1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45
46 static struct vfsmount *shm_mnt __ro_after_init;
47
48 #ifdef CONFIG_SHMEM
49 /*
50 * This virtual memory filesystem is heavily based on the ramfs. It
51 * extends ramfs by the ability to use swap and honor resource limits
52 * which makes it a completely usable filesystem.
53 */
54
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84
85 #include <linux/uaccess.h>
86
87 #include "internal.h"
88
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99
100 /*
101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via
102 * inode->i_private (with i_rwsem making sure that it has only one user at
103 * a time): we would prefer not to enlarge the shmem inode just for that.
104 */
105 struct shmem_falloc {
106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 pgoff_t start; /* start of range currently being fallocated */
108 pgoff_t next; /* the next page offset to be fallocated */
109 pgoff_t nr_falloced; /* how many new pages have been fallocated */
110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */
111 };
112
113 struct shmem_options {
114 unsigned long long blocks;
115 unsigned long long inodes;
116 struct mempolicy *mpol;
117 kuid_t uid;
118 kgid_t gid;
119 umode_t mode;
120 bool full_inums;
121 int huge;
122 int seen;
123 bool noswap;
124 unsigned short quota_types;
125 struct shmem_quota_limits qlimits;
126 #if IS_ENABLED(CONFIG_UNICODE)
127 struct unicode_map *encoding;
128 bool strict_encoding;
129 #endif
130 #define SHMEM_SEEN_BLOCKS 1
131 #define SHMEM_SEEN_INODES 2
132 #define SHMEM_SEEN_HUGE 4
133 #define SHMEM_SEEN_INUMS 8
134 #define SHMEM_SEEN_QUOTA 16
135 };
136
137 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
138 static unsigned long huge_shmem_orders_always __read_mostly;
139 static unsigned long huge_shmem_orders_madvise __read_mostly;
140 static unsigned long huge_shmem_orders_inherit __read_mostly;
141 static unsigned long huge_shmem_orders_within_size __read_mostly;
142 static bool shmem_orders_configured __initdata;
143 #endif
144
145 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)146 static unsigned long shmem_default_max_blocks(void)
147 {
148 return totalram_pages() / 2;
149 }
150
shmem_default_max_inodes(void)151 static unsigned long shmem_default_max_inodes(void)
152 {
153 unsigned long nr_pages = totalram_pages();
154
155 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
156 ULONG_MAX / BOGO_INODE_SIZE);
157 }
158 #endif
159
160 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
161 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
162 struct vm_area_struct *vma, vm_fault_t *fault_type);
163
SHMEM_SB(struct super_block * sb)164 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
165 {
166 return sb->s_fs_info;
167 }
168
169 /*
170 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
171 * for shared memory and for shared anonymous (/dev/zero) mappings
172 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
173 * consistent with the pre-accounting of private mappings ...
174 */
shmem_acct_size(unsigned long flags,loff_t size)175 static inline int shmem_acct_size(unsigned long flags, loff_t size)
176 {
177 return (flags & VM_NORESERVE) ?
178 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
179 }
180
shmem_unacct_size(unsigned long flags,loff_t size)181 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
182 {
183 if (!(flags & VM_NORESERVE))
184 vm_unacct_memory(VM_ACCT(size));
185 }
186
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)187 static inline int shmem_reacct_size(unsigned long flags,
188 loff_t oldsize, loff_t newsize)
189 {
190 if (!(flags & VM_NORESERVE)) {
191 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
192 return security_vm_enough_memory_mm(current->mm,
193 VM_ACCT(newsize) - VM_ACCT(oldsize));
194 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
195 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
196 }
197 return 0;
198 }
199
200 /*
201 * ... whereas tmpfs objects are accounted incrementally as
202 * pages are allocated, in order to allow large sparse files.
203 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
204 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
205 */
shmem_acct_blocks(unsigned long flags,long pages)206 static inline int shmem_acct_blocks(unsigned long flags, long pages)
207 {
208 if (!(flags & VM_NORESERVE))
209 return 0;
210
211 return security_vm_enough_memory_mm(current->mm,
212 pages * VM_ACCT(PAGE_SIZE));
213 }
214
shmem_unacct_blocks(unsigned long flags,long pages)215 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
216 {
217 if (flags & VM_NORESERVE)
218 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
219 }
220
shmem_inode_acct_blocks(struct inode * inode,long pages)221 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
222 {
223 struct shmem_inode_info *info = SHMEM_I(inode);
224 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
225 int err = -ENOSPC;
226
227 if (shmem_acct_blocks(info->flags, pages))
228 return err;
229
230 might_sleep(); /* when quotas */
231 if (sbinfo->max_blocks) {
232 if (!percpu_counter_limited_add(&sbinfo->used_blocks,
233 sbinfo->max_blocks, pages))
234 goto unacct;
235
236 err = dquot_alloc_block_nodirty(inode, pages);
237 if (err) {
238 percpu_counter_sub(&sbinfo->used_blocks, pages);
239 goto unacct;
240 }
241 } else {
242 err = dquot_alloc_block_nodirty(inode, pages);
243 if (err)
244 goto unacct;
245 }
246
247 return 0;
248
249 unacct:
250 shmem_unacct_blocks(info->flags, pages);
251 return err;
252 }
253
shmem_inode_unacct_blocks(struct inode * inode,long pages)254 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
255 {
256 struct shmem_inode_info *info = SHMEM_I(inode);
257 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
258
259 might_sleep(); /* when quotas */
260 dquot_free_block_nodirty(inode, pages);
261
262 if (sbinfo->max_blocks)
263 percpu_counter_sub(&sbinfo->used_blocks, pages);
264 shmem_unacct_blocks(info->flags, pages);
265 }
266
267 static const struct super_operations shmem_ops;
268 static const struct address_space_operations shmem_aops;
269 static const struct file_operations shmem_file_operations;
270 static const struct inode_operations shmem_inode_operations;
