1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/filelock.h> 33 #include <linux/mm.h> 34 #include <linux/random.h> 35 #include <linux/sched/signal.h> 36 #include <linux/export.h> 37 #include <linux/shmem_fs.h> 38 #include <linux/swap.h> 39 #include <linux/uio.h> 40 #include <linux/hugetlb.h> 41 #include <linux/fs_parser.h> 42 #include <linux/swapfile.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include "swap.h" 46 47 static struct vfsmount *shm_mnt __ro_after_init; 48 49 #ifdef CONFIG_SHMEM 50 /* 51 * This virtual memory filesystem is heavily based on the ramfs. It 52 * extends ramfs by the ability to use swap and honor resource limits 53 * which makes it a completely usable filesystem. 54 */ 55 56 #include <linux/xattr.h> 57 #include <linux/exportfs.h> 58 #include <linux/posix_acl.h> 59 #include <linux/posix_acl_xattr.h> 60 #include <linux/mman.h> 61 #include <linux/string.h> 62 #include <linux/slab.h> 63 #include <linux/backing-dev.h> 64 #include <linux/writeback.h> 65 #include <linux/pagevec.h> 66 #include <linux/percpu_counter.h> 67 #include <linux/falloc.h> 68 #include <linux/splice.h> 69 #include <linux/security.h> 70 #include <linux/leafops.h> 71 #include <linux/mempolicy.h> 72 #include <linux/namei.h> 73 #include <linux/ctype.h> 74 #include <linux/migrate.h> 75 #include <linux/highmem.h> 76 #include <linux/seq_file.h> 77 #include <linux/magic.h> 78 #include <linux/syscalls.h> 79 #include <linux/fcntl.h> 80 #include <uapi/linux/memfd.h> 81 #include <linux/rmap.h> 82 #include <linux/uuid.h> 83 #include <linux/quotaops.h> 84 #include <linux/rcupdate_wait.h> 85 86 #include <linux/uaccess.h> 87 88 #include "internal.h" 89 90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 91 92 /* Pretend that each entry is of this size in directory's i_size */ 93 #define BOGO_DIRENT_SIZE 20 94 95 /* Pretend that one inode + its dentry occupy this much memory */ 96 #define BOGO_INODE_SIZE 1024 97 98 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 99 #define SHORT_SYMLINK_LEN 128 100 101 /* 102 * shmem_fallocate communicates with shmem_fault or shmem_writeout via 103 * inode->i_private (with i_rwsem making sure that it has only one user at 104 * a time): we would prefer not to enlarge the shmem inode just for that. 105 */ 106 struct shmem_falloc { 107 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 108 pgoff_t start; /* start of range currently being fallocated */ 109 pgoff_t next; /* the next page offset to be fallocated */ 110 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 111 pgoff_t nr_unswapped; /* how often writeout refused to swap out */ 112 }; 113 114 struct shmem_options { 115 unsigned long long blocks; 116 unsigned long long inodes; 117 struct mempolicy *mpol; 118 kuid_t uid; 119 kgid_t gid; 120 umode_t mode; 121 bool full_inums; 122 int huge; 123 int seen; 124 bool noswap; 125 unsigned short quota_types; 126 struct shmem_quota_limits qlimits; 127 #if IS_ENABLED(CONFIG_UNICODE) 128 struct unicode_map *encoding; 129 bool strict_encoding; 130 #endif 131 #define SHMEM_SEEN_BLOCKS 1 132 #define SHMEM_SEEN_INODES 2 133 #define SHMEM_SEEN_HUGE 4 134 #define SHMEM_SEEN_INUMS 8 135 #define SHMEM_SEEN_QUOTA 16 136 }; 137 138 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 139 static unsigned long huge_shmem_orders_always __read_mostly; 140 static unsigned long huge_shmem_orders_madvise __read_mostly; 141 static unsigned long huge_shmem_orders_inherit __read_mostly; 142 static unsigned long huge_shmem_orders_within_size __read_mostly; 143 static bool shmem_orders_configured __initdata; 144 #endif 145 146 #ifdef CONFIG_TMPFS 147 static unsigned long shmem_default_max_blocks(void) 148 { 149 return totalram_pages() / 2; 150 } 151 152 static unsigned long shmem_default_max_inodes(void) 153 { 154 unsigned long nr_pages = totalram_pages(); 155 156 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 157 ULONG_MAX / BOGO_INODE_SIZE); 158 } 159 #endif 160 161 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 162 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 163 struct vm_area_struct *vma, vm_fault_t *fault_type); 164 165 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 166 { 167 return sb->s_fs_info; 168 } 169 170 /* 171 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 172 * for shared memory and for shared anonymous (/dev/zero) mappings 173 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 174 * consistent with the pre-accounting of private mappings ... 175 */ 176 static inline int shmem_acct_size(unsigned long flags, loff_t size) 177 { 178 return (flags & SHMEM_F_NORESERVE) ? 179 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 180 } 181 182 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 183 { 184 if (!(flags & SHMEM_F_NORESERVE)) 185 vm_unacct_memory(VM_ACCT(size)); 186 } 187 188 static inline int shmem_reacct_size(unsigned long flags, 189 loff_t oldsize, loff_t newsize) 190 { 191 if (!(flags & SHMEM_F_NORESERVE)) { 192 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 193 return security_vm_enough_memory_mm(current->mm, 194 VM_ACCT(newsize) - VM_ACCT(oldsize)); 195 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 196 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 197 } 198 return 0; 199 } 200 201 /* 202 * ... whereas tmpfs objects are accounted incrementally as 203 * pages are allocated, in order to allow large sparse files. 204 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 205 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 206 */ 207 static inline int shmem_acct_blocks(unsigned long flags, long pages) 208 { 209 if (!(flags & SHMEM_F_NORESERVE)) 210 return 0; 211 212 return security_vm_enough_memory_mm(current->mm, 213 pages * VM_ACCT(PAGE_SIZE)); 214 } 215 216 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 217 { 218 if (flags & SHMEM_F_NORESERVE) 219 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 220 } 221 222 int shmem_inode_acct_blocks(struct inode *inode, long pages) 223 { 224 struct shmem_inode_info *info = SHMEM_I(inode); 225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 226 int err = -ENOSPC; 227 228 if (shmem_acct_blocks(info->flags, pages)) 229 return err; 230 231 might_sleep(); /* when quotas */ 232 if (sbinfo->max_blocks) { 233 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 234 sbinfo->max_blocks, pages)) 235 goto unacct; 236 237 err = dquot_alloc_block_nodirty(inode, pages); 238 if (err) { 239 percpu_counter_sub(&sbinfo->used_blocks, pages); 240 goto unacct; 241 } 242 } else { 243 err = dquot_alloc_block_nodirty(inode, pages); 244 if (err) 245 goto unacct; 246 } 247 248 return 0; 249 250 unacct: 251 shmem_unacct_blocks(info->flags, pages); 252 return err; 253 } 254 255 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 256 { 257 struct shmem_inode_info *info = SHMEM_I(inode); 258 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 259 260 might_sleep(); /* when quotas */ 261 dquot_free_block_nodirty(inode, pages); 262 263 if (sbinfo->max_blocks) 264 percpu_counter_sub(&sbinfo->used_blocks, pages); 265 shmem_unacct_blocks(info->flags, pages); 266 } 267 268 static const struct super_operations shmem_ops; 269 static const struct address_space_operations shmem_aops; 270 static const struct file_operations shmem_file_operations; 271 static const struct inode_operations shmem_inode_operations; 272 static const struct inode_operations shmem_dir_inode_operations; 273 static const struct inode_operations shmem_special_inode_operations; 274 static const struct vm_operations_struct shmem_vm_ops; 275 static const struct vm_operations_struct shmem_anon_vm_ops; 276 static struct file_system_type shmem_fs_type; 277 278 bool shmem_mapping(const struct address_space *mapping) 279 { 280 return mapping->a_ops == &shmem_aops; 281 } 282 EXPORT_SYMBOL_GPL(shmem_mapping); 283 284 bool vma_is_anon_shmem(const struct vm_area_struct *vma) 285 { 286 return vma->vm_ops == &shmem_anon_vm_ops; 287 } 288 289 bool vma_is_shmem(const struct vm_area_struct *vma) 290 { 291 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 292 } 293 294 static LIST_HEAD(shmem_swaplist); 295 static DEFINE_SPINLOCK(shmem_swaplist_lock); 296 297 #ifdef CONFIG_TMPFS_QUOTA 298 299 static int shmem_enable_quotas(struct super_block *sb, 300 unsigned short quota_types) 301 { 302 int type, err = 0; 303 304 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 305 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 306 if (!(quota_types & (1 << type))) 307 continue; 308 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 309 DQUOT_USAGE_ENABLED | 310 DQUOT_LIMITS_ENABLED); 311 if (err) 312 goto out_err; 313 } 314 return 0; 315 316 out_err: 317 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 318 type, err); 319 for (type--; type >= 0; type--) 320 dquot_quota_off(sb, type); 321 return err; 322 } 323 324 static void shmem_disable_quotas(struct super_block *sb) 325 { 326 int type; 327 328 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 329 dquot_quota_off(sb, type); 330 } 331 332 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 333 { 334 return SHMEM_I(inode)->i_dquot; 335 } 336 #endif /* CONFIG_TMPFS_QUOTA */ 337 338 /* 339 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 340 * produces a novel ino for the newly allocated inode. 341 * 342 * It may also be called when making a hard link to permit the space needed by 343 * each dentry. However, in that case, no new inode number is needed since that 344 * internally draws from another pool of inode numbers (currently global 345 * get_next_ino()). This case is indicated by passing NULL as inop. 346 */ 347 #define SHMEM_INO_BATCH 1024 348 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 349 { 350 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 351 ino_t ino; 352 353 if (!(sb->s_flags & SB_KERNMOUNT)) { 354 raw_spin_lock(&sbinfo->stat_lock); 355 if (sbinfo->max_inodes) { 356 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 357 raw_spin_unlock(&sbinfo->stat_lock); 358 return -ENOSPC; 359 } 360 sbinfo->free_ispace -= BOGO_INODE_SIZE; 361 } 362 if (inop) { 363 ino = sbinfo->next_ino++; 364 if (unlikely(is_zero_ino(ino))) 365 ino = sbinfo->next_ino++; 366 if (unlikely(!sbinfo->full_inums && 367 ino > UINT_MAX)) { 368 /* 369 * Emulate get_next_ino uint wraparound for 370 * compatibility 371 */ 372 if (IS_ENABLED(CONFIG_64BIT)) 373 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 374 __func__, MINOR(sb->s_dev)); 375 sbinfo->next_ino = 1; 376 ino = sbinfo->next_ino++; 377 } 378 *inop = ino; 379 } 380 raw_spin_unlock(&sbinfo->stat_lock); 381 } else if (inop) { 382 /* 383 * __shmem_file_setup, one of our callers, is lock-free: it 384 * doesn't hold stat_lock in shmem_reserve_inode since 385 * max_inodes is always 0, and is called from potentially 386 * unknown contexts. As such, use a per-cpu batched allocator 387 * which doesn't require the per-sb stat_lock unless we are at 388 * the batch boundary. 389 * 390 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 391 * shmem mounts are not exposed to userspace, so we don't need 392 * to worry about things like glibc compatibility. 393 */ 394 ino_t *next_ino; 395 396 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 397 ino = *next_ino; 398 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 399 raw_spin_lock(&sbinfo->stat_lock); 400 ino = sbinfo->next_ino; 401 sbinfo->next_ino += SHMEM_INO_BATCH; 402 raw_spin_unlock(&sbinfo->stat_lock); 403 if (unlikely(is_zero_ino(ino))) 404 ino++; 405 } 406 *inop = ino; 407 *next_ino = ++ino; 408 put_cpu(); 409 } 410 411 return 0; 412 } 413 414 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 415 { 416 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 417 if (sbinfo->max_inodes) { 418 raw_spin_lock(&sbinfo->stat_lock); 419 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 420 raw_spin_unlock(&sbinfo->stat_lock); 421 } 422 } 423 424 /** 425 * shmem_recalc_inode - recalculate the block usage of an inode 426 * @inode: inode to recalc 427 * @alloced: the change in number of pages allocated to inode 428 * @swapped: the change in number of pages swapped from inode 429 * 430 * We have to calculate the free blocks since the mm can drop 431 * undirtied hole pages behind our back. 432 * 433 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 434 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 435 * 436 * Return: true if swapped was incremented from 0, for shmem_writeout(). 437 */ 438 bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 439 { 440 struct shmem_inode_info *info = SHMEM_I(inode); 441 bool first_swapped = false; 442 long freed; 443 444 spin_lock(&info->lock); 445 info->alloced += alloced; 446 info->swapped += swapped; 447 freed = info->alloced - info->swapped - 448 READ_ONCE(inode->i_mapping->nrpages); 449 /* 450 * Special case: whereas normally shmem_recalc_inode() is called 451 * after i_mapping->nrpages has already been adjusted (up or down), 452 * shmem_writeout() has to raise swapped before nrpages is lowered - 453 * to stop a racing shmem_recalc_inode() from thinking that a page has 454 * been freed. Compensate here, to avoid the need for a followup call. 455 */ 456 if (swapped > 0) { 457 if (info->swapped == swapped) 458 first_swapped = true; 459 freed += swapped; 460 } 461 if (freed > 0) 462 info->alloced -= freed; 463 spin_unlock(&info->lock); 464 465 /* The quota case may block */ 466 if (freed > 0) 467 shmem_inode_unacct_blocks(inode, freed); 468 return first_swapped; 469 } 470 471 bool shmem_charge(struct inode *inode, long pages) 472 { 473 struct address_space *mapping = inode->i_mapping; 474 475 if (shmem_inode_acct_blocks(inode, pages)) 476 return false; 477 478 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 479 xa_lock_irq(&mapping->i_pages); 480 mapping->nrpages += pages; 481 xa_unlock_irq(&mapping->i_pages); 482 483 shmem_recalc_inode(inode, pages, 0); 484 return true; 485 } 486 487 void shmem_uncharge(struct inode *inode, long pages) 488 { 489 /* pages argument is currently unused: keep it to help debugging */ 490 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 491 492 shmem_recalc_inode(inode, 0, 0); 493 } 494 495 /* 496 * Replace item expected in xarray by a new item, while holding xa_lock. 497 */ 498 static int shmem_replace_entry(struct address_space *mapping, 499 pgoff_t index, void *expected, void *replacement) 500 { 501 XA_STATE(xas, &mapping->i_pages, index); 502 void *item; 503 504 VM_BUG_ON(!expected); 505 VM_BUG_ON(!replacement); 506 item = xas_load(&xas); 507 if (item != expected) 508 return -ENOENT; 509 xas_store(&xas, replacement); 510 return 0; 511 } 512 513 /* 514 * Sometimes, before we decide whether to proceed or to fail, we must check 515 * that an entry was not already brought back or split by a racing thread. 516 * 517 * Checking folio is not enough: by the time a swapcache folio is locked, it 518 * might be reused, and again be swapcache, using the same swap as before. 519 * Returns the swap entry's order if it still presents, else returns -1. 520 */ 521 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index, 522 swp_entry_t swap) 523 { 524 XA_STATE(xas, &mapping->i_pages, index); 525 int ret = -1; 526 void *entry; 527 528 rcu_read_lock(); 529 do { 530 entry = xas_load(&xas); 531 if (entry == swp_to_radix_entry(swap)) 532 ret = xas_get_order(&xas); 533 } while (xas_retry(&xas, entry)); 534 rcu_read_unlock(); 535 return ret; 536 } 537 538 /* 539 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 540 * 541 * SHMEM_HUGE_NEVER: 542 * disables huge pages for the mount; 543 * SHMEM_HUGE_ALWAYS: 544 * enables huge pages for the mount; 545 * SHMEM_HUGE_WITHIN_SIZE: 546 * only allocate huge pages if the page will be fully within i_size, 547 * also respect madvise() hints; 548 * SHMEM_HUGE_ADVISE: 549 * only allocate huge pages if requested with madvise(); 550 */ 551 552 #define SHMEM_HUGE_NEVER 0 553 #define SHMEM_HUGE_ALWAYS 1 554 #define SHMEM_HUGE_WITHIN_SIZE 2 555 #define SHMEM_HUGE_ADVISE 3 556 557 /* 558 * Special values. 559 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 560 * 561 * SHMEM_HUGE_DENY: 562 * disables huge on shm_mnt and all mounts, for emergency use; 563 * SHMEM_HUGE_FORCE: 564 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 565 * 566 */ 567 #define SHMEM_HUGE_DENY (-1) 568 #define SHMEM_HUGE_FORCE (-2) 569 570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 571 /* ifdef here to avoid bloating shmem.o when not necessary */ 572 573 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_NEVER) 574 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER 575 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ALWAYS) 576 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ALWAYS 577 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_WITHIN_SIZE) 578 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE 579 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ADVISE) 580 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ADVISE 581 #else 582 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER 583 #endif 584 585 static int shmem_huge __read_mostly = SHMEM_HUGE_DEFAULT; 586 587 #undef SHMEM_HUGE_DEFAULT 588 589 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_NEVER) 590 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER 591 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ALWAYS) 592 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ALWAYS 593 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_WITHIN_SIZE) 594 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE 595 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ADVISE) 596 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ADVISE 597 #else 598 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER 599 #endif 600 601 static int tmpfs_huge __read_mostly = TMPFS_HUGE_DEFAULT; 602 603 #undef TMPFS_HUGE_DEFAULT 604 605 static unsigned int shmem_get_orders_within_size(struct inode *inode, 606 unsigned long within_size_orders, pgoff_t index, 607 loff_t write_end) 608 { 609 pgoff_t aligned_index; 610 unsigned long order; 611 loff_t i_size; 612 613 order = highest_order(within_size_orders); 614 while (within_size_orders) { 615 aligned_index = round_up(index + 1, 1 << order); 616 i_size = max(write_end, i_size_read(inode)); 617 i_size = round_up(i_size, PAGE_SIZE); 618 if (i_size >> PAGE_SHIFT >= aligned_index) 619 return within_size_orders; 620 621 order = next_order(&within_size_orders, order); 622 } 623 624 return 0; 625 } 626 627 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 628 loff_t write_end, bool shmem_huge_force, 629 struct vm_area_struct *vma, 630 vm_flags_t vm_flags) 631 { 632 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ? 633 0 : BIT(HPAGE_PMD_ORDER); 634 unsigned long within_size_orders; 635 636 if (!S_ISREG(inode->i_mode)) 637 return 0; 638 if (shmem_huge == SHMEM_HUGE_DENY) 639 return 0; 640 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 641 return maybe_pmd_order; 642 643 /* 644 * The huge order allocation for anon shmem is controlled through 645 * the mTHP interface, so we still use PMD-sized huge order to 646 * check whether global control is enabled. 647 * 648 * For tmpfs with 'huge=always' or 'huge=within_size' mount option, 649 * we will always try PMD-sized order first. If that failed, it will 650 * fall back to small large folios. 651 */ 652 switch (SHMEM_SB(inode->i_sb)->huge) { 653 case SHMEM_HUGE_ALWAYS: 654 return THP_ORDERS_ALL_FILE_DEFAULT; 655 case SHMEM_HUGE_WITHIN_SIZE: 656 within_size_orders = shmem_get_orders_within_size(inode, 657 THP_ORDERS_ALL_FILE_DEFAULT, index, write_end); 658 if (within_size_orders > 0) 659 return within_size_orders; 660 661 fallthrough; 662 case SHMEM_HUGE_ADVISE: 663 if (vm_flags & VM_HUGEPAGE) 664 return THP_ORDERS_ALL_FILE_DEFAULT; 665 fallthrough; 666 default: 667 return 0; 668 } 669 } 670 671 static int shmem_parse_huge(const char *str) 672 { 673 int huge; 674 675 if (!str) 676 return -EINVAL; 677 678 if (!strcmp(str, "never")) 679 huge = SHMEM_HUGE_NEVER; 680 else if (!strcmp(str, "always")) 681 huge = SHMEM_HUGE_ALWAYS; 682 else if (!strcmp(str, "within_size")) 683 huge = SHMEM_HUGE_WITHIN_SIZE; 684 else if (!strcmp(str, "advise")) 685 huge = SHMEM_HUGE_ADVISE; 686 else if (!strcmp(str, "deny")) 687 huge = SHMEM_HUGE_DENY; 688 else if (!strcmp(str, "force")) 689 huge = SHMEM_HUGE_FORCE; 690 else 691 return -EINVAL; 692 693 if (!has_transparent_hugepage() && 694 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 695 return -EINVAL; 696 697 /* Do not override huge allocation policy with non-PMD sized mTHP */ 698 if (huge == SHMEM_HUGE_FORCE && 699 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 700 return -EINVAL; 701 702 return huge; 703 } 704 705 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 706 static const char *shmem_format_huge(int huge) 707 { 708 switch (huge) { 709 case SHMEM_HUGE_NEVER: 710 return "never"; 711 case SHMEM_HUGE_ALWAYS: 712 return "always"; 713 case SHMEM_HUGE_WITHIN_SIZE: 714 return "within_size"; 715 case SHMEM_HUGE_ADVISE: 716 return "advise"; 717 case SHMEM_HUGE_DENY: 718 return "deny"; 719 case SHMEM_HUGE_FORCE: 720 return "force"; 721 default: 722 VM_BUG_ON(1); 723 return "bad_val"; 724 } 725 } 726 #endif 727 728 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 729 struct shrink_control *sc, unsigned long nr_to_free) 730 { 731 LIST_HEAD(list), *pos, *next; 732 struct inode *inode; 733 struct shmem_inode_info *info; 734 struct folio *folio; 735 unsigned long batch = sc ? sc->nr_to_scan : 128; 736 unsigned long split = 0, freed = 0; 737 738 if (list_empty(&sbinfo->shrinklist)) 739 return SHRINK_STOP; 740 741 spin_lock(&sbinfo->shrinklist_lock); 742 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 743 info = list_entry(pos, struct shmem_inode_info, shrinklist); 744 745 /* pin the inode */ 746 inode = igrab(&info->vfs_inode); 747 748 /* inode is about to be evicted */ 749 if (!inode) { 750 list_del_init(&info->shrinklist); 751 goto next; 752 } 753 754 list_move(&info->shrinklist, &list); 755 next: 756 sbinfo->shrinklist_len--; 757 if (!