING_FROZEN) && 3323 pos + len > inode->i_size)) 3324 return -EPERM; 3325 3326 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3327 if (ret) 3328 return ret; 3329 3330 if (folio_contain_hwpoisoned_page(folio)) { 3331 folio_unlock(folio); 3332 folio_put(folio); 3333 return -EIO; 3334 } 3335 3336 *foliop = folio; 3337 return 0; 3338 } 3339 3340 static int 3341 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping, 3342 loff_t pos, unsigned len, unsigned copied, 3343 struct folio *folio, void *fsdata) 3344 { 3345 struct inode *inode = mapping->host; 3346 3347 if (pos + copied > inode->i_size) 3348 i_size_write(inode, pos + copied); 3349 3350 if (!folio_test_uptodate(folio)) { 3351 if (copied < folio_size(folio)) { 3352 size_t from = offset_in_folio(folio, pos); 3353 folio_zero_segments(folio, 0, from, 3354 from + copied, folio_size(folio)); 3355 } 3356 folio_mark_uptodate(folio); 3357 } 3358 folio_mark_dirty(folio); 3359 folio_unlock(folio); 3360 folio_put(folio); 3361 3362 return copied; 3363 } 3364 3365 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3366 { 3367 struct file *file = iocb->ki_filp; 3368 struct inode *inode = file_inode(file); 3369 struct address_space *mapping = inode->i_mapping; 3370 pgoff_t index; 3371 unsigned long offset; 3372 int error = 0; 3373 ssize_t retval = 0; 3374 3375 for (;;) { 3376 struct folio *folio = NULL; 3377 struct page *page = NULL; 3378 unsigned long nr, ret; 3379 loff_t end_offset, i_size = i_size_read(inode); 3380 bool fallback_page_copy = false; 3381 size_t fsize; 3382 3383 if (unlikely(iocb->ki_pos >= i_size)) 3384 break; 3385 3386 index = iocb->ki_pos >> PAGE_SHIFT; 3387 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3388 if (error) { 3389 if (error == -EINVAL) 3390 error = 0; 3391 break; 3392 } 3393 if (folio) { 3394 folio_unlock(folio); 3395 3396 page = folio_file_page(folio, index); 3397 if (PageHWPoison(page)) { 3398 folio_put(folio); 3399 error = -EIO; 3400 break; 3401 } 3402 3403 if (folio_test_large(folio) && 3404 folio_test_has_hwpoisoned(folio)) 3405 fallback_page_copy = true; 3406 } 3407 3408 /* 3409 * We must evaluate after, since reads (unlike writes) 3410 * are called without i_rwsem protection against truncate 3411 */ 3412 i_size = i_size_read(inode); 3413 if (unlikely(iocb->ki_pos >= i_size)) { 3414 if (folio) 3415 folio_put(folio); 3416 break; 3417 } 3418 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3419 if (folio && likely(!fallback_page_copy)) 3420 fsize = folio_size(folio); 3421 else 3422 fsize = PAGE_SIZE; 3423 offset = iocb->ki_pos & (fsize - 1); 3424 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3425 3426 if (folio) { 3427 /* 3428 * If users can be writing to this page using arbitrary 3429 * virtual addresses, take care about potential aliasing 3430 * before reading the page on the kernel side. 3431 */ 3432 if (mapping_writably_mapped(mapping)) { 3433 if (likely(!fallback_page_copy)) 3434 flush_dcache_folio(folio); 3435 else 3436 flush_dcache_page(page); 3437 } 3438 3439 /* 3440 * Mark the folio accessed if we read the beginning. 3441 */ 3442 if (!offset) 3443 folio_mark_accessed(folio); 3444 /* 3445 * Ok, we have the page, and it's up-to-date, so 3446 * now we can copy it to user space... 3447 */ 3448 if (likely(!fallback_page_copy)) 3449 ret = copy_folio_to_iter(folio, offset, nr, to); 3450 else 3451 ret = copy_page_to_iter(page, offset, nr, to); 3452 folio_put(folio); 3453 } else if (user_backed_iter(to)) { 3454 /* 3455 * Copy to user tends to be so well optimized, but 3456 * clear_user() not so much, that it is noticeably 3457 * faster to copy the zero page instead of clearing. 3458 */ 3459 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3460 } else { 3461 /* 3462 * But submitting the same page twice in a row to 3463 * splice() - or others? - can result in confusion: 3464 * so don't attempt that optimization on pipes etc. 3465 */ 3466 ret = iov_iter_zero(nr, to); 3467 } 3468 3469 retval += ret; 3470 iocb->ki_pos += ret; 3471 3472 if (!iov_iter_count(to)) 3473 break; 3474 if (ret < nr) { 3475 error = -EFAULT; 3476 break; 3477 } 3478 cond_resched(); 3479 } 3480 3481 file_accessed(file); 3482 return retval ? retval : error; 3483 } 3484 3485 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3486 { 3487 struct file *file = iocb->ki_filp; 3488 struct inode *inode = file->f_mapping->host; 3489 ssize_t ret; 3490 3491 inode_lock(inode); 3492 ret = generic_write_checks(iocb, from); 3493 if (ret <= 0) 3494 goto unlock; 3495 ret = file_remove_privs(file); 3496 if (ret) 3497 goto unlock; 3498 ret = file_update_time(file); 3499 if (ret) 3500 goto unlock; 3501 ret = generic_perform_write(iocb, from); 3502 unlock: 3503 inode_unlock(inode); 3504 return ret; 3505 } 3506 3507 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3508 struct pipe_buffer *buf) 3509 { 3510 return true; 3511 } 3512 3513 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3514 struct pipe_buffer *buf) 3515 { 3516 } 3517 3518 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3519 struct pipe_buffer *buf) 3520 { 3521 return false; 3522 } 3523 3524 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3525 .release = zero_pipe_buf_release, 3526 .try_steal = zero_pipe_buf_try_steal, 3527 .get = zero_pipe_buf_get, 3528 }; 3529 3530 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3531 loff_t fpos, size_t size) 3532 { 3533 size_t offset = fpos & ~PAGE_MASK; 3534 3535 size = min_t(size_t, size, PAGE_SIZE - offset); 3536 3537 if (!pipe_is_full(pipe)) { 3538 struct pipe_buffer *buf = pipe_head_buf(pipe); 3539 3540 *buf = (struct pipe_buffer) { 3541 .ops = &zero_pipe_buf_ops, 3542 .page = ZERO_PAGE(0), 3543 .offset = offset, 3544 .len = size, 3545 }; 3546 pipe->head++; 3547 } 3548 3549 return size; 3550 } 3551 3552 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3553 struct pipe_inode_info *pipe, 3554 size_t len, unsigned int flags) 3555 { 3556 struct inode *inode = file_inode(in); 3557 struct address_space *mapping = inode->i_mapping; 3558 struct folio *folio = NULL; 3559 size_t total_spliced = 0, used, npages, n, part; 3560 loff_t isize; 3561 int error = 0; 3562 3563 /* Work out how much data we can actually add into the pipe */ 3564 used = pipe_buf_usage(pipe); 3565 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3566 len = min_t(size_t, len, npages * PAGE_SIZE); 3567 3568 do { 3569 bool fallback_page_splice = false; 3570 struct page *page = NULL; 3571 pgoff_t index; 3572 size_t size; 3573 3574 if (*ppos >= i_size_read(inode)) 3575 break; 3576 3577 index = *ppos >> PAGE_SHIFT; 3578 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3579 if (error) { 3580 if (error == -EINVAL) 3581 error = 0; 3582 break; 3583 } 3584 if (folio) { 3585 folio_unlock(folio); 3586 3587 page = folio_file_page(folio, index); 3588 if (PageHWPoison(page)) { 3589 error = -EIO; 3590 break; 3591 } 3592 3593 if (folio_test_large(folio) && 3594 folio_test_has_hwpoisoned(folio)) 3595 fallback_page_splice = true; 3596 } 3597 3598 /* 3599 * i_size must be checked after we know the pages are Uptodate. 3600 * 3601 * Checking i_size after the check allows us to calculate 3602 * the correct value for "nr", which means the zero-filled 3603 * part of the page is not copied back to userspace (unless 3604 * another truncate extends the file - this is desired though). 3605 */ 3606 isize = i_size_read(inode); 3607 if (unlikely(*ppos >= isize)) 3608 break; 3609 /* 3610 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3611 * pages. 3612 */ 3613 size = len; 3614 if (unlikely(fallback_page_splice)) { 3615 size_t offset = *ppos & ~PAGE_MASK; 3616 3617 size = umin(size, PAGE_SIZE - offset); 3618 } 3619 part = min_t(loff_t, isize - *ppos, size); 3620 3621 if (folio) { 3622 /* 3623 * If users can be writing to this page using arbitrary 3624 * virtual addresses, take care about potential aliasing 3625 * before reading the page on the kernel side. 3626 */ 3627 if (mapping_writably_mapped(mapping)) { 3628 if (likely(!fallback_page_splice)) 3629 flush_dcache_folio(folio); 3630 else 3631 flush_dcache_page(page); 3632 } 3633 folio_mark_accessed(folio); 3634 /* 3635 * Ok, we have the page, and it's up-to-date, so we can 3636 * now splice it into the pipe. 3637 */ 3638 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3639 folio_put(folio); 3640 folio = NULL; 3641 } else { 3642 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3643 } 3644 3645 if (!n) 3646 break; 3647 len -= n; 3648 total_spliced += n; 3649 *ppos += n; 3650 in->f_ra.prev_pos = *ppos; 3651 if (pipe_is_full(pipe)) 3652 break; 3653 3654 cond_resched(); 3655 } while (len); 3656 3657 if (folio) 3658 folio_put(folio); 3659 3660 file_accessed(in); 3661 return total_spliced ? total_spliced : error; 3662 } 3663 3664 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3665 { 3666 struct address_space *mapping = file->f_mapping; 3667 struct inode *inode = mapping->host; 3668 3669 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3670 return generic_file_llseek_size(file, offset, whence, 3671 MAX_LFS_FILESIZE, i_size_read(inode)); 3672 if (offset < 0) 3673 return -ENXIO; 3674 3675 inode_lock(inode); 3676 /* We're holding i_rwsem so we can access i_size directly */ 3677 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3678 if (offset >= 0) 3679 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3680 inode_unlock(inode); 3681 return offset; 3682 } 3683 3684 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3685 loff_t len) 3686 { 3687 struct inode *inode = file_inode(file); 3688 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3689 struct shmem_inode_info *info = SHMEM_I(inode); 3690 struct shmem_falloc shmem_falloc; 3691 pgoff_t start, index, end, undo_fallocend; 3692 int error; 3693 3694 