1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45
46 static struct vfsmount *shm_mnt __ro_after_init;
47
48 #ifdef CONFIG_SHMEM
49 /*
50 * This virtual memory filesystem is heavily based on the ramfs. It
51 * extends ramfs by the ability to use swap and honor resource limits
52 * which makes it a completely usable filesystem.
53 */
54
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/leafops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84
85 #include <linux/uaccess.h>
86
87 #include "internal.h"
88
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99
100 /*
101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via
102 * inode->i_private (with i_rwsem making sure that it has only one user at
103 * a time): we would prefer not to enlarge the shmem inode just for that.
104 */
105 struct shmem_falloc {
106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 pgoff_t start; /* start of range currently being fallocated */
108 pgoff_t next; /* the next page offset to be fallocated */
109 pgoff_t nr_falloced; /* how many new pages have been fallocated */
110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */
111 };
112
113 struct shmem_options {
114 unsigned long long blocks;
115 unsigned long long inodes;
116 struct mempolicy *mpol;
117 kuid_t uid;
118 kgid_t gid;
119 umode_t mode;
120 bool full_inums;
121 int huge;
122 int seen;
123 bool noswap;
124 unsigned short quota_types;
125 struct shmem_quota_limits qlimits;
126 #if IS_ENABLED(CONFIG_UNICODE)
127 struct unicode_map *encoding;
128 bool strict_encoding;
129 #endif
130 #define SHMEM_SEEN_BLOCKS 1
131 #define SHMEM_SEEN_INODES 2
132 #define SHMEM_SEEN_HUGE 4
133 #define SHMEM_SEEN_INUMS 8
134 #define SHMEM_SEEN_QUOTA 16
135 };
136
137 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
138 static unsigned long huge_shmem_orders_always __read_mostly;
139 static unsigned long huge_shmem_orders_madvise __read_mostly;
140 static unsigned long huge_shmem_orders_inherit __read_mostly;
141 static unsigned long huge_shmem_orders_within_size __read_mostly;
142 static bool shmem_orders_configured __initdata;
143 #endif
144
145 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)146 static unsigned long shmem_default_max_blocks(void)
147 {
148 return totalram_pages() / 2;
149 }
150
shmem_default_max_inodes(void)151 static unsigned long shmem_default_max_inodes(void)
152 {
153 unsigned long nr_pages = totalram_pages();
154
155 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
156 ULONG_MAX / BOGO_INODE_SIZE);
157 }
158 #endif
159
160 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
161 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
162 struct vm_area_struct *vma, vm_fault_t *fault_type);
163
SHMEM_SB(struct super_block * sb)164 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
165 {
166 return sb->s_fs_info;
167 }
168
169 /*
170 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
171 * for shared memory and for shared anonymous (/dev/zero) mappings
172 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
173 * consistent with the pre-accounting of private mappings ...
174 */
shmem_acct_size(unsigned long flags,loff_t size)175 static inline int shmem_acct_size(unsigned long flags, loff_t size)
176 {
177 return (flags & SHMEM_F_NORESERVE) ?
178 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
179 }
180
shmem_unacct_size(unsigned long flags,loff_t size)181 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
182 {
183 if (!(flags & SHMEM_F_NORESERVE))
184 vm_unacct_memory(VM_ACCT(size));
185 }
186
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)187 static inline int shmem_reacct_size(unsigned long flags,
188 loff_t oldsize, loff_t newsize)
189 {
190 if (!(flags & SHMEM_F_NORESERVE)) {
191 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
192 return security_vm_enough_memory_mm(current->mm,
193 VM_ACCT(newsize) - VM_ACCT(oldsize));
194 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
195 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
196 }
197 return 0;
198 }
199
200 /*
201 * ... whereas tmpfs objects are accounted incrementally as
202 * pages are allocated, in order to allow large sparse files.
203 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
204 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
205 */
shmem_acct_blocks(unsigned long flags,long pages)206 static inline int shmem_acct_blocks(unsigned long flags, long pages)
207 {
208 if (!(flags & SHMEM_F_NORESERVE))
209 return 0;
210
211 return security_vm_enough_memory_mm(current->mm,
212 pages * VM_ACCT(PAGE_SIZE));
213 }
214
shmem_unacct_blocks(unsigned long flags,long pages)215 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
216 {
217 if (flags & SHMEM_F_NORESERVE)
218 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
219 }
220
shmem_inode_acct_blocks(struct inode * inode,long pages)221 int shmem_inode_acct_blocks(struct inode *inode, long pages)
222 {
223 struct shmem_inode_info *info = SHMEM_I(inode);
224 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
225 int err = -ENOSPC;
226
227 if (shmem_acct_blocks(info->flags, pages))
228 return err;
229
230 might_sleep(); /* when quotas */
231 if (sbinfo->max_blocks) {
232 if (!percpu_counter_limited_add(&sbinfo->used_blocks,
233 sbinfo->max_blocks, pages))
234 goto unacct;
235
236 err = dquot_alloc_block_nodirty(inode, pages);
237 if (err) {
238 percpu_counter_sub(&sbinfo->used_blocks, pages);
239 goto unacct;
240 }
241 } else {
242 err = dquot_alloc_block_nodirty(inode, pages);
243 if (err)
244 goto unacct;
245 }
246
247 return 0;
248
249 unacct:
250 shmem_unacct_blocks(info->flags, pages);
251 return err;
252 }
253
shmem_inode_unacct_blocks(struct inode * inode,long pages)254 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
255 {
256 struct shmem_inode_info *info = SHMEM_I(inode);
257 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
258
259 might_sleep(); /* when quotas */
260 dquot_free_block_nodirty(inode, pages);
261
262 if (sbinfo->max_blocks)
263 percpu_counter_sub(&sbinfo->used_blocks, pages);
264 shmem_unacct_blocks(info->flags, pages);
265 }
266
267 static const struct super_operations shmem_ops;
268 static const struct address_space_operations shmem_aops;
269 static const struct file_operations shmem_file_operations;
270 static const struct inode_operations shmem_inode_operations;
271 static const struct inode_operations shmem_dir_inode_operations;
272 static const struct inode_operations shmem_special_inode_operations;
273 static const struct vm_operations_struct shmem_vm_ops;
274 static const struct vm_operations_struct shmem_anon_vm_ops;
275 static struct file_system_type shmem_fs_type;
276
shmem_mapping(const struct address_space * mapping)277 bool shmem_mapping(const struct address_space *mapping)
278 {
279 return mapping->a_ops == &shmem_aops;
280 }
281 EXPORT_SYMBOL_GPL(shmem_mapping);
282
vma_is_anon_shmem(const struct vm_area_struct * vma)283 bool vma_is_anon_shmem(const struct vm_area_struct *vma)
284 {
285 return vma->vm_ops == &shmem_anon_vm_ops;
286 }
287
vma_is_shmem(const struct vm_area_struct * vma)288 bool vma_is_shmem(const struct vm_area_struct *vma)
289 {
290 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
291 }
292
293 static LIST_HEAD(shmem_swaplist);
294 static DEFINE_SPINLOCK(shmem_swaplist_lock);
295
296 #ifdef CONFIG_TMPFS_QUOTA
297
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)298 static int shmem_enable_quotas(struct super_block *sb,
299 unsigned short quota_types)
300 {
301 int type, err = 0;
302
303 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
304 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
305 if (!(quota_types & (1 << type)))
306 continue;
307 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
308 DQUOT_USAGE_ENABLED |
309 DQUOT_LIMITS_ENABLED);
310 if (err)
311 goto out_err;
312 }
313 return 0;
314
315 out_err:
316 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
317 type, err);
318 for (type--; type >= 0; type--)
319 dquot_quota_off(sb, type);
320 return err;
321 }
322
shmem_disable_quotas(struct super_block * sb)323 static void shmem_disable_quotas(struct super_block *sb)
324 {
325 int type;
326
327 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
328 dquot_quota_off(sb, type);
329 }
330
shmem_get_dquots(struct inode * inode)331 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
332 {
333 return SHMEM_I(inode)->i_dquot;
334 }
335 #endif /* CONFIG_TMPFS_QUOTA */
336
337 /*
338 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
339 * produces a novel ino for the newly allocated inode.
340 *
341 * It may also be called when making a hard link to permit the space needed by
342 * each dentry. However, in that case, no new inode number is needed since that
343 * internally draws from another pool of inode numbers (currently global
344 * get_next_ino()). This case is indicated by passing NULL as inop.
345 */
346 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)347 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
348 {
349 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
350 ino_t ino;
351
352 if (!(sb->s_flags & SB_KERNMOUNT)) {
353 raw_spin_lock(&sbinfo->stat_lock);
354 if (sbinfo->max_inodes) {
355 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
356 raw_spin_unlock(&sbinfo->stat_lock);
357 return -ENOSPC;
358 }
359 sbinfo->free_ispace -= BOGO_INODE_SIZE;
360 }
361 if (inop) {
362 ino = sbinfo->next_ino++;
363 if (unlikely(is_zero_ino(ino)))
364 ino = sbinfo->next_ino++;
365 if (unlikely(!sbinfo->full_inums &&
366 ino > UINT_MAX)) {
367 /*
368 * Emulate get_next_ino uint wraparound for
369 * compatibility
370 */
371 if (IS_ENABLED(CONFIG_64BIT))
372 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
373 __func__, MINOR(sb->s_dev));
374 sbinfo->next_ino = 1;
375 ino = sbinfo->next_ino++;
376 }
377 *inop = ino;
378 }
379 raw_spin_unlock(&sbinfo->stat_lock);
380 } else if (inop) {
381 /*
382 * __shmem_file_setup, one of our callers, is lock-free: it
383 * doesn't hold stat_lock in shmem_reserve_inode since
384 * max_inodes is always 0, and is called from potentially
385 * unknown contexts. As such, use a per-cpu batched allocator
386 * which doesn't require the per-sb stat_lock unless we are at
387 * the batch boundary.
388 *
389 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
390 * shmem mounts are not exposed to userspace, so we don't need
391 * to worry about things like glibc compatibility.
392 */
393 ino_t *next_ino;
394
395 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
396 ino = *next_ino;
397 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
398 raw_spin_lock(&sbinfo->stat_lock);
399 ino = sbinfo->next_ino;
400 sbinfo->next_ino += SHMEM_INO_BATCH;
401 raw_spin_unlock(&sbinfo->stat_lock);
402 if (unlikely(is_zero_ino(ino)))
403 ino++;
404 }
405 *inop = ino;
406 *next_ino = ++ino;
407 put_cpu();
408 }
409
410 return 0;
411 }
412
shmem_free_inode(struct super_block * sb,size_t freed_ispace)413 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
414 {
415 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
416 if (sbinfo->max_inodes) {
417 raw_spin_lock(&sbinfo->stat_lock);
418 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
419 raw_spin_unlock(&sbinfo->stat_lock);
420 }
421 }
422
423 /**
424 * shmem_recalc_inode - recalculate the block usage of an inode
425 * @inode: inode to recalc
426 * @alloced: the change in number of pages allocated to inode
427 * @swapped: the change in number of pages swapped from inode
428 *
429 * We have to calculate the free blocks since the mm can drop
430 * undirtied hole pages behind our back.
431 *
432 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
433 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
434 *
435 * Return: true if swapped was incremented from 0, for shmem_writeout().
436 */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)437 bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
438 {
439 struct shmem_inode_info *info = SHMEM_I(inode);
440 bool first_swapped = false;
441 long freed;
442
443 spin_lock(&info->lock);
444 info->alloced += alloced;
445 info->swapped += swapped;
446 freed = info->alloced - info->swapped -
447 READ_ONCE(inode->i_mapping->nrpages);
448 /*
449 * Special case: whereas normally shmem_recalc_inode() is called
450 * after i_mapping->nrpages has already been adjusted (up or down),
451 * shmem_writeout() has to raise swapped before nrpages is lowered -
452 * to stop a racing shmem_recalc_inode() from thinking that a page has
453 * been freed. Compensate here, to avoid the need for a followup call.
454 */
455 if (swapped > 0) {
456 if (info->swapped == swapped)
457 first_swapped = true;
458 freed += swapped;
459 }
460 if (freed > 0)
461 info->alloced -= freed;
462 spin_unlock(&info->lock);
463
464 /* The quota case may block */
465 if (freed > 0)
466 shmem_inode_unacct_blocks(inode, freed);
467 return first_swapped;
468 }
469
shmem_charge(struct inode * inode,long pages)470 bool shmem_charge(struct inode *inode, long pages)
471 {
472 struct address_space *mapping = inode->i_mapping;
473
474 if (shmem_inode_acct_blocks(inode, pages))
475 return false;
476
477 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
478 xa_lock_irq(&mapping->i_pages);
479 mapping->nrpages += pages;
480 xa_unlock_irq(&mapping->i_pages);
481
482 shmem_recalc_inode(inode, pages, 0);
483 return true;
484 }
485
shmem_uncharge(struct inode * inode,long pages)486 void shmem_uncharge(struct inode *inode, long pages)
487 {
488 /* pages argument is currently unused: keep it to help debugging */
489 /* nrpages adjustment done by __filemap_remove_folio() or caller */
490
491 shmem_recalc_inode(inode, 0, 0);
492 }
493
494 /*
495 * Replace item expected in xarray by a new item, while holding xa_lock.
496 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)497 static int shmem_replace_entry(struct address_space *mapping,
498 pgoff_t index, void *expected, void *replacement)
499 {
500 XA_STATE(xas, &mapping->i_pages, index);
501 void *item;
502
503 VM_BUG_ON(!expected);
504 VM_BUG_ON(!replacement);
505 item = xas_load(&xas);
506 if (item != expected)
507 return -ENOENT;
508 xas_store(&xas, replacement);
509 return 0;
510 }
511
512 /*
513 * Sometimes, before we decide whether to proceed or to fail, we must check
514 * that an entry was not already brought back or split by a racing thread.
515 *
516 * Checking folio is not enough: by the time a swapcache folio is locked, it
517 * might be reused, and again be swapcache, using the same swap as before.
518 * Returns the swap entry's order if it still presents, else returns -1.
519 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)520 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index,
521 swp_entry_t swap)
522 {
523 XA_STATE(xas, &mapping->i_pages, index);
524 int ret = -1;
525 void *entry;
526
527 rcu_read_lock();
528 do {
529 entry = xas_load(&xas);
530 if (entry == swp_to_radix_entry(swap))
531 ret = xas_get_order(&xas);
532 } while (xas_retry(&xas, entry));
533 rcu_read_unlock();
534 return ret;
535 }
536
537 /*
538 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
539 *
540 * SHMEM_HUGE_NEVER:
541 * disables huge pages for the mount;
542 * SHMEM_HUGE_ALWAYS:
543 * enables huge pages for the mount;
544 * SHMEM_HUGE_WITHIN_SIZE:
545 * only allocate huge pages if the page will be fully within i_size,
546 * also respect madvise() hints;
547 * SHMEM_HUGE_ADVISE:
548 * only allocate huge pages if requested with madvise();
549 */
550
551 #define SHMEM_HUGE_NEVER 0
552 #define SHMEM_HUGE_ALWAYS 1
553 #define SHMEM_HUGE_WITHIN_SIZE 2
554 #define SHMEM_HUGE_ADVISE 3
555
556 /*
557 * Special values.
558 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
559 *
560 * SHMEM_HUGE_DENY:
561 * disables huge on shm_mnt and all mounts, for emergency use;
562 * SHMEM_HUGE_FORCE:
563 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
564 *
565 */
566 #define SHMEM_HUGE_DENY (-1)
567 #define SHMEM_HUGE_FORCE (-2)
568
569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
570 /* ifdef here to avoid bloating shmem.o when not necessary */
571
572 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_NEVER)
573 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER
574 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ALWAYS)
575 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ALWAYS
576 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_WITHIN_SIZE)
577 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE
578 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ADVISE)
579 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ADVISE
580 #else
581 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER
582 #endif
583
584 static int shmem_huge __read_mostly = SHMEM_HUGE_DEFAULT;
585
586 #undef SHMEM_HUGE_DEFAULT
587
588 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_NEVER)
589 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER
590 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ALWAYS)
591 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ALWAYS
592 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_WITHIN_SIZE)
593 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE
594 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ADVISE)
595 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ADVISE
596 #else
597 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER
598 #endif
599
600 static int tmpfs_huge __read_mostly = TMPFS_HUGE_DEFAULT;
601
602 #undef TMPFS_HUGE_DEFAULT
603
shmem_get_orders_within_size(struct inode * inode,unsigned long within_size_orders,pgoff_t index,loff_t write_end)604 static unsigned int shmem_get_orders_within_size(struct inode *inode,
605 unsigned long within_size_orders, pgoff_t index,
606 loff_t write_end)
607 {
608 pgoff_t aligned_index;
609 unsigned long order;
610 loff_t i_size;
611
612 order = highest_order(within_size_orders);
613 while (within_size_orders) {
614 aligned_index = round_up(index + 1, 1 << order);
615 i_size = max(write_end, i_size_read(inode));
616 i_size = round_up(i_size, PAGE_SIZE);
617 if (i_size >> PAGE_SHIFT >= aligned_index)
618 return within_size_orders;
619
620 order = next_order(&within_size_orders, order);
621 }
622
623 return 0;
624 }
625
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,vm_flags_t vm_flags)626 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
627 loff_t write_end, bool shmem_huge_force,
628 struct vm_area_struct *vma,
629 vm_flags_t vm_flags)
630 {
631 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
632 0 : BIT(HPAGE_PMD_ORDER);
633 unsigned long within_size_orders;
634
635 if (!S_ISREG(inode->i_mode))
636 return 0;
637 if (shmem_huge == SHMEM_HUGE_DENY)
638 return 0;
639 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
640 return maybe_pmd_order;
641
642 /*
643 * The huge order allocation for anon shmem is controlled through
644 * the mTHP interface, so we still use PMD-sized huge order to
645 * check whether global control is enabled.
646 *
647 * For tmpfs with 'huge=always' or 'huge=within_size' mount option,
648 * we will always try PMD-sized order first. If that failed, it will
649 * fall back to small large folios.
650 */
651 switch (SHMEM_SB(inode->i_sb)->huge) {
652 case SHMEM_HUGE_ALWAYS:
653 return THP_ORDERS_ALL_FILE_DEFAULT;
654 case SHMEM_HUGE_WITHIN_SIZE:
655 within_size_orders = shmem_get_orders_within_size(inode,
656 THP_ORDERS_ALL_FILE_DEFAULT, index, write_end);
657 if (within_size_orders > 0)
658 return within_size_orders;
659
660 fallthrough;
661 case SHMEM_HUGE_ADVISE:
662 if (vm_flags & VM_HUGEPAGE)
663 return THP_ORDERS_ALL_FILE_DEFAULT;
664 fallthrough;
665 default:
666 return 0;
667 }
668 }
669
shmem_parse_huge(const char * str)670 static int shmem_parse_huge(const char *str)
671 {
672 int huge;
673
674 if (!str)
675 return -EINVAL;
676
677 if (!strcmp(str, "never"))
678 huge = SHMEM_HUGE_NEVER;
679 else if (!strcmp(str, "always"))
680 huge = SHMEM_HUGE_ALWAYS;
681 else if (!strcmp(str, "within_size"))
682 huge = SHMEM_HUGE_WITHIN_SIZE;
683 else if (!strcmp(str, "advise"))
684 huge = SHMEM_HUGE_ADVISE;
685 else if (!strcmp(str, "deny"))
686 huge = SHMEM_HUGE_DENY;
687 else if (!strcmp(str, "force"))
688 huge = SHMEM_HUGE_FORCE;
689 else
690 return -EINVAL;
691
692 if (!has_transparent_hugepage() &&
693 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
694 return -EINVAL;
695
696 /* Do not override huge allocation policy with non-PMD sized mTHP */
697 if (huge == SHMEM_HUGE_FORCE &&
698 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
699 return -EINVAL;
700
701 return huge;
702 }
703
704 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)705 static const char *shmem_format_huge(int huge)
706 {
707 switch (huge) {
708 case SHMEM_HUGE_NEVER:
709 return "never";
710 case SHMEM_HUGE_ALWAYS:
711 return "always";
712 case SHMEM_HUGE_WITHIN_SIZE:
713 return "within_size";
714 case SHMEM_HUGE_ADVISE:
715 return "advise";
716 case SHMEM_HUGE_DENY:
717 return "deny";
718 case SHMEM_HUGE_FORCE:
719 return "force";
720 default:
721 VM_BUG_ON(1);
722 return "bad_val";
723 }
724 }
725 #endif
726
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)727 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
728 struct shrink_control *sc, unsigned long nr_to_free)
729 {
730 LIST_HEAD(list), *pos, *next;
731 struct inode *inode;
732 struct shmem_inode_info *info;
733 struct folio *folio;
734 unsigned long batch = sc ? sc->nr_to_scan : 128;
735 unsigned long split = 0, freed = 0;
736
737 if (list_empty(&sbinfo->shrinklist))
738 return SHRINK_STOP;
739
740 spin_lock(&sbinfo->shrinklist_lock);
741 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
742 info = list_entry(pos, struct shmem_inode_info, shrinklist);
743
744 /* pin the inode */
745 inode = igrab(&info->vfs_inode);
746
747 /* inode is about to be evicted */
748 if (!inode) {
749 list_del_init(&info->shrinklist);
750 goto next;
751 }
752
753 list_move(&info->shrinklist, &list);
754 next:
755 sbinfo->shrinklist_len--;
756 if (!--batch)
757 break;
758 }
759 spin_unlock(&sbinfo->shrinklist_lock);
760
761 list_for_each_safe(pos, next, &list) {
762 pgoff_t next, end;
763 loff_t i_size;
764 int ret;
765
766 info = list_entry(pos, struct shmem_inode_info, shrinklist);
767 inode = &info->vfs_inode;
768
769 if (nr_to_free && freed >= nr_to_free)
770 goto move_back;
771
772 i_size = i_size_read(inode);
773 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
774 if (!folio || xa_is_value(folio))
775 goto drop;
776
777 /* No large folio at the end of the file: nothing to split */
778 if (!folio_test_large(folio)) {
779 folio_put(folio);
780 goto drop;
781 }
782
783 /* Check if there is anything to gain from splitting */
784 next = folio_next_index(folio);
785 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
786 if (end <= folio->index || end >= next) {
787 folio_put(folio);
788 goto drop;
789 }
790
791 /*
792 * Move the inode on the list back to shrinklist if we failed
793 * to lock the page at this time.
794 *
795 * Waiting for the lock may lead to deadlock in the
796 * reclaim path.
797 */
798 if (!folio_trylock(folio)) {
799 folio_put(folio);
800 goto move_back;
801 }
802
803 ret = split_folio(folio);
804 folio_unlock(folio);
805 folio_put(folio);
806
807 /* If split failed move the inode on the list back to shrinklist */
808 if (ret)
809 goto move_back;
810
811 freed += next - end;
812 split++;
813 drop:
814 list_del_init(&info->shrinklist);
815 goto put;
816 move_back:
817 /*
818 * Make sure the inode is either on the global list or deleted
819 * from any local list before iput() since it could be deleted
820 * in another thread once we put the inode (then the local list
821 * is corrupted).