--batch) 758 break; 759 } 760 spin_unlock(&sbinfo->shrinklist_lock); 761 762 list_for_each_safe(pos, next, &list) { 763 pgoff_t next, end; 764 loff_t i_size; 765 int ret; 766 767 info = list_entry(pos, struct shmem_inode_info, shrinklist); 768 inode = &info->vfs_inode; 769 770 if (nr_to_free && freed >= nr_to_free) 771 goto move_back; 772 773 i_size = i_size_read(inode); 774 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 775 if (!folio || xa_is_value(folio)) 776 goto drop; 777 778 /* No large folio at the end of the file: nothing to split */ 779 if (!folio_test_large(folio)) { 780 folio_put(folio); 781 goto drop; 782 } 783 784 /* Check if there is anything to gain from splitting */ 785 next = folio_next_index(folio); 786 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 787 if (end <= folio->index || end >= next) { 788 folio_put(folio); 789 goto drop; 790 } 791 792 /* 793 * Move the inode on the list back to shrinklist if we failed 794 * to lock the page at this time. 795 * 796 * Waiting for the lock may lead to deadlock in the 797 * reclaim path. 798 */ 799 if (!folio_trylock(folio)) { 800 folio_put(folio); 801 goto move_back; 802 } 803 804 ret = split_folio(folio); 805 folio_unlock(folio); 806 folio_put(folio); 807 808 /* If split failed move the inode on the list back to shrinklist */ 809 if (ret) 810 goto move_back; 811 812 freed += next - end; 813 split++; 814 drop: 815 list_del_init(&info->shrinklist); 816 goto put; 817 move_back: 818 /* 819 * Make sure the inode is either on the global list or deleted 820 * from any local list before iput() since it could be deleted 821 * in another thread once we put the inode (then the local list 822 * is corrupted). 823 */ 824 spin_lock(&sbinfo->shrinklist_lock); 825 list_move(&info->shrinklist, &sbinfo->shrinklist); 826 sbinfo->shrinklist_len++; 827 spin_unlock(&sbinfo->shrinklist_lock); 828 put: 829 iput(inode); 830 } 831 832 return split; 833 } 834 835 static long shmem_unused_huge_scan(struct super_block *sb, 836 struct shrink_control *sc) 837 { 838 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 839 840 if (!READ_ONCE(sbinfo->shrinklist_len)) 841 return SHRINK_STOP; 842 843 return shmem_unused_huge_shrink(sbinfo, sc, 0); 844 } 845 846 static long shmem_unused_huge_count(struct super_block *sb, 847 struct shrink_control *sc) 848 { 849 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 850 return READ_ONCE(sbinfo->shrinklist_len); 851 } 852 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 853 854 #define shmem_huge SHMEM_HUGE_DENY 855 856 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 857 struct shrink_control *sc, unsigned long nr_to_free) 858 { 859 return 0; 860 } 861 862 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 863 loff_t write_end, bool shmem_huge_force, 864 struct vm_area_struct *vma, 865 vm_flags_t vm_flags) 866 { 867 return 0; 868 } 869 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 870 871 static void shmem_update_stats(struct folio *folio, int nr_pages) 872 { 873 if (folio_test_pmd_mappable(folio)) 874 lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 875 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 876 lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 877 } 878 879 /* 880 * Somewhat like filemap_add_folio, but error if expected item has gone. 881 */ 882 int shmem_add_to_page_cache(struct folio *folio, 883 struct address_space *mapping, 884 pgoff_t index, void *expected, gfp_t gfp) 885 { 886 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 887 unsigned long nr = folio_nr_pages(folio); 888 swp_entry_t iter, swap; 889 void *entry; 890 891 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 892 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 893 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 894 895 folio_ref_add(folio, nr); 896 folio->mapping = mapping; 897 folio->index = index; 898 899 gfp &= GFP_RECLAIM_MASK; 900 folio_throttle_swaprate(folio, gfp); 901 swap = radix_to_swp_entry(expected); 902 903 do { 904 iter = swap; 905 xas_lock_irq(&xas); 906 xas_for_each_conflict(&xas, entry) { 907 /* 908 * The range must either be empty, or filled with 909 * expected swap entries. Shmem swap entries are never 910 * partially freed without split of both entry and 911 * folio, so there shouldn't be any holes. 912 */ 913 if (!expected || entry != swp_to_radix_entry(iter)) { 914 xas_set_err(&xas, -EEXIST); 915 goto unlock; 916 } 917 iter.val += 1 << xas_get_order(&xas); 918 } 919 if (expected && iter.val - nr != swap.val) { 920 xas_set_err(&xas, -EEXIST); 921 goto unlock; 922 } 923 xas_store(&xas, folio); 924 if (xas_error(&xas)) 925 goto unlock; 926 shmem_update_stats(folio, nr); 927 mapping->nrpages += nr; 928 unlock: 929 xas_unlock_irq(&xas); 930 } while (xas_nomem(&xas, gfp)); 931 932 if (xas_error(&xas)) { 933 folio->mapping = NULL; 934 folio_ref_sub(folio, nr); 935 return xas_error(&xas); 936 } 937 938 return 0; 939 } 940 941 /* 942 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 943 */ 944 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 945 { 946 struct address_space *mapping = folio->mapping; 947 long nr = folio_nr_pages(folio); 948 int error; 949 950 xa_lock_irq(&mapping->i_pages); 951 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 952 folio->mapping = NULL; 953 mapping->nrpages -= nr; 954 shmem_update_stats(folio, -nr); 955 xa_unlock_irq(&mapping->i_pages); 956 folio_put_refs(folio, nr); 957 BUG_ON(error); 958 } 959 960 /* 961 * Remove swap entry from page cache, free the swap and its page cache. Returns 962 * the number of pages being freed. 0 means entry not found in XArray (0 pages 963 * being freed). 964 */ 965 static long shmem_free_swap(struct address_space *mapping, 966 pgoff_t index, pgoff_t end, void *radswap) 967 { 968 XA_STATE(xas, &mapping->i_pages, index); 969 unsigned int nr_pages = 0; 970 pgoff_t base; 971 void *entry; 972 973 xas_lock_irq(&xas); 974 entry = xas_load(&xas); 975 if (entry == radswap) { 976 nr_pages = 1 << xas_get_order(&xas); 977 base = round_down(xas.xa_index, nr_pages); 978 if (base < index || base + nr_pages - 1 > end) 979 nr_pages = 0; 980 else 981 xas_store(&xas, NULL); 982 } 983 xas_unlock_irq(&xas); 984 985 if (nr_pages) 986 free_swap_and_cache_nr(radix_to_swp_entry(radswap), nr_pages); 987 988 return nr_pages; 989 } 990 991 /* 992 * Determine (in bytes) how many of the shmem object's pages mapped by the 993 * given offsets are swapped out. 994 * 995 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 996 * as long as the inode doesn't go away and racy results are not a problem. 997 */ 998 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 999 pgoff_t start, pgoff_t end) 1000 { 1001 XA_STATE(xas, &mapping->i_pages, start); 1002 struct folio *folio; 1003 unsigned long swapped = 0; 1004 unsigned long max = end - 1; 1005 1006 rcu_read_lock(); 1007 xas_for_each(&xas, folio, max) { 1008 if (xas_retry(&xas, folio)) 1009 continue; 1010 if (xa_is_value(folio)) 1011 swapped += 1 << xas_get_order(&xas); 1012 if (xas.xa_index == max) 1013 break; 1014 if (need_resched()) { 1015 xas_pause(&xas); 1016 cond_resched_rcu(); 1017 } 1018 } 1019 rcu_read_unlock(); 1020 1021 return swapped << PAGE_SHIFT; 1022 } 1023 1024 /* 1025 * Determine (in bytes) how many of the shmem object's pages mapped by the 1026 * given vma is swapped out. 1027 * 1028 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 1029 * as long as the inode doesn't go away and racy results are not a problem. 1030 */ 1031 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 1032 { 1033 struct inode *inode = file_inode(vma->vm_file); 1034 struct shmem_inode_info *info = SHMEM_I(inode); 1035 struct address_space *mapping = inode->i_mapping; 1036 unsigned long swapped; 1037 1038 /* Be careful as we don't hold info->lock */ 1039 swapped = READ_ONCE(info->swapped); 1040 1041 /* 1042 * The easier cases are when the shmem object has nothing in swap, or 1043 * the vma maps it whole. Then we can simply use the stats that we 1044 * already track. 1045 */ 1046 if (!swapped) 1047 return 0; 1048 1049 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 1050 return swapped << PAGE_SHIFT; 1051 1052 /* Here comes the more involved part */ 1053 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 1054 vma->vm_pgoff + vma_pages(vma)); 1055 } 1056 1057 /* 1058 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 1059 */ 1060 void shmem_unlock_mapping(struct address_space *mapping) 1061 { 1062 struct folio_batch fbatch; 1063 pgoff_t index = 0; 1064 1065 folio_batch_init(&fbatch); 1066 /* 1067 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 1068 */ 1069 while (!mapping_unevictable(mapping) && 1070 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 1071 check_move_unevictable_folios(&fbatch); 1072 folio_batch_release(&fbatch); 1073 cond_resched(); 1074 } 1075 } 1076 1077 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 1078 { 1079 struct folio *folio; 1080 1081 /* 1082 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 1083 * beyond i_size, and reports fallocated folios as holes. 1084 */ 1085 folio = filemap_get_entry(inode->i_mapping, index); 1086 if (!folio) 1087 return folio; 1088 if (!xa_is_value(folio)) { 1089 folio_lock(folio); 1090 if (folio->mapping == inode->i_mapping) 1091 return folio; 1092 /* The folio has been swapped out */ 1093 folio_unlock(folio); 1094 folio_put(folio); 1095 } 1096 /* 1097 * But read a folio back from swap if any of it is within i_size 1098 * (although in some cases this is just a waste of time). 1099 */ 1100 folio = NULL; 1101 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 1102 return folio; 1103 } 1104 1105 /* 1106 * Remove range of pages and swap entries from page cache, and free them. 1107 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1108 */ 1109 static void shmem_undo_range(struct inode *inode, loff_t lstart, uoff_t lend, 1110 bool unfalloc) 1111 { 1112 struct address_space *mapping = inode->i_mapping; 1113 struct shmem_inode_info *info = SHMEM_I(inode); 1114 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1115 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1116 struct folio_batch fbatch; 1117 pgoff_t indices[PAGEVEC_SIZE]; 1118 struct folio *folio; 1119 bool same_folio; 1120 long nr_swaps_freed = 0; 1121 pgoff_t index; 1122 int i; 1123 1124 if (lend == -1) 1125 end = -1; /* unsigned, so actually very big */ 1126 1127 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1128 info->fallocend = start; 1129 1130 folio_batch_init(&fbatch); 1131 index = start; 1132 while (index < end && find_lock_entries(mapping, &index, end - 1, 1133 &fbatch, indices)) { 1134 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1135 folio = fbatch.folios[i]; 1136 1137 if (xa_is_value(folio)) { 1138 if (unfalloc) 1139 continue; 1140 nr_swaps_freed += shmem_free_swap(mapping, indices[i], 1141 end - 1, folio); 1142 continue; 1143 } 1144 1145 if (!unfalloc || !folio_test_uptodate(folio)) 1146 truncate_inode_folio(mapping, folio); 1147 folio_unlock(folio); 1148 } 1149 folio_batch_remove_exceptionals(&fbatch); 1150 folio_batch_release(&fbatch); 1151 cond_resched(); 1152 } 1153 1154 /* 1155 * When undoing a failed fallocate, we want none of the partial folio 1156 * zeroing and splitting below, but shall want to truncate the whole 1157 * folio when !uptodate indicates that it was added by this fallocate, 1158 * even when [lstart, lend] covers only a part of the folio. 1159 */ 1160 if (unfalloc) 1161 goto whole_folios; 1162 1163 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1164 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1165 if (folio) { 1166 same_folio = lend < folio_next_pos(folio); 1167 folio_mark_dirty(folio); 1168 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1169 start = folio_next_index(folio); 1170 if (same_folio) 1171 end = folio->index; 1172 } 1173 folio_unlock(folio); 1174 folio_put(folio); 1175 folio = NULL; 1176 } 1177 1178 if (!same_folio) 1179 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1180 if (folio) { 1181 folio_mark_dirty(folio); 1182 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1183 end = folio->index; 1184 folio_unlock(folio); 1185 folio_put(folio); 1186 } 1187 1188 whole_folios: 1189 1190 index = start; 1191 while (index < end) { 1192 cond_resched(); 1193 1194 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1195 indices)) { 1196 /* If all gone or hole-punch or unfalloc, we're done */ 1197 if (index == start || end != -1) 1198 break; 1199 /* But if truncating, restart to make sure all gone */ 1200 index = start; 1201 continue; 1202 } 1203 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1204 folio = fbatch.folios[i]; 1205 1206 if (xa_is_value(folio)) { 1207 int order; 1208 long swaps_freed; 1209 1210 if (unfalloc) 1211 continue; 1212 swaps_freed = shmem_free_swap(mapping, indices[i], 1213 end - 1, folio); 1214 if (!swaps_freed) { 1215 pgoff_t base = indices[i]; 1216 1217 order = shmem_confirm_swap(mapping, indices[i], 1218 radix_to_swp_entry(folio)); 1219 /* 1220 * If found a large swap entry cross the end or start 1221 * border, skip it as the truncate_inode_partial_folio 1222 * above should have at least zerod its content once. 1223 */ 1224 if (order > 0) { 1225 base = round_down(base, 1 << order); 1226 if (base < start || base + (1 << order) > end) 1227 continue; 1228 } 1229 /* Swap was replaced by page or extended, retry */ 1230 index = base; 1231 break; 1232 } 1233 nr_swaps_freed += swaps_freed; 1234 continue; 1235 } 1236 1237 folio_lock(folio); 1238 1239 if (!unfalloc || !folio_test_uptodate(folio)) { 1240 if (folio_mapping(folio) != mapping) { 1241 /* Page was replaced by swap: retry */ 1242 folio_unlock(folio); 1243 index = indices[i]; 1244 break; 1245 } 1246 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1247 folio); 1248 1249 if (!folio_test_large(folio)) { 1250 truncate_inode_folio(mapping, folio); 1251 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1252 /* 1253 * If we split a page, reset the loop so 1254 * that we pick up the new sub pages. 1255 * Otherwise the THP was entirely 1256 * dropped or the target range was 1257 * zeroed, so just continue the loop as 1258 * is. 1259 */ 1260 if (!folio_test_large(folio)) { 1261 folio_unlock(folio); 1262 index = start; 1263 break; 1264 } 1265 } 1266 } 1267 folio_unlock(folio); 1268 } 1269 folio_batch_remove_exceptionals(&fbatch); 1270 folio_batch_release(&fbatch); 1271 } 1272 1273 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1274 } 1275 1276 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend) 1277 { 1278 shmem_undo_range(inode, lstart, lend, false); 1279 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1280 inode_inc_iversion(inode); 1281 } 1282 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1283 1284 static int shmem_getattr(struct mnt_idmap *idmap, 1285 const struct path *path, struct kstat *stat, 1286 u32 request_mask, unsigned int query_flags) 1287 { 1288 struct inode *inode = path->dentry->d_inode; 1289 struct shmem_inode_info *info = SHMEM_I(inode); 1290 1291 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1292 shmem_recalc_inode(inode, 0, 0); 1293 1294 if (info->fsflags & FS_APPEND_FL) 1295 stat->attributes |= STATX_ATTR_APPEND; 1296 if (info->fsflags & FS_IMMUTABLE_FL) 1297 stat->attributes |= STATX_ATTR_IMMUTABLE; 1298 if (info->fsflags & FS_NODUMP_FL) 1299 stat->attributes |= STATX_ATTR_NODUMP; 1300 stat->attributes_mask |= (STATX_ATTR_APPEND | 1301 STATX_ATTR_IMMUTABLE | 1302 STATX_ATTR_NODUMP); 1303 generic_fillattr(idmap, request_mask, inode, stat); 1304 1305 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1306 stat->blksize = HPAGE_PMD_SIZE; 1307 1308 if (request_mask & STATX_BTIME) { 1309 stat->result_mask |= STATX_BTIME; 1310 stat->btime.tv_sec = info->i_crtime.tv_sec; 1311 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1312 } 1313 1314 return 0; 1315 } 1316 1317 static int shmem_setattr(struct mnt_idmap *idmap, 1318 struct dentry *dentry, struct iattr *attr) 1319 { 1320 struct inode *inode = d_inode(dentry); 1321 struct shmem_inode_info *info = SHMEM_I(inode); 1322 int error; 1323 bool update_mtime = false; 1324 bool update_ctime = true; 1325 1326 error = setattr_prepare(idmap, dentry, attr); 1327 if (error) 1328 return error; 1329 1330 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1331 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1332 return -EPERM; 1333 } 1334 } 1335 1336 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1337 loff_t oldsize = inode->i_size; 1338 loff_t newsize = attr->ia_size; 1339 1340 /* protected by i_rwsem */ 1341 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1342 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1343 return -EPERM; 1344 1345 if (newsize != oldsize) { 1346 if (info->flags & SHMEM_F_MAPPING_FROZEN) 1347 return -EPERM; 1348 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1349 oldsize, newsize); 1350 if (error) 1351 return error; 1352 i_size_write(inode, newsize); 1353 update_mtime = true; 1354 } else { 1355 update_ctime = false; 1356 } 1357 if (newsize <= oldsize) { 1358 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1359 if (oldsize > holebegin) 1360 unmap_mapping_range(inode->i_mapping, 1361 holebegin, 0, 1); 1362 if (info->alloced) 1363 shmem_truncate_range(inode, 1364 newsize, (loff_t)-1); 1365 /* unmap again to remove racily COWed private pages */ 1366 if (oldsize > holebegin) 1367 unmap_mapping_range(inode->i_mapping, 1368 holebegin, 0, 1); 1369 } 1370 } 1371 1372 if (is_quota_modification(idmap, inode, attr)) { 1373 error = dquot_initialize(inode); 1374 if (error) 1375 return error; 1376 } 1377 1378 /* Transfer quota accounting */ 1379 if (i_uid_needs_update(idmap, attr, inode) || 1380 i_gid_needs_update(idmap, attr, inode)) { 1381 error = dquot_transfer(idmap, inode, attr); 1382 if (error) 1383 return error; 1384 } 1385 1386 setattr_copy(idmap, inode, attr); 1387 if (attr->ia_valid & ATTR_MODE) 1388 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1389 if (!error && update_ctime) { 1390 inode_set_ctime_current(inode); 1391 if (update_mtime) 1392 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1393 inode_inc_iversion(inode); 1394 } 1395 return error; 1396 } 1397 1398 static void shmem_evict_inode(struct inode *inode) 1399 { 1400 struct shmem_inode_info *info = SHMEM_I(inode); 1401 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1402 size_t freed = 0; 1403 1404 if (shmem_mapping(inode->i_mapping)) { 1405 shmem_unacct_size(info->flags, inode->i_size); 1406 inode->i_size = 0; 1407 mapping_set_exiting(inode->i_mapping); 1408 shmem_truncate_range(inode, 0, (loff_t)-1); 1409 if (!list_empty(&info->shrinklist)) { 1410 spin_lock(&sbinfo->shrinklist_lock); 1411 if (!list_empty(&info->shrinklist)) { 1412 list_del_init(&info->shrinklist); 1413 sbinfo->shrinklist_len--; 1414 } 1415 spin_unlock(&sbinfo->shrinklist_lock); 1416 } 1417 while (!list_empty(&info->swaplist)) { 1418 /* Wait while shmem_unuse() is scanning this inode... */ 1419 wait_var_event(&info->stop_eviction, 1420 !atomic_read(&info->stop_eviction)); 1421 spin_lock(&shmem_swaplist_lock); 1422 /* ...but beware of the race if we peeked too early */ 1423 if (!atomic_read(&info->stop_eviction)) 1424 list_del_init(&info->swaplist); 1425 spin_unlock(&shmem_swaplist_lock); 1426 } 1427 } 1428 1429 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1430 shmem_free_inode(inode->i_sb, freed); 1431 WARN_ON(inode->i_blocks); 1432 clear_inode(inode); 1433 #ifdef CONFIG_TMPFS_QUOTA 1434 dquot_free_inode(inode); 1435 dquot_drop(inode); 1436 #endif 1437 } 1438 1439 static unsigned int shmem_find_swap_entries(struct address_space *mapping, 1440 pgoff_t start, struct folio_batch *fbatch, 1441 pgoff_t *indices, unsigned int type) 1442 { 1443 XA_STATE(xas, &mapping->i_pages, start); 1444 struct folio *folio; 1445 swp_entry_t entry; 1446 1447 rcu_read_lock(); 1448 xas_for_each(&xas, folio, ULONG_MAX) { 1449 if (xas_retry(&xas, folio)) 1450 continue; 1451 1452 if (!xa_is_value(folio)) 1453 continue; 1454 1455 entry = radix_to_swp_entry(folio); 1456 /* 1457 * swapin error entries can be found in the mapping. But they're 1458 * deliberately ignored here as we've done everything we can do. 1459 */ 1460 if (swp_type(entry) != type) 1461 continue; 1462 1463 indices[folio_batch_count(fbatch)] = xas.xa_index; 1464 if (!folio_batch_add(fbatch, folio)) 1465 break; 1466 1467 if (need_resched()) { 1468 xas_pause(&xas); 1469 cond_resched_rcu(); 1470 } 1471 } 1472 rcu_read_unlock(); 1473 1474 return folio_batch_count(fbatch); 1475 } 1476 1477 /* 1478 * Move the swapped pages for an inode to page cache. Returns the count 1479 * of pages swapped in, or the error in case of failure. 1480 */ 1481 static int shmem_unuse_swap_entries(struct inode *inode, 1482 struct folio_batch *fbatch, pgoff_t *indices) 1483 { 1484 int i = 0; 1485 int ret = 0; 1486 int error = 0; 1487 struct address_space *mapping = inode->i_mapping; 1488 1489 for (i = 0; i < folio_batch_count(fbatch); i++) { 1490 struct folio *folio = fbatch->folios[i]; 1491 1492 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1493 mapping_gfp_mask(mapping), NULL, NULL); 1494 if (error == 0) { 1495 folio_unlock(folio); 1496 folio_put(folio); 1497 ret++; 1498 } 1499 if (error == -ENOMEM) 1500 break; 1501 error = 0; 1502 } 1503 return error ? error : ret; 1504 } 1505 1506 /* 1507 * If swap found in inode, free it and move page from swapcache to filecache. 1508 */ 1509 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1510 { 1511 struct address_space *mapping = inode->i_mapping; 1512 pgoff_t start = 0; 1513 struct folio_batch fbatch; 1514 pgoff_t indices[PAGEVEC_SIZE]; 1515 int ret = 0; 1516 1517 do { 1518 folio_batch_init(&fbatch); 1519 if (!shmem_find_swap_entries(mapping, start, &fbatch, 1520 indices, type)) { 1521 ret = 0; 1522 break; 1523 } 1524 1525 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1526 if (ret < 0) 1527 break; 1528 1529 start = indices[folio_batch_count(&fbatch) - 1]; 1530 } while (true); 1531 1532 return ret; 1533 } 1534 1535 /* 1536 * Read all the shared memory data that resides in the swap 1537 * device 'type' back into memory, so the swap device can be 1538 * unused. 