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3695 return -EOPNOTSUPP; 3696 3697 inode_lock(inode); 3698 3699 if (info->flags & SHMEM_F_MAPPING_FROZEN) { 3700 error = -EPERM; 3701 goto out; 3702 } 3703 3704 if (mode & FALLOC_FL_PUNCH_HOLE) { 3705 struct address_space *mapping = file->f_mapping; 3706 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3707 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3708 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3709 3710 /* protected by i_rwsem */ 3711 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3712 error = -EPERM; 3713 goto out; 3714 } 3715 3716 shmem_falloc.waitq = &shmem_falloc_waitq; 3717 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3718 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3719 spin_lock(&inode->i_lock); 3720 inode->i_private = &shmem_falloc; 3721 spin_unlock(&inode->i_lock); 3722 3723 if ((u64)unmap_end > (u64)unmap_start) 3724 unmap_mapping_range(mapping, unmap_start, 3725 1 + unmap_end - unmap_start, 0); 3726 shmem_truncate_range(inode, offset, offset + len - 1); 3727 /* No need to unmap again: hole-punching leaves COWed pages */ 3728 3729 spin_lock(&inode->i_lock); 3730 inode->i_private = NULL; 3731 wake_up_all(&shmem_falloc_waitq); 3732 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3733 spin_unlock(&inode->i_lock); 3734 error = 0; 3735 goto out; 3736 } 3737 3738 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3739 error = inode_newsize_ok(inode, offset + len); 3740 if (error) 3741 goto out; 3742 3743 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3744 error = -EPERM; 3745 goto out; 3746 } 3747 3748 start = offset >> PAGE_SHIFT; 3749 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3750 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3751 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3752 error = -ENOSPC; 3753 goto out; 3754 } 3755 3756 shmem_falloc.waitq = NULL; 3757 shmem_falloc.start = start; 3758 shmem_falloc.next = start; 3759 shmem_falloc.nr_falloced = 0; 3760 shmem_falloc.nr_unswapped = 0; 3761 spin_lock(&inode->i_lock); 3762 inode->i_private = &shmem_falloc; 3763 spin_unlock(&inode->i_lock); 3764 3765 /* 3766 * info->fallocend is only relevant when huge pages might be 3767 * involved: to prevent split_huge_page() freeing fallocated 3768 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3769 */ 3770 undo_fallocend = info->fallocend; 3771 if (info->fallocend < end) 3772 info->fallocend = end; 3773 3774 for (index = start; index < end; ) { 3775 struct folio *folio; 3776 3777 /* 3778 * Check for fatal signal so that we abort early in OOM 3779 * situations. We don't want to abort in case of non-fatal 3780 * signals as large fallocate can take noticeable time and 3781 * e.g. periodic timers may result in fallocate constantly 3782 * restarting. 3783 */ 3784 if (fatal_signal_pending(current)) 3785 error = -EINTR; 3786 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3787 error = -ENOMEM; 3788 else 3789 error = shmem_get_folio(inode, index, offset + len, 3790 &folio, SGP_FALLOC); 3791 if (error) { 3792 info->fallocend = undo_fallocend; 3793 /* Remove the !uptodate folios we added */ 3794 if (index > start) { 3795 shmem_undo_range(inode, 3796 (loff_t)start << PAGE_SHIFT, 3797 ((loff_t)index << PAGE_SHIFT) - 1, true); 3798 } 3799 goto undone; 3800 } 3801 3802 /* 3803 * Here is a more important optimization than it appears: 3804 * a second SGP_FALLOC on the same large folio will clear it, 3805 * making it uptodate and un-undoable if we fail later. 3806 */ 3807 index = folio_next_index(folio); 3808 /* Beware 32-bit wraparound */ 3809 if (!index) 3810 index--; 3811 3812 /* 3813 * Inform shmem_writeout() how far we have reached. 3814 * No need for lock or barrier: we have the page lock. 3815 */ 3816 if (!folio_test_uptodate(folio)) 3817 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3818 shmem_falloc.next = index; 3819 3820 /* 3821 * If !uptodate, leave it that way so that freeable folios 3822 * can be recognized if we need to rollback on error later. 3823 * But mark it dirty so that memory pressure will swap rather 3824 * than free the folios we are allocating (and SGP_CACHE folios 3825 * might still be clean: we now need to mark those dirty too). 3826 */ 3827 folio_mark_dirty(folio); 3828 folio_unlock(folio); 3829 folio_put(folio); 3830 cond_resched(); 3831 } 3832 3833 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3834 i_size_write(inode, offset + len); 3835 undone: 3836 spin_lock(&inode->i_lock); 3837 inode->i_private = NULL; 3838 spin_unlock(&inode->i_lock); 3839 out: 3840 if (!error) 3841 file_modified(file); 3842 inode_unlock(inode); 3843 return error; 3844 } 3845 3846 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3847 { 3848 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3849 3850 buf->f_type = TMPFS_MAGIC; 3851 buf->f_bsize = PAGE_SIZE; 3852 buf->f_namelen = NAME_MAX; 3853 if (sbinfo->max_blocks) { 3854 buf->f_blocks = sbinfo->max_blocks; 3855 buf->f_bavail = 3856 buf->f_bfree = sbinfo->max_blocks - 3857 percpu_counter_sum(&sbinfo->used_blocks); 3858 } 3859 if (sbinfo->max_inodes) { 3860 buf->f_files = sbinfo->max_inodes; 3861 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3862 } 3863 /* else leave those fields 0 like simple_statfs */ 3864 3865 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3866 3867 return 0; 3868 } 3869 3870 /* 3871 * File creation. Allocate an inode, and we're done.. 3872 */ 3873 static int 3874 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3875 struct dentry *dentry, umode_t mode, dev_t dev) 3876 { 3877 struct inode *inode; 3878 int error; 3879 3880 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3881 return -EINVAL; 3882 3883 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3884 if (IS_ERR(inode)) 3885 return PTR_ERR(inode); 3886 3887 error = simple_acl_create(dir, inode); 3888 if (error) 3889 goto out_iput; 3890 error = security_inode_init_security(inode, dir, &dentry->d_name, 3891 shmem_initxattrs, NULL); 3892 if (error && error != -EOPNOTSUPP) 3893 goto out_iput; 3894 3895 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3896 if (error) 3897 goto out_iput; 3898 3899 dir->i_size += BOGO_DIRENT_SIZE; 3900 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3901 inode_inc_iversion(dir); 3902 3903 d_make_persistent(dentry, inode); 3904 return error; 3905 3906 out_iput: 3907 iput(inode); 3908 return error; 3909 } 3910 3911 static int 3912 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3913 struct file *file, umode_t mode) 3914 { 3915 struct inode *inode; 3916 int error; 3917 3918 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3919 if (IS_ERR(inode)) { 3920 error = PTR_ERR(inode); 3921 goto err_out; 3922 } 3923 error = security_inode_init_security(inode, dir, NULL, 3924 shmem_initxattrs, NULL); 3925 if (error && error != -EOPNOTSUPP) 3926 goto out_iput; 3927 error = simple_acl_create(dir, inode); 3928 if (error) 3929 goto out_iput; 3930 d_tmpfile(file, inode); 3931 3932 err_out: 3933 return finish_open_simple(file, error); 3934 out_iput: 3935 iput(inode); 3936 return error; 3937 } 3938 3939 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3940 struct dentry *dentry, umode_t mode) 3941 { 3942 int error; 3943 3944 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3945 if (error) 3946 return ERR_PTR(error); 3947 inc_nlink(dir); 3948 return NULL; 3949 } 3950 3951 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3952 struct dentry *dentry, umode_t mode, bool excl) 3953 { 3954 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3955 } 3956 3957 /* 3958 * Link a file.. 3959 */ 3960 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3961 struct dentry *dentry) 3962 { 3963 struct inode *inode = d_inode(old_dentry); 3964 int ret; 3965 3966 /* 3967 * No ordinary (disk based) filesystem counts links as inodes; 3968 * but each new link needs a new dentry, pinning lowmem, and 3969 * tmpfs dentries cannot be pruned until they are unlinked. 3970 * But if an O_TMPFILE file is linked into the tmpfs, the 3971 * first link must skip that, to get the accounting right. 3972 */ 3973 if (inode->i_nlink) { 3974 ret = shmem_reserve_inode(inode->i_sb, NULL); 3975 if (ret) 3976 return ret; 3977 } 3978 3979 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3980 if (ret) { 3981 if (inode->i_nlink) 3982 shmem_free_inode(inode->i_sb, 0); 3983 return ret; 3984 } 3985 3986 dir->i_size += BOGO_DIRENT_SIZE; 3987 inode_inc_iversion(dir); 3988 return simple_link(old_dentry, dir, dentry); 3989 } 3990 3991 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3992 { 3993 struct inode *inode = d_inode(dentry); 3994 3995 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3996 shmem_free_inode(inode->i_sb, 0); 3997 3998 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3999 4000 dir->i_size -= BOGO_DIRENT_SIZE; 4001 inode_inc_iversion(dir); 4002 simple_unlink(dir, dentry); 4003 4004 /* 4005 * For now, VFS can't deal with case-insensitive negative dentries, so 4006 * we invalidate them 4007 */ 4008 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4009 d_invalidate(dentry); 4010 4011 return 0; 4012 } 4013 4014 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 4015 { 4016 if (!simple_empty(dentry)) 4017 return -ENOTEMPTY; 4018 4019 drop_nlink(d_inode(dentry)); 4020 drop_nlink(dir); 4021 return shmem_unlink(dir, dentry); 4022 } 4023 4024 static int shmem_whiteout(struct mnt_idmap *idmap, 4025 struct inode *old_dir, struct dentry *old_dentry) 4026 { 4027 struct dentry *whiteout; 4028 int error; 4029 4030 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 4031 if (!whiteout) 4032 return -ENOMEM; 4033 error = shmem_mknod(idmap, old_dir, whiteout, 4034 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4035 dput(whiteout); 4036 return error; 4037 } 4038 4039 /* 4040 * The VFS layer already does all the dentry stuff for rename, 4041 * we just have to decrement the usage count for the target if 4042 * it exists so that the VFS layer correctly free's it when it 4043 * gets overwritten. 