271 static const struct inode_operations shmem_dir_inode_operations;
272 static const struct inode_operations shmem_special_inode_operations;
273 static const struct vm_operations_struct shmem_vm_ops;
274 static const struct vm_operations_struct shmem_anon_vm_ops;
275 static struct file_system_type shmem_fs_type;
276
shmem_mapping(const struct address_space * mapping)277 bool shmem_mapping(const struct address_space *mapping)
278 {
279 return mapping->a_ops == &shmem_aops;
280 }
281 EXPORT_SYMBOL_GPL(shmem_mapping);
282
vma_is_anon_shmem(const struct vm_area_struct * vma)283 bool vma_is_anon_shmem(const struct vm_area_struct *vma)
284 {
285 return vma->vm_ops == &shmem_anon_vm_ops;
286 }
287
vma_is_shmem(const struct vm_area_struct * vma)288 bool vma_is_shmem(const struct vm_area_struct *vma)
289 {
290 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
291 }
292
293 static LIST_HEAD(shmem_swaplist);
294 static DEFINE_SPINLOCK(shmem_swaplist_lock);
295
296 #ifdef CONFIG_TMPFS_QUOTA
297
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)298 static int shmem_enable_quotas(struct super_block *sb,
299 unsigned short quota_types)
300 {
301 int type, err = 0;
302
303 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
304 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
305 if (!(quota_types & (1 << type)))
306 continue;
307 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
308 DQUOT_USAGE_ENABLED |
309 DQUOT_LIMITS_ENABLED);
310 if (err)
311 goto out_err;
312 }
313 return 0;
314
315 out_err:
316 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
317 type, err);
318 for (type--; type >= 0; type--)
319 dquot_quota_off(sb, type);
320 return err;
321 }
322
shmem_disable_quotas(struct super_block * sb)323 static void shmem_disable_quotas(struct super_block *sb)
324 {
325 int type;
326
327 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
328 dquot_quota_off(sb, type);
329 }
330
shmem_get_dquots(struct inode * inode)331 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
332 {
333 return SHMEM_I(inode)->i_dquot;
334 }
335 #endif /* CONFIG_TMPFS_QUOTA */
336
337 /*
338 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
339 * produces a novel ino for the newly allocated inode.
340 *
341 * It may also be called when making a hard link to permit the space needed by
342 * each dentry. However, in that case, no new inode number is needed since that
343 * internally draws from another pool of inode numbers (currently global
344 * get_next_ino()). This case is indicated by passing NULL as inop.
345 */
346 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)347 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
348 {
349 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
350 ino_t ino;
351
352 if (!(sb->s_flags & SB_KERNMOUNT)) {
353 raw_spin_lock(&sbinfo->stat_lock);
354 if (sbinfo->max_inodes) {
355 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
356 raw_spin_unlock(&sbinfo->stat_lock);
357 return -ENOSPC;
358 }
359 sbinfo->free_ispace -= BOGO_INODE_SIZE;
360 }
361 if (inop) {
362 ino = sbinfo->next_ino++;
363 if (unlikely(is_zero_ino(ino)))
364 ino = sbinfo->next_ino++;
365 if (unlikely(!sbinfo->full_inums &&
366 ino > UINT_MAX)) {
367 /*
368 * Emulate get_next_ino uint wraparound for
369 * compatibility
370 */
371 if (IS_ENABLED(CONFIG_64BIT))
372 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
373 __func__, MINOR(sb->s_dev));
374 sbinfo->next_ino = 1;
375 ino = sbinfo->next_ino++;
376 }
377 *inop = ino;
378 }
379 raw_spin_unlock(&sbinfo->stat_lock);
380 } else if (inop) {
381 /*
382 * __shmem_file_setup, one of our callers, is lock-free: it
383 * doesn't hold stat_lock in shmem_reserve_inode since
384 * max_inodes is always 0, and is called from potentially
385 * unknown contexts. As such, use a per-cpu batched allocator
386 * which doesn't require the per-sb stat_lock unless we are at
387 * the batch boundary.
388 *
389 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
390 * shmem mounts are not exposed to userspace, so we don't need
391 * to worry about things like glibc compatibility.
392 */
393 ino_t *next_ino;
394
395 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
396 ino = *next_ino;
397 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
398 raw_spin_lock(&sbinfo->stat_lock);
399 ino = sbinfo->next_ino;
400 sbinfo->next_ino += SHMEM_INO_BATCH;
401 raw_spin_unlock(&sbinfo->stat_lock);
402 if (unlikely(is_zero_ino(ino)))
403 ino++;
404 }
405 *inop = ino;
406 *next_ino = ++ino;
407 put_cpu();
408 }
409
410 return 0;
411 }
412
shmem_free_inode(struct super_block * sb,size_t freed_ispace)413 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
414 {
415 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
416 if (sbinfo->max_inodes) {
417 raw_spin_lock(&sbinfo->stat_lock);
418 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
419 raw_spin_unlock(&sbinfo->stat_lock);
420 }
421 }
422
423 /**
424 * shmem_recalc_inode - recalculate the block usage of an inode
425 * @inode: inode to recalc
426 * @alloced: the change in number of pages allocated to inode
427 * @swapped: the change in number of pages swapped from inode
428 *
429 * We have to calculate the free blocks since the mm can drop
430 * undirtied hole pages behind our back.
431 *
432 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
433 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
434 *
435 * Return: true if swapped was incremented from 0, for shmem_writeout().
436 */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)437 static bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
438 {
439 struct shmem_inode_info *info = SHMEM_I(inode);
440 bool first_swapped = false;
441 long freed;
442
443 spin_lock(&info->lock);
444 info->alloced += alloced;
445 info->swapped += swapped;
446 freed = info->alloced - info->swapped -
447 READ_ONCE(inode->i_mapping->nrpages);
448 /*
449 * Special case: whereas normally shmem_recalc_inode() is called
450 * after i_mapping->nrpages has already been adjusted (up or down),
451 * shmem_writeout() has to raise swapped before nrpages is lowered -
452 * to stop a racing shmem_recalc_inode() from thinking that a page has
453 * been freed. Compensate here, to avoid the need for a followup call.