822 */
823 spin_lock(&sbinfo->shrinklist_lock);
824 list_move(&info->shrinklist, &sbinfo->shrinklist);
825 sbinfo->shrinklist_len++;
826 spin_unlock(&sbinfo->shrinklist_lock);
827 put:
828 iput(inode);
829 }
830
831 return split;
832 }
833
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)834 static long shmem_unused_huge_scan(struct super_block *sb,
835 struct shrink_control *sc)
836 {
837 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
838
839 if (!READ_ONCE(sbinfo->shrinklist_len))
840 return SHRINK_STOP;
841
842 return shmem_unused_huge_shrink(sbinfo, sc, 0);
843 }
844
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)845 static long shmem_unused_huge_count(struct super_block *sb,
846 struct shrink_control *sc)
847 {
848 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
849 return READ_ONCE(sbinfo->shrinklist_len);
850 }
851 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
852
853 #define shmem_huge SHMEM_HUGE_DENY
854
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)855 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
856 struct shrink_control *sc, unsigned long nr_to_free)
857 {
858 return 0;
859 }
860
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,vm_flags_t vm_flags)861 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
862 loff_t write_end, bool shmem_huge_force,
863 struct vm_area_struct *vma,
864 vm_flags_t vm_flags)
865 {
866 return 0;
867 }
868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
869
shmem_update_stats(struct folio * folio,int nr_pages)870 static void shmem_update_stats(struct folio *folio, int nr_pages)
871 {
872 if (folio_test_pmd_mappable(folio))
873 lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
874 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
875 lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
876 }
877
878 /*
879 * Somewhat like filemap_add_folio, but error if expected item has gone.
880 */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)881 int shmem_add_to_page_cache(struct folio *folio,
882 struct address_space *mapping,
883 pgoff_t index, void *expected, gfp_t gfp)
884 {
885 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
886 unsigned long nr = folio_nr_pages(folio);
887 swp_entry_t iter, swap;
888 void *entry;
889
890 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
891 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
892 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
893
894 folio_ref_add(folio, nr);
895 folio->mapping = mapping;
896 folio->index = index;
897
898 gfp &= GFP_RECLAIM_MASK;
899 folio_throttle_swaprate(folio, gfp);
900 swap = radix_to_swp_entry(expected);
901
902 do {
903 iter = swap;
904 xas_lock_irq(&xas);
905 xas_for_each_conflict(&xas, entry) {
906 /*
907 * The range must either be empty, or filled with
908 * expected swap entries. Shmem swap entries are never
909 * partially freed without split of both entry and
910 * folio, so there shouldn't be any holes.
911 */
912 if (!expected || entry != swp_to_radix_entry(iter)) {
913 xas_set_err(&xas, -EEXIST);
914 goto unlock;
915 }
916 iter.val += 1 << xas_get_order(&xas);
917 }
918 if (expected && iter.val - nr != swap.val) {
919 xas_set_err(&xas, -EEXIST);
920 goto unlock;
921 }
922 xas_store(&xas, folio);
923 if (xas_error(&xas))
924 goto unlock;
925 shmem_update_stats(folio, nr);
926 mapping->nrpages += nr;
927 unlock:
928 xas_unlock_irq(&xas);
929 } while (xas_nomem(&xas, gfp));
930
931 if (xas_error(&xas)) {
932 folio->mapping = NULL;
933 folio_ref_sub(folio, nr);
934 return xas_error(&xas);
935 }
936
937 return 0;
938 }
939
940 /*
941 * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
942 */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)943 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
944 {
945 struct address_space *mapping = folio->mapping;
946 long nr = folio_nr_pages(folio);
947 int error;
948
949 xa_lock_irq(&mapping->i_pages);
950 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
951 folio->mapping = NULL;
952 mapping->nrpages -= nr;
953 shmem_update_stats(folio, -nr);
954 xa_unlock_irq(&mapping->i_pages);
955 folio_put_refs(folio, nr);
956 BUG_ON(error);
957 }
958
959 /*
960 * Remove swap entry from page cache, free the swap and its page cache. Returns
961 * the number of pages being freed. 0 means entry not found in XArray (0 pages
962 * being freed).
963 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,pgoff_t end,void * radswap)964 static long shmem_free_swap(struct address_space *mapping,
965 pgoff_t index, pgoff_t end, void *radswap)
966 {
967 XA_STATE(xas, &mapping->i_pages, index);
968 unsigned int nr_pages = 0;
969 pgoff_t base;
970 void *entry;
971
972 xas_lock_irq(&xas);
973 entry = xas_load(&xas);
974 if (entry == radswap) {
975 nr_pages = 1 << xas_get_order(&xas);
976 base = round_down(xas.xa_index, nr_pages);
977 if (base < index || base + nr_pages - 1 > end)
978 nr_pages = 0;
979 else
980 xas_store(&xas, NULL);
981 }
982 xas_unlock_irq(&xas);
983
984 if (nr_pages)
985 free_swap_and_cache_nr(radix_to_swp_entry(radswap), nr_pages);
986
987 return nr_pages;
988 }
989
990 /*
991 * Determine (in bytes) how many of the shmem object's pages mapped by the
992 * given offsets are swapped out.
993 *
994 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
995 * as long as the inode doesn't go away and racy results are not a problem.
996 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)997 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
998 pgoff_t start, pgoff_t end)
999 {
1000 XA_STATE(xas, &mapping->i_pages, start);
1001 struct folio *folio;
1002 unsigned long swapped = 0;
1003 unsigned long max = end - 1;
1004
1005 rcu_read_lock();
1006 xas_for_each(&xas, folio, max) {
1007 if (xas_retry(&xas, folio))
1008 continue;
1009 if (xa_is_value(folio))
1010 swapped += 1 << xas_get_order(&xas);
1011 if (xas.xa_index == max)
1012 break;
1013 if (need_resched()) {
1014 xas_pause(&xas);
1015 cond_resched_rcu();
1016 }
1017 }
1018 rcu_read_unlock();
1019
1020 return swapped << PAGE_SHIFT;
1021 }
1022
1023 /*
1024 * Determine (in bytes) how many of the shmem object's pages mapped by the
1025 * given vma is swapped out.
1026 *
1027 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
1028 * as long as the inode doesn't go away and racy results are not a problem.
1029 */
shmem_swap_usage(struct vm_area_struct * vma)1030 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
1031 {
1032 struct inode *inode = file_inode(vma->vm_file);
1033 struct shmem_inode_info *info = SHMEM_I(inode);
1034 struct address_space *mapping = inode->i_mapping;
1035 unsigned long swapped;
1036
1037 /* Be careful as we don't hold info->lock */
1038 swapped = READ_ONCE(info->swapped);
1039
1040 /*
1041 * The easier cases are when the shmem object has nothing in swap, or
1042 * the vma maps it whole. Then we can simply use the stats that we
1043 * already track.
1044 */
1045 if (!swapped)
1046 return 0;
1047
1048 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
1049 return swapped << PAGE_SHIFT;
1050
1051 /* Here comes the more involved part */
1052 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
1053 vma->vm_pgoff + vma_pages(vma));
1054 }
1055
1056 /*
1057 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
1058 */
shmem_unlock_mapping(struct address_space * mapping)1059 void shmem_unlock_mapping(struct address_space *mapping)
1060 {
1061 struct folio_batch fbatch;
1062 pgoff_t index = 0;
1063
1064 folio_batch_init(&fbatch);
1065 /*
1066 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
1067 */
1068 while (!mapping_unevictable(mapping) &&
1069 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
1070 check_move_unevictable_folios(&fbatch);
1071 folio_batch_release(&fbatch);
1072 cond_resched();
1073 }
1074 }
1075
shmem_get_partial_folio(struct inode * inode,pgoff_t index)1076 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
1077 {
1078 struct folio *folio;
1079
1080 /*
1081 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
1082 * beyond i_size, and reports fallocated folios as holes.
1083 */
1084 folio = filemap_get_entry(inode->i_mapping, index);
1085 if (!folio)
1086 return folio;
1087 if (!xa_is_value(folio)) {
1088 folio_lock(folio);
1089 if (folio->mapping == inode->i_mapping)
1090 return folio;
1091 /* The folio has been swapped out */
1092 folio_unlock(folio);
1093 folio_put(folio);
1094 }
1095 /*
1096 * But read a folio back from swap if any of it is within i_size
1097 * (although in some cases this is just a waste of time).
1098 */
1099 folio = NULL;
1100 shmem_get_folio(inode, index, 0, &folio, SGP_READ);
1101 return folio;
1102 }
1103
1104 /*
1105 * Remove range of pages and swap entries from page cache, and free them.
1106 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1107 */
shmem_undo_range(struct inode * inode,loff_t lstart,uoff_t lend,bool unfalloc)1108 static void shmem_undo_range(struct inode *inode, loff_t lstart, uoff_t lend,
1109 bool unfalloc)
1110 {
1111 struct address_space *mapping = inode->i_mapping;
1112 struct shmem_inode_info *info = SHMEM_I(inode);
1113 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1114 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1115 struct folio_batch fbatch;
1116 pgoff_t indices[PAGEVEC_SIZE];
1117 struct folio *folio;
1118 bool same_folio;
1119 long nr_swaps_freed = 0;
1120 pgoff_t index;
1121 int i;
1122
1123 if (lend == -1)
1124 end = -1; /* unsigned, so actually very big */
1125
1126 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1127 info->fallocend = start;
1128
1129 folio_batch_init(&fbatch);
1130 index = start;
1131 while (index < end && find_lock_entries(mapping, &index, end - 1,
1132 &fbatch, indices)) {
1133 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1134 folio = fbatch.folios[i];
1135
1136 if (xa_is_value(folio)) {
1137 if (unfalloc)
1138 continue;
1139 nr_swaps_freed += shmem_free_swap(mapping, indices[i],
1140 end - 1, folio);
1141 continue;
1142 }
1143
1144 if (!unfalloc || !folio_test_uptodate(folio))
1145 truncate_inode_folio(mapping, folio);
1146 folio_unlock(folio);
1147 }
1148 folio_batch_remove_exceptionals(&fbatch);
1149 folio_batch_release(&fbatch);
1150 cond_resched();
1151 }
1152
1153 /*
1154 * When undoing a failed fallocate, we want none of the partial folio
1155 * zeroing and splitting below, but shall want to truncate the whole
1156 * folio when !uptodate indicates that it was added by this fallocate,
1157 * even when [lstart, lend] covers only a part of the folio.
1158 */
1159 if (unfalloc)
1160 goto whole_folios;
1161
1162 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1163 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1164 if (folio) {
1165 same_folio = lend < folio_next_pos(folio);
1166 folio_mark_dirty(folio);
1167 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1168 start = folio_next_index(folio);
1169 if (same_folio)
1170 end = folio->index;
1171 }
1172 folio_unlock(folio);
1173 folio_put(folio);
1174 folio = NULL;
1175 }
1176
1177 if (!same_folio)
1178 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1179 if (folio) {
1180 folio_mark_dirty(folio);
1181 if (!truncate_inode_partial_folio(folio, lstart, lend))
1182 end = folio->index;
1183 folio_unlock(folio);
1184 folio_put(folio);
1185 }
1186
1187 whole_folios:
1188
1189 index = start;
1190 while (index < end) {
1191 cond_resched();
1192
1193 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1194 indices)) {
1195 /* If all gone or hole-punch or unfalloc, we're done */
1196 if (index == start || end != -1)
1197 break;
1198 /* But if truncating, restart to make sure all gone */
1199 index = start;
1200 continue;
1201 }
1202 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1203 folio = fbatch.folios[i];
1204
1205 if (xa_is_value(folio)) {
1206 int order;
1207 long swaps_freed;
1208
1209 if (unfalloc)
1210 continue;
1211 swaps_freed = shmem_free_swap(mapping, indices[i],
1212 end - 1, folio);
1213 if (!swaps_freed) {
1214 pgoff_t base = indices[i];
1215
1216 order = shmem_confirm_swap(mapping, indices[i],
1217 radix_to_swp_entry(folio));
1218 /*
1219 * If found a large swap entry cross the end or start
1220 * border, skip it as the truncate_inode_partial_folio
1221 * above should have at least zerod its content once.
1222 */
1223 if (order > 0) {
1224 base = round_down(base, 1 << order);
1225 if (base < start || base + (1 << order) > end)
1226 continue;
1227 }
1228 /* Swap was replaced by page or extended, retry */
1229 index = base;
1230 break;
1231 }
1232 nr_swaps_freed += swaps_freed;
1233 continue;
1234 }
1235
1236 folio_lock(folio);
1237
1238 if (!unfalloc || !folio_test_uptodate(folio)) {
1239 if (folio_mapping(folio) != mapping) {
1240 /* Page was replaced by swap: retry */
1241 folio_unlock(folio);
1242 index = indices[i];
1243 break;
1244 }
1245 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1246 folio);
1247
1248 if (!folio_test_large(folio)) {
1249 truncate_inode_folio(mapping, folio);
1250 } else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1251 /*
1252 * If we split a page, reset the loop so
1253 * that we pick up the new sub pages.
1254 * Otherwise the THP was entirely
1255 * dropped or the target range was
1256 * zeroed, so just continue the loop as
1257 * is.
1258 */
1259 if (!folio_test_large(folio)) {
1260 folio_unlock(folio);
1261 index = start;
1262 break;
1263 }
1264 }
1265 }
1266 folio_unlock(folio);
1267 }
1268 folio_batch_remove_exceptionals(&fbatch);
1269 folio_batch_release(&fbatch);
1270 }
1271
1272 shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1273 }
1274
shmem_truncate_range(struct inode * inode,loff_t lstart,uoff_t lend)1275 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend)
1276 {
1277 shmem_undo_range(inode, lstart, lend, false);
1278 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1279 inode_inc_iversion(inode);
1280 }
1281 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1282
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1283 static int shmem_getattr(struct mnt_idmap *idmap,
1284 const struct path *path, struct kstat *stat,
1285 u32 request_mask, unsigned int query_flags)
1286 {
1287 struct inode *inode = path->dentry->d_inode;
1288 struct shmem_inode_info *info = SHMEM_I(inode);
1289
1290 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1291 shmem_recalc_inode(inode, 0, 0);
1292
1293 if (info->fsflags & FS_APPEND_FL)
1294 stat->attributes |= STATX_ATTR_APPEND;
1295 if (info->fsflags & FS_IMMUTABLE_FL)
1296 stat->attributes |= STATX_ATTR_IMMUTABLE;
1297 if (info->fsflags & FS_NODUMP_FL)
1298 stat->attributes |= STATX_ATTR_NODUMP;
1299 stat->attributes_mask |= (STATX_ATTR_APPEND |
1300 STATX_ATTR_IMMUTABLE |
1301 STATX_ATTR_NODUMP);
1302 generic_fillattr(idmap, request_mask, inode, stat);
1303
1304 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1305 stat->blksize = HPAGE_PMD_SIZE;
1306
1307 if (request_mask & STATX_BTIME) {
1308 stat->result_mask |= STATX_BTIME;
1309 stat->btime.tv_sec = info->i_crtime.tv_sec;
1310 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1311 }
1312
1313 return 0;
1314 }
1315
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1316 static int shmem_setattr(struct mnt_idmap *idmap,
1317 struct dentry *dentry, struct iattr *attr)
1318 {
1319 struct inode *inode = d_inode(dentry);
1320 struct shmem_inode_info *info = SHMEM_I(inode);
1321 int error;
1322 bool update_mtime = false;
1323 bool update_ctime = true;
1324
1325 error = setattr_prepare(idmap, dentry, attr);
1326 if (error)
1327 return error;
1328
1329 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1330 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1331 return -EPERM;
1332 }
1333 }
1334
1335 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1336 loff_t oldsize = inode->i_size;
1337 loff_t newsize = attr->ia_size;
1338
1339 /* protected by i_rwsem */
1340 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1341 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1342 return -EPERM;
1343
1344 if (newsize != oldsize) {
1345 if (info->flags & SHMEM_F_MAPPING_FROZEN)
1346 return -EPERM;
1347 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1348 oldsize, newsize);
1349 if (error)
1350 return error;
1351 i_size_write(inode, newsize);
1352 update_mtime = true;
1353 } else {
1354 update_ctime = false;
1355 }
1356 if (newsize <= oldsize) {
1357 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1358 if (oldsize > holebegin)
1359 unmap_mapping_range(inode->i_mapping,
1360 holebegin, 0, 1);
1361 if (info->alloced)
1362 shmem_truncate_range(inode,
1363 newsize, (loff_t)-1);
1364 /* unmap again to remove racily COWed private pages */
1365 if (oldsize > holebegin)
1366 unmap_mapping_range(inode->i_mapping,
1367 holebegin, 0, 1);
1368 }
1369 }
1370
1371 if (is_quota_modification(idmap, inode, attr)) {
1372 error = dquot_initialize(inode);
1373 if (error)
1374 return error;
1375 }
1376
1377 /* Transfer quota accounting */
1378 if (i_uid_needs_update(idmap, attr, inode) ||
1379 i_gid_needs_update(idmap, attr, inode)) {
1380 error = dquot_transfer(idmap, inode, attr);
1381 if (error)
1382 return error;
1383 }
1384
1385 setattr_copy(idmap, inode, attr);
1386 if (attr->ia_valid & ATTR_MODE)
1387 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1388 if (!error && update_ctime) {
1389 inode_set_ctime_current(inode);
1390 if (update_mtime)
1391 inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1392 inode_inc_iversion(inode);
1393 }
1394 return error;
1395 }
1396
shmem_evict_inode(struct inode * inode)1397 static void shmem_evict_inode(struct inode *inode)
1398 {
1399 struct shmem_inode_info *info = SHMEM_I(inode);
1400 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1401 size_t freed = 0;
1402
1403 if (shmem_mapping(inode->i_mapping)) {
1404 shmem_unacct_size(info->flags, inode->i_size);
1405 inode->i_size = 0;
1406 mapping_set_exiting(inode->i_mapping);
1407 shmem_truncate_range(inode, 0, (loff_t)-1);
1408 if (!list_empty(&info->shrinklist)) {
1409 spin_lock(&sbinfo->shrinklist_lock);
1410 if (!list_empty(&info->shrinklist)) {
1411 list_del_init(&info->shrinklist);
1412 sbinfo->shrinklist_len--;
1413 }
1414 spin_unlock(&sbinfo->shrinklist_lock);
1415 }
1416 while (!list_empty(&info->swaplist)) {
1417 /* Wait while shmem_unuse() is scanning this inode... */
1418 wait_var_event(&info->stop_eviction,
1419 !atomic_read(&info->stop_eviction));
1420 spin_lock(&shmem_swaplist_lock);
1421 /* ...but beware of the race if we peeked too early */
1422 if (!atomic_read(&info->stop_eviction))
1423 list_del_init(&info->swaplist);
1424 spin_unlock(&shmem_swaplist_lock);
1425 }
1426 }
1427
1428 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1429 shmem_free_inode(inode->i_sb, freed);
1430 WARN_ON(inode->i_blocks);
1431 clear_inode(inode);
1432 #ifdef CONFIG_TMPFS_QUOTA
1433 dquot_free_inode(inode);
1434 dquot_drop(inode);
1435 #endif
1436 }
1437
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1438 static unsigned int shmem_find_swap_entries(struct address_space *mapping,
1439 pgoff_t start, struct folio_batch *fbatch,
1440 pgoff_t *indices, unsigned int type)
1441 {
1442 XA_STATE(xas, &mapping->i_pages, start);
1443 struct folio *folio;
1444 swp_entry_t entry;
1445
1446 rcu_read_lock();
1447 xas_for_each(&xas, folio, ULONG_MAX) {
1448 if (xas_retry(&xas, folio))
1449 continue;
1450
1451 if (!xa_is_value(folio))
1452 continue;
1453
1454 entry = radix_to_swp_entry(folio);
1455 /*
1456 * swapin error entries can be found in the mapping. But they're
1457 * deliberately ignored here as we've done everything we can do.
1458 */
1459 if (swp_type(entry) != type)
1460 continue;
1461
1462 indices[folio_batch_count(fbatch)] = xas.xa_index;
1463 if (!folio_batch_add(fbatch, folio))
1464 break;
1465
1466 if (need_resched()) {
1467 xas_pause(&xas);
1468 cond_resched_rcu();
1469 }
1470 }
1471 rcu_read_unlock();
1472
1473 return folio_batch_count(fbatch);
1474 }
1475
1476 /*
1477 * Move the swapped pages for an inode to page cache. Returns the count
1478 * of pages swapped in, or the error in case of failure.
1479 */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1480 static int shmem_unuse_swap_entries(struct inode *inode,
1481 struct folio_batch *fbatch, pgoff_t *indices)
1482 {
1483 int i = 0;
1484 int ret = 0;
1485 int error = 0;
1486 struct address_space *mapping = inode->i_mapping;
1487
1488 for (i = 0; i < folio_batch_count(fbatch); i++) {
1489 struct folio *folio = fbatch->folios[i];
1490
1491 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1492 mapping_gfp_mask(mapping), NULL, NULL);
1493 if (error == 0) {
1494 folio_unlock(folio);
1495 folio_put(folio);
1496 ret++;
1497 }
1498 if (error == -ENOMEM)
1499 break;
1500 error = 0;
1501 }
1502 return error ? error : ret;
1503 }
1504
1505 /*
1506 * If swap found in inode, free it and move page from swapcache to filecache.
1507 */
shmem_unuse_inode(struct inode * inode,unsigned int type)1508 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1509 {
1510 struct address_space *mapping = inode->i_mapping;
1511 pgoff_t start = 0;
1512 struct folio_batch fbatch;
1513 pgoff_t indices[PAGEVEC_SIZE];
1514 int ret = 0;
1515
1516 do {
1517 folio_batch_init(&fbatch);
1518 if (!shmem_find_swap_entries(mapping, start, &fbatch,
1519 indices, type)) {
1520 ret = 0;
1521 break;
1522 }
1523
1524 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1525 if (ret < 0)
1526 break;
1527
1528 start = indices[folio_batch_count(&fbatch) - 1];
1529 } while (true);
1530
1531 return ret;
1532 }
1533
1534 /*
1535 * Read all the shared memory data that resides in the swap
1536 * device 'type' back into memory, so the swap device can be
1537 * unused.
1538 */
shmem_unuse(unsigned int type)1539 int shmem_unuse(unsigned int type)
1540 {
1541 struct shmem_inode_info *info, *next;
1542 int error = 0;
1543
1544 if (list_empty(&shmem_swaplist))
1545 return 0;
1546
1547 spin_lock(&shmem_swaplist_lock);
1548 start_over:
1549 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1550 if (!info->swapped) {
1551 list_del_init(&info->swaplist);
1552 continue;
1553 }
1554 /*
1555 * Drop the swaplist mutex while searching the inode for swap;
1556 * but before doing so, make sure shmem_evict_inode() will not
1557 * remove placeholder inode from swaplist, nor let it be freed
1558 * (igrab() would protect from unlink, but not from unmount).
1559 */
1560 atomic_inc(&info->stop_eviction);
1561 spin_unlock(&shmem_swaplist_lock);
1562
1563 error = shmem_unuse_inode(&info->vfs_inode, type);
1564 cond_resched();
1565
1566 spin_lock(&shmem_swaplist_lock);
1567 if (atomic_dec_and_test(&info->stop_eviction))
1568 wake_up_var(&info->stop_eviction);
1569 if (error)
1570 break;
1571 if (list_empty(&info->swaplist))
1572 goto start_over;
1573 next = list_next_entry(info, swaplist);
1574 if (!info->swapped)
1575 list_del_init(&info->swaplist);
1576 }
1577 spin_unlock(&shmem_swaplist_lock);
1578
1579 return error;
1580 }
1581
1582 /**
1583 * shmem_writeout - Write the folio to swap
1584 * @folio: The folio to write
1585 * @plug: swap plug
1586 * @folio_list: list to put back folios on split
1587 *
1588 * Move the folio from the page cache to the swap cache.
1589 */
shmem_writeout(struct folio * folio,struct swap_iocb ** plug,struct list_head * folio_list)1590 int shmem_writeout(struct folio *folio, struct swap_iocb **plug,
1591 struct list_head *folio_list)
1592 {
1593 struct address_space *mapping = folio->mapping;
1594 struct inode *inode = mapping->host;
1595 struct shmem_inode_info *info = SHMEM_I(inode);
1596 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1597 pgoff_t index;
1598 int nr_pages;
1599 bool split = false;
1600
1601 if ((info->flags & SHMEM_F_LOCKED) || sbinfo->noswap)
1602 goto redirty;
1603
1604 if (!total_swap_pages)
1605 goto redirty;
1606
1607 /*
1608 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1609 * split when swapping.