1539 */ 1540 int shmem_unuse(unsigned int type) 1541 { 1542 struct shmem_inode_info *info, *next; 1543 int error = 0; 1544 1545 if (list_empty(&shmem_swaplist)) 1546 return 0; 1547 1548 spin_lock(&shmem_swaplist_lock); 1549 start_over: 1550 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1551 if (!info->swapped) { 1552 list_del_init(&info->swaplist); 1553 continue; 1554 } 1555 /* 1556 * Drop the swaplist mutex while searching the inode for swap; 1557 * but before doing so, make sure shmem_evict_inode() will not 1558 * remove placeholder inode from swaplist, nor let it be freed 1559 * (igrab() would protect from unlink, but not from unmount). 1560 */ 1561 atomic_inc(&info->stop_eviction); 1562 spin_unlock(&shmem_swaplist_lock); 1563 1564 error = shmem_unuse_inode(&info->vfs_inode, type); 1565 cond_resched(); 1566 1567 spin_lock(&shmem_swaplist_lock); 1568 if (atomic_dec_and_test(&info->stop_eviction)) 1569 wake_up_var(&info->stop_eviction); 1570 if (error) 1571 break; 1572 if (list_empty(&info->swaplist)) 1573 goto start_over; 1574 next = list_next_entry(info, swaplist); 1575 if (!info->swapped) 1576 list_del_init(&info->swaplist); 1577 } 1578 spin_unlock(&shmem_swaplist_lock); 1579 1580 return error; 1581 } 1582 1583 /** 1584 * shmem_writeout - Write the folio to swap 1585 * @folio: The folio to write 1586 * @plug: swap plug 1587 * @folio_list: list to put back folios on split 1588 * 1589 * Move the folio from the page cache to the swap cache. 1590 */ 1591 int shmem_writeout(struct folio *folio, struct swap_iocb **plug, 1592 struct list_head *folio_list) 1593 { 1594 struct address_space *mapping = folio->mapping; 1595 struct inode *inode = mapping->host; 1596 struct shmem_inode_info *info = SHMEM_I(inode); 1597 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1598 pgoff_t index; 1599 int nr_pages; 1600 bool split = false; 1601 1602 if ((info->flags & SHMEM_F_LOCKED) || sbinfo->noswap) 1603 goto redirty; 1604 1605 if (!total_swap_pages) 1606 goto redirty; 1607 1608 /* 1609 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1610 * split when swapping. 1611 * 1612 * And shrinkage of pages beyond i_size does not split swap, so 1613 * swapout of a large folio crossing i_size needs to split too 1614 * (unless fallocate has been used to preallocate beyond EOF). 1615 */ 1616 if (folio_test_large(folio)) { 1617 index = shmem_fallocend(inode, 1618 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1619 if ((index > folio->index && index < folio_next_index(folio)) || 1620 !IS_ENABLED(CONFIG_THP_SWAP)) 1621 split = true; 1622 } 1623 1624 if (split) { 1625 try_split: 1626 /* Ensure the subpages are still dirty */ 1627 folio_test_set_dirty(folio); 1628 if (split_folio_to_list(folio, folio_list)) 1629 goto redirty; 1630 folio_clear_dirty(folio); 1631 } 1632 1633 index = folio->index; 1634 nr_pages = folio_nr_pages(folio); 1635 1636 /* 1637 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1638 * value into swapfile.c, the only way we can correctly account for a 1639 * fallocated folio arriving here is now to initialize it and write it. 1640 * 1641 * That's okay for a folio already fallocated earlier, but if we have 1642 * not yet completed the fallocation, then (a) we want to keep track 1643 * of this folio in case we have to undo it, and (b) it may not be a 1644 * good idea to continue anyway, once we're pushing into swap. So 1645 * reactivate the folio, and let shmem_fallocate() quit when too many. 1646 */ 1647 if (!folio_test_uptodate(folio)) { 1648 if (inode->i_private) { 1649 struct shmem_falloc *shmem_falloc; 1650 spin_lock(&inode->i_lock); 1651 shmem_falloc = inode->i_private; 1652 if (shmem_falloc && 1653 !shmem_falloc->waitq && 1654 index >= shmem_falloc->start && 1655 index < shmem_falloc->next) 1656 shmem_falloc->nr_unswapped += nr_pages; 1657 else 1658 shmem_falloc = NULL; 1659 spin_unlock(&inode->i_lock); 1660 if (shmem_falloc) 1661 goto redirty; 1662 } 1663 folio_zero_range(folio, 0, folio_size(folio)); 1664 flush_dcache_folio(folio); 1665 folio_mark_uptodate(folio); 1666 } 1667 1668 if (!folio_alloc_swap(folio)) { 1669 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages); 1670 int error; 1671 1672 /* 1673 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1674 * if it's not already there. Do it now before the folio is 1675 * removed from page cache, when its pagelock no longer 1676 * protects the inode from eviction. And do it now, after 1677 * we've incremented swapped, because shmem_unuse() will 1678 * prune a !swapped inode from the swaplist. 1679 */ 1680 if (first_swapped) { 1681 spin_lock(&shmem_swaplist_lock); 1682 if (list_empty(&info->swaplist)) 1683 list_add(&info->swaplist, &shmem_swaplist); 1684 spin_unlock(&shmem_swaplist_lock); 1685 } 1686 1687 swap_shmem_alloc(folio->swap, nr_pages); 1688 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap)); 1689 1690 BUG_ON(folio_mapped(folio)); 1691 error = swap_writeout(folio, plug); 1692 if (error != AOP_WRITEPAGE_ACTIVATE) { 1693 /* folio has been unlocked */ 1694 return error; 1695 } 1696 1697 /* 1698 * The intention here is to avoid holding on to the swap when 1699 * zswap was unable to compress and unable to writeback; but 1700 * it will be appropriate if other reactivate cases are added. 1701 */ 1702 error = shmem_add_to_page_cache(folio, mapping, index, 1703 swp_to_radix_entry(folio->swap), 1704 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 1705 /* Swap entry might be erased by racing shmem_free_swap() */ 1706 if (!error) { 1707 shmem_recalc_inode(inode, 0, -nr_pages); 1708 swap_free_nr(folio->swap, nr_pages); 1709 } 1710 1711 /* 1712 * The swap_cache_del_folio() below could be left for 1713 * shrink_folio_list()'s folio_free_swap() to dispose of; 1714 * but I'm a little nervous about letting this folio out of 1715 * shmem_writeout() in a hybrid half-tmpfs-half-swap state 1716 * e.g. folio_mapping(folio) might give an unexpected answer. 1717 */ 1718 swap_cache_del_folio(folio); 1719 goto redirty; 1720 } 1721 if (nr_pages > 1) 1722 goto try_split; 1723 redirty: 1724 folio_mark_dirty(folio); 1725 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1726 } 1727 EXPORT_SYMBOL_GPL(shmem_writeout); 1728 1729 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1730 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1731 { 1732 char buffer[64]; 1733 1734 if (!mpol || mpol->mode == MPOL_DEFAULT) 1735 return; /* show nothing */ 1736 1737 mpol_to_str(buffer, sizeof(buffer), mpol); 1738 1739 seq_printf(seq, ",mpol=%s", buffer); 1740 } 1741 1742 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1743 { 1744 struct mempolicy *mpol = NULL; 1745 if (sbinfo->mpol) { 1746 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1747 mpol = sbinfo->mpol; 1748 mpol_get(mpol); 1749 raw_spin_unlock(&sbinfo->stat_lock); 1750 } 1751 return mpol; 1752 } 1753 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1754 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1755 { 1756 } 1757 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1758 { 1759 return NULL; 1760 } 1761 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1762 1763 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1764 pgoff_t index, unsigned int order, pgoff_t *ilx); 1765 1766 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1767 struct shmem_inode_info *info, pgoff_t index) 1768 { 1769 struct mempolicy *mpol; 1770 pgoff_t ilx; 1771 struct folio *folio; 1772 1773 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1774 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1775 mpol_cond_put(mpol); 1776 1777 return folio; 1778 } 1779 1780 /* 1781 * Make sure huge_gfp is always more limited than limit_gfp. 1782 * Some of the flags set permissions, while others set limitations. 1783 */ 1784 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1785 { 1786 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1787 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1788 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1789 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1790 1791 /* Allow allocations only from the originally specified zones. */ 1792 result |= zoneflags; 1793 1794 /* 1795 * Minimize the result gfp by taking the union with the deny flags, 1796 * and the intersection of the allow flags. 1797 */ 1798 result |= (limit_gfp & denyflags); 1799 result |= (huge_gfp & limit_gfp) & allowflags; 1800 1801 return result; 1802 } 1803 1804 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1805 bool shmem_hpage_pmd_enabled(void) 1806 { 1807 if (shmem_huge == SHMEM_HUGE_DENY) 1808 return false; 1809 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1810 return true; 1811 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1812 return true; 1813 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1814 return true; 1815 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1816 shmem_huge != SHMEM_HUGE_NEVER) 1817 return true; 1818 1819 return false; 1820 } 1821 1822 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1823 struct vm_area_struct *vma, pgoff_t index, 1824 loff_t write_end, bool shmem_huge_force) 1825 { 1826 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1827 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1828 vm_flags_t vm_flags = vma ? vma->vm_flags : 0; 1829 unsigned int global_orders; 1830 1831 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force))) 1832 return 0; 1833 1834 global_orders = shmem_huge_global_enabled(inode, index, write_end, 1835 shmem_huge_force, vma, vm_flags); 1836 /* Tmpfs huge pages allocation */ 1837 if (!vma || !vma_is_anon_shmem(vma)) 1838 return global_orders; 1839 1840 /* 1841 * Following the 'deny' semantics of the top level, force the huge 1842 * option off from all mounts. 1843 */ 1844 if (shmem_huge == SHMEM_HUGE_DENY) 1845 return 0; 1846 1847 /* 1848 * Only allow inherit orders if the top-level value is 'force', which 1849 * means non-PMD sized THP can not override 'huge' mount option now. 1850 */ 1851 if (shmem_huge == SHMEM_HUGE_FORCE) 1852 return READ_ONCE(huge_shmem_orders_inherit); 1853 1854 /* Allow mTHP that will be fully within i_size. */ 1855 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0); 1856 1857 if (vm_flags & VM_HUGEPAGE) 1858 mask |= READ_ONCE(huge_shmem_orders_madvise); 1859 1860 if (global_orders > 0) 1861 mask |= READ_ONCE(huge_shmem_orders_inherit); 1862 1863 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1864 } 1865 1866 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1867 struct address_space *mapping, pgoff_t index, 1868 unsigned long orders) 1869 { 1870 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1871 pgoff_t aligned_index; 1872 unsigned long pages; 1873 int order; 1874 1875 if (vma) { 1876 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1877 if (!orders) 1878 return 0; 1879 } 1880 1881 /* Find the highest order that can add into the page cache */ 1882 order = highest_order(orders); 1883 while (orders) { 1884 pages = 1UL << order; 1885 aligned_index = round_down(index, pages); 1886 /* 1887 * Check for conflict before waiting on a huge allocation. 1888 * Conflict might be that a huge page has just been allocated 1889 * and added to page cache by a racing thread, or that there 1890 * is already at least one small page in the huge extent. 1891 * Be careful to retry when appropriate, but not forever! 1892 * Elsewhere -EEXIST would be the right code, but not here. 1893 */ 1894 if (!xa_find(&mapping->i_pages, &aligned_index, 1895 aligned_index + pages - 1, XA_PRESENT)) 1896 break; 1897 order = next_order(&orders, order); 1898 } 1899 1900 return orders; 1901 } 1902 #else 1903 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1904 struct address_space *mapping, pgoff_t index, 1905 unsigned long orders) 1906 { 1907 return 0; 1908 } 1909 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1910 1911 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1912 struct shmem_inode_info *info, pgoff_t index) 1913 { 1914 struct mempolicy *mpol; 1915 pgoff_t ilx; 1916 struct folio *folio; 1917 1918 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1919 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1920 mpol_cond_put(mpol); 1921 1922 return folio; 1923 } 1924 1925 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1926 gfp_t gfp, struct inode *inode, pgoff_t index, 1927 struct mm_struct *fault_mm, unsigned long orders) 1928 { 1929 struct address_space *mapping = inode->i_mapping; 1930 struct shmem_inode_info *info = SHMEM_I(inode); 1931 unsigned long suitable_orders = 0; 1932 struct folio *folio = NULL; 1933 pgoff_t aligned_index; 1934 long pages; 1935 int error, order; 1936 1937 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1938 orders = 0; 1939 1940 if (orders > 0) { 1941 suitable_orders = shmem_suitable_orders(inode, vmf, 1942 mapping, index, orders); 1943 1944 order = highest_order(suitable_orders); 1945 while (suitable_orders) { 1946 pages = 1UL << order; 1947 aligned_index = round_down(index, pages); 1948 folio = shmem_alloc_folio(gfp, order, info, aligned_index); 1949 if (folio) { 1950 index = aligned_index; 1951 goto allocated; 1952 } 1953 1954 if (pages == HPAGE_PMD_NR) 1955 count_vm_event(THP_FILE_FALLBACK); 1956 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1957 order = next_order(&suitable_orders, order); 1958 } 1959 } else { 1960 pages = 1; 1961 folio = shmem_alloc_folio(gfp, 0, info, index); 1962 } 1963 if (!folio) 1964 return ERR_PTR(-ENOMEM); 1965 1966 allocated: 1967 __folio_set_locked(folio); 1968 __folio_set_swapbacked(folio); 1969 1970 gfp &= GFP_RECLAIM_MASK; 1971 error = mem_cgroup_charge(folio, fault_mm, gfp); 1972 if (error) { 1973 if (xa_find(&mapping->i_pages, &index, 1974 index + pages - 1, XA_PRESENT)) { 1975 error = -EEXIST; 1976 } else if (pages > 1) { 1977 if (pages == HPAGE_PMD_NR) { 1978 count_vm_event(THP_FILE_FALLBACK); 1979 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1980 } 1981 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1982 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1983 } 1984 goto unlock; 1985 } 1986 1987 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1988 if (error) 1989 goto unlock; 1990 1991 error = shmem_inode_acct_blocks(inode, pages); 1992 if (error) { 1993 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1994 long freed; 1995 /* 1996 * Try to reclaim some space by splitting a few 1997 * large folios beyond i_size on the filesystem. 1998 */ 1999 shmem_unused_huge_shrink(sbinfo, NULL, pages); 2000 /* 2001 * And do a shmem_recalc_inode() to account for freed pages: 2002 * except our folio is there in cache, so not quite balanced. 2003 */ 2004 spin_lock(&info->lock); 2005 freed = pages + info->alloced - info->swapped - 2006 READ_ONCE(mapping->nrpages); 2007 if (freed > 0) 2008 info->alloced -= freed; 2009 spin_unlock(&info->lock); 2010 if (freed > 0) 2011 shmem_inode_unacct_blocks(inode, freed); 2012 error = shmem_inode_acct_blocks(inode, pages); 2013 if (error) { 2014 filemap_remove_folio(folio); 2015 goto unlock; 2016 } 2017 } 2018 2019 shmem_recalc_inode(inode, pages, 0); 2020 folio_add_lru(folio); 2021 return folio; 2022 2023 unlock: 2024 folio_unlock(folio); 2025 folio_put(folio); 2026 return ERR_PTR(error); 2027 } 2028 2029 static struct folio *shmem_swap_alloc_folio(struct inode *inode, 2030 struct vm_area_struct *vma, pgoff_t index, 2031 swp_entry_t entry, int order, gfp_t gfp) 2032 { 2033 struct shmem_inode_info *info = SHMEM_I(inode); 2034 int nr_pages = 1 << order; 2035 struct folio *new; 2036 gfp_t alloc_gfp; 2037 void *shadow; 2038 2039 /* 2040 * We have arrived here because our zones are constrained, so don't 2041 * limit chance of success with further cpuset and node constraints. 2042 */ 2043 gfp &= ~GFP_CONSTRAINT_MASK; 2044 alloc_gfp = gfp; 2045 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 2046 if (WARN_ON_ONCE(order)) 2047 return ERR_PTR(-EINVAL); 2048 } else if (order) { 2049 /* 2050 * If uffd is active for the vma, we need per-page fault 2051 * fidelity to maintain the uffd semantics, then fallback 2052 * to swapin order-0 folio, as well as for zswap case. 2053 * Any existing sub folio in the swap cache also blocks 2054 * mTHP swapin. 2055 */ 2056 if ((vma && unlikely(userfaultfd_armed(vma))) || 2057 !zswap_never_enabled() || 2058 non_swapcache_batch(entry, nr_pages) != nr_pages) 2059 goto fallback; 2060 2061 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp); 2062 } 2063 retry: 2064 new = shmem_alloc_folio(alloc_gfp, order, info, index); 2065 if (!new) { 2066 new = ERR_PTR(-ENOMEM); 2067 goto fallback; 2068 } 2069 2070 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL, 2071 alloc_gfp, entry)) { 2072 folio_put(new); 2073 new = ERR_PTR(-ENOMEM); 2074 goto fallback; 2075 } 2076 2077 /* 2078 * Prevent parallel swapin from proceeding with the swap cache flag. 2079 * 2080 * Of course there is another possible concurrent scenario as well, 2081 * that is to say, the swap cache flag of a large folio has already 2082 * been set by swapcache_prepare(), while another thread may have 2083 * already split the large swap entry stored in the shmem mapping. 2084 * In this case, shmem_add_to_page_cache() will help identify the 2085 * concurrent swapin and return -EEXIST. 2086 */ 2087 if (swapcache_prepare(entry, nr_pages)) { 2088 folio_put(new); 2089 new = ERR_PTR(-EEXIST); 2090 /* Try smaller folio to avoid cache conflict */ 2091 goto fallback; 2092 } 2093 2094 __folio_set_locked(new); 2095 __folio_set_swapbacked(new); 2096 new->swap = entry; 2097 2098 memcg1_swapin(entry, nr_pages); 2099 shadow = swap_cache_get_shadow(entry); 2100 if (shadow) 2101 workingset_refault(new, shadow); 2102 folio_add_lru(new); 2103 swap_read_folio(new, NULL); 2104 return new; 2105 fallback: 2106 /* Order 0 swapin failed, nothing to fallback to, abort */ 2107 if (!order) 2108 return new; 2109 entry.val += index - round_down(index, nr_pages); 2110 alloc_gfp = gfp; 2111 nr_pages = 1; 2112 order = 0; 2113 goto retry; 2114 } 2115 2116 /* 2117 * When a page is moved from swapcache to shmem filecache (either by the 2118 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 2119 * shmem_unuse_inode()), it may have been read in earlier from swap, in 2120 * ignorance of the mapping it belongs to. If that mapping has special 2121 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 2122 * we may need to copy to a suitable page before moving to filecache. 2123 * 2124 * In a future release, this may well be extended to respect cpuset and 2125 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 2126 * but for now it is a simple matter of zone. 2127 */ 2128 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 2129 { 2130 return folio_zonenum(folio) > gfp_zone(gfp); 2131 } 2132 2133 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 2134 struct shmem_inode_info *info, pgoff_t index, 2135 struct vm_area_struct *vma) 2136 { 2137 struct swap_cluster_info *ci; 2138 struct folio *new, *old = *foliop; 2139 swp_entry_t entry = old->swap; 2140 int nr_pages = folio_nr_pages(old); 2141 int error = 0; 2142 2143 /* 2144 * We have arrived here because our zones are constrained, so don't 2145 * limit chance of success by further cpuset and node constraints. 2146 */ 2147 gfp &= ~GFP_CONSTRAINT_MASK; 2148 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2149 if (nr_pages > 1) { 2150 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 2151 2152 gfp = limit_gfp_mask(huge_gfp, gfp); 2153 } 2154 #endif 2155 2156 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 2157 if (!new) 2158 return -ENOMEM; 2159 2160 folio_ref_add(new, nr_pages); 2161 folio_copy(new, old); 2162 flush_dcache_folio(new); 2163 2164 __folio_set_locked(new); 2165 __folio_set_swapbacked(new); 2166 folio_mark_uptodate(new); 2167 new->swap = entry; 2168 folio_set_swapcache(new); 2169 2170 ci = swap_cluster_get_and_lock_irq(old); 2171 __swap_cache_replace_folio(ci, old, new); 2172 mem_cgroup_replace_folio(old, new); 2173 shmem_update_stats(new, nr_pages); 2174 shmem_update_stats(old, -nr_pages); 2175 swap_cluster_unlock_irq(ci); 2176 2177 folio_add_lru(new); 2178 *foliop = new; 2179 2180 folio_clear_swapcache(old); 2181 old->private = NULL; 2182 2183 folio_unlock(old); 2184 /* 2185 * The old folio are removed from swap cache, drop the 'nr_pages' 2186 * reference, as well as one temporary reference getting from swap 2187 * cache. 2188 */ 2189 folio_put_refs(old, nr_pages + 1); 2190 return error; 2191 } 2192 2193 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2194 struct folio *folio, swp_entry_t swap, 2195 bool skip_swapcache) 2196 { 2197 struct address_space *mapping = inode->i_mapping; 2198 swp_entry_t swapin_error; 2199 void *old; 2200 int nr_pages; 2201 2202 swapin_error = make_poisoned_swp_entry(); 2203 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2204 swp_to_radix_entry(swap), 2205 swp_to_radix_entry(swapin_error), 0); 2206 if (old != swp_to_radix_entry(swap)) 2207 return; 2208 2209 nr_pages = folio_nr_pages(folio); 2210 folio_wait_writeback(folio); 2211 if (!skip_swapcache) 2212 swap_cache_del_folio(folio); 2213 /* 2214 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2215 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2216 * in shmem_evict_inode(). 2217 */ 2218 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2219 swap_free_nr(swap, nr_pages); 2220 } 2221 2222 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2223 swp_entry_t swap, gfp_t gfp) 2224 { 2225 struct address_space *mapping = inode->i_mapping; 2226 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2227 int split_order = 0; 2228 int i; 2229 2230 /* Convert user data gfp flags to xarray node gfp flags */ 2231 gfp &= GFP_RECLAIM_MASK; 2232 2233 for (;;) { 2234 void *old = NULL; 2235 int cur_order; 2236 pgoff_t swap_index; 2237 2238 xas_lock_irq(&xas); 2239 old = xas_load(&xas); 2240 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2241 xas_set_err(&xas, -EEXIST); 2242 goto unlock; 2243 } 2244 2245 cur_order = xas_get_order(&xas); 2246 if (!cur_order) 2247 goto unlock; 2248 2249 /* Try to split large swap entry in pagecache */ 2250 swap_index = round_down(index, 1 << cur_order); 2251 split_order = xas_try_split_min_order(cur_order); 2252 2253 while (cur_order > 0) { 2254 pgoff_t aligned_index = 2255 round_down(index, 1 << cur_order); 2256 pgoff_t swap_offset = aligned_index - swap_index; 2257 2258 xas_set_order(&xas, index, split_order); 2259 xas_try_split(&xas, old, cur_order); 2260 if (xas_error(&xas)) 2261 goto unlock; 2262 2263 /* 2264 * Re-set the swap entry after splitting, and the swap 2265 * offset of the original large entry must be continuous. 