454 */
455 if (swapped > 0) {
456 if (info->swapped == swapped)
457 first_swapped = true;
458 freed += swapped;
459 }
460 if (freed > 0)
461 info->alloced -= freed;
462 spin_unlock(&info->lock);
463
464 /* The quota case may block */
465 if (freed > 0)
466 shmem_inode_unacct_blocks(inode, freed);
467 return first_swapped;
468 }
469
shmem_charge(struct inode * inode,long pages)470 bool shmem_charge(struct inode *inode, long pages)
471 {
472 struct address_space *mapping = inode->i_mapping;
473
474 if (shmem_inode_acct_blocks(inode, pages))
475 return false;
476
477 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
478 xa_lock_irq(&mapping->i_pages);
479 mapping->nrpages += pages;
480 xa_unlock_irq(&mapping->i_pages);
481
482 shmem_recalc_inode(inode, pages, 0);
483 return true;
484 }
485
shmem_uncharge(struct inode * inode,long pages)486 void shmem_uncharge(struct inode *inode, long pages)
487 {
488 /* pages argument is currently unused: keep it to help debugging */
489 /* nrpages adjustment done by __filemap_remove_folio() or caller */
490
491 shmem_recalc_inode(inode, 0, 0);
492 }
493
494 /*
495 * Replace item expected in xarray by a new item, while holding xa_lock.
496 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)497 static int shmem_replace_entry(struct address_space *mapping,
498 pgoff_t index, void *expected, void *replacement)
499 {
500 XA_STATE(xas, &mapping->i_pages, index);
501 void *item;
502
503 VM_BUG_ON(!expected);
504 VM_BUG_ON(!replacement);
505 item = xas_load(&xas);
506 if (item != expected)
507 return -ENOENT;
508 xas_store(&xas, replacement);
509 return 0;
510 }
511
512 /*
513 * Sometimes, before we decide whether to proceed or to fail, we must check
514 * that an entry was not already brought back or split by a racing thread.
515 *
516 * Checking folio is not enough: by the time a swapcache folio is locked, it
517 * might be reused, and again be swapcache, using the same swap as before.
518 * Returns the swap entry's order if it still presents, else returns -1.
519 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)520 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index,
521 swp_entry_t swap)
522 {
523 XA_STATE(xas, &mapping->i_pages, index);
524 int ret = -1;
525 void *entry;
526
527 rcu_read_lock();
528 do {
529 entry = xas_load(&xas);
530 if (entry == swp_to_radix_entry(swap))
531 ret = xas_get_order(&xas);
532 } while (xas_retry(&xas, entry));
533 rcu_read_unlock();
534 return ret;
535 }
536
537 /*
538 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
539 *
540 * SHMEM_HUGE_NEVER:
541 * disables huge pages for the mount;
542 * SHMEM_HUGE_ALWAYS:
543 * enables huge pages for the mount;
544 * SHMEM_HUGE_WITHIN_SIZE:
545 * only allocate huge pages if the page will be fully within i_size,
546 * also respect madvise() hints;
547 * SHMEM_HUGE_ADVISE:
548 * only allocate huge pages if requested with madvise();
549 */
550
551 #define SHMEM_HUGE_NEVER 0
552 #define SHMEM_HUGE_ALWAYS 1
553 #define SHMEM_HUGE_WITHIN_SIZE 2
554 #define SHMEM_HUGE_ADVISE 3
555
556 /*
557 * Special values.
558 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
559 *
560 * SHMEM_HUGE_DENY:
561 * disables huge on shm_mnt and all mounts, for emergency use;
562 * SHMEM_HUGE_FORCE:
563 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
564 *
565 */
566 #define SHMEM_HUGE_DENY (-1)
567 #define SHMEM_HUGE_FORCE (-2)
568
569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
570 /* ifdef here to avoid bloating shmem.o when not necessary */
571
572 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
573 static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER;
574
shmem_get_orders_within_size(struct inode * inode,unsigned long within_size_orders,pgoff_t index,loff_t write_end)575 static unsigned int shmem_get_orders_within_size(struct inode *inode,
576 unsigned long within_size_orders, pgoff_t index,
577 loff_t write_end)
578 {
579 pgoff_t aligned_index;
580 unsigned long order;
581 loff_t i_size;
582
583 order = highest_order(within_size_orders);
584 while (within_size_orders) {
585 aligned_index = round_up(index + 1, 1 << order);
586 i_size = max(write_end, i_size_read(inode));
587 i_size = round_up(i_size, PAGE_SIZE);
588 if (i_size >> PAGE_SHIFT >= aligned_index)
589 return within_size_orders;
590
591 order = next_order(&within_size_orders, order);
592 }
593
594 return 0;
595 }
596
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,vm_flags_t vm_flags)597 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
598 loff_t write_end, bool shmem_huge_force,
599 struct vm_area_struct *vma,
600 vm_flags_t vm_flags)
601 {
602 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
603 0 : BIT(HPAGE_PMD_ORDER);
604 unsigned long within_size_orders;
605
606 if (!S_ISREG(inode->i_mode))
607 return 0;
608 if (shmem_huge == SHMEM_HUGE_DENY)
609 return 0;
610 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
611 return maybe_pmd_order;
612
613 /*
614 * The huge order allocation for anon shmem is controlled through
615 * the mTHP interface, so we still use PMD-sized huge order to
616 * check whether global control is enabled.
617 *
618 * For tmpfs mmap()'s huge order, we still use PMD-sized order to
619 * allocate huge pages due to lack of a write size hint.
620 *
621 * For tmpfs with 'huge=always' or 'huge=within_size' mount option,
622 * we will always try PMD-sized order first. If that failed, it will
623 * fall back to small large folios.
