xref: /linux/mm/shmem.c (revision 4cff5c05e076d2ee4e34122aa956b84a2eaac587)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Resizable virtual memory filesystem for Linux.
4  *
5  * Copyright (C) 2000 Linus Torvalds.
6  *		 2000 Transmeta Corp.
7  *		 2000-2001 Christoph Rohland
8  *		 2000-2001 SAP AG
9  *		 2002 Red Hat Inc.
10  * Copyright (C) 2002-2011 Hugh Dickins.
11  * Copyright (C) 2011 Google Inc.
12  * Copyright (C) 2002-2005 VERITAS Software Corporation.
13  * Copyright (C) 2004 Andi Kleen, SuSE Labs
14  *
15  * Extended attribute support for tmpfs:
16  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
17  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18  *
19  * tiny-shmem:
20  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21  */
22 
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/fileattr.h>
31 #include <linux/filelock.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45 
46 static struct vfsmount *shm_mnt __ro_after_init;
47 
48 #ifdef CONFIG_SHMEM
49 /*
50  * This virtual memory filesystem is heavily based on the ramfs. It
51  * extends ramfs by the ability to use swap and honor resource limits
52  * which makes it a completely usable filesystem.
53  */
54 
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/leafops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84 
85 #include <linux/uaccess.h>
86 
87 #include "internal.h"
88 
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96 
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99 
100 /*
101  * shmem_fallocate communicates with shmem_fault or shmem_writeout via
102  * inode->i_private (with i_rwsem making sure that it has only one user at
103  * a time): we would prefer not to enlarge the shmem inode just for that.
104  */
105 struct shmem_falloc {
106 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 	pgoff_t start;		/* start of range currently being fallocated */
108 	pgoff_t next;		/* the next page offset to be fallocated */
109 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110 	pgoff_t nr_unswapped;	/* how often writeout refused to swap out */
111 };
112 
113 struct shmem_options {
114 	unsigned long long blocks;
115 	unsigned long long inodes;
116 	struct mempolicy *mpol;
117 	kuid_t uid;
118 	kgid_t gid;
119 	umode_t mode;
120 	bool full_inums;
121 	int huge;
122 	int seen;
123 	bool noswap;
124 	unsigned short quota_types;
125 	struct shmem_quota_limits qlimits;
126 #if IS_ENABLED(CONFIG_UNICODE)
127 	struct unicode_map *encoding;
128 	bool strict_encoding;
129 #endif
130 #define SHMEM_SEEN_BLOCKS 1
131 #define SHMEM_SEEN_INODES 2
132 #define SHMEM_SEEN_HUGE 4
133 #define SHMEM_SEEN_INUMS 8
134 #define SHMEM_SEEN_QUOTA 16
135 };
136 
137 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
138 static unsigned long huge_shmem_orders_always __read_mostly;
139 static unsigned long huge_shmem_orders_madvise __read_mostly;
140 static unsigned long huge_shmem_orders_inherit __read_mostly;
141 static unsigned long huge_shmem_orders_within_size __read_mostly;
142 static bool shmem_orders_configured __initdata;
143 #endif
144 
145 #ifdef CONFIG_TMPFS
146 static unsigned long shmem_default_max_blocks(void)
147 {
148 	return totalram_pages() / 2;
149 }
150 
151 static unsigned long shmem_default_max_inodes(void)
152 {
153 	unsigned long nr_pages = totalram_pages();
154 
155 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
156 			ULONG_MAX / BOGO_INODE_SIZE);
157 }
158 #endif
159 
160 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
161 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
162 			struct vm_area_struct *vma, vm_fault_t *fault_type);
163 
164 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
165 {
166 	return sb->s_fs_info;
167 }
168 
169 /*
170  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
171  * for shared memory and for shared anonymous (/dev/zero) mappings
172  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
173  * consistent with the pre-accounting of private mappings ...
174  */
175 static inline int shmem_acct_size(unsigned long flags, loff_t size)
176 {
177 	return (flags & SHMEM_F_NORESERVE) ?
178 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
179 }
180 
181 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
182 {
183 	if (!(flags & SHMEM_F_NORESERVE))
184 		vm_unacct_memory(VM_ACCT(size));
185 }
186 
187 static inline int shmem_reacct_size(unsigned long flags,
188 		loff_t oldsize, loff_t newsize)
189 {
190 	if (!(flags & SHMEM_F_NORESERVE)) {
191 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
192 			return security_vm_enough_memory_mm(current->mm,
193 					VM_ACCT(newsize) - VM_ACCT(oldsize));
194 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
195 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
196 	}
197 	return 0;
198 }
199 
200 /*
201  * ... whereas tmpfs objects are accounted incrementally as
202  * pages are allocated, in order to allow large sparse files.
203  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
204  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
205  */
206 static inline int shmem_acct_blocks(unsigned long flags, long pages)
207 {
208 	if (!(flags & SHMEM_F_NORESERVE))
209 		return 0;
210 
211 	return security_vm_enough_memory_mm(current->mm,
212 			pages * VM_ACCT(PAGE_SIZE));
213 }
214 
215 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
216 {
217 	if (flags & SHMEM_F_NORESERVE)
218 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
219 }
220 
221 int shmem_inode_acct_blocks(struct inode *inode, long pages)
222 {
223 	struct shmem_inode_info *info = SHMEM_I(inode);
224 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
225 	int err = -ENOSPC;
226 
227 	if (shmem_acct_blocks(info->flags, pages))
228 		return err;
229 
230 	might_sleep();	/* when quotas */
231 	if (sbinfo->max_blocks) {
232 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
233 						sbinfo->max_blocks, pages))
234 			goto unacct;
235 
236 		err = dquot_alloc_block_nodirty(inode, pages);
237 		if (err) {
238 			percpu_counter_sub(&sbinfo->used_blocks, pages);
239 			goto unacct;
240 		}
241 	} else {
242 		err = dquot_alloc_block_nodirty(inode, pages);
243 		if (err)
244 			goto unacct;
245 	}
246 
247 	return 0;
248 
249 unacct:
250 	shmem_unacct_blocks(info->flags, pages);
251 	return err;
252 }
253 
254 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
255 {
256 	struct shmem_inode_info *info = SHMEM_I(inode);
257 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
258 
259 	might_sleep();	/* when quotas */
260 	dquot_free_block_nodirty(inode, pages);
261 
262 	if (sbinfo->max_blocks)
263 		percpu_counter_sub(&sbinfo->used_blocks, pages);
264 	shmem_unacct_blocks(info->flags, pages);
265 }
266 
267 static const struct super_operations shmem_ops;
268 static const struct address_space_operations shmem_aops;
269 static const struct file_operations shmem_file_operations;
270 static const struct inode_operations shmem_inode_operations;
271 static const struct inode_operations shmem_dir_inode_operations;
272 static const struct inode_operations shmem_special_inode_operations;
273 static const struct vm_operations_struct shmem_vm_ops;
274 static const struct vm_operations_struct shmem_anon_vm_ops;
275 static struct file_system_type shmem_fs_type;
276 
277 bool shmem_mapping(const struct address_space *mapping)
278 {
279 	return mapping->a_ops == &shmem_aops;
280 }
281 EXPORT_SYMBOL_GPL(shmem_mapping);
282 
283 bool vma_is_anon_shmem(const struct vm_area_struct *vma)
284 {
285 	return vma->vm_ops == &shmem_anon_vm_ops;
286 }
287 
288 bool vma_is_shmem(const struct vm_area_struct *vma)
289 {
290 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
291 }
292 
293 static LIST_HEAD(shmem_swaplist);
294 static DEFINE_SPINLOCK(shmem_swaplist_lock);
295 
296 #ifdef CONFIG_TMPFS_QUOTA
297 
298 static int shmem_enable_quotas(struct super_block *sb,
299 			       unsigned short quota_types)
300 {
301 	int type, err = 0;
302 
303 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
304 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
305 		if (!(quota_types & (1 << type)))
306 			continue;
307 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
308 					  DQUOT_USAGE_ENABLED |
309 					  DQUOT_LIMITS_ENABLED);
310 		if (err)
311 			goto out_err;
312 	}
313 	return 0;
314 
315 out_err:
316 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
317 		type, err);
318 	for (type--; type >= 0; type--)
319 		dquot_quota_off(sb, type);
320 	return err;
321 }
322 
323 static void shmem_disable_quotas(struct super_block *sb)
324 {
325 	int type;
326 
327 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
328 		dquot_quota_off(sb, type);
329 }
330 
331 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
332 {
333 	return SHMEM_I(inode)->i_dquot;
334 }
335 #endif /* CONFIG_TMPFS_QUOTA */
336 
337 /*
338  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
339  * produces a novel ino for the newly allocated inode.
340  *
341  * It may also be called when making a hard link to permit the space needed by
342  * each dentry. However, in that case, no new inode number is needed since that
343  * internally draws from another pool of inode numbers (currently global
344  * get_next_ino()). This case is indicated by passing NULL as inop.
345  */
346 #define SHMEM_INO_BATCH 1024
347 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
348 {
349 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
350 	ino_t ino;
351 
352 	if (!(sb->s_flags & SB_KERNMOUNT)) {
353 		raw_spin_lock(&sbinfo->stat_lock);
354 		if (sbinfo->max_inodes) {
355 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
356 				raw_spin_unlock(&sbinfo->stat_lock);
357 				return -ENOSPC;
358 			}
359 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
360 		}
361 		if (inop) {
362 			ino = sbinfo->next_ino++;
363 			if (unlikely(is_zero_ino(ino)))
364 				ino = sbinfo->next_ino++;
365 			if (unlikely(!sbinfo->full_inums &&
366 				     ino > UINT_MAX)) {
367 				/*
368 				 * Emulate get_next_ino uint wraparound for
369 				 * compatibility
370 				 */
371 				if (IS_ENABLED(CONFIG_64BIT))
372 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
373 						__func__, MINOR(sb->s_dev));
374 				sbinfo->next_ino = 1;
375 				ino = sbinfo->next_ino++;
376 			}
377 			*inop = ino;
378 		}
379 		raw_spin_unlock(&sbinfo->stat_lock);
380 	} else if (inop) {
381 		/*
382 		 * __shmem_file_setup, one of our callers, is lock-free: it
383 		 * doesn't hold stat_lock in shmem_reserve_inode since
384 		 * max_inodes is always 0, and is called from potentially
385 		 * unknown contexts. As such, use a per-cpu batched allocator
386 		 * which doesn't require the per-sb stat_lock unless we are at
387 		 * the batch boundary.
388 		 *
389 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
390 		 * shmem mounts are not exposed to userspace, so we don't need
391 		 * to worry about things like glibc compatibility.
392 		 */
393 		ino_t *next_ino;
394 
395 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
396 		ino = *next_ino;
397 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
398 			raw_spin_lock(&sbinfo->stat_lock);
399 			ino = sbinfo->next_ino;
400 			sbinfo->next_ino += SHMEM_INO_BATCH;
401 			raw_spin_unlock(&sbinfo->stat_lock);
402 			if (unlikely(is_zero_ino(ino)))
403 				ino++;
404 		}
405 		*inop = ino;
406 		*next_ino = ++ino;
407 		put_cpu();
408 	}
409 
410 	return 0;
411 }
412 
413 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
414 {
415 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
416 	if (sbinfo->max_inodes) {
417 		raw_spin_lock(&sbinfo->stat_lock);
418 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
419 		raw_spin_unlock(&sbinfo->stat_lock);
420 	}
421 }
422 
423 /**
424  * shmem_recalc_inode - recalculate the block usage of an inode
425  * @inode: inode to recalc
426  * @alloced: the change in number of pages allocated to inode
427  * @swapped: the change in number of pages swapped from inode
428  *
429  * We have to calculate the free blocks since the mm can drop
430  * undirtied hole pages behind our back.
431  *
432  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
433  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
434  *
435  * Return: true if swapped was incremented from 0, for shmem_writeout().
436  */
437 bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
438 {
439 	struct shmem_inode_info *info = SHMEM_I(inode);
440 	bool first_swapped = false;
441 	long freed;
442 
443 	spin_lock(&info->lock);
444 	info->alloced += alloced;
445 	info->swapped += swapped;
446 	freed = info->alloced - info->swapped -
447 		READ_ONCE(inode->i_mapping->nrpages);
448 	/*
449 	 * Special case: whereas normally shmem_recalc_inode() is called
450 	 * after i_mapping->nrpages has already been adjusted (up or down),
451 	 * shmem_writeout() has to raise swapped before nrpages is lowered -
452 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
453 	 * been freed.  Compensate here, to avoid the need for a followup call.
454 	 */
455 	if (swapped > 0) {
456 		if (info->swapped == swapped)
457 			first_swapped = true;
458 		freed += swapped;
459 	}
460 	if (freed > 0)
461 		info->alloced -= freed;
462 	spin_unlock(&info->lock);
463 
464 	/* The quota case may block */
465 	if (freed > 0)
466 		shmem_inode_unacct_blocks(inode, freed);
467 	return first_swapped;
468 }
469 
470 bool shmem_charge(struct inode *inode, long pages)
471 {
472 	struct address_space *mapping = inode->i_mapping;
473 
474 	if (shmem_inode_acct_blocks(inode, pages))
475 		return false;
476 
477 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
478 	xa_lock_irq(&mapping->i_pages);
479 	mapping->nrpages += pages;
480 	xa_unlock_irq(&mapping->i_pages);
481 
482 	shmem_recalc_inode(inode, pages, 0);
483 	return true;
484 }
485 
486 void shmem_uncharge(struct inode *inode, long pages)
487 {
488 	/* pages argument is currently unused: keep it to help debugging */
489 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
490 
491 	shmem_recalc_inode(inode, 0, 0);
492 }
493 
494 /*
495  * Replace item expected in xarray by a new item, while holding xa_lock.
496  */
497 static int shmem_replace_entry(struct address_space *mapping,
498 			pgoff_t index, void *expected, void *replacement)
499 {
500 	XA_STATE(xas, &mapping->i_pages, index);
501 	void *item;
502 
503 	VM_BUG_ON(!expected);
504 	VM_BUG_ON(!replacement);
505 	item = xas_load(&xas);
506 	if (item != expected)
507 		return -ENOENT;
508 	xas_store(&xas, replacement);
509 	return 0;
510 }
511 
512 /*
513  * Sometimes, before we decide whether to proceed or to fail, we must check
514  * that an entry was not already brought back or split by a racing thread.
515  *
516  * Checking folio is not enough: by the time a swapcache folio is locked, it
517  * might be reused, and again be swapcache, using the same swap as before.
518  * Returns the swap entry's order if it still presents, else returns -1.
519  */
520 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index,
521 			      swp_entry_t swap)
522 {
523 	XA_STATE(xas, &mapping->i_pages, index);
524 	int ret = -1;
525 	void *entry;
526 
527 	rcu_read_lock();
528 	do {
529 		entry = xas_load(&xas);
530 		if (entry == swp_to_radix_entry(swap))
531 			ret = xas_get_order(&xas);
532 	} while (xas_retry(&xas, entry));
533 	rcu_read_unlock();
534 	return ret;
535 }
536 
537 /*
538  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
539  *
540  * SHMEM_HUGE_NEVER:
541  *	disables huge pages for the mount;
542  * SHMEM_HUGE_ALWAYS:
543  *	enables huge pages for the mount;
544  * SHMEM_HUGE_WITHIN_SIZE:
545  *	only allocate huge pages if the page will be fully within i_size,
546  *	also respect madvise() hints;
547  * SHMEM_HUGE_ADVISE:
548  *	only allocate huge pages if requested with madvise();
549  */
550 
551 #define SHMEM_HUGE_NEVER	0
552 #define SHMEM_HUGE_ALWAYS	1
553 #define SHMEM_HUGE_WITHIN_SIZE	2
554 #define SHMEM_HUGE_ADVISE	3
555 
556 /*
557  * Special values.
558  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
559  *
560  * SHMEM_HUGE_DENY:
561  *	disables huge on shm_mnt and all mounts, for emergency use;
562  * SHMEM_HUGE_FORCE:
563  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
564  *
565  */
566 #define SHMEM_HUGE_DENY		(-1)
567 #define SHMEM_HUGE_FORCE	(-2)
568 
569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
570 /* ifdef here to avoid bloating shmem.o when not necessary */
571 
572 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_NEVER)
573 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER
574 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ALWAYS)
575 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ALWAYS
576 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_WITHIN_SIZE)
577 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE
578 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ADVISE)
579 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ADVISE
580 #else
581 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER
582 #endif
583 
584 static int shmem_huge __read_mostly = SHMEM_HUGE_DEFAULT;
585 
586 #undef SHMEM_HUGE_DEFAULT
587 
588 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_NEVER)
589 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER
590 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ALWAYS)
591 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ALWAYS
592 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_WITHIN_SIZE)
593 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE
594 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ADVISE)
595 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ADVISE
596 #else
597 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER
598 #endif
599 
600 static int tmpfs_huge __read_mostly = TMPFS_HUGE_DEFAULT;
601 
602 #undef TMPFS_HUGE_DEFAULT
603 
604 static unsigned int shmem_get_orders_within_size(struct inode *inode,
605 		unsigned long within_size_orders, pgoff_t index,
606 		loff_t write_end)
607 {
608 	pgoff_t aligned_index;
609 	unsigned long order;
610 	loff_t i_size;
611 
612 	order = highest_order(within_size_orders);
613 	while (within_size_orders) {
614 		aligned_index = round_up(index + 1, 1 << order);
615 		i_size = max(write_end, i_size_read(inode));
616 		i_size = round_up(i_size, PAGE_SIZE);
617 		if (i_size >> PAGE_SHIFT >= aligned_index)
618 			return within_size_orders;
619 
620 		order = next_order(&within_size_orders, order);
621 	}
622 
623 	return 0;
624 }
625 
626 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
627 					      loff_t write_end, bool shmem_huge_force,
628 					      struct vm_area_struct *vma,
629 					      vm_flags_t vm_flags)
630 {
631 	unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
632 		0 : BIT(HPAGE_PMD_ORDER);
633 	unsigned long within_size_orders;
634 
635 	if (!S_ISREG(inode->i_mode))
636 		return 0;
637 	if (shmem_huge == SHMEM_HUGE_DENY)
638 		return 0;
639 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
640 		return maybe_pmd_order;
641 
642 	/*
643 	 * The huge order allocation for anon shmem is controlled through
644 	 * the mTHP interface, so we still use PMD-sized huge order to
645 	 * check whether global control is enabled.
646 	 *
647 	 * For tmpfs with 'huge=always' or 'huge=within_size' mount option,
648 	 * we will always try PMD-sized order first. If that failed, it will
649 	 * fall back to small large folios.
650 	 */
651 	switch (SHMEM_SB(inode->i_sb)->huge) {
652 	case SHMEM_HUGE_ALWAYS:
653 		return THP_ORDERS_ALL_FILE_DEFAULT;
654 	case SHMEM_HUGE_WITHIN_SIZE:
655 		within_size_orders = shmem_get_orders_within_size(inode,
656 				THP_ORDERS_ALL_FILE_DEFAULT, index, write_end);
657 		if (within_size_orders > 0)
658 			return within_size_orders;
659 
660 		fallthrough;
661 	case SHMEM_HUGE_ADVISE:
662 		if (vm_flags & VM_HUGEPAGE)
663 			return THP_ORDERS_ALL_FILE_DEFAULT;
664 		fallthrough;
665 	default:
666 		return 0;
667 	}
668 }
669 
670 static int shmem_parse_huge(const char *str)
671 {
672 	int huge;
673 
674 	if (!str)
675 		return -EINVAL;
676 
677 	if (!strcmp(str, "never"))
678 		huge = SHMEM_HUGE_NEVER;
679 	else if (!strcmp(str, "always"))
680 		huge = SHMEM_HUGE_ALWAYS;
681 	else if (!strcmp(str, "within_size"))
682 		huge = SHMEM_HUGE_WITHIN_SIZE;
683 	else if (!strcmp(str, "advise"))
684 		huge = SHMEM_HUGE_ADVISE;
685 	else if (!strcmp(str, "deny"))
686 		huge = SHMEM_HUGE_DENY;
687 	else if (!strcmp(str, "force"))
688 		huge = SHMEM_HUGE_FORCE;
689 	else
690 		return -EINVAL;
691 
692 	if (!has_transparent_hugepage() &&
693 	    huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
694 		return -EINVAL;
695 
696 	/* Do not override huge allocation policy with non-PMD sized mTHP */
697 	if (huge == SHMEM_HUGE_FORCE &&
698 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
699 		return -EINVAL;
700 
701 	return huge;
702 }
703 
704 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
705 static const char *shmem_format_huge(int huge)
706 {
707 	switch (huge) {
708 	case SHMEM_HUGE_NEVER:
709 		return "never";
710 	case SHMEM_HUGE_ALWAYS:
711 		return "always";
712 	case SHMEM_HUGE_WITHIN_SIZE:
713 		return "within_size";
714 	case SHMEM_HUGE_ADVISE:
715 		return "advise";
716 	case SHMEM_HUGE_DENY:
717 		return "deny";
718 	case SHMEM_HUGE_FORCE:
719 		return "force";
720 	default:
721 		VM_BUG_ON(1);
722 		return "bad_val";
723 	}
724 }
725 #endif
726 
727 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
728 		struct shrink_control *sc, unsigned long nr_to_free)
729 {
730 	LIST_HEAD(list), *pos, *next;
731 	struct inode *inode;
732 	struct shmem_inode_info *info;
733 	struct folio *folio;
734 	unsigned long batch = sc ? sc->nr_to_scan : 128;
735 	unsigned long split = 0, freed = 0;
736 
737 	if (list_empty(&sbinfo->shrinklist))
738 		return SHRINK_STOP;
739 
740 	spin_lock(&sbinfo->shrinklist_lock);
741 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
742 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
743 
744 		/* pin the inode */
745 		inode = igrab(&info->vfs_inode);
746 
747 		/* inode is about to be evicted */
748 		if (!inode) {
749 			list_del_init(&info->shrinklist);
750 			goto next;
751 		}
752 
753 		list_move(&info->shrinklist, &list);
754 next:
755 		sbinfo->shrinklist_len--;
756 		if (!--batch)
757 			break;
758 	}
759 	spin_unlock(&sbinfo->shrinklist_lock);
760 
761 	list_for_each_safe(pos, next, &list) {
762 		pgoff_t next, end;
763 		loff_t i_size;
764 		int ret;
765 
766 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
767 		inode = &info->vfs_inode;
768 
769 		if (nr_to_free && freed >= nr_to_free)
770 			goto move_back;
771 
772 		i_size = i_size_read(inode);
773 		folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
774 		if (!folio || xa_is_value(folio))
775 			goto drop;
776 
777 		/* No large folio at the end of the file: nothing to split */
778 		if (!folio_test_large(folio)) {
779 			folio_put(folio);
780 			goto drop;
781 		}
782 
783 		/* Check if there is anything to gain from splitting */
784 		next = folio_next_index(folio);
785 		end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
786 		if (end <= folio->index || end >= next) {
787 			folio_put(folio);
788 			goto drop;
789 		}
790 
791 		/*
792 		 * Move the inode on the list back to shrinklist if we failed
793 		 * to lock the page at this time.
794 		 *
795 		 * Waiting for the lock may lead to deadlock in the
796 		 * reclaim path.
797 		 */
798 		if (!folio_trylock(folio)) {
799 			folio_put(folio);
800 			goto move_back;
801 		}
802 
803 		ret = split_folio(folio);
804 		folio_unlock(folio);
805 		folio_put(folio);
806 
807 		/* If split failed move the inode on the list back to shrinklist */
808 		if (ret)
809 			goto move_back;
810 
811 		freed += next - end;
812 		split++;
813 drop:
814 		list_del_init(&info->shrinklist);
815 		goto put;
816 move_back:
817 		/*
818 		 * Make sure the inode is either on the global list or deleted
819 		 * from any local list before iput() since it could be deleted
820 		 * in another thread once we put the inode (then the local list
821 		 * is corrupted).