2266 */ 2267 for (i = 0; i < 1 << cur_order; 2268 i += (1 << split_order)) { 2269 swp_entry_t tmp; 2270 2271 tmp = swp_entry(swp_type(swap), 2272 swp_offset(swap) + swap_offset + 2273 i); 2274 __xa_store(&mapping->i_pages, aligned_index + i, 2275 swp_to_radix_entry(tmp), 0); 2276 } 2277 cur_order = split_order; 2278 split_order = xas_try_split_min_order(split_order); 2279 } 2280 2281 unlock: 2282 xas_unlock_irq(&xas); 2283 2284 if (!xas_nomem(&xas, gfp)) 2285 break; 2286 } 2287 2288 if (xas_error(&xas)) 2289 return xas_error(&xas); 2290 2291 return 0; 2292 } 2293 2294 /* 2295 * Swap in the folio pointed to by *foliop. 2296 * Caller has to make sure that *foliop contains a valid swapped folio. 2297 * Returns 0 and the folio in foliop if success. On failure, returns the 2298 * error code and NULL in *foliop. 2299 */ 2300 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2301 struct folio **foliop, enum sgp_type sgp, 2302 gfp_t gfp, struct vm_area_struct *vma, 2303 vm_fault_t *fault_type) 2304 { 2305 struct address_space *mapping = inode->i_mapping; 2306 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2307 struct shmem_inode_info *info = SHMEM_I(inode); 2308 swp_entry_t swap; 2309 softleaf_t index_entry; 2310 struct swap_info_struct *si; 2311 struct folio *folio = NULL; 2312 bool skip_swapcache = false; 2313 int error, nr_pages, order; 2314 pgoff_t offset; 2315 2316 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2317 index_entry = radix_to_swp_entry(*foliop); 2318 swap = index_entry; 2319 *foliop = NULL; 2320 2321 if (softleaf_is_poison_marker(index_entry)) 2322 return -EIO; 2323 2324 si = get_swap_device(index_entry); 2325 order = shmem_confirm_swap(mapping, index, index_entry); 2326 if (unlikely(!si)) { 2327 if (order < 0) 2328 return -EEXIST; 2329 else 2330 return -EINVAL; 2331 } 2332 if (unlikely(order < 0)) { 2333 put_swap_device(si); 2334 return -EEXIST; 2335 } 2336 2337 /* index may point to the middle of a large entry, get the sub entry */ 2338 if (order) { 2339 offset = index - round_down(index, 1 << order); 2340 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2341 } 2342 2343 /* Look it up and read it in.. */ 2344 folio = swap_cache_get_folio(swap); 2345 if (!folio) { 2346 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 2347 /* Direct swapin skipping swap cache & readahead */ 2348 folio = shmem_swap_alloc_folio(inode, vma, index, 2349 index_entry, order, gfp); 2350 if (IS_ERR(folio)) { 2351 error = PTR_ERR(folio); 2352 folio = NULL; 2353 goto failed; 2354 } 2355 skip_swapcache = true; 2356 } else { 2357 /* Cached swapin only supports order 0 folio */ 2358 folio = shmem_swapin_cluster(swap, gfp, info, index); 2359 if (!folio) { 2360 error = -ENOMEM; 2361 goto failed; 2362 } 2363 } 2364 if (fault_type) { 2365 *fault_type |= VM_FAULT_MAJOR; 2366 count_vm_event(PGMAJFAULT); 2367 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2368 } 2369 } else { 2370 swap_update_readahead(folio, NULL, 0); 2371 } 2372 2373 if (order > folio_order(folio)) { 2374 /* 2375 * Swapin may get smaller folios due to various reasons: 2376 * It may fallback to order 0 due to memory pressure or race, 2377 * swap readahead may swap in order 0 folios into swapcache 2378 * asynchronously, while the shmem mapping can still stores 2379 * large swap entries. In such cases, we should split the 2380 * large swap entry to prevent possible data corruption. 2381 */ 2382 error = shmem_split_large_entry(inode, index, index_entry, gfp); 2383 if (error) 2384 goto failed_nolock; 2385 } 2386 2387 /* 2388 * If the folio is large, round down swap and index by folio size. 2389 * No matter what race occurs, the swap layer ensures we either get 2390 * a valid folio that has its swap entry aligned by size, or a 2391 * temporarily invalid one which we'll abort very soon and retry. 2392 * 2393 * shmem_add_to_page_cache ensures the whole range contains expected 2394 * entries and prevents any corruption, so any race split is fine 2395 * too, it will succeed as long as the entries are still there. 2396 */ 2397 nr_pages = folio_nr_pages(folio); 2398 if (nr_pages > 1) { 2399 swap.val = round_down(swap.val, nr_pages); 2400 index = round_down(index, nr_pages); 2401 } 2402 2403 /* 2404 * We have to do this with the folio locked to prevent races. 2405 * The shmem_confirm_swap below only checks if the first swap 2406 * entry matches the folio, that's enough to ensure the folio 2407 * is not used outside of shmem, as shmem swap entries 2408 * and swap cache folios are never partially freed. 2409 */ 2410 folio_lock(folio); 2411 if ((!skip_swapcache && !folio_test_swapcache(folio)) || 2412 shmem_confirm_swap(mapping, index, swap) < 0 || 2413 folio->swap.val != swap.val) { 2414 error = -EEXIST; 2415 goto unlock; 2416 } 2417 if (!folio_test_uptodate(folio)) { 2418 error = -EIO; 2419 goto failed; 2420 } 2421 folio_wait_writeback(folio); 2422 2423 /* 2424 * Some architectures may have to restore extra metadata to the 2425 * folio after reading from swap. 2426 */ 2427 arch_swap_restore(folio_swap(swap, folio), folio); 2428 2429 if (shmem_should_replace_folio(folio, gfp)) { 2430 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2431 if (error) 2432 goto failed; 2433 } 2434 2435 error = shmem_add_to_page_cache(folio, mapping, index, 2436 swp_to_radix_entry(swap), gfp); 2437 if (error) 2438 goto failed; 2439 2440 shmem_recalc_inode(inode, 0, -nr_pages); 2441 2442 if (sgp == SGP_WRITE) 2443 folio_mark_accessed(folio); 2444 2445 if (skip_swapcache) { 2446 folio->swap.val = 0; 2447 swapcache_clear(si, swap, nr_pages); 2448 } else { 2449 swap_cache_del_folio(folio); 2450 } 2451 folio_mark_dirty(folio); 2452 swap_free_nr(swap, nr_pages); 2453 put_swap_device(si); 2454 2455 *foliop = folio; 2456 return 0; 2457 failed: 2458 if (shmem_confirm_swap(mapping, index, swap) < 0) 2459 error = -EEXIST; 2460 if (error == -EIO) 2461 shmem_set_folio_swapin_error(inode, index, folio, swap, 2462 skip_swapcache); 2463 unlock: 2464 if (folio) 2465 folio_unlock(folio); 2466 failed_nolock: 2467 if (skip_swapcache) 2468 swapcache_clear(si, folio->swap, folio_nr_pages(folio)); 2469 if (folio) 2470 folio_put(folio); 2471 put_swap_device(si); 2472 2473 return error; 2474 } 2475 2476 /* 2477 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2478 * 2479 * If we allocate a new one we do not mark it dirty. That's up to the 2480 * vm. If we swap it in we mark it dirty since we also free the swap 2481 * entry since a page cannot live in both the swap and page cache. 2482 * 2483 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2484 */ 2485 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2486 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2487 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2488 { 2489 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2490 struct mm_struct *fault_mm; 2491 struct folio *folio; 2492 int error; 2493 bool alloced; 2494 unsigned long orders = 0; 2495 2496 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2497 return -EINVAL; 2498 2499 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2500 return -EFBIG; 2501 repeat: 2502 if (sgp <= SGP_CACHE && 2503 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2504 return -EINVAL; 2505 2506 alloced = false; 2507 fault_mm = vma ? vma->vm_mm : NULL; 2508 2509 folio = filemap_get_entry(inode->i_mapping, index); 2510 if (folio && vma && userfaultfd_minor(vma)) { 2511 if (!xa_is_value(folio)) 2512 folio_put(folio); 2513 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2514 return 0; 2515 } 2516 2517 if (xa_is_value(folio)) { 2518 error = shmem_swapin_folio(inode, index, &folio, 2519 sgp, gfp, vma, fault_type); 2520 if (error == -EEXIST) 2521 goto repeat; 2522 2523 *foliop = folio; 2524 return error; 2525 } 2526 2527 if (folio) { 2528 folio_lock(folio); 2529 2530 /* Has the folio been truncated or swapped out? */ 2531 if (unlikely(folio->mapping != inode->i_mapping)) { 2532 folio_unlock(folio); 2533 folio_put(folio); 2534 goto repeat; 2535 } 2536 if (sgp == SGP_WRITE) 2537 folio_mark_accessed(folio); 2538 if (folio_test_uptodate(folio)) 2539 goto out; 2540 /* fallocated folio */ 2541 if (sgp != SGP_READ) 2542 goto clear; 2543 folio_unlock(folio); 2544 folio_put(folio); 2545 } 2546 2547 /* 2548 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2549 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2550 */ 2551 *foliop = NULL; 2552 if (sgp == SGP_READ) 2553 return 0; 2554 if (sgp == SGP_NOALLOC) 2555 return -ENOENT; 2556 2557 /* 2558 * Fast cache lookup and swap lookup did not find it: allocate. 2559 */ 2560 2561 if (vma && userfaultfd_missing(vma)) { 2562 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2563 return 0; 2564 } 2565 2566 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2567 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2568 if (orders > 0) { 2569 gfp_t huge_gfp; 2570 2571 huge_gfp = vma_thp_gfp_mask(vma); 2572 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2573 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2574 inode, index, fault_mm, orders); 2575 if (!IS_ERR(folio)) { 2576 if (folio_test_pmd_mappable(folio)) 2577 count_vm_event(THP_FILE_ALLOC); 2578 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2579 goto alloced; 2580 } 2581 if (PTR_ERR(folio) == -EEXIST) 2582 goto repeat; 2583 } 2584 2585 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2586 if (IS_ERR(folio)) { 2587 error = PTR_ERR(folio); 2588 if (error == -EEXIST) 2589 goto repeat; 2590 folio = NULL; 2591 goto unlock; 2592 } 2593 2594 alloced: 2595 alloced = true; 2596 if (folio_test_large(folio) && 2597 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2598 folio_next_index(folio)) { 2599 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2600 struct shmem_inode_info *info = SHMEM_I(inode); 2601 /* 2602 * Part of the large folio is beyond i_size: subject 2603 * to shrink under memory pressure. 2604 */ 2605 spin_lock(&sbinfo->shrinklist_lock); 2606 /* 2607 * _careful to defend against unlocked access to 2608 * ->shrink_list in shmem_unused_huge_shrink() 2609 */ 2610 if (list_empty_careful(&info->shrinklist)) { 2611 list_add_tail(&info->shrinklist, 2612 &sbinfo->shrinklist); 2613 sbinfo->shrinklist_len++; 2614 } 2615 spin_unlock(&sbinfo->shrinklist_lock); 2616 } 2617 2618 if (sgp == SGP_WRITE) 2619 folio_set_referenced(folio); 2620 /* 2621 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2622 */ 2623 if (sgp == SGP_FALLOC) 2624 sgp = SGP_WRITE; 2625 clear: 2626 /* 2627 * Let SGP_WRITE caller clear ends if write does not fill folio; 2628 * but SGP_FALLOC on a folio fallocated earlier must initialize 2629 * it now, lest undo on failure cancel our earlier guarantee. 2630 */ 2631 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2632 long i, n = folio_nr_pages(folio); 2633 2634 for (i = 0; i < n; i++) 2635 clear_highpage(folio_page(folio, i)); 2636 flush_dcache_folio(folio); 2637 folio_mark_uptodate(folio); 2638 } 2639 2640 /* Perhaps the file has been truncated since we checked */ 2641 if (sgp <= SGP_CACHE && 2642 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2643 error = -EINVAL; 2644 goto unlock; 2645 } 2646 out: 2647 *foliop = folio; 2648 return 0; 2649 2650 /* 2651 * Error recovery. 2652 */ 2653 unlock: 2654 if (alloced) 2655 filemap_remove_folio(folio); 2656 shmem_recalc_inode(inode, 0, 0); 2657 if (folio) { 2658 folio_unlock(folio); 2659 folio_put(folio); 2660 } 2661 return error; 2662 } 2663 2664 /** 2665 * shmem_get_folio - find, and lock a shmem folio. 2666 * @inode: inode to search 2667 * @index: the page index. 2668 * @write_end: end of a write, could extend inode size 2669 * @foliop: pointer to the folio if found 2670 * @sgp: SGP_* flags to control behavior 2671 * 2672 * Looks up the page cache entry at @inode & @index. If a folio is 2673 * present, it is returned locked with an increased refcount. 2674 * 2675 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2676 * before unlocking the folio to ensure that the folio is not reclaimed. 2677 * There is no need to reserve space before calling folio_mark_dirty(). 2678 * 2679 * When no folio is found, the behavior depends on @sgp: 2680 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2681 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2682 * - for all other flags a new folio is allocated, inserted into the 2683 * page cache and returned locked in @foliop. 2684 * 2685 * Context: May sleep. 2686 * Return: 0 if successful, else a negative error code. 2687 */ 2688 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2689 struct folio **foliop, enum sgp_type sgp) 2690 { 2691 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2692 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2693 } 2694 EXPORT_SYMBOL_GPL(shmem_get_folio); 2695 2696 /* 2697 * This is like autoremove_wake_function, but it removes the wait queue 2698 * entry unconditionally - even if something else had already woken the 2699 * target. 2700 */ 2701 static int synchronous_wake_function(wait_queue_entry_t *wait, 2702 unsigned int mode, int sync, void *key) 2703 { 2704 int ret = default_wake_function(wait, mode, sync, key); 2705 list_del_init(&wait->entry); 2706 return ret; 2707 } 2708 2709 /* 2710 * Trinity finds that probing a hole which tmpfs is punching can 2711 * prevent the hole-punch from ever completing: which in turn 2712 * locks writers out with its hold on i_rwsem. So refrain from 2713 * faulting pages into the hole while it's being punched. Although 2714 * shmem_undo_range() does remove the additions, it may be unable to 2715 * keep up, as each new page needs its own unmap_mapping_range() call, 2716 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2717 * 2718 * It does not matter if we sometimes reach this check just before the 2719 * hole-punch begins, so that one fault then races with the punch: 2720 * we just need to make racing faults a rare case. 2721 * 2722 * The implementation below would be much simpler if we just used a 2723 * standard mutex or completion: but we cannot take i_rwsem in fault, 2724 * and bloating every shmem inode for this unlikely case would be sad. 2725 */ 2726 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2727 { 2728 struct shmem_falloc *shmem_falloc; 2729 struct file *fpin = NULL; 2730 vm_fault_t ret = 0; 2731 2732 spin_lock(&inode->i_lock); 2733 shmem_falloc = inode->i_private; 2734 if (shmem_falloc && 2735 shmem_falloc->waitq && 2736 vmf->pgoff >= shmem_falloc->start && 2737 vmf->pgoff < shmem_falloc->next) { 2738 wait_queue_head_t *shmem_falloc_waitq; 2739 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2740 2741 ret = VM_FAULT_NOPAGE; 2742 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2743 shmem_falloc_waitq = shmem_falloc->waitq; 2744 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2745 TASK_UNINTERRUPTIBLE); 2746 spin_unlock(&inode->i_lock); 2747 schedule(); 2748 2749 /* 2750 * shmem_falloc_waitq points into the shmem_fallocate() 2751 * stack of the hole-punching task: shmem_falloc_waitq 2752 * is usually invalid by the time we reach here, but 2753 * finish_wait() does not dereference it in that case; 2754 * though i_lock needed lest racing with wake_up_all(). 2755 */ 2756 spin_lock(&inode->i_lock); 2757 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2758 } 2759 spin_unlock(&inode->i_lock); 2760 if (fpin) { 2761 fput(fpin); 2762 ret = VM_FAULT_RETRY; 2763 } 2764 return ret; 2765 } 2766 2767 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2768 { 2769 struct inode *inode = file_inode(vmf->vma->vm_file); 2770 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2771 struct folio *folio = NULL; 2772 vm_fault_t ret = 0; 2773 int err; 2774 2775 /* 2776 * Trinity finds that probing a hole which tmpfs is punching can 2777 * prevent the hole-punch from ever completing: noted in i_private. 2778 */ 2779 if (unlikely(inode->i_private)) { 2780 ret = shmem_falloc_wait(vmf, inode); 2781 if (ret) 2782 return ret; 2783 } 2784 2785 WARN_ON_ONCE(vmf->page != NULL); 2786 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2787 gfp, vmf, &ret); 2788 if (err) 2789 return vmf_error(err); 2790 if (folio) { 2791 vmf->page = folio_file_page(folio, vmf->pgoff); 2792 ret |= VM_FAULT_LOCKED; 2793 } 2794 return ret; 2795 } 2796 2797 unsigned long shmem_get_unmapped_area(struct file *file, 2798 unsigned long uaddr, unsigned long len, 2799 unsigned long pgoff, unsigned long flags) 2800 { 2801 unsigned long addr; 2802 unsigned long offset; 2803 unsigned long inflated_len; 2804 unsigned long inflated_addr; 2805 unsigned long inflated_offset; 2806 unsigned long hpage_size; 2807 2808 if (len > TASK_SIZE) 2809 return -ENOMEM; 2810 2811 addr = mm_get_unmapped_area(file, uaddr, len, pgoff, flags); 2812 2813 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2814 return addr; 2815 if (IS_ERR_VALUE(addr)) 2816 return addr; 2817 if (addr & ~PAGE_MASK) 2818 return addr; 2819 if (addr > TASK_SIZE - len) 2820 return addr; 2821 2822 if (shmem_huge == SHMEM_HUGE_DENY) 2823 return addr; 2824 if (flags & MAP_FIXED) 2825 return addr; 2826 /* 2827 * Our priority is to support MAP_SHARED mapped hugely; 2828 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2829 * But if caller specified an address hint and we allocated area there 2830 * successfully, respect that as before. 2831 */ 2832 if (uaddr == addr) 2833 return addr; 2834 2835 hpage_size = HPAGE_PMD_SIZE; 2836 if (shmem_huge != SHMEM_HUGE_FORCE) { 2837 struct super_block *sb; 2838 unsigned long __maybe_unused hpage_orders; 2839 int order = 0; 2840 2841 if (file) { 2842 VM_BUG_ON(file->f_op != &shmem_file_operations); 2843 sb = file_inode(file)->i_sb; 2844 } else { 2845 /* 2846 * Called directly from mm/mmap.c, or drivers/char/mem.c 2847 * for "/dev/zero", to create a shared anonymous object. 2848 */ 2849 if (IS_ERR(shm_mnt)) 2850 return addr; 2851 sb = shm_mnt->mnt_sb; 2852 2853 /* 2854 * Find the highest mTHP order used for anonymous shmem to 2855 * provide a suitable alignment address. 2856 */ 2857 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2858 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2859 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2860 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2861 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2862 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2863 2864 if (hpage_orders > 0) { 2865 order = highest_order(hpage_orders); 2866 hpage_size = PAGE_SIZE << order; 2867 } 2868 #endif 2869 } 2870 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2871 return addr; 2872 } 2873 2874 if (len < hpage_size) 2875 return addr; 2876 2877 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2878 if (offset && offset + len < 2 * hpage_size) 2879 return addr; 2880 if ((addr & (hpage_size - 1)) == offset) 2881 return addr; 2882 2883 inflated_len = len + hpage_size - PAGE_SIZE; 2884 if (inflated_len > TASK_SIZE) 2885 return addr; 2886 if (inflated_len < len) 2887 return addr; 2888 2889 inflated_addr = mm_get_unmapped_area(NULL, uaddr, inflated_len, 0, flags); 2890 if (IS_ERR_VALUE(inflated_addr)) 2891 return addr; 2892 if (inflated_addr & ~PAGE_MASK) 2893 return addr; 2894 2895 inflated_offset = inflated_addr & (hpage_size - 1); 2896 inflated_addr += offset - inflated_offset; 2897 if (inflated_offset > offset) 2898 inflated_addr += hpage_size; 2899 2900 if (inflated_addr > TASK_SIZE - len) 2901 return addr; 2902 return inflated_addr; 2903 } 2904 2905 #ifdef CONFIG_NUMA 2906 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2907 { 2908 struct inode *inode = file_inode(vma->vm_file); 2909 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2910 } 2911 2912 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2913 unsigned long addr, pgoff_t *ilx) 2914 { 2915 struct inode *inode = file_inode(vma->vm_file); 2916 pgoff_t index; 2917 2918 /* 2919 * Bias interleave by inode number to distribute better across nodes; 2920 * but this interface is independent of which page order is used, so 2921 * supplies only that bias, letting caller apply the offset (adjusted 2922 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2923 */ 2924 *ilx = inode->i_ino; 2925 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2926 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2927 } 2928 2929 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2930 pgoff_t index, unsigned int order, pgoff_t *ilx) 2931 { 2932 struct mempolicy *mpol; 2933 2934 /* Bias interleave by inode number to distribute better across nodes */ 2935 *ilx = info->vfs_inode.i_ino + (index >> order); 2936 2937 mpol = mpol_shared_policy_lookup(&info->policy, index); 2938 return mpol ? mpol : get_task_policy(current); 2939 } 2940 #else 2941 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2942 pgoff_t index, unsigned int order, pgoff_t *ilx) 2943 { 2944 *ilx = 0; 2945 return NULL; 2946 } 2947 #endif /* CONFIG_NUMA */ 2948 2949 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2950 { 2951 struct inode *inode = file_inode(file); 2952 struct shmem_inode_info *info = SHMEM_I(inode); 2953 int retval = -ENOMEM; 2954 2955 /* 2956 * What serializes the accesses to info->flags? 2957 * ipc_lock_object() when called from shmctl_do_lock(), 2958 * no serialization needed when called from shm_destroy(). 2959 */ 2960 if (lock && !