4044 */ 4045 static int shmem_rename2(struct mnt_idmap *idmap, 4046 struct inode *old_dir, struct dentry *old_dentry, 4047 struct inode *new_dir, struct dentry *new_dentry, 4048 unsigned int flags) 4049 { 4050 struct inode *inode = d_inode(old_dentry); 4051 int they_are_dirs = S_ISDIR(inode->i_mode); 4052 bool had_offset = false; 4053 int error; 4054 4055 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4056 return -EINVAL; 4057 4058 if (flags & RENAME_EXCHANGE) 4059 return simple_offset_rename_exchange(old_dir, old_dentry, 4060 new_dir, new_dentry); 4061 4062 if (!simple_empty(new_dentry)) 4063 return -ENOTEMPTY; 4064 4065 error = simple_offset_add(shmem_get_offset_ctx(new_dir), new_dentry); 4066 if (error == -EBUSY) 4067 had_offset = true; 4068 else if (unlikely(error)) 4069 return error; 4070 4071 if (flags & RENAME_WHITEOUT) { 4072 error = shmem_whiteout(idmap, old_dir, old_dentry); 4073 if (error) { 4074 if (!had_offset) 4075 simple_offset_remove(shmem_get_offset_ctx(new_dir), 4076 new_dentry); 4077 return error; 4078 } 4079 } 4080 4081 simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 4082 if (d_really_is_positive(new_dentry)) { 4083 (void) shmem_unlink(new_dir, new_dentry); 4084 if (they_are_dirs) { 4085 drop_nlink(d_inode(new_dentry)); 4086 drop_nlink(old_dir); 4087 } 4088 } else if (they_are_dirs) { 4089 drop_nlink(old_dir); 4090 inc_nlink(new_dir); 4091 } 4092 4093 old_dir->i_size -= BOGO_DIRENT_SIZE; 4094 new_dir->i_size += BOGO_DIRENT_SIZE; 4095 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 4096 inode_inc_iversion(old_dir); 4097 inode_inc_iversion(new_dir); 4098 return 0; 4099 } 4100 4101 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 4102 struct dentry *dentry, const char *symname) 4103 { 4104 int error; 4105 int len; 4106 struct inode *inode; 4107 struct folio *folio; 4108 char *link; 4109 4110 len = strlen(symname) + 1; 4111 if (len > PAGE_SIZE) 4112 return -ENAMETOOLONG; 4113 4114 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 4115 VM_NORESERVE); 4116 if (IS_ERR(inode)) 4117 return PTR_ERR(inode); 4118 4119 error = security_inode_init_security(inode, dir, &dentry->d_name, 4120 shmem_initxattrs, NULL); 4121 if (error && error != -EOPNOTSUPP) 4122 goto out_iput; 4123 4124 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4125 if (error) 4126 goto out_iput; 4127 4128 inode->i_size = len-1; 4129 if (len <= SHORT_SYMLINK_LEN) { 4130 link = kmemdup(symname, len, GFP_KERNEL); 4131 if (!link) { 4132 error = -ENOMEM; 4133 goto out_remove_offset; 4134 } 4135 inode->i_op = &shmem_short_symlink_operations; 4136 inode_set_cached_link(inode, link, len - 1); 4137 } else { 4138 inode_nohighmem(inode); 4139 inode->i_mapping->a_ops = &shmem_aops; 4140 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 4141 if (error) 4142 goto out_remove_offset; 4143 inode->i_op = &shmem_symlink_inode_operations; 4144 memcpy(folio_address(folio), symname, len); 4145 folio_mark_uptodate(folio); 4146 folio_mark_dirty(folio); 4147 folio_unlock(folio); 4148 folio_put(folio); 4149 } 4150 dir->i_size += BOGO_DIRENT_SIZE; 4151 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 4152 inode_inc_iversion(dir); 4153 d_make_persistent(dentry, inode); 4154 return 0; 4155 4156 out_remove_offset: 4157 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4158 out_iput: 4159 iput(inode); 4160 return error; 4161 } 4162 4163 static void shmem_put_link(void *arg) 4164 { 4165 folio_mark_accessed(arg); 4166 folio_put(arg); 4167 } 4168 4169 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 4170 struct delayed_call *done) 4171 { 4172 struct folio *folio = NULL; 4173 int error; 4174 4175 if (!dentry) { 4176 folio = filemap_get_folio(inode->i_mapping, 0); 4177 if (IS_ERR(folio)) 4178 return ERR_PTR(-ECHILD); 4179 if (PageHWPoison(folio_page(folio, 0)) || 4180 !folio_test_uptodate(folio)) { 4181 folio_put(folio); 4182 return ERR_PTR(-ECHILD); 4183 } 4184 } else { 4185 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 4186 if (error) 4187 return ERR_PTR(error); 4188 if (!folio) 4189 return ERR_PTR(-ECHILD); 4190 if (PageHWPoison(folio_page(folio, 0))) { 4191 folio_unlock(folio); 4192 folio_put(folio); 4193 return ERR_PTR(-ECHILD); 4194 } 4195 folio_unlock(folio); 4196 } 4197 set_delayed_call(done, shmem_put_link, folio); 4198 return folio_address(folio); 4199 } 4200 4201 #ifdef CONFIG_TMPFS_XATTR 4202 4203 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa) 4204 { 4205 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4206 4207 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4208 4209 return 0; 4210 } 4211 4212 static int shmem_fileattr_set(struct mnt_idmap *idmap, 4213 struct dentry *dentry, struct file_kattr *fa) 4214 { 4215 struct inode *inode = d_inode(dentry); 4216 struct shmem_inode_info *info = SHMEM_I(inode); 4217 int ret, flags; 4218 4219 if (fileattr_has_fsx(fa)) 4220 return -EOPNOTSUPP; 4221 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4222 return -EOPNOTSUPP; 4223 4224 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4225 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4226 4227 ret = shmem_set_inode_flags(inode, flags, dentry); 4228 4229 if (ret) 4230 return ret; 4231 4232 info->fsflags = flags; 4233 4234 inode_set_ctime_current(inode); 4235 inode_inc_iversion(inode); 4236 return 0; 4237 } 4238 4239 /* 4240 * Superblocks without xattr inode operations may get some security.* xattr 4241 * support from the LSM "for free". As soon as we have any other xattrs 4242 * like ACLs, we also need to implement the security.* handlers at 4243 * filesystem level, though. 4244 */ 4245 4246 /* 4247 * Callback for security_inode_init_security() for acquiring xattrs. 4248 */ 4249 static int shmem_initxattrs(struct inode *inode, 4250 const struct xattr *xattr_array, void *fs_info) 4251 { 4252 struct shmem_inode_info *info = SHMEM_I(inode); 4253 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4254 const struct xattr *xattr; 4255 struct simple_xattr *new_xattr; 4256 size_t ispace = 0; 4257 size_t len; 4258 4259 if (sbinfo->max_inodes) { 4260 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4261 ispace += simple_xattr_space(xattr->name, 4262 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4263 } 4264 if (ispace) { 4265 raw_spin_lock(&sbinfo->stat_lock); 4266 if (sbinfo->free_ispace < ispace) 4267 ispace = 0; 4268 else 4269 sbinfo->free_ispace -= ispace; 4270 raw_spin_unlock(&sbinfo->stat_lock); 4271 if (!ispace) 4272 return -ENOSPC; 4273 } 4274 } 4275 4276 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4277 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4278 if (!new_xattr) 4279 break; 4280 4281 len = strlen(xattr->name) + 1; 4282 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4283 GFP_KERNEL_ACCOUNT); 4284 if (!new_xattr->name) { 4285 kvfree(new_xattr); 4286 break; 4287 } 4288 4289 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4290 XATTR_SECURITY_PREFIX_LEN); 4291 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4292 xattr->name, len); 4293 4294 simple_xattr_add(&info->xattrs, new_xattr); 4295 } 4296 4297 if (xattr->name != NULL) { 4298 if (ispace) { 4299 raw_spin_lock(&sbinfo->stat_lock); 4300 sbinfo->free_ispace += ispace; 4301 raw_spin_unlock(&sbinfo->stat_lock); 4302 } 4303 simple_xattrs_free(&info->xattrs, NULL); 4304 return -ENOMEM; 4305 } 4306 4307 return 0; 4308 } 4309 4310 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4311 struct dentry *unused, struct inode *inode, 4312 const char *name, void *buffer, size_t size) 4313 { 4314 struct shmem_inode_info *info = SHMEM_I(inode); 4315 4316 name = xattr_full_name(handler, name); 4317 return simple_xattr_get(&info->xattrs, name, buffer, size); 4318 } 4319 4320 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4321 struct mnt_idmap *idmap, 4322 struct dentry *unused, struct inode *inode, 4323 const char *name, const void *value, 4324 size_t size, int flags) 4325 { 4326 struct shmem_inode_info *info = SHMEM_I(inode); 4327 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4328 struct simple_xattr *old_xattr; 4329 size_t ispace = 0; 4330 4331 name = xattr_full_name(handler, name); 4332 if (value && sbinfo->max_inodes) { 4333 ispace = simple_xattr_space(name, size); 4334 raw_spin_lock(&sbinfo->stat_lock); 4335 if (sbinfo->free_ispace < ispace) 4336 ispace = 0; 4337 else 4338 sbinfo->free_ispace -= ispace; 4339 raw_spin_unlock(&sbinfo->stat_lock); 4340 if (!ispace) 4341 return -ENOSPC; 4342 } 4343 4344 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4345 if (!IS_ERR(old_xattr)) { 4346 ispace = 0; 4347 if (old_xattr && sbinfo->max_inodes) 4348 ispace = simple_xattr_space(old_xattr->name, 4349 old_xattr->size); 4350 simple_xattr_free(old_xattr); 4351 old_xattr = NULL; 4352 inode_set_ctime_current(inode); 4353 inode_inc_iversion(inode); 4354 } 4355 if (ispace) { 4356 raw_spin_lock(&sbinfo->stat_lock); 4357 sbinfo->free_ispace += ispace; 4358 raw_spin_unlock(&sbinfo->stat_lock); 4359 } 4360 return PTR_ERR(old_xattr); 4361 } 4362 4363 static const struct xattr_handler shmem_security_xattr_handler = { 4364 .prefix = XATTR_SECURITY_PREFIX, 4365 .get = shmem_xattr_handler_get, 4366 .set = shmem_xattr_handler_set, 4367 }; 4368 4369 static const struct xattr_handler shmem_trusted_xattr_handler = { 4370 .prefix = XATTR_TRUSTED_PREFIX, 4371 .get = shmem_xattr_handler_get, 4372 .set = shmem_xattr_handler_set, 4373 }; 4374 4375 static const struct xattr_handler shmem_user_xattr_handler = { 4376 .prefix = XATTR_USER_PREFIX, 4377 .get = shmem_xattr_handler_get, 4378 .set = shmem_xattr_handler_set, 4379 }; 4380 4381 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4382 &shmem_security_xattr_handler, 4383 &shmem_trusted_xattr_handler, 4384 &shmem_user_xattr_handler, 4385 NULL 4386 }; 4387 4388 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4389 { 4390 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4391 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4392 } 4393 #endif /* CONFIG_TMPFS_XATTR */ 4394 4395 static const struct inode_operations shmem_short_symlink_operations = { 4396 .getattr = shmem_getattr, 4397 .setattr = shmem_setattr, 4398 .get_link = simple_get_link, 4399 #ifdef CONFIG_TMPFS_XATTR 4400 .listxattr = shmem_listxattr, 4401 #endif 4402 }; 4403 4404 static const struct inode_operations shmem_symlink_inode_operations = { 4405 .getattr = shmem_getattr, 4406 .setattr = shmem_setattr, 4407 .get_link = shmem_get_link, 4408 #ifdef CONFIG_TMPFS_XATTR 4409 .listxattr = shmem_listxattr, 4410 #endif 4411 }; 4412 4413 static struct dentry *shmem_get_parent(struct dentry *child) 4414 { 4415 return ERR_PTR(-ESTALE); 4416 } 4417 4418 static int shmem_match(struct inode *ino, void *vfh) 4419 { 4420 __u32 *fh = vfh; 4421 __u64 inum = fh[2]; 4422 inum = (inum << 32) | fh[1]; 4423 return ino->i_ino == inum && fh[0] == ino->i_generation; 4424 } 4425 4426 /* Find any alias of inode, but prefer a hashed alias */ 4427 static struct dentry *shmem_find_alias(struct inode *inode) 4428 { 4429 struct dentry *alias = d_find_alias(inode); 4430 4431 return alias ?: d_find_any_alias(inode); 4432 } 4433 4434 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4435 struct fid *fid, int fh_len, int fh_type) 4436 { 4437 struct inode *inode; 4438 struct dentry *dentry = NULL; 4439 u64 inum; 4440 4441 if (fh_len < 3) 4442 return NULL; 4443 4444 inum = fid->raw[2]; 4445 inum = (inum << 32) | fid->raw[1]; 4446 4447 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4448 shmem_match, fid->raw); 4449 if (inode) { 4450 dentry = shmem_find_alias(inode); 4451 iput(inode); 4452 } 4453 4454 return dentry; 4455 } 4456 4457 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4458 struct inode *parent) 4459 { 4460 if (*len < 3) { 4461 *len = 3; 4462 return FILEID_INVALID; 4463 } 4464 4465 if (inode_unhashed(inode)) { 4466 /* Unfortunately insert_inode_hash is not idempotent, 4467 * so as we hash inodes here rather than at creation 4468 * time, we need a lock to ensure we only try 4469 * to do it once 4470 */ 4471 static DEFINE_SPINLOCK(lock); 4472 spin_lock(&lock); 4473 if (inode_unhashed(inode)) 4474 __insert_inode_hash(inode, 4475 inode->i_ino + inode->i_generation); 4476 spin_unlock(&lock); 4477 } 4478 4479 fh[0] = inode->i_generation; 4480 fh[1] = inode->i_ino; 4481 fh[2] = ((__u64)inode->i_ino) >> 32; 4482 4483 *len = 3; 4484 return 1; 4485 } 4486 4487 static const struct export_operations shmem_export_ops = { 4488 .get_parent = shmem_get_parent, 4489 .encode_fh = shmem_encode_fh, 4490 .fh_to_dentry = shmem_fh_to_dentry, 4491 }; 4492 4493 enum shmem_param { 4494 Opt_gid, 4495 Opt_huge, 4496 Opt_mode, 4497 Opt_mpol, 4498 Opt_nr_blocks, 4499 Opt_nr_inodes, 4500 Opt_size, 4501 Opt_uid, 4502 Opt_inode32, 4503 Opt_inode64, 4504 Opt_noswap, 4505 Opt_quota, 4506 Opt_usrquota, 4507 Opt_grpquota, 4508 Opt_usrquota_block_hardlimit, 4509 Opt_usrquota_inode_hardlimit, 4510 Opt_grpquota_block_hardlimit, 4511 Opt_grpquota_inode_hardlimit, 4512 Opt_casefold_version, 4513 Opt_casefold, 4514 Opt_strict_encoding, 4515 }; 4516 4517 static const struct constant_table shmem_param_enums_huge[] = { 4518 {"never", SHMEM_HUGE_NEVER }, 4519 {"always", SHMEM_HUGE_ALWAYS }, 4520 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4521 {"advise", SHMEM_HUGE_ADVISE }, 4522 {} 4523 }; 4524 4525 const struct fs_parameter_spec shmem_fs_parameters[] = { 4526 fsparam_gid ("gid", Opt_gid), 4527 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4528 fsparam_u32oct("mode", Opt_mode), 4529 fsparam_string("mpol", Opt_mpol), 4530 fsparam_string("nr_blocks", Opt_nr_blocks), 4531 fsparam_string("nr_inodes", Opt_nr_inodes), 4532 fsparam_string("size", Opt_size), 4533 fsparam_uid ("uid", Opt_uid), 4534 fsparam_flag ("inode32", Opt_inode32), 4535 fsparam_flag ("inode64", Opt_inode64), 4536 fsparam_flag ("noswap", Opt_noswap), 4537 #ifdef CONFIG_TMPFS_QUOTA 4538 fsparam_flag ("quota", Opt_quota), 4539 fsparam_flag ("usrquota", Opt_usrquota), 4540 fsparam_flag ("grpquota", Opt_grpquota), 4541 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4542 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4543 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4544 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4545 #endif 4546 fsparam_string("casefold", Opt_casefold_version), 4547 fsparam_flag ("casefold", Opt_casefold), 4548 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4549 {} 4550 }; 4551 4552 #if IS_ENABLED(CONFIG_UNICODE) 4553 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4554 bool latest_version) 4555 { 4556 struct shmem_options *ctx = fc->fs_private; 4557 int version = UTF8_LATEST; 4558 struct unicode_map *encoding; 4559 char *version_str = param->string + 5; 4560 4561 if (!latest_version) { 4562 if (strncmp(param->string, "utf8-", 5)) 4563 return invalfc(fc, "Only UTF-8 encodings are supported " 4564 "in the format: utf8-<version number>"); 4565 4566 version = utf8_parse_version(version_str); 4567 if (version < 0) 4568 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4569 } 4570 4571 encoding = utf8_load(version); 4572 4573 if (IS_ERR(encoding)) { 4574 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4575 unicode_major(version), unicode_minor(version), 4576 unicode_rev(version)); 4577 } 4578 4579 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4580 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4581 4582 ctx->encoding = encoding; 4583 4584 return 0; 4585 } 4586 #else 4587 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4588 bool latest_version) 4589 { 4590 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4591 } 4592 #endif 4593 4594 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4595 { 4596 struct shmem_options *ctx = fc->fs_private; 4597 struct fs_parse_result result; 4598 unsigned long long size; 4599 char *rest; 4600 int opt; 4601 kuid_t kuid; 4602 kgid_t kgid; 4603 4604 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4605 if (opt < 0) 4606 return opt; 4607 4608 switch (opt) { 4609 case Opt_size: 4610 size = memparse(param->string, &rest); 4611 if (*rest == '%') { 4612 size <<= PAGE_SHIFT; 4613 size *= totalram_pages(); 4614 do_div(size, 100); 4615 rest++; 4616 } 4617 if (*rest) 4618 goto bad_value; 4619 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4620 ctx->seen |= SHMEM_SEEN_BLOCKS; 4621 break; 4622 case Opt_nr_blocks: 4623 ctx->blocks = memparse(param->string, &rest); 4624 if (*rest || ctx->blocks > LONG_MAX) 4625 goto bad_value; 4626 ctx->seen |= SHMEM_SEEN_BLOCKS; 4627 break; 4628 case Opt_nr_inodes: 4629 ctx->inodes = memparse(param->string, &rest); 4630 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4631 goto bad_value; 4632 ctx->seen |= SHMEM_SEEN_INODES; 4633 break; 4634 case Opt_mode: 4635 ctx->mode = result.uint_32 & 07777; 4636 break; 4637 case Opt_uid: 4638 kuid = result.uid; 4639 4640 /* 4641 * The requested uid must be representable in the 4642 * filesystem's idmapping. 4643 */ 4644 if (!kuid_has_mapping(fc->user_ns, kuid)) 4645 goto bad_value; 4646 4647 ctx->uid = kuid; 4648 break; 4649 case Opt_gid: 4650 kgid = result.gid; 4651 4652 /* 4653 * The requested gid must be representable in the 4654 * filesystem's idmapping. 4655 */ 4656 if (!kgid_has_mapping(fc->user_ns, kgid)) 4657 goto bad_value; 4658 4659 ctx->gid = kgid; 4660 break; 4661 case Opt_huge: 4662 ctx->huge = result.uint_32; 4663 if (ctx->huge != SHMEM_HUGE_NEVER && 4664 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4665 has_transparent_hugepage())) 4666 goto unsupported_parameter; 4667 ctx->seen |= SHMEM_SEEN_HUGE; 4668 break; 4669 case Opt_mpol: 4670 if (IS_ENABLED(CONFIG_NUMA)) { 4671 mpol_put(ctx->mpol); 4672 ctx->mpol = NULL; 4673 if (mpol_parse_str(param->string, &ctx->mpol)) 4674 goto bad_value; 4675 break; 4676 } 4677 goto unsupported_parameter; 4678 case Opt_inode32: 4679 ctx->full_inums = false; 4680 ctx->seen |= SHMEM_SEEN_INUMS; 4681 break; 4682 case Opt_inode64: 4683 if (sizeof(ino_t) < 8) { 4684 return invalfc(fc, 4685 "Cannot use inode64 with <64bit inums in kernel\n"); 4686 } 4687 ctx->full_inums = true; 4688 ctx->seen |= SHMEM_SEEN_INUMS; 4689 break; 4690 case Opt_noswap: 4691 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4692 return invalfc(fc, 4693 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4694 } 4695 ctx->noswap = true; 4696 break; 4697 case Opt_quota: 4698 if (fc->user_ns != &init_user_ns) 4699 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4700 ctx->seen |= SHMEM_SEEN_QUOTA; 4701 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4702 break; 4703 case Opt_usrquota: 4704 if (fc->user_ns != &init_user_ns) 4705 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4706 ctx->seen |= SHMEM_SEEN_QUOTA; 4707 ctx->quota_types |= QTYPE_MASK_USR; 4708 break; 4709 case Opt_grpquota: 4710 if (fc->user_ns != &init_user_ns) 4711 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4712 ctx->seen |= SHMEM_SEEN_QUOTA; 4713 ctx->quota_types |= QTYPE_MASK_GRP; 4714 break; 4715 case Opt_usrquota_block_hardlimit: 4716 size = memparse(param->string, &rest); 4717 if (*rest || !size) 4718 goto bad_value; 4719 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4720 return invalfc(fc, 4721 "User quota block hardlimit too large."); 