1610 *
1611 * And shrinkage of pages beyond i_size does not split swap, so
1612 * swapout of a large folio crossing i_size needs to split too
1613 * (unless fallocate has been used to preallocate beyond EOF).
1614 */
1615 if (folio_test_large(folio)) {
1616 index = shmem_fallocend(inode,
1617 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1618 if ((index > folio->index && index < folio_next_index(folio)) ||
1619 !IS_ENABLED(CONFIG_THP_SWAP))
1620 split = true;
1621 }
1622
1623 if (split) {
1624 try_split:
1625 /* Ensure the subpages are still dirty */
1626 folio_test_set_dirty(folio);
1627 if (split_folio_to_list(folio, folio_list))
1628 goto redirty;
1629 folio_clear_dirty(folio);
1630 }
1631
1632 index = folio->index;
1633 nr_pages = folio_nr_pages(folio);
1634
1635 /*
1636 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1637 * value into swapfile.c, the only way we can correctly account for a
1638 * fallocated folio arriving here is now to initialize it and write it.
1639 *
1640 * That's okay for a folio already fallocated earlier, but if we have
1641 * not yet completed the fallocation, then (a) we want to keep track
1642 * of this folio in case we have to undo it, and (b) it may not be a
1643 * good idea to continue anyway, once we're pushing into swap. So
1644 * reactivate the folio, and let shmem_fallocate() quit when too many.
1645 */
1646 if (!folio_test_uptodate(folio)) {
1647 if (inode->i_private) {
1648 struct shmem_falloc *shmem_falloc;
1649 spin_lock(&inode->i_lock);
1650 shmem_falloc = inode->i_private;
1651 if (shmem_falloc &&
1652 !shmem_falloc->waitq &&
1653 index >= shmem_falloc->start &&
1654 index < shmem_falloc->next)
1655 shmem_falloc->nr_unswapped += nr_pages;
1656 else
1657 shmem_falloc = NULL;
1658 spin_unlock(&inode->i_lock);
1659 if (shmem_falloc)
1660 goto redirty;
1661 }
1662 folio_zero_range(folio, 0, folio_size(folio));
1663 flush_dcache_folio(folio);
1664 folio_mark_uptodate(folio);
1665 }
1666
1667 if (!folio_alloc_swap(folio)) {
1668 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages);
1669 int error;
1670
1671 /*
1672 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1673 * if it's not already there. Do it now before the folio is
1674 * removed from page cache, when its pagelock no longer
1675 * protects the inode from eviction. And do it now, after
1676 * we've incremented swapped, because shmem_unuse() will
1677 * prune a !swapped inode from the swaplist.
1678 */
1679 if (first_swapped) {
1680 spin_lock(&shmem_swaplist_lock);
1681 if (list_empty(&info->swaplist))
1682 list_add(&info->swaplist, &shmem_swaplist);
1683 spin_unlock(&shmem_swaplist_lock);
1684 }
1685
1686 swap_shmem_alloc(folio->swap, nr_pages);
1687 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap));
1688
1689 BUG_ON(folio_mapped(folio));
1690 error = swap_writeout(folio, plug);
1691 if (error != AOP_WRITEPAGE_ACTIVATE) {
1692 /* folio has been unlocked */
1693 return error;
1694 }
1695
1696 /*
1697 * The intention here is to avoid holding on to the swap when
1698 * zswap was unable to compress and unable to writeback; but
1699 * it will be appropriate if other reactivate cases are added.
1700 */
1701 error = shmem_add_to_page_cache(folio, mapping, index,
1702 swp_to_radix_entry(folio->swap),
1703 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
1704 /* Swap entry might be erased by racing shmem_free_swap() */
1705 if (!error) {
1706 shmem_recalc_inode(inode, 0, -nr_pages);
1707 swap_free_nr(folio->swap, nr_pages);
1708 }
1709
1710 /*
1711 * The swap_cache_del_folio() below could be left for
1712 * shrink_folio_list()'s folio_free_swap() to dispose of;
1713 * but I'm a little nervous about letting this folio out of
1714 * shmem_writeout() in a hybrid half-tmpfs-half-swap state
1715 * e.g. folio_mapping(folio) might give an unexpected answer.
1716 */
1717 swap_cache_del_folio(folio);
1718 goto redirty;
1719 }
1720 if (nr_pages > 1)
1721 goto try_split;
1722 redirty:
1723 folio_mark_dirty(folio);
1724 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1725 }
1726 EXPORT_SYMBOL_GPL(shmem_writeout);
1727
1728 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1729 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1730 {
1731 char buffer[64];
1732
1733 if (!mpol || mpol->mode == MPOL_DEFAULT)
1734 return; /* show nothing */
1735
1736 mpol_to_str(buffer, sizeof(buffer), mpol);
1737
1738 seq_printf(seq, ",mpol=%s", buffer);
1739 }
1740
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1741 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1742 {
1743 struct mempolicy *mpol = NULL;
1744 if (sbinfo->mpol) {
1745 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1746 mpol = sbinfo->mpol;
1747 mpol_get(mpol);
1748 raw_spin_unlock(&sbinfo->stat_lock);
1749 }
1750 return mpol;
1751 }
1752 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1753 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1754 {
1755 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1756 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1757 {
1758 return NULL;
1759 }
1760 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1761
1762 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1763 pgoff_t index, unsigned int order, pgoff_t *ilx);
1764
shmem_swapin_cluster(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1765 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1766 struct shmem_inode_info *info, pgoff_t index)
1767 {
1768 struct mempolicy *mpol;
1769 pgoff_t ilx;
1770 struct folio *folio;
1771
1772 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1773 folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1774 mpol_cond_put(mpol);
1775
1776 return folio;
1777 }
1778
1779 /*
1780 * Make sure huge_gfp is always more limited than limit_gfp.
1781 * Some of the flags set permissions, while others set limitations.
1782 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1783 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1784 {
1785 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1786 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1787 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1788 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1789
1790 /* Allow allocations only from the originally specified zones. */
1791 result |= zoneflags;
1792
1793 /*
1794 * Minimize the result gfp by taking the union with the deny flags,
1795 * and the intersection of the allow flags.
1796 */
1797 result |= (limit_gfp & denyflags);
1798 result |= (huge_gfp & limit_gfp) & allowflags;
1799
1800 return result;
1801 }
1802
1803 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_hpage_pmd_enabled(void)1804 bool shmem_hpage_pmd_enabled(void)
1805 {
1806 if (shmem_huge == SHMEM_HUGE_DENY)
1807 return false;
1808 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1809 return true;
1810 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1811 return true;
1812 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1813 return true;
1814 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1815 shmem_huge != SHMEM_HUGE_NEVER)
1816 return true;
1817
1818 return false;
1819 }
1820
shmem_allowable_huge_orders(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,loff_t write_end,bool shmem_huge_force)1821 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1822 struct vm_area_struct *vma, pgoff_t index,
1823 loff_t write_end, bool shmem_huge_force)
1824 {
1825 unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1826 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1827 vm_flags_t vm_flags = vma ? vma->vm_flags : 0;
1828 unsigned int global_orders;
1829
1830 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force)))
1831 return 0;
1832
1833 global_orders = shmem_huge_global_enabled(inode, index, write_end,
1834 shmem_huge_force, vma, vm_flags);
1835 /* Tmpfs huge pages allocation */
1836 if (!vma || !vma_is_anon_shmem(vma))
1837 return global_orders;
1838
1839 /*
1840 * Following the 'deny' semantics of the top level, force the huge
1841 * option off from all mounts.
1842 */
1843 if (shmem_huge == SHMEM_HUGE_DENY)
1844 return 0;
1845
1846 /*
1847 * Only allow inherit orders if the top-level value is 'force', which
1848 * means non-PMD sized THP can not override 'huge' mount option now.
1849 */
1850 if (shmem_huge == SHMEM_HUGE_FORCE)
1851 return READ_ONCE(huge_shmem_orders_inherit);
1852
1853 /* Allow mTHP that will be fully within i_size. */
1854 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0);
1855
1856 if (vm_flags & VM_HUGEPAGE)
1857 mask |= READ_ONCE(huge_shmem_orders_madvise);
1858
1859 if (global_orders > 0)
1860 mask |= READ_ONCE(huge_shmem_orders_inherit);
1861
1862 return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1863 }
1864
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1865 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1866 struct address_space *mapping, pgoff_t index,
1867 unsigned long orders)
1868 {
1869 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1870 pgoff_t aligned_index;
1871 unsigned long pages;
1872 int order;
1873
1874 if (vma) {
1875 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1876 if (!orders)
1877 return 0;
1878 }
1879
1880 /* Find the highest order that can add into the page cache */
1881 order = highest_order(orders);
1882 while (orders) {
1883 pages = 1UL << order;
1884 aligned_index = round_down(index, pages);
1885 /*
1886 * Check for conflict before waiting on a huge allocation.
1887 * Conflict might be that a huge page has just been allocated
1888 * and added to page cache by a racing thread, or that there
1889 * is already at least one small page in the huge extent.
1890 * Be careful to retry when appropriate, but not forever!
1891 * Elsewhere -EEXIST would be the right code, but not here.
1892 */
1893 if (!xa_find(&mapping->i_pages, &aligned_index,
1894 aligned_index + pages - 1, XA_PRESENT))
1895 break;
1896 order = next_order(&orders, order);
1897 }
1898
1899 return orders;
1900 }
1901 #else
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1902 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1903 struct address_space *mapping, pgoff_t index,
1904 unsigned long orders)
1905 {
1906 return 0;
1907 }
1908 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1909
shmem_alloc_folio(gfp_t gfp,int order,struct shmem_inode_info * info,pgoff_t index)1910 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1911 struct shmem_inode_info *info, pgoff_t index)
1912 {
1913 struct mempolicy *mpol;
1914 pgoff_t ilx;
1915 struct folio *folio;
1916
1917 mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1918 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1919 mpol_cond_put(mpol);
1920
1921 return folio;
1922 }
1923
shmem_alloc_and_add_folio(struct vm_fault * vmf,gfp_t gfp,struct inode * inode,pgoff_t index,struct mm_struct * fault_mm,unsigned long orders)1924 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1925 gfp_t gfp, struct inode *inode, pgoff_t index,
1926 struct mm_struct *fault_mm, unsigned long orders)
1927 {
1928 struct address_space *mapping = inode->i_mapping;
1929 struct shmem_inode_info *info = SHMEM_I(inode);
1930 unsigned long suitable_orders = 0;
1931 struct folio *folio = NULL;
1932 pgoff_t aligned_index;
1933 long pages;
1934 int error, order;
1935
1936 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1937 orders = 0;
1938
1939 if (orders > 0) {
1940 suitable_orders = shmem_suitable_orders(inode, vmf,
1941 mapping, index, orders);
1942
1943 order = highest_order(suitable_orders);
1944 while (suitable_orders) {
1945 pages = 1UL << order;
1946 aligned_index = round_down(index, pages);
1947 folio = shmem_alloc_folio(gfp, order, info, aligned_index);
1948 if (folio) {
1949 index = aligned_index;
1950 goto allocated;
1951 }
1952
1953 if (pages == HPAGE_PMD_NR)
1954 count_vm_event(THP_FILE_FALLBACK);
1955 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1956 order = next_order(&suitable_orders, order);
1957 }
1958 } else {
1959 pages = 1;
1960 folio = shmem_alloc_folio(gfp, 0, info, index);
1961 }
1962 if (!folio)
1963 return ERR_PTR(-ENOMEM);
1964
1965 allocated:
1966 __folio_set_locked(folio);
1967 __folio_set_swapbacked(folio);
1968
1969 gfp &= GFP_RECLAIM_MASK;
1970 error = mem_cgroup_charge(folio, fault_mm, gfp);
1971 if (error) {
1972 if (xa_find(&mapping->i_pages, &index,
1973 index + pages - 1, XA_PRESENT)) {
1974 error = -EEXIST;
1975 } else if (pages > 1) {
1976 if (pages == HPAGE_PMD_NR) {
1977 count_vm_event(THP_FILE_FALLBACK);
1978 count_vm_event(THP_FILE_FALLBACK_CHARGE);
1979 }
1980 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1981 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1982 }
1983 goto unlock;
1984 }
1985
1986 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1987 if (error)
1988 goto unlock;
1989
1990 error = shmem_inode_acct_blocks(inode, pages);
1991 if (error) {
1992 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1993 long freed;
1994 /*
1995 * Try to reclaim some space by splitting a few
1996 * large folios beyond i_size on the filesystem.
1997 */
1998 shmem_unused_huge_shrink(sbinfo, NULL, pages);
1999 /*
2000 * And do a shmem_recalc_inode() to account for freed pages:
2001 * except our folio is there in cache, so not quite balanced.
2002 */
2003 spin_lock(&info->lock);
2004 freed = pages + info->alloced - info->swapped -
2005 READ_ONCE(mapping->nrpages);
2006 if (freed > 0)
2007 info->alloced -= freed;
2008 spin_unlock(&info->lock);
2009 if (freed > 0)
2010 shmem_inode_unacct_blocks(inode, freed);
2011 error = shmem_inode_acct_blocks(inode, pages);
2012 if (error) {
2013 filemap_remove_folio(folio);
2014 goto unlock;
2015 }
2016 }
2017
2018 shmem_recalc_inode(inode, pages, 0);
2019 folio_add_lru(folio);
2020 return folio;
2021
2022 unlock:
2023 folio_unlock(folio);
2024 folio_put(folio);
2025 return ERR_PTR(error);
2026 }
2027
shmem_swap_alloc_folio(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,swp_entry_t entry,int order,gfp_t gfp)2028 static struct folio *shmem_swap_alloc_folio(struct inode *inode,
2029 struct vm_area_struct *vma, pgoff_t index,
2030 swp_entry_t entry, int order, gfp_t gfp)
2031 {
2032 struct shmem_inode_info *info = SHMEM_I(inode);
2033 int nr_pages = 1 << order;
2034 struct folio *new;
2035 gfp_t alloc_gfp;
2036 void *shadow;
2037
2038 /*
2039 * We have arrived here because our zones are constrained, so don't
2040 * limit chance of success with further cpuset and node constraints.
2041 */
2042 gfp &= ~GFP_CONSTRAINT_MASK;
2043 alloc_gfp = gfp;
2044 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
2045 if (WARN_ON_ONCE(order))
2046 return ERR_PTR(-EINVAL);
2047 } else if (order) {
2048 /*
2049 * If uffd is active for the vma, we need per-page fault
2050 * fidelity to maintain the uffd semantics, then fallback
2051 * to swapin order-0 folio, as well as for zswap case.
2052 * Any existing sub folio in the swap cache also blocks
2053 * mTHP swapin.
2054 */
2055 if ((vma && unlikely(userfaultfd_armed(vma))) ||
2056 !zswap_never_enabled() ||
2057 non_swapcache_batch(entry, nr_pages) != nr_pages)
2058 goto fallback;
2059
2060 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp);
2061 }
2062 retry:
2063 new = shmem_alloc_folio(alloc_gfp, order, info, index);
2064 if (!new) {
2065 new = ERR_PTR(-ENOMEM);
2066 goto fallback;
2067 }
2068
2069 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL,
2070 alloc_gfp, entry)) {
2071 folio_put(new);
2072 new = ERR_PTR(-ENOMEM);
2073 goto fallback;
2074 }
2075
2076 /*
2077 * Prevent parallel swapin from proceeding with the swap cache flag.
2078 *
2079 * Of course there is another possible concurrent scenario as well,
2080 * that is to say, the swap cache flag of a large folio has already
2081 * been set by swapcache_prepare(), while another thread may have
2082 * already split the large swap entry stored in the shmem mapping.
2083 * In this case, shmem_add_to_page_cache() will help identify the
2084 * concurrent swapin and return -EEXIST.
2085 */
2086 if (swapcache_prepare(entry, nr_pages)) {
2087 folio_put(new);
2088 new = ERR_PTR(-EEXIST);
2089 /* Try smaller folio to avoid cache conflict */
2090 goto fallback;
2091 }
2092
2093 __folio_set_locked(new);
2094 __folio_set_swapbacked(new);
2095 new->swap = entry;
2096
2097 memcg1_swapin(entry, nr_pages);
2098 shadow = swap_cache_get_shadow(entry);
2099 if (shadow)
2100 workingset_refault(new, shadow);
2101 folio_add_lru(new);
2102 swap_read_folio(new, NULL);
2103 return new;
2104 fallback:
2105 /* Order 0 swapin failed, nothing to fallback to, abort */
2106 if (!order)
2107 return new;
2108 entry.val += index - round_down(index, nr_pages);
2109 alloc_gfp = gfp;
2110 nr_pages = 1;
2111 order = 0;
2112 goto retry;
2113 }
2114
2115 /*
2116 * When a page is moved from swapcache to shmem filecache (either by the
2117 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
2118 * shmem_unuse_inode()), it may have been read in earlier from swap, in
2119 * ignorance of the mapping it belongs to. If that mapping has special
2120 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
2121 * we may need to copy to a suitable page before moving to filecache.
2122 *
2123 * In a future release, this may well be extended to respect cpuset and
2124 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
2125 * but for now it is a simple matter of zone.
2126 */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)2127 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
2128 {
2129 return folio_zonenum(folio) > gfp_zone(gfp);
2130 }
2131
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index,struct vm_area_struct * vma)2132 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
2133 struct shmem_inode_info *info, pgoff_t index,
2134 struct vm_area_struct *vma)
2135 {
2136 struct swap_cluster_info *ci;
2137 struct folio *new, *old = *foliop;
2138 swp_entry_t entry = old->swap;
2139 int nr_pages = folio_nr_pages(old);
2140 int error = 0;
2141
2142 /*
2143 * We have arrived here because our zones are constrained, so don't
2144 * limit chance of success by further cpuset and node constraints.
2145 */
2146 gfp &= ~GFP_CONSTRAINT_MASK;
2147 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2148 if (nr_pages > 1) {
2149 gfp_t huge_gfp = vma_thp_gfp_mask(vma);
2150
2151 gfp = limit_gfp_mask(huge_gfp, gfp);
2152 }
2153 #endif
2154
2155 new = shmem_alloc_folio(gfp, folio_order(old), info, index);
2156 if (!new)
2157 return -ENOMEM;
2158
2159 folio_ref_add(new, nr_pages);
2160 folio_copy(new, old);
2161 flush_dcache_folio(new);
2162
2163 __folio_set_locked(new);
2164 __folio_set_swapbacked(new);
2165 folio_mark_uptodate(new);
2166 new->swap = entry;
2167 folio_set_swapcache(new);
2168
2169 ci = swap_cluster_get_and_lock_irq(old);
2170 __swap_cache_replace_folio(ci, old, new);
2171 mem_cgroup_replace_folio(old, new);
2172 shmem_update_stats(new, nr_pages);
2173 shmem_update_stats(old, -nr_pages);
2174 swap_cluster_unlock_irq(ci);
2175
2176 folio_add_lru(new);
2177 *foliop = new;
2178
2179 folio_clear_swapcache(old);
2180 old->private = NULL;
2181
2182 folio_unlock(old);
2183 /*
2184 * The old folio are removed from swap cache, drop the 'nr_pages'
2185 * reference, as well as one temporary reference getting from swap
2186 * cache.
2187 */
2188 folio_put_refs(old, nr_pages + 1);
2189 return error;
2190 }
2191
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap,bool skip_swapcache)2192 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2193 struct folio *folio, swp_entry_t swap,
2194 bool skip_swapcache)
2195 {
2196 struct address_space *mapping = inode->i_mapping;
2197 swp_entry_t swapin_error;
2198 void *old;
2199 int nr_pages;
2200
2201 swapin_error = make_poisoned_swp_entry();
2202 old = xa_cmpxchg_irq(&mapping->i_pages, index,
2203 swp_to_radix_entry(swap),
2204 swp_to_radix_entry(swapin_error), 0);
2205 if (old != swp_to_radix_entry(swap))
2206 return;
2207
2208 nr_pages = folio_nr_pages(folio);
2209 folio_wait_writeback(folio);
2210 if (!skip_swapcache)
2211 swap_cache_del_folio(folio);
2212 /*
2213 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2214 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2215 * in shmem_evict_inode().
2216 */
2217 shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2218 swap_free_nr(swap, nr_pages);
2219 }
2220
shmem_split_large_entry(struct inode * inode,pgoff_t index,swp_entry_t swap,gfp_t gfp)2221 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2222 swp_entry_t swap, gfp_t gfp)
2223 {
2224 struct address_space *mapping = inode->i_mapping;
2225 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2226 int split_order = 0;
2227 int i;
2228
2229 /* Convert user data gfp flags to xarray node gfp flags */
2230 gfp &= GFP_RECLAIM_MASK;
2231
2232 for (;;) {
2233 void *old = NULL;
2234 int cur_order;
2235 pgoff_t swap_index;
2236
2237 xas_lock_irq(&xas);
2238 old = xas_load(&xas);
2239 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2240 xas_set_err(&xas, -EEXIST);
2241 goto unlock;
2242 }
2243
2244 cur_order = xas_get_order(&xas);
2245 if (!cur_order)
2246 goto unlock;
2247
2248 /* Try to split large swap entry in pagecache */
2249 swap_index = round_down(index, 1 << cur_order);
2250 split_order = xas_try_split_min_order(cur_order);
2251
2252 while (cur_order > 0) {
2253 pgoff_t aligned_index =
2254 round_down(index, 1 << cur_order);
2255 pgoff_t swap_offset = aligned_index - swap_index;
2256
2257 xas_set_order(&xas, index, split_order);
2258 xas_try_split(&xas, old, cur_order);
2259 if (xas_error(&xas))
2260 goto unlock;
2261
2262 /*
2263 * Re-set the swap entry after splitting, and the swap
2264 * offset of the original large entry must be continuous.
2265 */
2266 for (i = 0; i < 1 << cur_order;
2267 i += (1 << split_order)) {
2268 swp_entry_t tmp;
2269
2270 tmp = swp_entry(swp_type(swap),
2271 swp_offset(swap) + swap_offset +
2272 i);
2273 __xa_store(&mapping->i_pages, aligned_index + i,
2274 swp_to_radix_entry(tmp), 0);
2275 }
2276 cur_order = split_order;
2277 split_order = xas_try_split_min_order(split_order);
2278 }
2279
2280 unlock:
2281 xas_unlock_irq(&xas);
2282
2283 if (!xas_nomem(&xas, gfp))
2284 break;
2285 }
2286
2287 if (xas_error(&xas))
2288 return xas_error(&xas);
2289
2290 return 0;
2291 }
2292
2293 /*
2294 * Swap in the folio pointed to by *foliop.
2295 * Caller has to make sure that *foliop contains a valid swapped folio.
2296 * Returns 0 and the folio in foliop if success. On failure, returns the
2297 * error code and NULL in *foliop.