822 		 */
823 		spin_lock(&sbinfo->shrinklist_lock);
824 		list_move(&info->shrinklist, &sbinfo->shrinklist);
825 		sbinfo->shrinklist_len++;
826 		spin_unlock(&sbinfo->shrinklist_lock);
827 put:
828 		iput(inode);
829 	}
830 
831 	return split;
832 }
833 
834 static long shmem_unused_huge_scan(struct super_block *sb,
835 		struct shrink_control *sc)
836 {
837 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
838 
839 	if (!READ_ONCE(sbinfo->shrinklist_len))
840 		return SHRINK_STOP;
841 
842 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
843 }
844 
845 static long shmem_unused_huge_count(struct super_block *sb,
846 		struct shrink_control *sc)
847 {
848 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
849 	return READ_ONCE(sbinfo->shrinklist_len);
850 }
851 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
852 
853 #define shmem_huge SHMEM_HUGE_DENY
854 
855 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
856 		struct shrink_control *sc, unsigned long nr_to_free)
857 {
858 	return 0;
859 }
860 
861 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
862 					      loff_t write_end, bool shmem_huge_force,
863 					      struct vm_area_struct *vma,
864 					      vm_flags_t vm_flags)
865 {
866 	return 0;
867 }
868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
869 
870 static void shmem_update_stats(struct folio *folio, int nr_pages)
871 {
872 	if (folio_test_pmd_mappable(folio))
873 		lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
874 	lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
875 	lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
876 }
877 
878 /*
879  * Somewhat like filemap_add_folio, but error if expected item has gone.
880  */
881 int shmem_add_to_page_cache(struct folio *folio,
882 			    struct address_space *mapping,
883 			    pgoff_t index, void *expected, gfp_t gfp)
884 {
885 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
886 	unsigned long nr = folio_nr_pages(folio);
887 	swp_entry_t iter, swap;
888 	void *entry;
889 
890 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
891 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
892 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
893 
894 	folio_ref_add(folio, nr);
895 	folio->mapping = mapping;
896 	folio->index = index;
897 
898 	gfp &= GFP_RECLAIM_MASK;
899 	folio_throttle_swaprate(folio, gfp);
900 	swap = radix_to_swp_entry(expected);
901 
902 	do {
903 		iter = swap;
904 		xas_lock_irq(&xas);
905 		xas_for_each_conflict(&xas, entry) {
906 			/*
907 			 * The range must either be empty, or filled with
908 			 * expected swap entries. Shmem swap entries are never
909 			 * partially freed without split of both entry and
910 			 * folio, so there shouldn't be any holes.
911 			 */
912 			if (!expected || entry != swp_to_radix_entry(iter)) {
913 				xas_set_err(&xas, -EEXIST);
914 				goto unlock;
915 			}
916 			iter.val += 1 << xas_get_order(&xas);
917 		}
918 		if (expected && iter.val - nr != swap.val) {
919 			xas_set_err(&xas, -EEXIST);
920 			goto unlock;
921 		}
922 		xas_store(&xas, folio);
923 		if (xas_error(&xas))
924 			goto unlock;
925 		shmem_update_stats(folio, nr);
926 		mapping->nrpages += nr;
927 unlock:
928 		xas_unlock_irq(&xas);
929 	} while (xas_nomem(&xas, gfp));
930 
931 	if (xas_error(&xas)) {
932 		folio->mapping = NULL;
933 		folio_ref_sub(folio, nr);
934 		return xas_error(&xas);
935 	}
936 
937 	return 0;
938 }
939 
940 /*
941  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
942  */
943 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
944 {
945 	struct address_space *mapping = folio->mapping;
946 	long nr = folio_nr_pages(folio);
947 	int error;
948 
949 	xa_lock_irq(&mapping->i_pages);
950 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
951 	folio->mapping = NULL;
952 	mapping->nrpages -= nr;
953 	shmem_update_stats(folio, -nr);
954 	xa_unlock_irq(&mapping->i_pages);
955 	folio_put_refs(folio, nr);
956 	BUG_ON(error);
957 }
958 
959 /*
960  * Remove swap entry from page cache, free the swap and its page cache. Returns
961  * the number of pages being freed. 0 means entry not found in XArray (0 pages
962  * being freed).
963  */
964 static long shmem_free_swap(struct address_space *mapping,
965 			    pgoff_t index, pgoff_t end, void *radswap)
966 {
967 	XA_STATE(xas, &mapping->i_pages, index);
968 	unsigned int nr_pages = 0;
969 	pgoff_t base;
970 	void *entry;
971 
972 	xas_lock_irq(&xas);
973 	entry = xas_load(&xas);
974 	if (entry == radswap) {
975 		nr_pages = 1 << xas_get_order(&xas);
976 		base = round_down(xas.xa_index, nr_pages);
977 		if (base < index || base + nr_pages - 1 > end)
978 			nr_pages = 0;
979 		else
980 			xas_store(&xas, NULL);
981 	}
982 	xas_unlock_irq(&xas);
983 
984 	if (nr_pages)
985 		swap_put_entries_direct(radix_to_swp_entry(radswap), nr_pages);
986 
987 	return nr_pages;
988 }
989 
990 /*
991  * Determine (in bytes) how many of the shmem object's pages mapped by the
992  * given offsets are swapped out.
993  *
994  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
995  * as long as the inode doesn't go away and racy results are not a problem.
996  */
997 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
998 						pgoff_t start, pgoff_t end)
999 {
1000 	XA_STATE(xas, &mapping->i_pages, start);
1001 	struct folio *folio;
1002 	unsigned long swapped = 0;
1003 	unsigned long max = end - 1;
1004 
1005 	rcu_read_lock();
1006 	xas_for_each(&xas, folio, max) {
1007 		if (xas_retry(&xas, folio))
1008 			continue;
1009 		if (xa_is_value(folio))
1010 			swapped += 1 << xas_get_order(&xas);
1011 		if (xas.xa_index == max)
1012 			break;
1013 		if (need_resched()) {
1014 			xas_pause(&xas);
1015 			cond_resched_rcu();
1016 		}
1017 	}
1018 	rcu_read_unlock();
1019 
1020 	return swapped << PAGE_SHIFT;
1021 }
1022 
1023 /*
1024  * Determine (in bytes) how many of the shmem object's pages mapped by the
1025  * given vma is swapped out.
1026  *
1027  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
1028  * as long as the inode doesn't go away and racy results are not a problem.
1029  */
1030 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
1031 {
1032 	struct inode *inode = file_inode(vma->vm_file);
1033 	struct shmem_inode_info *info = SHMEM_I(inode);
1034 	struct address_space *mapping = inode->i_mapping;
1035 	unsigned long swapped;
1036 
1037 	/* Be careful as we don't hold info->lock */
1038 	swapped = READ_ONCE(info->swapped);
1039 
1040 	/*
1041 	 * The easier cases are when the shmem object has nothing in swap, or
1042 	 * the vma maps it whole. Then we can simply use the stats that we
1043 	 * already track.
1044 	 */
1045 	if (!swapped)
1046 		return 0;
1047 
1048 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
1049 		return swapped << PAGE_SHIFT;
1050 
1051 	/* Here comes the more involved part */
1052 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
1053 					vma->vm_pgoff + vma_pages(vma));
1054 }
1055 
1056 /*
1057  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
1058  */
1059 void shmem_unlock_mapping(struct address_space *mapping)
1060 {
1061 	struct folio_batch fbatch;
1062 	pgoff_t index = 0;
1063 
1064 	folio_batch_init(&fbatch);
1065 	/*
1066 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
1067 	 */
1068 	while (!mapping_unevictable(mapping) &&
1069 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
1070 		check_move_unevictable_folios(&fbatch);
1071 		folio_batch_release(&fbatch);
1072 		cond_resched();
1073 	}
1074 }
1075 
1076 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
1077 {
1078 	struct folio *folio;
1079 
1080 	/*
1081 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
1082 	 * beyond i_size, and reports fallocated folios as holes.
1083 	 */
1084 	folio = filemap_get_entry(inode->i_mapping, index);
1085 	if (!folio)
1086 		return folio;
1087 	if (!xa_is_value(folio)) {
1088 		folio_lock(folio);
1089 		if (folio->mapping == inode->i_mapping)
1090 			return folio;
1091 		/* The folio has been swapped out */
1092 		folio_unlock(folio);
1093 		folio_put(folio);
1094 	}
1095 	/*
1096 	 * But read a folio back from swap if any of it is within i_size
1097 	 * (although in some cases this is just a waste of time).
1098 	 */
1099 	folio = NULL;
1100 	shmem_get_folio(inode, index, 0, &folio, SGP_READ);
1101 	return folio;
1102 }
1103 
1104 /*
1105  * Remove range of pages and swap entries from page cache, and free them.
1106  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1107  */
1108 static void shmem_undo_range(struct inode *inode, loff_t lstart, uoff_t lend,
1109 								 bool unfalloc)
1110 {
1111 	struct address_space *mapping = inode->i_mapping;
1112 	struct shmem_inode_info *info = SHMEM_I(inode);
1113 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1114 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1115 	struct folio_batch fbatch;
1116 	pgoff_t indices[PAGEVEC_SIZE];
1117 	struct folio *folio;
1118 	bool same_folio;
1119 	long nr_swaps_freed = 0;
1120 	pgoff_t index;
1121 	int i;
1122 
1123 	if (lend == -1)
1124 		end = -1;	/* unsigned, so actually very big */
1125 
1126 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1127 		info->fallocend = start;
1128 
1129 	folio_batch_init(&fbatch);
1130 	index = start;
1131 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1132 			&fbatch, indices)) {
1133 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1134 			folio = fbatch.folios[i];
1135 
1136 			if (xa_is_value(folio)) {
1137 				if (unfalloc)
1138 					continue;
1139 				nr_swaps_freed += shmem_free_swap(mapping, indices[i],
1140 								  end - 1, folio);
1141 				continue;
1142 			}
1143 
1144 			if (!unfalloc || !folio_test_uptodate(folio))
1145 				truncate_inode_folio(mapping, folio);
1146 			folio_unlock(folio);
1147 		}
1148 		folio_batch_remove_exceptionals(&fbatch);
1149 		folio_batch_release(&fbatch);
1150 		cond_resched();
1151 	}
1152 
1153 	/*
1154 	 * When undoing a failed fallocate, we want none of the partial folio
1155 	 * zeroing and splitting below, but shall want to truncate the whole
1156 	 * folio when !uptodate indicates that it was added by this fallocate,
1157 	 * even when [lstart, lend] covers only a part of the folio.
1158 	 */
1159 	if (unfalloc)
1160 		goto whole_folios;
1161 
1162 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1163 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1164 	if (folio) {
1165 		same_folio = lend < folio_next_pos(folio);
1166 		folio_mark_dirty(folio);
1167 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1168 			start = folio_next_index(folio);
1169 			if (same_folio)
1170 				end = folio->index;
1171 		}
1172 		folio_unlock(folio);
1173 		folio_put(folio);
1174 		folio = NULL;
1175 	}
1176 
1177 	if (!same_folio)
1178 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1179 	if (folio) {
1180 		folio_mark_dirty(folio);
1181 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1182 			end = folio->index;
1183 		folio_unlock(folio);
1184 		folio_put(folio);
1185 	}
1186 
1187 whole_folios:
1188 
1189 	index = start;
1190 	while (index < end) {
1191 		cond_resched();
1192 
1193 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1194 				indices)) {
1195 			/* If all gone or hole-punch or unfalloc, we're done */
1196 			if (index == start || end != -1)
1197 				break;
1198 			/* But if truncating, restart to make sure all gone */
1199 			index = start;
1200 			continue;
1201 		}
1202 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1203 			folio = fbatch.folios[i];
1204 
1205 			if (xa_is_value(folio)) {
1206 				int order;
1207 				long swaps_freed;
1208 
1209 				if (unfalloc)
1210 					continue;
1211 				swaps_freed = shmem_free_swap(mapping, indices[i],
1212 							      end - 1, folio);
1213 				if (!swaps_freed) {
1214 					pgoff_t base = indices[i];
1215 
1216 					order = shmem_confirm_swap(mapping, indices[i],
1217 								   radix_to_swp_entry(folio));
1218 					/*
1219 					 * If found a large swap entry cross the end or start
1220 					 * border, skip it as the truncate_inode_partial_folio
1221 					 * above should have at least zerod its content once.
1222 					 */
1223 					if (order > 0) {
1224 						base = round_down(base, 1 << order);
1225 						if (base < start || base + (1 << order) > end)
1226 							continue;
1227 					}
1228 					/* Swap was replaced by page or extended, retry */
1229 					index = base;
1230 					break;
1231 				}
1232 				nr_swaps_freed += swaps_freed;
1233 				continue;
1234 			}
1235 
1236 			folio_lock(folio);
1237 
1238 			if (!unfalloc || !folio_test_uptodate(folio)) {
1239 				if (folio_mapping(folio) != mapping) {
1240 					/* Page was replaced by swap: retry */
1241 					folio_unlock(folio);
1242 					index = indices[i];
1243 					break;
1244 				}
1245 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1246 						folio);
1247 
1248 				if (!folio_test_large(folio)) {
1249 					truncate_inode_folio(mapping, folio);
1250 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1251 					/*
1252 					 * If we split a page, reset the loop so
1253 					 * that we pick up the new sub pages.
1254 					 * Otherwise the THP was entirely
1255 					 * dropped or the target range was
1256 					 * zeroed, so just continue the loop as
1257 					 * is.
1258 					 */
1259 					if (!folio_test_large(folio)) {
1260 						folio_unlock(folio);
1261 						index = start;
1262 						break;
1263 					}
1264 				}
1265 			}
1266 			folio_unlock(folio);
1267 		}
1268 		folio_batch_remove_exceptionals(&fbatch);
1269 		folio_batch_release(&fbatch);
1270 	}
1271 
1272 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1273 }
1274 
1275 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend)
1276 {
1277 	shmem_undo_range(inode, lstart, lend, false);
1278 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1279 	inode_inc_iversion(inode);
1280 }
1281 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1282 
1283 static int shmem_getattr(struct mnt_idmap *idmap,
1284 			 const struct path *path, struct kstat *stat,
1285 			 u32 request_mask, unsigned int query_flags)
1286 {
1287 	struct inode *inode = path->dentry->d_inode;
1288 	struct shmem_inode_info *info = SHMEM_I(inode);
1289 
1290 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1291 		shmem_recalc_inode(inode, 0, 0);
1292 
1293 	if (info->fsflags & FS_APPEND_FL)
1294 		stat->attributes |= STATX_ATTR_APPEND;
1295 	if (info->fsflags & FS_IMMUTABLE_FL)
1296 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1297 	if (info->fsflags & FS_NODUMP_FL)
1298 		stat->attributes |= STATX_ATTR_NODUMP;
1299 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1300 			STATX_ATTR_IMMUTABLE |
1301 			STATX_ATTR_NODUMP);
1302 	generic_fillattr(idmap, request_mask, inode, stat);
1303 
1304 	if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1305 		stat->blksize = HPAGE_PMD_SIZE;
1306 
1307 	if (request_mask & STATX_BTIME) {
1308 		stat->result_mask |= STATX_BTIME;
1309 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1310 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 static int shmem_setattr(struct mnt_idmap *idmap,
1317 			 struct dentry *dentry, struct iattr *attr)
1318 {
1319 	struct inode *inode = d_inode(dentry);
1320 	struct shmem_inode_info *info = SHMEM_I(inode);
1321 	int error;
1322 	bool update_mtime = false;
1323 	bool update_ctime = true;
1324 
1325 	error = setattr_prepare(idmap, dentry, attr);
1326 	if (error)
1327 		return error;
1328 
1329 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1330 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1331 			return -EPERM;
1332 		}
1333 	}
1334 
1335 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1336 		loff_t oldsize = inode->i_size;
1337 		loff_t newsize = attr->ia_size;
1338 
1339 		/* protected by i_rwsem */
1340 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1341 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1342 			return -EPERM;
1343 
1344 		if (newsize != oldsize) {
1345 			if (info->flags & SHMEM_F_MAPPING_FROZEN)
1346 				return -EPERM;
1347 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1348 					oldsize, newsize);
1349 			if (error)
1350 				return error;
1351 			i_size_write(inode, newsize);
1352 			update_mtime = true;
1353 		} else {
1354 			update_ctime = false;
1355 		}
1356 		if (newsize <= oldsize) {
1357 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1358 			if (oldsize > holebegin)
1359 				unmap_mapping_range(inode->i_mapping,
1360 							holebegin, 0, 1);
1361 			if (info->alloced)
1362 				shmem_truncate_range(inode,
1363 							newsize, (loff_t)-1);
1364 			/* unmap again to remove racily COWed private pages */
1365 			if (oldsize > holebegin)
1366 				unmap_mapping_range(inode->i_mapping,
1367 							holebegin, 0, 1);
1368 		}
1369 	}
1370 
1371 	if (is_quota_modification(idmap, inode, attr)) {
1372 		error = dquot_initialize(inode);
1373 		if (error)
1374 			return error;
1375 	}
1376 
1377 	/* Transfer quota accounting */
1378 	if (i_uid_needs_update(idmap, attr, inode) ||
1379 	    i_gid_needs_update(idmap, attr, inode)) {
1380 		error = dquot_transfer(idmap, inode, attr);
1381 		if (error)
1382 			return error;
1383 	}
1384 
1385 	setattr_copy(idmap, inode, attr);
1386 	if (attr->ia_valid & ATTR_MODE)
1387 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1388 	if (!error && update_ctime) {
1389 		inode_set_ctime_current(inode);
1390 		if (update_mtime)
1391 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1392 		inode_inc_iversion(inode);
1393 	}
1394 	return error;
1395 }
1396 
1397 static void shmem_evict_inode(struct inode *inode)
1398 {
1399 	struct shmem_inode_info *info = SHMEM_I(inode);
1400 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1401 	size_t freed = 0;
1402 
1403 	if (shmem_mapping(inode->i_mapping)) {
1404 		shmem_unacct_size(info->flags, inode->i_size);
1405 		inode->i_size = 0;
1406 		mapping_set_exiting(inode->i_mapping);
1407 		shmem_truncate_range(inode, 0, (loff_t)-1);
1408 		if (!list_empty(&info->shrinklist)) {
1409 			spin_lock(&sbinfo->shrinklist_lock);
1410 			if (!list_empty(&info->shrinklist)) {
1411 				list_del_init(&info->shrinklist);
1412 				sbinfo->shrinklist_len--;
1413 			}
1414 			spin_unlock(&sbinfo->shrinklist_lock);
1415 		}
1416 		while (!list_empty(&info->swaplist)) {
1417 			/* Wait while shmem_unuse() is scanning this inode... */
1418 			wait_var_event(&info->stop_eviction,
1419 				       !atomic_read(&info->stop_eviction));
1420 			spin_lock(&shmem_swaplist_lock);
1421 			/* ...but beware of the race if we peeked too early */
1422 			if (!atomic_read(&info->stop_eviction))
1423 				list_del_init(&info->swaplist);
1424 			spin_unlock(&shmem_swaplist_lock);
1425 		}
1426 	}
1427 
1428 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1429 	shmem_free_inode(inode->i_sb, freed);
1430 	WARN_ON(inode->i_blocks);
1431 	clear_inode(inode);
1432 #ifdef CONFIG_TMPFS_QUOTA
1433 	dquot_free_inode(inode);
1434 	dquot_drop(inode);
1435 #endif
1436 }
1437 
1438 static unsigned int shmem_find_swap_entries(struct address_space *mapping,
1439 				pgoff_t start, struct folio_batch *fbatch,
1440 				pgoff_t *indices, unsigned int type)
1441 {
1442 	XA_STATE(xas, &mapping->i_pages, start);
1443 	struct folio *folio;
1444 	swp_entry_t entry;
1445 
1446 	rcu_read_lock();
1447 	xas_for_each(&xas, folio, ULONG_MAX) {
1448 		if (xas_retry(&xas, folio))
1449 			continue;
1450 
1451 		if (!xa_is_value(folio))
1452 			continue;
1453 
1454 		entry = radix_to_swp_entry(folio);
1455 		/*
1456 		 * swapin error entries can be found in the mapping. But they're
1457 		 * deliberately ignored here as we've done everything we can do.
1458 		 */
1459 		if (swp_type(entry) != type)
1460 			continue;
1461 
1462 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1463 		if (!folio_batch_add(fbatch, folio))
1464 			break;
1465 
1466 		if (need_resched()) {
1467 			xas_pause(&xas);
1468 			cond_resched_rcu();
1469 		}
1470 	}
1471 	rcu_read_unlock();
1472 
1473 	return folio_batch_count(fbatch);
1474 }
1475 
1476 /*
1477  * Move the swapped pages for an inode to page cache. Returns the count
1478  * of pages swapped in, or the error in case of failure.
1479  */
1480 static int shmem_unuse_swap_entries(struct inode *inode,
1481 		struct folio_batch *fbatch, pgoff_t *indices)
1482 {
1483 	int i = 0;
1484 	int ret = 0;
1485 	int error = 0;
1486 	struct address_space *mapping = inode->i_mapping;
1487 
1488 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1489 		struct folio *folio = fbatch->folios[i];
1490 
1491 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1492 					mapping_gfp_mask(mapping), NULL, NULL);
1493 		if (error == 0) {
1494 			folio_unlock(folio);
1495 			folio_put(folio);
1496 			ret++;
1497 		}
1498 		if (error == -ENOMEM)
1499 			break;
1500 		error = 0;
1501 	}
1502 	return error ? error : ret;
1503 }
1504 
1505 /*
1506  * If swap found in inode, free it and move page from swapcache to filecache.
1507  */
1508 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1509 {
1510 	struct address_space *mapping = inode->i_mapping;
1511 	pgoff_t start = 0;
1512 	struct folio_batch fbatch;
1513 	pgoff_t indices[PAGEVEC_SIZE];
1514 	int ret = 0;
1515 
1516 	do {
1517 		folio_batch_init(&fbatch);
1518 		if (!shmem_find_swap_entries(mapping, start, &fbatch,
1519 					     indices, type)) {
1520 			ret = 0;
1521 			break;
1522 		}
1523 
1524 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1525 		if (ret < 0)
1526 			break;
1527 
1528 		start = indices[folio_batch_count(&fbatch) - 1];
1529 	} while (true);
1530 
1531 	return ret;
1532 }
1533 
1534 /*
1535  * Read all the shared memory data that resides in the swap
1536  * device 'type' back into memory, so the swap device can be
1537  * unused.
1538  */
1539 int shmem_unuse(unsigned int type)
1540 {
1541 	struct shmem_inode_info *info, *next;
1542 	int error = 0;
1543 
1544 	if (list_empty(&shmem_swaplist))
1545 		return 0;
1546 
1547 	spin_lock(&shmem_swaplist_lock);
1548 start_over:
1549 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1550 		if (!info->swapped) {
1551 			list_del_init(&info->swaplist);
1552 			continue;
1553 		}
1554 		/*
1555 		 * Drop the swaplist mutex while searching the inode for swap;
1556 		 * but before doing so, make sure shmem_evict_inode() will not
1557 		 * remove placeholder inode from swaplist, nor let it be freed
1558 		 * (igrab() would protect from unlink, but not from unmount).
1559 		 */
1560 		atomic_inc(&info->stop_eviction);
1561 		spin_unlock(&shmem_swaplist_lock);
1562 
1563 		error = shmem_unuse_inode(&info->vfs_inode, type);
1564 		cond_resched();
1565 
1566 		spin_lock(&shmem_swaplist_lock);
1567 		if (atomic_dec_and_test(&info->stop_eviction))
1568 			wake_up_var(&info->stop_eviction);
1569 		if (error)
1570 			break;
1571 		if (list_empty(&info->swaplist))
1572 			goto start_over;
1573 		next = list_next_entry(info, swaplist);
1574 		if (!info->swapped)
1575 			list_del_init(&info->swaplist);
1576 	}
1577 	spin_unlock(&shmem_swaplist_lock);
1578 
1579 	return error;
1580 }
1581 
1582 /**
1583  * shmem_writeout - Write the folio to swap
1584  * @folio: The folio to write
1585  * @plug: swap plug
1586  * @folio_list: list to put back folios on split
1587  *
1588  * Move the folio from the page cache to the swap cache.
1589  */
1590 int shmem_writeout(struct folio *folio, struct swap_iocb **plug,
1591 		struct list_head *folio_list)
1592 {
1593 	struct address_space *mapping = folio->mapping;
1594 	struct inode *inode = mapping->host;
1595 	struct shmem_inode_info *info = SHMEM_I(inode);
1596 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1597 	pgoff_t index;
1598 	int nr_pages;
1599 	bool split = false;
1600 
1601 	if ((info->flags & SHMEM_F_LOCKED) || sbinfo->noswap)
1602 		goto redirty;
1603 
1604 	if (!total_swap_pages)
1605 		goto redirty;
1606 
1607 	/*
1608 	 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1609 	 * split when swapping.