624 */
625 switch (SHMEM_SB(inode->i_sb)->huge) {
626 case SHMEM_HUGE_ALWAYS:
627 if (vma)
628 return maybe_pmd_order;
629
630 return THP_ORDERS_ALL_FILE_DEFAULT;
631 case SHMEM_HUGE_WITHIN_SIZE:
632 if (vma)
633 within_size_orders = maybe_pmd_order;
634 else
635 within_size_orders = THP_ORDERS_ALL_FILE_DEFAULT;
636
637 within_size_orders = shmem_get_orders_within_size(inode, within_size_orders,
638 index, write_end);
639 if (within_size_orders > 0)
640 return within_size_orders;
641
642 fallthrough;
643 case SHMEM_HUGE_ADVISE:
644 if (vm_flags & VM_HUGEPAGE)
645 return maybe_pmd_order;
646 fallthrough;
647 default:
648 return 0;
649 }
650 }
651
shmem_parse_huge(const char * str)652 static int shmem_parse_huge(const char *str)
653 {
654 int huge;
655
656 if (!str)
657 return -EINVAL;
658
659 if (!strcmp(str, "never"))
660 huge = SHMEM_HUGE_NEVER;
661 else if (!strcmp(str, "always"))
662 huge = SHMEM_HUGE_ALWAYS;
663 else if (!strcmp(str, "within_size"))
664 huge = SHMEM_HUGE_WITHIN_SIZE;
665 else if (!strcmp(str, "advise"))
666 huge = SHMEM_HUGE_ADVISE;
667 else if (!strcmp(str, "deny"))
668 huge = SHMEM_HUGE_DENY;
669 else if (!strcmp(str, "force"))
670 huge = SHMEM_HUGE_FORCE;
671 else
672 return -EINVAL;
673
674 if (!has_transparent_hugepage() &&
675 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
676 return -EINVAL;
677
678 /* Do not override huge allocation policy with non-PMD sized mTHP */
679 if (huge == SHMEM_HUGE_FORCE &&
680 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
681 return -EINVAL;
682
683 return huge;
684 }
685
686 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)687 static const char *shmem_format_huge(int huge)
688 {
689 switch (huge) {
690 case SHMEM_HUGE_NEVER:
691 return "never";
692 case SHMEM_HUGE_ALWAYS:
693 return "always";
694 case SHMEM_HUGE_WITHIN_SIZE:
695 return "within_size";
696 case SHMEM_HUGE_ADVISE:
697 return "advise";
698 case SHMEM_HUGE_DENY:
699 return "deny";
700 case SHMEM_HUGE_FORCE:
701 return "force";
702 default:
703 VM_BUG_ON(1);
704 return "bad_val";
705 }
706 }
707 #endif
708
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)709 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
710 struct shrink_control *sc, unsigned long nr_to_free)
711 {
712 LIST_HEAD(list), *pos, *next;
713 struct inode *inode;
714 struct shmem_inode_info *info;
715 struct folio *folio;
716 unsigned long batch = sc ? sc->nr_to_scan : 128;
717 unsigned long split = 0, freed = 0;
718
719 if (list_empty(&sbinfo->shrinklist))
720 return SHRINK_STOP;
721
722 spin_lock(&sbinfo->shrinklist_lock);
723 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
724 info = list_entry(pos, struct shmem_inode_info, shrinklist);
725
726 /* pin the inode */
727 inode = igrab(&info->vfs_inode);
728
729 /* inode is about to be evicted */
730 if (!inode) {
731 list_del_init(&info->shrinklist);
732 goto next;
733 }
734
735 list_move(&info->shrinklist, &list);
736 next:
737 sbinfo->shrinklist_len--;
738 if (!--batch)
739 break;
740 }
741 spin_unlock(&sbinfo->shrinklist_lock);
742
743 list_for_each_safe(pos, next, &list) {
744 pgoff_t next, end;
745 loff_t i_size;
746 int ret;
747
748 info = list_entry(pos, struct shmem_inode_info, shrinklist);
749 inode = &info->vfs_inode;
750
751 if (nr_to_free && freed >= nr_to_free)
752 goto move_back;
753
754 i_size = i_size_read(inode);
755 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
756 if (!folio || xa_is_value(folio))
757 goto drop;
758
759 /* No large folio at the end of the file: nothing to split */
760 if (!folio_test_large(folio)) {
761 folio_put(folio);
762 goto drop;
763 }
764
765 /* Check if there is anything to gain from splitting */
766 next = folio_next_index(folio);
767 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
768 if (end <= folio->index || end >= next) {
769 folio_put(folio);
770 goto drop;
771 }
772
773 /*
774 * Move the inode on the list back to shrinklist if we failed
775 * to lock the page at this time.
776 *
777 * Waiting for the lock may lead to deadlock in the
778 * reclaim path.
779 */
780 if (!folio_trylock(folio)) {
781 folio_put(folio);
782 goto move_back;
783 }
784
785 ret = split_folio(folio);
786 folio_unlock(folio);
787 folio_put(folio);
788
789 /* If split failed move the inode on the list back to shrinklist */
790 if (ret)
791 goto move_back;
792
793 freed += next - end;
794 split++;
795 drop:
796 list_del_init(&info->shrinklist);
797 goto put;
798 move_back:
799 /*
800 * Make sure the inode is either on the global list or deleted
801 * from any local list before iput() since it could be deleted
802 * in another thread once we put the inode (then the local list
803 * is corrupted).
804 */
805 spin_lock(&sbinfo->shrinklist_lock);
806 list_move(&info->shrinklist, &sbinfo->shrinklist);
807 sbinfo->shrinklist_len++;
808 spin_unlock(&sbinfo->shrinklist_lock);
809 put:
810 iput(inode);
811 }
812
813 return split;
814 }
815
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)816 static long shmem_unused_huge_scan(struct super_block *sb,
817 struct shrink_control *sc)
818 {
819 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
820
821 if (!READ_ONCE(sbinfo->shrinklist_len))
822 return SHRINK_STOP;
823
824 return shmem_unused_huge_shrink(sbinfo, sc, 0);
825 }
826
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)827 static long shmem_unused_huge_count(struct super_block *sb,
828 struct shrink_control *sc)
829 {
830 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
831 return READ_ONCE(sbinfo->shrinklist_len);
832 }
833 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
834
835 #define shmem_huge SHMEM_HUGE_DENY
836
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)837 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
838 struct shrink_control *sc, unsigned long nr_to_free)
839 {
840 return 0;
841 }
842
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,vm_flags_t vm_flags)843 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
844 loff_t write_end, bool shmem_huge_force,
845 struct vm_area_struct *vma,
846 vm_flags_t vm_flags)
847 {
848 return 0;
849 }
850 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
851
shmem_update_stats(struct folio * folio,int nr_pages)852 static void shmem_update_stats(struct folio *folio, int nr_pages)
853 {
854 if (folio_test_pmd_mappable(folio))
855 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
856 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
857 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
858 }
859
860 /*
861 * Somewhat like filemap_add_folio, but error if expected item has gone.