2298 */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)2299 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2300 struct folio **foliop, enum sgp_type sgp,
2301 gfp_t gfp, struct vm_area_struct *vma,
2302 vm_fault_t *fault_type)
2303 {
2304 struct address_space *mapping = inode->i_mapping;
2305 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2306 struct shmem_inode_info *info = SHMEM_I(inode);
2307 swp_entry_t swap;
2308 softleaf_t index_entry;
2309 struct swap_info_struct *si;
2310 struct folio *folio = NULL;
2311 bool skip_swapcache = false;
2312 int error, nr_pages, order;
2313 pgoff_t offset;
2314
2315 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2316 index_entry = radix_to_swp_entry(*foliop);
2317 swap = index_entry;
2318 *foliop = NULL;
2319
2320 if (softleaf_is_poison_marker(index_entry))
2321 return -EIO;
2322
2323 si = get_swap_device(index_entry);
2324 order = shmem_confirm_swap(mapping, index, index_entry);
2325 if (unlikely(!si)) {
2326 if (order < 0)
2327 return -EEXIST;
2328 else
2329 return -EINVAL;
2330 }
2331 if (unlikely(order < 0)) {
2332 put_swap_device(si);
2333 return -EEXIST;
2334 }
2335
2336 /* index may point to the middle of a large entry, get the sub entry */
2337 if (order) {
2338 offset = index - round_down(index, 1 << order);
2339 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2340 }
2341
2342 /* Look it up and read it in.. */
2343 folio = swap_cache_get_folio(swap);
2344 if (!folio) {
2345 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
2346 /* Direct swapin skipping swap cache & readahead */
2347 folio = shmem_swap_alloc_folio(inode, vma, index,
2348 index_entry, order, gfp);
2349 if (IS_ERR(folio)) {
2350 error = PTR_ERR(folio);
2351 folio = NULL;
2352 goto failed;
2353 }
2354 skip_swapcache = true;
2355 } else {
2356 /* Cached swapin only supports order 0 folio */
2357 folio = shmem_swapin_cluster(swap, gfp, info, index);
2358 if (!folio) {
2359 error = -ENOMEM;
2360 goto failed;
2361 }
2362 }
2363 if (fault_type) {
2364 *fault_type |= VM_FAULT_MAJOR;
2365 count_vm_event(PGMAJFAULT);
2366 count_memcg_event_mm(fault_mm, PGMAJFAULT);
2367 }
2368 } else {
2369 swap_update_readahead(folio, NULL, 0);
2370 }
2371
2372 if (order > folio_order(folio)) {
2373 /*
2374 * Swapin may get smaller folios due to various reasons:
2375 * It may fallback to order 0 due to memory pressure or race,
2376 * swap readahead may swap in order 0 folios into swapcache
2377 * asynchronously, while the shmem mapping can still stores
2378 * large swap entries. In such cases, we should split the
2379 * large swap entry to prevent possible data corruption.
2380 */
2381 error = shmem_split_large_entry(inode, index, index_entry, gfp);
2382 if (error)
2383 goto failed_nolock;
2384 }
2385
2386 /*
2387 * If the folio is large, round down swap and index by folio size.
2388 * No matter what race occurs, the swap layer ensures we either get
2389 * a valid folio that has its swap entry aligned by size, or a
2390 * temporarily invalid one which we'll abort very soon and retry.
2391 *
2392 * shmem_add_to_page_cache ensures the whole range contains expected
2393 * entries and prevents any corruption, so any race split is fine
2394 * too, it will succeed as long as the entries are still there.
2395 */
2396 nr_pages = folio_nr_pages(folio);
2397 if (nr_pages > 1) {
2398 swap.val = round_down(swap.val, nr_pages);
2399 index = round_down(index, nr_pages);
2400 }
2401
2402 /*
2403 * We have to do this with the folio locked to prevent races.
2404 * The shmem_confirm_swap below only checks if the first swap
2405 * entry matches the folio, that's enough to ensure the folio
2406 * is not used outside of shmem, as shmem swap entries
2407 * and swap cache folios are never partially freed.
2408 */
2409 folio_lock(folio);
2410 if ((!skip_swapcache && !folio_test_swapcache(folio)) ||
2411 shmem_confirm_swap(mapping, index, swap) < 0 ||
2412 folio->swap.val != swap.val) {
2413 error = -EEXIST;
2414 goto unlock;
2415 }
2416 if (!folio_test_uptodate(folio)) {
2417 error = -EIO;
2418 goto failed;
2419 }
2420 folio_wait_writeback(folio);
2421
2422 /*
2423 * Some architectures may have to restore extra metadata to the
2424 * folio after reading from swap.
2425 */
2426 arch_swap_restore(folio_swap(swap, folio), folio);
2427
2428 if (shmem_should_replace_folio(folio, gfp)) {
2429 error = shmem_replace_folio(&folio, gfp, info, index, vma);
2430 if (error)
2431 goto failed;
2432 }
2433
2434 error = shmem_add_to_page_cache(folio, mapping, index,
2435 swp_to_radix_entry(swap), gfp);
2436 if (error)
2437 goto failed;
2438
2439 shmem_recalc_inode(inode, 0, -nr_pages);
2440
2441 if (sgp == SGP_WRITE)
2442 folio_mark_accessed(folio);
2443
2444 if (skip_swapcache) {
2445 folio->swap.val = 0;
2446 swapcache_clear(si, swap, nr_pages);
2447 } else {
2448 swap_cache_del_folio(folio);
2449 }
2450 folio_mark_dirty(folio);
2451 swap_free_nr(swap, nr_pages);
2452 put_swap_device(si);
2453
2454 *foliop = folio;
2455 return 0;
2456 failed:
2457 if (shmem_confirm_swap(mapping, index, swap) < 0)
2458 error = -EEXIST;
2459 if (error == -EIO)
2460 shmem_set_folio_swapin_error(inode, index, folio, swap,
2461 skip_swapcache);
2462 unlock:
2463 if (folio)
2464 folio_unlock(folio);
2465 failed_nolock:
2466 if (skip_swapcache)
2467 swapcache_clear(si, folio->swap, folio_nr_pages(folio));
2468 if (folio)
2469 folio_put(folio);
2470 put_swap_device(si);
2471
2472 return error;
2473 }
2474
2475 /*
2476 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2477 *
2478 * If we allocate a new one we do not mark it dirty. That's up to the
2479 * vm. If we swap it in we mark it dirty since we also free the swap
2480 * entry since a page cannot live in both the swap and page cache.
2481 *
2482 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2483 */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_fault * vmf,vm_fault_t * fault_type)2484 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2485 loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2486 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2487 {
2488 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2489 struct mm_struct *fault_mm;
2490 struct folio *folio;
2491 int error;
2492 bool alloced;
2493 unsigned long orders = 0;
2494
2495 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2496 return -EINVAL;
2497
2498 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2499 return -EFBIG;
2500 repeat:
2501 if (sgp <= SGP_CACHE &&
2502 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2503 return -EINVAL;
2504
2505 alloced = false;
2506 fault_mm = vma ? vma->vm_mm : NULL;
2507
2508 folio = filemap_get_entry(inode->i_mapping, index);
2509 if (folio && vma && userfaultfd_minor(vma)) {
2510 if (!xa_is_value(folio))
2511 folio_put(folio);
2512 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2513 return 0;
2514 }
2515
2516 if (xa_is_value(folio)) {
2517 error = shmem_swapin_folio(inode, index, &folio,
2518 sgp, gfp, vma, fault_type);
2519 if (error == -EEXIST)
2520 goto repeat;
2521
2522 *foliop = folio;
2523 return error;
2524 }
2525
2526 if (folio) {
2527 folio_lock(folio);
2528
2529 /* Has the folio been truncated or swapped out? */
2530 if (unlikely(folio->mapping != inode->i_mapping)) {
2531 folio_unlock(folio);
2532 folio_put(folio);
2533 goto repeat;
2534 }
2535 if (sgp == SGP_WRITE)
2536 folio_mark_accessed(folio);
2537 if (folio_test_uptodate(folio))
2538 goto out;
2539 /* fallocated folio */
2540 if (sgp != SGP_READ)
2541 goto clear;
2542 folio_unlock(folio);
2543 folio_put(folio);
2544 }
2545
2546 /*
2547 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2548 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2549 */
2550 *foliop = NULL;
2551 if (sgp == SGP_READ)
2552 return 0;
2553 if (sgp == SGP_NOALLOC)
2554 return -ENOENT;
2555
2556 /*
2557 * Fast cache lookup and swap lookup did not find it: allocate.
2558 */
2559
2560 if (vma && userfaultfd_missing(vma)) {
2561 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2562 return 0;
2563 }
2564
2565 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2566 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2567 if (orders > 0) {
2568 gfp_t huge_gfp;
2569
2570 huge_gfp = vma_thp_gfp_mask(vma);
2571 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2572 folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2573 inode, index, fault_mm, orders);
2574 if (!IS_ERR(folio)) {
2575 if (folio_test_pmd_mappable(folio))
2576 count_vm_event(THP_FILE_ALLOC);
2577 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2578 goto alloced;
2579 }
2580 if (PTR_ERR(folio) == -EEXIST)
2581 goto repeat;
2582 }
2583
2584 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2585 if (IS_ERR(folio)) {
2586 error = PTR_ERR(folio);
2587 if (error == -EEXIST)
2588 goto repeat;
2589 folio = NULL;
2590 goto unlock;
2591 }
2592
2593 alloced:
2594 alloced = true;
2595 if (folio_test_large(folio) &&
2596 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2597 folio_next_index(folio)) {
2598 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2599 struct shmem_inode_info *info = SHMEM_I(inode);
2600 /*
2601 * Part of the large folio is beyond i_size: subject
2602 * to shrink under memory pressure.
2603 */
2604 spin_lock(&sbinfo->shrinklist_lock);
2605 /*
2606 * _careful to defend against unlocked access to
2607 * ->shrink_list in shmem_unused_huge_shrink()
2608 */
2609 if (list_empty_careful(&info->shrinklist)) {
2610 list_add_tail(&info->shrinklist,
2611 &sbinfo->shrinklist);
2612 sbinfo->shrinklist_len++;
2613 }
2614 spin_unlock(&sbinfo->shrinklist_lock);
2615 }
2616
2617 if (sgp == SGP_WRITE)
2618 folio_set_referenced(folio);
2619 /*
2620 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2621 */
2622 if (sgp == SGP_FALLOC)
2623 sgp = SGP_WRITE;
2624 clear:
2625 /*
2626 * Let SGP_WRITE caller clear ends if write does not fill folio;
2627 * but SGP_FALLOC on a folio fallocated earlier must initialize
2628 * it now, lest undo on failure cancel our earlier guarantee.
2629 */
2630 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2631 long i, n = folio_nr_pages(folio);
2632
2633 for (i = 0; i < n; i++)
2634 clear_highpage(folio_page(folio, i));
2635 flush_dcache_folio(folio);
2636 folio_mark_uptodate(folio);
2637 }
2638
2639 /* Perhaps the file has been truncated since we checked */
2640 if (sgp <= SGP_CACHE &&
2641 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2642 error = -EINVAL;
2643 goto unlock;
2644 }
2645 out:
2646 *foliop = folio;
2647 return 0;
2648
2649 /*
2650 * Error recovery.
2651 */
2652 unlock:
2653 if (alloced)
2654 filemap_remove_folio(folio);
2655 shmem_recalc_inode(inode, 0, 0);
2656 if (folio) {
2657 folio_unlock(folio);
2658 folio_put(folio);
2659 }
2660 return error;
2661 }
2662
2663 /**
2664 * shmem_get_folio - find, and lock a shmem folio.
2665 * @inode: inode to search
2666 * @index: the page index.
2667 * @write_end: end of a write, could extend inode size
2668 * @foliop: pointer to the folio if found
2669 * @sgp: SGP_* flags to control behavior
2670 *
2671 * Looks up the page cache entry at @inode & @index. If a folio is
2672 * present, it is returned locked with an increased refcount.
2673 *
2674 * If the caller modifies data in the folio, it must call folio_mark_dirty()
2675 * before unlocking the folio to ensure that the folio is not reclaimed.
2676 * There is no need to reserve space before calling folio_mark_dirty().
2677 *
2678 * When no folio is found, the behavior depends on @sgp:
2679 * - for SGP_READ, *@foliop is %NULL and 0 is returned
2680 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2681 * - for all other flags a new folio is allocated, inserted into the
2682 * page cache and returned locked in @foliop.
2683 *
2684 * Context: May sleep.
2685 * Return: 0 if successful, else a negative error code.
2686 */
shmem_get_folio(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp)2687 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2688 struct folio **foliop, enum sgp_type sgp)
2689 {
2690 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2691 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2692 }
2693 EXPORT_SYMBOL_GPL(shmem_get_folio);
2694
2695 /*
2696 * This is like autoremove_wake_function, but it removes the wait queue
2697 * entry unconditionally - even if something else had already woken the
2698 * target.
2699 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)2700 static int synchronous_wake_function(wait_queue_entry_t *wait,
2701 unsigned int mode, int sync, void *key)
2702 {
2703 int ret = default_wake_function(wait, mode, sync, key);
2704 list_del_init(&wait->entry);
2705 return ret;
2706 }
2707
2708 /*
2709 * Trinity finds that probing a hole which tmpfs is punching can
2710 * prevent the hole-punch from ever completing: which in turn
2711 * locks writers out with its hold on i_rwsem. So refrain from
2712 * faulting pages into the hole while it's being punched. Although
2713 * shmem_undo_range() does remove the additions, it may be unable to
2714 * keep up, as each new page needs its own unmap_mapping_range() call,
2715 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2716 *
2717 * It does not matter if we sometimes reach this check just before the
2718 * hole-punch begins, so that one fault then races with the punch:
2719 * we just need to make racing faults a rare case.
2720 *
2721 * The implementation below would be much simpler if we just used a
2722 * standard mutex or completion: but we cannot take i_rwsem in fault,
2723 * and bloating every shmem inode for this unlikely case would be sad.
2724 */
shmem_falloc_wait(struct vm_fault * vmf,struct inode * inode)2725 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2726 {
2727 struct shmem_falloc *shmem_falloc;
2728 struct file *fpin = NULL;
2729 vm_fault_t ret = 0;
2730
2731 spin_lock(&inode->i_lock);
2732 shmem_falloc = inode->i_private;
2733 if (shmem_falloc &&
2734 shmem_falloc->waitq &&
2735 vmf->pgoff >= shmem_falloc->start &&
2736 vmf->pgoff < shmem_falloc->next) {
2737 wait_queue_head_t *shmem_falloc_waitq;
2738 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2739
2740 ret = VM_FAULT_NOPAGE;
2741 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2742 shmem_falloc_waitq = shmem_falloc->waitq;
2743 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2744 TASK_UNINTERRUPTIBLE);
2745 spin_unlock(&inode->i_lock);
2746 schedule();
2747
2748 /*
2749 * shmem_falloc_waitq points into the shmem_fallocate()
2750 * stack of the hole-punching task: shmem_falloc_waitq
2751 * is usually invalid by the time we reach here, but
2752 * finish_wait() does not dereference it in that case;
2753 * though i_lock needed lest racing with wake_up_all().
2754 */
2755 spin_lock(&inode->i_lock);
2756 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2757 }
2758 spin_unlock(&inode->i_lock);
2759 if (fpin) {
2760 fput(fpin);
2761 ret = VM_FAULT_RETRY;
2762 }
2763 return ret;
2764 }
2765
shmem_fault(struct vm_fault * vmf)2766 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2767 {
2768 struct inode *inode = file_inode(vmf->vma->vm_file);
2769 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2770 struct folio *folio = NULL;
2771 vm_fault_t ret = 0;
2772 int err;
2773
2774 /*
2775 * Trinity finds that probing a hole which tmpfs is punching can
2776 * prevent the hole-punch from ever completing: noted in i_private.
2777 */
2778 if (unlikely(inode->i_private)) {
2779 ret = shmem_falloc_wait(vmf, inode);
2780 if (ret)
2781 return ret;
2782 }
2783
2784 WARN_ON_ONCE(vmf->page != NULL);
2785 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2786 gfp, vmf, &ret);
2787 if (err)
2788 return vmf_error(err);
2789 if (folio) {
2790 vmf->page = folio_file_page(folio, vmf->pgoff);
2791 ret |= VM_FAULT_LOCKED;
2792 }
2793 return ret;
2794 }
2795
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2796 unsigned long shmem_get_unmapped_area(struct file *file,
2797 unsigned long uaddr, unsigned long len,
2798 unsigned long pgoff, unsigned long flags)
2799 {
2800 unsigned long addr;
2801 unsigned long offset;
2802 unsigned long inflated_len;
2803 unsigned long inflated_addr;
2804 unsigned long inflated_offset;
2805 unsigned long hpage_size;
2806
2807 if (len > TASK_SIZE)
2808 return -ENOMEM;
2809
2810 addr = mm_get_unmapped_area(file, uaddr, len, pgoff, flags);
2811
2812 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2813 return addr;
2814 if (IS_ERR_VALUE(addr))
2815 return addr;
2816 if (addr & ~PAGE_MASK)
2817 return addr;
2818 if (addr > TASK_SIZE - len)
2819 return addr;
2820
2821 if (shmem_huge == SHMEM_HUGE_DENY)
2822 return addr;
2823 if (flags & MAP_FIXED)
2824 return addr;
2825 /*
2826 * Our priority is to support MAP_SHARED mapped hugely;
2827 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2828 * But if caller specified an address hint and we allocated area there
2829 * successfully, respect that as before.
2830 */
2831 if (uaddr == addr)
2832 return addr;
2833
2834 hpage_size = HPAGE_PMD_SIZE;
2835 if (shmem_huge != SHMEM_HUGE_FORCE) {
2836 struct super_block *sb;
2837 unsigned long __maybe_unused hpage_orders;
2838 int order = 0;
2839
2840 if (file) {
2841 VM_BUG_ON(file->f_op != &shmem_file_operations);
2842 sb = file_inode(file)->i_sb;
2843 } else {
2844 /*
2845 * Called directly from mm/mmap.c, or drivers/char/mem.c
2846 * for "/dev/zero", to create a shared anonymous object.
2847 */
2848 if (IS_ERR(shm_mnt))
2849 return addr;
2850 sb = shm_mnt->mnt_sb;
2851
2852 /*
2853 * Find the highest mTHP order used for anonymous shmem to
2854 * provide a suitable alignment address.
2855 */
2856 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2857 hpage_orders = READ_ONCE(huge_shmem_orders_always);
2858 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2859 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2860 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2861 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2862
2863 if (hpage_orders > 0) {
2864 order = highest_order(hpage_orders);
2865 hpage_size = PAGE_SIZE << order;
2866 }
2867 #endif
2868 }
2869 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2870 return addr;
2871 }
2872
2873 if (len < hpage_size)
2874 return addr;
2875
2876 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2877 if (offset && offset + len < 2 * hpage_size)
2878 return addr;
2879 if ((addr & (hpage_size - 1)) == offset)
2880 return addr;
2881
2882 inflated_len = len + hpage_size - PAGE_SIZE;
2883 if (inflated_len > TASK_SIZE)
2884 return addr;
2885 if (inflated_len < len)
2886 return addr;
2887
2888 inflated_addr = mm_get_unmapped_area(NULL, uaddr, inflated_len, 0, flags);
2889 if (IS_ERR_VALUE(inflated_addr))
2890 return addr;
2891 if (inflated_addr & ~PAGE_MASK)
2892 return addr;
2893
2894 inflated_offset = inflated_addr & (hpage_size - 1);
2895 inflated_addr += offset - inflated_offset;
2896 if (inflated_offset > offset)
2897 inflated_addr += hpage_size;
2898
2899 if (inflated_addr > TASK_SIZE - len)
2900 return addr;
2901 return inflated_addr;
2902 }
2903
2904 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2905 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2906 {
2907 struct inode *inode = file_inode(vma->vm_file);
2908 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2909 }
2910
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)2911 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2912 unsigned long addr, pgoff_t *ilx)
2913 {
2914 struct inode *inode = file_inode(vma->vm_file);
2915 pgoff_t index;
2916
2917 /*
2918 * Bias interleave by inode number to distribute better across nodes;
2919 * but this interface is independent of which page order is used, so
2920 * supplies only that bias, letting caller apply the offset (adjusted
2921 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2922 */
2923 *ilx = inode->i_ino;
2924 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2925 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2926 }
2927
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2928 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2929 pgoff_t index, unsigned int order, pgoff_t *ilx)
2930 {
2931 struct mempolicy *mpol;
2932
2933 /* Bias interleave by inode number to distribute better across nodes */
2934 *ilx = info->vfs_inode.i_ino + (index >> order);
2935
2936 mpol = mpol_shared_policy_lookup(&info->policy, index);
2937 return mpol ? mpol : get_task_policy(current);
2938 }
2939 #else
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2940 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2941 pgoff_t index, unsigned int order, pgoff_t *ilx)
2942 {
2943 *ilx = 0;
2944 return NULL;
2945 }
2946 #endif /* CONFIG_NUMA */
2947
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2948 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2949 {
2950 struct inode *inode = file_inode(file);
2951 struct shmem_inode_info *info = SHMEM_I(inode);
2952 int retval = -ENOMEM;
2953
2954 /*
2955 * What serializes the accesses to info->flags?
2956 * ipc_lock_object() when called from shmctl_do_lock(),
2957 * no serialization needed when called from shm_destroy().
2958 */
2959 if (lock && !(info->flags & SHMEM_F_LOCKED)) {
2960 if (!user_shm_lock(inode->i_size, ucounts))
2961 goto out_nomem;
2962 info->flags |= SHMEM_F_LOCKED;
2963 mapping_set_unevictable(file->f_mapping);
2964 }
2965 if (!lock && (info->flags & SHMEM_F_LOCKED) && ucounts) {
2966 user_shm_unlock(inode->i_size, ucounts);
2967 info->flags &= ~SHMEM_F_LOCKED;
2968 mapping_clear_unevictable(file->f_mapping);
2969 }
2970 retval = 0;
2971
2972 out_nomem:
2973 return retval;
2974 }
2975
shmem_mmap_prepare(struct vm_area_desc * desc)2976 static int shmem_mmap_prepare(struct vm_area_desc *desc)
2977 {
2978 struct file *file = desc->file;
2979 struct inode *inode = file_inode(file);
2980
2981 file_accessed(file);
2982 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2983 if (inode->i_nlink)
2984 desc->vm_ops = &shmem_vm_ops;
2985 else
2986 desc->vm_ops = &shmem_anon_vm_ops;
2987 return 0;
2988 }
2989
shmem_file_open(struct inode * inode,struct file * file)2990 static int shmem_file_open(struct inode *inode, struct file *file)
2991 {
2992 file->f_mode |= FMODE_CAN_ODIRECT;
2993 return generic_file_open(inode, file);
2994 }
2995
2996 #ifdef CONFIG_TMPFS_XATTR
2997 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2998
2999 #if IS_ENABLED(CONFIG_UNICODE)
3000 /*
3001 * shmem_inode_casefold_flags - Deal with casefold file attribute flag
3002 *
3003 * The casefold file attribute needs some special checks. I can just be added to
3004 * an empty dir, and can't be removed from a non-empty dir.
3005 */
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)3006 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
3007 struct dentry *dentry, unsigned int *i_flags)
3008 {
3009 unsigned int old = inode->i_flags;
3010 struct super_block *sb = inode->i_sb;
3011
3012 if (fsflags & FS_CASEFOLD_FL) {
3013 if (!(old & S_CASEFOLD)) {
3014 if (!sb->s_encoding)
3015 return -EOPNOTSUPP;
3016
3017 if (!S_ISDIR(inode->i_mode))
3018 return -ENOTDIR;
3019
3020 if (dentry && !simple_empty(dentry))
3021 return -ENOTEMPTY;
3022 }
3023
3024 *i_flags = *i_flags | S_CASEFOLD;
3025 } else if (old & S_CASEFOLD) {
3026 if (dentry && !simple_empty(dentry))
3027 return -ENOTEMPTY;
3028 }
3029
3030 return 0;
3031 }
3032 #else
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)3033 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
3034 struct dentry *dentry, unsigned int *i_flags)
3035 {
3036 if (fsflags & FS_CASEFOLD_FL)
3037 return -EOPNOTSUPP;
3038
3039 return 0;
3040 }
3041 #endif
3042
3043 /*
3044 * chattr's fsflags are unrelated to extended attributes,
3045 * but tmpfs has chosen to enable them under the same config option.
3046 */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3047 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3048 {
3049 unsigned int i_flags = 0;
3050 int ret;
3051
3052 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
3053 if (ret)
3054 return ret;
3055
3056 if (fsflags & FS_NOATIME_FL)
3057 i_flags |= S_NOATIME;
3058 if (fsflags & FS_APPEND_FL)
3059 i_flags |= S_APPEND;
3060 if (fsflags & FS_IMMUTABLE_FL)
3061 i_flags |= S_IMMUTABLE;
3062 /*
3063 * But FS_NODUMP_FL does not require any action in i_flags.