4722 ctx->qlimits.usrquota_bhardlimit = size; 4723 break; 4724 case Opt_grpquota_block_hardlimit: 4725 size = memparse(param->string, &rest); 4726 if (*rest || !size) 4727 goto bad_value; 4728 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4729 return invalfc(fc, 4730 "Group quota block hardlimit too large."); 4731 ctx->qlimits.grpquota_bhardlimit = size; 4732 break; 4733 case Opt_usrquota_inode_hardlimit: 4734 size = memparse(param->string, &rest); 4735 if (*rest || !size) 4736 goto bad_value; 4737 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4738 return invalfc(fc, 4739 "User quota inode hardlimit too large."); 4740 ctx->qlimits.usrquota_ihardlimit = size; 4741 break; 4742 case Opt_grpquota_inode_hardlimit: 4743 size = memparse(param->string, &rest); 4744 if (*rest || !size) 4745 goto bad_value; 4746 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4747 return invalfc(fc, 4748 "Group quota inode hardlimit too large."); 4749 ctx->qlimits.grpquota_ihardlimit = size; 4750 break; 4751 case Opt_casefold_version: 4752 return shmem_parse_opt_casefold(fc, param, false); 4753 case Opt_casefold: 4754 return shmem_parse_opt_casefold(fc, param, true); 4755 case Opt_strict_encoding: 4756 #if IS_ENABLED(CONFIG_UNICODE) 4757 ctx->strict_encoding = true; 4758 break; 4759 #else 4760 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4761 #endif 4762 } 4763 return 0; 4764 4765 unsupported_parameter: 4766 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4767 bad_value: 4768 return invalfc(fc, "Bad value for '%s'", param->key); 4769 } 4770 4771 static char *shmem_next_opt(char **s) 4772 { 4773 char *sbegin = *s; 4774 char *p; 4775 4776 if (sbegin == NULL) 4777 return NULL; 4778 4779 /* 4780 * NUL-terminate this option: unfortunately, 4781 * mount options form a comma-separated list, 4782 * but mpol's nodelist may also contain commas. 4783 */ 4784 for (;;) { 4785 p = strchr(*s, ','); 4786 if (p == NULL) 4787 break; 4788 *s = p + 1; 4789 if (!isdigit(*(p+1))) { 4790 *p = '\0'; 4791 return sbegin; 4792 } 4793 } 4794 4795 *s = NULL; 4796 return sbegin; 4797 } 4798 4799 static int shmem_parse_monolithic(struct fs_context *fc, void *data) 4800 { 4801 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt); 4802 } 4803 4804 /* 4805 * Reconfigure a shmem filesystem. 4806 */ 4807 static int shmem_reconfigure(struct fs_context *fc) 4808 { 4809 struct shmem_options *ctx = fc->fs_private; 4810 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4811 unsigned long used_isp; 4812 struct mempolicy *mpol = NULL; 4813 const char *err; 4814 4815 raw_spin_lock(&sbinfo->stat_lock); 4816 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4817 4818 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4819 if (!sbinfo->max_blocks) { 4820 err = "Cannot retroactively limit size"; 4821 goto out; 4822 } 4823 if (percpu_counter_compare(&sbinfo->used_blocks, 4824 ctx->blocks) > 0) { 4825 err = "Too small a size for current use"; 4826 goto out; 4827 } 4828 } 4829 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4830 if (!sbinfo->max_inodes) { 4831 err = "Cannot retroactively limit inodes"; 4832 goto out; 4833 } 4834 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4835 err = "Too few inodes for current use"; 4836 goto out; 4837 } 4838 } 4839 4840 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4841 sbinfo->next_ino > UINT_MAX) { 4842 err = "Current inum too high to switch to 32-bit inums"; 4843 goto out; 4844 } 4845 4846 /* 4847 * "noswap" doesn't use fsparam_flag_no, i.e. there's no "swap" 4848 * counterpart for (re-)enabling swap. 4849 */ 4850 if (ctx->noswap && !sbinfo->noswap) { 4851 err = "Cannot disable swap on remount"; 4852 goto out; 4853 } 4854 4855 if (ctx->seen & SHMEM_SEEN_QUOTA && 4856 !sb_any_quota_loaded(fc->root->d_sb)) { 4857 err = "Cannot enable quota on remount"; 4858 goto out; 4859 } 4860 4861 #ifdef CONFIG_TMPFS_QUOTA 4862 #define CHANGED_LIMIT(name) \ 4863 (ctx->qlimits.name## hardlimit && \ 4864 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4865 4866 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4867 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4868 err = "Cannot change global quota limit on remount"; 4869 goto out; 4870 } 4871 #endif /* CONFIG_TMPFS_QUOTA */ 4872 4873 if (ctx->seen & SHMEM_SEEN_HUGE) 4874 sbinfo->huge = ctx->huge; 4875 if (ctx->seen & SHMEM_SEEN_INUMS) 4876 sbinfo->full_inums = ctx->full_inums; 4877 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4878 sbinfo->max_blocks = ctx->blocks; 4879 if (ctx->seen & SHMEM_SEEN_INODES) { 4880 sbinfo->max_inodes = ctx->inodes; 4881 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4882 } 4883 4884 /* 4885 * Preserve previous mempolicy unless mpol remount option was specified. 4886 */ 4887 if (ctx->mpol) { 4888 mpol = sbinfo->mpol; 4889 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4890 ctx->mpol = NULL; 4891 } 4892 4893 if (ctx->noswap) 4894 sbinfo->noswap = true; 4895 4896 raw_spin_unlock(&sbinfo->stat_lock); 4897 mpol_put(mpol); 4898 return 0; 4899 out: 4900 raw_spin_unlock(&sbinfo->stat_lock); 4901 return invalfc(fc, "%s", err); 4902 } 4903 4904 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4905 { 4906 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4907 struct mempolicy *mpol; 4908 4909 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4910 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4911 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4912 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4913 if (sbinfo->mode != (0777 | S_ISVTX)) 4914 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4915 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4916 seq_printf(seq, ",uid=%u", 4917 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4918 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4919 seq_printf(seq, ",gid=%u", 4920 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4921 4922 /* 4923 * Showing inode{64,32} might be useful even if it's the system default, 4924 * since then people don't have to resort to checking both here and 4925 * /proc/config.gz to confirm 64-bit inums were successfully applied 4926 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4927 * 4928 * We hide it when inode64 isn't the default and we are using 32-bit 4929 * inodes, since that probably just means the feature isn't even under 4930 * consideration. 4931 * 4932 * As such: 4933 * 4934 * +-----------------+-----------------+ 4935 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4936 * +------------------+-----------------+-----------------+ 4937 * | full_inums=true | show | show | 4938 * | full_inums=false | show | hide | 4939 * +------------------+-----------------+-----------------+ 4940 * 4941 */ 4942 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4943 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4944 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4945 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4946 if (sbinfo->huge) 4947 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4948 #endif 4949 mpol = shmem_get_sbmpol(sbinfo); 4950 shmem_show_mpol(seq, mpol); 4951 mpol_put(mpol); 4952 if (sbinfo->noswap) 4953 seq_printf(seq, ",noswap"); 4954 #ifdef CONFIG_TMPFS_QUOTA 4955 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4956 seq_printf(seq, ",usrquota"); 4957 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4958 seq_printf(seq, ",grpquota"); 4959 if (sbinfo->qlimits.usrquota_bhardlimit) 4960 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4961 sbinfo->qlimits.usrquota_bhardlimit); 4962 if (sbinfo->qlimits.grpquota_bhardlimit) 4963 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4964 sbinfo->qlimits.grpquota_bhardlimit); 4965 if (sbinfo->qlimits.usrquota_ihardlimit) 4966 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4967 sbinfo->qlimits.usrquota_ihardlimit); 4968 if (sbinfo->qlimits.grpquota_ihardlimit) 4969 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4970 sbinfo->qlimits.grpquota_ihardlimit); 4971 #endif 4972 return 0; 4973 } 4974 4975 #endif /* CONFIG_TMPFS */ 4976 4977 static void shmem_put_super(struct super_block *sb) 4978 { 4979 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4980 4981 #if IS_ENABLED(CONFIG_UNICODE) 4982 if (sb->s_encoding) 4983 utf8_unload(sb->s_encoding); 4984 #endif 4985 4986 #ifdef CONFIG_TMPFS_QUOTA 4987 shmem_disable_quotas(sb); 4988 #endif 4989 free_percpu(sbinfo->ino_batch); 4990 percpu_counter_destroy(&sbinfo->used_blocks); 4991 mpol_put(sbinfo->mpol); 4992 kfree(sbinfo); 4993 sb->s_fs_info = NULL; 4994 } 4995 4996 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 4997 static const struct dentry_operations shmem_ci_dentry_ops = { 4998 .d_hash = generic_ci_d_hash, 4999 .d_compare = generic_ci_d_compare, 5000 }; 5001 #endif 5002 5003 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 5004 { 5005 struct shmem_options *ctx = fc->fs_private; 5006 struct inode *inode; 5007 struct shmem_sb_info *sbinfo; 5008 int error = -ENOMEM; 5009 5010 /* Round up to L1_CACHE_BYTES to resist false sharing */ 5011 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 5012 L1_CACHE_BYTES), GFP_KERNEL); 5013 if (!sbinfo) 5014 return error; 5015 5016 sb->s_fs_info = sbinfo; 5017 5018 #ifdef CONFIG_TMPFS 5019 /* 5020 * Per default we only allow half of the physical ram per 5021 * tmpfs instance, limiting inodes to one per page of lowmem; 5022 * but the internal instance is left unlimited. 5023 */ 5024 if (!(sb->s_flags & SB_KERNMOUNT)) { 5025 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 5026 ctx->blocks = shmem_default_max_blocks(); 5027 if (!