862 */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)863 static int shmem_add_to_page_cache(struct folio *folio,
864 struct address_space *mapping,
865 pgoff_t index, void *expected, gfp_t gfp)
866 {
867 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
868 unsigned long nr = folio_nr_pages(folio);
869 swp_entry_t iter, swap;
870 void *entry;
871
872 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
873 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
874 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
875
876 folio_ref_add(folio, nr);
877 folio->mapping = mapping;
878 folio->index = index;
879
880 gfp &= GFP_RECLAIM_MASK;
881 folio_throttle_swaprate(folio, gfp);
882 swap = radix_to_swp_entry(expected);
883
884 do {
885 iter = swap;
886 xas_lock_irq(&xas);
887 xas_for_each_conflict(&xas, entry) {
888 /*
889 * The range must either be empty, or filled with
890 * expected swap entries. Shmem swap entries are never
891 * partially freed without split of both entry and
892 * folio, so there shouldn't be any holes.
893 */
894 if (!expected || entry != swp_to_radix_entry(iter)) {
895 xas_set_err(&xas, -EEXIST);
896 goto unlock;
897 }
898 iter.val += 1 << xas_get_order(&xas);
899 }
900 if (expected && iter.val - nr != swap.val) {
901 xas_set_err(&xas, -EEXIST);
902 goto unlock;
903 }
904 xas_store(&xas, folio);
905 if (xas_error(&xas))
906 goto unlock;
907 shmem_update_stats(folio, nr);
908 mapping->nrpages += nr;
909 unlock:
910 xas_unlock_irq(&xas);
911 } while (xas_nomem(&xas, gfp));
912
913 if (xas_error(&xas)) {
914 folio->mapping = NULL;
915 folio_ref_sub(folio, nr);
916 return xas_error(&xas);
917 }
918
919 return 0;
920 }
921
922 /*
923 * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
924 */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)925 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
926 {
927 struct address_space *mapping = folio->mapping;
928 long nr = folio_nr_pages(folio);
929 int error;
930
931 xa_lock_irq(&mapping->i_pages);
932 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
933 folio->mapping = NULL;
934 mapping->nrpages -= nr;
935 shmem_update_stats(folio, -nr);
936 xa_unlock_irq(&mapping->i_pages);
937 folio_put_refs(folio, nr);
938 BUG_ON(error);
939 }
940
941 /*
942 * Remove swap entry from page cache, free the swap and its page cache. Returns
943 * the number of pages being freed. 0 means entry not found in XArray (0 pages
944 * being freed).
945 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)946 static long shmem_free_swap(struct address_space *mapping,
947 pgoff_t index, void *radswap)
948 {
949 int order = xa_get_order(&mapping->i_pages, index);
950 void *old;
951
952 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
953 if (old != radswap)
954 return 0;
955 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
956
957 return 1 << order;
958 }
959
960 /*
961 * Determine (in bytes) how many of the shmem object's pages mapped by the
962 * given offsets are swapped out.
963 *
964 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
965 * as long as the inode doesn't go away and racy results are not a problem.
966 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)967 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
968 pgoff_t start, pgoff_t end)
969 {
970 XA_STATE(xas, &mapping->i_pages, start);
971 struct folio *folio;
972 unsigned long swapped = 0;
973 unsigned long max = end - 1;
974
975 rcu_read_lock();
976 xas_for_each(&xas, folio, max) {
977 if (xas_retry(&xas, folio))
978 continue;
979 if (xa_is_value(folio))
980 swapped += 1 << xas_get_order(&xas);
981 if (xas.xa_index == max)
982 break;
983 if (need_resched()) {
984 xas_pause(&xas);
985 cond_resched_rcu();
986 }
987 }
988 rcu_read_unlock();
989
990 return swapped << PAGE_SHIFT;
991 }
992
993 /*
994 * Determine (in bytes) how many of the shmem object's pages mapped by the
995 * given vma is swapped out.
996 *
997 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
998 * as long as the inode doesn't go away and racy results are not a problem.
999 */
shmem_swap_usage(struct vm_area_struct * vma)1000 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
1001 {
1002 struct inode *inode = file_inode(vma->vm_file);
1003 struct shmem_inode_info *info = SHMEM_I(inode);
1004 struct address_space *mapping = inode->i_mapping;
1005 unsigned long swapped;
1006
1007 /* Be careful as we don't hold info->lock */
1008 swapped = READ_ONCE(info->swapped);
1009
1010 /*
1011 * The easier cases are when the shmem object has nothing in swap, or
1012 * the vma maps it whole. Then we can simply use the stats that we
1013 * already track.
1014 */
1015 if (!swapped)
1016 return 0;
1017
1018 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
1019 return swapped << PAGE_SHIFT;
1020
1021 /* Here comes the more involved part */
1022 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
1023 vma->vm_pgoff + vma_pages(vma));
1024 }
1025
1026 /*
1027 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
1028 */
shmem_unlock_mapping(struct address_space * mapping)1029 void shmem_unlock_mapping(struct address_space *mapping)
1030 {
1031 struct folio_batch fbatch;
1032 pgoff_t index = 0;
1033
1034 folio_batch_init(&fbatch);
1035 /*
1036 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
1037 */
1038 while (!mapping_unevictable(mapping) &&
1039 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
1040 check_move_unevictable_folios(&fbatch);
1041 folio_batch_release(&fbatch);
1042 cond_resched();
1043 }
1044 }
1045
shmem_get_partial_folio(struct inode * inode,pgoff_t index)1046 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
1047 {
1048 struct folio *folio;
1049
1050 /*
1051 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
1052 * beyond i_size, and reports fallocated folios as holes.