(info->flags & SHMEM_F_LOCKED)) { 2961 if (!user_shm_lock(inode->i_size, ucounts)) 2962 goto out_nomem; 2963 info->flags |= SHMEM_F_LOCKED; 2964 mapping_set_unevictable(file->f_mapping); 2965 } 2966 if (!lock && (info->flags & SHMEM_F_LOCKED) && ucounts) { 2967 user_shm_unlock(inode->i_size, ucounts); 2968 info->flags &= ~SHMEM_F_LOCKED; 2969 mapping_clear_unevictable(file->f_mapping); 2970 } 2971 retval = 0; 2972 2973 out_nomem: 2974 return retval; 2975 } 2976 2977 static int shmem_mmap_prepare(struct vm_area_desc *desc) 2978 { 2979 struct file *file = desc->file; 2980 struct inode *inode = file_inode(file); 2981 2982 file_accessed(file); 2983 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2984 if (inode->i_nlink) 2985 desc->vm_ops = &shmem_vm_ops; 2986 else 2987 desc->vm_ops = &shmem_anon_vm_ops; 2988 return 0; 2989 } 2990 2991 static int shmem_file_open(struct inode *inode, struct file *file) 2992 { 2993 file->f_mode |= FMODE_CAN_ODIRECT; 2994 return generic_file_open(inode, file); 2995 } 2996 2997 #ifdef CONFIG_TMPFS_XATTR 2998 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2999 3000 #if IS_ENABLED(CONFIG_UNICODE) 3001 /* 3002 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 3003 * 3004 * The casefold file attribute needs some special checks. I can just be added to 3005 * an empty dir, and can't be removed from a non-empty dir. 3006 */ 3007 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 3008 struct dentry *dentry, unsigned int *i_flags) 3009 { 3010 unsigned int old = inode->i_flags; 3011 struct super_block *sb = inode->i_sb; 3012 3013 if (fsflags & FS_CASEFOLD_FL) { 3014 if (!(old & S_CASEFOLD)) { 3015 if (!sb->s_encoding) 3016 return -EOPNOTSUPP; 3017 3018 if (!S_ISDIR(inode->i_mode)) 3019 return -ENOTDIR; 3020 3021 if (dentry && !simple_empty(dentry)) 3022 return -ENOTEMPTY; 3023 } 3024 3025 *i_flags = *i_flags | S_CASEFOLD; 3026 } else if (old & S_CASEFOLD) { 3027 if (dentry && !simple_empty(dentry)) 3028 return -ENOTEMPTY; 3029 } 3030 3031 return 0; 3032 } 3033 #else 3034 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 3035 struct dentry *dentry, unsigned int *i_flags) 3036 { 3037 if (fsflags & FS_CASEFOLD_FL) 3038 return -EOPNOTSUPP; 3039 3040 return 0; 3041 } 3042 #endif 3043 3044 /* 3045 * chattr's fsflags are unrelated to extended attributes, 3046 * but tmpfs has chosen to enable them under the same config option. 3047 */ 3048 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3049 { 3050 unsigned int i_flags = 0; 3051 int ret; 3052 3053 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 3054 if (ret) 3055 return ret; 3056 3057 if (fsflags & FS_NOATIME_FL) 3058 i_flags |= S_NOATIME; 3059 if (fsflags & FS_APPEND_FL) 3060 i_flags |= S_APPEND; 3061 if (fsflags & FS_IMMUTABLE_FL) 3062 i_flags |= S_IMMUTABLE; 3063 /* 3064 * But FS_NODUMP_FL does not require any action in i_flags. 3065 */ 3066 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 3067 3068 return 0; 3069 } 3070 #else 3071 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3072 { 3073 } 3074 #define shmem_initxattrs NULL 3075 #endif 3076 3077 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 3078 { 3079 return &SHMEM_I(inode)->dir_offsets; 3080 } 3081 3082 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 3083 struct super_block *sb, 3084 struct inode *dir, umode_t mode, 3085 dev_t dev, unsigned long flags) 3086 { 3087 struct inode *inode; 3088 struct shmem_inode_info *info; 3089 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3090 ino_t ino; 3091 int err; 3092 3093 err = shmem_reserve_inode(sb, &ino); 3094 if (err) 3095 return ERR_PTR(err); 3096 3097 inode = new_inode(sb); 3098 if (!inode) { 3099 shmem_free_inode(sb, 0); 3100 return ERR_PTR(-ENOSPC); 3101 } 3102 3103 inode->i_ino = ino; 3104 inode_init_owner(idmap, inode, dir, mode); 3105 inode->i_blocks = 0; 3106 simple_inode_init_ts(inode); 3107 inode->i_generation = get_random_u32(); 3108 info = SHMEM_I(inode); 3109 memset(info, 0, (char *)inode - (char *)info); 3110 spin_lock_init(&info->lock); 3111 atomic_set(&info->stop_eviction, 0); 3112 info->seals = F_SEAL_SEAL; 3113 info->flags = (flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0; 3114 info->i_crtime = inode_get_mtime(inode); 3115 info->fsflags = (dir == NULL) ? 0 : 3116 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 3117 if (info->fsflags) 3118 shmem_set_inode_flags(inode, info->fsflags, NULL); 3119 INIT_LIST_HEAD(&info->shrinklist); 3120 INIT_LIST_HEAD(&info->swaplist); 3121 simple_xattrs_init(&info->xattrs); 3122 cache_no_acl(inode); 3123 if (sbinfo->noswap) 3124 mapping_set_unevictable(inode->i_mapping); 3125 3126 /* Don't consider 'deny' for emergencies and 'force' for testing */ 3127 if (sbinfo->huge) 3128 mapping_set_large_folios(inode->i_mapping); 3129 3130 switch (mode & S_IFMT) { 3131 default: 3132 inode->i_op = &shmem_special_inode_operations; 3133 init_special_inode(inode, mode, dev); 3134 break; 3135 case S_IFREG: 3136 inode->i_mapping->a_ops = &shmem_aops; 3137 inode->i_op = &shmem_inode_operations; 3138 inode->i_fop = &shmem_file_operations; 3139 mpol_shared_policy_init(&info->policy, 3140 shmem_get_sbmpol(sbinfo)); 3141 break; 3142 case S_IFDIR: 3143 inc_nlink(inode); 3144 /* Some things misbehave if size == 0 on a directory */ 3145 inode->i_size = 2 * BOGO_DIRENT_SIZE; 3146 inode->i_op = &shmem_dir_inode_operations; 3147 inode->i_fop = &simple_offset_dir_operations; 3148 simple_offset_init(shmem_get_offset_ctx(inode)); 3149 break; 3150 case S_IFLNK: 3151 /* 3152 * Must not load anything in the rbtree, 3153 * mpol_free_shared_policy will not be called. 3154 */ 3155 mpol_shared_policy_init(&info->policy, NULL); 3156 break; 3157 } 3158 3159 lockdep_annotate_inode_mutex_key(inode); 3160 return inode; 3161 } 3162 3163 #ifdef CONFIG_TMPFS_QUOTA 3164 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3165 struct super_block *sb, struct inode *dir, 3166 umode_t mode, dev_t dev, unsigned long flags) 3167 { 3168 int err; 3169 struct inode *inode; 3170 3171 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3172 if (IS_ERR(inode)) 3173 return inode; 3174 3175 err = dquot_initialize(inode); 3176 if (err) 3177 goto errout; 3178 3179 err = dquot_alloc_inode(inode); 3180 if (err) { 3181 dquot_drop(inode); 3182 goto errout; 3183 } 3184 return inode; 3185 3186 errout: 3187 inode->i_flags |= S_NOQUOTA; 3188 iput(inode); 3189 return ERR_PTR(err); 3190 } 3191 #else 3192 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3193 struct super_block *sb, struct inode *dir, 3194 umode_t mode, dev_t dev, unsigned long flags) 3195 { 3196 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3197 } 3198 #endif /* CONFIG_TMPFS_QUOTA */ 3199 3200 #ifdef CONFIG_USERFAULTFD 3201 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 3202 struct vm_area_struct *dst_vma, 3203 unsigned long dst_addr, 3204 unsigned long src_addr, 3205 uffd_flags_t flags, 3206 struct folio **foliop) 3207 { 3208 struct inode *inode = file_inode(dst_vma->vm_file); 3209 struct shmem_inode_info *info = SHMEM_I(inode); 3210 struct address_space *mapping = inode->i_mapping; 3211 gfp_t gfp = mapping_gfp_mask(mapping); 3212 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 3213 void *page_kaddr; 3214 struct folio *folio; 3215 int ret; 3216 pgoff_t max_off; 3217 3218 if (shmem_inode_acct_blocks(inode, 1)) { 3219 /* 3220 * We may have got a page, returned -ENOENT triggering a retry, 3221 * and now we find ourselves with -ENOMEM. Release the page, to 3222 * avoid a BUG_ON in our caller. 3223 */ 3224 if (unlikely(*foliop)) { 3225 folio_put(*foliop); 3226 *foliop = NULL; 3227 } 3228 return -ENOMEM; 3229 } 3230 3231 if (!*foliop) { 3232 ret = -ENOMEM; 3233 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3234 if (!folio) 3235 goto out_unacct_blocks; 3236 3237 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3238 page_kaddr = kmap_local_folio(folio, 0); 3239 /* 3240 * The read mmap_lock is held here. Despite the 3241 * mmap_lock being read recursive a deadlock is still 3242 * possible if a writer has taken a lock. For example: 3243 * 3244 * process A thread 1 takes read lock on own mmap_lock 3245 * process A thread 2 calls mmap, blocks taking write lock 3246 * process B thread 1 takes page fault, read lock on own mmap lock 3247 * process B thread 2 calls mmap, blocks taking write lock 3248 * process A thread 1 blocks taking read lock on process B 3249 * process B thread 1 blocks taking read lock on process A 3250 * 3251 * Disable page faults to prevent potential deadlock 3252 * and retry the copy outside the mmap_lock. 3253 */ 3254 pagefault_disable(); 3255 ret = copy_from_user(page_kaddr, 3256 (const void __user *)src_addr, 3257 PAGE_SIZE); 3258 pagefault_enable(); 3259 kunmap_local(page_kaddr); 3260 3261 /* fallback to copy_from_user outside mmap_lock */ 3262 if (unlikely(ret)) { 3263 *foliop = folio; 3264 ret = -ENOENT; 3265 /* don't free the page */ 3266 goto out_unacct_blocks; 3267 } 3268 3269 flush_dcache_folio(folio); 3270 } else { /* ZEROPAGE */ 3271 clear_user_highpage(&folio->page, dst_addr); 3272 } 3273 } else { 3274 folio = *foliop; 3275 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3276 *foliop = NULL; 3277 } 3278 3279 VM_BUG_ON(folio_test_locked(folio)); 3280 VM_BUG_ON(folio_test_swapbacked(folio)); 3281 __folio_set_locked(folio); 3282 __folio_set_swapbacked(folio); 3283 __folio_mark_uptodate(folio); 3284 3285 ret = -EFAULT; 3286 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3287 if (unlikely(pgoff >= max_off)) 3288 goto out_release; 3289 3290 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3291 if (ret) 3292 goto out_release; 3293 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3294 if (ret) 3295 goto out_release; 3296 3297 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3298 &folio->page, true, flags); 3299 if (ret) 3300 goto out_delete_from_cache; 3301 3302 shmem_recalc_inode(inode, 1, 0); 3303 folio_unlock(folio); 3304 return 0; 3305 out_delete_from_cache: 3306 filemap_remove_folio(folio); 3307 out_release: 3308 folio_unlock(folio); 3309 folio_put(folio); 3310 out_unacct_blocks: 3311 shmem_inode_unacct_blocks(inode, 1); 3312 return ret; 3313 } 3314 #endif /* CONFIG_USERFAULTFD */ 3315 3316 #ifdef CONFIG_TMPFS 3317 static const struct inode_operations shmem_symlink_inode_operations; 3318 static const struct inode_operations shmem_short_symlink_operations; 3319 3320 static int 3321 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping, 3322 loff_t pos, unsigned len, 3323 struct folio **foliop, void **fsdata) 3324 { 3325 struct inode *inode = mapping->host; 3326 struct shmem_inode_info *info = SHMEM_I(inode); 3327 pgoff_t index = pos >> PAGE_SHIFT; 3328 struct folio *folio; 3329 int ret = 0; 3330 3331 /* i_rwsem is held by caller */ 3332 if (unlikely(info->seals & (F_SEAL_GROW | 3333 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3334 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3335 return -EPERM; 3336 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3337 return -EPERM; 3338 } 3339 3340 if (unlikely((info->flags & SHMEM_F_MAPPING_FROZEN) && 3341 pos + len > inode->i_size)) 3342 return -EPERM; 3343 3344 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3345 if (ret) 3346 return ret; 3347 3348 if (folio_contain_hwpoisoned_page(folio)) { 3349 folio_unlock(folio); 3350 folio_put(folio); 3351 return -EIO; 3352 } 3353 3354 *foliop = folio; 3355 return 0; 3356 } 3357 3358 static int 3359 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping, 3360 loff_t pos, unsigned len, unsigned copied, 3361 struct folio *folio, void *fsdata) 3362 { 3363 struct inode *inode = mapping->host; 3364 3365 if (pos + copied > inode->i_size) 3366 i_size_write(inode, pos + copied); 3367 3368 if (!folio_test_uptodate(folio)) { 3369 if (copied < folio_size(folio)) { 3370 size_t from = offset_in_folio(folio, pos); 3371 folio_zero_segments(folio, 0, from, 3372 from + copied, folio_size(folio)); 3373 } 3374 folio_mark_uptodate(folio); 3375 } 3376 folio_mark_dirty(folio); 3377 folio_unlock(folio); 3378 folio_put(folio); 3379 3380 return copied; 3381 } 3382 3383 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3384 { 3385 struct file *file = iocb->ki_filp; 3386 struct inode *inode = file_inode(file); 3387 struct address_space *mapping = inode->i_mapping; 3388 pgoff_t index; 3389 unsigned long offset; 3390 int error = 0; 3391 ssize_t retval = 0; 3392 3393 for (;;) { 3394 struct folio *folio = NULL; 3395 struct page *page = NULL; 3396 unsigned long nr, ret; 3397 loff_t end_offset, i_size = i_size_read(inode); 3398 bool fallback_page_copy = false; 3399 size_t fsize; 3400 3401 if (unlikely(iocb->ki_pos >= i_size)) 3402 break; 3403 3404 index = iocb->ki_pos >> PAGE_SHIFT; 3405 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3406 if (error) { 3407 if (error == -EINVAL) 3408 error = 0; 3409 break; 3410 } 3411 if (folio) { 3412 folio_unlock(folio); 3413 3414 page = folio_file_page(folio, index); 3415 if (PageHWPoison(page)) { 3416 folio_put(folio); 3417 error = -EIO; 3418 break; 3419 } 3420 3421 if (folio_test_large(folio) && 3422 folio_test_has_hwpoisoned(folio)) 3423 fallback_page_copy = true; 3424 } 3425 3426 /* 3427 * We must evaluate after, since reads (unlike writes) 3428 * are called without i_rwsem protection against truncate 3429 */ 3430 i_size = i_size_read(inode); 3431 if (unlikely(iocb->ki_pos >= i_size)) { 3432 if (folio) 3433 folio_put(folio); 3434 break; 3435 } 3436 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3437 if (folio && likely(!fallback_page_copy)) 3438 fsize = folio_size(folio); 3439 else 3440 fsize = PAGE_SIZE; 3441 offset = iocb->ki_pos & (fsize - 1); 3442 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3443 3444 if (folio) { 3445 /* 3446 * If users can be writing to this page using arbitrary 3447 * virtual addresses, take care about potential aliasing 3448 * before reading the page on the kernel side. 3449 */ 3450 if (mapping_writably_mapped(mapping)) { 3451 if (likely(!fallback_page_copy)) 3452 flush_dcache_folio(folio); 3453 else 3454 flush_dcache_page(page); 3455 } 3456 3457 /* 3458 * Mark the folio accessed if we read the beginning. 3459 */ 3460 if (!offset) 3461 folio_mark_accessed(folio); 3462 /* 3463 * Ok, we have the page, and it's up-to-date, so 3464 * now we can copy it to user space... 3465 */ 3466 if (likely(!fallback_page_copy)) 3467 ret = copy_folio_to_iter(folio, offset, nr, to); 3468 else 3469 ret = copy_page_to_iter(page, offset, nr, to); 3470 folio_put(folio); 3471 } else if (user_backed_iter(to)) { 3472 /* 3473 * Copy to user tends to be so well optimized, but 3474 * clear_user() not so much, that it is noticeably 3475 * faster to copy the zero page instead of clearing. 3476 */ 3477 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3478 } else { 3479 /* 3480 * But submitting the same page twice in a row to 3481 * splice() - or others? - can result in confusion: 3482 * so don't attempt that optimization on pipes etc. 3483 */ 3484 ret = iov_iter_zero(nr, to); 3485 } 3486 3487 retval += ret; 3488 iocb->ki_pos += ret; 3489 3490 if (!iov_iter_count(to)) 3491 break; 3492 if (ret < nr) { 3493 error = -EFAULT; 3494 break; 3495 } 3496 cond_resched(); 3497 } 3498 3499 file_accessed(file); 3500 return retval ? retval : error; 3501 } 3502 3503 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3504 { 3505 struct file *file = iocb->ki_filp; 3506 struct inode *inode = file->f_mapping->host; 3507 ssize_t ret; 3508 3509 inode_lock(inode); 3510 ret = generic_write_checks(iocb, from); 3511 if (ret <= 0) 3512 goto unlock; 3513 ret = file_remove_privs(file); 3514 if (ret) 3515 goto unlock; 3516 ret = file_update_time(file); 3517 if (ret) 3518 goto unlock; 3519 ret = generic_perform_write(iocb, from); 3520 unlock: 3521 inode_unlock(inode); 3522 return ret; 3523 } 3524 3525 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3526 struct pipe_buffer *buf) 3527 { 3528 return true; 3529 } 3530 3531 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3532 struct pipe_buffer *buf) 3533 { 3534 } 3535 3536 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3537 struct pipe_buffer *buf) 3538 { 3539 return false; 3540 } 3541 3542 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3543 .release = zero_pipe_buf_release, 3544 .try_steal = zero_pipe_buf_try_steal, 3545 .get = zero_pipe_buf_get, 3546 }; 3547 3548 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3549 loff_t fpos, size_t size) 3550 { 3551 size_t offset = fpos & ~PAGE_MASK; 3552 3553 size = min_t(size_t, size, PAGE_SIZE - offset); 3554 3555 if (!pipe_is_full(pipe)) { 3556 struct pipe_buffer *buf = pipe_head_buf(pipe); 3557 3558 *buf = (struct pipe_buffer) { 3559 .ops = &zero_pipe_buf_ops, 3560 .page = ZERO_PAGE(0), 3561 .offset = offset, 3562 .len = size, 3563 }; 3564 pipe->head++; 3565 } 3566 3567 return size; 3568 } 3569 3570 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3571 struct pipe_inode_info *pipe, 3572 size_t len, unsigned int flags) 3573 { 3574 struct inode *inode = file_inode(in); 3575 struct address_space *mapping = inode->i_mapping; 3576 struct folio *folio = NULL; 3577 size_t total_spliced = 0, used, npages, n, part; 3578 loff_t isize; 3579 int error = 0; 3580 3581 /* Work out how much data we can actually add into the pipe */ 3582 used = pipe_buf_usage(pipe); 3583 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3584 len = min_t(size_t, len, npages * PAGE_SIZE); 3585 3586 do { 3587 bool fallback_page_splice = false; 3588 struct page *page = NULL; 3589 pgoff_t index; 3590 size_t size; 3591 3592 if (*ppos >= i_size_read(inode)) 3593 break; 3594 3595 index = *ppos >> PAGE_SHIFT; 3596 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3597 if (error) { 3598 if (error == -EINVAL) 3599 error = 0; 3600 break; 3601 } 3602 if (folio) { 3603 folio_unlock(folio); 3604 3605 page = folio_file_page(folio, index); 3606 if (PageHWPoison(page)) { 3607 error = -EIO; 3608 break; 3609 } 3610 3611 if (folio_test_large(folio) && 3612 folio_test_has_hwpoisoned(folio)) 3613 fallback_page_splice = true; 3614 } 3615 3616 /* 3617 * i_size must be checked after we know the pages are Uptodate. 3618 * 3619 * Checking i_size after the check allows us to calculate 3620 * the correct value for "nr", which means the zero-filled 3621 * part of the page is not copied back to userspace (unless 3622 * another truncate extends the file - this is desired though). 3623 */ 3624 isize = i_size_read(inode); 3625 if (unlikely(*ppos >= isize)) 3626 break; 3627 /* 3628 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3629 * pages. 3630 */ 3631 size = len; 3632 if (unlikely(fallback_page_splice)) { 3633 size_t offset = *ppos & ~PAGE_MASK; 3634 3635 size = umin(size, PAGE_SIZE - offset); 3636 } 3637 part = min_t(loff_t, isize - *ppos, size); 3638 3639 if (folio) { 3640 /* 3641 * If users can be writing to this page using arbitrary 3642 * virtual addresses, take care about potential aliasing 3643 * before reading the page on the kernel side. 3644 */ 3645 if (mapping_writably_mapped(mapping)) { 3646 if (likely(!fallback_page_splice)) 3647 flush_dcache_folio(folio); 3648 else 3649 flush_dcache_page(page); 3650 } 3651 folio_mark_accessed(folio); 3652 /* 3653 * Ok, we have the page, and it's up-to-date, so we can 3654 * now splice it into the pipe. 3655 */ 3656 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3657 folio_put(folio); 3658 folio = NULL; 3659 } else { 3660 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3661 } 3662 3663 if (!n) 3664 break; 3665 len -= n; 3666 total_spliced += n; 3667 *ppos += n; 3668 in->f_ra.prev_pos = *ppos; 3669 if (pipe_is_full(pipe)) 3670 break; 3671 3672 cond_resched(); 3673 } while (len); 3674 3675 if (folio) 3676 folio_put(folio); 3677 3678 file_accessed(in); 3679 return total_spliced ? total_spliced : error; 3680 } 3681 3682 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3683 { 3684 struct address_space *mapping = file->f_mapping; 3685 struct inode *inode = mapping->host; 3686 3687 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3688 return generic_file_llseek_size(file, offset, whence, 3689 MAX_LFS_FILESIZE, i_size_read(inode)); 3690 if (offset < 0) 3691 return -ENXIO; 3692 3693 inode_lock(inode); 3694 /* We're holding i_rwsem so we can access i_size directly */ 3695 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3696 if (offset >= 0) 3697 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3698 inode_unlock(inode); 3699 return offset; 3700 } 3701 3702 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3703 loff_t len) 3704 { 3705 struct inode *inode = file_inode(file); 3706 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3707 struct shmem_inode_info *info = SHMEM_I(inode); 3708 struct shmem_falloc shmem_falloc; 3709 pgoff_t start, index, end, undo_fallocend; 3710 int error; 3711 3712 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3713 return -EOPNOTSUPP; 3714 3715 inode_lock(inode); 3716 3717 if (info->flags & SHMEM_F_MAPPING_FROZEN) { 3718 error = -EPERM; 3719 goto out; 3720 } 3721 3722 if (mode & FALLOC_FL_PUNCH_HOLE) { 3723 struct address_space *mapping = file->f_mapping; 3724 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3725 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3726 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3727 3728 /* protected by i_rwsem */ 3729 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3730 error = -EPERM; 3731 goto out; 3732 } 3733 3734 shmem_falloc.waitq = &shmem_falloc_waitq; 3735 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3736 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3737 spin_lock(&inode->i_lock); 3738 inode->i_private = &shmem_falloc; 3739 spin_unlock(&inode->i_lock); 3740 3741 if ((u64)unmap_end > (u64)unmap_start) 3742 unmap_mapping_range(mapping, unmap_start, 3743 1 + unmap_end - unmap_start, 0); 3744 shmem_truncate_range(inode, offset, offset + len - 1); 3745 /* No need to unmap again: hole-punching leaves COWed pages */ 3746 3747 spin_lock(&inode->i_lock); 3748 inode->i_private = NULL; 3749 wake_up_all(&shmem_falloc_waitq); 3750 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3751 spin_unlock(&inode->i_lock); 3752 error = 0; 3753 goto out; 3754 } 3755 3756 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3757 error = inode_newsize_ok(inode, offset + len); 3758 if (error) 3759 goto out; 3760 3761 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3762 error = -EPERM; 3763 goto out; 3764 } 3765 3766 start = offset >> PAGE_SHIFT; 3767 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3768 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3769 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3770 error = -ENOSPC; 3771 goto out; 3772 } 3773 3774 shmem_falloc.waitq = NULL; 3775 shmem_falloc.start = start; 3776 shmem_falloc.next = start; 3777 shmem_falloc.nr_falloced = 0; 3778 shmem_falloc.nr_unswapped = 0; 3779 spin_lock(&inode->i_lock); 3780 inode->i_private = &shmem_falloc; 3781 spin_unlock(&inode->i_lock); 3782 3783 /* 3784 * info->fallocend is only relevant when huge pages might be 3785 * involved: to prevent split_huge_page() freeing fallocated 3786 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3787 */ 3788 undo_fallocend = info->fallocend; 3789 if (info->fallocend < end) 3790 info->fallocend = end; 3791 3792 for (index = start; index < end; ) { 3793 struct folio *folio; 3794 3795 /* 3796 * Check for fatal signal so that we abort early in OOM 3797 * situations. We don't want to abort in case of non-fatal 3798 * signals as large fallocate can take noticeable time and 3799 * e.g. periodic timers may result in fallocate constantly 3800 * restarting. 