(ctx->seen & SHMEM_SEEN_INODES)) 5028 ctx->inodes = shmem_default_max_inodes(); 5029 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 5030 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 5031 sbinfo->noswap = ctx->noswap; 5032 } else { 5033 sb->s_flags |= SB_NOUSER; 5034 } 5035 sb->s_export_op = &shmem_export_ops; 5036 sb->s_flags |= SB_NOSEC; 5037 5038 #if IS_ENABLED(CONFIG_UNICODE) 5039 if (!ctx->encoding && ctx->strict_encoding) { 5040 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 5041 error = -EINVAL; 5042 goto failed; 5043 } 5044 5045 if (ctx->encoding) { 5046 sb->s_encoding = ctx->encoding; 5047 set_default_d_op(sb, &shmem_ci_dentry_ops); 5048 if (ctx->strict_encoding) 5049 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 5050 } 5051 #endif 5052 5053 #else 5054 sb->s_flags |= SB_NOUSER; 5055 #endif /* CONFIG_TMPFS */ 5056 sb->s_d_flags |= DCACHE_DONTCACHE; 5057 sbinfo->max_blocks = ctx->blocks; 5058 sbinfo->max_inodes = ctx->inodes; 5059 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 5060 if (sb->s_flags & SB_KERNMOUNT) { 5061 sbinfo->ino_batch = alloc_percpu(ino_t); 5062 if (!sbinfo->ino_batch) 5063 goto failed; 5064 } 5065 sbinfo->uid = ctx->uid; 5066 sbinfo->gid = ctx->gid; 5067 sbinfo->full_inums = ctx->full_inums; 5068 sbinfo->mode = ctx->mode; 5069 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5070 if (ctx->seen & SHMEM_SEEN_HUGE) 5071 sbinfo->huge = ctx->huge; 5072 else 5073 sbinfo->huge = tmpfs_huge; 5074 #endif 5075 sbinfo->mpol = ctx->mpol; 5076 ctx->mpol = NULL; 5077 5078 raw_spin_lock_init(&sbinfo->stat_lock); 5079 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 5080 goto failed; 5081 spin_lock_init(&sbinfo->shrinklist_lock); 5082 INIT_LIST_HEAD(&sbinfo->shrinklist); 5083 5084 sb->s_maxbytes = MAX_LFS_FILESIZE; 5085 sb->s_blocksize = PAGE_SIZE; 5086 sb->s_blocksize_bits = PAGE_SHIFT; 5087 sb->s_magic = TMPFS_MAGIC; 5088 sb->s_op = &shmem_ops; 5089 sb->s_time_gran = 1; 5090 #ifdef CONFIG_TMPFS_XATTR 5091 sb->s_xattr = shmem_xattr_handlers; 5092 #endif 5093 #ifdef CONFIG_TMPFS_POSIX_ACL 5094 sb->s_flags |= SB_POSIXACL; 5095 #endif 5096 uuid_t uuid; 5097 uuid_gen(&uuid); 5098 super_set_uuid(sb, uuid.b, sizeof(uuid)); 5099 5100 #ifdef CONFIG_TMPFS_QUOTA 5101 if (ctx->seen & SHMEM_SEEN_QUOTA) { 5102 sb->dq_op = &shmem_quota_operations; 5103 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5104 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 5105 5106 /* Copy the default limits from ctx into sbinfo */ 5107 memcpy(&sbinfo->qlimits, &ctx->qlimits, 5108 sizeof(struct shmem_quota_limits)); 5109 5110 if (shmem_enable_quotas(sb, ctx->quota_types)) 5111 goto failed; 5112 } 5113 #endif /* CONFIG_TMPFS_QUOTA */ 5114 5115 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 5116 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 5117 if (IS_ERR(inode)) { 5118 error = PTR_ERR(inode); 5119 goto failed; 5120 } 5121 inode->i_uid = sbinfo->uid; 5122 inode->i_gid = sbinfo->gid; 5123 sb->s_root = d_make_root(inode); 5124 if (!sb->s_root) 5125 goto failed; 5126 return 0; 5127 5128 failed: 5129 shmem_put_super(sb); 5130 return error; 5131 } 5132 5133 static int shmem_get_tree(struct fs_context *fc) 5134 { 5135 return get_tree_nodev(fc, shmem_fill_super); 5136 } 5137 5138 static void shmem_free_fc(struct fs_context *fc) 5139 { 5140 struct shmem_options *ctx = fc->fs_private; 5141 5142 if (ctx) { 5143 mpol_put(ctx->mpol); 5144 kfree(ctx); 5145 } 5146 } 5147 5148 static const struct fs_context_operations shmem_fs_context_ops = { 5149 .free = shmem_free_fc, 5150 .get_tree = shmem_get_tree, 5151 #ifdef CONFIG_TMPFS 5152 .parse_monolithic = shmem_parse_monolithic, 5153 .parse_param = shmem_parse_one, 5154 .reconfigure = shmem_reconfigure, 5155 #endif 5156 }; 5157 5158 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 5159 5160 static struct inode *shmem_alloc_inode(struct super_block *sb) 5161 { 5162 struct shmem_inode_info *info; 5163 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 5164 if (!info) 5165 return NULL; 5166 return &info->vfs_inode; 5167 } 5168 5169 static void shmem_free_in_core_inode(struct inode *inode) 5170 { 5171 if (S_ISLNK(inode->i_mode)) 5172 kfree(inode->i_link); 5173 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 5174 } 5175 5176 static void shmem_destroy_inode(struct inode *inode) 5177 { 5178 if (S_ISREG(inode->i_mode)) 5179 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 5180 if (S_ISDIR(inode->i_mode)) 5181 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5182 } 5183 5184 static void shmem_init_inode(void *foo) 5185 { 5186 struct shmem_inode_info *info = foo; 5187 inode_init_once(&info->vfs_inode); 5188 } 5189 5190 static void __init shmem_init_inodecache(void) 5191 { 5192 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5193 sizeof(struct shmem_inode_info), 5194 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5195 } 5196 5197 static void __init shmem_destroy_inodecache(void) 5198 { 5199 kmem_cache_destroy(shmem_inode_cachep); 5200 } 5201 5202 /* Keep the page in page cache instead of truncating it */ 5203 static int shmem_error_remove_folio(struct address_space *mapping, 5204 struct folio *folio) 5205 { 5206 return 0; 5207 } 5208 5209 static const struct address_space_operations shmem_aops = { 5210 .dirty_folio = noop_dirty_folio, 5211 #ifdef CONFIG_TMPFS 5212 .write_begin = shmem_write_begin, 5213 .write_end = shmem_write_end, 5214 #endif 5215 #ifdef CONFIG_MIGRATION 5216 .migrate_folio = migrate_folio, 5217 #endif 5218 .error_remove_folio = shmem_error_remove_folio, 5219 }; 5220 5221 static const struct file_operations shmem_file_operations = { 5222 .mmap_prepare = shmem_mmap_prepare, 5223 .open = shmem_file_open, 5224 .get_unmapped_area = shmem_get_unmapped_area, 5225 #ifdef CONFIG_TMPFS 5226 .llseek = shmem_file_llseek, 5227 .read_iter = shmem_file_read_iter, 5228 .write_iter = shmem_file_write_iter, 5229 .fsync = noop_fsync, 5230 .splice_read = shmem_file_splice_read, 5231 .splice_write = iter_file_splice_write, 5232 .fallocate = shmem_fallocate, 5233 .setlease = generic_setlease, 5234 #endif 5235 }; 5236 5237 static const struct inode_operations shmem_inode_operations = { 5238 .getattr = shmem_getattr, 5239 .setattr = shmem_setattr, 5240 #ifdef CONFIG_TMPFS_XATTR 5241 .listxattr = shmem_listxattr, 5242 .set_acl = simple_set_acl, 5243 .fileattr_get = shmem_fileattr_get, 5244 .fileattr_set = shmem_fileattr_set, 5245 #endif 5246 }; 5247 5248 static const struct inode_operations shmem_dir_inode_operations = { 5249 #ifdef CONFIG_TMPFS 5250 .getattr = shmem_getattr, 5251 .create = shmem_create, 5252 .lookup = simple_lookup, 5253 .link = shmem_link, 5254 .unlink = shmem_unlink, 5255 .symlink = shmem_symlink, 5256 .mkdir = shmem_mkdir, 5257 .rmdir = shmem_rmdir, 5258 .mknod = shmem_mknod, 5259 .rename = shmem_rename2, 5260 .tmpfile = shmem_tmpfile, 5261 .get_offset_ctx = shmem_get_offset_ctx, 5262 #endif 5263 #ifdef CONFIG_TMPFS_XATTR 5264 .listxattr = shmem_listxattr, 5265 .fileattr_get = shmem_fileattr_get, 5266 .fileattr_set = shmem_fileattr_set, 5267 #endif 5268 #ifdef CONFIG_TMPFS_POSIX_ACL 5269 .setattr = shmem_setattr, 5270 .set_acl = simple_set_acl, 5271 #endif 5272 }; 5273 5274 static const struct inode_operations shmem_special_inode_operations = { 5275 .getattr = shmem_getattr, 5276 #ifdef CONFIG_TMPFS_XATTR 5277 .listxattr = shmem_listxattr, 5278 #endif 5279 #ifdef CONFIG_TMPFS_POSIX_ACL 5280 .setattr = shmem_setattr, 5281 .set_acl = simple_set_acl, 5282 #endif 5283 }; 5284 5285 static const struct super_operations shmem_ops = { 5286 .alloc_inode = shmem_alloc_inode, 5287 .free_inode = shmem_free_in_core_inode, 5288 .destroy_inode = shmem_destroy_inode, 5289 #ifdef CONFIG_TMPFS 5290 .statfs = shmem_statfs, 5291 .show_options = shmem_show_options, 5292 #endif 5293 #ifdef CONFIG_TMPFS_QUOTA 5294 .get_dquots = shmem_get_dquots, 5295 #endif 5296 .evict_inode = shmem_evict_inode, 5297 .drop_inode = inode_just_drop, 5298 .put_super = shmem_put_super, 5299 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5300 .nr_cached_objects = shmem_unused_huge_count, 5301 .free_cached_objects = shmem_unused_huge_scan, 5302 #endif 5303 }; 5304 5305 static const struct vm_operations_struct shmem_vm_ops = { 5306 .fault = shmem_fault, 5307 .map_pages = filemap_map_pages, 5308 #ifdef CONFIG_NUMA 5309 .set_policy = shmem_set_policy, 5310 .get_policy = shmem_get_policy, 5311 #endif 5312 }; 5313 5314 static const struct vm_operations_struct shmem_anon_vm_ops = { 5315 .fault = shmem_fault, 5316 .map_pages = filemap_map_pages, 5317 #ifdef CONFIG_NUMA 5318 .set_policy = shmem_set_policy, 5319 .get_policy = shmem_get_policy, 5320 #endif 5321 }; 5322 5323 int shmem_init_fs_context(struct fs_context *fc) 5324 { 5325 struct shmem_options *ctx; 5326 5327 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 5328 if (!ctx) 5329 return -ENOMEM; 5330 5331 ctx->mode = 0777 | S_ISVTX; 5332 ctx->uid = current_fsuid(); 5333 ctx->gid = current_fsgid(); 5334 5335 #if IS_ENABLED(CONFIG_UNICODE) 5336 ctx->encoding = NULL; 5337 #endif 5338 5339 fc->fs_private = ctx; 5340 fc->ops = &shmem_fs_context_ops; 5341 #ifdef CONFIG_TMPFS 5342 fc->sb_flags |= SB_I_VERSION; 5343 #endif 5344 return 0; 5345 } 5346 5347 static struct file_system_type shmem_fs_type = { 5348 .owner = THIS_MODULE, 5349 .name = "tmpfs", 5350 .init_fs_context = shmem_init_fs_context, 5351 #ifdef CONFIG_TMPFS 5352 .parameters = shmem_fs_parameters, 5353 #endif 5354 .kill_sb = kill_anon_super, 5355 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5356 }; 5357 5358 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5359 5360 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5361 { \ 5362 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5363 .show = _show, \ 5364 .store = _store, \ 5365 } 5366 5367 #define TMPFS_ATTR_W(_name, _store) \ 5368 static struct kobj_attribute