1053 */
1054 folio = filemap_get_entry(inode->i_mapping, index);
1055 if (!folio)
1056 return folio;
1057 if (!xa_is_value(folio)) {
1058 folio_lock(folio);
1059 if (folio->mapping == inode->i_mapping)
1060 return folio;
1061 /* The folio has been swapped out */
1062 folio_unlock(folio);
1063 folio_put(folio);
1064 }
1065 /*
1066 * But read a folio back from swap if any of it is within i_size
1067 * (although in some cases this is just a waste of time).
1068 */
1069 folio = NULL;
1070 shmem_get_folio(inode, index, 0, &folio, SGP_READ);
1071 return folio;
1072 }
1073
1074 /*
1075 * Remove range of pages and swap entries from page cache, and free them.
1076 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1077 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)1078 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
1079 bool unfalloc)
1080 {
1081 struct address_space *mapping = inode->i_mapping;
1082 struct shmem_inode_info *info = SHMEM_I(inode);
1083 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1084 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1085 struct folio_batch fbatch;
1086 pgoff_t indices[PAGEVEC_SIZE];
1087 struct folio *folio;
1088 bool same_folio;
1089 long nr_swaps_freed = 0;
1090 pgoff_t index;
1091 int i;
1092
1093 if (lend == -1)
1094 end = -1; /* unsigned, so actually very big */
1095
1096 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1097 info->fallocend = start;
1098
1099 folio_batch_init(&fbatch);
1100 index = start;
1101 while (index < end && find_lock_entries(mapping, &index, end - 1,
1102 &fbatch, indices)) {
1103 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1104 folio = fbatch.folios[i];
1105
1106 if (xa_is_value(folio)) {
1107 if (unfalloc)
1108 continue;
1109 nr_swaps_freed += shmem_free_swap(mapping,
1110 indices[i], folio);
1111 continue;
1112 }
1113
1114 if (!unfalloc || !folio_test_uptodate(folio))
1115 truncate_inode_folio(mapping, folio);
1116 folio_unlock(folio);
1117 }
1118 folio_batch_remove_exceptionals(&fbatch);
1119 folio_batch_release(&fbatch);
1120 cond_resched();
1121 }
1122
1123 /*
1124 * When undoing a failed fallocate, we want none of the partial folio
1125 * zeroing and splitting below, but shall want to truncate the whole
1126 * folio when !uptodate indicates that it was added by this fallocate,
1127 * even when [lstart, lend] covers only a part of the folio.
1128 */
1129 if (unfalloc)
1130 goto whole_folios;
1131
1132 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1133 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1134 if (folio) {
1135 same_folio = lend < folio_pos(folio) + folio_size(folio);
1136 folio_mark_dirty(folio);
1137 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1138 start = folio_next_index(folio);
1139 if (same_folio)
1140 end = folio->index;
1141 }
1142 folio_unlock(folio);
1143 folio_put(folio);
1144 folio = NULL;
1145 }
1146
1147 if (!same_folio)
1148 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1149 if (folio) {
1150 folio_mark_dirty(folio);
1151 if (!truncate_inode_partial_folio(folio, lstart, lend))
1152 end = folio->index;
1153 folio_unlock(folio);
1154 folio_put(folio);
1155 }
1156
1157 whole_folios:
1158
1159 index = start;
1160 while (index < end) {
1161 cond_resched();
1162
1163 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1164 indices)) {
1165 /* If all gone or hole-punch or unfalloc, we're done */
1166 if (index == start || end != -1)
1167 break;
1168 /* But if truncating, restart to make sure all gone */
1169 index = start;
1170 continue;
1171 }
1172 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1173 folio = fbatch.folios[i];
1174
1175 if (xa_is_value(folio)) {
1176 long swaps_freed;
1177
1178 if (unfalloc)
1179 continue;
1180 swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1181 if (!swaps_freed) {
1182 /* Swap was replaced by page: retry */
1183 index = indices[i];
1184 break;
1185 }
1186 nr_swaps_freed += swaps_freed;
1187 continue;
1188 }
1189
1190 folio_lock(folio);
1191
1192 if (!unfalloc || !folio_test_uptodate(folio)) {
1193 if (folio_mapping(folio) != mapping) {
1194 /* Page was replaced by swap: retry */
1195 folio_unlock(folio);
1196 index = indices[i];
1197 break;
1198 }
1199 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1200 folio);
1201
1202 if (!folio_test_large(folio)) {
1203 truncate_inode_folio(mapping, folio);
1204 } else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1205 /*
1206 * If we split a page, reset the loop so
1207 * that we pick up the new sub pages.
1208 * Otherwise the THP was entirely
1209 * dropped or the target range was
1210 * zeroed, so just continue the loop as
1211 * is.