1610 	 *
1611 	 * And shrinkage of pages beyond i_size does not split swap, so
1612 	 * swapout of a large folio crossing i_size needs to split too
1613 	 * (unless fallocate has been used to preallocate beyond EOF).
1614 	 */
1615 	if (folio_test_large(folio)) {
1616 		index = shmem_fallocend(inode,
1617 			DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1618 		if ((index > folio->index && index < folio_next_index(folio)) ||
1619 		    !IS_ENABLED(CONFIG_THP_SWAP))
1620 			split = true;
1621 	}
1622 
1623 	if (split) {
1624 		int order;
1625 
1626 try_split:
1627 		order = folio_order(folio);
1628 		/* Ensure the subpages are still dirty */
1629 		folio_test_set_dirty(folio);
1630 		if (split_folio_to_list(folio, folio_list))
1631 			goto redirty;
1632 
1633 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1634 		if (order >= HPAGE_PMD_ORDER) {
1635 			count_memcg_folio_events(folio, THP_SWPOUT_FALLBACK, 1);
1636 			count_vm_event(THP_SWPOUT_FALLBACK);
1637 		}
1638 #endif
1639 		count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1640 
1641 		folio_clear_dirty(folio);
1642 	}
1643 
1644 	index = folio->index;
1645 	nr_pages = folio_nr_pages(folio);
1646 
1647 	/*
1648 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1649 	 * value into swapfile.c, the only way we can correctly account for a
1650 	 * fallocated folio arriving here is now to initialize it and write it.
1651 	 *
1652 	 * That's okay for a folio already fallocated earlier, but if we have
1653 	 * not yet completed the fallocation, then (a) we want to keep track
1654 	 * of this folio in case we have to undo it, and (b) it may not be a
1655 	 * good idea to continue anyway, once we're pushing into swap.  So
1656 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1657 	 */
1658 	if (!folio_test_uptodate(folio)) {
1659 		if (inode->i_private) {
1660 			struct shmem_falloc *shmem_falloc;
1661 			spin_lock(&inode->i_lock);
1662 			shmem_falloc = inode->i_private;
1663 			if (shmem_falloc &&
1664 			    !shmem_falloc->waitq &&
1665 			    index >= shmem_falloc->start &&
1666 			    index < shmem_falloc->next)
1667 				shmem_falloc->nr_unswapped += nr_pages;
1668 			else
1669 				shmem_falloc = NULL;
1670 			spin_unlock(&inode->i_lock);
1671 			if (shmem_falloc)
1672 				goto redirty;
1673 		}
1674 		folio_zero_range(folio, 0, folio_size(folio));
1675 		flush_dcache_folio(folio);
1676 		folio_mark_uptodate(folio);
1677 	}
1678 
1679 	if (!folio_alloc_swap(folio)) {
1680 		bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages);
1681 		int error;
1682 
1683 		/*
1684 		 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1685 		 * if it's not already there.  Do it now before the folio is
1686 		 * removed from page cache, when its pagelock no longer
1687 		 * protects the inode from eviction.  And do it now, after
1688 		 * we've incremented swapped, because shmem_unuse() will
1689 		 * prune a !swapped inode from the swaplist.
1690 		 */
1691 		if (first_swapped) {
1692 			spin_lock(&shmem_swaplist_lock);
1693 			if (list_empty(&info->swaplist))
1694 				list_add(&info->swaplist, &shmem_swaplist);
1695 			spin_unlock(&shmem_swaplist_lock);
1696 		}
1697 
1698 		folio_dup_swap(folio, NULL);
1699 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap));
1700 
1701 		BUG_ON(folio_mapped(folio));
1702 		error = swap_writeout(folio, plug);
1703 		if (error != AOP_WRITEPAGE_ACTIVATE) {
1704 			/* folio has been unlocked */
1705 			return error;
1706 		}
1707 
1708 		/*
1709 		 * The intention here is to avoid holding on to the swap when
1710 		 * zswap was unable to compress and unable to writeback; but
1711 		 * it will be appropriate if other reactivate cases are added.
1712 		 */
1713 		error = shmem_add_to_page_cache(folio, mapping, index,
1714 				swp_to_radix_entry(folio->swap),
1715 				__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
1716 		/* Swap entry might be erased by racing shmem_free_swap() */
1717 		if (!error) {
1718 			shmem_recalc_inode(inode, 0, -nr_pages);
1719 			folio_put_swap(folio, NULL);
1720 		}
1721 
1722 		/*
1723 		 * The swap_cache_del_folio() below could be left for
1724 		 * shrink_folio_list()'s folio_free_swap() to dispose of;
1725 		 * but I'm a little nervous about letting this folio out of
1726 		 * shmem_writeout() in a hybrid half-tmpfs-half-swap state
1727 		 * e.g. folio_mapping(folio) might give an unexpected answer.
1728 		 */
1729 		swap_cache_del_folio(folio);
1730 		goto redirty;
1731 	}
1732 	if (nr_pages > 1)
1733 		goto try_split;
1734 redirty:
1735 	folio_mark_dirty(folio);
1736 	return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1737 }
1738 EXPORT_SYMBOL_GPL(shmem_writeout);
1739 
1740 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1741 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1742 {
1743 	char buffer[64];
1744 
1745 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1746 		return;		/* show nothing */
1747 
1748 	mpol_to_str(buffer, sizeof(buffer), mpol);
1749 
1750 	seq_printf(seq, ",mpol=%s", buffer);
1751 }
1752 
1753 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1754 {
1755 	struct mempolicy *mpol = NULL;
1756 	if (sbinfo->mpol) {
1757 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1758 		mpol = sbinfo->mpol;
1759 		mpol_get(mpol);
1760 		raw_spin_unlock(&sbinfo->stat_lock);
1761 	}
1762 	return mpol;
1763 }
1764 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1765 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1766 {
1767 }
1768 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1769 {
1770 	return NULL;
1771 }
1772 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1773 
1774 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1775 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1776 
1777 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1778 			struct shmem_inode_info *info, pgoff_t index)
1779 {
1780 	struct mempolicy *mpol;
1781 	pgoff_t ilx;
1782 	struct folio *folio;
1783 
1784 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1785 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1786 	mpol_cond_put(mpol);
1787 
1788 	return folio;
1789 }
1790 
1791 /*
1792  * Make sure huge_gfp is always more limited than limit_gfp.
1793  * Some of the flags set permissions, while others set limitations.
1794  */
1795 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1796 {
1797 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1798 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1799 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1800 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1801 
1802 	/* Allow allocations only from the originally specified zones. */
1803 	result |= zoneflags;
1804 
1805 	/*
1806 	 * Minimize the result gfp by taking the union with the deny flags,
1807 	 * and the intersection of the allow flags.
1808 	 */
1809 	result |= (limit_gfp & denyflags);
1810 	result |= (huge_gfp & limit_gfp) & allowflags;
1811 
1812 	return result;
1813 }
1814 
1815 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1816 bool shmem_hpage_pmd_enabled(void)
1817 {
1818 	if (shmem_huge == SHMEM_HUGE_DENY)
1819 		return false;
1820 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1821 		return true;
1822 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1823 		return true;
1824 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1825 		return true;
1826 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1827 	    shmem_huge != SHMEM_HUGE_NEVER)
1828 		return true;
1829 
1830 	return false;
1831 }
1832 
1833 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1834 				struct vm_area_struct *vma, pgoff_t index,
1835 				loff_t write_end, bool shmem_huge_force)
1836 {
1837 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1838 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1839 	vm_flags_t vm_flags = vma ? vma->vm_flags : 0;
1840 	unsigned int global_orders;
1841 
1842 	if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force)))
1843 		return 0;
1844 
1845 	global_orders = shmem_huge_global_enabled(inode, index, write_end,
1846 						  shmem_huge_force, vma, vm_flags);
1847 	/* Tmpfs huge pages allocation */
1848 	if (!vma || !vma_is_anon_shmem(vma))
1849 		return global_orders;
1850 
1851 	/*
1852 	 * Following the 'deny' semantics of the top level, force the huge
1853 	 * option off from all mounts.
1854 	 */
1855 	if (shmem_huge == SHMEM_HUGE_DENY)
1856 		return 0;
1857 
1858 	/*
1859 	 * Only allow inherit orders if the top-level value is 'force', which
1860 	 * means non-PMD sized THP can not override 'huge' mount option now.
1861 	 */
1862 	if (shmem_huge == SHMEM_HUGE_FORCE)
1863 		return READ_ONCE(huge_shmem_orders_inherit);
1864 
1865 	/* Allow mTHP that will be fully within i_size. */
1866 	mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0);
1867 
1868 	if (vm_flags & VM_HUGEPAGE)
1869 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1870 
1871 	if (global_orders > 0)
1872 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1873 
1874 	return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1875 }
1876 
1877 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1878 					   struct address_space *mapping, pgoff_t index,
1879 					   unsigned long orders)
1880 {
1881 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1882 	pgoff_t aligned_index;
1883 	unsigned long pages;
1884 	int order;
1885 
1886 	if (vma) {
1887 		orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1888 		if (!orders)
1889 			return 0;
1890 	}
1891 
1892 	/* Find the highest order that can add into the page cache */
1893 	order = highest_order(orders);
1894 	while (orders) {
1895 		pages = 1UL << order;
1896 		aligned_index = round_down(index, pages);
1897 		/*
1898 		 * Check for conflict before waiting on a huge allocation.
1899 		 * Conflict might be that a huge page has just been allocated
1900 		 * and added to page cache by a racing thread, or that there
1901 		 * is already at least one small page in the huge extent.
1902 		 * Be careful to retry when appropriate, but not forever!
1903 		 * Elsewhere -EEXIST would be the right code, but not here.
1904 		 */
1905 		if (!xa_find(&mapping->i_pages, &aligned_index,
1906 			     aligned_index + pages - 1, XA_PRESENT))
1907 			break;
1908 		order = next_order(&orders, order);
1909 	}
1910 
1911 	return orders;
1912 }
1913 #else
1914 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1915 					   struct address_space *mapping, pgoff_t index,
1916 					   unsigned long orders)
1917 {
1918 	return 0;
1919 }
1920 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1921 
1922 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1923 		struct shmem_inode_info *info, pgoff_t index)
1924 {
1925 	struct mempolicy *mpol;
1926 	pgoff_t ilx;
1927 	struct folio *folio;
1928 
1929 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1930 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1931 	mpol_cond_put(mpol);
1932 
1933 	return folio;
1934 }
1935 
1936 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1937 		gfp_t gfp, struct inode *inode, pgoff_t index,
1938 		struct mm_struct *fault_mm, unsigned long orders)
1939 {
1940 	struct address_space *mapping = inode->i_mapping;
1941 	struct shmem_inode_info *info = SHMEM_I(inode);
1942 	unsigned long suitable_orders = 0;
1943 	struct folio *folio = NULL;
1944 	pgoff_t aligned_index;
1945 	long pages;
1946 	int error, order;
1947 
1948 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1949 		orders = 0;
1950 
1951 	if (orders > 0) {
1952 		suitable_orders = shmem_suitable_orders(inode, vmf,
1953 							mapping, index, orders);
1954 
1955 		order = highest_order(suitable_orders);
1956 		while (suitable_orders) {
1957 			pages = 1UL << order;
1958 			aligned_index = round_down(index, pages);
1959 			folio = shmem_alloc_folio(gfp, order, info, aligned_index);
1960 			if (folio) {
1961 				index = aligned_index;
1962 				goto allocated;
1963 			}
1964 
1965 			if (pages == HPAGE_PMD_NR)
1966 				count_vm_event(THP_FILE_FALLBACK);
1967 			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1968 			order = next_order(&suitable_orders, order);
1969 		}
1970 	} else {
1971 		pages = 1;
1972 		folio = shmem_alloc_folio(gfp, 0, info, index);
1973 	}
1974 	if (!folio)
1975 		return ERR_PTR(-ENOMEM);
1976 
1977 allocated:
1978 	__folio_set_locked(folio);
1979 	__folio_set_swapbacked(folio);
1980 
1981 	gfp &= GFP_RECLAIM_MASK;
1982 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1983 	if (error) {
1984 		if (xa_find(&mapping->i_pages, &index,
1985 				index + pages - 1, XA_PRESENT)) {
1986 			error = -EEXIST;
1987 		} else if (pages > 1) {
1988 			if (pages == HPAGE_PMD_NR) {
1989 				count_vm_event(THP_FILE_FALLBACK);
1990 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1991 			}
1992 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1993 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1994 		}
1995 		goto unlock;
1996 	}
1997 
1998 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1999 	if (error)
2000 		goto unlock;
2001 
2002 	error = shmem_inode_acct_blocks(inode, pages);
2003 	if (error) {
2004 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2005 		long freed;
2006 		/*
2007 		 * Try to reclaim some space by splitting a few
2008 		 * large folios beyond i_size on the filesystem.
2009 		 */
2010 		shmem_unused_huge_shrink(sbinfo, NULL, pages);
2011 		/*
2012 		 * And do a shmem_recalc_inode() to account for freed pages:
2013 		 * except our folio is there in cache, so not quite balanced.
2014 		 */
2015 		spin_lock(&info->lock);
2016 		freed = pages + info->alloced - info->swapped -
2017 			READ_ONCE(mapping->nrpages);
2018 		if (freed > 0)
2019 			info->alloced -= freed;
2020 		spin_unlock(&info->lock);
2021 		if (freed > 0)
2022 			shmem_inode_unacct_blocks(inode, freed);
2023 		error = shmem_inode_acct_blocks(inode, pages);
2024 		if (error) {
2025 			filemap_remove_folio(folio);
2026 			goto unlock;
2027 		}
2028 	}
2029 
2030 	shmem_recalc_inode(inode, pages, 0);
2031 	folio_add_lru(folio);
2032 	return folio;
2033 
2034 unlock:
2035 	folio_unlock(folio);
2036 	folio_put(folio);
2037 	return ERR_PTR(error);
2038 }
2039 
2040 static struct folio *shmem_swap_alloc_folio(struct inode *inode,
2041 		struct vm_area_struct *vma, pgoff_t index,
2042 		swp_entry_t entry, int order, gfp_t gfp)
2043 {
2044 	struct shmem_inode_info *info = SHMEM_I(inode);
2045 	struct folio *new, *swapcache;
2046 	int nr_pages = 1 << order;
2047 	gfp_t alloc_gfp;
2048 
2049 	/*
2050 	 * We have arrived here because our zones are constrained, so don't
2051 	 * limit chance of success with further cpuset and node constraints.
2052 	 */
2053 	gfp &= ~GFP_CONSTRAINT_MASK;
2054 	alloc_gfp = gfp;
2055 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
2056 		if (WARN_ON_ONCE(order))
2057 			return ERR_PTR(-EINVAL);
2058 	} else if (order) {
2059 		/*
2060 		 * If uffd is active for the vma, we need per-page fault
2061 		 * fidelity to maintain the uffd semantics, then fallback
2062 		 * to swapin order-0 folio, as well as for zswap case.
2063 		 * Any existing sub folio in the swap cache also blocks
2064 		 * mTHP swapin.
2065 		 */
2066 		if ((vma && unlikely(userfaultfd_armed(vma))) ||
2067 		     !zswap_never_enabled() ||
2068 		     non_swapcache_batch(entry, nr_pages) != nr_pages)
2069 			goto fallback;
2070 
2071 		alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp);
2072 	}
2073 retry:
2074 	new = shmem_alloc_folio(alloc_gfp, order, info, index);
2075 	if (!new) {
2076 		new = ERR_PTR(-ENOMEM);
2077 		goto fallback;
2078 	}
2079 
2080 	if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL,
2081 					   alloc_gfp, entry)) {
2082 		folio_put(new);
2083 		new = ERR_PTR(-ENOMEM);
2084 		goto fallback;
2085 	}
2086 
2087 	swapcache = swapin_folio(entry, new);
2088 	if (swapcache != new) {
2089 		folio_put(new);
2090 		if (!swapcache) {
2091 			/*
2092 			 * The new folio is charged already, swapin can
2093 			 * only fail due to another raced swapin.
2094 			 */
2095 			new = ERR_PTR(-EEXIST);
2096 			goto fallback;
2097 		}
2098 	}
2099 	return swapcache;
2100 fallback:
2101 	/* Order 0 swapin failed, nothing to fallback to, abort */
2102 	if (!order)
2103 		return new;
2104 	entry.val += index - round_down(index, nr_pages);
2105 	alloc_gfp = gfp;
2106 	nr_pages = 1;
2107 	order = 0;
2108 	goto retry;
2109 }
2110 
2111 /*
2112  * When a page is moved from swapcache to shmem filecache (either by the
2113  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
2114  * shmem_unuse_inode()), it may have been read in earlier from swap, in
2115  * ignorance of the mapping it belongs to.  If that mapping has special
2116  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
2117  * we may need to copy to a suitable page before moving to filecache.
2118  *
2119  * In a future release, this may well be extended to respect cpuset and
2120  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
2121  * but for now it is a simple matter of zone.
2122  */
2123 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
2124 {
2125 	return folio_zonenum(folio) > gfp_zone(gfp);
2126 }
2127 
2128 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
2129 				struct shmem_inode_info *info, pgoff_t index,
2130 				struct vm_area_struct *vma)
2131 {
2132 	struct swap_cluster_info *ci;
2133 	struct folio *new, *old = *foliop;
2134 	swp_entry_t entry = old->swap;
2135 	int nr_pages = folio_nr_pages(old);
2136 	int error = 0;
2137 
2138 	/*
2139 	 * We have arrived here because our zones are constrained, so don't
2140 	 * limit chance of success by further cpuset and node constraints.
2141 	 */
2142 	gfp &= ~GFP_CONSTRAINT_MASK;
2143 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2144 	if (nr_pages > 1) {
2145 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
2146 
2147 		gfp = limit_gfp_mask(huge_gfp, gfp);
2148 	}
2149 #endif
2150 
2151 	new = shmem_alloc_folio(gfp, folio_order(old), info, index);
2152 	if (!new)
2153 		return -ENOMEM;
2154 
2155 	folio_ref_add(new, nr_pages);
2156 	folio_copy(new, old);
2157 	flush_dcache_folio(new);
2158 
2159 	__folio_set_locked(new);
2160 	__folio_set_swapbacked(new);
2161 	folio_mark_uptodate(new);
2162 	new->swap = entry;
2163 	folio_set_swapcache(new);
2164 
2165 	ci = swap_cluster_get_and_lock_irq(old);
2166 	__swap_cache_replace_folio(ci, old, new);
2167 	mem_cgroup_replace_folio(old, new);
2168 	shmem_update_stats(new, nr_pages);
2169 	shmem_update_stats(old, -nr_pages);
2170 	swap_cluster_unlock_irq(ci);
2171 
2172 	folio_add_lru(new);
2173 	*foliop = new;
2174 
2175 	folio_clear_swapcache(old);
2176 	old->private = NULL;
2177 
2178 	folio_unlock(old);
2179 	/*
2180 	 * The old folio are removed from swap cache, drop the 'nr_pages'
2181 	 * reference, as well as one temporary reference getting from swap
2182 	 * cache.
2183 	 */
2184 	folio_put_refs(old, nr_pages + 1);
2185 	return error;
2186 }
2187 
2188 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2189 					 struct folio *folio, swp_entry_t swap)
2190 {
2191 	struct address_space *mapping = inode->i_mapping;
2192 	swp_entry_t swapin_error;
2193 	void *old;
2194 	int nr_pages;
2195 
2196 	swapin_error = make_poisoned_swp_entry();
2197 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
2198 			     swp_to_radix_entry(swap),
2199 			     swp_to_radix_entry(swapin_error), 0);
2200 	if (old != swp_to_radix_entry(swap))
2201 		return;
2202 
2203 	nr_pages = folio_nr_pages(folio);
2204 	folio_wait_writeback(folio);
2205 	folio_put_swap(folio, NULL);
2206 	swap_cache_del_folio(folio);
2207 	/*
2208 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2209 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2210 	 * in shmem_evict_inode().
2211 	 */
2212 	shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2213 }
2214 
2215 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2216 				   swp_entry_t swap, gfp_t gfp)
2217 {
2218 	struct address_space *mapping = inode->i_mapping;
2219 	XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2220 	int split_order = 0;
2221 	int i;
2222 
2223 	/* Convert user data gfp flags to xarray node gfp flags */
2224 	gfp &= GFP_RECLAIM_MASK;
2225 
2226 	for (;;) {
2227 		void *old = NULL;
2228 		int cur_order;
2229 		pgoff_t swap_index;
2230 
2231 		xas_lock_irq(&xas);
2232 		old = xas_load(&xas);
2233 		if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2234 			xas_set_err(&xas, -EEXIST);
2235 			goto unlock;
2236 		}
2237 
2238 		cur_order = xas_get_order(&xas);
2239 		if (!cur_order)
2240 			goto unlock;
2241 
2242 		/* Try to split large swap entry in pagecache */
2243 		swap_index = round_down(index, 1 << cur_order);
2244 		split_order = xas_try_split_min_order(cur_order);
2245 
2246 		while (cur_order > 0) {
2247 			pgoff_t aligned_index =
2248 				round_down(index, 1 << cur_order);
2249 			pgoff_t swap_offset = aligned_index - swap_index;
2250 
2251 			xas_set_order(&xas, index, split_order);
2252 			xas_try_split(&xas, old, cur_order);
2253 			if (xas_error(&xas))
2254 				goto unlock;
2255 
2256 			/*
2257 			 * Re-set the swap entry after splitting, and the swap
2258 			 * offset of the original large entry must be continuous.
2259 			 */
2260 			for (i = 0; i < 1 << cur_order;
2261 			     i += (1 << split_order)) {
2262 				swp_entry_t tmp;
2263 
2264 				tmp = swp_entry(swp_type(swap),
2265 						swp_offset(swap) + swap_offset +
2266 							i);
2267 				__xa_store(&mapping->i_pages, aligned_index + i,
2268 					   swp_to_radix_entry(tmp), 0);
2269 			}
2270 			cur_order = split_order;
2271 			split_order = xas_try_split_min_order(split_order);
2272 		}
2273 
2274 unlock:
2275 		xas_unlock_irq(&xas);
2276 
2277 		if (!xas_nomem(&xas, gfp))
2278 			break;
2279 	}
2280 
2281 	if (xas_error(&xas))
2282 		return xas_error(&xas);
2283 
2284 	return 0;
2285 }
2286 
2287 /*
2288  * Swap in the folio pointed to by *foliop.
2289  * Caller has to make sure that *foliop contains a valid swapped folio.
2290  * Returns 0 and the folio in foliop if success. On failure, returns the
2291  * error code and NULL in *foliop.
2292  */
2293 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2294 			     struct folio **foliop, enum sgp_type sgp,
2295 			     gfp_t gfp, struct vm_area_struct *vma,
2296 			     vm_fault_t *fault_type)
2297 {
2298 	struct address_space *mapping = inode->i_mapping;
2299 	struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2300 	struct shmem_inode_info *info = SHMEM_I(inode);
2301 	swp_entry_t swap;
2302 	softleaf_t index_entry;
2303 	struct swap_info_struct *si;
2304 	struct folio *folio = NULL;
2305 	int error, nr_pages, order;
2306 	pgoff_t offset;
2307 
2308 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2309 	index_entry = radix_to_swp_entry(*foliop);
2310 	swap = index_entry;
2311 	*foliop = NULL;
2312 
2313 	if (softleaf_is_poison_marker(index_entry))
2314 		return -EIO;
2315 
2316 	si = get_swap_device(index_entry);
2317 	order = shmem_confirm_swap(mapping, index, index_entry);
2318 	if (unlikely(!si)) {
2319 		if (order < 0)
2320 			return -EEXIST;
2321 		else
2322 			return -EINVAL;
2323 	}
2324 	if (unlikely(order < 0)) {
2325 		put_swap_device(si);
2326 		return -EEXIST;
2327 	}
2328 
2329 	/* index may point to the middle of a large entry, get the sub entry */
2330 	if (order) {
2331 		offset = index - round_down(index, 1 << order);
2332 		swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2333 	}
2334 
2335 	/* Look it up and read it in.. */
2336 	folio = swap_cache_get_folio(swap);
2337 	if (!folio) {
2338 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
2339 			/* Direct swapin skipping swap cache & readahead */
2340 			folio = shmem_swap_alloc_folio(inode, vma, index,
2341 						       index_entry, order, gfp);
2342 			if (IS_ERR(folio)) {
2343 				error = PTR_ERR(folio);
2344 				folio = NULL;
2345 				goto failed;
2346 			}
2347 		} else {
2348 			/* Cached swapin only supports order 0 folio */
2349 			folio = shmem_swapin_cluster(swap, gfp, info, index);
2350 			if (!folio) {
2351 				error = -ENOMEM;
2352 				goto failed;
2353 			}
2354 		}
2355 		if (fault_type) {
2356 			*fault_type |= VM_FAULT_MAJOR;
2357 			count_vm_event(PGMAJFAULT);
2358 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2359 		}
2360 	} else {
2361 		swap_update_readahead(folio, NULL, 0);
2362 	}
2363 
2364 	if (order > folio_order(folio)) {
2365 		/*
2366 		 * Swapin may get smaller folios due to various reasons:
2367 		 * It may fallback to order 0 due to memory pressure or race,
2368 		 * swap readahead may swap in order 0 folios into swapcache
2369 		 * asynchronously, while the shmem mapping can still stores
2370 		 * large swap entries. In such cases, we should split the
2371 		 * large swap entry to prevent possible data corruption.