3801 */ 3802 if (fatal_signal_pending(current)) 3803 error = -EINTR; 3804 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3805 error = -ENOMEM; 3806 else 3807 error = shmem_get_folio(inode, index, offset + len, 3808 &folio, SGP_FALLOC); 3809 if (error) { 3810 info->fallocend = undo_fallocend; 3811 /* Remove the !uptodate folios we added */ 3812 if (index > start) { 3813 shmem_undo_range(inode, 3814 (loff_t)start << PAGE_SHIFT, 3815 ((loff_t)index << PAGE_SHIFT) - 1, true); 3816 } 3817 goto undone; 3818 } 3819 3820 /* 3821 * Here is a more important optimization than it appears: 3822 * a second SGP_FALLOC on the same large folio will clear it, 3823 * making it uptodate and un-undoable if we fail later. 3824 */ 3825 index = folio_next_index(folio); 3826 /* Beware 32-bit wraparound */ 3827 if (!index) 3828 index--; 3829 3830 /* 3831 * Inform shmem_writeout() how far we have reached. 3832 * No need for lock or barrier: we have the page lock. 3833 */ 3834 if (!folio_test_uptodate(folio)) 3835 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3836 shmem_falloc.next = index; 3837 3838 /* 3839 * If !uptodate, leave it that way so that freeable folios 3840 * can be recognized if we need to rollback on error later. 3841 * But mark it dirty so that memory pressure will swap rather 3842 * than free the folios we are allocating (and SGP_CACHE folios 3843 * might still be clean: we now need to mark those dirty too). 3844 */ 3845 folio_mark_dirty(folio); 3846 folio_unlock(folio); 3847 folio_put(folio); 3848 cond_resched(); 3849 } 3850 3851 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3852 i_size_write(inode, offset + len); 3853 undone: 3854 spin_lock(&inode->i_lock); 3855 inode->i_private = NULL; 3856 spin_unlock(&inode->i_lock); 3857 out: 3858 if (!error) 3859 file_modified(file); 3860 inode_unlock(inode); 3861 return error; 3862 } 3863 3864 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3865 { 3866 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3867 3868 buf->f_type = TMPFS_MAGIC; 3869 buf->f_bsize = PAGE_SIZE; 3870 buf->f_namelen = NAME_MAX; 3871 if (sbinfo->max_blocks) { 3872 buf->f_blocks = sbinfo->max_blocks; 3873 buf->f_bavail = 3874 buf->f_bfree = sbinfo->max_blocks - 3875 percpu_counter_sum(&sbinfo->used_blocks); 3876 } 3877 if (sbinfo->max_inodes) { 3878 buf->f_files = sbinfo->max_inodes; 3879 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3880 } 3881 /* else leave those fields 0 like simple_statfs */ 3882 3883 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3884 3885 return 0; 3886 } 3887 3888 /* 3889 * File creation. Allocate an inode, and we're done.. 3890 */ 3891 static int 3892 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3893 struct dentry *dentry, umode_t mode, dev_t dev) 3894 { 3895 struct inode *inode; 3896 int error; 3897 3898 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3899 return -EINVAL; 3900 3901 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3902 if (IS_ERR(inode)) 3903 return PTR_ERR(inode); 3904 3905 error = simple_acl_create(dir, inode); 3906 if (error) 3907 goto out_iput; 3908 error = security_inode_init_security(inode, dir, &dentry->d_name, 3909 shmem_initxattrs, NULL); 3910 if (error && error != -EOPNOTSUPP) 3911 goto out_iput; 3912 3913 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3914 if (error) 3915 goto out_iput; 3916 3917 dir->i_size += BOGO_DIRENT_SIZE; 3918 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3919 inode_inc_iversion(dir); 3920 3921 d_make_persistent(dentry, inode); 3922 return error; 3923 3924 out_iput: 3925 iput(inode); 3926 return error; 3927 } 3928 3929 static int 3930 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3931 struct file *file, umode_t mode) 3932 { 3933 struct inode *inode; 3934 int error; 3935 3936 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3937 if (IS_ERR(inode)) { 3938 error = PTR_ERR(inode); 3939 goto err_out; 3940 } 3941 error = security_inode_init_security(inode, dir, NULL, 3942 shmem_initxattrs, NULL); 3943 if (error && error != -EOPNOTSUPP) 3944 goto out_iput; 3945 error = simple_acl_create(dir, inode); 3946 if (error) 3947 goto out_iput; 3948 d_tmpfile(file, inode); 3949 3950 err_out: 3951 return finish_open_simple(file, error); 3952 out_iput: 3953 iput(inode); 3954 return error; 3955 } 3956 3957 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3958 struct dentry *dentry, umode_t mode) 3959 { 3960 int error; 3961 3962 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3963 if (error) 3964 return ERR_PTR(error); 3965 inc_nlink(dir); 3966 return NULL; 3967 } 3968 3969 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3970 struct dentry *dentry, umode_t mode, bool excl) 3971 { 3972 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3973 } 3974 3975 /* 3976 * Link a file.. 3977 */ 3978 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3979 struct dentry *dentry) 3980 { 3981 struct inode *inode = d_inode(old_dentry); 3982 int ret; 3983 3984 /* 3985 * No ordinary (disk based) filesystem counts links as inodes; 3986 * but each new link needs a new dentry, pinning lowmem, and 3987 * tmpfs dentries cannot be pruned until they are unlinked. 3988 * But if an O_TMPFILE file is linked into the tmpfs, the 3989 * first link must skip that, to get the accounting right. 3990 */ 3991 if (inode->i_nlink) { 3992 ret = shmem_reserve_inode(inode->i_sb, NULL); 3993 if (ret) 3994 return ret; 3995 } 3996 3997 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3998 if (ret) { 3999 if (inode->i_nlink) 4000 shmem_free_inode(inode->i_sb, 0); 4001 return ret; 4002 } 4003 4004 dir->i_size += BOGO_DIRENT_SIZE; 4005 inode_inc_iversion(dir); 4006 return simple_link(old_dentry, dir, dentry); 4007 } 4008 4009 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 4010 { 4011 struct inode *inode = d_inode(dentry); 4012 4013 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 4014 shmem_free_inode(inode->i_sb, 0); 4015 4016 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4017 4018 dir->i_size -= BOGO_DIRENT_SIZE; 4019 inode_inc_iversion(dir); 4020 simple_unlink(dir, dentry); 4021 4022 /* 4023 * For now, VFS can't deal with case-insensitive negative dentries, so 4024 * we invalidate them 4025 */ 4026 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4027 d_invalidate(dentry); 4028 4029 return 0; 4030 } 4031 4032 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 4033 { 4034 if (!simple_empty(dentry)) 4035 return -ENOTEMPTY; 4036 4037 drop_nlink(d_inode(dentry)); 4038 drop_nlink(dir); 4039 return shmem_unlink(dir, dentry); 4040 } 4041 4042 static int shmem_whiteout(struct mnt_idmap *idmap, 4043 struct inode *old_dir, struct dentry *old_dentry) 4044 { 4045 struct dentry *whiteout; 4046 int error; 4047 4048 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 4049 if (!whiteout) 4050 return -ENOMEM; 4051 error = shmem_mknod(idmap, old_dir, whiteout, 4052 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4053 dput(whiteout); 4054 return error; 4055 } 4056 4057 /* 4058 * The VFS layer already does all the dentry stuff for rename, 4059 * we just have to decrement the usage count for the target if 4060 * it exists so that the VFS layer correctly free's it when it 4061 * gets overwritten. 4062 */ 4063 static int shmem_rename2(struct mnt_idmap *idmap, 4064 struct inode *old_dir, struct dentry *old_dentry, 4065 struct inode *new_dir, struct dentry *new_dentry, 4066 unsigned int flags) 4067 { 4068 struct inode *inode = d_inode(old_dentry); 4069 int they_are_dirs = S_ISDIR(inode->i_mode); 4070 bool had_offset = false; 4071 int error; 4072 4073 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4074 return -EINVAL; 4075 4076 if (flags & RENAME_EXCHANGE) 4077 return simple_offset_rename_exchange(old_dir, old_dentry, 4078 new_dir, new_dentry); 4079 4080 if (!simple_empty(new_dentry)) 4081 return -ENOTEMPTY; 4082 4083 error = simple_offset_add(shmem_get_offset_ctx(new_dir), new_dentry); 4084 if (error == -EBUSY) 4085 had_offset = true; 4086 else if (unlikely(error)) 4087 return error; 4088 4089 if (flags & RENAME_WHITEOUT) { 4090 error = shmem_whiteout(idmap, old_dir, old_dentry); 4091 if (error) { 4092 if (!had_offset) 4093 simple_offset_remove(shmem_get_offset_ctx(new_dir), 4094 new_dentry); 4095 return error; 4096 } 4097 } 4098 4099 simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 4100 if (d_really_is_positive(new_dentry)) { 4101 (void) shmem_unlink(new_dir, new_dentry); 4102 if (they_are_dirs) { 4103 drop_nlink(d_inode(new_dentry)); 4104 drop_nlink(old_dir); 4105 } 4106 } else if (they_are_dirs) { 4107 drop_nlink(old_dir); 4108 inc_nlink(new_dir); 4109 } 4110 4111 old_dir->i_size -= BOGO_DIRENT_SIZE; 4112 new_dir->i_size += BOGO_DIRENT_SIZE; 4113 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 4114 inode_inc_iversion(old_dir); 4115 inode_inc_iversion(new_dir); 4116 return 0; 4117 } 4118 4119 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 4120 struct dentry *dentry, const char *symname) 4121 { 4122 int error; 4123 int len; 4124 struct inode *inode; 4125 struct folio *folio; 4126 char *link; 4127 4128 len = strlen(symname) + 1; 4129 if (len > PAGE_SIZE) 4130 return -ENAMETOOLONG; 4131 4132 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 4133 VM_NORESERVE); 4134 if (IS_ERR(inode)) 4135 return PTR_ERR(inode); 4136 4137 error = security_inode_init_security(inode, dir, &dentry->d_name, 4138 shmem_initxattrs, NULL); 4139 if (error && error != -EOPNOTSUPP) 4140 goto out_iput; 4141 4142 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4143 if (error) 4144 goto out_iput; 4145 4146 inode->i_size = len-1; 4147 if (len <= SHORT_SYMLINK_LEN) { 4148 link = kmemdup(symname, len, GFP_KERNEL); 4149 if (!link) { 4150 error = -ENOMEM; 4151 goto out_remove_offset; 4152 } 4153 inode->i_op = &shmem_short_symlink_operations; 4154 inode_set_cached_link(inode, link, len - 1); 4155 } else { 4156 inode_nohighmem(inode); 4157 inode->i_mapping->a_ops = &shmem_aops; 4158 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 4159 if (error) 4160 goto out_remove_offset; 4161 inode->i_op = &shmem_symlink_inode_operations; 4162 memcpy(folio_address(folio), symname, len); 4163 folio_mark_uptodate(folio); 4164 folio_mark_dirty(folio); 4165 folio_unlock(folio); 4166 folio_put(folio); 4167 } 4168 dir->i_size += BOGO_DIRENT_SIZE; 4169 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 4170 inode_inc_iversion(dir); 4171 d_make_persistent(dentry, inode); 4172 return 0; 4173 4174 out_remove_offset: 4175 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4176 out_iput: 4177 iput(inode); 4178 return error; 4179 } 4180 4181 static void shmem_put_link(void *arg) 4182 { 4183 folio_mark_accessed(arg); 4184 folio_put(arg); 4185 } 4186 4187 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 4188 struct delayed_call *done) 4189 { 4190 struct folio *folio = NULL; 4191 int error; 4192 4193 if (!dentry) { 4194 folio = filemap_get_folio(inode->i_mapping, 0); 4195 if (IS_ERR(folio)) 4196 return ERR_PTR(-ECHILD); 4197 if (PageHWPoison(folio_page(folio, 0)) || 4198 !folio_test_uptodate(folio)) { 4199 folio_put(folio); 4200 return ERR_PTR(-ECHILD); 4201 } 4202 } else { 4203 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 4204 if (error) 4205 return ERR_PTR(error); 4206 if (!folio) 4207 return ERR_PTR(-ECHILD); 4208 if (PageHWPoison(folio_page(folio, 0))) { 4209 folio_unlock(folio); 4210 folio_put(folio); 4211 return ERR_PTR(-ECHILD); 4212 } 4213 folio_unlock(folio); 4214 } 4215 set_delayed_call(done, shmem_put_link, folio); 4216 return folio_address(folio); 4217 } 4218 4219 #ifdef CONFIG_TMPFS_XATTR 4220 4221 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa) 4222 { 4223 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4224 4225 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4226 4227 return 0; 4228 } 4229 4230 static int shmem_fileattr_set(struct mnt_idmap *idmap, 4231 struct dentry *dentry, struct file_kattr *fa) 4232 { 4233 struct inode *inode = d_inode(dentry); 4234 struct shmem_inode_info *info = SHMEM_I(inode); 4235 int ret, flags; 4236 4237 if (fileattr_has_fsx(fa)) 4238 return -EOPNOTSUPP; 4239 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4240 return -EOPNOTSUPP; 4241 4242 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4243 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4244 4245 ret = shmem_set_inode_flags(inode, flags, dentry); 4246 4247 if (ret) 4248 return ret; 4249 4250 info->fsflags = flags; 4251 4252 inode_set_ctime_current(inode); 4253 inode_inc_iversion(inode); 4254 return 0; 4255 } 4256 4257 /* 4258 * Superblocks without xattr inode operations may get some security.* xattr 4259 * support from the LSM "for free". As soon as we have any other xattrs 4260 * like ACLs, we also need to implement the security.* handlers at 4261 * filesystem level, though. 4262 */ 4263 4264 /* 4265 * Callback for security_inode_init_security() for acquiring xattrs. 4266 */ 4267 static int shmem_initxattrs(struct inode *inode, 4268 const struct xattr *xattr_array, void *fs_info) 4269 { 4270 struct shmem_inode_info *info = SHMEM_I(inode); 4271 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4272 const struct xattr *xattr; 4273 struct simple_xattr *new_xattr; 4274 size_t ispace = 0; 4275 size_t len; 4276 4277 if (sbinfo->max_inodes) { 4278 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4279 ispace += simple_xattr_space(xattr->name, 4280 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4281 } 4282 if (ispace) { 4283 raw_spin_lock(&sbinfo->stat_lock); 4284 if (sbinfo->free_ispace < ispace) 4285 ispace = 0; 4286 else 4287 sbinfo->free_ispace -= ispace; 4288 raw_spin_unlock(&sbinfo->stat_lock); 4289 if (!ispace) 4290 return -ENOSPC; 4291 } 4292 } 4293 4294 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4295 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4296 if (!new_xattr) 4297 break; 4298 4299 len = strlen(xattr->name) + 1; 4300 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4301 GFP_KERNEL_ACCOUNT); 4302 if (!new_xattr->name) { 4303 kvfree(new_xattr); 4304 break; 4305 } 4306 4307 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4308 XATTR_SECURITY_PREFIX_LEN); 4309 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4310 xattr->name, len); 4311 4312 simple_xattr_add(&info->xattrs, new_xattr); 4313 } 4314 4315 if (xattr->name != NULL) { 4316 if (ispace) { 4317 raw_spin_lock(&sbinfo->stat_lock); 4318 sbinfo->free_ispace += ispace; 4319 raw_spin_unlock(&sbinfo->stat_lock); 4320 } 4321 simple_xattrs_free(&info->xattrs, NULL); 4322 return -ENOMEM; 4323 } 4324 4325 return 0; 4326 } 4327 4328 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4329 struct dentry *unused, struct inode *inode, 4330 const char *name, void *buffer, size_t size) 4331 { 4332 struct shmem_inode_info *info = SHMEM_I(inode); 4333 4334 name = xattr_full_name(handler, name); 4335 return simple_xattr_get(&info->xattrs, name, buffer, size); 4336 } 4337 4338 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4339 struct mnt_idmap *idmap, 4340 struct dentry *unused, struct inode *inode, 4341 const char *name, const void *value, 4342 size_t size, int flags) 4343 { 4344 struct shmem_inode_info *info = SHMEM_I(inode); 4345 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4346 struct simple_xattr *old_xattr; 4347 size_t ispace = 0; 4348 4349 name = xattr_full_name(handler, name); 4350 if (value && sbinfo->max_inodes) { 4351 ispace = simple_xattr_space(name, size); 4352 raw_spin_lock(&sbinfo->stat_lock); 4353 if (sbinfo->free_ispace < ispace) 4354 ispace = 0; 4355 else 4356 sbinfo->free_ispace -= ispace; 4357 raw_spin_unlock(&sbinfo->stat_lock); 4358 if (!ispace) 4359 return -ENOSPC; 4360 } 4361 4362 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4363 if (!IS_ERR(old_xattr)) { 4364 ispace = 0; 4365 if (old_xattr && sbinfo->max_inodes) 4366 ispace = simple_xattr_space(old_xattr->name, 4367 old_xattr->size); 4368 simple_xattr_free(old_xattr); 4369 old_xattr = NULL; 4370 inode_set_ctime_current(inode); 4371 inode_inc_iversion(inode); 4372 } 4373 if (ispace) { 4374 raw_spin_lock(&sbinfo->stat_lock); 4375 sbinfo->free_ispace += ispace; 4376 raw_spin_unlock(&sbinfo->stat_lock); 4377 } 4378 return PTR_ERR(old_xattr); 4379 } 4380 4381 static const struct xattr_handler shmem_security_xattr_handler = { 4382 .prefix = XATTR_SECURITY_PREFIX, 4383 .get = shmem_xattr_handler_get, 4384 .set = shmem_xattr_handler_set, 4385 }; 4386 4387 static const struct xattr_handler shmem_trusted_xattr_handler = { 4388 .prefix = XATTR_TRUSTED_PREFIX, 4389 .get = shmem_xattr_handler_get, 4390 .set = shmem_xattr_handler_set, 4391 }; 4392 4393 static const struct xattr_handler shmem_user_xattr_handler = { 4394 .prefix = XATTR_USER_PREFIX, 4395 .get = shmem_xattr_handler_get, 4396 .set = shmem_xattr_handler_set, 4397 }; 4398 4399 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4400 &shmem_security_xattr_handler, 4401 &shmem_trusted_xattr_handler, 4402 &shmem_user_xattr_handler, 4403 NULL 4404 }; 4405 4406 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4407 { 4408 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4409 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4410 } 4411 #endif /* CONFIG_TMPFS_XATTR */ 4412 4413 static const struct inode_operations shmem_short_symlink_operations = { 4414 .getattr = shmem_getattr, 4415 .setattr = shmem_setattr, 4416 .get_link = simple_get_link, 4417 #ifdef CONFIG_TMPFS_XATTR 4418 .listxattr = shmem_listxattr, 4419 #endif 4420 }; 4421 4422 static const struct inode_operations shmem_symlink_inode_operations = { 4423 .getattr = shmem_getattr, 4424 .setattr = shmem_setattr, 4425 .get_link = shmem_get_link, 4426 #ifdef CONFIG_TMPFS_XATTR 4427 .listxattr = shmem_listxattr, 4428 #endif 4429 }; 4430 4431 static struct dentry *shmem_get_parent(struct dentry *child) 4432 { 4433 return ERR_PTR(-ESTALE); 4434 } 4435 4436 static int shmem_match(struct inode *ino, void *vfh) 4437 { 4438 __u32 *fh = vfh; 4439 __u64 inum = fh[2]; 4440 inum = (inum << 32) | fh[1]; 4441 return ino->i_ino == inum && fh[0] == ino->i_generation; 4442 } 4443 4444 /* Find any alias of inode, but prefer a hashed alias */ 4445 static struct dentry *shmem_find_alias(struct inode *inode) 4446 { 4447 struct dentry *alias = d_find_alias(inode); 4448 4449 return alias ?: d_find_any_alias(inode); 4450 } 4451 4452 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4453 struct fid *fid, int fh_len, int fh_type) 4454 { 4455 struct inode *inode; 4456 struct dentry *dentry = NULL; 4457 u64 inum; 4458 4459 if (fh_len < 3) 4460 return NULL; 4461 4462 inum = fid->raw[2]; 4463 inum = (inum << 32) | fid->raw[1]; 4464 4465 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4466 shmem_match, fid->raw); 4467 if (inode) { 4468 dentry = shmem_find_alias(inode); 4469 iput(inode); 4470 } 4471 4472 return dentry; 4473 } 4474 4475 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4476 struct inode *parent) 4477 { 4478 if (*len < 3) { 4479 *len = 3; 4480 return FILEID_INVALID; 4481 } 4482 4483 if (inode_unhashed(inode)) { 4484 /* Unfortunately insert_inode_hash is not idempotent, 4485 * so as we hash inodes here rather than at creation 4486 * time, we need a lock to ensure we only try 4487 * to do it once 4488 */ 4489 static DEFINE_SPINLOCK(lock); 4490 spin_lock(&lock); 4491 if (inode_unhashed(inode)) 4492 __insert_inode_hash(inode, 4493 inode->i_ino + inode->i_generation); 4494 spin_unlock(&lock); 4495 } 4496 4497 fh[0] = inode->i_generation; 4498 fh[1] = inode->i_ino; 4499 fh[2] = ((__u64)inode->i_ino) >> 32; 4500 4501 *len = 3; 4502 return 1; 4503 } 4504 4505 static const struct export_operations shmem_export_ops = { 4506 .get_parent = shmem_get_parent, 4507 .encode_fh = shmem_encode_fh, 4508 .fh_to_dentry = shmem_fh_to_dentry, 4509 }; 4510 4511 enum shmem_param { 4512 Opt_gid, 4513 Opt_huge, 4514 Opt_mode, 4515 Opt_mpol, 4516 Opt_nr_blocks, 4517 Opt_nr_inodes, 4518 Opt_size, 4519 Opt_uid, 4520 Opt_inode32, 4521 Opt_inode64, 4522 Opt_noswap, 4523 Opt_quota, 4524 Opt_usrquota, 4525 Opt_grpquota, 4526 Opt_usrquota_block_hardlimit, 4527 Opt_usrquota_inode_hardlimit, 4528 Opt_grpquota_block_hardlimit, 4529 Opt_grpquota_inode_hardlimit, 4530 Opt_casefold_version, 4531 Opt_casefold, 4532 Opt_strict_encoding, 4533 }; 4534 4535 static const struct constant_table shmem_param_enums_huge[] = { 4536 {"never", SHMEM_HUGE_NEVER }, 4537 {"always", SHMEM_HUGE_ALWAYS }, 4538 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4539 {"advise", SHMEM_HUGE_ADVISE }, 4540 {} 4541 }; 4542 4543 const struct fs_parameter_spec shmem_fs_parameters[] = { 4544 fsparam_gid ("gid", Opt_gid), 4545 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4546 fsparam_u32oct("mode", Opt_mode), 4547 fsparam_string("mpol", Opt_mpol), 4548 fsparam_string("nr_blocks", Opt_nr_blocks), 4549 fsparam_string("nr_inodes", Opt_nr_inodes), 4550 fsparam_string("size", Opt_size), 4551 fsparam_uid ("uid", Opt_uid), 4552 fsparam_flag ("inode32", Opt_inode32), 4553 fsparam_flag ("inode64", Opt_inode64), 4554 fsparam_flag ("noswap", Opt_noswap), 4555 #ifdef CONFIG_TMPFS_QUOTA 4556 fsparam_flag ("quota", Opt_quota), 4557 fsparam_flag ("usrquota", Opt_usrquota), 4558 fsparam_flag ("grpquota", Opt_grpquota), 4559 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4560 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4561 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4562 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4563 #endif 4564 fsparam_string("casefold", Opt_casefold_version), 4565 fsparam_flag ("casefold", Opt_casefold), 4566 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4567 {} 4568 }; 4569 4570 #if IS_ENABLED(CONFIG_UNICODE) 4571 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4572 bool latest_version) 4573 { 4574 struct shmem_options *ctx = fc->fs_private; 4575 int version = UTF8_LATEST; 4576 struct unicode_map *encoding; 4577 char *version_str = param->string + 5; 4578 4579 if (!latest_version) { 4580 if (strncmp(param->string, "utf8-", 5)) 4581 return invalfc(fc, "Only UTF-8 encodings are supported " 4582 "in the format: utf8-<version number>"); 4583 4584 version = utf8_parse_version(version_str); 4585 if (version < 0) 4586 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4587 } 4588 4589 encoding = utf8_load(version); 4590 4591 if (IS_ERR(encoding)) { 4592 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4593 unicode_major(version), unicode_minor(version), 4594 unicode_rev(version)); 4595 } 4596 4597 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4598 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4599 4600 ctx->encoding = encoding; 4601 4602 return 0; 4603 } 4604 #else 4605 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4606 bool latest_version) 4607 { 4608 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4609 } 4610 #endif 4611 4612 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4613 { 4614 struct shmem_options *ctx = fc->fs_private; 4615 struct fs_parse_result result; 4616 unsigned long long size; 4617 char *rest; 4618 int opt; 4619 kuid_t kuid; 4620 kgid_t kgid; 4621 4622 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4623 if (opt < 0) 4624 return opt; 4625 4626 switch (opt) { 4627 case Opt_size: 4628 size = memparse(param->string, &rest); 4629 if (*rest == '%') { 4630 size <<= PAGE_SHIFT; 4631 size *= totalram_pages(); 4632 do_div(size, 100); 4633 rest++; 4634 } 4635 if (*rest) 4636 goto bad_value; 4637 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4638 ctx->seen |= SHMEM_SEEN_BLOCKS; 4639 break; 4640 case Opt_nr_blocks: 4641 ctx->blocks = memparse(param->string, &rest); 4642 if (*rest || ctx->blocks > LONG_MAX) 4643 goto bad_value; 4644 ctx->seen |= SHMEM_SEEN_BLOCKS; 4645 break; 4646 case Opt_nr_inodes: 4647 ctx->inodes = memparse(param->string, &rest); 4648 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4649 goto bad_value; 4650 ctx->seen |= SHMEM_SEEN_INODES; 4651 break; 4652 case Opt_mode: 4653 ctx->mode = result.uint_32 & 07777; 4654 break; 4655 case Opt_uid: 4656 kuid = result.uid; 4657 4658 /* 4659 * The requested uid must be representable in the 4660 * filesystem's idmapping. 