1212 */
1213 if (!folio_test_large(folio)) {
1214 folio_unlock(folio);
1215 index = start;
1216 break;
1217 }
1218 }
1219 }
1220 folio_unlock(folio);
1221 }
1222 folio_batch_remove_exceptionals(&fbatch);
1223 folio_batch_release(&fbatch);
1224 }
1225
1226 shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1227 }
1228
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1229 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1230 {
1231 shmem_undo_range(inode, lstart, lend, false);
1232 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1233 inode_inc_iversion(inode);
1234 }
1235 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1236
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1237 static int shmem_getattr(struct mnt_idmap *idmap,
1238 const struct path *path, struct kstat *stat,
1239 u32 request_mask, unsigned int query_flags)
1240 {
1241 struct inode *inode = path->dentry->d_inode;
1242 struct shmem_inode_info *info = SHMEM_I(inode);
1243
1244 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1245 shmem_recalc_inode(inode, 0, 0);
1246
1247 if (info->fsflags & FS_APPEND_FL)
1248 stat->attributes |= STATX_ATTR_APPEND;
1249 if (info->fsflags & FS_IMMUTABLE_FL)
1250 stat->attributes |= STATX_ATTR_IMMUTABLE;
1251 if (info->fsflags & FS_NODUMP_FL)
1252 stat->attributes |= STATX_ATTR_NODUMP;
1253 stat->attributes_mask |= (STATX_ATTR_APPEND |
1254 STATX_ATTR_IMMUTABLE |
1255 STATX_ATTR_NODUMP);
1256 generic_fillattr(idmap, request_mask, inode, stat);
1257
1258 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1259 stat->blksize = HPAGE_PMD_SIZE;
1260
1261 if (request_mask & STATX_BTIME) {
1262 stat->result_mask |= STATX_BTIME;
1263 stat->btime.tv_sec = info->i_crtime.tv_sec;
1264 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1265 }
1266
1267 return 0;
1268 }
1269
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1270 static int shmem_setattr(struct mnt_idmap *idmap,
1271 struct dentry *dentry, struct iattr *attr)
1272 {
1273 struct inode *inode = d_inode(dentry);
1274 struct shmem_inode_info *info = SHMEM_I(inode);
1275 int error;
1276 bool update_mtime = false;
1277 bool update_ctime = true;
1278
1279 error = setattr_prepare(idmap, dentry, attr);
1280 if (error)
1281 return error;
1282
1283 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1284 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1285 return -EPERM;
1286 }
1287 }
1288
1289 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1290 loff_t oldsize = inode->i_size;
1291 loff_t newsize = attr->ia_size;
1292
1293 /* protected by i_rwsem */
1294 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1295 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1296 return -EPERM;
1297
1298 if (newsize != oldsize) {
1299 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1300 oldsize, newsize);
1301 if (error)
1302 return error;
1303 i_size_write(inode, newsize);
1304 update_mtime = true;
1305 } else {
1306 update_ctime = false;
1307 }
1308 if (newsize <= oldsize) {
1309 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1310 if (oldsize > holebegin)
1311 unmap_mapping_range(inode->i_mapping,
1312 holebegin, 0, 1);
1313 if (info->alloced)
1314 shmem_truncate_range(inode,
1315 newsize, (loff_t)-1);
1316 /* unmap again to remove racily COWed private pages */
1317 if (oldsize > holebegin)
1318 unmap_mapping_range(inode->i_mapping,
1319 holebegin, 0, 1);
1320 }
1321 }
1322
1323 if (is_quota_modification(idmap, inode, attr)) {
1324 error = dquot_initialize(inode);
1325 if (error)
1326 return error;
1327 }
1328
1329 /* Transfer quota accounting */
1330 if (i_uid_needs_update(idmap, attr, inode) ||
1331 i_gid_needs_update(idmap, attr, inode)) {
1332 error = dquot_transfer(idmap, inode, attr);
1333 if (error)
1334 return error;
1335 }
1336
1337 setattr_copy(idmap, inode, attr);
1338 if (attr->ia_valid & ATTR_MODE)
1339 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1340 if (!error && update_ctime) {
1341 inode_set_ctime_current(inode);
1342 if (update_mtime)
1343 inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1344 inode_inc_iversion(inode);
1345 }
1346 return error;
1347 }
1348
shmem_evict_inode(struct inode * inode)1349 static void shmem_evict_inode(struct inode *inode)
1350 {
1351 struct shmem_inode_info *info = SHMEM_I(inode);
1352 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1353 size_t freed = 0;
1354
1355 if (shmem_mapping(inode->i_mapping)) {
1356 shmem_unacct_size(info->flags, inode->i_size);
1357 inode->i_size = 0;
1358 mapping_set_exiting(inode->i_mapping);
1359 shmem_truncate_range(inode, 0, (loff_t)-1);
1360 if (!list_empty(&info->shrinklist)) {
1361 spin_lock(&sbinfo->shrinklist_lock);
1362 if (!list_empty(&info->shrinklist)) {
1363 list_del_init(&info->shrinklist);
1364 sbinfo->shrinklist_len--;
1365 }
1366 spin_unlock(&sbinfo->shrinklist_lock);
1367 }
1368 while (!list_empty(&info->swaplist)) {
1369 /* Wait while shmem_unuse() is scanning this inode... */
1370 wait_var_event(&info->stop_eviction,
1371 !atomic_read(&info->stop_eviction));
1372 spin_lock(&shmem_swaplist_lock);
1373 /* ...but beware of the race if we peeked too early */
1374 if (!atomic_read(&info->stop_eviction))
1375 list_del_init(&info->swaplist);
1376 spin_unlock(&shmem_swaplist_lock);
1377 }
1378 }
1379
1380 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1381 shmem_free_inode(inode->i_sb, freed);
1382 WARN_ON(inode->i_blocks);
1383 clear_inode(inode);
1384 #ifdef CONFIG_TMPFS_QUOTA
1385 dquot_free_inode(inode);
1386 dquot_drop(inode);
1387 #endif
1388 }
1389
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1390 static unsigned int shmem_find_swap_entries(struct address_space *mapping,
1391 pgoff_t start, struct folio_batch *fbatch,
1392 pgoff_t *indices, unsigned int type)
1393 {
1394 XA_STATE(xas, &mapping->i_pages, start);
1395 struct folio *folio;
1396 swp_entry_t entry;
1397
1398 rcu_read_lock();
1399 xas_for_each(&xas, folio, ULONG_MAX) {
1400 if (xas_retry(&xas, folio))
1401 continue;
1402
1403 if (!xa_is_value(folio))
1404 continue;
1405
1406 entry = radix_to_swp_entry(folio);
1407 /*
1408 * swapin error entries can be found in the mapping. But they're
1409 * deliberately ignored here as we've done everything we can do.