3064 */
3065 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
3066
3067 return 0;
3068 }
3069 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3070 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3071 {
3072 }
3073 #define shmem_initxattrs NULL
3074 #endif
3075
shmem_get_offset_ctx(struct inode * inode)3076 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
3077 {
3078 return &SHMEM_I(inode)->dir_offsets;
3079 }
3080
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3081 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
3082 struct super_block *sb,
3083 struct inode *dir, umode_t mode,
3084 dev_t dev, unsigned long flags)
3085 {
3086 struct inode *inode;
3087 struct shmem_inode_info *info;
3088 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3089 ino_t ino;
3090 int err;
3091
3092 err = shmem_reserve_inode(sb, &ino);
3093 if (err)
3094 return ERR_PTR(err);
3095
3096 inode = new_inode(sb);
3097 if (!inode) {
3098 shmem_free_inode(sb, 0);
3099 return ERR_PTR(-ENOSPC);
3100 }
3101
3102 inode->i_ino = ino;
3103 inode_init_owner(idmap, inode, dir, mode);
3104 inode->i_blocks = 0;
3105 simple_inode_init_ts(inode);
3106 inode->i_generation = get_random_u32();
3107 info = SHMEM_I(inode);
3108 memset(info, 0, (char *)inode - (char *)info);
3109 spin_lock_init(&info->lock);
3110 atomic_set(&info->stop_eviction, 0);
3111 info->seals = F_SEAL_SEAL;
3112 info->flags = (flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0;
3113 info->i_crtime = inode_get_mtime(inode);
3114 info->fsflags = (dir == NULL) ? 0 :
3115 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
3116 if (info->fsflags)
3117 shmem_set_inode_flags(inode, info->fsflags, NULL);
3118 INIT_LIST_HEAD(&info->shrinklist);
3119 INIT_LIST_HEAD(&info->swaplist);
3120 simple_xattrs_init(&info->xattrs);
3121 cache_no_acl(inode);
3122 if (sbinfo->noswap)
3123 mapping_set_unevictable(inode->i_mapping);
3124
3125 /* Don't consider 'deny' for emergencies and 'force' for testing */
3126 if (sbinfo->huge)
3127 mapping_set_large_folios(inode->i_mapping);
3128
3129 switch (mode & S_IFMT) {
3130 default:
3131 inode->i_op = &shmem_special_inode_operations;
3132 init_special_inode(inode, mode, dev);
3133 break;
3134 case S_IFREG:
3135 inode->i_mapping->a_ops = &shmem_aops;
3136 inode->i_op = &shmem_inode_operations;
3137 inode->i_fop = &shmem_file_operations;
3138 mpol_shared_policy_init(&info->policy,
3139 shmem_get_sbmpol(sbinfo));
3140 break;
3141 case S_IFDIR:
3142 inc_nlink(inode);
3143 /* Some things misbehave if size == 0 on a directory */
3144 inode->i_size = 2 * BOGO_DIRENT_SIZE;
3145 inode->i_op = &shmem_dir_inode_operations;
3146 inode->i_fop = &simple_offset_dir_operations;
3147 simple_offset_init(shmem_get_offset_ctx(inode));
3148 break;
3149 case S_IFLNK:
3150 /*
3151 * Must not load anything in the rbtree,
3152 * mpol_free_shared_policy will not be called.
3153 */
3154 mpol_shared_policy_init(&info->policy, NULL);
3155 break;
3156 }
3157
3158 lockdep_annotate_inode_mutex_key(inode);
3159 return inode;
3160 }
3161
3162 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3163 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3164 struct super_block *sb, struct inode *dir,
3165 umode_t mode, dev_t dev, unsigned long flags)
3166 {
3167 int err;
3168 struct inode *inode;
3169
3170 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3171 if (IS_ERR(inode))
3172 return inode;
3173
3174 err = dquot_initialize(inode);
3175 if (err)
3176 goto errout;
3177
3178 err = dquot_alloc_inode(inode);
3179 if (err) {
3180 dquot_drop(inode);
3181 goto errout;
3182 }
3183 return inode;
3184
3185 errout:
3186 inode->i_flags |= S_NOQUOTA;
3187 iput(inode);
3188 return ERR_PTR(err);
3189 }
3190 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3191 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3192 struct super_block *sb, struct inode *dir,
3193 umode_t mode, dev_t dev, unsigned long flags)
3194 {
3195 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3196 }
3197 #endif /* CONFIG_TMPFS_QUOTA */
3198
3199 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)3200 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
3201 struct vm_area_struct *dst_vma,
3202 unsigned long dst_addr,
3203 unsigned long src_addr,
3204 uffd_flags_t flags,
3205 struct folio **foliop)
3206 {
3207 struct inode *inode = file_inode(dst_vma->vm_file);
3208 struct shmem_inode_info *info = SHMEM_I(inode);
3209 struct address_space *mapping = inode->i_mapping;
3210 gfp_t gfp = mapping_gfp_mask(mapping);
3211 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
3212 void *page_kaddr;
3213 struct folio *folio;
3214 int ret;
3215 pgoff_t max_off;
3216
3217 if (shmem_inode_acct_blocks(inode, 1)) {
3218 /*
3219 * We may have got a page, returned -ENOENT triggering a retry,
3220 * and now we find ourselves with -ENOMEM. Release the page, to
3221 * avoid a BUG_ON in our caller.
3222 */
3223 if (unlikely(*foliop)) {
3224 folio_put(*foliop);
3225 *foliop = NULL;
3226 }
3227 return -ENOMEM;
3228 }
3229
3230 if (!*foliop) {
3231 ret = -ENOMEM;
3232 folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3233 if (!folio)
3234 goto out_unacct_blocks;
3235
3236 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3237 page_kaddr = kmap_local_folio(folio, 0);
3238 /*
3239 * The read mmap_lock is held here. Despite the
3240 * mmap_lock being read recursive a deadlock is still
3241 * possible if a writer has taken a lock. For example:
3242 *
3243 * process A thread 1 takes read lock on own mmap_lock
3244 * process A thread 2 calls mmap, blocks taking write lock
3245 * process B thread 1 takes page fault, read lock on own mmap lock
3246 * process B thread 2 calls mmap, blocks taking write lock
3247 * process A thread 1 blocks taking read lock on process B
3248 * process B thread 1 blocks taking read lock on process A
3249 *
3250 * Disable page faults to prevent potential deadlock
3251 * and retry the copy outside the mmap_lock.
3252 */
3253 pagefault_disable();
3254 ret = copy_from_user(page_kaddr,
3255 (const void __user *)src_addr,
3256 PAGE_SIZE);
3257 pagefault_enable();
3258 kunmap_local(page_kaddr);
3259
3260 /* fallback to copy_from_user outside mmap_lock */
3261 if (unlikely(ret)) {
3262 *foliop = folio;
3263 ret = -ENOENT;
3264 /* don't free the page */
3265 goto out_unacct_blocks;
3266 }
3267
3268 flush_dcache_folio(folio);
3269 } else { /* ZEROPAGE */
3270 clear_user_highpage(&folio->page, dst_addr);
3271 }
3272 } else {
3273 folio = *foliop;
3274 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3275 *foliop = NULL;
3276 }
3277
3278 VM_BUG_ON(folio_test_locked(folio));
3279 VM_BUG_ON(folio_test_swapbacked(folio));
3280 __folio_set_locked(folio);
3281 __folio_set_swapbacked(folio);
3282 __folio_mark_uptodate(folio);
3283
3284 ret = -EFAULT;
3285 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3286 if (unlikely(pgoff >= max_off))
3287 goto out_release;
3288
3289 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3290 if (ret)
3291 goto out_release;
3292 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3293 if (ret)
3294 goto out_release;
3295
3296 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3297 &folio->page, true, flags);
3298 if (ret)
3299 goto out_delete_from_cache;
3300
3301 shmem_recalc_inode(inode, 1, 0);
3302 folio_unlock(folio);
3303 return 0;
3304 out_delete_from_cache:
3305 filemap_remove_folio(folio);
3306 out_release:
3307 folio_unlock(folio);
3308 folio_put(folio);
3309 out_unacct_blocks:
3310 shmem_inode_unacct_blocks(inode, 1);
3311 return ret;
3312 }
3313 #endif /* CONFIG_USERFAULTFD */
3314
3315 #ifdef CONFIG_TMPFS
3316 static const struct inode_operations shmem_symlink_inode_operations;
3317 static const struct inode_operations shmem_short_symlink_operations;
3318
3319 static int
shmem_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3320 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping,
3321 loff_t pos, unsigned len,
3322 struct folio **foliop, void **fsdata)
3323 {
3324 struct inode *inode = mapping->host;
3325 struct shmem_inode_info *info = SHMEM_I(inode);
3326 pgoff_t index = pos >> PAGE_SHIFT;
3327 struct folio *folio;
3328 int ret = 0;
3329
3330 /* i_rwsem is held by caller */
3331 if (unlikely(info->seals & (F_SEAL_GROW |
3332 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3333 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3334 return -EPERM;
3335 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3336 return -EPERM;
3337 }
3338
3339 if (unlikely((info->flags & SHMEM_F_MAPPING_FROZEN) &&
3340 pos + len > inode->i_size))
3341 return -EPERM;
3342
3343 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3344 if (ret)
3345 return ret;
3346
3347 if (folio_contain_hwpoisoned_page(folio)) {
3348 folio_unlock(folio);
3349 folio_put(folio);
3350 return -EIO;
3351 }
3352
3353 *foliop = folio;
3354 return 0;
3355 }
3356
3357 static int
shmem_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3358 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping,
3359 loff_t pos, unsigned len, unsigned copied,
3360 struct folio *folio, void *fsdata)
3361 {
3362 struct inode *inode = mapping->host;
3363
3364 if (pos + copied > inode->i_size)
3365 i_size_write(inode, pos + copied);
3366
3367 if (!folio_test_uptodate(folio)) {
3368 if (copied < folio_size(folio)) {
3369 size_t from = offset_in_folio(folio, pos);
3370 folio_zero_segments(folio, 0, from,
3371 from + copied, folio_size(folio));
3372 }
3373 folio_mark_uptodate(folio);
3374 }
3375 folio_mark_dirty(folio);
3376 folio_unlock(folio);
3377 folio_put(folio);
3378
3379 return copied;
3380 }
3381
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3382 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3383 {
3384 struct file *file = iocb->ki_filp;
3385 struct inode *inode = file_inode(file);
3386 struct address_space *mapping = inode->i_mapping;
3387 pgoff_t index;
3388 unsigned long offset;
3389 int error = 0;
3390 ssize_t retval = 0;
3391
3392 for (;;) {
3393 struct folio *folio = NULL;
3394 struct page *page = NULL;
3395 unsigned long nr, ret;
3396 loff_t end_offset, i_size = i_size_read(inode);
3397 bool fallback_page_copy = false;
3398 size_t fsize;
3399
3400 if (unlikely(iocb->ki_pos >= i_size))
3401 break;
3402
3403 index = iocb->ki_pos >> PAGE_SHIFT;
3404 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3405 if (error) {
3406 if (error == -EINVAL)
3407 error = 0;
3408 break;
3409 }
3410 if (folio) {
3411 folio_unlock(folio);
3412
3413 page = folio_file_page(folio, index);
3414 if (PageHWPoison(page)) {
3415 folio_put(folio);
3416 error = -EIO;
3417 break;
3418 }
3419
3420 if (folio_test_large(folio) &&
3421 folio_test_has_hwpoisoned(folio))
3422 fallback_page_copy = true;
3423 }
3424
3425 /*
3426 * We must evaluate after, since reads (unlike writes)
3427 * are called without i_rwsem protection against truncate
3428 */
3429 i_size = i_size_read(inode);
3430 if (unlikely(iocb->ki_pos >= i_size)) {
3431 if (folio)
3432 folio_put(folio);
3433 break;
3434 }
3435 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3436 if (folio && likely(!fallback_page_copy))
3437 fsize = folio_size(folio);
3438 else
3439 fsize = PAGE_SIZE;
3440 offset = iocb->ki_pos & (fsize - 1);
3441 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3442
3443 if (folio) {
3444 /*
3445 * If users can be writing to this page using arbitrary
3446 * virtual addresses, take care about potential aliasing
3447 * before reading the page on the kernel side.
3448 */
3449 if (mapping_writably_mapped(mapping)) {
3450 if (likely(!fallback_page_copy))
3451 flush_dcache_folio(folio);
3452 else
3453 flush_dcache_page(page);
3454 }
3455
3456 /*
3457 * Mark the folio accessed if we read the beginning.
3458 */
3459 if (!offset)
3460 folio_mark_accessed(folio);
3461 /*
3462 * Ok, we have the page, and it's up-to-date, so
3463 * now we can copy it to user space...
3464 */
3465 if (likely(!fallback_page_copy))
3466 ret = copy_folio_to_iter(folio, offset, nr, to);
3467 else
3468 ret = copy_page_to_iter(page, offset, nr, to);
3469 folio_put(folio);
3470 } else if (user_backed_iter(to)) {
3471 /*
3472 * Copy to user tends to be so well optimized, but
3473 * clear_user() not so much, that it is noticeably
3474 * faster to copy the zero page instead of clearing.
3475 */
3476 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3477 } else {
3478 /*
3479 * But submitting the same page twice in a row to
3480 * splice() - or others? - can result in confusion:
3481 * so don't attempt that optimization on pipes etc.
3482 */
3483 ret = iov_iter_zero(nr, to);
3484 }
3485
3486 retval += ret;
3487 iocb->ki_pos += ret;
3488
3489 if (!iov_iter_count(to))
3490 break;
3491 if (ret < nr) {
3492 error = -EFAULT;
3493 break;
3494 }
3495 cond_resched();
3496 }
3497
3498 file_accessed(file);
3499 return retval ? retval : error;
3500 }
3501
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3502 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3503 {
3504 struct file *file = iocb->ki_filp;
3505 struct inode *inode = file->f_mapping->host;
3506 ssize_t ret;
3507
3508 inode_lock(inode);
3509 ret = generic_write_checks(iocb, from);
3510 if (ret <= 0)
3511 goto unlock;
3512 ret = file_remove_privs(file);
3513 if (ret)
3514 goto unlock;
3515 ret = file_update_time(file);
3516 if (ret)
3517 goto unlock;
3518 ret = generic_perform_write(iocb, from);
3519 unlock:
3520 inode_unlock(inode);
3521 return ret;
3522 }
3523
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3524 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3525 struct pipe_buffer *buf)
3526 {
3527 return true;
3528 }
3529
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3530 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3531 struct pipe_buffer *buf)
3532 {
3533 }
3534
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3535 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3536 struct pipe_buffer *buf)
3537 {
3538 return false;
3539 }
3540
3541 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3542 .release = zero_pipe_buf_release,
3543 .try_steal = zero_pipe_buf_try_steal,
3544 .get = zero_pipe_buf_get,
3545 };
3546
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)3547 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3548 loff_t fpos, size_t size)
3549 {
3550 size_t offset = fpos & ~PAGE_MASK;
3551
3552 size = min_t(size_t, size, PAGE_SIZE - offset);
3553
3554 if (!pipe_is_full(pipe)) {
3555 struct pipe_buffer *buf = pipe_head_buf(pipe);
3556
3557 *buf = (struct pipe_buffer) {
3558 .ops = &zero_pipe_buf_ops,
3559 .page = ZERO_PAGE(0),
3560 .offset = offset,
3561 .len = size,
3562 };
3563 pipe->head++;
3564 }
3565
3566 return size;
3567 }
3568
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3569 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3570 struct pipe_inode_info *pipe,
3571 size_t len, unsigned int flags)
3572 {
3573 struct inode *inode = file_inode(in);
3574 struct address_space *mapping = inode->i_mapping;
3575 struct folio *folio = NULL;
3576 size_t total_spliced = 0, used, npages, n, part;
3577 loff_t isize;
3578 int error = 0;
3579
3580 /* Work out how much data we can actually add into the pipe */
3581 used = pipe_buf_usage(pipe);
3582 npages = max_t(ssize_t, pipe->max_usage - used, 0);
3583 len = min_t(size_t, len, npages * PAGE_SIZE);
3584
3585 do {
3586 bool fallback_page_splice = false;
3587 struct page *page = NULL;
3588 pgoff_t index;
3589 size_t size;
3590
3591 if (*ppos >= i_size_read(inode))
3592 break;
3593
3594 index = *ppos >> PAGE_SHIFT;
3595 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3596 if (error) {
3597 if (error == -EINVAL)
3598 error = 0;
3599 break;
3600 }
3601 if (folio) {
3602 folio_unlock(folio);
3603
3604 page = folio_file_page(folio, index);
3605 if (PageHWPoison(page)) {
3606 error = -EIO;
3607 break;
3608 }
3609
3610 if (folio_test_large(folio) &&
3611 folio_test_has_hwpoisoned(folio))
3612 fallback_page_splice = true;
3613 }
3614
3615 /*
3616 * i_size must be checked after we know the pages are Uptodate.
3617 *
3618 * Checking i_size after the check allows us to calculate
3619 * the correct value for "nr", which means the zero-filled
3620 * part of the page is not copied back to userspace (unless
3621 * another truncate extends the file - this is desired though).
3622 */
3623 isize = i_size_read(inode);
3624 if (unlikely(*ppos >= isize))
3625 break;
3626 /*
3627 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3628 * pages.
3629 */
3630 size = len;
3631 if (unlikely(fallback_page_splice)) {
3632 size_t offset = *ppos & ~PAGE_MASK;
3633
3634 size = umin(size, PAGE_SIZE - offset);
3635 }
3636 part = min_t(loff_t, isize - *ppos, size);
3637
3638 if (folio) {
3639 /*
3640 * If users can be writing to this page using arbitrary
3641 * virtual addresses, take care about potential aliasing
3642 * before reading the page on the kernel side.
3643 */
3644 if (mapping_writably_mapped(mapping)) {
3645 if (likely(!fallback_page_splice))
3646 flush_dcache_folio(folio);
3647 else
3648 flush_dcache_page(page);
3649 }
3650 folio_mark_accessed(folio);
3651 /*
3652 * Ok, we have the page, and it's up-to-date, so we can
3653 * now splice it into the pipe.
3654 */
3655 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3656 folio_put(folio);
3657 folio = NULL;
3658 } else {
3659 n = splice_zeropage_into_pipe(pipe, *ppos, part);
3660 }
3661
3662 if (!n)
3663 break;
3664 len -= n;
3665 total_spliced += n;
3666 *ppos += n;
3667 in->f_ra.prev_pos = *ppos;
3668 if (pipe_is_full(pipe))
3669 break;
3670
3671 cond_resched();
3672 } while (len);
3673
3674 if (folio)
3675 folio_put(folio);
3676
3677 file_accessed(in);
3678 return total_spliced ? total_spliced : error;
3679 }
3680
shmem_file_llseek(struct file * file,loff_t offset,int whence)3681 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3682 {
3683 struct address_space *mapping = file->f_mapping;
3684 struct inode *inode = mapping->host;
3685
3686 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3687 return generic_file_llseek_size(file, offset, whence,
3688 MAX_LFS_FILESIZE, i_size_read(inode));
3689 if (offset < 0)
3690 return -ENXIO;
3691
3692 inode_lock(inode);
3693 /* We're holding i_rwsem so we can access i_size directly */
3694 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3695 if (offset >= 0)
3696 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3697 inode_unlock(inode);
3698 return offset;
3699 }
3700
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3701 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3702 loff_t len)
3703 {
3704 struct inode *inode = file_inode(file);
3705 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3706 struct shmem_inode_info *info = SHMEM_I(inode);
3707 struct shmem_falloc shmem_falloc;
3708 pgoff_t start, index, end, undo_fallocend;
3709 int error;
3710
3711 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3712 return -EOPNOTSUPP;
3713
3714 inode_lock(inode);
3715
3716 if (info->flags & SHMEM_F_MAPPING_FROZEN) {
3717 error = -EPERM;
3718 goto out;
3719 }
3720
3721 if (mode & FALLOC_FL_PUNCH_HOLE) {
3722 struct address_space *mapping = file->f_mapping;
3723 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3724 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3725 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3726
3727 /* protected by i_rwsem */
3728 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3729 error = -EPERM;
3730 goto out;
3731 }
3732
3733 shmem_falloc.waitq = &shmem_falloc_waitq;
3734 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3735 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3736 spin_lock(&inode->i_lock);
3737 inode->i_private = &shmem_falloc;
3738 spin_unlock(&inode->i_lock);
3739
3740 if ((u64)unmap_end > (u64)unmap_start)
3741 unmap_mapping_range(mapping, unmap_start,
3742 1 + unmap_end - unmap_start, 0);
3743 shmem_truncate_range(inode, offset, offset + len - 1);
3744 /* No need to unmap again: hole-punching leaves COWed pages */
3745
3746 spin_lock(&inode->i_lock);
3747 inode->i_private = NULL;
3748 wake_up_all(&shmem_falloc_waitq);
3749 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3750 spin_unlock(&inode->i_lock);
3751 error = 0;
3752 goto out;
3753 }
3754
3755 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3756 error = inode_newsize_ok(inode, offset + len);
3757 if (error)
3758 goto out;
3759
3760 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3761 error = -EPERM;
3762 goto out;
3763 }
3764
3765 start = offset >> PAGE_SHIFT;
3766 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3767 /* Try to avoid a swapstorm if len is impossible to satisfy */
3768 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3769 error = -ENOSPC;
3770 goto out;
3771 }
3772
3773 shmem_falloc.waitq = NULL;
3774 shmem_falloc.start = start;
3775 shmem_falloc.next = start;
3776 shmem_falloc.nr_falloced = 0;
3777 shmem_falloc.nr_unswapped = 0;
3778 spin_lock(&inode->i_lock);
3779 inode->i_private = &shmem_falloc;
3780 spin_unlock(&inode->i_lock);
3781
3782 /*
3783 * info->fallocend is only relevant when huge pages might be
3784 * involved: to prevent split_huge_page() freeing fallocated
3785 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3786 */
3787 undo_fallocend = info->fallocend;
3788 if (info->fallocend < end)
3789 info->fallocend = end;
3790
3791 for (index = start; index < end; ) {
3792 struct folio *folio;
3793
3794 /*
3795 * Check for fatal signal so that we abort early in OOM
3796 * situations. We don't want to abort in case of non-fatal
3797 * signals as large fallocate can take noticeable time and
3798 * e.g. periodic timers may result in fallocate constantly
3799 * restarting.
3800 */
3801 if (fatal_signal_pending(current))
3802 error = -EINTR;
3803 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3804 error = -ENOMEM;
3805 else
3806 error = shmem_get_folio(inode, index, offset + len,
3807 &folio, SGP_FALLOC);
3808 if (error) {
3809 info->fallocend = undo_fallocend;
3810 /* Remove the !uptodate folios we added */
3811 if (index > start) {
3812 shmem_undo_range(inode,
3813 (loff_t)start << PAGE_SHIFT,
3814 ((loff_t)index << PAGE_SHIFT) - 1, true);
3815 }
3816 goto undone;
3817 }
3818
3819 /*
3820 * Here is a more important optimization than it appears:
3821 * a second SGP_FALLOC on the same large folio will clear it,
3822 * making it uptodate and un-undoable if we fail later.
3823 */
3824 index = folio_next_index(folio);
3825 /* Beware 32-bit wraparound */
3826 if (!index)
3827 index--;
3828
3829 /*
3830 * Inform shmem_writeout() how far we have reached.
3831 * No need for lock or barrier: we have the page lock.
3832 */
3833 if (!folio_test_uptodate(folio))
3834 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3835 shmem_falloc.next = index;
3836
3837 /*
3838 * If !uptodate, leave it that way so that freeable folios
3839 * can be recognized if we need to rollback on error later.
3840 * But mark it dirty so that memory pressure will swap rather
3841 * than free the folios we are allocating (and SGP_CACHE folios
3842 * might still be clean: we now need to mark those dirty too).