4661 */ 4662 if (!kuid_has_mapping(fc->user_ns, kuid)) 4663 goto bad_value; 4664 4665 ctx->uid = kuid; 4666 break; 4667 case Opt_gid: 4668 kgid = result.gid; 4669 4670 /* 4671 * The requested gid must be representable in the 4672 * filesystem's idmapping. 4673 */ 4674 if (!kgid_has_mapping(fc->user_ns, kgid)) 4675 goto bad_value; 4676 4677 ctx->gid = kgid; 4678 break; 4679 case Opt_huge: 4680 ctx->huge = result.uint_32; 4681 if (ctx->huge != SHMEM_HUGE_NEVER && 4682 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4683 has_transparent_hugepage())) 4684 goto unsupported_parameter; 4685 ctx->seen |= SHMEM_SEEN_HUGE; 4686 break; 4687 case Opt_mpol: 4688 if (IS_ENABLED(CONFIG_NUMA)) { 4689 mpol_put(ctx->mpol); 4690 ctx->mpol = NULL; 4691 if (mpol_parse_str(param->string, &ctx->mpol)) 4692 goto bad_value; 4693 break; 4694 } 4695 goto unsupported_parameter; 4696 case Opt_inode32: 4697 ctx->full_inums = false; 4698 ctx->seen |= SHMEM_SEEN_INUMS; 4699 break; 4700 case Opt_inode64: 4701 if (sizeof(ino_t) < 8) { 4702 return invalfc(fc, 4703 "Cannot use inode64 with <64bit inums in kernel\n"); 4704 } 4705 ctx->full_inums = true; 4706 ctx->seen |= SHMEM_SEEN_INUMS; 4707 break; 4708 case Opt_noswap: 4709 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4710 return invalfc(fc, 4711 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4712 } 4713 ctx->noswap = true; 4714 break; 4715 case Opt_quota: 4716 if (fc->user_ns != &init_user_ns) 4717 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4718 ctx->seen |= SHMEM_SEEN_QUOTA; 4719 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4720 break; 4721 case Opt_usrquota: 4722 if (fc->user_ns != &init_user_ns) 4723 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4724 ctx->seen |= SHMEM_SEEN_QUOTA; 4725 ctx->quota_types |= QTYPE_MASK_USR; 4726 break; 4727 case Opt_grpquota: 4728 if (fc->user_ns != &init_user_ns) 4729 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4730 ctx->seen |= SHMEM_SEEN_QUOTA; 4731 ctx->quota_types |= QTYPE_MASK_GRP; 4732 break; 4733 case Opt_usrquota_block_hardlimit: 4734 size = memparse(param->string, &rest); 4735 if (*rest || !size) 4736 goto bad_value; 4737 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4738 return invalfc(fc, 4739 "User quota block hardlimit too large."); 4740 ctx->qlimits.usrquota_bhardlimit = size; 4741 break; 4742 case Opt_grpquota_block_hardlimit: 4743 size = memparse(param->string, &rest); 4744 if (*rest || !size) 4745 goto bad_value; 4746 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4747 return invalfc(fc, 4748 "Group quota block hardlimit too large."); 4749 ctx->qlimits.grpquota_bhardlimit = size; 4750 break; 4751 case Opt_usrquota_inode_hardlimit: 4752 size = memparse(param->string, &rest); 4753 if (*rest || !size) 4754 goto bad_value; 4755 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4756 return invalfc(fc, 4757 "User quota inode hardlimit too large."); 4758 ctx->qlimits.usrquota_ihardlimit = size; 4759 break; 4760 case Opt_grpquota_inode_hardlimit: 4761 size = memparse(param->string, &rest); 4762 if (*rest || !size) 4763 goto bad_value; 4764 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4765 return invalfc(fc, 4766 "Group quota inode hardlimit too large."); 4767 ctx->qlimits.grpquota_ihardlimit = size; 4768 break; 4769 case Opt_casefold_version: 4770 return shmem_parse_opt_casefold(fc, param, false); 4771 case Opt_casefold: 4772 return shmem_parse_opt_casefold(fc, param, true); 4773 case Opt_strict_encoding: 4774 #if IS_ENABLED(CONFIG_UNICODE) 4775 ctx->strict_encoding = true; 4776 break; 4777 #else 4778 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4779 #endif 4780 } 4781 return 0; 4782 4783 unsupported_parameter: 4784 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4785 bad_value: 4786 return invalfc(fc, "Bad value for '%s'", param->key); 4787 } 4788 4789 static char *shmem_next_opt(char **s) 4790 { 4791 char *sbegin = *s; 4792 char *p; 4793 4794 if (sbegin == NULL) 4795 return NULL; 4796 4797 /* 4798 * NUL-terminate this option: unfortunately, 4799 * mount options form a comma-separated list, 4800 * but mpol's nodelist may also contain commas. 4801 */ 4802 for (;;) { 4803 p = strchr(*s, ','); 4804 if (p == NULL) 4805 break; 4806 *s = p + 1; 4807 if (!isdigit(*(p+1))) { 4808 *p = '\0'; 4809 return sbegin; 4810 } 4811 } 4812 4813 *s = NULL; 4814 return sbegin; 4815 } 4816 4817 static int shmem_parse_monolithic(struct fs_context *fc, void *data) 4818 { 4819 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt); 4820 } 4821 4822 /* 4823 * Reconfigure a shmem filesystem. 4824 */ 4825 static int shmem_reconfigure(struct fs_context *fc) 4826 { 4827 struct shmem_options *ctx = fc->fs_private; 4828 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4829 unsigned long used_isp; 4830 struct mempolicy *mpol = NULL; 4831 const char *err; 4832 4833 raw_spin_lock(&sbinfo->stat_lock); 4834 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4835 4836 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4837 if (!sbinfo->max_blocks) { 4838 err = "Cannot retroactively limit size"; 4839 goto out; 4840 } 4841 if (percpu_counter_compare(&sbinfo->used_blocks, 4842 ctx->blocks) > 0) { 4843 err = "Too small a size for current use"; 4844 goto out; 4845 } 4846 } 4847 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4848 if (!sbinfo->max_inodes) { 4849 err = "Cannot retroactively limit inodes"; 4850 goto out; 4851 } 4852 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4853 err = "Too few inodes for current use"; 4854 goto out; 4855 } 4856 } 4857 4858 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4859 sbinfo->next_ino > UINT_MAX) { 4860 err = "Current inum too high to switch to 32-bit inums"; 4861 goto out; 4862 } 4863 4864 /* 4865 * "noswap" doesn't use fsparam_flag_no, i.e. there's no "swap" 4866 * counterpart for (re-)enabling swap. 4867 */ 4868 if (ctx->noswap && !sbinfo->noswap) { 4869 err = "Cannot disable swap on remount"; 4870 goto out; 4871 } 4872 4873 if (ctx->seen & SHMEM_SEEN_QUOTA && 4874 !sb_any_quota_loaded(fc->root->d_sb)) { 4875 err = "Cannot enable quota on remount"; 4876 goto out; 4877 } 4878 4879 #ifdef CONFIG_TMPFS_QUOTA 4880 #define CHANGED_LIMIT(name) \ 4881 (ctx->qlimits.name## hardlimit && \ 4882 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4883 4884 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4885 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4886 err = "Cannot change global quota limit on remount"; 4887 goto out; 4888 } 4889 #endif /* CONFIG_TMPFS_QUOTA */ 4890 4891 if (ctx->seen & SHMEM_SEEN_HUGE) 4892 sbinfo->huge = ctx->huge; 4893 if (ctx->seen & SHMEM_SEEN_INUMS) 4894 sbinfo->full_inums = ctx->full_inums; 4895 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4896 sbinfo->max_blocks = ctx->blocks; 4897 if (ctx->seen & SHMEM_SEEN_INODES) { 4898 sbinfo->max_inodes = ctx->inodes; 4899 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4900 } 4901 4902 /* 4903 * Preserve previous mempolicy unless mpol remount option was specified. 4904 */ 4905 if (ctx->mpol) { 4906 mpol = sbinfo->mpol; 4907 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4908 ctx->mpol = NULL; 4909 } 4910 4911 if (ctx->noswap) 4912 sbinfo->noswap = true; 4913 4914 raw_spin_unlock(&sbinfo->stat_lock); 4915 mpol_put(mpol); 4916 return 0; 4917 out: 4918 raw_spin_unlock(&sbinfo->stat_lock); 4919 return invalfc(fc, "%s", err); 4920 } 4921 4922 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4923 { 4924 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4925 struct mempolicy *mpol; 4926 4927 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4928 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4929 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4930 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4931 if (sbinfo->mode != (0777 | S_ISVTX)) 4932 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4933 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4934 seq_printf(seq, ",uid=%u", 4935 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4936 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4937 seq_printf(seq, ",gid=%u", 4938 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4939 4940 /* 4941 * Showing inode{64,32} might be useful even if it's the system default, 4942 * since then people don't have to resort to checking both here and 4943 * /proc/config.gz to confirm 64-bit inums were successfully applied 4944 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4945 * 4946 * We hide it when inode64 isn't the default and we are using 32-bit 4947 * inodes, since that probably just means the feature isn't even under 4948 * consideration. 4949 * 4950 * As such: 4951 * 4952 * +-----------------+-----------------+ 4953 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4954 * +------------------+-----------------+-----------------+ 4955 * | full_inums=true | show | show | 4956 * | full_inums=false | show | hide | 4957 * +------------------+-----------------+-----------------+ 4958 * 4959 */ 4960 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4961 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4962 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4963 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4964 if (sbinfo->huge) 4965 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4966 #endif 4967 mpol = shmem_get_sbmpol(sbinfo); 4968 shmem_show_mpol(seq, mpol); 4969 mpol_put(mpol); 4970 if (sbinfo->noswap) 4971 seq_printf(seq, ",noswap"); 4972 #ifdef CONFIG_TMPFS_QUOTA 4973 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4974 seq_printf(seq, ",usrquota"); 4975 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4976 seq_printf(seq, ",grpquota"); 4977 if (sbinfo->qlimits.usrquota_bhardlimit) 4978 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4979 sbinfo->qlimits.usrquota_bhardlimit); 4980 if (sbinfo->qlimits.grpquota_bhardlimit) 4981 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4982 sbinfo->qlimits.grpquota_bhardlimit); 4983 if (sbinfo->qlimits.usrquota_ihardlimit) 4984 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4985 sbinfo->qlimits.usrquota_ihardlimit); 4986 if (sbinfo->qlimits.grpquota_ihardlimit) 4987 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4988 sbinfo->qlimits.grpquota_ihardlimit); 4989 #endif 4990 return 0; 4991 } 4992 4993 #endif /* CONFIG_TMPFS */ 4994 4995 static void shmem_put_super(struct super_block *sb) 4996 { 4997 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4998 4999 #if IS_ENABLED(CONFIG_UNICODE) 5000 if (sb->s_encoding) 5001 utf8_unload(sb->s_encoding); 5002 #endif 5003 5004 #ifdef CONFIG_TMPFS_QUOTA 5005 shmem_disable_quotas(sb); 5006 #endif 5007 free_percpu(sbinfo->ino_batch); 5008 percpu_counter_destroy(&sbinfo->used_blocks); 5009 mpol_put(sbinfo->mpol); 5010 kfree(sbinfo); 5011 sb->s_fs_info = NULL; 5012 } 5013 5014 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 5015 static const struct dentry_operations shmem_ci_dentry_ops = { 5016 .d_hash = generic_ci_d_hash, 5017 .d_compare = generic_ci_d_compare, 5018 }; 5019 #endif 5020 5021 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 5022 { 5023 struct shmem_options *ctx = fc->fs_private; 5024 struct inode *inode; 5025 struct shmem_sb_info *sbinfo; 5026 int error = -ENOMEM; 5027 5028 /* Round up to L1_CACHE_BYTES to resist false sharing */ 5029 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 5030 L1_CACHE_BYTES), GFP_KERNEL); 5031 if (!sbinfo) 5032 return error; 5033 5034 sb->s_fs_info = sbinfo; 5035 5036 #ifdef CONFIG_TMPFS 5037 /* 5038 * Per default we only allow half of the physical ram per 5039 * tmpfs instance, limiting inodes to one per page of lowmem; 5040 * but the internal instance is left unlimited. 5041 */ 5042 if (!(sb->s_flags & SB_KERNMOUNT)) { 5043 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 5044 ctx->blocks = shmem_default_max_blocks(); 5045 if (!(ctx->seen & SHMEM_SEEN_INODES)) 5046 ctx->inodes = shmem_default_max_inodes(); 5047 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 5048 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 5049 sbinfo->noswap = ctx->noswap; 5050 } else { 5051 sb->s_flags |= SB_NOUSER; 5052 } 5053 sb->s_export_op = &shmem_export_ops; 5054 sb->s_flags |= SB_NOSEC; 5055 5056 #if IS_ENABLED(CONFIG_UNICODE) 5057 if (!ctx->encoding && ctx->strict_encoding) { 5058 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 5059 error = -EINVAL; 5060 goto failed; 5061 } 5062 5063 if (ctx->encoding) { 5064 sb->s_encoding = ctx->encoding; 5065 set_default_d_op(sb, &shmem_ci_dentry_ops); 5066 if (ctx->strict_encoding) 5067 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 5068 } 5069 #endif 5070 5071 #else 5072 sb->s_flags |= SB_NOUSER; 5073 #endif /* CONFIG_TMPFS */ 5074 sb->s_d_flags |= DCACHE_DONTCACHE; 5075 sbinfo->max_blocks = ctx->blocks; 5076 sbinfo->max_inodes = ctx->inodes; 5077 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 5078 if (sb->s_flags & SB_KERNMOUNT) { 5079 sbinfo->ino_batch = alloc_percpu(ino_t); 5080 if (!sbinfo->ino_batch) 5081 goto failed; 5082 } 5083 sbinfo->uid = ctx->uid; 5084 sbinfo->gid = ctx->gid; 5085 sbinfo->full_inums = ctx->full_inums; 5086 sbinfo->mode = ctx->mode; 5087 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5088 if (ctx->seen & SHMEM_SEEN_HUGE) 5089 sbinfo->huge = ctx->huge; 5090 else 5091 sbinfo->huge = tmpfs_huge; 5092 #endif 5093 sbinfo->mpol = ctx->mpol; 5094 ctx->mpol = NULL; 5095 5096 raw_spin_lock_init(&sbinfo->stat_lock); 5097 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 5098 goto failed; 5099 spin_lock_init(&sbinfo->shrinklist_lock); 5100 INIT_LIST_HEAD(&sbinfo->shrinklist); 5101 5102 sb->s_maxbytes = MAX_LFS_FILESIZE; 5103 sb->s_blocksize = PAGE_SIZE; 5104 sb->s_blocksize_bits = PAGE_SHIFT; 5105 sb->s_magic = TMPFS_MAGIC; 5106 sb->s_op = &shmem_ops; 5107 sb->s_time_gran = 1; 5108 #ifdef CONFIG_TMPFS_XATTR 5109 sb->s_xattr = shmem_xattr_handlers; 5110 #endif 5111 #ifdef CONFIG_TMPFS_POSIX_ACL 5112 sb->s_flags |= SB_POSIXACL; 5113 #endif 5114 uuid_t uuid; 5115 uuid_gen(&uuid); 5116 super_set_uuid(sb, uuid.b, sizeof(uuid)); 5117 5118 #ifdef CONFIG_TMPFS_QUOTA 5119 if (ctx->seen & SHMEM_SEEN_QUOTA) { 5120 sb->dq_op = &shmem_quota_operations; 5121 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5122 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 5123 5124 /* Copy the default limits from ctx into sbinfo */ 5125 memcpy(&sbinfo->qlimits, &ctx->qlimits, 5126 sizeof(struct shmem_quota_limits)); 5127 5128 if (shmem_enable_quotas(sb, ctx->quota_types)) 5129 goto failed; 5130 } 5131 #endif /* CONFIG_TMPFS_QUOTA */ 5132 5133 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 5134 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 5135 if (IS_ERR(inode)) { 5136 error = PTR_ERR(inode); 5137 goto failed; 5138 } 5139 inode->i_uid = sbinfo->uid; 5140 inode->i_gid = sbinfo->gid; 5141 sb->s_root = d_make_root(inode); 5142 if (!sb->s_root) 5143 goto failed; 5144 return 0; 5145 5146 failed: 5147 shmem_put_super(sb); 5148 return error; 5149 } 5150 5151 static int shmem_get_tree(struct fs_context *fc) 5152 { 5153 return get_tree_nodev(fc, shmem_fill_super); 5154 } 5155 5156 static void shmem_free_fc(struct fs_context *fc) 5157 { 5158 struct shmem_options *ctx = fc->fs_private; 5159 5160 if (ctx) { 5161 mpol_put(ctx->mpol); 5162 kfree(ctx); 5163 } 5164 } 5165 5166 static const struct fs_context_operations shmem_fs_context_ops = { 5167 .free = shmem_free_fc, 5168 .get_tree = shmem_get_tree, 5169 #ifdef CONFIG_TMPFS 5170 .parse_monolithic = shmem_parse_monolithic, 5171 .parse_param = shmem_parse_one, 5172 .reconfigure = shmem_reconfigure, 5173 #endif 5174 }; 5175 5176 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 5177 5178 static struct inode *shmem_alloc_inode(struct super_block *sb) 5179 { 5180 struct shmem_inode_info *info; 5181 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 5182 if (!info) 5183 return NULL; 5184 return &info->vfs_inode; 5185 } 5186 5187 static void shmem_free_in_core_inode(struct inode *inode) 5188 { 5189 if (S_ISLNK(inode->i_mode)) 5190 kfree(inode->i_link); 5191 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 5192 } 5193 5194 static void shmem_destroy_inode(struct inode *inode) 5195 { 5196 if (S_ISREG(inode->i_mode)) 5197 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 5198 if (S_ISDIR(inode->i_mode)) 5199 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5200 } 5201 5202 static void shmem_init_inode(void *foo) 5203 { 5204 struct shmem_inode_info *info = foo; 5205 inode_init_once(&info->vfs_inode); 5206 } 5207 5208 static void __init shmem_init_inodecache(void) 5209 { 5210 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5211 sizeof(struct shmem_inode_info), 5212 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5213 } 5214 5215 static void __init shmem_destroy_inodecache(void) 5216 { 5217 kmem_cache_destroy(shmem_inode_cachep); 5218 } 5219 5220 /* Keep the page in page cache instead of truncating it */ 5221 static int shmem_error_remove_folio(struct address_space *mapping, 5222 struct folio *folio) 5223 { 5224 return 0; 5225 } 5226 5227 static const struct address_space_operations shmem_aops = { 5228 .dirty_folio = noop_dirty_folio, 5229 #ifdef CONFIG_TMPFS 5230 .write_begin = shmem_write_begin, 5231 .write_end = shmem_write_end, 5232 #endif 5233 #ifdef CONFIG_MIGRATION 5234 .migrate_folio = migrate_folio, 5235 #endif 5236 .error_remove_folio = shmem_error_remove_folio, 5237 }; 5238 5239 static const struct file_operations shmem_file_operations = { 5240 .mmap_prepare = shmem_mmap_prepare, 5241 .open = shmem_file_open, 5242 .get_unmapped_area = shmem_get_unmapped_area, 5243 #ifdef CONFIG_TMPFS 5244 .llseek = shmem_file_llseek, 5245 .read_iter = shmem_file_read_iter, 5246 .write_iter = shmem_file_write_iter, 5247 .fsync = noop_fsync, 5248 .splice_read = shmem_file_splice_read, 5249 .splice_write = iter_file_splice_write, 5250 .fallocate = shmem_fallocate, 5251 .setlease = generic_setlease, 5252 #endif 5253 }; 5254 5255 static const struct inode_operations shmem_inode_operations = { 5256 .getattr = shmem_getattr, 5257 .setattr = shmem_setattr, 5258 #ifdef CONFIG_TMPFS_XATTR 5259 .listxattr = shmem_listxattr, 5260 .set_acl = simple_set_acl, 5261 .fileattr_get = shmem_fileattr_get, 5262 .fileattr_set = shmem_fileattr_set, 5263 #endif 5264 }; 5265 5266 static const struct inode_operations shmem_dir_inode_operations = { 5267 #ifdef CONFIG_TMPFS 5268 .getattr = shmem_getattr, 5269 .create = shmem_create, 5270 .lookup = simple_lookup, 5271 .link = shmem_link, 5272 .unlink = shmem_unlink, 5273 .symlink = shmem_symlink, 5274 .mkdir = shmem_mkdir, 5275 .rmdir = shmem_rmdir, 5276 .mknod = shmem_mknod, 5277 .rename = shmem_rename2, 5278 .tmpfile = shmem_tmpfile, 5279 .get_offset_ctx = shmem_get_offset_ctx, 5280 #endif 5281 #ifdef CONFIG_TMPFS_XATTR 5282 .listxattr = shmem_listxattr, 5283 .fileattr_get = shmem_fileattr_get, 5284 .fileattr_set = shmem_fileattr_set, 5285 #endif 5286 #ifdef CONFIG_TMPFS_POSIX_ACL 5287 .setattr = shmem_setattr, 5288 .set_acl = simple_set_acl, 5289 #endif 5290 }; 5291 5292 static const