2372 		 */
2373 		error = shmem_split_large_entry(inode, index, index_entry, gfp);
2374 		if (error)
2375 			goto failed_nolock;
2376 	}
2377 
2378 	/*
2379 	 * If the folio is large, round down swap and index by folio size.
2380 	 * No matter what race occurs, the swap layer ensures we either get
2381 	 * a valid folio that has its swap entry aligned by size, or a
2382 	 * temporarily invalid one which we'll abort very soon and retry.
2383 	 *
2384 	 * shmem_add_to_page_cache ensures the whole range contains expected
2385 	 * entries and prevents any corruption, so any race split is fine
2386 	 * too, it will succeed as long as the entries are still there.
2387 	 */
2388 	nr_pages = folio_nr_pages(folio);
2389 	if (nr_pages > 1) {
2390 		swap.val = round_down(swap.val, nr_pages);
2391 		index = round_down(index, nr_pages);
2392 	}
2393 
2394 	/*
2395 	 * We have to do this with the folio locked to prevent races.
2396 	 * The shmem_confirm_swap below only checks if the first swap
2397 	 * entry matches the folio, that's enough to ensure the folio
2398 	 * is not used outside of shmem, as shmem swap entries
2399 	 * and swap cache folios are never partially freed.
2400 	 */
2401 	folio_lock(folio);
2402 	if (!folio_matches_swap_entry(folio, swap) ||
2403 	    shmem_confirm_swap(mapping, index, swap) < 0) {
2404 		error = -EEXIST;
2405 		goto unlock;
2406 	}
2407 	if (!folio_test_uptodate(folio)) {
2408 		error = -EIO;
2409 		goto failed;
2410 	}
2411 	folio_wait_writeback(folio);
2412 
2413 	/*
2414 	 * Some architectures may have to restore extra metadata to the
2415 	 * folio after reading from swap.
2416 	 */
2417 	arch_swap_restore(folio_swap(swap, folio), folio);
2418 
2419 	if (shmem_should_replace_folio(folio, gfp)) {
2420 		error = shmem_replace_folio(&folio, gfp, info, index, vma);
2421 		if (error)
2422 			goto failed;
2423 	}
2424 
2425 	error = shmem_add_to_page_cache(folio, mapping, index,
2426 					swp_to_radix_entry(swap), gfp);
2427 	if (error)
2428 		goto failed;
2429 
2430 	shmem_recalc_inode(inode, 0, -nr_pages);
2431 
2432 	if (sgp == SGP_WRITE)
2433 		folio_mark_accessed(folio);
2434 
2435 	folio_put_swap(folio, NULL);
2436 	swap_cache_del_folio(folio);
2437 	folio_mark_dirty(folio);
2438 	put_swap_device(si);
2439 
2440 	*foliop = folio;
2441 	return 0;
2442 failed:
2443 	if (shmem_confirm_swap(mapping, index, swap) < 0)
2444 		error = -EEXIST;
2445 	if (error == -EIO)
2446 		shmem_set_folio_swapin_error(inode, index, folio, swap);
2447 unlock:
2448 	if (folio)
2449 		folio_unlock(folio);
2450 failed_nolock:
2451 	if (folio)
2452 		folio_put(folio);
2453 	put_swap_device(si);
2454 
2455 	return error;
2456 }
2457 
2458 /*
2459  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2460  *
2461  * If we allocate a new one we do not mark it dirty. That's up to the
2462  * vm. If we swap it in we mark it dirty since we also free the swap
2463  * entry since a page cannot live in both the swap and page cache.
2464  *
2465  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2466  */
2467 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2468 		loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2469 		gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2470 {
2471 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2472 	struct mm_struct *fault_mm;
2473 	struct folio *folio;
2474 	int error;
2475 	bool alloced;
2476 	unsigned long orders = 0;
2477 
2478 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2479 		return -EINVAL;
2480 
2481 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2482 		return -EFBIG;
2483 repeat:
2484 	if (sgp <= SGP_CACHE &&
2485 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2486 		return -EINVAL;
2487 
2488 	alloced = false;
2489 	fault_mm = vma ? vma->vm_mm : NULL;
2490 
2491 	folio = filemap_get_entry(inode->i_mapping, index);
2492 	if (folio && vma && userfaultfd_minor(vma)) {
2493 		if (!xa_is_value(folio))
2494 			folio_put(folio);
2495 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2496 		return 0;
2497 	}
2498 
2499 	if (xa_is_value(folio)) {
2500 		error = shmem_swapin_folio(inode, index, &folio,
2501 					   sgp, gfp, vma, fault_type);
2502 		if (error == -EEXIST)
2503 			goto repeat;
2504 
2505 		*foliop = folio;
2506 		return error;
2507 	}
2508 
2509 	if (folio) {
2510 		folio_lock(folio);
2511 
2512 		/* Has the folio been truncated or swapped out? */
2513 		if (unlikely(folio->mapping != inode->i_mapping)) {
2514 			folio_unlock(folio);
2515 			folio_put(folio);
2516 			goto repeat;
2517 		}
2518 		if (sgp == SGP_WRITE)
2519 			folio_mark_accessed(folio);
2520 		if (folio_test_uptodate(folio))
2521 			goto out;
2522 		/* fallocated folio */
2523 		if (sgp != SGP_READ)
2524 			goto clear;
2525 		folio_unlock(folio);
2526 		folio_put(folio);
2527 	}
2528 
2529 	/*
2530 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2531 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2532 	 */
2533 	*foliop = NULL;
2534 	if (sgp == SGP_READ)
2535 		return 0;
2536 	if (sgp == SGP_NOALLOC)
2537 		return -ENOENT;
2538 
2539 	/*
2540 	 * Fast cache lookup and swap lookup did not find it: allocate.
2541 	 */
2542 
2543 	if (vma && userfaultfd_missing(vma)) {
2544 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2545 		return 0;
2546 	}
2547 
2548 	/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2549 	orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2550 	if (orders > 0) {
2551 		gfp_t huge_gfp;
2552 
2553 		huge_gfp = vma_thp_gfp_mask(vma);
2554 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2555 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2556 				inode, index, fault_mm, orders);
2557 		if (!IS_ERR(folio)) {
2558 			if (folio_test_pmd_mappable(folio))
2559 				count_vm_event(THP_FILE_ALLOC);
2560 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2561 			goto alloced;
2562 		}
2563 		if (PTR_ERR(folio) == -EEXIST)
2564 			goto repeat;
2565 	}
2566 
2567 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2568 	if (IS_ERR(folio)) {
2569 		error = PTR_ERR(folio);
2570 		if (error == -EEXIST)
2571 			goto repeat;
2572 		folio = NULL;
2573 		goto unlock;
2574 	}
2575 
2576 alloced:
2577 	alloced = true;
2578 	if (folio_test_large(folio) &&
2579 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2580 					folio_next_index(folio)) {
2581 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2582 		struct shmem_inode_info *info = SHMEM_I(inode);
2583 		/*
2584 		 * Part of the large folio is beyond i_size: subject
2585 		 * to shrink under memory pressure.
2586 		 */
2587 		spin_lock(&sbinfo->shrinklist_lock);
2588 		/*
2589 		 * _careful to defend against unlocked access to
2590 		 * ->shrink_list in shmem_unused_huge_shrink()
2591 		 */
2592 		if (list_empty_careful(&info->shrinklist)) {
2593 			list_add_tail(&info->shrinklist,
2594 				      &sbinfo->shrinklist);
2595 			sbinfo->shrinklist_len++;
2596 		}
2597 		spin_unlock(&sbinfo->shrinklist_lock);
2598 	}
2599 
2600 	if (sgp == SGP_WRITE)
2601 		folio_set_referenced(folio);
2602 	/*
2603 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2604 	 */
2605 	if (sgp == SGP_FALLOC)
2606 		sgp = SGP_WRITE;
2607 clear:
2608 	/*
2609 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2610 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2611 	 * it now, lest undo on failure cancel our earlier guarantee.
2612 	 */
2613 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2614 		long i, n = folio_nr_pages(folio);
2615 
2616 		for (i = 0; i < n; i++)
2617 			clear_highpage(folio_page(folio, i));
2618 		flush_dcache_folio(folio);
2619 		folio_mark_uptodate(folio);
2620 	}
2621 
2622 	/* Perhaps the file has been truncated since we checked */
2623 	if (sgp <= SGP_CACHE &&
2624 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2625 		error = -EINVAL;
2626 		goto unlock;
2627 	}
2628 out:
2629 	*foliop = folio;
2630 	return 0;
2631 
2632 	/*
2633 	 * Error recovery.
2634 	 */
2635 unlock:
2636 	if (alloced)
2637 		filemap_remove_folio(folio);
2638 	shmem_recalc_inode(inode, 0, 0);
2639 	if (folio) {
2640 		folio_unlock(folio);
2641 		folio_put(folio);
2642 	}
2643 	return error;
2644 }
2645 
2646 /**
2647  * shmem_get_folio - find, and lock a shmem folio.
2648  * @inode:	inode to search
2649  * @index:	the page index.
2650  * @write_end:	end of a write, could extend inode size
2651  * @foliop:	pointer to the folio if found
2652  * @sgp:	SGP_* flags to control behavior
2653  *
2654  * Looks up the page cache entry at @inode & @index.  If a folio is
2655  * present, it is returned locked with an increased refcount.
2656  *
2657  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2658  * before unlocking the folio to ensure that the folio is not reclaimed.
2659  * There is no need to reserve space before calling folio_mark_dirty().
2660  *
2661  * When no folio is found, the behavior depends on @sgp:
2662  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2663  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2664  *  - for all other flags a new folio is allocated, inserted into the
2665  *    page cache and returned locked in @foliop.
2666  *
2667  * Context: May sleep.
2668  * Return: 0 if successful, else a negative error code.
2669  */
2670 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2671 		    struct folio **foliop, enum sgp_type sgp)
2672 {
2673 	return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2674 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2675 }
2676 EXPORT_SYMBOL_GPL(shmem_get_folio);
2677 
2678 /*
2679  * This is like autoremove_wake_function, but it removes the wait queue
2680  * entry unconditionally - even if something else had already woken the
2681  * target.
2682  */
2683 static int synchronous_wake_function(wait_queue_entry_t *wait,
2684 			unsigned int mode, int sync, void *key)
2685 {
2686 	int ret = default_wake_function(wait, mode, sync, key);
2687 	list_del_init(&wait->entry);
2688 	return ret;
2689 }
2690 
2691 /*
2692  * Trinity finds that probing a hole which tmpfs is punching can
2693  * prevent the hole-punch from ever completing: which in turn
2694  * locks writers out with its hold on i_rwsem.  So refrain from
2695  * faulting pages into the hole while it's being punched.  Although
2696  * shmem_undo_range() does remove the additions, it may be unable to
2697  * keep up, as each new page needs its own unmap_mapping_range() call,
2698  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2699  *
2700  * It does not matter if we sometimes reach this check just before the
2701  * hole-punch begins, so that one fault then races with the punch:
2702  * we just need to make racing faults a rare case.
2703  *
2704  * The implementation below would be much simpler if we just used a
2705  * standard mutex or completion: but we cannot take i_rwsem in fault,
2706  * and bloating every shmem inode for this unlikely case would be sad.
2707  */
2708 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2709 {
2710 	struct shmem_falloc *shmem_falloc;
2711 	struct file *fpin = NULL;
2712 	vm_fault_t ret = 0;
2713 
2714 	spin_lock(&inode->i_lock);
2715 	shmem_falloc = inode->i_private;
2716 	if (shmem_falloc &&
2717 	    shmem_falloc->waitq &&
2718 	    vmf->pgoff >= shmem_falloc->start &&
2719 	    vmf->pgoff < shmem_falloc->next) {
2720 		wait_queue_head_t *shmem_falloc_waitq;
2721 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2722 
2723 		ret = VM_FAULT_NOPAGE;
2724 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2725 		shmem_falloc_waitq = shmem_falloc->waitq;
2726 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2727 				TASK_UNINTERRUPTIBLE);
2728 		spin_unlock(&inode->i_lock);
2729 		schedule();
2730 
2731 		/*
2732 		 * shmem_falloc_waitq points into the shmem_fallocate()
2733 		 * stack of the hole-punching task: shmem_falloc_waitq
2734 		 * is usually invalid by the time we reach here, but
2735 		 * finish_wait() does not dereference it in that case;
2736 		 * though i_lock needed lest racing with wake_up_all().
2737 		 */
2738 		spin_lock(&inode->i_lock);
2739 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2740 	}
2741 	spin_unlock(&inode->i_lock);
2742 	if (fpin) {
2743 		fput(fpin);
2744 		ret = VM_FAULT_RETRY;
2745 	}
2746 	return ret;
2747 }
2748 
2749 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2750 {
2751 	struct inode *inode = file_inode(vmf->vma->vm_file);
2752 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2753 	struct folio *folio = NULL;
2754 	vm_fault_t ret = 0;
2755 	int err;
2756 
2757 	/*
2758 	 * Trinity finds that probing a hole which tmpfs is punching can
2759 	 * prevent the hole-punch from ever completing: noted in i_private.
2760 	 */
2761 	if (unlikely(inode->i_private)) {
2762 		ret = shmem_falloc_wait(vmf, inode);
2763 		if (ret)
2764 			return ret;
2765 	}
2766 
2767 	WARN_ON_ONCE(vmf->page != NULL);
2768 	err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2769 				  gfp, vmf, &ret);
2770 	if (err)
2771 		return vmf_error(err);
2772 	if (folio) {
2773 		vmf->page = folio_file_page(folio, vmf->pgoff);
2774 		ret |= VM_FAULT_LOCKED;
2775 	}
2776 	return ret;
2777 }
2778 
2779 unsigned long shmem_get_unmapped_area(struct file *file,
2780 				      unsigned long uaddr, unsigned long len,
2781 				      unsigned long pgoff, unsigned long flags)
2782 {
2783 	unsigned long addr;
2784 	unsigned long offset;
2785 	unsigned long inflated_len;
2786 	unsigned long inflated_addr;
2787 	unsigned long inflated_offset;
2788 	unsigned long hpage_size;
2789 
2790 	if (len > TASK_SIZE)
2791 		return -ENOMEM;
2792 
2793 	addr = mm_get_unmapped_area(file, uaddr, len, pgoff, flags);
2794 
2795 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2796 		return addr;
2797 	if (IS_ERR_VALUE(addr))
2798 		return addr;
2799 	if (addr & ~PAGE_MASK)
2800 		return addr;
2801 	if (addr > TASK_SIZE - len)
2802 		return addr;
2803 
2804 	if (shmem_huge == SHMEM_HUGE_DENY)
2805 		return addr;
2806 	if (flags & MAP_FIXED)
2807 		return addr;
2808 	/*
2809 	 * Our priority is to support MAP_SHARED mapped hugely;
2810 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2811 	 * But if caller specified an address hint and we allocated area there
2812 	 * successfully, respect that as before.
2813 	 */
2814 	if (uaddr == addr)
2815 		return addr;
2816 
2817 	hpage_size = HPAGE_PMD_SIZE;
2818 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2819 		struct super_block *sb;
2820 		unsigned long __maybe_unused hpage_orders;
2821 		int order = 0;
2822 
2823 		if (file) {
2824 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2825 			sb = file_inode(file)->i_sb;
2826 		} else {
2827 			/*
2828 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2829 			 * for "/dev/zero", to create a shared anonymous object.
2830 			 */
2831 			if (IS_ERR(shm_mnt))
2832 				return addr;
2833 			sb = shm_mnt->mnt_sb;
2834 
2835 			/*
2836 			 * Find the highest mTHP order used for anonymous shmem to
2837 			 * provide a suitable alignment address.
2838 			 */
2839 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2840 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2841 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2842 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2843 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2844 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2845 
2846 			if (hpage_orders > 0) {
2847 				order = highest_order(hpage_orders);
2848 				hpage_size = PAGE_SIZE << order;
2849 			}
2850 #endif
2851 		}
2852 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2853 			return addr;
2854 	}
2855 
2856 	if (len < hpage_size)
2857 		return addr;
2858 
2859 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2860 	if (offset && offset + len < 2 * hpage_size)
2861 		return addr;
2862 	if ((addr & (hpage_size - 1)) == offset)
2863 		return addr;
2864 
2865 	inflated_len = len + hpage_size - PAGE_SIZE;
2866 	if (inflated_len > TASK_SIZE)
2867 		return addr;
2868 	if (inflated_len < len)
2869 		return addr;
2870 
2871 	inflated_addr = mm_get_unmapped_area(NULL, uaddr, inflated_len, 0, flags);
2872 	if (IS_ERR_VALUE(inflated_addr))
2873 		return addr;
2874 	if (inflated_addr & ~PAGE_MASK)
2875 		return addr;
2876 
2877 	inflated_offset = inflated_addr & (hpage_size - 1);
2878 	inflated_addr += offset - inflated_offset;
2879 	if (inflated_offset > offset)
2880 		inflated_addr += hpage_size;
2881 
2882 	if (inflated_addr > TASK_SIZE - len)
2883 		return addr;
2884 	return inflated_addr;
2885 }
2886 
2887 #ifdef CONFIG_NUMA
2888 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2889 {
2890 	struct inode *inode = file_inode(vma->vm_file);
2891 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2892 }
2893 
2894 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2895 					  unsigned long addr, pgoff_t *ilx)
2896 {
2897 	struct inode *inode = file_inode(vma->vm_file);
2898 	pgoff_t index;
2899 
2900 	/*
2901 	 * Bias interleave by inode number to distribute better across nodes;
2902 	 * but this interface is independent of which page order is used, so
2903 	 * supplies only that bias, letting caller apply the offset (adjusted
2904 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2905 	 */
2906 	*ilx = inode->i_ino;
2907 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2908 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2909 }
2910 
2911 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2912 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2913 {
2914 	struct mempolicy *mpol;
2915 
2916 	/* Bias interleave by inode number to distribute better across nodes */
2917 	*ilx = info->vfs_inode.i_ino + (index >> order);
2918 
2919 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2920 	return mpol ? mpol : get_task_policy(current);
2921 }
2922 #else
2923 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2924 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2925 {
2926 	*ilx = 0;
2927 	return NULL;
2928 }
2929 #endif /* CONFIG_NUMA */
2930 
2931 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2932 {
2933 	struct inode *inode = file_inode(file);
2934 	struct shmem_inode_info *info = SHMEM_I(inode);
2935 	int retval = -ENOMEM;
2936 
2937 	/*
2938 	 * What serializes the accesses to info->flags?
2939 	 * ipc_lock_object() when called from shmctl_do_lock(),
2940 	 * no serialization needed when called from shm_destroy().
2941 	 */
2942 	if (lock && !(info->flags & SHMEM_F_LOCKED)) {
2943 		if (!user_shm_lock(inode->i_size, ucounts))
2944 			goto out_nomem;
2945 		info->flags |= SHMEM_F_LOCKED;
2946 		mapping_set_unevictable(file->f_mapping);
2947 	}
2948 	if (!lock && (info->flags & SHMEM_F_LOCKED) && ucounts) {
2949 		user_shm_unlock(inode->i_size, ucounts);
2950 		info->flags &= ~SHMEM_F_LOCKED;
2951 		mapping_clear_unevictable(file->f_mapping);
2952 	}
2953 	retval = 0;
2954 
2955 out_nomem:
2956 	return retval;
2957 }
2958 
2959 static int shmem_mmap_prepare(struct vm_area_desc *desc)
2960 {
2961 	struct file *file = desc->file;
2962 	struct inode *inode = file_inode(file);
2963 
2964 	file_accessed(file);
2965 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2966 	if (inode->i_nlink)
2967 		desc->vm_ops = &shmem_vm_ops;
2968 	else
2969 		desc->vm_ops = &shmem_anon_vm_ops;
2970 	return 0;
2971 }
2972 
2973 static int shmem_file_open(struct inode *inode, struct file *file)
2974 {
2975 	file->f_mode |= FMODE_CAN_ODIRECT;
2976 	return generic_file_open(inode, file);
2977 }
2978 
2979 #ifdef CONFIG_TMPFS_XATTR
2980 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2981 
2982 #if IS_ENABLED(CONFIG_UNICODE)
2983 /*
2984  * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2985  *
2986  * The casefold file attribute needs some special checks. I can just be added to
2987  * an empty dir, and can't be removed from a non-empty dir.
2988  */
2989 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2990 				      struct dentry *dentry, unsigned int *i_flags)
2991 {
2992 	unsigned int old = inode->i_flags;
2993 	struct super_block *sb = inode->i_sb;
2994 
2995 	if (fsflags & FS_CASEFOLD_FL) {
2996 		if (!(old & S_CASEFOLD)) {
2997 			if (!sb->s_encoding)
2998 				return -EOPNOTSUPP;
2999 
3000 			if (!S_ISDIR(inode->i_mode))
3001 				return -ENOTDIR;
3002 
3003 			if (dentry && !simple_empty(dentry))
3004 				return -ENOTEMPTY;
3005 		}
3006 
3007 		*i_flags = *i_flags | S_CASEFOLD;
3008 	} else if (old & S_CASEFOLD) {
3009 		if (dentry && !simple_empty(dentry))
3010 			return -ENOTEMPTY;
3011 	}
3012 
3013 	return 0;
3014 }
3015 #else
3016 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
3017 				      struct dentry *dentry, unsigned int *i_flags)
3018 {
3019 	if (fsflags & FS_CASEFOLD_FL)
3020 		return -EOPNOTSUPP;
3021 
3022 	return 0;
3023 }
3024 #endif
3025 
3026 /*
3027  * chattr's fsflags are unrelated to extended attributes,
3028  * but tmpfs has chosen to enable them under the same config option.
3029  */
3030 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3031 {
3032 	unsigned int i_flags = 0;
3033 	int ret;
3034 
3035 	ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
3036 	if (ret)
3037 		return ret;
3038 
3039 	if (fsflags & FS_NOATIME_FL)
3040 		i_flags |= S_NOATIME;
3041 	if (fsflags & FS_APPEND_FL)
3042 		i_flags |= S_APPEND;
3043 	if (fsflags & FS_IMMUTABLE_FL)
3044 		i_flags |= S_IMMUTABLE;
3045 	/*
3046 	 * But FS_NODUMP_FL does not require any action in i_flags.