tmpfs_attr_##_name = \ 5369 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5370 5371 #define TMPFS_ATTR_RW(_name, _show, _store) \ 5372 static struct kobj_attribute tmpfs_attr_##_name = \ 5373 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5374 5375 #define TMPFS_ATTR_RO(_name, _show) \ 5376 static struct kobj_attribute tmpfs_attr_##_name = \ 5377 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5378 5379 #if IS_ENABLED(CONFIG_UNICODE) 5380 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5381 char *buf) 5382 { 5383 return sysfs_emit(buf, "supported\n"); 5384 } 5385 TMPFS_ATTR_RO(casefold, casefold_show); 5386 #endif 5387 5388 static struct attribute *tmpfs_attributes[] = { 5389 #if IS_ENABLED(CONFIG_UNICODE) 5390 &tmpfs_attr_casefold.attr, 5391 #endif 5392 NULL 5393 }; 5394 5395 static const struct attribute_group tmpfs_attribute_group = { 5396 .attrs = tmpfs_attributes, 5397 .name = "features" 5398 }; 5399 5400 static struct kobject *tmpfs_kobj; 5401 5402 static int __init tmpfs_sysfs_init(void) 5403 { 5404 int ret; 5405 5406 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5407 if (!tmpfs_kobj) 5408 return -ENOMEM; 5409 5410 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5411 if (ret) 5412 kobject_put(tmpfs_kobj); 5413 5414 return ret; 5415 } 5416 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5417 5418 void __init shmem_init(void) 5419 { 5420 int error; 5421 5422 shmem_init_inodecache(); 5423 5424 #ifdef CONFIG_TMPFS_QUOTA 5425 register_quota_format(&shmem_quota_format); 5426 #endif 5427 5428 error = register_filesystem(&shmem_fs_type); 5429 if (error) { 5430 pr_err("Could not register tmpfs\n"); 5431 goto out2; 5432 } 5433 5434 shm_mnt = kern_mount(&shmem_fs_type); 5435 if (IS_ERR(shm_mnt)) { 5436 error = PTR_ERR(shm_mnt); 5437 pr_err("Could not kern_mount tmpfs\n"); 5438 goto out1; 5439 } 5440 5441 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5442 error = tmpfs_sysfs_init(); 5443 if (error) { 5444 pr_err("Could not init tmpfs sysfs\n"); 5445 goto out1; 5446 } 5447 #endif 5448 5449 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5450 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5451 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5452 else 5453 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5454 5455 /* 5456 * Default to setting PMD-sized THP to inherit the global setting and 5457 * disable all other multi-size THPs. 5458 */ 5459 if (!shmem_orders_configured) 5460 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5461 #endif 5462 return; 5463 5464 out1: 5465 unregister_filesystem(&shmem_fs_type); 5466 out2: 5467 #ifdef CONFIG_TMPFS_QUOTA 5468 unregister_quota_format(&shmem_quota_format); 5469 #endif 5470 shmem_destroy_inodecache(); 5471 shm_mnt = ERR_PTR(error); 5472 } 5473 5474 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5475 static ssize_t shmem_enabled_show(struct kobject *kobj, 5476 struct kobj_attribute *attr, char *buf) 5477 { 5478 static const int values[] = { 5479 SHMEM_HUGE_ALWAYS, 5480 SHMEM_HUGE_WITHIN_SIZE, 5481 SHMEM_HUGE_ADVISE, 5482 SHMEM_HUGE_NEVER, 5483 SHMEM_HUGE_DENY, 5484 SHMEM_HUGE_FORCE, 5485 }; 5486 int len = 0; 5487 int i; 5488 5489 for (i = 0; i < ARRAY_SIZE(values); i++) { 5490 len += sysfs_emit_at(buf, len, 5491 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5492 i ? " " : "", shmem_format_huge(values[i])); 5493 } 5494 len += sysfs_emit_at(buf, len, "\n"); 5495 5496 return len; 5497 } 5498 5499 static ssize_t shmem_enabled_store(struct kobject *kobj, 5500 struct kobj_attribute *attr, const char *buf, size_t count) 5501 { 5502 char tmp[16]; 5503 int huge, err; 5504 5505 if (count + 1 > sizeof(tmp)) 5506 return -EINVAL; 5507 memcpy(tmp, buf, count); 5508 tmp[count] = '\0'; 5509 if (count && tmp[count - 1] == '\n') 5510 tmp[count - 1] = '\0'; 5511 5512 huge = shmem_parse_huge(tmp); 5513 if (huge == -EINVAL) 5514 return huge; 5515 5516 shmem_huge = huge; 5517 if (shmem_huge > SHMEM_HUGE_DENY) 5518 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5519 5520 err = start_stop_khugepaged(); 5521 return err ? err : count; 5522 } 5523 5524 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5525 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5526 5527 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5528 struct kobj_attribute *attr, char *buf) 5529 { 5530 int order = to_thpsize(kobj)->order; 5531 const char *output; 5532 5533 if (test_bit(order, &huge_shmem_orders_always)) 5534 output = "[always] inherit within_size advise never"; 5535 else if (test_bit(order, &huge_shmem_orders_inherit)) 5536 output = "always [inherit] within_size advise never"; 5537 else if (test_bit(order, &huge_shmem_orders_within_size)) 5538 output = "always inherit [within_size] advise never"; 5539 else if (test_bit(order, &huge_shmem_orders_madvise)) 5540 output = "always inherit within_size [advise] never"; 5541 else 5542 output = "always inherit within_size advise [never]"; 5543 5544 return sysfs_emit(buf, "%s\n", output); 5545 } 5546 5547 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5548 struct kobj_attribute *attr, 5549 const char *buf, size_t count) 5550 { 5551 int order = to_thpsize(kobj)->order; 5552 ssize_t ret = count; 5553 5554 if (sysfs_streq(buf, "always")) { 5555 spin_lock(&huge_shmem_orders_lock); 5556 clear_bit(order, &huge_shmem_orders_inherit); 5557 clear_bit(order, &huge_shmem_orders_madvise); 5558 clear_bit(order, &huge_shmem_orders_within_size); 5559 set_bit(order, &huge_shmem_orders_always); 5560 spin_unlock(&huge_shmem_orders_lock); 5561 } else if (sysfs_streq(buf, "inherit")) { 5562 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5563 if (shmem_huge == SHMEM_HUGE_FORCE && 5564 order != HPAGE_PMD_ORDER) 5565 return -EINVAL; 5566 5567 spin_lock(&huge_shmem_orders_lock); 5568 clear_bit(order, &huge_shmem_orders_always); 5569 clear_bit(order, &huge_shmem_orders_madvise); 5570 clear_bit(order, &huge_shmem_orders_within_size); 5571 set_bit(order, &huge_shmem_orders_inherit); 5572 spin_unlock(&huge_shmem_orders_lock); 5573 } else if (sysfs_streq(buf, "within_size")) { 5574 spin_lock(&huge_shmem_orders_lock); 5575 clear_bit(order, &huge_shmem_orders_always); 5576 clear_bit(order, &huge_shmem_orders_inherit); 5577 clear_bit(order, &huge_shmem_orders_madvise); 5578 set_bit(order, &huge_shmem_orders_within_size); 5579 spin_unlock(&huge_shmem_orders_lock); 5580 } else if (sysfs_streq(buf, "advise")) { 5581 spin_lock(&huge_shmem_orders_lock); 5582 clear_bit(order, &huge_shmem_orders_always); 5583 clear_bit(order, &huge_shmem_orders_inherit); 5584 clear_bit(order, &huge_shmem_orders_within_size); 5585 set_bit(order, &huge_shmem_orders_madvise); 5586 spin_unlock(&huge_shmem_orders_lock); 5587 } else if (sysfs_streq(buf, "never")) { 5588 spin_lock(&huge_shmem_orders_lock); 5589 clear_bit(order, &huge_shmem_orders_always); 5590 clear_bit(order, &huge_shmem_orders_inherit); 5591 clear_bit(order, &huge_shmem_orders_within_size); 5592 clear_bit(order, &huge_shmem_orders_madvise); 5593 spin_unlock(&huge_shmem_orders_lock); 5594 } else { 5595 ret = -EINVAL; 5596 } 5597 5598 if (ret > 0) { 5599 int err = start_stop_khugepaged(); 5600 5601 if (err) 5602 ret = err; 5603 } 5604 return ret; 5605 } 5606 5607 struct kobj_attribute thpsize_shmem_enabled_attr = 5608 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5609 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5610 5611 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5612 5613 static int __init setup_transparent_hugepage_shmem(char *str) 5614 { 5615 int huge; 5616 5617 huge = shmem_parse_huge(str); 5618 if (huge == -EINVAL) { 5619 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5620 return huge; 5621 } 5622 5623 shmem_huge = huge; 5624 return 1; 5625 } 5626 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5627 5628 static int __init setup_transparent_hugepage_tmpfs(char *str) 5629 { 5630 int huge; 5631 5632 huge = shmem_parse_huge(str); 5633 if (huge < 0) { 5634 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n"); 5635 return huge; 5636 } 5637 5638 tmpfs_huge = huge; 5639 return 1; 5640 } 5641 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs); 5642 5643 static char str_dup[PAGE_SIZE] __initdata; 5644 static int __init setup_thp_shmem(char *str) 5645 { 5646 char *token, *range, *policy, *subtoken; 5647 unsigned long always, inherit, madvise, within_size; 5648 char *start_size, *end_size; 5649 int start, end, nr; 5650 char *p; 5651 5652 if (!str || strlen(str) + 1 > PAGE_SIZE) 5653 goto err; 5654 strscpy(str_dup, str); 5655 5656 always = huge_shmem_orders_always; 5657 inherit = huge_shmem_orders_inherit; 5658 madvise = huge_shmem_orders_madvise; 5659 within_size = huge_shmem_orders_within_size; 5660 p = str_dup; 5661 while ((token = strsep(&p, ";")) != NULL) { 5662 range = strsep(&token, ":"); 5663 policy = token; 5664 5665 if (!policy) 5666 goto err; 5667 5668 while ((subtoken = strsep(&range, ",")) != NULL) { 5669 if (strchr(subtoken, '-')) { 5670 start_size = strsep(&subtoken, "-"); 5671 end_size = subtoken; 5672 5673 start = get_order_from_str(start_size, 5674 THP_ORDERS_ALL_FILE_DEFAULT); 5675 end = get_order_from_str(end_size, 5676 THP_ORDERS_ALL_FILE_DEFAULT); 5677 } else { 5678 start_size = end_size = subtoken; 5679 start = end = get_order_from_str(subtoken, 5680 THP_ORDERS_ALL_FILE_DEFAULT); 5681 } 5682 5683 if (start < 0) { 5684 pr_err("invalid size %s in thp_shmem boot parameter\n", 5685 start_size); 5686 goto err; 5687 } 5688 5689 if (end < 0) { 5690 pr_err("invalid size %s in thp_shmem boot parameter\n", 5691 end_size); 5692 goto err; 5693 } 5694 5695 if (start > end) 5696 goto err; 5697 5698 nr = end - start + 1; 5699 if (!strcmp(policy, "always")) { 5700 bitmap_set(&always, start, nr); 5701 