struct inode_operations shmem_special_inode_operations = { 5293 .getattr = shmem_getattr, 5294 #ifdef CONFIG_TMPFS_XATTR 5295 .listxattr = shmem_listxattr, 5296 #endif 5297 #ifdef CONFIG_TMPFS_POSIX_ACL 5298 .setattr = shmem_setattr, 5299 .set_acl = simple_set_acl, 5300 #endif 5301 }; 5302 5303 static const struct super_operations shmem_ops = { 5304 .alloc_inode = shmem_alloc_inode, 5305 .free_inode = shmem_free_in_core_inode, 5306 .destroy_inode = shmem_destroy_inode, 5307 #ifdef CONFIG_TMPFS 5308 .statfs = shmem_statfs, 5309 .show_options = shmem_show_options, 5310 #endif 5311 #ifdef CONFIG_TMPFS_QUOTA 5312 .get_dquots = shmem_get_dquots, 5313 #endif 5314 .evict_inode = shmem_evict_inode, 5315 .drop_inode = inode_just_drop, 5316 .put_super = shmem_put_super, 5317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5318 .nr_cached_objects = shmem_unused_huge_count, 5319 .free_cached_objects = shmem_unused_huge_scan, 5320 #endif 5321 }; 5322 5323 static const struct vm_operations_struct shmem_vm_ops = { 5324 .fault = shmem_fault, 5325 .map_pages = filemap_map_pages, 5326 #ifdef CONFIG_NUMA 5327 .set_policy = shmem_set_policy, 5328 .get_policy = shmem_get_policy, 5329 #endif 5330 }; 5331 5332 static const struct vm_operations_struct shmem_anon_vm_ops = { 5333 .fault = shmem_fault, 5334 .map_pages = filemap_map_pages, 5335 #ifdef CONFIG_NUMA 5336 .set_policy = shmem_set_policy, 5337 .get_policy = shmem_get_policy, 5338 #endif 5339 }; 5340 5341 int shmem_init_fs_context(struct fs_context *fc) 5342 { 5343 struct shmem_options *ctx; 5344 5345 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 5346 if (!ctx) 5347 return -ENOMEM; 5348 5349 ctx->mode = 0777 | S_ISVTX; 5350 ctx->uid = current_fsuid(); 5351 ctx->gid = current_fsgid(); 5352 5353 #if IS_ENABLED(CONFIG_UNICODE) 5354 ctx->encoding = NULL; 5355 #endif 5356 5357 fc->fs_private = ctx; 5358 fc->ops = &shmem_fs_context_ops; 5359 #ifdef CONFIG_TMPFS 5360 fc->sb_flags |= SB_I_VERSION; 5361 #endif 5362 return 0; 5363 } 5364 5365 static struct file_system_type shmem_fs_type = { 5366 .owner = THIS_MODULE, 5367 .name = "tmpfs", 5368 .init_fs_context = shmem_init_fs_context, 5369 #ifdef CONFIG_TMPFS 5370 .parameters = shmem_fs_parameters, 5371 #endif 5372 .kill_sb = kill_anon_super, 5373 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5374 }; 5375 5376 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5377 5378 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5379 { \ 5380 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5381 .show = _show, \ 5382 .store = _store, \ 5383 } 5384 5385 #define TMPFS_ATTR_W(_name, _store) \ 5386 static struct kobj_attribute tmpfs_attr_##_name = \ 5387 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5388 5389 #define TMPFS_ATTR_RW(_name, _show, _store) \ 5390 static struct kobj_attribute tmpfs_attr_##_name = \ 5391 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5392 5393 #define TMPFS_ATTR_RO(_name, _show) \ 5394 static struct kobj_attribute tmpfs_attr_##_name = \ 5395 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5396 5397 #if IS_ENABLED(CONFIG_UNICODE) 5398 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5399 char *buf) 5400 { 5401 return sysfs_emit(buf, "supported\n"); 5402 } 5403 TMPFS_ATTR_RO(casefold, casefold_show); 5404 #endif 5405 5406 static struct attribute *tmpfs_attributes[] = { 5407 #if IS_ENABLED(CONFIG_UNICODE) 5408 &tmpfs_attr_casefold.attr, 5409 #endif 5410 NULL 5411 }; 5412 5413 static const struct attribute_group tmpfs_attribute_group = { 5414 .attrs = tmpfs_attributes, 5415 .name = "features" 5416 }; 5417 5418 static struct kobject *tmpfs_kobj; 5419 5420 static int __init tmpfs_sysfs_init(void) 5421 { 5422 int ret; 5423 5424 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5425 if (!tmpfs_kobj) 5426 return -ENOMEM; 5427 5428 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5429 if (ret) 5430 kobject_put(tmpfs_kobj); 5431 5432 return ret; 5433 } 5434 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5435 5436 void __init shmem_init(void) 5437 { 5438 int error; 5439 5440 shmem_init_inodecache(); 5441 5442 #ifdef CONFIG_TMPFS_QUOTA 5443 register_quota_format(&shmem_quota_format); 5444 #endif 5445 5446 error = register_filesystem(&shmem_fs_type); 5447 if (error) { 5448 pr_err("Could not register tmpfs\n"); 5449 goto out2; 5450 } 5451 5452 shm_mnt = kern_mount(&shmem_fs_type); 5453 if (IS_ERR(shm_mnt)) { 5454 error = PTR_ERR(shm_mnt); 5455 pr_err("Could not kern_mount tmpfs\n"); 5456 goto out1; 5457 } 5458 5459 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5460 error = tmpfs_sysfs_init(); 5461 if (error) { 5462 pr_err("Could not init tmpfs sysfs\n"); 5463 goto out1; 5464 } 5465 #endif 5466 5467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5468 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5469 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5470 else 5471 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5472 5473 /* 5474 * Default to setting PMD-sized THP to inherit the global setting and 5475 * disable all other multi-size THPs. 5476 */ 5477 if (!shmem_orders_configured) 5478 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5479 #endif 5480 return; 5481 5482 out1: 5483 unregister_filesystem(&shmem_fs_type); 5484 out2: 5485 #ifdef CONFIG_TMPFS_QUOTA 5486 unregister_quota_format(&shmem_quota_format); 5487 #endif 5488 shmem_destroy_inodecache(); 5489 shm_mnt = ERR_PTR(error); 5490 } 5491 5492 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5493 static ssize_t shmem_enabled_show(struct kobject *kobj, 5494 struct kobj_attribute *attr, char *buf) 5495 { 5496 static const int values[] = { 5497 SHMEM_HUGE_ALWAYS, 5498 SHMEM_HUGE_WITHIN_SIZE, 5499 SHMEM_HUGE_ADVISE, 5500 SHMEM_HUGE_NEVER, 5501 SHMEM_HUGE_DENY, 5502 SHMEM_HUGE_FORCE, 5503 }; 5504 int len = 0; 5505 int i; 5506 5507 for (i = 0; i < ARRAY_SIZE(values); i++) { 5508 len += sysfs_emit_at(buf, len, 5509 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5510 i ? " " : "", shmem_format_huge(values[i])); 5511 } 5512 len += sysfs_emit_at(buf, len, "\n"); 5513 5514 return len; 5515 } 5516 5517 static ssize_t shmem_enabled_store(struct kobject *kobj, 5518 struct kobj_attribute *attr, const char *buf, size_t count) 5519 { 5520 char tmp[16]; 5521 int huge, err; 5522 5523 if (count + 1 > sizeof(tmp)) 5524 return -EINVAL; 5525 memcpy(tmp, buf, count); 5526 tmp[count] = '\0'; 5527 if (count && tmp[count - 1] == '\n') 5528 tmp[count - 1] = '\0'; 5529 5530 huge = shmem_parse_huge(tmp); 5531 if (huge == -EINVAL) 5532 return huge; 5533 5534 shmem_huge = huge; 5535 if (shmem_huge > SHMEM_HUGE_DENY) 5536 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5537 5538 err = start_stop_khugepaged(); 5539 return err ? err : count; 5540 } 5541 5542 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5543 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5544 5545 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5546 struct kobj_attribute *attr, char *buf) 5547 { 5548 int order = to_thpsize(kobj)->order; 5549 const char *output; 5550 5551 if (test_bit(order, &huge_shmem_orders_always)) 5552 output = "[always] inherit within_size advise never"; 5553 else if (test_bit(order, &huge_shmem_orders_inherit)) 5554 output = "always [inherit] within_size advise never"; 5555 else if (test_bit(order, &huge_shmem_orders_within_size)) 5556 output = "always inherit [within_size] advise never"; 5557 else if (test_bit(order, &huge_shmem_orders_madvise)) 5558 output = "always inherit within_size [advise] never"; 5559 else 5560 output = "always inherit within_size advise [never]"; 5561 5562 return sysfs_emit(buf, "%s\n", output); 5563 } 5564 5565 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5566 struct kobj_attribute *attr, 5567 const char *buf, size_t count) 5568 { 5569 int order = to_thpsize(kobj)->order; 5570 ssize_t ret = count; 5571 5572 if (sysfs_streq(buf, "always")) { 5573 spin_lock(&huge_shmem_orders_lock); 5574 clear_bit(order, &huge_shmem_orders_inherit); 5575 clear_bit(order, &huge_shmem_orders_madvise); 5576 clear_bit(order, &huge_shmem_orders_within_size); 5577 set_bit(order, &huge_shmem_orders_always); 5578 spin_unlock(&huge_shmem_orders_lock); 5579 } else if (sysfs_streq(buf, "inherit")) { 5580 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5581 if (shmem_huge == SHMEM_HUGE_FORCE && 5582 order != HPAGE_PMD_ORDER) 5583 return -EINVAL; 5584 5585 spin_lock(&huge_shmem_orders_lock); 5586 clear_bit(order, &huge_shmem_orders_always); 5587 clear_bit(order, &huge_shmem_orders_madvise); 5588 clear_bit(order, &huge_shmem_orders_within_size); 5589 set_bit(order, &huge_shmem_orders_inherit); 5590 spin_unlock(&huge_shmem_orders_lock); 5591 } else if (sysfs_streq(buf, "within_size")) { 5592 spin_lock(&huge_shmem_orders_lock); 5593 clear_bit(order, &huge_shmem_orders_always); 5594 clear_bit(order, &huge_shmem_orders_inherit); 5595 clear_bit(order, &huge_shmem_orders_madvise); 5596 set_bit(order, &huge_shmem_orders_within_size); 5597 spin_unlock(&huge_shmem_orders_lock); 5598 } else if (sysfs_streq(buf, "advise")) { 5599 spin_lock(&huge_shmem_orders_lock); 5600 clear_bit(order, &huge_shmem_orders_always); 5601 clear_bit(order, &huge_shmem_orders_inherit); 5602 clear_bit(order, &huge_shmem_orders_within_size); 5603 set_bit(order, &huge_shmem_orders_madvise); 5604 spin_unlock(&huge_shmem_orders_lock); 5605 } else if (sysfs_streq(buf, "never")) { 5606 spin_lock(&huge_shmem_orders_lock); 5607 clear_bit(order, &huge_shmem_orders_always); 5608 clear_bit(order, &huge_shmem_orders_inherit); 5609 clear_bit(order, &huge_shmem_orders_within_size); 5610 clear_bit(order, &huge_shmem_orders_madvise); 5611 spin_unlock(&huge_shmem_orders_lock); 5612 } else { 5613 ret = -EINVAL; 5614 } 5615 5616 if (ret > 0) { 5617 int err = start_stop_khugepaged(); 5618 5619 if (err) 5620 ret = err; 5621 } 5622 return ret; 5623 } 5624 5625 struct kobj_attribute thpsize_shmem_enabled_attr = 5626 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5627 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5628 5629 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5630 5631 static int __init setup_transparent_hugepage_shmem(char *str) 5632 { 5633 int huge; 5634 5635 huge = shmem_parse_huge(str); 5636 if (huge == -EINVAL) { 5637 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5638 return huge; 5639 } 5640 5641 shmem_huge = huge; 5642 return 1; 5643 } 5644 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5645 5646 static int __init setup_transparent_hugepage_tmpfs(char *str) 5647 { 5648 int huge; 5649 5650 huge = shmem_parse_huge(str); 5651 if (huge < 0) { 5652 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n"); 5653 return huge; 5654 } 5655 5656 tmpfs_huge = huge; 5657 return 1; 5658 } 5659 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs); 5660 5661 static char str_dup[PAGE_SIZE] __initdata; 5662 static int __init setup_thp_shmem(char *str) 5663 { 5664 char *token, *range, *policy, *subtoken; 5665 unsigned long always, inherit, madvise, within_size; 5666 char *start_size, *end_size; 5667 int start, end, nr; 5668 char *p; 5669 5670 if (!str || strlen(str) + 1 > PAGE_SIZE) 5671 goto err; 5672 strscpy(str_dup, str); 5673 5674 always = huge_shmem_orders_always; 5675 inherit = huge_shmem_orders_inherit; 5676 madvise = huge_shmem_orders_madvise; 5677 within_size = huge_shmem_orders_within_size; 5678 p = str_dup; 5679 while ((token = strsep(&p, ";")) != NULL) { 5680 range = strsep(&token, ":"); 5681 policy = token; 5682 5683 if (!policy) 5684 goto err; 5685 5686 while ((subtoken = strsep(&range, ",")) != NULL) { 5687 if (strchr(subtoken, '-')) { 5688 start_size = strsep(&subtoken, "-"); 5689 end_size = subtoken; 5690 5691 start = get_order_from_str(start_size, 5692 THP_ORDERS_ALL_FILE_DEFAULT); 5693 end = get_order_from_str(end_size, 5694 THP_ORDERS_ALL_FILE_DEFAULT); 5695 } else { 5696 start_size = end_size = subtoken; 5697 start = end = get_order_from_str(subtoken, 5698 THP_ORDERS_ALL_FILE_DEFAULT); 5699 } 5700 5701 if (start < 0) { 5702 pr_err("invalid size %s in thp_shmem boot parameter\n", 5703 start_size); 5704 goto err; 5705 } 5706 5707 if (end < 0) { 5708 pr_err("invalid size %s in thp_shmem boot parameter\n", 5709 end_size); 5710 goto err; 5711 } 5712 5713 if (start > end) 5714 goto err; 5715 5716 nr = end - start + 1; 5717 if (!strcmp(policy, "always")) { 5718 bitmap_set(&always, start, nr); 5719 bitmap_clear(&inherit, start, nr); 5720 bitmap_clear(&madvise, start, nr); 5721 bitmap_clear(&within_size, start, nr); 5722 } else if (!strcmp(policy, "advise")) { 5723 bitmap_set(&madvise, start, nr); 5724 bitmap_clear(&inherit, start, nr); 5725 bitmap_clear(&always, start, nr); 5726 bitmap_clear(&within_size, start, nr); 5727 } else if (!strcmp(policy, "inherit")) { 5728 bitmap_set(&inherit, start, nr); 5729 bitmap_clear(&madvise, start, nr); 5730 bitmap_clear(&always, start, nr); 5731 bitmap_clear(&within_size, start, nr); 5732 } else if (!strcmp(policy, "within_size")) { 5733 bitmap_set(&within_size, start, nr); 5734 bitmap_clear(&inherit, start, nr); 5735 bitmap_clear(&madvise, start, nr); 5736 bitmap_clear(&always, start, nr); 5737 } else if (!strcmp(policy, "never")) { 5738 bitmap_clear(&inherit, start, nr); 5739 bitmap_clear(&madvise, start, nr); 5740 bitmap_clear(&always, start, nr); 5741 bitmap_clear(&within_size, start, nr); 5742 } else { 5743 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5744 goto err; 5745 } 5746 } 5747 } 5748 5749 huge_shmem_orders_always = always; 5750 huge_shmem_orders_madvise = madvise; 5751 huge_shmem_orders_inherit = inherit; 5752 huge_shmem_orders_within_size = within_size; 5753 shmem_orders_configured = true; 5754 return 1; 5755 5756 err: 5757 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5758 return 0; 5759 } 5760 __setup("thp_shmem=", setup_thp_shmem); 5761 5762 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5763 5764 #else /* !CONFIG_SHMEM */ 5765 5766 /* 5767 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5768 * 5769 * This is intended for small system where the benefits of the full 5770 * shmem code (swap-backed and resource-limited) are outweighed by 5771 * their complexity. On systems without swap this code should be 5772 * effectively equivalent, but much lighter weight. 5773 */ 5774 5775 static struct file_system_type shmem_fs_type = { 5776 .name = "tmpfs", 5777 .init_fs_context = ramfs_init_fs_context, 5778 .parameters = ramfs_fs_parameters, 5779 .kill_sb = ramfs_kill_sb, 5780 .fs_flags = FS_USERNS_MOUNT, 5781 }; 5782 5783 void __init shmem_init(void) 5784 { 5785 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5786 5787 shm_mnt = kern_mount(&shmem_fs_type); 5788 BUG_ON(IS_ERR(shm_mnt)); 5789 } 5790 5791 int shmem_unuse(unsigned int type) 5792 { 5793 return 0; 5794 } 5795 5796 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5797 { 5798 return 0; 5799 } 5800 5801 void shmem_unlock_mapping(struct address_space *mapping) 5802 { 5803 } 5804 5805 #ifdef CONFIG_MMU 5806 unsigned long shmem_get_unmapped_area(struct file *file, 5807 unsigned long addr, unsigned long len, 5808 unsigned long pgoff, unsigned long flags) 5809 { 5810 return mm_get_unmapped_area(file, addr, len, pgoff, flags); 5811 } 5812 #endif 5813 5814 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend) 5815 { 5816 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5817 } 5818 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5819 5820 #define shmem_vm_ops generic_file_vm_ops 5821 #define shmem_anon_vm_ops generic_file_vm_ops 5822 #define shmem_file_operations ramfs_file_operations 5823 5824 static inline int shmem_acct_size(unsigned long flags, loff_t size) 5825 { 5826 return 0; 5827 } 5828 5829 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 5830 { 5831 } 5832 5833 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5834 struct super_block *sb, struct inode *dir, 5835 umode_t mode, dev_t dev, unsigned long flags) 5836 { 5837 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5838 return inode ? inode : ERR_PTR(-ENOSPC); 5839 } 5840 5841 #endif /* CONFIG_SHMEM */ 5842 5843 /* common code */ 5844 5845 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5846 loff_t size, unsigned long vm_flags, 5847 unsigned int i_flags) 5848 { 5849 unsigned long flags = (vm_flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0; 5850 struct inode *inode; 5851 struct file *res; 5852 5853 if (IS_ERR(mnt)) 5854 return ERR_CAST(mnt); 5855 5856 if (size < 0 || size > MAX_LFS_FILESIZE) 5857 return ERR_PTR(-EINVAL); 5858 5859 if (is_idmapped_mnt(mnt)) 5860 return ERR_PTR(-EINVAL); 5861 5862 if (shmem_acct_size(flags, size)) 5863 return ERR_PTR(-ENOMEM); 5864 5865 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5866 S_IFREG | S_IRWXUGO, 0, vm_flags); 5867 if (IS_ERR(inode)) { 5868 shmem_unacct_size(flags, size); 5869 return ERR_CAST(inode); 5870 } 5871 inode->i_flags |= i_flags; 5872 inode->i_size = size; 5873 clear_nlink(inode); /* It is unlinked */ 5874 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5875 if (!IS_ERR(res)) 5876 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5877 &shmem_file_operations); 5878 if (IS_ERR(res)) 5879 iput(inode); 5880 return res; 5881 } 5882 5883 /** 5884 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5885 * kernel internal. There will be NO LSM permission checks against the 5886 * underlying inode. So users of this interface must do LSM checks at a 5887 * higher layer. The users are the big_key and shm implementations. LSM 5888 * checks are provided at the key or shm level rather than the inode. 5889 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5890 * @size: size to be set for the file 5891 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5892 */ 5893 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5894 { 5895 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5896 } 5897 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5898 5899 /** 5900 * shmem_file_setup - get an unlinked file living in tmpfs 5901 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5902 * @size: size to be set for the file 5903 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5904 */ 5905 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5906 { 5907 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5908 } 5909 EXPORT_SYMBOL_GPL(shmem_file_setup); 5910 5911 /** 5912 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5913 * @mnt: the tmpfs mount where the file will be created 5914 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5915 * @size: size to be set for the file 5916 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5917 */ 5918 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5919 loff_t size, unsigned long flags) 5920 { 5921 return __shmem_file_setup(mnt, name, size, flags, 0); 5922 } 5923 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5924 5925 static struct file *__shmem_zero_setup(unsigned long start, unsigned long end, vm_flags_t vm_flags) 5926 { 5927 loff_t size = end - start; 5928 5929 /* 5930 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5931 * between XFS directory reading and selinux: since this file is only 5932 * accessible to the user through its mapping, use S_PRIVATE flag to 5933 * bypass file security, in the same way as shmem_kernel_file_setup(). 5934 */ 5935 return shmem_kernel_file_setup("dev/zero", size, vm_flags); 5936 } 5937 5938 /** 5939 * shmem_zero_setup - setup a shared anonymous mapping 5940 * @vma: the vma to be mmapped is prepared by do_mmap 5941 * Returns: 0 on success, or error 5942 */ 5943 int shmem_zero_setup(struct vm_area_struct *vma) 5944 { 5945 struct file *file = __shmem_zero_setup(vma->vm_start, vma->vm_end, vma->vm_flags); 5946 5947 if (IS_ERR(file)) 5948 return PTR_ERR(file); 5949 5950 if (vma->vm_file) 5951 fput(vma->vm_file); 5952 vma->vm_file = file; 5953 vma->vm_ops = &shmem_anon_vm_ops; 5954 5955 return 0; 5956 } 5957 5958 /** 5959 * shmem_zero_setup_desc - same as shmem_zero_setup, but determined by VMA 5960 * descriptor for convenience. 5961 * @desc: Describes VMA 5962 * Returns: 0 on success, or error 5963 */ 5964 int shmem_zero_setup_desc(struct vm_area_desc *desc) 5965 { 5966 struct file *file = __shmem_zero_setup(desc->start, desc->end, desc->vm_flags); 5967 5968 if (IS_ERR(file)) 5969 return PTR_ERR(file); 5970 5971 desc->vm_file = file; 5972 desc->vm_ops = &shmem_anon_vm_ops; 5973 5974 return 0; 5975 } 5976 5977 /** 5978 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5979 * @mapping: the folio's address_space 5980 * @index: the folio index 5981 * @gfp: the page allocator flags to use if allocating 5982 * 5983 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5984 * with any new page allocations done using the specified allocation flags. 5985 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5986 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5987 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5988 * 5989 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5990 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5991 */ 5992 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5993 pgoff_t index, gfp_t gfp) 5994 { 5995 #ifdef CONFIG_SHMEM 5996 struct inode *inode = mapping->host; 5997 struct folio *folio; 5998 int error; 5999 6000 error = shmem_get_folio_gfp(inode, index, i_size_read(inode), 6001 &folio, SGP_CACHE, gfp, NULL, NULL); 6002 if (error) 6003 return ERR_PTR(error); 6004 6005 folio_unlock(folio); 6006 return folio; 6007 #else 6008 /* 6009 * The tiny !SHMEM case uses ramfs without swap 6010 */ 6011 return mapping_read_folio_gfp(mapping, index, gfp); 6012 #endif 6013 } 6014 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 6015 6016 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 6017 pgoff_t index, gfp_t gfp) 6018 { 6019 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 6020 struct page *page; 6021 6022 if (IS_ERR(folio)) 6023 return &folio->page; 6024 6025 page = folio_file_page(folio, index); 6026 if (PageHWPoison(page)) { 6027 folio_put(folio); 6028 return ERR_PTR(-EIO); 6029 } 6030 6031 return page; 6032 } 6033 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 6034