3047 	 */
3048 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
3049 
3050 	return 0;
3051 }
3052 #else
3053 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3054 {
3055 }
3056 #define shmem_initxattrs NULL
3057 #endif
3058 
3059 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
3060 {
3061 	return &SHMEM_I(inode)->dir_offsets;
3062 }
3063 
3064 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
3065 					     struct super_block *sb,
3066 					     struct inode *dir, umode_t mode,
3067 					     dev_t dev, unsigned long flags)
3068 {
3069 	struct inode *inode;
3070 	struct shmem_inode_info *info;
3071 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3072 	ino_t ino;
3073 	int err;
3074 
3075 	err = shmem_reserve_inode(sb, &ino);
3076 	if (err)
3077 		return ERR_PTR(err);
3078 
3079 	inode = new_inode(sb);
3080 	if (!inode) {
3081 		shmem_free_inode(sb, 0);
3082 		return ERR_PTR(-ENOSPC);
3083 	}
3084 
3085 	inode->i_ino = ino;
3086 	inode_init_owner(idmap, inode, dir, mode);
3087 	inode->i_blocks = 0;
3088 	simple_inode_init_ts(inode);
3089 	inode->i_generation = get_random_u32();
3090 	info = SHMEM_I(inode);
3091 	memset(info, 0, (char *)inode - (char *)info);
3092 	spin_lock_init(&info->lock);
3093 	atomic_set(&info->stop_eviction, 0);
3094 	info->seals = F_SEAL_SEAL;
3095 	info->flags = (flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0;
3096 	info->i_crtime = inode_get_mtime(inode);
3097 	info->fsflags = (dir == NULL) ? 0 :
3098 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
3099 	if (info->fsflags)
3100 		shmem_set_inode_flags(inode, info->fsflags, NULL);
3101 	INIT_LIST_HEAD(&info->shrinklist);
3102 	INIT_LIST_HEAD(&info->swaplist);
3103 	simple_xattrs_init(&info->xattrs);
3104 	cache_no_acl(inode);
3105 	if (sbinfo->noswap)
3106 		mapping_set_unevictable(inode->i_mapping);
3107 
3108 	/* Don't consider 'deny' for emergencies and 'force' for testing */
3109 	if (sbinfo->huge)
3110 		mapping_set_large_folios(inode->i_mapping);
3111 
3112 	switch (mode & S_IFMT) {
3113 	default:
3114 		inode->i_op = &shmem_special_inode_operations;
3115 		init_special_inode(inode, mode, dev);
3116 		break;
3117 	case S_IFREG:
3118 		inode->i_mapping->a_ops = &shmem_aops;
3119 		inode->i_op = &shmem_inode_operations;
3120 		inode->i_fop = &shmem_file_operations;
3121 		mpol_shared_policy_init(&info->policy,
3122 					 shmem_get_sbmpol(sbinfo));
3123 		break;
3124 	case S_IFDIR:
3125 		inc_nlink(inode);
3126 		/* Some things misbehave if size == 0 on a directory */
3127 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
3128 		inode->i_op = &shmem_dir_inode_operations;
3129 		inode->i_fop = &simple_offset_dir_operations;
3130 		simple_offset_init(shmem_get_offset_ctx(inode));
3131 		break;
3132 	case S_IFLNK:
3133 		/*
3134 		 * Must not load anything in the rbtree,
3135 		 * mpol_free_shared_policy will not be called.
3136 		 */
3137 		mpol_shared_policy_init(&info->policy, NULL);
3138 		break;
3139 	}
3140 
3141 	lockdep_annotate_inode_mutex_key(inode);
3142 	return inode;
3143 }
3144 
3145 #ifdef CONFIG_TMPFS_QUOTA
3146 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3147 				     struct super_block *sb, struct inode *dir,
3148 				     umode_t mode, dev_t dev, unsigned long flags)
3149 {
3150 	int err;
3151 	struct inode *inode;
3152 
3153 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3154 	if (IS_ERR(inode))
3155 		return inode;
3156 
3157 	err = dquot_initialize(inode);
3158 	if (err)
3159 		goto errout;
3160 
3161 	err = dquot_alloc_inode(inode);
3162 	if (err) {
3163 		dquot_drop(inode);
3164 		goto errout;
3165 	}
3166 	return inode;
3167 
3168 errout:
3169 	inode->i_flags |= S_NOQUOTA;
3170 	iput(inode);
3171 	return ERR_PTR(err);
3172 }
3173 #else
3174 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3175 				     struct super_block *sb, struct inode *dir,
3176 				     umode_t mode, dev_t dev, unsigned long flags)
3177 {
3178 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3179 }
3180 #endif /* CONFIG_TMPFS_QUOTA */
3181 
3182 #ifdef CONFIG_USERFAULTFD
3183 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
3184 			   struct vm_area_struct *dst_vma,
3185 			   unsigned long dst_addr,
3186 			   unsigned long src_addr,
3187 			   uffd_flags_t flags,
3188 			   struct folio **foliop)
3189 {
3190 	struct inode *inode = file_inode(dst_vma->vm_file);
3191 	struct shmem_inode_info *info = SHMEM_I(inode);
3192 	struct address_space *mapping = inode->i_mapping;
3193 	gfp_t gfp = mapping_gfp_mask(mapping);
3194 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
3195 	void *page_kaddr;
3196 	struct folio *folio;
3197 	int ret;
3198 	pgoff_t max_off;
3199 
3200 	if (shmem_inode_acct_blocks(inode, 1)) {
3201 		/*
3202 		 * We may have got a page, returned -ENOENT triggering a retry,
3203 		 * and now we find ourselves with -ENOMEM. Release the page, to
3204 		 * avoid a BUG_ON in our caller.
3205 		 */
3206 		if (unlikely(*foliop)) {
3207 			folio_put(*foliop);
3208 			*foliop = NULL;
3209 		}
3210 		return -ENOMEM;
3211 	}
3212 
3213 	if (!*foliop) {
3214 		ret = -ENOMEM;
3215 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3216 		if (!folio)
3217 			goto out_unacct_blocks;
3218 
3219 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3220 			page_kaddr = kmap_local_folio(folio, 0);
3221 			/*
3222 			 * The read mmap_lock is held here.  Despite the
3223 			 * mmap_lock being read recursive a deadlock is still
3224 			 * possible if a writer has taken a lock.  For example:
3225 			 *
3226 			 * process A thread 1 takes read lock on own mmap_lock
3227 			 * process A thread 2 calls mmap, blocks taking write lock
3228 			 * process B thread 1 takes page fault, read lock on own mmap lock
3229 			 * process B thread 2 calls mmap, blocks taking write lock
3230 			 * process A thread 1 blocks taking read lock on process B
3231 			 * process B thread 1 blocks taking read lock on process A
3232 			 *
3233 			 * Disable page faults to prevent potential deadlock
3234 			 * and retry the copy outside the mmap_lock.
3235 			 */
3236 			pagefault_disable();
3237 			ret = copy_from_user(page_kaddr,
3238 					     (const void __user *)src_addr,
3239 					     PAGE_SIZE);
3240 			pagefault_enable();
3241 			kunmap_local(page_kaddr);
3242 
3243 			/* fallback to copy_from_user outside mmap_lock */
3244 			if (unlikely(ret)) {
3245 				*foliop = folio;
3246 				ret = -ENOENT;
3247 				/* don't free the page */
3248 				goto out_unacct_blocks;
3249 			}
3250 
3251 			flush_dcache_folio(folio);
3252 		} else {		/* ZEROPAGE */
3253 			clear_user_highpage(&folio->page, dst_addr);
3254 		}
3255 	} else {
3256 		folio = *foliop;
3257 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3258 		*foliop = NULL;
3259 	}
3260 
3261 	VM_BUG_ON(folio_test_locked(folio));
3262 	VM_BUG_ON(folio_test_swapbacked(folio));
3263 	__folio_set_locked(folio);
3264 	__folio_set_swapbacked(folio);
3265 	__folio_mark_uptodate(folio);
3266 
3267 	ret = -EFAULT;
3268 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3269 	if (unlikely(pgoff >= max_off))
3270 		goto out_release;
3271 
3272 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3273 	if (ret)
3274 		goto out_release;
3275 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3276 	if (ret)
3277 		goto out_release;
3278 
3279 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3280 				       &folio->page, true, flags);
3281 	if (ret)
3282 		goto out_delete_from_cache;
3283 
3284 	shmem_recalc_inode(inode, 1, 0);
3285 	folio_unlock(folio);
3286 	return 0;
3287 out_delete_from_cache:
3288 	filemap_remove_folio(folio);
3289 out_release:
3290 	folio_unlock(folio);
3291 	folio_put(folio);
3292 out_unacct_blocks:
3293 	shmem_inode_unacct_blocks(inode, 1);
3294 	return ret;
3295 }
3296 #endif /* CONFIG_USERFAULTFD */
3297 
3298 #ifdef CONFIG_TMPFS
3299 static const struct inode_operations shmem_symlink_inode_operations;
3300 static const struct inode_operations shmem_short_symlink_operations;
3301 
3302 static int
3303 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping,
3304 		  loff_t pos, unsigned len,
3305 		  struct folio **foliop, void **fsdata)
3306 {
3307 	struct inode *inode = mapping->host;
3308 	struct shmem_inode_info *info = SHMEM_I(inode);
3309 	pgoff_t index = pos >> PAGE_SHIFT;
3310 	struct folio *folio;
3311 	int ret = 0;
3312 
3313 	/* i_rwsem is held by caller */
3314 	if (unlikely(info->seals & (F_SEAL_GROW |
3315 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3316 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3317 			return -EPERM;
3318 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3319 			return -EPERM;
3320 	}
3321 
3322 	if (unlikely((info->flags & SHMEM_F_MAPPING_FROZEN) &&
3323 		     pos + len > inode->i_size))
3324 		return -EPERM;
3325 
3326 	ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3327 	if (ret)
3328 		return ret;
3329 
3330 	if (folio_contain_hwpoisoned_page(folio)) {
3331 		folio_unlock(folio);
3332 		folio_put(folio);
3333 		return -EIO;
3334 	}
3335 
3336 	*foliop = folio;
3337 	return 0;
3338 }
3339 
3340 static int
3341 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping,
3342 		loff_t pos, unsigned len, unsigned copied,
3343 		struct folio *folio, void *fsdata)
3344 {
3345 	struct inode *inode = mapping->host;
3346 
3347 	if (pos + copied > inode->i_size)
3348 		i_size_write(inode, pos + copied);
3349 
3350 	if (!folio_test_uptodate(folio)) {
3351 		if (copied < folio_size(folio)) {
3352 			size_t from = offset_in_folio(folio, pos);
3353 			folio_zero_segments(folio, 0, from,
3354 					from + copied, folio_size(folio));
3355 		}
3356 		folio_mark_uptodate(folio);
3357 	}
3358 	folio_mark_dirty(folio);
3359 	folio_unlock(folio);
3360 	folio_put(folio);
3361 
3362 	return copied;
3363 }
3364 
3365 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3366 {
3367 	struct file *file = iocb->ki_filp;
3368 	struct inode *inode = file_inode(file);
3369 	struct address_space *mapping = inode->i_mapping;
3370 	pgoff_t index;
3371 	unsigned long offset;
3372 	int error = 0;
3373 	ssize_t retval = 0;
3374 
3375 	for (;;) {
3376 		struct folio *folio = NULL;
3377 		struct page *page = NULL;
3378 		unsigned long nr, ret;
3379 		loff_t end_offset, i_size = i_size_read(inode);
3380 		bool fallback_page_copy = false;
3381 		size_t fsize;
3382 
3383 		if (unlikely(iocb->ki_pos >= i_size))
3384 			break;
3385 
3386 		index = iocb->ki_pos >> PAGE_SHIFT;
3387 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3388 		if (error) {
3389 			if (error == -EINVAL)
3390 				error = 0;
3391 			break;
3392 		}
3393 		if (folio) {
3394 			folio_unlock(folio);
3395 
3396 			page = folio_file_page(folio, index);
3397 			if (PageHWPoison(page)) {
3398 				folio_put(folio);
3399 				error = -EIO;
3400 				break;
3401 			}
3402 
3403 			if (folio_test_large(folio) &&
3404 			    folio_test_has_hwpoisoned(folio))
3405 				fallback_page_copy = true;
3406 		}
3407 
3408 		/*
3409 		 * We must evaluate after, since reads (unlike writes)
3410 		 * are called without i_rwsem protection against truncate
3411 		 */
3412 		i_size = i_size_read(inode);
3413 		if (unlikely(iocb->ki_pos >= i_size)) {
3414 			if (folio)
3415 				folio_put(folio);
3416 			break;
3417 		}
3418 		end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3419 		if (folio && likely(!fallback_page_copy))
3420 			fsize = folio_size(folio);
3421 		else
3422 			fsize = PAGE_SIZE;
3423 		offset = iocb->ki_pos & (fsize - 1);
3424 		nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3425 
3426 		if (folio) {
3427 			/*
3428 			 * If users can be writing to this page using arbitrary
3429 			 * virtual addresses, take care about potential aliasing
3430 			 * before reading the page on the kernel side.
3431 			 */
3432 			if (mapping_writably_mapped(mapping)) {
3433 				if (likely(!fallback_page_copy))
3434 					flush_dcache_folio(folio);
3435 				else
3436 					flush_dcache_page(page);
3437 			}
3438 
3439 			/*
3440 			 * Mark the folio accessed if we read the beginning.
3441 			 */
3442 			if (!offset)
3443 				folio_mark_accessed(folio);
3444 			/*
3445 			 * Ok, we have the page, and it's up-to-date, so
3446 			 * now we can copy it to user space...
3447 			 */
3448 			if (likely(!fallback_page_copy))
3449 				ret = copy_folio_to_iter(folio, offset, nr, to);
3450 			else
3451 				ret = copy_page_to_iter(page, offset, nr, to);
3452 			folio_put(folio);
3453 		} else if (user_backed_iter(to)) {
3454 			/*
3455 			 * Copy to user tends to be so well optimized, but
3456 			 * clear_user() not so much, that it is noticeably
3457 			 * faster to copy the zero page instead of clearing.
3458 			 */
3459 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3460 		} else {
3461 			/*
3462 			 * But submitting the same page twice in a row to
3463 			 * splice() - or others? - can result in confusion:
3464 			 * so don't attempt that optimization on pipes etc.
3465 			 */
3466 			ret = iov_iter_zero(nr, to);
3467 		}
3468 
3469 		retval += ret;
3470 		iocb->ki_pos += ret;
3471 
3472 		if (!iov_iter_count(to))
3473 			break;
3474 		if (ret < nr) {
3475 			error = -EFAULT;
3476 			break;
3477 		}
3478 		cond_resched();
3479 	}
3480 
3481 	file_accessed(file);
3482 	return retval ? retval : error;
3483 }
3484 
3485 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3486 {
3487 	struct file *file = iocb->ki_filp;
3488 	struct inode *inode = file->f_mapping->host;
3489 	ssize_t ret;
3490 
3491 	inode_lock(inode);
3492 	ret = generic_write_checks(iocb, from);
3493 	if (ret <= 0)
3494 		goto unlock;
3495 	ret = file_remove_privs(file);
3496 	if (ret)
3497 		goto unlock;
3498 	ret = file_update_time(file);
3499 	if (ret)
3500 		goto unlock;
3501 	ret = generic_perform_write(iocb, from);
3502 unlock:
3503 	inode_unlock(inode);
3504 	return ret;
3505 }
3506 
3507 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3508 			      struct pipe_buffer *buf)
3509 {
3510 	return true;
3511 }
3512 
3513 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3514 				  struct pipe_buffer *buf)
3515 {
3516 }
3517 
3518 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3519 				    struct pipe_buffer *buf)
3520 {
3521 	return false;
3522 }
3523 
3524 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3525 	.release	= zero_pipe_buf_release,
3526 	.try_steal	= zero_pipe_buf_try_steal,
3527 	.get		= zero_pipe_buf_get,
3528 };
3529 
3530 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3531 					loff_t fpos, size_t size)
3532 {
3533 	size_t offset = fpos & ~PAGE_MASK;
3534 
3535 	size = min_t(size_t, size, PAGE_SIZE - offset);
3536 
3537 	if (!pipe_is_full(pipe)) {
3538 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3539 
3540 		*buf = (struct pipe_buffer) {
3541 			.ops	= &zero_pipe_buf_ops,
3542 			.page	= ZERO_PAGE(0),
3543 			.offset	= offset,
3544 			.len	= size,
3545 		};
3546 		pipe->head++;
3547 	}
3548 
3549 	return size;
3550 }
3551 
3552 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3553 				      struct pipe_inode_info *pipe,
3554 				      size_t len, unsigned int flags)
3555 {
3556 	struct inode *inode = file_inode(in);
3557 	struct address_space *mapping = inode->i_mapping;
3558 	struct folio *folio = NULL;
3559 	size_t total_spliced = 0, used, npages, n, part;
3560 	loff_t isize;
3561 	int error = 0;
3562 
3563 	/* Work out how much data we can actually add into the pipe */
3564 	used = pipe_buf_usage(pipe);
3565 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3566 	len = min_t(size_t, len, npages * PAGE_SIZE);
3567 
3568 	do {
3569 		bool fallback_page_splice = false;
3570 		struct page *page = NULL;
3571 		pgoff_t index;
3572 		size_t size;
3573 
3574 		if (*ppos >= i_size_read(inode))
3575 			break;
3576 
3577 		index = *ppos >> PAGE_SHIFT;
3578 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3579 		if (error) {
3580 			if (error == -EINVAL)
3581 				error = 0;
3582 			break;
3583 		}
3584 		if (folio) {
3585 			folio_unlock(folio);
3586 
3587 			page = folio_file_page(folio, index);
3588 			if (PageHWPoison(page)) {
3589 				error = -EIO;
3590 				break;
3591 			}
3592 
3593 			if (folio_test_large(folio) &&
3594 			    folio_test_has_hwpoisoned(folio))
3595 				fallback_page_splice = true;
3596 		}
3597 
3598 		/*
3599 		 * i_size must be checked after we know the pages are Uptodate.
3600 		 *
3601 		 * Checking i_size after the check allows us to calculate
3602 		 * the correct value for "nr", which means the zero-filled
3603 		 * part of the page is not copied back to userspace (unless
3604 		 * another truncate extends the file - this is desired though).
3605 		 */
3606 		isize = i_size_read(inode);
3607 		if (unlikely(*ppos >= isize))
3608 			break;
3609 		/*
3610 		 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3611 		 * pages.
3612 		 */
3613 		size = len;
3614 		if (unlikely(fallback_page_splice)) {
3615 			size_t offset = *ppos & ~PAGE_MASK;
3616 
3617 			size = umin(size, PAGE_SIZE - offset);
3618 		}
3619 		part = min_t(loff_t, isize - *ppos, size);
3620 
3621 		if (folio) {
3622 			/*
3623 			 * If users can be writing to this page using arbitrary
3624 			 * virtual addresses, take care about potential aliasing
3625 			 * before reading the page on the kernel side.
3626 			 */
3627 			if (mapping_writably_mapped(mapping)) {
3628 				if (likely(!fallback_page_splice))
3629 					flush_dcache_folio(folio);
3630 				else
3631 					flush_dcache_page(page);
3632 			}
3633 			folio_mark_accessed(folio);
3634 			/*
3635 			 * Ok, we have the page, and it's up-to-date, so we can
3636 			 * now splice it into the pipe.
3637 			 */
3638 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3639 			folio_put(folio);
3640 			folio = NULL;
3641 		} else {
3642 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3643 		}
3644 
3645 		if (!n)
3646 			break;
3647 		len -= n;
3648 		total_spliced += n;
3649 		*ppos += n;
3650 		in->f_ra.prev_pos = *ppos;
3651 		if (pipe_is_full(pipe))
3652 			break;
3653 
3654 		cond_resched();
3655 	} while (len);
3656 
3657 	if (folio)
3658 		folio_put(folio);
3659 
3660 	file_accessed(in);
3661 	return total_spliced ? total_spliced : error;
3662 }
3663 
3664 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3665 {
3666 	struct address_space *mapping = file->f_mapping;
3667 	struct inode *inode = mapping->host;
3668 
3669 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3670 		return generic_file_llseek_size(file, offset, whence,
3671 					MAX_LFS_FILESIZE, i_size_read(inode));
3672 	if (offset < 0)
3673 		return -ENXIO;
3674 
3675 	inode_lock(inode);
3676 	/* We're holding i_rwsem so we can access i_size directly */
3677 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3678 	if (offset >= 0)
3679 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3680 	inode_unlock(inode);
3681 	return offset;
3682 }
3683 
3684 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3685 							 loff_t len)
3686 {
3687 	struct inode *inode = file_inode(file);
3688 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3689 	struct shmem_inode_info *info = SHMEM_I(inode);
3690 	struct shmem_falloc shmem_falloc;
3691 	pgoff_t start, index, end, undo_fallocend;
3692 	int error;
3693 
3694 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3695 		return -EOPNOTSUPP;
3696 
3697 	inode_lock(inode);
3698 
3699 	if (info->flags & SHMEM_F_MAPPING_FROZEN) {
3700 		error = -EPERM;
3701 		goto out;
3702 	}
3703 
3704 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3705 		struct address_space *mapping = file->f_mapping;
3706 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3707 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3708 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3709 
3710 		/* protected by i_rwsem */
3711 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3712 			error = -EPERM;
3713 			goto out;
3714 		}
3715 
3716 		shmem_falloc.waitq = &shmem_falloc_waitq;
3717 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3718 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3719 		spin_lock(&inode->i_lock);
3720 		inode->i_private = &shmem_falloc;
3721 		spin_unlock(&inode->i_lock);
3722 
3723 		if ((u64)unmap_end > (u64)unmap_start)
3724 			unmap_mapping_range(mapping, unmap_start,
3725 					    1 + unmap_end - unmap_start, 0);
3726 		shmem_truncate_range(inode, offset, offset + len - 1);
3727 		/* No need to unmap again: hole-punching leaves COWed pages */
3728 
3729 		spin_lock(&inode->i_lock);
3730 		inode->i_private = NULL;
3731 		wake_up_all(&shmem_falloc_waitq);
3732 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3733 		spin_unlock(&inode->i_lock);
3734 		error = 0;
3735 		goto out;
3736 	}
3737 
3738 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3739 	error = inode_newsize_ok(inode, offset + len);
3740 	if (error)
3741 		goto out;
3742 
3743 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3744 		error = -EPERM;
3745 		goto out;
3746 	}
3747 
3748 	start = offset >> PAGE_SHIFT;
3749 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3750 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3751 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3752 		error = -ENOSPC;
3753 		goto out;
3754 	}
3755 
3756 	shmem_falloc.waitq = NULL;
3757 	shmem_falloc.start = start;
3758 	shmem_falloc.next  = start;
3759 	shmem_falloc.nr_falloced = 0;
3760 	shmem_falloc.nr_unswapped = 0;
3761 	spin_lock(&inode->i_lock);
3762 	inode->i_private = &shmem_falloc;
3763 	spin_unlock(&inode->i_lock);
3764 
3765 	/*
3766 	 * info->fallocend is only relevant when huge pages might be
3767 	 * involved: to prevent split_huge_page() freeing fallocated
3768 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3769 	 */
3770 	undo_fallocend = info->fallocend;
3771 	if (info->fallocend < end)
3772 		info->fallocend = end;
3773 
3774 	for (index = start; index < end; ) {
3775 		struct folio *folio;
3776 
3777 		/*
3778 		 * Check for fatal signal so that we abort early in OOM
3779 		 * situations. We don't want to abort in case of non-fatal
3780 		 * signals as large fallocate can take noticeable time and
3781 		 * e.g. periodic timers may result in fallocate constantly
3782 		 * restarting.
3783 		 */
3784 		if (fatal_signal_pending(current))
3785 			error = -EINTR;
3786 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3787 			error = -ENOMEM;
3788 		else
3789 			error = shmem_get_folio(inode, index, offset + len,
3790 						&folio, SGP_FALLOC);
3791 		if (error) {
3792 			info->fallocend = undo_fallocend;
3793 			/* Remove the !uptodate folios we added */
3794 			if (index > start) {
3795 				shmem_undo_range(inode,
3796 				    (loff_t)start << PAGE_SHIFT,
3797 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3798 			}
3799 			goto undone;
3800 		}
3801 
3802 		/*
3803 		 * Here is a more important optimization than it appears:
3804 		 * a second SGP_FALLOC on the same large folio will clear it,
3805 		 * making it uptodate and un-undoable if we fail later.
3806 		 */
3807 		index = folio_next_index(folio);
3808 		/* Beware 32-bit wraparound */
3809 		if (!index)
3810 			index--;
3811 
3812 		/*
3813 		 * Inform shmem_writeout() how far we have reached.
3814 		 * No need for lock or barrier: we have the page lock.
3815 		 */
3816 		if (!folio_test_uptodate(folio))
3817 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3818 		shmem_falloc.next = index;
3819 
3820 		/*
3821 		 * If !uptodate, leave it that way so that freeable folios
3822 		 * can be recognized if we need to rollback on error later.
3823 		 * But mark it dirty so that memory pressure will swap rather
3824 		 * than free the folios we are allocating (and SGP_CACHE folios
3825 		 * might still be clean: we now need to mark those dirty too).