3843 */
3844 folio_mark_dirty(folio);
3845 folio_unlock(folio);
3846 folio_put(folio);
3847 cond_resched();
3848 }
3849
3850 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3851 i_size_write(inode, offset + len);
3852 undone:
3853 spin_lock(&inode->i_lock);
3854 inode->i_private = NULL;
3855 spin_unlock(&inode->i_lock);
3856 out:
3857 if (!error)
3858 file_modified(file);
3859 inode_unlock(inode);
3860 return error;
3861 }
3862
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3863 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3864 {
3865 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3866
3867 buf->f_type = TMPFS_MAGIC;
3868 buf->f_bsize = PAGE_SIZE;
3869 buf->f_namelen = NAME_MAX;
3870 if (sbinfo->max_blocks) {
3871 buf->f_blocks = sbinfo->max_blocks;
3872 buf->f_bavail =
3873 buf->f_bfree = sbinfo->max_blocks -
3874 percpu_counter_sum(&sbinfo->used_blocks);
3875 }
3876 if (sbinfo->max_inodes) {
3877 buf->f_files = sbinfo->max_inodes;
3878 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3879 }
3880 /* else leave those fields 0 like simple_statfs */
3881
3882 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3883
3884 return 0;
3885 }
3886
3887 /*
3888 * File creation. Allocate an inode, and we're done..
3889 */
3890 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3891 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3892 struct dentry *dentry, umode_t mode, dev_t dev)
3893 {
3894 struct inode *inode;
3895 int error;
3896
3897 if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3898 return -EINVAL;
3899
3900 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3901 if (IS_ERR(inode))
3902 return PTR_ERR(inode);
3903
3904 error = simple_acl_create(dir, inode);
3905 if (error)
3906 goto out_iput;
3907 error = security_inode_init_security(inode, dir, &dentry->d_name,
3908 shmem_initxattrs, NULL);
3909 if (error && error != -EOPNOTSUPP)
3910 goto out_iput;
3911
3912 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3913 if (error)
3914 goto out_iput;
3915
3916 dir->i_size += BOGO_DIRENT_SIZE;
3917 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3918 inode_inc_iversion(dir);
3919
3920 d_make_persistent(dentry, inode);
3921 return error;
3922
3923 out_iput:
3924 iput(inode);
3925 return error;
3926 }
3927
3928 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3929 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3930 struct file *file, umode_t mode)
3931 {
3932 struct inode *inode;
3933 int error;
3934
3935 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3936 if (IS_ERR(inode)) {
3937 error = PTR_ERR(inode);
3938 goto err_out;
3939 }
3940 error = security_inode_init_security(inode, dir, NULL,
3941 shmem_initxattrs, NULL);
3942 if (error && error != -EOPNOTSUPP)
3943 goto out_iput;
3944 error = simple_acl_create(dir, inode);
3945 if (error)
3946 goto out_iput;
3947 d_tmpfile(file, inode);
3948
3949 err_out:
3950 return finish_open_simple(file, error);
3951 out_iput:
3952 iput(inode);
3953 return error;
3954 }
3955
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3956 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3957 struct dentry *dentry, umode_t mode)
3958 {
3959 int error;
3960
3961 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3962 if (error)
3963 return ERR_PTR(error);
3964 inc_nlink(dir);
3965 return NULL;
3966 }
3967
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3968 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3969 struct dentry *dentry, umode_t mode, bool excl)
3970 {
3971 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3972 }
3973
3974 /*
3975 * Link a file..
3976 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3977 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3978 struct dentry *dentry)
3979 {
3980 struct inode *inode = d_inode(old_dentry);
3981 int ret;
3982
3983 /*
3984 * No ordinary (disk based) filesystem counts links as inodes;
3985 * but each new link needs a new dentry, pinning lowmem, and
3986 * tmpfs dentries cannot be pruned until they are unlinked.
3987 * But if an O_TMPFILE file is linked into the tmpfs, the
3988 * first link must skip that, to get the accounting right.
3989 */
3990 if (inode->i_nlink) {
3991 ret = shmem_reserve_inode(inode->i_sb, NULL);
3992 if (ret)
3993 return ret;
3994 }
3995
3996 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3997 if (ret) {
3998 if (inode->i_nlink)
3999 shmem_free_inode(inode->i_sb, 0);
4000 return ret;
4001 }
4002
4003 dir->i_size += BOGO_DIRENT_SIZE;
4004 inode_inc_iversion(dir);
4005 return simple_link(old_dentry, dir, dentry);
4006 }
4007
shmem_unlink(struct inode * dir,struct dentry * dentry)4008 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
4009 {
4010 struct inode *inode = d_inode(dentry);
4011
4012 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
4013 shmem_free_inode(inode->i_sb, 0);
4014
4015 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4016
4017 dir->i_size -= BOGO_DIRENT_SIZE;
4018 inode_inc_iversion(dir);
4019 simple_unlink(dir, dentry);
4020
4021 /*
4022 * For now, VFS can't deal with case-insensitive negative dentries, so
4023 * we invalidate them
4024 */
4025 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
4026 d_invalidate(dentry);
4027
4028 return 0;
4029 }
4030
shmem_rmdir(struct inode * dir,struct dentry * dentry)4031 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
4032 {
4033 if (!simple_empty(dentry))
4034 return -ENOTEMPTY;
4035
4036 drop_nlink(d_inode(dentry));
4037 drop_nlink(dir);
4038 return shmem_unlink(dir, dentry);
4039 }
4040
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)4041 static int shmem_whiteout(struct mnt_idmap *idmap,
4042 struct inode *old_dir, struct dentry *old_dentry)
4043 {
4044 struct dentry *whiteout;
4045 int error;
4046
4047 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
4048 if (!whiteout)
4049 return -ENOMEM;
4050 error = shmem_mknod(idmap, old_dir, whiteout,
4051 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4052 dput(whiteout);
4053 return error;
4054 }
4055
4056 /*
4057 * The VFS layer already does all the dentry stuff for rename,
4058 * we just have to decrement the usage count for the target if
4059 * it exists so that the VFS layer correctly free's it when it
4060 * gets overwritten.
4061 */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)4062 static int shmem_rename2(struct mnt_idmap *idmap,
4063 struct inode *old_dir, struct dentry *old_dentry,
4064 struct inode *new_dir, struct dentry *new_dentry,
4065 unsigned int flags)
4066 {
4067 struct inode *inode = d_inode(old_dentry);
4068 int they_are_dirs = S_ISDIR(inode->i_mode);
4069 bool had_offset = false;
4070 int error;
4071
4072 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4073 return -EINVAL;
4074
4075 if (flags & RENAME_EXCHANGE)
4076 return simple_offset_rename_exchange(old_dir, old_dentry,
4077 new_dir, new_dentry);
4078
4079 if (!simple_empty(new_dentry))
4080 return -ENOTEMPTY;
4081
4082 error = simple_offset_add(shmem_get_offset_ctx(new_dir), new_dentry);
4083 if (error == -EBUSY)
4084 had_offset = true;
4085 else if (unlikely(error))
4086 return error;
4087
4088 if (flags & RENAME_WHITEOUT) {
4089 error = shmem_whiteout(idmap, old_dir, old_dentry);
4090 if (error) {
4091 if (!had_offset)
4092 simple_offset_remove(shmem_get_offset_ctx(new_dir),
4093 new_dentry);
4094 return error;
4095 }
4096 }
4097
4098 simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
4099 if (d_really_is_positive(new_dentry)) {
4100 (void) shmem_unlink(new_dir, new_dentry);
4101 if (they_are_dirs) {
4102 drop_nlink(d_inode(new_dentry));
4103 drop_nlink(old_dir);
4104 }
4105 } else if (they_are_dirs) {
4106 drop_nlink(old_dir);
4107 inc_nlink(new_dir);
4108 }
4109
4110 old_dir->i_size -= BOGO_DIRENT_SIZE;
4111 new_dir->i_size += BOGO_DIRENT_SIZE;
4112 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
4113 inode_inc_iversion(old_dir);
4114 inode_inc_iversion(new_dir);
4115 return 0;
4116 }
4117
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)4118 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
4119 struct dentry *dentry, const char *symname)
4120 {
4121 int error;
4122 int len;
4123 struct inode *inode;
4124 struct folio *folio;
4125 char *link;
4126
4127 len = strlen(symname) + 1;
4128 if (len > PAGE_SIZE)
4129 return -ENAMETOOLONG;
4130
4131 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
4132 VM_NORESERVE);
4133 if (IS_ERR(inode))
4134 return PTR_ERR(inode);
4135
4136 error = security_inode_init_security(inode, dir, &dentry->d_name,
4137 shmem_initxattrs, NULL);
4138 if (error && error != -EOPNOTSUPP)
4139 goto out_iput;
4140
4141 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
4142 if (error)
4143 goto out_iput;
4144
4145 inode->i_size = len-1;
4146 if (len <= SHORT_SYMLINK_LEN) {
4147 link = kmemdup(symname, len, GFP_KERNEL);
4148 if (!link) {
4149 error = -ENOMEM;
4150 goto out_remove_offset;
4151 }
4152 inode->i_op = &shmem_short_symlink_operations;
4153 inode_set_cached_link(inode, link, len - 1);
4154 } else {
4155 inode_nohighmem(inode);
4156 inode->i_mapping->a_ops = &shmem_aops;
4157 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
4158 if (error)
4159 goto out_remove_offset;
4160 inode->i_op = &shmem_symlink_inode_operations;
4161 memcpy(folio_address(folio), symname, len);
4162 folio_mark_uptodate(folio);
4163 folio_mark_dirty(folio);
4164 folio_unlock(folio);
4165 folio_put(folio);
4166 }
4167 dir->i_size += BOGO_DIRENT_SIZE;
4168 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
4169 inode_inc_iversion(dir);
4170 d_make_persistent(dentry, inode);
4171 return 0;
4172
4173 out_remove_offset:
4174 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4175 out_iput:
4176 iput(inode);
4177 return error;
4178 }
4179
shmem_put_link(void * arg)4180 static void shmem_put_link(void *arg)
4181 {
4182 folio_mark_accessed(arg);
4183 folio_put(arg);
4184 }
4185
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)4186 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
4187 struct delayed_call *done)
4188 {
4189 struct folio *folio = NULL;
4190 int error;
4191
4192 if (!dentry) {
4193 folio = filemap_get_folio(inode->i_mapping, 0);
4194 if (IS_ERR(folio))
4195 return ERR_PTR(-ECHILD);
4196 if (PageHWPoison(folio_page(folio, 0)) ||
4197 !folio_test_uptodate(folio)) {
4198 folio_put(folio);
4199 return ERR_PTR(-ECHILD);
4200 }
4201 } else {
4202 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4203 if (error)
4204 return ERR_PTR(error);
4205 if (!folio)
4206 return ERR_PTR(-ECHILD);
4207 if (PageHWPoison(folio_page(folio, 0))) {
4208 folio_unlock(folio);
4209 folio_put(folio);
4210 return ERR_PTR(-ECHILD);
4211 }
4212 folio_unlock(folio);
4213 }
4214 set_delayed_call(done, shmem_put_link, folio);
4215 return folio_address(folio);
4216 }
4217
4218 #ifdef CONFIG_TMPFS_XATTR
4219
shmem_fileattr_get(struct dentry * dentry,struct file_kattr * fa)4220 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
4221 {
4222 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4223
4224 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4225
4226 return 0;
4227 }
4228
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct file_kattr * fa)4229 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4230 struct dentry *dentry, struct file_kattr *fa)
4231 {
4232 struct inode *inode = d_inode(dentry);
4233 struct shmem_inode_info *info = SHMEM_I(inode);
4234 int ret, flags;
4235
4236 if (fileattr_has_fsx(fa))
4237 return -EOPNOTSUPP;
4238 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4239 return -EOPNOTSUPP;
4240
4241 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4242 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
4243
4244 ret = shmem_set_inode_flags(inode, flags, dentry);
4245
4246 if (ret)
4247 return ret;
4248
4249 info->fsflags = flags;
4250
4251 inode_set_ctime_current(inode);
4252 inode_inc_iversion(inode);
4253 return 0;
4254 }
4255
4256 /*
4257 * Superblocks without xattr inode operations may get some security.* xattr
4258 * support from the LSM "for free". As soon as we have any other xattrs
4259 * like ACLs, we also need to implement the security.* handlers at
4260 * filesystem level, though.
4261 */
4262
4263 /*
4264 * Callback for security_inode_init_security() for acquiring xattrs.
4265 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)4266 static int shmem_initxattrs(struct inode *inode,
4267 const struct xattr *xattr_array, void *fs_info)
4268 {
4269 struct shmem_inode_info *info = SHMEM_I(inode);
4270 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4271 const struct xattr *xattr;
4272 struct simple_xattr *new_xattr;
4273 size_t ispace = 0;
4274 size_t len;
4275
4276 if (sbinfo->max_inodes) {
4277 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4278 ispace += simple_xattr_space(xattr->name,
4279 xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4280 }
4281 if (ispace) {
4282 raw_spin_lock(&sbinfo->stat_lock);
4283 if (sbinfo->free_ispace < ispace)
4284 ispace = 0;
4285 else
4286 sbinfo->free_ispace -= ispace;
4287 raw_spin_unlock(&sbinfo->stat_lock);
4288 if (!ispace)
4289 return -ENOSPC;
4290 }
4291 }
4292
4293 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4294 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4295 if (!new_xattr)
4296 break;
4297
4298 len = strlen(xattr->name) + 1;
4299 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4300 GFP_KERNEL_ACCOUNT);
4301 if (!new_xattr->name) {
4302 kvfree(new_xattr);
4303 break;
4304 }
4305
4306 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4307 XATTR_SECURITY_PREFIX_LEN);
4308 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4309 xattr->name, len);
4310
4311 simple_xattr_add(&info->xattrs, new_xattr);
4312 }
4313
4314 if (xattr->name != NULL) {
4315 if (ispace) {
4316 raw_spin_lock(&sbinfo->stat_lock);
4317 sbinfo->free_ispace += ispace;
4318 raw_spin_unlock(&sbinfo->stat_lock);
4319 }
4320 simple_xattrs_free(&info->xattrs, NULL);
4321 return -ENOMEM;
4322 }
4323
4324 return 0;
4325 }
4326
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)4327 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4328 struct dentry *unused, struct inode *inode,
4329 const char *name, void *buffer, size_t size)
4330 {
4331 struct shmem_inode_info *info = SHMEM_I(inode);
4332
4333 name = xattr_full_name(handler, name);
4334 return simple_xattr_get(&info->xattrs, name, buffer, size);
4335 }
4336
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)4337 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4338 struct mnt_idmap *idmap,
4339 struct dentry *unused, struct inode *inode,
4340 const char *name, const void *value,
4341 size_t size, int flags)
4342 {
4343 struct shmem_inode_info *info = SHMEM_I(inode);
4344 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4345 struct simple_xattr *old_xattr;
4346 size_t ispace = 0;
4347
4348 name = xattr_full_name(handler, name);
4349 if (value && sbinfo->max_inodes) {
4350 ispace = simple_xattr_space(name, size);
4351 raw_spin_lock(&sbinfo->stat_lock);
4352 if (sbinfo->free_ispace < ispace)
4353 ispace = 0;
4354 else
4355 sbinfo->free_ispace -= ispace;
4356 raw_spin_unlock(&sbinfo->stat_lock);
4357 if (!ispace)
4358 return -ENOSPC;
4359 }
4360
4361 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4362 if (!IS_ERR(old_xattr)) {
4363 ispace = 0;
4364 if (old_xattr && sbinfo->max_inodes)
4365 ispace = simple_xattr_space(old_xattr->name,
4366 old_xattr->size);
4367 simple_xattr_free(old_xattr);
4368 old_xattr = NULL;
4369 inode_set_ctime_current(inode);
4370 inode_inc_iversion(inode);
4371 }
4372 if (ispace) {
4373 raw_spin_lock(&sbinfo->stat_lock);
4374 sbinfo->free_ispace += ispace;
4375 raw_spin_unlock(&sbinfo->stat_lock);
4376 }
4377 return PTR_ERR(old_xattr);
4378 }
4379
4380 static const struct xattr_handler shmem_security_xattr_handler = {
4381 .prefix = XATTR_SECURITY_PREFIX,
4382 .get = shmem_xattr_handler_get,
4383 .set = shmem_xattr_handler_set,
4384 };
4385
4386 static const struct xattr_handler shmem_trusted_xattr_handler = {
4387 .prefix = XATTR_TRUSTED_PREFIX,
4388 .get = shmem_xattr_handler_get,
4389 .set = shmem_xattr_handler_set,
4390 };
4391
4392 static const struct xattr_handler shmem_user_xattr_handler = {
4393 .prefix = XATTR_USER_PREFIX,
4394 .get = shmem_xattr_handler_get,
4395 .set = shmem_xattr_handler_set,
4396 };
4397
4398 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4399 &shmem_security_xattr_handler,
4400 &shmem_trusted_xattr_handler,
4401 &shmem_user_xattr_handler,
4402 NULL
4403 };
4404
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)4405 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4406 {
4407 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4408 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4409 }
4410 #endif /* CONFIG_TMPFS_XATTR */
4411
4412 static const struct inode_operations shmem_short_symlink_operations = {
4413 .getattr = shmem_getattr,
4414 .setattr = shmem_setattr,
4415 .get_link = simple_get_link,
4416 #ifdef CONFIG_TMPFS_XATTR
4417 .listxattr = shmem_listxattr,
4418 #endif
4419 };
4420
4421 static const struct inode_operations shmem_symlink_inode_operations = {
4422 .getattr = shmem_getattr,
4423 .setattr = shmem_setattr,
4424 .get_link = shmem_get_link,
4425 #ifdef CONFIG_TMPFS_XATTR
4426 .listxattr = shmem_listxattr,
4427 #endif
4428 };
4429
shmem_get_parent(struct dentry * child)4430 static struct dentry *shmem_get_parent(struct dentry *child)
4431 {
4432 return ERR_PTR(-ESTALE);
4433 }
4434
shmem_match(struct inode * ino,void * vfh)4435 static int shmem_match(struct inode *ino, void *vfh)
4436 {
4437 __u32 *fh = vfh;
4438 __u64 inum = fh[2];
4439 inum = (inum << 32) | fh[1];
4440 return ino->i_ino == inum && fh[0] == ino->i_generation;
4441 }
4442
4443 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)4444 static struct dentry *shmem_find_alias(struct inode *inode)
4445 {
4446 struct dentry *alias = d_find_alias(inode);
4447
4448 return alias ?: d_find_any_alias(inode);
4449 }
4450
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)4451 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4452 struct fid *fid, int fh_len, int fh_type)
4453 {
4454 struct inode *inode;
4455 struct dentry *dentry = NULL;
4456 u64 inum;
4457
4458 if (fh_len < 3)
4459 return NULL;
4460
4461 inum = fid->raw[2];
4462 inum = (inum << 32) | fid->raw[1];
4463
4464 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4465 shmem_match, fid->raw);
4466 if (inode) {
4467 dentry = shmem_find_alias(inode);
4468 iput(inode);
4469 }
4470
4471 return dentry;
4472 }
4473
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)4474 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4475 struct inode *parent)
4476 {
4477 if (*len < 3) {
4478 *len = 3;
4479 return FILEID_INVALID;
4480 }
4481
4482 if (inode_unhashed(inode)) {
4483 /* Unfortunately insert_inode_hash is not idempotent,
4484 * so as we hash inodes here rather than at creation
4485 * time, we need a lock to ensure we only try
4486 * to do it once
4487 */
4488 static DEFINE_SPINLOCK(lock);
4489 spin_lock(&lock);
4490 if (inode_unhashed(inode))
4491 __insert_inode_hash(inode,
4492 inode->i_ino + inode->i_generation);
4493 spin_unlock(&lock);
4494 }
4495
4496 fh[0] = inode->i_generation;
4497 fh[1] = inode->i_ino;
4498 fh[2] = ((__u64)inode->i_ino) >> 32;
4499
4500 *len = 3;
4501 return 1;
4502 }
4503
4504 static const struct export_operations shmem_export_ops = {
4505 .get_parent = shmem_get_parent,
4506 .encode_fh = shmem_encode_fh,
4507 .fh_to_dentry = shmem_fh_to_dentry,
4508 };
4509
4510 enum shmem_param {
4511 Opt_gid,
4512 Opt_huge,
4513 Opt_mode,
4514 Opt_mpol,
4515 Opt_nr_blocks,
4516 Opt_nr_inodes,
4517 Opt_size,
4518 Opt_uid,
4519 Opt_inode32,
4520 Opt_inode64,
4521 Opt_noswap,
4522 Opt_quota,
4523 Opt_usrquota,
4524 Opt_grpquota,
4525 Opt_usrquota_block_hardlimit,
4526 Opt_usrquota_inode_hardlimit,
4527 Opt_grpquota_block_hardlimit,
4528 Opt_grpquota_inode_hardlimit,
4529 Opt_casefold_version,
4530 Opt_casefold,
4531 Opt_strict_encoding,
4532 };
4533
4534 static const struct constant_table shmem_param_enums_huge[] = {
4535 {"never", SHMEM_HUGE_NEVER },
4536 {"always", SHMEM_HUGE_ALWAYS },
4537 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
4538 {"advise", SHMEM_HUGE_ADVISE },
4539 {}
4540 };
4541
4542 const struct fs_parameter_spec shmem_fs_parameters[] = {
4543 fsparam_gid ("gid", Opt_gid),
4544 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
4545 fsparam_u32oct("mode", Opt_mode),
4546 fsparam_string("mpol", Opt_mpol),
4547 fsparam_string("nr_blocks", Opt_nr_blocks),
4548 fsparam_string("nr_inodes", Opt_nr_inodes),
4549 fsparam_string("size", Opt_size),
4550 fsparam_uid ("uid", Opt_uid),
4551 fsparam_flag ("inode32", Opt_inode32),
4552 fsparam_flag ("inode64", Opt_inode64),
4553 fsparam_flag ("noswap", Opt_noswap),
4554 #ifdef CONFIG_TMPFS_QUOTA
4555 fsparam_flag ("quota", Opt_quota),
4556 fsparam_flag ("usrquota", Opt_usrquota),
4557 fsparam_flag ("grpquota", Opt_grpquota),
4558 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4559 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4560 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4561 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4562 #endif
4563 fsparam_string("casefold", Opt_casefold_version),
4564 fsparam_flag ("casefold", Opt_casefold),
4565 fsparam_flag ("strict_encoding", Opt_strict_encoding),
4566 {}
4567 };
4568
4569 #if IS_ENABLED(CONFIG_UNICODE)
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4570 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4571 bool latest_version)
4572 {
4573 struct shmem_options *ctx = fc->fs_private;
4574 int version = UTF8_LATEST;
4575 struct unicode_map *encoding;
4576 char *version_str = param->string + 5;
4577
4578 if (!latest_version) {
4579 if (strncmp(param->string, "utf8-", 5))
4580 return invalfc(fc, "Only UTF-8 encodings are supported "
4581 "in the format: utf8-<version number>");
4582
4583 version = utf8_parse_version(version_str);
4584 if (version < 0)
4585 return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4586 }
4587
4588 encoding = utf8_load(version);
4589
4590 if (IS_ERR(encoding)) {
4591 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4592 unicode_major(version), unicode_minor(version),
4593 unicode_rev(version));
4594 }
4595
4596 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4597 unicode_major(version), unicode_minor(version), unicode_rev(version));
4598
4599 ctx->encoding = encoding;
4600
4601 return 0;
4602 }
4603 #else
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4604 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4605 bool latest_version)
4606 {
4607 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4608 }
4609 #endif
4610
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)4611 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4612 {
4613 struct shmem_options *ctx = fc->fs_private;
4614 struct fs_parse_result result;
4615 unsigned long long size;
4616 char *rest;
4617 int opt;
4618 kuid_t kuid;
4619 kgid_t kgid;
4620
4621 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4622 if (opt < 0)
4623 return opt;
4624
4625 switch (opt) {
4626 case Opt_size:
4627 size = memparse(param->string, &rest);
4628 if (*rest == '%') {
4629 size <<= PAGE_SHIFT;
4630 size *= totalram_pages();
4631 do_div(size, 100);
4632 rest++;
4633 }
4634 if (*rest)
4635 goto bad_value;
4636 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4637 ctx->seen |= SHMEM_SEEN_BLOCKS;
4638 break;
4639 case Opt_nr_blocks:
4640 ctx->blocks = memparse(param->string, &rest);
4641 if (*rest || ctx->blocks > LONG_MAX)
4642 goto bad_value;
4643 ctx->seen |= SHMEM_SEEN_BLOCKS;
4644 break;
4645 case Opt_nr_inodes:
4646 ctx->inodes = memparse(param->string, &rest);
4647 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4648 goto bad_value;
4649 ctx->seen |= SHMEM_SEEN_INODES;
4650 break;
4651 case Opt_mode:
4652 ctx->mode = result.uint_32 & 07777;
4653 break;
4654 case Opt_uid:
4655 kuid = result.uid;
4656
4657 /*
4658 * The requested uid must be representable in the
4659 * filesystem's idmapping.