bitmap_clear(&inherit, start, nr); 5702 bitmap_clear(&madvise, start, nr); 5703 bitmap_clear(&within_size, start, nr); 5704 } else if (!strcmp(policy, "advise")) { 5705 bitmap_set(&madvise, start, nr); 5706 bitmap_clear(&inherit, start, nr); 5707 bitmap_clear(&always, start, nr); 5708 bitmap_clear(&within_size, start, nr); 5709 } else if (!strcmp(policy, "inherit")) { 5710 bitmap_set(&inherit, start, nr); 5711 bitmap_clear(&madvise, start, nr); 5712 bitmap_clear(&always, start, nr); 5713 bitmap_clear(&within_size, start, nr); 5714 } else if (!strcmp(policy, "within_size")) { 5715 bitmap_set(&within_size, start, nr); 5716 bitmap_clear(&inherit, start, nr); 5717 bitmap_clear(&madvise, start, nr); 5718 bitmap_clear(&always, start, nr); 5719 } else if (!strcmp(policy, "never")) { 5720 bitmap_clear(&inherit, start, nr); 5721 bitmap_clear(&madvise, start, nr); 5722 bitmap_clear(&always, start, nr); 5723 bitmap_clear(&within_size, start, nr); 5724 } else { 5725 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5726 goto err; 5727 } 5728 } 5729 } 5730 5731 huge_shmem_orders_always = always; 5732 huge_shmem_orders_madvise = madvise; 5733 huge_shmem_orders_inherit = inherit; 5734 huge_shmem_orders_within_size = within_size; 5735 shmem_orders_configured = true; 5736 return 1; 5737 5738 err: 5739 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5740 return 0; 5741 } 5742 __setup("thp_shmem=", setup_thp_shmem); 5743 5744 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5745 5746 #else /* !CONFIG_SHMEM */ 5747 5748 /* 5749 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5750 * 5751 * This is intended for small system where the benefits of the full 5752 * shmem code (swap-backed and resource-limited) are outweighed by 5753 * their complexity. On systems without swap this code should be 5754 * effectively equivalent, but much lighter weight. 5755 */ 5756 5757 static struct file_system_type shmem_fs_type = { 5758 .name = "tmpfs", 5759 .init_fs_context = ramfs_init_fs_context, 5760 .parameters = ramfs_fs_parameters, 5761 .kill_sb = ramfs_kill_sb, 5762 .fs_flags = FS_USERNS_MOUNT, 5763 }; 5764 5765 void __init shmem_init(void) 5766 { 5767 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5768 5769 shm_mnt = kern_mount(&shmem_fs_type); 5770 BUG_ON(IS_ERR(shm_mnt)); 5771 } 5772 5773 int shmem_unuse(unsigned int type) 5774 { 5775 return 0; 5776 } 5777 5778 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5779 { 5780 return 0; 5781 } 5782 5783 void shmem_unlock_mapping(struct address_space *mapping) 5784 { 5785 } 5786 5787 #ifdef CONFIG_MMU 5788 unsigned long shmem_get_unmapped_area(struct file *file, 5789 unsigned long addr, unsigned long len, 5790 unsigned long pgoff, unsigned long flags) 5791 { 5792 return mm_get_unmapped_area(file, addr, len, pgoff, flags); 5793 } 5794 #endif 5795 5796 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend) 5797 { 5798 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5799 } 5800 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5801 5802 #define shmem_vm_ops generic_file_vm_ops 5803 #define shmem_anon_vm_ops generic_file_vm_ops 5804 #define shmem_file_operations ramfs_file_operations 5805 5806 static inline int shmem_acct_size(unsigned long flags, loff_t size) 5807 { 5808 return 0; 5809 } 5810 5811 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 5812 { 5813 } 5814 5815 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5816 struct super_block *sb, struct inode *dir, 5817 umode_t mode, dev_t dev, unsigned long flags) 5818 { 5819 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5820 return inode ? inode : ERR_PTR(-ENOSPC); 5821 } 5822 5823 #endif /* CONFIG_SHMEM */ 5824 5825 /* common code */ 5826 5827 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5828 loff_t size, unsigned long vm_flags, 5829 unsigned int i_flags) 5830 { 5831 unsigned long flags = (vm_flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0; 5832 struct inode *inode; 5833 struct file *res; 5834 5835 if (IS_ERR(mnt)) 5836 return ERR_CAST(mnt); 5837 5838 if (size < 0 || size > MAX_LFS_FILESIZE) 5839 return ERR_PTR(-EINVAL); 5840 5841 if (is_idmapped_mnt(mnt)) 5842 return ERR_PTR(-EINVAL); 5843 5844 if (shmem_acct_size(flags, size)) 5845 return ERR_PTR(-ENOMEM); 5846 5847 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5848 S_IFREG | S_IRWXUGO, 0, vm_flags); 5849 if (IS_ERR(inode)) { 5850 shmem_unacct_size(flags, size); 5851 return ERR_CAST(inode); 5852 } 5853 inode->i_flags |= i_flags; 5854 inode->i_size = size; 5855 clear_nlink(inode); /* It is unlinked */ 5856 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5857 if (!IS_ERR(res)) 5858 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5859 &shmem_file_operations); 5860 if (IS_ERR(res)) 5861 iput(inode); 5862 return res; 5863 } 5864 5865 /** 5866 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5867 * kernel internal. There will be NO LSM permission checks against the 5868 * underlying inode. So users of this interface must do LSM checks at a 5869 * higher layer. The users are the big_key and shm implementations. LSM 5870 * checks are provided at the key or shm level rather than the inode. 5871 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5872 * @size: size to be set for the file 5873 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5874 */ 5875 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5876 { 5877 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5878 } 5879 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5880 5881 /** 5882 * shmem_file_setup - get an unlinked file living in tmpfs 5883 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5884 * @size: size to be set for the file 5885 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5886 */ 5887 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5888 { 5889 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5890 } 5891 EXPORT_SYMBOL_GPL(shmem_file_setup); 5892 5893 /** 5894 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5895 * @mnt: the tmpfs mount where the file will be created 5896 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5897 * @size: size to be set for the file 5898 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5899 */ 5900 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5901 loff_t size, unsigned long flags) 5902 { 5903 return __shmem_file_setup(mnt, name, size, flags, 0); 5904 } 5905 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5906 5907 static struct file *__shmem_zero_setup(unsigned long start, unsigned long end, vm_flags_t vm_flags) 5908 { 5909 loff_t size = end - start; 5910 5911 /* 5912 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5913 * between XFS directory reading and selinux: since this file is only 5914 * accessible to the user through its mapping, use S_PRIVATE flag to 5915 * bypass file security, in the same way as shmem_kernel_file_setup(). 5916 */ 5917 return shmem_kernel_file_setup("dev/zero", size, vm_flags); 5918 } 5919 5920 /** 5921 * shmem_zero_setup - setup a shared anonymous mapping 5922 * @vma: the vma to be mmapped is prepared by do_mmap 5923 * Returns: 0 on success, or error 5924 */ 5925 int shmem_zero_setup(struct vm_area_struct *vma) 5926 { 5927 struct file *file = __shmem_zero_setup(vma->vm_start, vma->vm_end, vma->vm_flags); 5928 5929 if (IS_ERR(file)) 5930 return PTR_ERR(file); 5931 5932 if (vma->vm_file) 5933 fput(vma->vm_file); 5934 vma->vm_file = file; 5935 vma->vm_ops = &shmem_anon_vm_ops; 5936 5937 return 0; 5938 } 5939 5940 /** 5941 * shmem_zero_setup_desc - same as shmem_zero_setup, but determined by VMA 5942 * descriptor for convenience. 5943 * @desc: Describes VMA 5944 * Returns: 0 on success, or error 5945 */ 5946 int shmem_zero_setup_desc(struct vm_area_desc *desc) 5947 { 5948 struct file *file = __shmem_zero_setup(desc->start, desc->end, desc->vm_flags); 5949 5950 if (IS_ERR(file)) 5951 return PTR_ERR(file); 5952 5953 desc->vm_file = file; 5954 desc->vm_ops = &shmem_anon_vm_ops; 5955 5956 return 0; 5957 } 5958 5959 /** 5960 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5961 * @mapping: the folio's address_space 5962 * @index: the folio index 5963 * @gfp: the page allocator flags to use if allocating 5964 * 5965 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5966 * with any new page allocations done using the specified allocation flags. 5967 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5968 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5969 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5970 * 5971 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5972 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5973 */ 5974 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5975 pgoff_t index, gfp_t gfp) 5976 { 5977 #ifdef CONFIG_SHMEM 5978 struct inode *inode = mapping->host; 5979 struct folio *folio; 5980 int error; 5981 5982 error = shmem_get_folio_gfp(inode, index, i_size_read(inode), 5983 &folio, SGP_CACHE, gfp, NULL, NULL); 5984 if (error) 5985 return ERR_PTR(error); 5986 5987 folio_unlock(folio); 5988 return folio; 5989 #else 5990 /* 5991 * The tiny !SHMEM case uses ramfs without swap 5992 */ 5993 return mapping_read_folio_gfp(mapping, index, gfp); 5994 #endif 5995 } 5996 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 5997 5998 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 5999 pgoff_t index, gfp_t gfp) 6000 { 6001 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 6002 struct page *page; 6003 6004 if (IS_ERR(folio)) 6005 return &folio->page; 6006 6007 page = folio_file_page(folio, index); 6008 if (PageHWPoison(page)) { 6009 folio_put(folio); 6010 return ERR_PTR(-EIO); 6011 } 6012 6013 return page; 6014 } 6015 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 6016