3826 		 */
3827 		folio_mark_dirty(folio);
3828 		folio_unlock(folio);
3829 		folio_put(folio);
3830 		cond_resched();
3831 	}
3832 
3833 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3834 		i_size_write(inode, offset + len);
3835 undone:
3836 	spin_lock(&inode->i_lock);
3837 	inode->i_private = NULL;
3838 	spin_unlock(&inode->i_lock);
3839 out:
3840 	if (!error)
3841 		file_modified(file);
3842 	inode_unlock(inode);
3843 	return error;
3844 }
3845 
3846 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3847 {
3848 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3849 
3850 	buf->f_type = TMPFS_MAGIC;
3851 	buf->f_bsize = PAGE_SIZE;
3852 	buf->f_namelen = NAME_MAX;
3853 	if (sbinfo->max_blocks) {
3854 		buf->f_blocks = sbinfo->max_blocks;
3855 		buf->f_bavail =
3856 		buf->f_bfree  = sbinfo->max_blocks -
3857 				percpu_counter_sum(&sbinfo->used_blocks);
3858 	}
3859 	if (sbinfo->max_inodes) {
3860 		buf->f_files = sbinfo->max_inodes;
3861 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3862 	}
3863 	/* else leave those fields 0 like simple_statfs */
3864 
3865 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3866 
3867 	return 0;
3868 }
3869 
3870 /*
3871  * File creation. Allocate an inode, and we're done..
3872  */
3873 static int
3874 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3875 	    struct dentry *dentry, umode_t mode, dev_t dev)
3876 {
3877 	struct inode *inode;
3878 	int error;
3879 
3880 	if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3881 		return -EINVAL;
3882 
3883 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3884 	if (IS_ERR(inode))
3885 		return PTR_ERR(inode);
3886 
3887 	error = simple_acl_create(dir, inode);
3888 	if (error)
3889 		goto out_iput;
3890 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3891 					     shmem_initxattrs, NULL);
3892 	if (error && error != -EOPNOTSUPP)
3893 		goto out_iput;
3894 
3895 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3896 	if (error)
3897 		goto out_iput;
3898 
3899 	dir->i_size += BOGO_DIRENT_SIZE;
3900 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3901 	inode_inc_iversion(dir);
3902 
3903 	d_make_persistent(dentry, inode);
3904 	return error;
3905 
3906 out_iput:
3907 	iput(inode);
3908 	return error;
3909 }
3910 
3911 static int
3912 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3913 	      struct file *file, umode_t mode)
3914 {
3915 	struct inode *inode;
3916 	int error;
3917 
3918 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3919 	if (IS_ERR(inode)) {
3920 		error = PTR_ERR(inode);
3921 		goto err_out;
3922 	}
3923 	error = security_inode_init_security(inode, dir, NULL,
3924 					     shmem_initxattrs, NULL);
3925 	if (error && error != -EOPNOTSUPP)
3926 		goto out_iput;
3927 	error = simple_acl_create(dir, inode);
3928 	if (error)
3929 		goto out_iput;
3930 	d_tmpfile(file, inode);
3931 
3932 err_out:
3933 	return finish_open_simple(file, error);
3934 out_iput:
3935 	iput(inode);
3936 	return error;
3937 }
3938 
3939 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3940 				  struct dentry *dentry, umode_t mode)
3941 {
3942 	int error;
3943 
3944 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3945 	if (error)
3946 		return ERR_PTR(error);
3947 	inc_nlink(dir);
3948 	return NULL;
3949 }
3950 
3951 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3952 			struct dentry *dentry, umode_t mode, bool excl)
3953 {
3954 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3955 }
3956 
3957 /*
3958  * Link a file..
3959  */
3960 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3961 		      struct dentry *dentry)
3962 {
3963 	struct inode *inode = d_inode(old_dentry);
3964 	int ret;
3965 
3966 	/*
3967 	 * No ordinary (disk based) filesystem counts links as inodes;
3968 	 * but each new link needs a new dentry, pinning lowmem, and
3969 	 * tmpfs dentries cannot be pruned until they are unlinked.
3970 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3971 	 * first link must skip that, to get the accounting right.
3972 	 */
3973 	if (inode->i_nlink) {
3974 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3975 		if (ret)
3976 			return ret;
3977 	}
3978 
3979 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3980 	if (ret) {
3981 		if (inode->i_nlink)
3982 			shmem_free_inode(inode->i_sb, 0);
3983 		return ret;
3984 	}
3985 
3986 	dir->i_size += BOGO_DIRENT_SIZE;
3987 	inode_inc_iversion(dir);
3988 	return simple_link(old_dentry, dir, dentry);
3989 }
3990 
3991 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3992 {
3993 	struct inode *inode = d_inode(dentry);
3994 
3995 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3996 		shmem_free_inode(inode->i_sb, 0);
3997 
3998 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3999 
4000 	dir->i_size -= BOGO_DIRENT_SIZE;
4001 	inode_inc_iversion(dir);
4002 	simple_unlink(dir, dentry);
4003 
4004 	/*
4005 	 * For now, VFS can't deal with case-insensitive negative dentries, so
4006 	 * we invalidate them
4007 	 */
4008 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
4009 		d_invalidate(dentry);
4010 
4011 	return 0;
4012 }
4013 
4014 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
4015 {
4016 	if (!simple_empty(dentry))
4017 		return -ENOTEMPTY;
4018 
4019 	drop_nlink(d_inode(dentry));
4020 	drop_nlink(dir);
4021 	return shmem_unlink(dir, dentry);
4022 }
4023 
4024 static int shmem_whiteout(struct mnt_idmap *idmap,
4025 			  struct inode *old_dir, struct dentry *old_dentry)
4026 {
4027 	struct dentry *whiteout;
4028 	int error;
4029 
4030 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
4031 	if (!whiteout)
4032 		return -ENOMEM;
4033 	error = shmem_mknod(idmap, old_dir, whiteout,
4034 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4035 	dput(whiteout);
4036 	return error;
4037 }
4038 
4039 /*
4040  * The VFS layer already does all the dentry stuff for rename,
4041  * we just have to decrement the usage count for the target if
4042  * it exists so that the VFS layer correctly free's it when it
4043  * gets overwritten.
4044  */
4045 static int shmem_rename2(struct mnt_idmap *idmap,
4046 			 struct inode *old_dir, struct dentry *old_dentry,
4047 			 struct inode *new_dir, struct dentry *new_dentry,
4048 			 unsigned int flags)
4049 {
4050 	struct inode *inode = d_inode(old_dentry);
4051 	int they_are_dirs = S_ISDIR(inode->i_mode);
4052 	bool had_offset = false;
4053 	int error;
4054 
4055 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4056 		return -EINVAL;
4057 
4058 	if (flags & RENAME_EXCHANGE)
4059 		return simple_offset_rename_exchange(old_dir, old_dentry,
4060 						     new_dir, new_dentry);
4061 
4062 	if (!simple_empty(new_dentry))
4063 		return -ENOTEMPTY;
4064 
4065 	error = simple_offset_add(shmem_get_offset_ctx(new_dir), new_dentry);
4066 	if (error == -EBUSY)
4067 		had_offset = true;
4068 	else if (unlikely(error))
4069 		return error;
4070 
4071 	if (flags & RENAME_WHITEOUT) {
4072 		error = shmem_whiteout(idmap, old_dir, old_dentry);
4073 		if (error) {
4074 			if (!had_offset)
4075 				simple_offset_remove(shmem_get_offset_ctx(new_dir),
4076 						     new_dentry);
4077 			return error;
4078 		}
4079 	}
4080 
4081 	simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
4082 	if (d_really_is_positive(new_dentry)) {
4083 		(void) shmem_unlink(new_dir, new_dentry);
4084 		if (they_are_dirs) {
4085 			drop_nlink(d_inode(new_dentry));
4086 			drop_nlink(old_dir);
4087 		}
4088 	} else if (they_are_dirs) {
4089 		drop_nlink(old_dir);
4090 		inc_nlink(new_dir);
4091 	}
4092 
4093 	old_dir->i_size -= BOGO_DIRENT_SIZE;
4094 	new_dir->i_size += BOGO_DIRENT_SIZE;
4095 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
4096 	inode_inc_iversion(old_dir);
4097 	inode_inc_iversion(new_dir);
4098 	return 0;
4099 }
4100 
4101 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
4102 			 struct dentry *dentry, const char *symname)
4103 {
4104 	int error;
4105 	int len;
4106 	struct inode *inode;
4107 	struct folio *folio;
4108 	char *link;
4109 
4110 	len = strlen(symname) + 1;
4111 	if (len > PAGE_SIZE)
4112 		return -ENAMETOOLONG;
4113 
4114 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
4115 				VM_NORESERVE);
4116 	if (IS_ERR(inode))
4117 		return PTR_ERR(inode);
4118 
4119 	error = security_inode_init_security(inode, dir, &dentry->d_name,
4120 					     shmem_initxattrs, NULL);
4121 	if (error && error != -EOPNOTSUPP)
4122 		goto out_iput;
4123 
4124 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
4125 	if (error)
4126 		goto out_iput;
4127 
4128 	inode->i_size = len-1;
4129 	if (len <= SHORT_SYMLINK_LEN) {
4130 		link = kmemdup(symname, len, GFP_KERNEL);
4131 		if (!link) {
4132 			error = -ENOMEM;
4133 			goto out_remove_offset;
4134 		}
4135 		inode->i_op = &shmem_short_symlink_operations;
4136 		inode_set_cached_link(inode, link, len - 1);
4137 	} else {
4138 		inode_nohighmem(inode);
4139 		inode->i_mapping->a_ops = &shmem_aops;
4140 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
4141 		if (error)
4142 			goto out_remove_offset;
4143 		inode->i_op = &shmem_symlink_inode_operations;
4144 		memcpy(folio_address(folio), symname, len);
4145 		folio_mark_uptodate(folio);
4146 		folio_mark_dirty(folio);
4147 		folio_unlock(folio);
4148 		folio_put(folio);
4149 	}
4150 	dir->i_size += BOGO_DIRENT_SIZE;
4151 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
4152 	inode_inc_iversion(dir);
4153 	d_make_persistent(dentry, inode);
4154 	return 0;
4155 
4156 out_remove_offset:
4157 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4158 out_iput:
4159 	iput(inode);
4160 	return error;
4161 }
4162 
4163 static void shmem_put_link(void *arg)
4164 {
4165 	folio_mark_accessed(arg);
4166 	folio_put(arg);
4167 }
4168 
4169 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
4170 				  struct delayed_call *done)
4171 {
4172 	struct folio *folio = NULL;
4173 	int error;
4174 
4175 	if (!dentry) {
4176 		folio = filemap_get_folio(inode->i_mapping, 0);
4177 		if (IS_ERR(folio))
4178 			return ERR_PTR(-ECHILD);
4179 		if (PageHWPoison(folio_page(folio, 0)) ||
4180 		    !folio_test_uptodate(folio)) {
4181 			folio_put(folio);
4182 			return ERR_PTR(-ECHILD);
4183 		}
4184 	} else {
4185 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4186 		if (error)
4187 			return ERR_PTR(error);
4188 		if (!folio)
4189 			return ERR_PTR(-ECHILD);
4190 		if (PageHWPoison(folio_page(folio, 0))) {
4191 			folio_unlock(folio);
4192 			folio_put(folio);
4193 			return ERR_PTR(-ECHILD);
4194 		}
4195 		folio_unlock(folio);
4196 	}
4197 	set_delayed_call(done, shmem_put_link, folio);
4198 	return folio_address(folio);
4199 }
4200 
4201 #ifdef CONFIG_TMPFS_XATTR
4202 
4203 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
4204 {
4205 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4206 
4207 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4208 
4209 	return 0;
4210 }
4211 
4212 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4213 			      struct dentry *dentry, struct file_kattr *fa)
4214 {
4215 	struct inode *inode = d_inode(dentry);
4216 	struct shmem_inode_info *info = SHMEM_I(inode);
4217 	int ret, flags;
4218 
4219 	if (fileattr_has_fsx(fa))
4220 		return -EOPNOTSUPP;
4221 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4222 		return -EOPNOTSUPP;
4223 
4224 	flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4225 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
4226 
4227 	ret = shmem_set_inode_flags(inode, flags, dentry);
4228 
4229 	if (ret)
4230 		return ret;
4231 
4232 	info->fsflags = flags;
4233 
4234 	inode_set_ctime_current(inode);
4235 	inode_inc_iversion(inode);
4236 	return 0;
4237 }
4238 
4239 /*
4240  * Superblocks without xattr inode operations may get some security.* xattr
4241  * support from the LSM "for free". As soon as we have any other xattrs
4242  * like ACLs, we also need to implement the security.* handlers at
4243  * filesystem level, though.
4244  */
4245 
4246 /*
4247  * Callback for security_inode_init_security() for acquiring xattrs.
4248  */
4249 static int shmem_initxattrs(struct inode *inode,
4250 			    const struct xattr *xattr_array, void *fs_info)
4251 {
4252 	struct shmem_inode_info *info = SHMEM_I(inode);
4253 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4254 	const struct xattr *xattr;
4255 	struct simple_xattr *new_xattr;
4256 	size_t ispace = 0;
4257 	size_t len;
4258 
4259 	if (sbinfo->max_inodes) {
4260 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4261 			ispace += simple_xattr_space(xattr->name,
4262 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4263 		}
4264 		if (ispace) {
4265 			raw_spin_lock(&sbinfo->stat_lock);
4266 			if (sbinfo->free_ispace < ispace)
4267 				ispace = 0;
4268 			else
4269 				sbinfo->free_ispace -= ispace;
4270 			raw_spin_unlock(&sbinfo->stat_lock);
4271 			if (!ispace)
4272 				return -ENOSPC;
4273 		}
4274 	}
4275 
4276 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4277 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4278 		if (!new_xattr)
4279 			break;
4280 
4281 		len = strlen(xattr->name) + 1;
4282 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4283 					  GFP_KERNEL_ACCOUNT);
4284 		if (!new_xattr->name) {
4285 			kvfree(new_xattr);
4286 			break;
4287 		}
4288 
4289 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4290 		       XATTR_SECURITY_PREFIX_LEN);
4291 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4292 		       xattr->name, len);
4293 
4294 		simple_xattr_add(&info->xattrs, new_xattr);
4295 	}
4296 
4297 	if (xattr->name != NULL) {
4298 		if (ispace) {
4299 			raw_spin_lock(&sbinfo->stat_lock);
4300 			sbinfo->free_ispace += ispace;
4301 			raw_spin_unlock(&sbinfo->stat_lock);
4302 		}
4303 		simple_xattrs_free(&info->xattrs, NULL);
4304 		return -ENOMEM;
4305 	}
4306 
4307 	return 0;
4308 }
4309 
4310 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4311 				   struct dentry *unused, struct inode *inode,
4312 				   const char *name, void *buffer, size_t size)
4313 {
4314 	struct shmem_inode_info *info = SHMEM_I(inode);
4315 
4316 	name = xattr_full_name(handler, name);
4317 	return simple_xattr_get(&info->xattrs, name, buffer, size);
4318 }
4319 
4320 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4321 				   struct mnt_idmap *idmap,
4322 				   struct dentry *unused, struct inode *inode,
4323 				   const char *name, const void *value,
4324 				   size_t size, int flags)
4325 {
4326 	struct shmem_inode_info *info = SHMEM_I(inode);
4327 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4328 	struct simple_xattr *old_xattr;
4329 	size_t ispace = 0;
4330 
4331 	name = xattr_full_name(handler, name);
4332 	if (value && sbinfo->max_inodes) {
4333 		ispace = simple_xattr_space(name, size);
4334 		raw_spin_lock(&sbinfo->stat_lock);
4335 		if (sbinfo->free_ispace < ispace)
4336 			ispace = 0;
4337 		else
4338 			sbinfo->free_ispace -= ispace;
4339 		raw_spin_unlock(&sbinfo->stat_lock);
4340 		if (!ispace)
4341 			return -ENOSPC;
4342 	}
4343 
4344 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4345 	if (!IS_ERR(old_xattr)) {
4346 		ispace = 0;
4347 		if (old_xattr && sbinfo->max_inodes)
4348 			ispace = simple_xattr_space(old_xattr->name,
4349 						    old_xattr->size);
4350 		simple_xattr_free(old_xattr);
4351 		old_xattr = NULL;
4352 		inode_set_ctime_current(inode);
4353 		inode_inc_iversion(inode);
4354 	}
4355 	if (ispace) {
4356 		raw_spin_lock(&sbinfo->stat_lock);
4357 		sbinfo->free_ispace += ispace;
4358 		raw_spin_unlock(&sbinfo->stat_lock);
4359 	}
4360 	return PTR_ERR(old_xattr);
4361 }
4362 
4363 static const struct xattr_handler shmem_security_xattr_handler = {
4364 	.prefix = XATTR_SECURITY_PREFIX,
4365 	.get = shmem_xattr_handler_get,
4366 	.set = shmem_xattr_handler_set,
4367 };
4368 
4369 static const struct xattr_handler shmem_trusted_xattr_handler = {
4370 	.prefix = XATTR_TRUSTED_PREFIX,
4371 	.get = shmem_xattr_handler_get,
4372 	.set = shmem_xattr_handler_set,
4373 };
4374 
4375 static const struct xattr_handler shmem_user_xattr_handler = {
4376 	.prefix = XATTR_USER_PREFIX,
4377 	.get = shmem_xattr_handler_get,
4378 	.set = shmem_xattr_handler_set,
4379 };
4380 
4381 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4382 	&shmem_security_xattr_handler,
4383 	&shmem_trusted_xattr_handler,
4384 	&shmem_user_xattr_handler,
4385 	NULL
4386 };
4387 
4388 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4389 {
4390 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4391 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4392 }
4393 #endif /* CONFIG_TMPFS_XATTR */
4394 
4395 static const struct inode_operations shmem_short_symlink_operations = {
4396 	.getattr	= shmem_getattr,
4397 	.setattr	= shmem_setattr,
4398 	.get_link	= simple_get_link,
4399 #ifdef CONFIG_TMPFS_XATTR
4400 	.listxattr	= shmem_listxattr,
4401 #endif
4402 };
4403 
4404 static const struct inode_operations shmem_symlink_inode_operations = {
4405 	.getattr	= shmem_getattr,
4406 	.setattr	= shmem_setattr,
4407 	.get_link	= shmem_get_link,
4408 #ifdef CONFIG_TMPFS_XATTR
4409 	.listxattr	= shmem_listxattr,
4410 #endif
4411 };
4412 
4413 static struct dentry *shmem_get_parent(struct dentry *child)
4414 {
4415 	return ERR_PTR(-ESTALE);
4416 }
4417 
4418 static int shmem_match(struct inode *ino, void *vfh)
4419 {
4420 	__u32 *fh = vfh;
4421 	__u64 inum = fh[2];
4422 	inum = (inum << 32) | fh[1];
4423 	return ino->i_ino == inum && fh[0] == ino->i_generation;
4424 }
4425 
4426 /* Find any alias of inode, but prefer a hashed alias */
4427 static struct dentry *shmem_find_alias(struct inode *inode)
4428 {
4429 	struct dentry *alias = d_find_alias(inode);
4430 
4431 	return alias ?: d_find_any_alias(inode);
4432 }
4433 
4434 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4435 		struct fid *fid, int fh_len, int fh_type)
4436 {
4437 	struct inode *inode;
4438 	struct dentry *dentry = NULL;
4439 	u64 inum;
4440 
4441 	if (fh_len < 3)
4442 		return NULL;
4443 
4444 	inum = fid->raw[2];
4445 	inum = (inum << 32) | fid->raw[1];
4446 
4447 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4448 			shmem_match, fid->raw);
4449 	if (inode) {
4450 		dentry = shmem_find_alias(inode);
4451 		iput(inode);
4452 	}
4453 
4454 	return dentry;
4455 }
4456 
4457 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4458 				struct inode *parent)
4459 {
4460 	if (*len < 3) {
4461 		*len = 3;
4462 		return FILEID_INVALID;
4463 	}
4464 
4465 	if (inode_unhashed(inode)) {
4466 		/* Unfortunately insert_inode_hash is not idempotent,
4467 		 * so as we hash inodes here rather than at creation
4468 		 * time, we need a lock to ensure we only try
4469 		 * to do it once
4470 		 */
4471 		static DEFINE_SPINLOCK(lock);
4472 		spin_lock(&lock);
4473 		if (inode_unhashed(inode))
4474 			__insert_inode_hash(inode,
4475 					    inode->i_ino + inode->i_generation);
4476 		spin_unlock(&lock);
4477 	}
4478 
4479 	fh[0] = inode->i_generation;
4480 	fh[1] = inode->i_ino;
4481 	fh[2] = ((__u64)inode->i_ino) >> 32;
4482 
4483 	*len = 3;
4484 	return 1;
4485 }
4486 
4487 static const struct export_operations shmem_export_ops = {
4488 	.get_parent     = shmem_get_parent,
4489 	.encode_fh      = shmem_encode_fh,
4490 	.fh_to_dentry	= shmem_fh_to_dentry,
4491 };
4492 
4493 enum shmem_param {
4494 	Opt_gid,
4495 	Opt_huge,
4496 	Opt_mode,
4497 	Opt_mpol,
4498 	Opt_nr_blocks,
4499 	Opt_nr_inodes,
4500 	Opt_size,
4501 	Opt_uid,
4502 	Opt_inode32,
4503 	Opt_inode64,
4504 	Opt_noswap,
4505 	Opt_quota,
4506 	Opt_usrquota,
4507 	Opt_grpquota,
4508 	Opt_usrquota_block_hardlimit,
4509 	Opt_usrquota_inode_hardlimit,
4510 	Opt_grpquota_block_hardlimit,
4511 	Opt_grpquota_inode_hardlimit,
4512 	Opt_casefold_version,
4513 	Opt_casefold,
4514 	Opt_strict_encoding,
4515 };
4516 
4517 static const struct constant_table shmem_param_enums_huge[] = {
4518 	{"never",	SHMEM_HUGE_NEVER },
4519 	{"always",	SHMEM_HUGE_ALWAYS },
4520 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4521 	{"advise",	SHMEM_HUGE_ADVISE },
4522 	{}
4523 };
4524 
4525 const struct fs_parameter_spec shmem_fs_parameters[] = {
4526 	fsparam_gid   ("gid",		Opt_gid),
4527 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4528 	fsparam_u32oct("mode",		Opt_mode),
4529 	fsparam_string("mpol",		Opt_mpol),
4530 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4531 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4532 	fsparam_string("size",		Opt_size),
4533 	fsparam_uid   ("uid",		Opt_uid),
4534 	fsparam_flag  ("inode32",	Opt_inode32),
4535 	fsparam_flag  ("inode64",	Opt_inode64),
4536 	fsparam_flag  ("noswap",	Opt_noswap),
4537 #ifdef CONFIG_TMPFS_QUOTA
4538 	fsparam_flag  ("quota",		Opt_quota),
4539 	fsparam_flag  ("usrquota",	Opt_usrquota),
4540 	fsparam_flag  ("grpquota",	Opt_grpquota),
4541 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4542 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4543 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4544 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4545 #endif
4546 	fsparam_string("casefold",	Opt_casefold_version),
4547 	fsparam_flag  ("casefold",	Opt_casefold),
4548 	fsparam_flag  ("strict_encoding", Opt_strict_encoding),
4549 	{}
4550 };
4551 
4552 #if IS_ENABLED(CONFIG_UNICODE)
4553 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4554 				    bool latest_version)
4555 {
4556 	struct shmem_options *ctx = fc->fs_private;
4557 	int version = UTF8_LATEST;
4558 	struct unicode_map *encoding;
4559 	char *version_str = param->string + 5;
4560 
4561 	if (!latest_version) {
4562 		if (strncmp(param->string, "utf8-", 5))
4563 			return invalfc(fc, "Only UTF-8 encodings are supported "
4564 				       "in the format: utf8-<version number>");
4565 
4566 		version = utf8_parse_version(version_str);
4567 		if (version < 0)
4568 			return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4569 	}
4570 
4571 	encoding = utf8_load(version);
4572 
4573 	if (IS_ERR(encoding)) {
4574 		return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4575 			       unicode_major(version), unicode_minor(version),
4576 			       unicode_rev(version));
4577 	}
4578 
4579 	pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4580 		unicode_major(version), unicode_minor(version), unicode_rev(version));
4581 
4582 	ctx->encoding = encoding;
4583 
4584 	return 0;
4585 }
4586 #else
4587 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4588 				    bool latest_version)
4589 {
4590 	return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4591 }
4592 #endif
4593 
4594 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4595 {
4596 	struct shmem_options *ctx = fc->fs_private;
4597 	struct fs_parse_result result;
4598 	unsigned long long size;
4599 	char *rest;
4600 	int opt;
4601 	kuid_t kuid;
4602 	kgid_t kgid;
4603 
4604 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4605 	if (opt < 0)
4606 		return opt;
4607 
4608 	switch (opt) {
4609 	case Opt_size:
4610 		size = memparse(param->string, &rest);
4611 		if (*rest == '%') {
4612 			size <<= PAGE_SHIFT;
4613 			size *= totalram_pages();
4614 			do_div(size, 100);
4615 			rest++;
4616 		}
4617 		if (*rest)
4618 			goto bad_value;
4619 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4620 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4621 		break;
4622 	case Opt_nr_blocks:
4623 		ctx->blocks = memparse(param->string, &rest);
4624 		if (*rest || ctx->blocks > LONG_MAX)
4625 			goto bad_value;
4626 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4627 		break;
4628 	case Opt_nr_inodes:
4629 		ctx->inodes = memparse(param->string, &rest);
4630 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4631 			goto bad_value;
4632 		ctx->seen |= SHMEM_SEEN_INODES;
4633 		break;
4634 	case Opt_mode:
4635 		ctx->mode = result.uint_32 & 07777;
4636 		break;
4637 	case Opt_uid:
4638 		kuid = result.uid;
4639 
4640 		/*
4641 		 * The requested uid must be representable in the
4642 		 * filesystem's idmapping.