4660 */
4661 if (!kuid_has_mapping(fc->user_ns, kuid))
4662 goto bad_value;
4663
4664 ctx->uid = kuid;
4665 break;
4666 case Opt_gid:
4667 kgid = result.gid;
4668
4669 /*
4670 * The requested gid must be representable in the
4671 * filesystem's idmapping.
4672 */
4673 if (!kgid_has_mapping(fc->user_ns, kgid))
4674 goto bad_value;
4675
4676 ctx->gid = kgid;
4677 break;
4678 case Opt_huge:
4679 ctx->huge = result.uint_32;
4680 if (ctx->huge != SHMEM_HUGE_NEVER &&
4681 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4682 has_transparent_hugepage()))
4683 goto unsupported_parameter;
4684 ctx->seen |= SHMEM_SEEN_HUGE;
4685 break;
4686 case Opt_mpol:
4687 if (IS_ENABLED(CONFIG_NUMA)) {
4688 mpol_put(ctx->mpol);
4689 ctx->mpol = NULL;
4690 if (mpol_parse_str(param->string, &ctx->mpol))
4691 goto bad_value;
4692 break;
4693 }
4694 goto unsupported_parameter;
4695 case Opt_inode32:
4696 ctx->full_inums = false;
4697 ctx->seen |= SHMEM_SEEN_INUMS;
4698 break;
4699 case Opt_inode64:
4700 if (sizeof(ino_t) < 8) {
4701 return invalfc(fc,
4702 "Cannot use inode64 with <64bit inums in kernel\n");
4703 }
4704 ctx->full_inums = true;
4705 ctx->seen |= SHMEM_SEEN_INUMS;
4706 break;
4707 case Opt_noswap:
4708 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4709 return invalfc(fc,
4710 "Turning off swap in unprivileged tmpfs mounts unsupported");
4711 }
4712 ctx->noswap = true;
4713 break;
4714 case Opt_quota:
4715 if (fc->user_ns != &init_user_ns)
4716 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4717 ctx->seen |= SHMEM_SEEN_QUOTA;
4718 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4719 break;
4720 case Opt_usrquota:
4721 if (fc->user_ns != &init_user_ns)
4722 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4723 ctx->seen |= SHMEM_SEEN_QUOTA;
4724 ctx->quota_types |= QTYPE_MASK_USR;
4725 break;
4726 case Opt_grpquota:
4727 if (fc->user_ns != &init_user_ns)
4728 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4729 ctx->seen |= SHMEM_SEEN_QUOTA;
4730 ctx->quota_types |= QTYPE_MASK_GRP;
4731 break;
4732 case Opt_usrquota_block_hardlimit:
4733 size = memparse(param->string, &rest);
4734 if (*rest || !size)
4735 goto bad_value;
4736 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4737 return invalfc(fc,
4738 "User quota block hardlimit too large.");
4739 ctx->qlimits.usrquota_bhardlimit = size;
4740 break;
4741 case Opt_grpquota_block_hardlimit:
4742 size = memparse(param->string, &rest);
4743 if (*rest || !size)
4744 goto bad_value;
4745 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4746 return invalfc(fc,
4747 "Group quota block hardlimit too large.");
4748 ctx->qlimits.grpquota_bhardlimit = size;
4749 break;
4750 case Opt_usrquota_inode_hardlimit:
4751 size = memparse(param->string, &rest);
4752 if (*rest || !size)
4753 goto bad_value;
4754 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4755 return invalfc(fc,
4756 "User quota inode hardlimit too large.");
4757 ctx->qlimits.usrquota_ihardlimit = size;
4758 break;
4759 case Opt_grpquota_inode_hardlimit:
4760 size = memparse(param->string, &rest);
4761 if (*rest || !size)
4762 goto bad_value;
4763 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4764 return invalfc(fc,
4765 "Group quota inode hardlimit too large.");
4766 ctx->qlimits.grpquota_ihardlimit = size;
4767 break;
4768 case Opt_casefold_version:
4769 return shmem_parse_opt_casefold(fc, param, false);
4770 case Opt_casefold:
4771 return shmem_parse_opt_casefold(fc, param, true);
4772 case Opt_strict_encoding:
4773 #if IS_ENABLED(CONFIG_UNICODE)
4774 ctx->strict_encoding = true;
4775 break;
4776 #else
4777 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4778 #endif
4779 }
4780 return 0;
4781
4782 unsupported_parameter:
4783 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4784 bad_value:
4785 return invalfc(fc, "Bad value for '%s'", param->key);
4786 }
4787
shmem_next_opt(char ** s)4788 static char *shmem_next_opt(char **s)
4789 {
4790 char *sbegin = *s;
4791 char *p;
4792
4793 if (sbegin == NULL)
4794 return NULL;
4795
4796 /*
4797 * NUL-terminate this option: unfortunately,
4798 * mount options form a comma-separated list,
4799 * but mpol's nodelist may also contain commas.
4800 */
4801 for (;;) {
4802 p = strchr(*s, ',');
4803 if (p == NULL)
4804 break;
4805 *s = p + 1;
4806 if (!isdigit(*(p+1))) {
4807 *p = '\0';
4808 return sbegin;
4809 }
4810 }
4811
4812 *s = NULL;
4813 return sbegin;
4814 }
4815
shmem_parse_monolithic(struct fs_context * fc,void * data)4816 static int shmem_parse_monolithic(struct fs_context *fc, void *data)
4817 {
4818 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt);
4819 }
4820
4821 /*
4822 * Reconfigure a shmem filesystem.
4823 */
shmem_reconfigure(struct fs_context * fc)4824 static int shmem_reconfigure(struct fs_context *fc)
4825 {
4826 struct shmem_options *ctx = fc->fs_private;
4827 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4828 unsigned long used_isp;
4829 struct mempolicy *mpol = NULL;
4830 const char *err;
4831
4832 raw_spin_lock(&sbinfo->stat_lock);
4833 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4834
4835 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4836 if (!sbinfo->max_blocks) {
4837 err = "Cannot retroactively limit size";
4838 goto out;
4839 }
4840 if (percpu_counter_compare(&sbinfo->used_blocks,
4841 ctx->blocks) > 0) {
4842 err = "Too small a size for current use";
4843 goto out;
4844 }
4845 }
4846 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4847 if (!sbinfo->max_inodes) {
4848 err = "Cannot retroactively limit inodes";
4849 goto out;
4850 }
4851 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4852 err = "Too few inodes for current use";
4853 goto out;
4854 }
4855 }
4856
4857 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4858 sbinfo->next_ino > UINT_MAX) {
4859 err = "Current inum too high to switch to 32-bit inums";
4860 goto out;
4861 }
4862
4863 /*
4864 * "noswap" doesn't use fsparam_flag_no, i.e. there's no "swap"
4865 * counterpart for (re-)enabling swap.
4866 */
4867 if (ctx->noswap && !sbinfo->noswap) {
4868 err = "Cannot disable swap on remount";
4869 goto out;
4870 }
4871
4872 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4873 !sb_any_quota_loaded(fc->root->d_sb)) {
4874 err = "Cannot enable quota on remount";
4875 goto out;
4876 }
4877
4878 #ifdef CONFIG_TMPFS_QUOTA
4879 #define CHANGED_LIMIT(name) \
4880 (ctx->qlimits.name## hardlimit && \
4881 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4882
4883 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4884 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4885 err = "Cannot change global quota limit on remount";
4886 goto out;
4887 }
4888 #endif /* CONFIG_TMPFS_QUOTA */
4889
4890 if (ctx->seen & SHMEM_SEEN_HUGE)
4891 sbinfo->huge = ctx->huge;
4892 if (ctx->seen & SHMEM_SEEN_INUMS)
4893 sbinfo->full_inums = ctx->full_inums;
4894 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4895 sbinfo->max_blocks = ctx->blocks;
4896 if (ctx->seen & SHMEM_SEEN_INODES) {
4897 sbinfo->max_inodes = ctx->inodes;
4898 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4899 }
4900
4901 /*
4902 * Preserve previous mempolicy unless mpol remount option was specified.
4903 */
4904 if (ctx->mpol) {
4905 mpol = sbinfo->mpol;
4906 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4907 ctx->mpol = NULL;
4908 }
4909
4910 if (ctx->noswap)
4911 sbinfo->noswap = true;
4912
4913 raw_spin_unlock(&sbinfo->stat_lock);
4914 mpol_put(mpol);
4915 return 0;
4916 out:
4917 raw_spin_unlock(&sbinfo->stat_lock);
4918 return invalfc(fc, "%s", err);
4919 }
4920
shmem_show_options(struct seq_file * seq,struct dentry * root)4921 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4922 {
4923 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4924 struct mempolicy *mpol;
4925
4926 if (sbinfo->max_blocks != shmem_default_max_blocks())
4927 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4928 if (sbinfo->max_inodes != shmem_default_max_inodes())
4929 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4930 if (sbinfo->mode != (0777 | S_ISVTX))
4931 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4932 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4933 seq_printf(seq, ",uid=%u",
4934 from_kuid_munged(&init_user_ns, sbinfo->uid));
4935 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4936 seq_printf(seq, ",gid=%u",
4937 from_kgid_munged(&init_user_ns, sbinfo->gid));
4938
4939 /*
4940 * Showing inode{64,32} might be useful even if it's the system default,
4941 * since then people don't have to resort to checking both here and
4942 * /proc/config.gz to confirm 64-bit inums were successfully applied
4943 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4944 *
4945 * We hide it when inode64 isn't the default and we are using 32-bit
4946 * inodes, since that probably just means the feature isn't even under
4947 * consideration.
4948 *
4949 * As such:
4950 *
4951 * +-----------------+-----------------+
4952 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4953 * +------------------+-----------------+-----------------+
4954 * | full_inums=true | show | show |
4955 * | full_inums=false | show | hide |
4956 * +------------------+-----------------+-----------------+
4957 *
4958 */
4959 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4960 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4961 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4962 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4963 if (sbinfo->huge)
4964 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4965 #endif
4966 mpol = shmem_get_sbmpol(sbinfo);
4967 shmem_show_mpol(seq, mpol);
4968 mpol_put(mpol);
4969 if (sbinfo->noswap)
4970 seq_printf(seq, ",noswap");
4971 #ifdef CONFIG_TMPFS_QUOTA
4972 if (sb_has_quota_active(root->d_sb, USRQUOTA))
4973 seq_printf(seq, ",usrquota");
4974 if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4975 seq_printf(seq, ",grpquota");
4976 if (sbinfo->qlimits.usrquota_bhardlimit)
4977 seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4978 sbinfo->qlimits.usrquota_bhardlimit);
4979 if (sbinfo->qlimits.grpquota_bhardlimit)
4980 seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4981 sbinfo->qlimits.grpquota_bhardlimit);
4982 if (sbinfo->qlimits.usrquota_ihardlimit)
4983 seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4984 sbinfo->qlimits.usrquota_ihardlimit);
4985 if (sbinfo->qlimits.grpquota_ihardlimit)
4986 seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4987 sbinfo->qlimits.grpquota_ihardlimit);
4988 #endif
4989 return 0;
4990 }
4991
4992 #endif /* CONFIG_TMPFS */
4993
shmem_put_super(struct super_block * sb)4994 static void shmem_put_super(struct super_block *sb)
4995 {
4996 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4997
4998 #if IS_ENABLED(CONFIG_UNICODE)
4999 if (sb->s_encoding)
5000 utf8_unload(sb->s_encoding);
5001 #endif
5002
5003 #ifdef CONFIG_TMPFS_QUOTA
5004 shmem_disable_quotas(sb);
5005 #endif
5006 free_percpu(sbinfo->ino_batch);
5007 percpu_counter_destroy(&sbinfo->used_blocks);
5008 mpol_put(sbinfo->mpol);
5009 kfree(sbinfo);
5010 sb->s_fs_info = NULL;
5011 }
5012
5013 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
5014 static const struct dentry_operations shmem_ci_dentry_ops = {
5015 .d_hash = generic_ci_d_hash,
5016 .d_compare = generic_ci_d_compare,
5017 };
5018 #endif
5019
shmem_fill_super(struct super_block * sb,struct fs_context * fc)5020 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
5021 {
5022 struct shmem_options *ctx = fc->fs_private;
5023 struct inode *inode;
5024 struct shmem_sb_info *sbinfo;
5025 int error = -ENOMEM;
5026
5027 /* Round up to L1_CACHE_BYTES to resist false sharing */
5028 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
5029 L1_CACHE_BYTES), GFP_KERNEL);
5030 if (!sbinfo)
5031 return error;
5032
5033 sb->s_fs_info = sbinfo;
5034
5035 #ifdef CONFIG_TMPFS
5036 /*
5037 * Per default we only allow half of the physical ram per
5038 * tmpfs instance, limiting inodes to one per page of lowmem;
5039 * but the internal instance is left unlimited.
5040 */
5041 if (!(sb->s_flags & SB_KERNMOUNT)) {
5042 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
5043 ctx->blocks = shmem_default_max_blocks();
5044 if (!(ctx->seen & SHMEM_SEEN_INODES))
5045 ctx->inodes = shmem_default_max_inodes();
5046 if (!(ctx->seen & SHMEM_SEEN_INUMS))
5047 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
5048 sbinfo->noswap = ctx->noswap;
5049 } else {
5050 sb->s_flags |= SB_NOUSER;
5051 }
5052 sb->s_export_op = &shmem_export_ops;
5053 sb->s_flags |= SB_NOSEC;
5054
5055 #if IS_ENABLED(CONFIG_UNICODE)
5056 if (!ctx->encoding && ctx->strict_encoding) {
5057 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
5058 error = -EINVAL;
5059 goto failed;
5060 }
5061
5062 if (ctx->encoding) {
5063 sb->s_encoding = ctx->encoding;
5064 set_default_d_op(sb, &shmem_ci_dentry_ops);
5065 if (ctx->strict_encoding)
5066 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
5067 }
5068 #endif
5069
5070 #else
5071 sb->s_flags |= SB_NOUSER;
5072 #endif /* CONFIG_TMPFS */
5073 sb->s_d_flags |= DCACHE_DONTCACHE;
5074 sbinfo->max_blocks = ctx->blocks;
5075 sbinfo->max_inodes = ctx->inodes;
5076 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
5077 if (sb->s_flags & SB_KERNMOUNT) {
5078 sbinfo->ino_batch = alloc_percpu(ino_t);
5079 if (!sbinfo->ino_batch)
5080 goto failed;
5081 }
5082 sbinfo->uid = ctx->uid;
5083 sbinfo->gid = ctx->gid;
5084 sbinfo->full_inums = ctx->full_inums;
5085 sbinfo->mode = ctx->mode;
5086 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5087 if (ctx->seen & SHMEM_SEEN_HUGE)
5088 sbinfo->huge = ctx->huge;
5089 else
5090 sbinfo->huge = tmpfs_huge;
5091 #endif
5092 sbinfo->mpol = ctx->mpol;
5093 ctx->mpol = NULL;
5094
5095 raw_spin_lock_init(&sbinfo->stat_lock);
5096 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
5097 goto failed;
5098 spin_lock_init(&sbinfo->shrinklist_lock);
5099 INIT_LIST_HEAD(&sbinfo->shrinklist);
5100
5101 sb->s_maxbytes = MAX_LFS_FILESIZE;
5102 sb->s_blocksize = PAGE_SIZE;
5103 sb->s_blocksize_bits = PAGE_SHIFT;
5104 sb->s_magic = TMPFS_MAGIC;
5105 sb->s_op = &shmem_ops;
5106 sb->s_time_gran = 1;
5107 #ifdef CONFIG_TMPFS_XATTR
5108 sb->s_xattr = shmem_xattr_handlers;
5109 #endif
5110 #ifdef CONFIG_TMPFS_POSIX_ACL
5111 sb->s_flags |= SB_POSIXACL;
5112 #endif
5113 uuid_t uuid;
5114 uuid_gen(&uuid);
5115 super_set_uuid(sb, uuid.b, sizeof(uuid));
5116
5117 #ifdef CONFIG_TMPFS_QUOTA
5118 if (ctx->seen & SHMEM_SEEN_QUOTA) {
5119 sb->dq_op = &shmem_quota_operations;
5120 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5121 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
5122
5123 /* Copy the default limits from ctx into sbinfo */
5124 memcpy(&sbinfo->qlimits, &ctx->qlimits,
5125 sizeof(struct shmem_quota_limits));
5126
5127 if (shmem_enable_quotas(sb, ctx->quota_types))
5128 goto failed;
5129 }
5130 #endif /* CONFIG_TMPFS_QUOTA */
5131
5132 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
5133 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
5134 if (IS_ERR(inode)) {
5135 error = PTR_ERR(inode);
5136 goto failed;
5137 }
5138 inode->i_uid = sbinfo->uid;
5139 inode->i_gid = sbinfo->gid;
5140 sb->s_root = d_make_root(inode);
5141 if (!sb->s_root)
5142 goto failed;
5143 return 0;
5144
5145 failed:
5146 shmem_put_super(sb);
5147 return error;
5148 }
5149
shmem_get_tree(struct fs_context * fc)5150 static int shmem_get_tree(struct fs_context *fc)
5151 {
5152 return get_tree_nodev(fc, shmem_fill_super);
5153 }
5154
shmem_free_fc(struct fs_context * fc)5155 static void shmem_free_fc(struct fs_context *fc)
5156 {
5157 struct shmem_options *ctx = fc->fs_private;
5158
5159 if (ctx) {
5160 mpol_put(ctx->mpol);
5161 kfree(ctx);
5162 }
5163 }
5164
5165 static const struct fs_context_operations shmem_fs_context_ops = {
5166 .free = shmem_free_fc,
5167 .get_tree = shmem_get_tree,
5168 #ifdef CONFIG_TMPFS
5169 .parse_monolithic = shmem_parse_monolithic,
5170 .parse_param = shmem_parse_one,
5171 .reconfigure = shmem_reconfigure,
5172 #endif
5173 };
5174
5175 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
5176
shmem_alloc_inode(struct super_block * sb)5177 static struct inode *shmem_alloc_inode(struct super_block *sb)
5178 {
5179 struct shmem_inode_info *info;
5180 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
5181 if (!info)
5182 return NULL;
5183 return &info->vfs_inode;
5184 }
5185
shmem_free_in_core_inode(struct inode * inode)5186 static void shmem_free_in_core_inode(struct inode *inode)
5187 {
5188 if (S_ISLNK(inode->i_mode))
5189 kfree(inode->i_link);
5190 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
5191 }
5192
shmem_destroy_inode(struct inode * inode)5193 static void shmem_destroy_inode(struct inode *inode)
5194 {
5195 if (S_ISREG(inode->i_mode))
5196 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5197 if (S_ISDIR(inode->i_mode))
5198 simple_offset_destroy(shmem_get_offset_ctx(inode));
5199 }
5200
shmem_init_inode(void * foo)5201 static void shmem_init_inode(void *foo)
5202 {
5203 struct shmem_inode_info *info = foo;
5204 inode_init_once(&info->vfs_inode);
5205 }
5206
shmem_init_inodecache(void)5207 static void __init shmem_init_inodecache(void)
5208 {
5209 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5210 sizeof(struct shmem_inode_info),
5211 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5212 }
5213
shmem_destroy_inodecache(void)5214 static void __init shmem_destroy_inodecache(void)
5215 {
5216 kmem_cache_destroy(shmem_inode_cachep);
5217 }
5218
5219 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_folio(struct address_space * mapping,struct folio * folio)5220 static int shmem_error_remove_folio(struct address_space *mapping,
5221 struct folio *folio)
5222 {
5223 return 0;
5224 }
5225
5226 static const struct address_space_operations shmem_aops = {
5227 .dirty_folio = noop_dirty_folio,
5228 #ifdef CONFIG_TMPFS
5229 .write_begin = shmem_write_begin,
5230 .write_end = shmem_write_end,
5231 #endif
5232 #ifdef CONFIG_MIGRATION
5233 .migrate_folio = migrate_folio,
5234 #endif
5235 .error_remove_folio = shmem_error_remove_folio,
5236 };
5237
5238 static const struct file_operations shmem_file_operations = {
5239 .mmap_prepare = shmem_mmap_prepare,
5240 .open = shmem_file_open,
5241 .get_unmapped_area = shmem_get_unmapped_area,
5242 #ifdef CONFIG_TMPFS
5243 .llseek = shmem_file_llseek,
5244 .read_iter = shmem_file_read_iter,
5245 .write_iter = shmem_file_write_iter,
5246 .fsync = noop_fsync,
5247 .splice_read = shmem_file_splice_read,
5248 .splice_write = iter_file_splice_write,
5249 .fallocate = shmem_fallocate,
5250 #endif
5251 };
5252
5253 static const struct inode_operations shmem_inode_operations = {
5254 .getattr = shmem_getattr,
5255 .setattr = shmem_setattr,
5256 #ifdef CONFIG_TMPFS_XATTR
5257 .listxattr = shmem_listxattr,
5258 .set_acl = simple_set_acl,
5259 .fileattr_get = shmem_fileattr_get,
5260 .fileattr_set = shmem_fileattr_set,
5261 #endif
5262 };
5263
5264 static const struct inode_operations shmem_dir_inode_operations = {
5265 #ifdef CONFIG_TMPFS
5266 .getattr = shmem_getattr,
5267 .create = shmem_create,
5268 .lookup = simple_lookup,
5269 .link = shmem_link,
5270 .unlink = shmem_unlink,
5271 .symlink = shmem_symlink,
5272 .mkdir = shmem_mkdir,
5273 .rmdir = shmem_rmdir,
5274 .mknod = shmem_mknod,
5275 .rename = shmem_rename2,
5276 .tmpfile = shmem_tmpfile,
5277 .get_offset_ctx = shmem_get_offset_ctx,
5278 #endif
5279 #ifdef CONFIG_TMPFS_XATTR
5280 .listxattr = shmem_listxattr,
5281 .fileattr_get = shmem_fileattr_get,
5282 .fileattr_set = shmem_fileattr_set,
5283 #endif
5284 #ifdef CONFIG_TMPFS_POSIX_ACL
5285 .setattr = shmem_setattr,
5286 .set_acl = simple_set_acl,
5287 #endif
5288 };
5289
5290 static const struct inode_operations shmem_special_inode_operations = {
5291 .getattr = shmem_getattr,
5292 #ifdef CONFIG_TMPFS_XATTR
5293 .listxattr = shmem_listxattr,
5294 #endif
5295 #ifdef CONFIG_TMPFS_POSIX_ACL
5296 .setattr = shmem_setattr,
5297 .set_acl = simple_set_acl,
5298 #endif
5299 };
5300
5301 static const struct super_operations shmem_ops = {
5302 .alloc_inode = shmem_alloc_inode,
5303 .free_inode = shmem_free_in_core_inode,
5304 .destroy_inode = shmem_destroy_inode,
5305 #ifdef CONFIG_TMPFS
5306 .statfs = shmem_statfs,
5307 .show_options = shmem_show_options,
5308 #endif
5309 #ifdef CONFIG_TMPFS_QUOTA
5310 .get_dquots = shmem_get_dquots,
5311 #endif
5312 .evict_inode = shmem_evict_inode,
5313 .drop_inode = inode_just_drop,
5314 .put_super = shmem_put_super,
5315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5316 .nr_cached_objects = shmem_unused_huge_count,
5317 .free_cached_objects = shmem_unused_huge_scan,
5318 #endif
5319 };
5320
5321 static const struct vm_operations_struct shmem_vm_ops = {
5322 .fault = shmem_fault,
5323 .map_pages = filemap_map_pages,
5324 #ifdef CONFIG_NUMA
5325 .set_policy = shmem_set_policy,
5326 .get_policy = shmem_get_policy,
5327 #endif
5328 };
5329
5330 static const struct vm_operations_struct shmem_anon_vm_ops = {
5331 .fault = shmem_fault,
5332 .map_pages = filemap_map_pages,
5333 #ifdef CONFIG_NUMA
5334 .set_policy = shmem_set_policy,
5335 .get_policy = shmem_get_policy,
5336 #endif
5337 };
5338
shmem_init_fs_context(struct fs_context * fc)5339 int shmem_init_fs_context(struct fs_context *fc)
5340 {
5341 struct shmem_options *ctx;
5342
5343 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5344 if (!ctx)
5345 return -ENOMEM;
5346
5347 ctx->mode = 0777 | S_ISVTX;
5348 ctx->uid = current_fsuid();
5349 ctx->gid = current_fsgid();
5350
5351 #if IS_ENABLED(CONFIG_UNICODE)
5352 ctx->encoding = NULL;
5353 #endif
5354
5355 fc->fs_private = ctx;
5356 fc->ops = &shmem_fs_context_ops;
5357 #ifdef CONFIG_TMPFS
5358 fc->sb_flags |= SB_I_VERSION;
5359 #endif
5360 return 0;
5361 }
5362
5363 static struct file_system_type shmem_fs_type = {
5364 .owner = THIS_MODULE,
5365 .name = "tmpfs",
5366 .init_fs_context = shmem_init_fs_context,
5367 #ifdef CONFIG_TMPFS
5368 .parameters = shmem_fs_parameters,
5369 #endif
5370 .kill_sb = kill_anon_super,
5371 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5372 };
5373
5374 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5375
5376 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \
5377 { \
5378 .attr = { .name = __stringify(_name), .mode = _mode }, \
5379 .show = _show, \
5380 .store = _store, \
5381 }
5382
5383 #define TMPFS_ATTR_W(_name, _store) \
5384 static struct kobj_attribute tmpfs_attr_##_name = \
5385 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5386
5387 #define TMPFS_ATTR_RW(_name, _show, _store) \
5388 static struct kobj_attribute tmpfs_attr_##_name = \
5389 __INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5390
5391 #define TMPFS_ATTR_RO(_name, _show) \
5392 static struct kobj_attribute tmpfs_attr_##_name = \
5393 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5394
5395 #if IS_ENABLED(CONFIG_UNICODE)
casefold_show(struct kobject * kobj,struct kobj_attribute * a,char * buf)5396 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5397 char *buf)
5398 {
5399 return sysfs_emit(buf, "supported\n");
5400 }
5401 TMPFS_ATTR_RO(casefold, casefold_show);
5402 #endif
5403
5404 static struct attribute *tmpfs_attributes[] = {
5405 #if IS_ENABLED(CONFIG_UNICODE)
5406 &tmpfs_attr_casefold.attr,
5407 #endif
5408 NULL
5409 };
5410
5411 static const struct attribute_group tmpfs_attribute_group = {
5412 .attrs = tmpfs_attributes,
5413 .name = "features"
5414 };
5415
5416 static struct kobject *tmpfs_kobj;
5417
tmpfs_sysfs_init(void)5418 static int __init tmpfs_sysfs_init(void)
5419 {
5420 int ret;
5421
5422 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5423 if (!tmpfs_kobj)
5424 return -ENOMEM;
5425
5426 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5427 if (ret)
5428 kobject_put(tmpfs_kobj);
5429
5430 return ret;
5431 }
5432 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5433
shmem_init(void)5434 void __init shmem_init(void)
5435 {
5436 int error;
5437
5438 shmem_init_inodecache();
5439
5440 #ifdef CONFIG_TMPFS_QUOTA
5441 register_quota_format(&shmem_quota_format);
5442 #endif
5443
5444 error = register_filesystem(&shmem_fs_type);
5445 if (error) {
5446 pr_err("Could not register tmpfs\n");
5447 goto out2;
5448 }
5449
5450 shm_mnt = kern_mount(&shmem_fs_type);
5451 if (IS_ERR(shm_mnt)) {
5452 error = PTR_ERR(shm_mnt);
5453 pr_err("Could not kern_mount tmpfs\n");
5454 goto out1;
5455 }
5456
5457 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5458 error = tmpfs_sysfs_init();
5459 if (error) {
5460 pr_err("Could not init tmpfs sysfs\n");
5461 goto out1;
5462 }
5463 #endif
5464
5465 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5466 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5467 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5468 else
5469 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5470
5471 /*
5472 * Default to setting PMD-sized THP to inherit the global setting and
5473 * disable all other multi-size THPs.