4643 		 */
4644 		if (!kuid_has_mapping(fc->user_ns, kuid))
4645 			goto bad_value;
4646 
4647 		ctx->uid = kuid;
4648 		break;
4649 	case Opt_gid:
4650 		kgid = result.gid;
4651 
4652 		/*
4653 		 * The requested gid must be representable in the
4654 		 * filesystem's idmapping.
4655 		 */
4656 		if (!kgid_has_mapping(fc->user_ns, kgid))
4657 			goto bad_value;
4658 
4659 		ctx->gid = kgid;
4660 		break;
4661 	case Opt_huge:
4662 		ctx->huge = result.uint_32;
4663 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4664 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4665 		      has_transparent_hugepage()))
4666 			goto unsupported_parameter;
4667 		ctx->seen |= SHMEM_SEEN_HUGE;
4668 		break;
4669 	case Opt_mpol:
4670 		if (IS_ENABLED(CONFIG_NUMA)) {
4671 			mpol_put(ctx->mpol);
4672 			ctx->mpol = NULL;
4673 			if (mpol_parse_str(param->string, &ctx->mpol))
4674 				goto bad_value;
4675 			break;
4676 		}
4677 		goto unsupported_parameter;
4678 	case Opt_inode32:
4679 		ctx->full_inums = false;
4680 		ctx->seen |= SHMEM_SEEN_INUMS;
4681 		break;
4682 	case Opt_inode64:
4683 		if (sizeof(ino_t) < 8) {
4684 			return invalfc(fc,
4685 				       "Cannot use inode64 with <64bit inums in kernel\n");
4686 		}
4687 		ctx->full_inums = true;
4688 		ctx->seen |= SHMEM_SEEN_INUMS;
4689 		break;
4690 	case Opt_noswap:
4691 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4692 			return invalfc(fc,
4693 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4694 		}
4695 		ctx->noswap = true;
4696 		break;
4697 	case Opt_quota:
4698 		if (fc->user_ns != &init_user_ns)
4699 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4700 		ctx->seen |= SHMEM_SEEN_QUOTA;
4701 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4702 		break;
4703 	case Opt_usrquota:
4704 		if (fc->user_ns != &init_user_ns)
4705 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4706 		ctx->seen |= SHMEM_SEEN_QUOTA;
4707 		ctx->quota_types |= QTYPE_MASK_USR;
4708 		break;
4709 	case Opt_grpquota:
4710 		if (fc->user_ns != &init_user_ns)
4711 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4712 		ctx->seen |= SHMEM_SEEN_QUOTA;
4713 		ctx->quota_types |= QTYPE_MASK_GRP;
4714 		break;
4715 	case Opt_usrquota_block_hardlimit:
4716 		size = memparse(param->string, &rest);
4717 		if (*rest || !size)
4718 			goto bad_value;
4719 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4720 			return invalfc(fc,
4721 				       "User quota block hardlimit too large.");
4722 		ctx->qlimits.usrquota_bhardlimit = size;
4723 		break;
4724 	case Opt_grpquota_block_hardlimit:
4725 		size = memparse(param->string, &rest);
4726 		if (*rest || !size)
4727 			goto bad_value;
4728 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4729 			return invalfc(fc,
4730 				       "Group quota block hardlimit too large.");
4731 		ctx->qlimits.grpquota_bhardlimit = size;
4732 		break;
4733 	case Opt_usrquota_inode_hardlimit:
4734 		size = memparse(param->string, &rest);
4735 		if (*rest || !size)
4736 			goto bad_value;
4737 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4738 			return invalfc(fc,
4739 				       "User quota inode hardlimit too large.");
4740 		ctx->qlimits.usrquota_ihardlimit = size;
4741 		break;
4742 	case Opt_grpquota_inode_hardlimit:
4743 		size = memparse(param->string, &rest);
4744 		if (*rest || !size)
4745 			goto bad_value;
4746 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4747 			return invalfc(fc,
4748 				       "Group quota inode hardlimit too large.");
4749 		ctx->qlimits.grpquota_ihardlimit = size;
4750 		break;
4751 	case Opt_casefold_version:
4752 		return shmem_parse_opt_casefold(fc, param, false);
4753 	case Opt_casefold:
4754 		return shmem_parse_opt_casefold(fc, param, true);
4755 	case Opt_strict_encoding:
4756 #if IS_ENABLED(CONFIG_UNICODE)
4757 		ctx->strict_encoding = true;
4758 		break;
4759 #else
4760 		return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4761 #endif
4762 	}
4763 	return 0;
4764 
4765 unsupported_parameter:
4766 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4767 bad_value:
4768 	return invalfc(fc, "Bad value for '%s'", param->key);
4769 }
4770 
4771 static char *shmem_next_opt(char **s)
4772 {
4773 	char *sbegin = *s;
4774 	char *p;
4775 
4776 	if (sbegin == NULL)
4777 		return NULL;
4778 
4779 	/*
4780 	 * NUL-terminate this option: unfortunately,
4781 	 * mount options form a comma-separated list,
4782 	 * but mpol's nodelist may also contain commas.
4783 	 */
4784 	for (;;) {
4785 		p = strchr(*s, ',');
4786 		if (p == NULL)
4787 			break;
4788 		*s = p + 1;
4789 		if (!isdigit(*(p+1))) {
4790 			*p = '\0';
4791 			return sbegin;
4792 		}
4793 	}
4794 
4795 	*s = NULL;
4796 	return sbegin;
4797 }
4798 
4799 static int shmem_parse_monolithic(struct fs_context *fc, void *data)
4800 {
4801 	return vfs_parse_monolithic_sep(fc, data, shmem_next_opt);
4802 }
4803 
4804 /*
4805  * Reconfigure a shmem filesystem.
4806  */
4807 static int shmem_reconfigure(struct fs_context *fc)
4808 {
4809 	struct shmem_options *ctx = fc->fs_private;
4810 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4811 	unsigned long used_isp;
4812 	struct mempolicy *mpol = NULL;
4813 	const char *err;
4814 
4815 	raw_spin_lock(&sbinfo->stat_lock);
4816 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4817 
4818 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4819 		if (!sbinfo->max_blocks) {
4820 			err = "Cannot retroactively limit size";
4821 			goto out;
4822 		}
4823 		if (percpu_counter_compare(&sbinfo->used_blocks,
4824 					   ctx->blocks) > 0) {
4825 			err = "Too small a size for current use";
4826 			goto out;
4827 		}
4828 	}
4829 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4830 		if (!sbinfo->max_inodes) {
4831 			err = "Cannot retroactively limit inodes";
4832 			goto out;
4833 		}
4834 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4835 			err = "Too few inodes for current use";
4836 			goto out;
4837 		}
4838 	}
4839 
4840 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4841 	    sbinfo->next_ino > UINT_MAX) {
4842 		err = "Current inum too high to switch to 32-bit inums";
4843 		goto out;
4844 	}
4845 
4846 	/*
4847 	 * "noswap" doesn't use fsparam_flag_no, i.e. there's no "swap"
4848 	 * counterpart for (re-)enabling swap.
4849 	 */
4850 	if (ctx->noswap && !sbinfo->noswap) {
4851 		err = "Cannot disable swap on remount";
4852 		goto out;
4853 	}
4854 
4855 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4856 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4857 		err = "Cannot enable quota on remount";
4858 		goto out;
4859 	}
4860 
4861 #ifdef CONFIG_TMPFS_QUOTA
4862 #define CHANGED_LIMIT(name)						\
4863 	(ctx->qlimits.name## hardlimit &&				\
4864 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4865 
4866 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4867 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4868 		err = "Cannot change global quota limit on remount";
4869 		goto out;
4870 	}
4871 #endif /* CONFIG_TMPFS_QUOTA */
4872 
4873 	if (ctx->seen & SHMEM_SEEN_HUGE)
4874 		sbinfo->huge = ctx->huge;
4875 	if (ctx->seen & SHMEM_SEEN_INUMS)
4876 		sbinfo->full_inums = ctx->full_inums;
4877 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4878 		sbinfo->max_blocks  = ctx->blocks;
4879 	if (ctx->seen & SHMEM_SEEN_INODES) {
4880 		sbinfo->max_inodes  = ctx->inodes;
4881 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4882 	}
4883 
4884 	/*
4885 	 * Preserve previous mempolicy unless mpol remount option was specified.
4886 	 */
4887 	if (ctx->mpol) {
4888 		mpol = sbinfo->mpol;
4889 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4890 		ctx->mpol = NULL;
4891 	}
4892 
4893 	if (ctx->noswap)
4894 		sbinfo->noswap = true;
4895 
4896 	raw_spin_unlock(&sbinfo->stat_lock);
4897 	mpol_put(mpol);
4898 	return 0;
4899 out:
4900 	raw_spin_unlock(&sbinfo->stat_lock);
4901 	return invalfc(fc, "%s", err);
4902 }
4903 
4904 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4905 {
4906 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4907 	struct mempolicy *mpol;
4908 
4909 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4910 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4911 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4912 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4913 	if (sbinfo->mode != (0777 | S_ISVTX))
4914 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4915 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4916 		seq_printf(seq, ",uid=%u",
4917 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4918 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4919 		seq_printf(seq, ",gid=%u",
4920 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4921 
4922 	/*
4923 	 * Showing inode{64,32} might be useful even if it's the system default,
4924 	 * since then people don't have to resort to checking both here and
4925 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4926 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4927 	 *
4928 	 * We hide it when inode64 isn't the default and we are using 32-bit
4929 	 * inodes, since that probably just means the feature isn't even under
4930 	 * consideration.
4931 	 *
4932 	 * As such:
4933 	 *
4934 	 *                     +-----------------+-----------------+
4935 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4936 	 *  +------------------+-----------------+-----------------+
4937 	 *  | full_inums=true  | show            | show            |
4938 	 *  | full_inums=false | show            | hide            |
4939 	 *  +------------------+-----------------+-----------------+
4940 	 *
4941 	 */
4942 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4943 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4944 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4945 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4946 	if (sbinfo->huge)
4947 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4948 #endif
4949 	mpol = shmem_get_sbmpol(sbinfo);
4950 	shmem_show_mpol(seq, mpol);
4951 	mpol_put(mpol);
4952 	if (sbinfo->noswap)
4953 		seq_printf(seq, ",noswap");
4954 #ifdef CONFIG_TMPFS_QUOTA
4955 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4956 		seq_printf(seq, ",usrquota");
4957 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4958 		seq_printf(seq, ",grpquota");
4959 	if (sbinfo->qlimits.usrquota_bhardlimit)
4960 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4961 			   sbinfo->qlimits.usrquota_bhardlimit);
4962 	if (sbinfo->qlimits.grpquota_bhardlimit)
4963 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4964 			   sbinfo->qlimits.grpquota_bhardlimit);
4965 	if (sbinfo->qlimits.usrquota_ihardlimit)
4966 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4967 			   sbinfo->qlimits.usrquota_ihardlimit);
4968 	if (sbinfo->qlimits.grpquota_ihardlimit)
4969 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4970 			   sbinfo->qlimits.grpquota_ihardlimit);
4971 #endif
4972 	return 0;
4973 }
4974 
4975 #endif /* CONFIG_TMPFS */
4976 
4977 static void shmem_put_super(struct super_block *sb)
4978 {
4979 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4980 
4981 #if IS_ENABLED(CONFIG_UNICODE)
4982 	if (sb->s_encoding)
4983 		utf8_unload(sb->s_encoding);
4984 #endif
4985 
4986 #ifdef CONFIG_TMPFS_QUOTA
4987 	shmem_disable_quotas(sb);
4988 #endif
4989 	free_percpu(sbinfo->ino_batch);
4990 	percpu_counter_destroy(&sbinfo->used_blocks);
4991 	mpol_put(sbinfo->mpol);
4992 	kfree(sbinfo);
4993 	sb->s_fs_info = NULL;
4994 }
4995 
4996 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4997 static const struct dentry_operations shmem_ci_dentry_ops = {
4998 	.d_hash = generic_ci_d_hash,
4999 	.d_compare = generic_ci_d_compare,
5000 };
5001 #endif
5002 
5003 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
5004 {
5005 	struct shmem_options *ctx = fc->fs_private;
5006 	struct inode *inode;
5007 	struct shmem_sb_info *sbinfo;
5008 	int error = -ENOMEM;
5009 
5010 	/* Round up to L1_CACHE_BYTES to resist false sharing */
5011 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
5012 				L1_CACHE_BYTES), GFP_KERNEL);
5013 	if (!sbinfo)
5014 		return error;
5015 
5016 	sb->s_fs_info = sbinfo;
5017 
5018 #ifdef CONFIG_TMPFS
5019 	/*
5020 	 * Per default we only allow half of the physical ram per
5021 	 * tmpfs instance, limiting inodes to one per page of lowmem;
5022 	 * but the internal instance is left unlimited.
5023 	 */
5024 	if (!(sb->s_flags & SB_KERNMOUNT)) {
5025 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
5026 			ctx->blocks = shmem_default_max_blocks();
5027 		if (!(ctx->seen & SHMEM_SEEN_INODES))
5028 			ctx->inodes = shmem_default_max_inodes();
5029 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
5030 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
5031 		sbinfo->noswap = ctx->noswap;
5032 	} else {
5033 		sb->s_flags |= SB_NOUSER;
5034 	}
5035 	sb->s_export_op = &shmem_export_ops;
5036 	sb->s_flags |= SB_NOSEC;
5037 
5038 #if IS_ENABLED(CONFIG_UNICODE)
5039 	if (!ctx->encoding && ctx->strict_encoding) {
5040 		pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
5041 		error = -EINVAL;
5042 		goto failed;
5043 	}
5044 
5045 	if (ctx->encoding) {
5046 		sb->s_encoding = ctx->encoding;
5047 		set_default_d_op(sb, &shmem_ci_dentry_ops);
5048 		if (ctx->strict_encoding)
5049 			sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
5050 	}
5051 #endif
5052 
5053 #else
5054 	sb->s_flags |= SB_NOUSER;
5055 #endif /* CONFIG_TMPFS */
5056 	sb->s_d_flags |= DCACHE_DONTCACHE;
5057 	sbinfo->max_blocks = ctx->blocks;
5058 	sbinfo->max_inodes = ctx->inodes;
5059 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
5060 	if (sb->s_flags & SB_KERNMOUNT) {
5061 		sbinfo->ino_batch = alloc_percpu(ino_t);
5062 		if (!sbinfo->ino_batch)
5063 			goto failed;
5064 	}
5065 	sbinfo->uid = ctx->uid;
5066 	sbinfo->gid = ctx->gid;
5067 	sbinfo->full_inums = ctx->full_inums;
5068 	sbinfo->mode = ctx->mode;
5069 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5070 	if (ctx->seen & SHMEM_SEEN_HUGE)
5071 		sbinfo->huge = ctx->huge;
5072 	else
5073 		sbinfo->huge = tmpfs_huge;
5074 #endif
5075 	sbinfo->mpol = ctx->mpol;
5076 	ctx->mpol = NULL;
5077 
5078 	raw_spin_lock_init(&sbinfo->stat_lock);
5079 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
5080 		goto failed;
5081 	spin_lock_init(&sbinfo->shrinklist_lock);
5082 	INIT_LIST_HEAD(&sbinfo->shrinklist);
5083 
5084 	sb->s_maxbytes = MAX_LFS_FILESIZE;
5085 	sb->s_blocksize = PAGE_SIZE;
5086 	sb->s_blocksize_bits = PAGE_SHIFT;
5087 	sb->s_magic = TMPFS_MAGIC;
5088 	sb->s_op = &shmem_ops;
5089 	sb->s_time_gran = 1;
5090 #ifdef CONFIG_TMPFS_XATTR
5091 	sb->s_xattr = shmem_xattr_handlers;
5092 #endif
5093 #ifdef CONFIG_TMPFS_POSIX_ACL
5094 	sb->s_flags |= SB_POSIXACL;
5095 #endif
5096 	uuid_t uuid;
5097 	uuid_gen(&uuid);
5098 	super_set_uuid(sb, uuid.b, sizeof(uuid));
5099 
5100 #ifdef CONFIG_TMPFS_QUOTA
5101 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
5102 		sb->dq_op = &shmem_quota_operations;
5103 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5104 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
5105 
5106 		/* Copy the default limits from ctx into sbinfo */
5107 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
5108 		       sizeof(struct shmem_quota_limits));
5109 
5110 		if (shmem_enable_quotas(sb, ctx->quota_types))
5111 			goto failed;
5112 	}
5113 #endif /* CONFIG_TMPFS_QUOTA */
5114 
5115 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
5116 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
5117 	if (IS_ERR(inode)) {
5118 		error = PTR_ERR(inode);
5119 		goto failed;
5120 	}
5121 	inode->i_uid = sbinfo->uid;
5122 	inode->i_gid = sbinfo->gid;
5123 	sb->s_root = d_make_root(inode);
5124 	if (!sb->s_root)
5125 		goto failed;
5126 	return 0;
5127 
5128 failed:
5129 	shmem_put_super(sb);
5130 	return error;
5131 }
5132 
5133 static int shmem_get_tree(struct fs_context *fc)
5134 {
5135 	return get_tree_nodev(fc, shmem_fill_super);
5136 }
5137 
5138 static void shmem_free_fc(struct fs_context *fc)
5139 {
5140 	struct shmem_options *ctx = fc->fs_private;
5141 
5142 	if (ctx) {
5143 		mpol_put(ctx->mpol);
5144 		kfree(ctx);
5145 	}
5146 }
5147 
5148 static const struct fs_context_operations shmem_fs_context_ops = {
5149 	.free			= shmem_free_fc,
5150 	.get_tree		= shmem_get_tree,
5151 #ifdef CONFIG_TMPFS
5152 	.parse_monolithic	= shmem_parse_monolithic,
5153 	.parse_param		= shmem_parse_one,
5154 	.reconfigure		= shmem_reconfigure,
5155 #endif
5156 };
5157 
5158 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
5159 
5160 static struct inode *shmem_alloc_inode(struct super_block *sb)
5161 {
5162 	struct shmem_inode_info *info;
5163 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
5164 	if (!info)
5165 		return NULL;
5166 	return &info->vfs_inode;
5167 }
5168 
5169 static void shmem_free_in_core_inode(struct inode *inode)
5170 {
5171 	if (S_ISLNK(inode->i_mode))
5172 		kfree(inode->i_link);
5173 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
5174 }
5175 
5176 static void shmem_destroy_inode(struct inode *inode)
5177 {
5178 	if (S_ISREG(inode->i_mode))
5179 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5180 	if (S_ISDIR(inode->i_mode))
5181 		simple_offset_destroy(shmem_get_offset_ctx(inode));
5182 }
5183 
5184 static void shmem_init_inode(void *foo)
5185 {
5186 	struct shmem_inode_info *info = foo;
5187 	inode_init_once(&info->vfs_inode);
5188 }
5189 
5190 static void __init shmem_init_inodecache(void)
5191 {
5192 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5193 				sizeof(struct shmem_inode_info),
5194 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5195 }
5196 
5197 static void __init shmem_destroy_inodecache(void)
5198 {
5199 	kmem_cache_destroy(shmem_inode_cachep);
5200 }
5201 
5202 /* Keep the page in page cache instead of truncating it */
5203 static int shmem_error_remove_folio(struct address_space *mapping,
5204 				   struct folio *folio)
5205 {
5206 	return 0;
5207 }
5208 
5209 static const struct address_space_operations shmem_aops = {
5210 	.dirty_folio	= noop_dirty_folio,
5211 #ifdef CONFIG_TMPFS
5212 	.write_begin	= shmem_write_begin,
5213 	.write_end	= shmem_write_end,
5214 #endif
5215 #ifdef CONFIG_MIGRATION
5216 	.migrate_folio	= migrate_folio,
5217 #endif
5218 	.error_remove_folio = shmem_error_remove_folio,
5219 };
5220 
5221 static const struct file_operations shmem_file_operations = {
5222 	.mmap_prepare	= shmem_mmap_prepare,
5223 	.open		= shmem_file_open,
5224 	.get_unmapped_area = shmem_get_unmapped_area,
5225 #ifdef CONFIG_TMPFS
5226 	.llseek		= shmem_file_llseek,
5227 	.read_iter	= shmem_file_read_iter,
5228 	.write_iter	= shmem_file_write_iter,
5229 	.fsync		= noop_fsync,
5230 	.splice_read	= shmem_file_splice_read,
5231 	.splice_write	= iter_file_splice_write,
5232 	.fallocate	= shmem_fallocate,
5233 	.setlease	= generic_setlease,
5234 #endif
5235 };
5236 
5237 static const struct inode_operations shmem_inode_operations = {
5238 	.getattr	= shmem_getattr,
5239 	.setattr	= shmem_setattr,
5240 #ifdef CONFIG_TMPFS_XATTR
5241 	.listxattr	= shmem_listxattr,
5242 	.set_acl	= simple_set_acl,
5243 	.fileattr_get	= shmem_fileattr_get,
5244 	.fileattr_set	= shmem_fileattr_set,
5245 #endif
5246 };
5247 
5248 static const struct inode_operations shmem_dir_inode_operations = {
5249 #ifdef CONFIG_TMPFS
5250 	.getattr	= shmem_getattr,
5251 	.create		= shmem_create,
5252 	.lookup		= simple_lookup,
5253 	.link		= shmem_link,
5254 	.unlink		= shmem_unlink,
5255 	.symlink	= shmem_symlink,
5256 	.mkdir		= shmem_mkdir,
5257 	.rmdir		= shmem_rmdir,
5258 	.mknod		= shmem_mknod,
5259 	.rename		= shmem_rename2,
5260 	.tmpfile	= shmem_tmpfile,
5261 	.get_offset_ctx	= shmem_get_offset_ctx,
5262 #endif
5263 #ifdef CONFIG_TMPFS_XATTR
5264 	.listxattr	= shmem_listxattr,
5265 	.fileattr_get	= shmem_fileattr_get,
5266 	.fileattr_set	= shmem_fileattr_set,
5267 #endif
5268 #ifdef CONFIG_TMPFS_POSIX_ACL
5269 	.setattr	= shmem_setattr,
5270 	.set_acl	= simple_set_acl,
5271 #endif
5272 };
5273 
5274 static const struct inode_operations shmem_special_inode_operations = {
5275 	.getattr	= shmem_getattr,
5276 #ifdef CONFIG_TMPFS_XATTR
5277 	.listxattr	= shmem_listxattr,
5278 #endif
5279 #ifdef CONFIG_TMPFS_POSIX_ACL
5280 	.setattr	= shmem_setattr,
5281 	.set_acl	= simple_set_acl,
5282 #endif
5283 };
5284 
5285 static const struct super_operations shmem_ops = {
5286 	.alloc_inode	= shmem_alloc_inode,
5287 	.free_inode	= shmem_free_in_core_inode,
5288 	.destroy_inode	= shmem_destroy_inode,
5289 #ifdef CONFIG_TMPFS
5290 	.statfs		= shmem_statfs,
5291 	.show_options	= shmem_show_options,
5292 #endif
5293 #ifdef CONFIG_TMPFS_QUOTA
5294 	.get_dquots	= shmem_get_dquots,
5295 #endif
5296 	.evict_inode	= shmem_evict_inode,
5297 	.drop_inode	= inode_just_drop,
5298 	.put_super	= shmem_put_super,
5299 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5300 	.nr_cached_objects	= shmem_unused_huge_count,
5301 	.free_cached_objects	= shmem_unused_huge_scan,
5302 #endif
5303 };
5304 
5305 static const struct vm_operations_struct shmem_vm_ops = {
5306 	.fault		= shmem_fault,
5307 	.map_pages	= filemap_map_pages,
5308 #ifdef CONFIG_NUMA
5309 	.set_policy     = shmem_set_policy,
5310 	.get_policy     = shmem_get_policy,
5311 #endif
5312 };
5313 
5314 static const struct vm_operations_struct shmem_anon_vm_ops = {
5315 	.fault		= shmem_fault,
5316 	.map_pages	= filemap_map_pages,
5317 #ifdef CONFIG_NUMA
5318 	.set_policy     = shmem_set_policy,
5319 	.get_policy     = shmem_get_policy,
5320 #endif
5321 };
5322 
5323 int shmem_init_fs_context(struct fs_context *fc)
5324 {
5325 	struct shmem_options *ctx;
5326 
5327 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5328 	if (!ctx)
5329 		return -ENOMEM;
5330 
5331 	ctx->mode = 0777 | S_ISVTX;
5332 	ctx->uid = current_fsuid();
5333 	ctx->gid = current_fsgid();
5334 
5335 #if IS_ENABLED(CONFIG_UNICODE)
5336 	ctx->encoding = NULL;
5337 #endif
5338 
5339 	fc->fs_private = ctx;
5340 	fc->ops = &shmem_fs_context_ops;
5341 #ifdef CONFIG_TMPFS
5342 	fc->sb_flags |= SB_I_VERSION;
5343 #endif
5344 	return 0;
5345 }
5346 
5347 static struct file_system_type shmem_fs_type = {
5348 	.owner		= THIS_MODULE,
5349 	.name		= "tmpfs",
5350 	.init_fs_context = shmem_init_fs_context,
5351 #ifdef CONFIG_TMPFS
5352 	.parameters	= shmem_fs_parameters,
5353 #endif
5354 	.kill_sb	= kill_anon_super,
5355 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5356 };
5357 
5358 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5359 
5360 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store)			\
5361 {									\
5362 	.attr	= { .name = __stringify(_name), .mode = _mode },	\
5363 	.show	= _show,						\
5364 	.store	= _store,						\
5365 }
5366 
5367 #define TMPFS_ATTR_W(_name, _store)				\
5368 	static struct kobj_attribute tmpfs_attr_##_name =	\
5369 			__INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5370 
5371 #define TMPFS_ATTR_RW(_name, _show, _store)			\
5372 	static struct kobj_attribute tmpfs_attr_##_name =	\
5373 			__INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5374 
5375 #define TMPFS_ATTR_RO(_name, _show)				\
5376 	static struct kobj_attribute tmpfs_attr_##_name =	\
5377 			__INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5378 
5379 #if IS_ENABLED(CONFIG_UNICODE)
5380 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5381 			char *buf)
5382 {
5383 		return sysfs_emit(buf, "supported\n");
5384 }
5385 TMPFS_ATTR_RO(casefold, casefold_show);
5386 #endif
5387 
5388 static struct attribute *tmpfs_attributes[] = {
5389 #if IS_ENABLED(CONFIG_UNICODE)
5390 	&tmpfs_attr_casefold.attr,
5391 #endif
5392 	NULL
5393 };
5394 
5395 static const struct attribute_group tmpfs_attribute_group = {
5396 	.attrs = tmpfs_attributes,
5397 	.name = "features"
5398 };
5399 
5400 static struct kobject *tmpfs_kobj;
5401 
5402 static int __init tmpfs_sysfs_init(void)
5403 {
5404 	int ret;
5405 
5406 	tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5407 	if (!tmpfs_kobj)
5408 		return -ENOMEM;
5409 
5410 	ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5411 	if (ret)
5412 		kobject_put(tmpfs_kobj);
5413 
5414 	return ret;
5415 }
5416 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5417 
5418 void __init shmem_init(void)
5419 {
5420 	int error;
5421 
5422 	shmem_init_inodecache();
5423 
5424 #ifdef CONFIG_TMPFS_QUOTA
5425 	register_quota_format(&shmem_quota_format);
5426 #endif
5427 
5428 	error = register_filesystem(&shmem_fs_type);
5429 	if (error) {
5430 		pr_err("Could not register tmpfs\n");
5431 		goto out2;
5432 	}
5433 
5434 	shm_mnt = kern_mount(&shmem_fs_type);
5435 	if (IS_ERR(shm_mnt)) {
5436 		error = PTR_ERR(shm_mnt);
5437 		pr_err("Could not kern_mount tmpfs\n");
5438 		goto out1;
5439 	}
5440 
5441 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5442 	error = tmpfs_sysfs_init();
5443 	if (error) {
5444 		pr_err("Could not init tmpfs sysfs\n");
5445 		goto out1;
5446 	}
5447 #endif
5448 
5449 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5450 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5451 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5452 	else
5453 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5454 
5455 	/*
5456 	 * Default to setting PMD-sized THP to inherit the global setting and
5457 	 * disable all other multi-size THPs.
5458 	 */
5459 	if (!shmem_orders_configured)
5460 		huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5461 #endif
5462 	return;
5463 
5464 out1:
5465 	unregister_filesystem(&shmem_fs_type);
5466 out2:
5467 #ifdef CONFIG_TMPFS_QUOTA
5468 	unregister_quota_format(&shmem_quota_format);
5469 #endif
5470 	shmem_destroy_inodecache();
5471 	shm_mnt = ERR_PTR(error);
5472 }
5473 
5474 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5475 static ssize_t shmem_enabled_show(struct kobject *kobj,
5476 				  struct kobj_attribute *attr, char *buf)
5477 {
5478 	static const int values[] = {
5479 		SHMEM_HUGE_ALWAYS,
5480 		SHMEM_HUGE_WITHIN_SIZE,
5481 		SHMEM_HUGE_ADVISE,
5482 		SHMEM_HUGE_NEVER,
5483 		SHMEM_HUGE_DENY,
5484 		SHMEM_HUGE_FORCE,
5485 	};
5486 	int len = 0;
5487 	int i;
5488 
5489 	for (i = 0; i < ARRAY_SIZE(values); i++) {
5490 		len += sysfs_emit_at(buf, len,
5491 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5492 				i ? " " : "", shmem_format_huge(values[i]));
5493 	}
5494 	len += sysfs_emit_at(buf, len, "\n");
5495 
5496 	return len;
5497 }
5498 
5499 static ssize_t shmem_enabled_store(struct kobject *kobj,
5500 		struct kobj_attribute *attr, const char *buf, size_t count)
5501 {
5502 	char tmp[16];
5503 	int huge, err;
5504 
5505 	if (count + 1 > sizeof(tmp))
5506 		return -EINVAL;
5507 	memcpy(tmp, buf, count);
5508 	tmp[count] = '\0';
5509 	if (count && tmp[count - 1] == '\n')
5510 		tmp[count - 1] = '\0';
5511 
5512 	huge = shmem_parse_huge(tmp);
5513 	if (huge == -EINVAL)
5514 		return huge;
5515 
5516 	shmem_huge = huge;
5517 	if (shmem_huge > SHMEM_HUGE_DENY)
5518 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5519 
5520 	err = start_stop_khugepaged();
5521 	return err ? err : count;
5522 }
5523 
5524 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5525 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5526 
5527 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5528 					  struct kobj_attribute *attr, char *buf)
5529 {
5530 	int order = to_thpsize(kobj)->order;
5531 	const char *output;
5532 
5533 	if (test_bit(order, &huge_shmem_orders_always))
5534 		output = "[always] inherit within_size advise never";
5535 	else if (test_bit(order, &huge_shmem_orders_inherit))
5536 		output = "always [inherit] within_size advise never";
5537 	else if (test_bit(order, &huge_shmem_orders_within_size))
5538 		output = "always inherit [within_size] advise never";
5539 	else if (test_bit(order, &huge_shmem_orders_madvise))
5540 		output = "always inherit within_size [advise] never";
5541 	else
5542 		output = "always inherit within_size advise [never]";
5543 
5544 	return sysfs_emit(buf, "%s\n", output);
5545 }
5546 
5547 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5548 					   struct kobj_attribute *attr,
5549 					   const char *buf, size_t count)
5550 {
5551 	int order = to_thpsize(kobj)->order;
5552 	ssize_t ret = count;
5553 
5554 	if (sysfs_streq(buf, "always")) {
5555 		spin_lock(&huge_shmem_orders_lock);
5556 		clear_bit(order, &huge_shmem_orders_inherit);
5557 		clear_bit(order, &huge_shmem_orders_madvise);
5558 		clear_bit(order, &huge_shmem_orders_within_size);
5559 		set_bit(order, &huge_shmem_orders_always);
5560 		spin_unlock(&huge_shmem_orders_lock);
5561 	} else if (sysfs_streq(buf, "inherit")) {
5562 		/* Do not override huge allocation policy with non-PMD sized mTHP */
5563 		if (shmem_huge == SHMEM_HUGE_FORCE &&
5564 		    order != HPAGE_PMD_ORDER)
5565 			return -EINVAL;
5566 
5567 		spin_lock(&huge_shmem_orders_lock);
5568 		clear_bit(order, &huge_shmem_orders_always);
5569 		clear_bit(order, &huge_shmem_orders_madvise);
5570 		clear_bit(order, &huge_shmem_orders_within_size);
5571 		set_bit(order, &huge_shmem_orders_inherit);
5572 		spin_unlock(&huge_shmem_orders_lock);
5573 	} else if (sysfs_streq(buf, "within_size")) {
5574 		spin_lock(&huge_shmem_orders_lock);
5575 		clear_bit(order, &huge_shmem_orders_always);
5576 		clear_bit(order, &huge_shmem_orders_inherit);
5577 		clear_bit(order, &huge_shmem_orders_madvise);
5578 		set_bit(order, &huge_shmem_orders_within_size);
5579 		spin_unlock(&huge_shmem_orders_lock);
5580 	} else if (sysfs_streq(buf, "advise")) {
5581 		spin_lock(&huge_shmem_orders_lock);
5582 		clear_bit(order, &huge_shmem_orders_always);
5583 		clear_bit(order, &huge_shmem_orders_inherit);
5584 		clear_bit(order, &huge_shmem_orders_within_size);
5585 		set_bit(order, &huge_shmem_orders_madvise);
5586 		spin_unlock(&huge_shmem_orders_lock);
5587 	} else if (sysfs_streq(buf, "never")) {
5588 		spin_lock(&huge_shmem_orders_lock);
5589 		clear_bit(order, &huge_shmem_orders_always);
5590 		clear_bit(order, &huge_shmem_orders_inherit);
5591 		clear_bit(order, &huge_shmem_orders_within_size);
5592 		clear_bit(order, &huge_shmem_orders_madvise);
5593 		spin_unlock(&huge_shmem_orders_lock);
5594 	} else {
5595 		ret = -EINVAL;
5596 	}
5597 
5598 	if (ret > 0) {
5599 		int err = start_stop_khugepaged();
5600 
5601 		if (err)
5602 			ret = err;
5603 	}
5604 	return ret;
5605 }
5606 
5607 struct kobj_attribute thpsize_shmem_enabled_attr =
5608 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5609 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5610 
5611 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5612 
5613 static int __init setup_transparent_hugepage_shmem(char *str)
5614 {
5615 	int huge;
5616 
5617 	huge = shmem_parse_huge(str);
5618 	if (huge == -EINVAL) {
5619 		pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5620 		return huge;
5621 	}
5622 
5623 	shmem_huge = huge;
5624 	return 1;
5625 }
5626 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5627 
5628 static int __init setup_transparent_hugepage_tmpfs(char *str)
5629 {
5630 	int huge;
5631 
5632 	huge = shmem_parse_huge(str);
5633 	if (huge < 0) {
5634 		pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
5635 		return huge;
5636 	}
5637 
5638 	tmpfs_huge = huge;
5639 	return 1;
5640 }
5641 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
5642 
5643 static char str_dup[PAGE_SIZE] __initdata;
5644 static int __init setup_thp_shmem(char *str)
5645 {
5646 	char *token, *range, *policy, *subtoken;
5647 	unsigned long always, inherit, madvise, within_size;
5648 	char *start_size, *end_size;
5649 	int start, end, nr;
5650 	char *p;
5651 
5652 	if (!str || strlen(str) + 1 > PAGE_SIZE)
5653 		goto err;
5654 	strscpy(str_dup, str);
5655 
5656 	always = huge_shmem_orders_always;
5657 	inherit = huge_shmem_orders_inherit;
5658 	madvise = huge_shmem_orders_madvise;
5659 	within_size = huge_shmem_orders_within_size;
5660 	p = str_dup;
5661 	while ((token = strsep(&p, ";")) != NULL) {
5662 		range = strsep(&token, ":");
5663 		policy = token;
5664 
5665 		if (!policy)
5666 			goto err;
5667 
5668 		while ((subtoken = strsep(&range, ",")) != NULL) {
5669 			if (strchr(subtoken, '-')) {
5670 				start_size = strsep(&subtoken, "-");
5671 				end_size = subtoken;
5672 
5673 				start = get_order_from_str(start_size,
5674 							   THP_ORDERS_ALL_FILE_DEFAULT);
5675 				end = get_order_from_str(end_size,
5676 							 THP_ORDERS_ALL_FILE_DEFAULT);
5677 			} else {
5678 				start_size = end_size = subtoken;
5679 				start = end = get_order_from_str(subtoken,
5680 								 THP_ORDERS_ALL_FILE_DEFAULT);
5681 			}
5682 
5683 			if (start < 0) {
5684 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5685 				       start_size);
5686 				goto err;
5687 			}
5688 
5689 			if (end < 0) {
5690 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5691 				       end_size);
5692 				goto err;
5693 			}
5694 
5695 			if (start > end)
5696 				goto err;
5697 
5698 			nr = end - start + 1;
5699 			if (!strcmp(policy, "always")) {
5700 				bitmap_set(&always, start, nr);
5701 				bitmap_clear(&inherit, start, nr);
5702 				bitmap_clear(&madvise, start, nr);
5703 				bitmap_clear(&within_size, start, nr);
5704 			} else if (!strcmp(policy, "advise")) {
5705 				bitmap_set(&madvise, start, nr);
5706 				bitmap_clear(&inherit, start, nr);
5707 				bitmap_clear(&always, start, nr);
5708 				bitmap_clear(&within_size, start, nr);
5709 			} else if (!strcmp(policy, "inherit")) {
5710 				bitmap_set(&inherit, start, nr);
5711 				bitmap_clear(&madvise, start, nr);
5712 				bitmap_clear(&always, start, nr);
5713 				bitmap_clear(&within_size, start, nr);
5714 			} else if (!strcmp(policy, "within_size")) {
5715 				bitmap_set(&within_size, start, nr);
5716 				bitmap_clear(&inherit, start, nr);
5717 				bitmap_clear(&madvise, start, nr);
5718 				bitmap_clear(&always, start, nr);
5719 			} else if (!strcmp(policy, "never")) {
5720 				bitmap_clear(&inherit, start, nr);
5721 				bitmap_clear(&madvise, start, nr);
5722 				bitmap_clear(&always, start, nr);
5723 				bitmap_clear(&within_size, start, nr);
5724 			} else {
5725 				pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5726 				goto err;
5727 			}
5728 		}
5729 	}
5730 
5731 	huge_shmem_orders_always = always;
5732 	huge_shmem_orders_madvise = madvise;
5733 	huge_shmem_orders_inherit = inherit;
5734 	huge_shmem_orders_within_size = within_size;
5735 	shmem_orders_configured = true;
5736 	return 1;
5737 
5738 err:
5739 	pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5740 	return 0;
5741 }
5742 __setup("thp_shmem=", setup_thp_shmem);
5743 
5744 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5745 
5746 #else /* !CONFIG_SHMEM */
5747 
5748 /*
5749  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5750  *
5751  * This is intended for small system where the benefits of the full
5752  * shmem code (swap-backed and resource-limited) are outweighed by
5753  * their complexity. On systems without swap this code should be
5754  * effectively equivalent, but much lighter weight.
5755  */
5756 
5757 static struct file_system_type shmem_fs_type = {
5758 	.name		= "tmpfs",
5759 	.init_fs_context = ramfs_init_fs_context,
5760 	.parameters	= ramfs_fs_parameters,
5761 	.kill_sb	= ramfs_kill_sb,
5762 	.fs_flags	= FS_USERNS_MOUNT,
5763 };
5764 
5765 void __init shmem_init(void)
5766 {
5767 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5768 
5769 	shm_mnt = kern_mount(&shmem_fs_type);
5770 	BUG_ON(IS_ERR(shm_mnt));
5771 }
5772 
5773 int shmem_unuse(unsigned int type)
5774 {
5775 	return 0;
5776 }
5777 
5778 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5779 {
5780 	return 0;
5781 }
5782 
5783 void shmem_unlock_mapping(struct address_space *mapping)
5784 {
5785 }
5786 
5787 #ifdef CONFIG_MMU
5788 unsigned long shmem_get_unmapped_area(struct file *file,
5789 				      unsigned long addr, unsigned long len,
5790 				      unsigned long pgoff, unsigned long flags)
5791 {
5792 	return mm_get_unmapped_area(file, addr, len, pgoff, flags);
5793 }
5794 #endif
5795 
5796 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend)
5797 {
5798 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5799 }
5800 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5801 
5802 #define shmem_vm_ops				generic_file_vm_ops
5803 #define shmem_anon_vm_ops			generic_file_vm_ops
5804 #define shmem_file_operations			ramfs_file_operations
5805 
5806 static inline int shmem_acct_size(unsigned long flags, loff_t size)
5807 {
5808 	return 0;
5809 }
5810 
5811 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
5812 {
5813 }
5814 
5815 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5816 				struct super_block *sb, struct inode *dir,
5817 				umode_t mode, dev_t dev, unsigned long flags)
5818 {
5819 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5820 	return inode ? inode : ERR_PTR(-ENOSPC);
5821 }
5822 
5823 #endif /* CONFIG_SHMEM */
5824 
5825 /* common code */
5826 
5827 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5828 				       loff_t size, unsigned long vm_flags,
5829 				       unsigned int i_flags)
5830 {
5831 	unsigned long flags = (vm_flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0;
5832 	struct inode *inode;
5833 	struct file *res;
5834 
5835 	if (IS_ERR(mnt))
5836 		return ERR_CAST(mnt);
5837 
5838 	if (size < 0 || size > MAX_LFS_FILESIZE)
5839 		return ERR_PTR(-EINVAL);
5840 
5841 	if (is_idmapped_mnt(mnt))
5842 		return ERR_PTR(-EINVAL);
5843 
5844 	if (shmem_acct_size(flags, size))
5845 		return ERR_PTR(-ENOMEM);
5846 
5847 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5848 				S_IFREG | S_IRWXUGO, 0, vm_flags);
5849 	if (IS_ERR(inode)) {
5850 		shmem_unacct_size(flags, size);
5851 		return ERR_CAST(inode);
5852 	}
5853 	inode->i_flags |= i_flags;
5854 	inode->i_size = size;
5855 	clear_nlink(inode);	/* It is unlinked */
5856 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5857 	if (!IS_ERR(res))
5858 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5859 				&shmem_file_operations);
5860 	if (IS_ERR(res))
5861 		iput(inode);
5862 	return res;
5863 }
5864 
5865 /**
5866  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5867  * 	kernel internal.  There will be NO LSM permission checks against the
5868  * 	underlying inode.  So users of this interface must do LSM checks at a
5869  *	higher layer.  The users are the big_key and shm implementations.  LSM
5870  *	checks are provided at the key or shm level rather than the inode.
5871  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5872  * @size: size to be set for the file
5873  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5874  */
5875 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5876 {
5877 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5878 }
5879 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5880 
5881 /**
5882  * shmem_file_setup - get an unlinked file living in tmpfs
5883  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5884  * @size: size to be set for the file
5885  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5886  */
5887 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5888 {
5889 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5890 }
5891 EXPORT_SYMBOL_GPL(shmem_file_setup);
5892 
5893 /**
5894  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5895  * @mnt: the tmpfs mount where the file will be created
5896  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5897  * @size: size to be set for the file
5898  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5899  */
5900 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5901 				       loff_t size, unsigned long flags)
5902 {
5903 	return __shmem_file_setup(mnt, name, size, flags, 0);
5904 }
5905 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5906 
5907 static struct file *__shmem_zero_setup(unsigned long start, unsigned long end, vm_flags_t vm_flags)
5908 {
5909 	loff_t size = end - start;
5910 
5911 	/*
5912 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5913 	 * between XFS directory reading and selinux: since this file is only
5914 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5915 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5916 	 */
5917 	return shmem_kernel_file_setup("dev/zero", size, vm_flags);
5918 }
5919 
5920 /**
5921  * shmem_zero_setup - setup a shared anonymous mapping
5922  * @vma: the vma to be mmapped is prepared by do_mmap
5923  * Returns: 0 on success, or error
5924  */
5925 int shmem_zero_setup(struct vm_area_struct *vma)
5926 {
5927 	struct file *file = __shmem_zero_setup(vma->vm_start, vma->vm_end, vma->vm_flags);
5928 
5929 	if (IS_ERR(file))
5930 		return PTR_ERR(file);
5931 
5932 	if (vma->vm_file)
5933 		fput(vma->vm_file);
5934 	vma->vm_file = file;
5935 	vma->vm_ops = &shmem_anon_vm_ops;
5936 
5937 	return 0;
5938 }
5939 
5940 /**
5941  * shmem_zero_setup_desc - same as shmem_zero_setup, but determined by VMA
5942  * descriptor for convenience.
5943  * @desc: Describes VMA
5944  * Returns: 0 on success, or error
5945  */
5946 int shmem_zero_setup_desc(struct vm_area_desc *desc)
5947 {
5948 	struct file *file = __shmem_zero_setup(desc->start, desc->end, desc->vm_flags);
5949 
5950 	if (IS_ERR(file))
5951 		return PTR_ERR(file);
5952 
5953 	desc->vm_file = file;
5954 	desc->vm_ops = &shmem_anon_vm_ops;
5955 
5956 	return 0;
5957 }
5958 
5959 /**
5960  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5961  * @mapping:	the folio's address_space
5962  * @index:	the folio index
5963  * @gfp:	the page allocator flags to use if allocating
5964  *
5965  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5966  * with any new page allocations done using the specified allocation flags.
5967  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5968  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5969  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5970  *
5971  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5972  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5973  */
5974 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5975 		pgoff_t index, gfp_t gfp)
5976 {
5977 #ifdef CONFIG_SHMEM
5978 	struct inode *inode = mapping->host;
5979 	struct folio *folio;
5980 	int error;
5981 
5982 	error = shmem_get_folio_gfp(inode, index, i_size_read(inode),
5983 				    &folio, SGP_CACHE, gfp, NULL, NULL);
5984 	if (error)
5985 		return ERR_PTR(error);
5986 
5987 	folio_unlock(folio);
5988 	return folio;
5989 #else
5990 	/*
5991 	 * The tiny !SHMEM case uses ramfs without swap
5992 	 */
5993 	return mapping_read_folio_gfp(mapping, index, gfp);
5994 #endif
5995 }
5996 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5997 
5998 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5999 					 pgoff_t index, gfp_t gfp)
6000 {
6001 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
6002 	struct page *page;
6003 
6004 	if (IS_ERR(folio))
6005 		return &folio->page;
6006 
6007 	page = folio_file_page(folio, index);
6008 	if (PageHWPoison(page)) {
6009 		folio_put(folio);
6010 		return ERR_PTR(-EIO);
6011 	}
6012 
6013 	return page;
6014 }
6015 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
6016