5474 */
5475 if (!shmem_orders_configured)
5476 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5477 #endif
5478 return;
5479
5480 out1:
5481 unregister_filesystem(&shmem_fs_type);
5482 out2:
5483 #ifdef CONFIG_TMPFS_QUOTA
5484 unregister_quota_format(&shmem_quota_format);
5485 #endif
5486 shmem_destroy_inodecache();
5487 shm_mnt = ERR_PTR(error);
5488 }
5489
5490 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5491 static ssize_t shmem_enabled_show(struct kobject *kobj,
5492 struct kobj_attribute *attr, char *buf)
5493 {
5494 static const int values[] = {
5495 SHMEM_HUGE_ALWAYS,
5496 SHMEM_HUGE_WITHIN_SIZE,
5497 SHMEM_HUGE_ADVISE,
5498 SHMEM_HUGE_NEVER,
5499 SHMEM_HUGE_DENY,
5500 SHMEM_HUGE_FORCE,
5501 };
5502 int len = 0;
5503 int i;
5504
5505 for (i = 0; i < ARRAY_SIZE(values); i++) {
5506 len += sysfs_emit_at(buf, len,
5507 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5508 i ? " " : "", shmem_format_huge(values[i]));
5509 }
5510 len += sysfs_emit_at(buf, len, "\n");
5511
5512 return len;
5513 }
5514
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5515 static ssize_t shmem_enabled_store(struct kobject *kobj,
5516 struct kobj_attribute *attr, const char *buf, size_t count)
5517 {
5518 char tmp[16];
5519 int huge, err;
5520
5521 if (count + 1 > sizeof(tmp))
5522 return -EINVAL;
5523 memcpy(tmp, buf, count);
5524 tmp[count] = '\0';
5525 if (count && tmp[count - 1] == '\n')
5526 tmp[count - 1] = '\0';
5527
5528 huge = shmem_parse_huge(tmp);
5529 if (huge == -EINVAL)
5530 return huge;
5531
5532 shmem_huge = huge;
5533 if (shmem_huge > SHMEM_HUGE_DENY)
5534 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5535
5536 err = start_stop_khugepaged();
5537 return err ? err : count;
5538 }
5539
5540 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5541 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5542
thpsize_shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5543 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5544 struct kobj_attribute *attr, char *buf)
5545 {
5546 int order = to_thpsize(kobj)->order;
5547 const char *output;
5548
5549 if (test_bit(order, &huge_shmem_orders_always))
5550 output = "[always] inherit within_size advise never";
5551 else if (test_bit(order, &huge_shmem_orders_inherit))
5552 output = "always [inherit] within_size advise never";
5553 else if (test_bit(order, &huge_shmem_orders_within_size))
5554 output = "always inherit [within_size] advise never";
5555 else if (test_bit(order, &huge_shmem_orders_madvise))
5556 output = "always inherit within_size [advise] never";
5557 else
5558 output = "always inherit within_size advise [never]";
5559
5560 return sysfs_emit(buf, "%s\n", output);
5561 }
5562
thpsize_shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5563 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5564 struct kobj_attribute *attr,
5565 const char *buf, size_t count)
5566 {
5567 int order = to_thpsize(kobj)->order;
5568 ssize_t ret = count;
5569
5570 if (sysfs_streq(buf, "always")) {
5571 spin_lock(&huge_shmem_orders_lock);
5572 clear_bit(order, &huge_shmem_orders_inherit);
5573 clear_bit(order, &huge_shmem_orders_madvise);
5574 clear_bit(order, &huge_shmem_orders_within_size);
5575 set_bit(order, &huge_shmem_orders_always);
5576 spin_unlock(&huge_shmem_orders_lock);
5577 } else if (sysfs_streq(buf, "inherit")) {
5578 /* Do not override huge allocation policy with non-PMD sized mTHP */
5579 if (shmem_huge == SHMEM_HUGE_FORCE &&
5580 order != HPAGE_PMD_ORDER)
5581 return -EINVAL;
5582
5583 spin_lock(&huge_shmem_orders_lock);
5584 clear_bit(order, &huge_shmem_orders_always);
5585 clear_bit(order, &huge_shmem_orders_madvise);
5586 clear_bit(order, &huge_shmem_orders_within_size);
5587 set_bit(order, &huge_shmem_orders_inherit);
5588 spin_unlock(&huge_shmem_orders_lock);
5589 } else if (sysfs_streq(buf, "within_size")) {
5590 spin_lock(&huge_shmem_orders_lock);
5591 clear_bit(order, &huge_shmem_orders_always);
5592 clear_bit(order, &huge_shmem_orders_inherit);
5593 clear_bit(order, &huge_shmem_orders_madvise);
5594 set_bit(order, &huge_shmem_orders_within_size);
5595 spin_unlock(&huge_shmem_orders_lock);
5596 } else if (sysfs_streq(buf, "advise")) {
5597 spin_lock(&huge_shmem_orders_lock);
5598 clear_bit(order, &huge_shmem_orders_always);
5599 clear_bit(order, &huge_shmem_orders_inherit);
5600 clear_bit(order, &huge_shmem_orders_within_size);
5601 set_bit(order, &huge_shmem_orders_madvise);
5602 spin_unlock(&huge_shmem_orders_lock);
5603 } else if (sysfs_streq(buf, "never")) {
5604 spin_lock(&huge_shmem_orders_lock);
5605 clear_bit(order, &huge_shmem_orders_always);
5606 clear_bit(order, &huge_shmem_orders_inherit);
5607 clear_bit(order, &huge_shmem_orders_within_size);
5608 clear_bit(order, &huge_shmem_orders_madvise);
5609 spin_unlock(&huge_shmem_orders_lock);
5610 } else {
5611 ret = -EINVAL;
5612 }
5613
5614 if (ret > 0) {
5615 int err = start_stop_khugepaged();
5616
5617 if (err)
5618 ret = err;
5619 }
5620 return ret;
5621 }
5622
5623 struct kobj_attribute thpsize_shmem_enabled_attr =
5624 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5625 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5626
5627 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5628
setup_transparent_hugepage_shmem(char * str)5629 static int __init setup_transparent_hugepage_shmem(char *str)
5630 {
5631 int huge;
5632
5633 huge = shmem_parse_huge(str);
5634 if (huge == -EINVAL) {
5635 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5636 return huge;
5637 }
5638
5639 shmem_huge = huge;
5640 return 1;
5641 }
5642 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5643
setup_transparent_hugepage_tmpfs(char * str)5644 static int __init setup_transparent_hugepage_tmpfs(char *str)
5645 {
5646 int huge;
5647
5648 huge = shmem_parse_huge(str);
5649 if (huge < 0) {
5650 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
5651 return huge;
5652 }
5653
5654 tmpfs_huge = huge;
5655 return 1;
5656 }
5657 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
5658
5659 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_shmem(char * str)5660 static int __init setup_thp_shmem(char *str)
5661 {
5662 char *token, *range, *policy, *subtoken;
5663 unsigned long always, inherit, madvise, within_size;
5664 char *start_size, *end_size;
5665 int start, end, nr;
5666 char *p;
5667
5668 if (!str || strlen(str) + 1 > PAGE_SIZE)
5669 goto err;
5670 strscpy(str_dup, str);
5671
5672 always = huge_shmem_orders_always;
5673 inherit = huge_shmem_orders_inherit;
5674 madvise = huge_shmem_orders_madvise;
5675 within_size = huge_shmem_orders_within_size;
5676 p = str_dup;
5677 while ((token = strsep(&p, ";")) != NULL) {
5678 range = strsep(&token, ":");
5679 policy = token;
5680
5681 if (!policy)
5682 goto err;
5683
5684 while ((subtoken = strsep(&range, ",")) != NULL) {
5685 if (strchr(subtoken, '-')) {
5686 start_size = strsep(&subtoken, "-");
5687 end_size = subtoken;
5688
5689 start = get_order_from_str(start_size,
5690 THP_ORDERS_ALL_FILE_DEFAULT);
5691 end = get_order_from_str(end_size,
5692 THP_ORDERS_ALL_FILE_DEFAULT);
5693 } else {
5694 start_size = end_size = subtoken;
5695 start = end = get_order_from_str(subtoken,
5696 THP_ORDERS_ALL_FILE_DEFAULT);
5697 }
5698
5699 if (start < 0) {
5700 pr_err("invalid size %s in thp_shmem boot parameter\n",
5701 start_size);
5702 goto err;
5703 }
5704
5705 if (end < 0) {
5706 pr_err("invalid size %s in thp_shmem boot parameter\n",
5707 end_size);
5708 goto err;
5709 }
5710
5711 if (start > end)
5712 goto err;
5713
5714 nr = end - start + 1;
5715 if (!strcmp(policy, "always")) {
5716 bitmap_set(&always, start, nr);
5717 bitmap_clear(&inherit, start, nr);
5718 bitmap_clear(&madvise, start, nr);
5719 bitmap_clear(&within_size, start, nr);
5720 } else if (!strcmp(policy, "advise")) {
5721 bitmap_set(&madvise, start, nr);
5722 bitmap_clear(&inherit, start, nr);
5723 bitmap_clear(&always, start, nr);
5724 bitmap_clear(&within_size, start, nr);
5725 } else if (!strcmp(policy, "inherit")) {
5726 bitmap_set(&inherit, start, nr);
5727 bitmap_clear(&madvise, start, nr);
5728 bitmap_clear(&always, start, nr);
5729 bitmap_clear(&within_size, start, nr);
5730 } else if (!strcmp(policy, "within_size")) {
5731 bitmap_set(&within_size, start, nr);
5732 bitmap_clear(&inherit, start, nr);
5733 bitmap_clear(&madvise, start, nr);
5734 bitmap_clear(&always, start, nr);
5735 } else if (!strcmp(policy, "never")) {
5736 bitmap_clear(&inherit, start, nr);
5737 bitmap_clear(&madvise, start, nr);
5738 bitmap_clear(&always, start, nr);
5739 bitmap_clear(&within_size, start, nr);
5740 } else {
5741 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5742 goto err;
5743 }
5744 }
5745 }
5746
5747 huge_shmem_orders_always = always;
5748 huge_shmem_orders_madvise = madvise;
5749 huge_shmem_orders_inherit = inherit;
5750 huge_shmem_orders_within_size = within_size;
5751 shmem_orders_configured = true;
5752 return 1;
5753
5754 err:
5755 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5756 return 0;
5757 }
5758 __setup("thp_shmem=", setup_thp_shmem);
5759
5760 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5761
5762 #else /* !CONFIG_SHMEM */
5763
5764 /*
5765 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5766 *
5767 * This is intended for small system where the benefits of the full
5768 * shmem code (swap-backed and resource-limited) are outweighed by
5769 * their complexity. On systems without swap this code should be
5770 * effectively equivalent, but much lighter weight.
5771 */
5772
5773 static struct file_system_type shmem_fs_type = {
5774 .name = "tmpfs",
5775 .init_fs_context = ramfs_init_fs_context,
5776 .parameters = ramfs_fs_parameters,
5777 .kill_sb = ramfs_kill_sb,
5778 .fs_flags = FS_USERNS_MOUNT,
5779 };
5780
shmem_init(void)5781 void __init shmem_init(void)
5782 {
5783 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5784
5785 shm_mnt = kern_mount(&shmem_fs_type);
5786 BUG_ON(IS_ERR(shm_mnt));
5787 }
5788
shmem_unuse(unsigned int type)5789 int shmem_unuse(unsigned int type)
5790 {
5791 return 0;
5792 }
5793
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)5794 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5795 {
5796 return 0;
5797 }
5798
shmem_unlock_mapping(struct address_space * mapping)5799 void shmem_unlock_mapping(struct address_space *mapping)
5800 {
5801 }
5802
5803 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)5804 unsigned long shmem_get_unmapped_area(struct file *file,
5805 unsigned long addr, unsigned long len,
5806 unsigned long pgoff, unsigned long flags)
5807 {
5808 return mm_get_unmapped_area(file, addr, len, pgoff, flags);
5809 }
5810 #endif
5811
shmem_truncate_range(struct inode * inode,loff_t lstart,uoff_t lend)5812 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend)
5813 {
5814 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5815 }
5816 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5817
5818 #define shmem_vm_ops generic_file_vm_ops
5819 #define shmem_anon_vm_ops generic_file_vm_ops
5820 #define shmem_file_operations ramfs_file_operations
5821
shmem_acct_size(unsigned long flags,loff_t size)5822 static inline int shmem_acct_size(unsigned long flags, loff_t size)
5823 {
5824 return 0;
5825 }
5826
shmem_unacct_size(unsigned long flags,loff_t size)5827 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
5828 {
5829 }
5830
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)5831 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5832 struct super_block *sb, struct inode *dir,
5833 umode_t mode, dev_t dev, unsigned long flags)
5834 {
5835 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5836 return inode ? inode : ERR_PTR(-ENOSPC);
5837 }
5838
5839 #endif /* CONFIG_SHMEM */
5840
5841 /* common code */
5842
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long vm_flags,unsigned int i_flags)5843 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5844 loff_t size, unsigned long vm_flags,
5845 unsigned int i_flags)
5846 {
5847 unsigned long flags = (vm_flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0;
5848 struct inode *inode;
5849 struct file *res;
5850
5851 if (IS_ERR(mnt))
5852 return ERR_CAST(mnt);
5853
5854 if (size < 0 || size > MAX_LFS_FILESIZE)
5855 return ERR_PTR(-EINVAL);
5856
5857 if (is_idmapped_mnt(mnt))
5858 return ERR_PTR(-EINVAL);
5859
5860 if (shmem_acct_size(flags, size))
5861 return ERR_PTR(-ENOMEM);
5862
5863 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5864 S_IFREG | S_IRWXUGO, 0, vm_flags);
5865 if (IS_ERR(inode)) {
5866 shmem_unacct_size(flags, size);
5867 return ERR_CAST(inode);
5868 }
5869 inode->i_flags |= i_flags;
5870 inode->i_size = size;
5871 clear_nlink(inode); /* It is unlinked */
5872 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5873 if (!IS_ERR(res))
5874 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5875 &shmem_file_operations);
5876 if (IS_ERR(res))
5877 iput(inode);
5878 return res;
5879 }
5880
5881 /**
5882 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5883 * kernel internal. There will be NO LSM permission checks against the
5884 * underlying inode. So users of this interface must do LSM checks at a
5885 * higher layer. The users are the big_key and shm implementations. LSM
5886 * checks are provided at the key or shm level rather than the inode.
5887 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5888 * @size: size to be set for the file
5889 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5890 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)5891 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5892 {
5893 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5894 }
5895 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5896
5897 /**
5898 * shmem_file_setup - get an unlinked file living in tmpfs
5899 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5900 * @size: size to be set for the file
5901 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5902 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)5903 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5904 {
5905 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5906 }
5907 EXPORT_SYMBOL_GPL(shmem_file_setup);
5908
5909 /**
5910 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5911 * @mnt: the tmpfs mount where the file will be created
5912 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5913 * @size: size to be set for the file
5914 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5915 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)5916 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5917 loff_t size, unsigned long flags)
5918 {
5919 return __shmem_file_setup(mnt, name, size, flags, 0);
5920 }
5921 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5922
__shmem_zero_setup(unsigned long start,unsigned long end,vm_flags_t vm_flags)5923 static struct file *__shmem_zero_setup(unsigned long start, unsigned long end, vm_flags_t vm_flags)
5924 {
5925 loff_t size = end - start;
5926
5927 /*
5928 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5929 * between XFS directory reading and selinux: since this file is only
5930 * accessible to the user through its mapping, use S_PRIVATE flag to
5931 * bypass file security, in the same way as shmem_kernel_file_setup().
5932 */
5933 return shmem_kernel_file_setup("dev/zero", size, vm_flags);
5934 }
5935
5936 /**
5937 * shmem_zero_setup - setup a shared anonymous mapping
5938 * @vma: the vma to be mmapped is prepared by do_mmap
5939 * Returns: 0 on success, or error
5940 */
shmem_zero_setup(struct vm_area_struct * vma)5941 int shmem_zero_setup(struct vm_area_struct *vma)
5942 {
5943 struct file *file = __shmem_zero_setup(vma->vm_start, vma->vm_end, vma->vm_flags);
5944
5945 if (IS_ERR(file))
5946 return PTR_ERR(file);
5947
5948 if (vma->vm_file)
5949 fput(vma->vm_file);
5950 vma->vm_file = file;
5951 vma->vm_ops = &shmem_anon_vm_ops;
5952
5953 return 0;
5954 }
5955
5956 /**
5957 * shmem_zero_setup_desc - same as shmem_zero_setup, but determined by VMA
5958 * descriptor for convenience.
5959 * @desc: Describes VMA
5960 * Returns: 0 on success, or error
5961 */
shmem_zero_setup_desc(struct vm_area_desc * desc)5962 int shmem_zero_setup_desc(struct vm_area_desc *desc)
5963 {
5964 struct file *file = __shmem_zero_setup(desc->start, desc->end, desc->vm_flags);
5965
5966 if (IS_ERR(file))
5967 return PTR_ERR(file);
5968
5969 desc->vm_file = file;
5970 desc->vm_ops = &shmem_anon_vm_ops;
5971
5972 return 0;
5973 }
5974
5975 /**
5976 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5977 * @mapping: the folio's address_space
5978 * @index: the folio index
5979 * @gfp: the page allocator flags to use if allocating
5980 *
5981 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5982 * with any new page allocations done using the specified allocation flags.
5983 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5984 * suit tmpfs, since it may have pages in swapcache, and needs to find those
5985 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5986 *
5987 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5988 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5989 */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5990 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5991 pgoff_t index, gfp_t gfp)
5992 {
5993 #ifdef CONFIG_SHMEM
5994 struct inode *inode = mapping->host;
5995 struct folio *folio;
5996 int error;
5997
5998 error = shmem_get_folio_gfp(inode, index, i_size_read(inode),
5999 &folio, SGP_CACHE, gfp, NULL, NULL);
6000 if (error)
6001 return ERR_PTR(error);
6002
6003 folio_unlock(folio);
6004 return folio;
6005 #else
6006 /*
6007 * The tiny !SHMEM case uses ramfs without swap
6008 */
6009 return mapping_read_folio_gfp(mapping, index, gfp);
6010 #endif
6011 }
6012 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
6013
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)6014 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
6015 pgoff_t index, gfp_t gfp)
6016 {
6017 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
6018 struct page *page;
6019
6020 if (IS_ERR(folio))
6021 return &folio->page;
6022
6023 page = folio_file_page(folio, index);
6024 if (PageHWPoison(page)) {
6025 folio_put(folio);
6026 return ERR_PTR(-EIO);
6027 }
6028
6029 return page;
6030 }
6031 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
6032