1410 */
1411 if (swp_type(entry) != type)
1412 continue;
1413
1414 indices[folio_batch_count(fbatch)] = xas.xa_index;
1415 if (!folio_batch_add(fbatch, folio))
1416 break;
1417
1418 if (need_resched()) {
1419 xas_pause(&xas);
1420 cond_resched_rcu();
1421 }
1422 }
1423 rcu_read_unlock();
1424
1425 return folio_batch_count(fbatch);
1426 }
1427
1428 /*
1429 * Move the swapped pages for an inode to page cache. Returns the count
1430 * of pages swapped in, or the error in case of failure.
1431 */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1432 static int shmem_unuse_swap_entries(struct inode *inode,
1433 struct folio_batch *fbatch, pgoff_t *indices)
1434 {
1435 int i = 0;
1436 int ret = 0;
1437 int error = 0;
1438 struct address_space *mapping = inode->i_mapping;
1439
1440 for (i = 0; i < folio_batch_count(fbatch); i++) {
1441 struct folio *folio = fbatch->folios[i];
1442
1443 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1444 mapping_gfp_mask(mapping), NULL, NULL);
1445 if (error == 0) {
1446 folio_unlock(folio);
1447 folio_put(folio);
1448 ret++;
1449 }
1450 if (error == -ENOMEM)
1451 break;
1452 error = 0;
1453 }
1454 return error ? error : ret;
1455 }
1456
1457 /*
1458 * If swap found in inode, free it and move page from swapcache to filecache.
1459 */
shmem_unuse_inode(struct inode * inode,unsigned int type)1460 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1461 {
1462 struct address_space *mapping = inode->i_mapping;
1463 pgoff_t start = 0;
1464 struct folio_batch fbatch;
1465 pgoff_t indices[PAGEVEC_SIZE];
1466 int ret = 0;
1467
1468 do {
1469 folio_batch_init(&fbatch);
1470 if (!shmem_find_swap_entries(mapping, start, &fbatch,
1471 indices, type)) {
1472 ret = 0;
1473 break;
1474 }
1475
1476 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1477 if (ret < 0)
1478 break;
1479
1480 start = indices[folio_batch_count(&fbatch) - 1];
1481 } while (true);
1482
1483 return ret;
1484 }
1485
1486 /*
1487 * Read all the shared memory data that resides in the swap
1488 * device 'type' back into memory, so the swap device can be
1489 * unused.
1490 */
shmem_unuse(unsigned int type)1491 int shmem_unuse(unsigned int type)
1492 {
1493 struct shmem_inode_info *info, *next;
1494 int error = 0;
1495
1496 if (list_empty(&shmem_swaplist))
1497 return 0;
1498
1499 spin_lock(&shmem_swaplist_lock);
1500 start_over:
1501 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1502 if (!info->swapped) {
1503 list_del_init(&info->swaplist);
1504 continue;
1505 }
1506 /*
1507 * Drop the swaplist mutex while searching the inode for swap;
1508 * but before doing so, make sure shmem_evict_inode() will not
1509 * remove placeholder inode from swaplist, nor let it be freed
1510 * (igrab() would protect from unlink, but not from unmount).
1511 */
1512 atomic_inc(&info->stop_eviction);
1513 spin_unlock(&shmem_swaplist_lock);
1514
1515 error = shmem_unuse_inode(&info->vfs_inode, type);
1516 cond_resched();
1517
1518 spin_lock(&shmem_swaplist_lock);
1519 if (atomic_dec_and_test(&info->stop_eviction))
1520 wake_up_var(&info->stop_eviction);
1521 if (error)
1522 break;
1523 if (list_empty(&info->swaplist))
1524 goto start_over;
1525 next = list_next_entry(info, swaplist);
1526 if (!info->swapped)
1527 list_del_init(&info->swaplist);
1528 }
1529 spin_unlock(&shmem_swaplist_lock);
1530
1531 return error;
1532 }
1533
1534 /**
1535 * shmem_writeout - Write the folio to swap
1536 * @folio: The folio to write
1537 * @plug: swap plug
1538 * @folio_list: list to put back folios on split
1539 *
1540 * Move the folio from the page cache to the swap cache.
1541 */
shmem_writeout(struct folio * folio,struct swap_iocb ** plug,struct list_head * folio_list)1542 int shmem_writeout(struct folio *folio, struct swap_iocb **plug,
1543 struct list_head *folio_list)
1544 {
1545 struct address_space *mapping = folio->mapping;
1546 struct inode *inode = mapping->host;
1547 struct shmem_inode_info *info = SHMEM_I(inode);
1548 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1549 pgoff_t index;
1550 int nr_pages;
1551 bool split = false;
1552
1553 if ((info->flags & VM_LOCKED) || sbinfo->noswap)
1554 goto redirty;
1555
1556 if (!total_swap_pages)
1557 goto redirty;
1558
1559 /*
1560 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1561 * split when swapping.
1562 *
1563 * And shrinkage of pages beyond i_size does not split swap, so
1564 * swapout of a large folio crossing i_size needs to split too
1565 * (unless fallocate has been used to preallocate beyond EOF).
1566 */
1567 if (folio_test_large(folio)) {
1568 index = shmem_fallocend(inode,
1569 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1570 if ((index > folio->index && index < folio_next_index(folio)) ||
1571 !IS_ENABLED(CONFIG_THP_SWAP))
1572 split = true;
1573 }
1574
1575 if (split) {
1576 try_split:
1577 /* Ensure the subpages are still dirty */
1578 folio_test_set_dirty(folio);
1579 if (split_folio_to_list(folio, folio_list))
1580 goto redirty;
1581 folio_clear_dirty(folio);
1582 }
1583
1584 index = folio->index;
1585 nr_pages = folio_nr_pages(folio);
1586
1587 /*
1588 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1589 * value into swapfile.c, the only way we can correctly account for a
1590 * fallocated folio arriving here is now to initialize it and write it.
1591 *
1592 * That's okay for a folio already fallocated earlier, but if we have
1593 * not yet completed the fallocation, then (a) we want to keep track
1594 * of this folio in case we have to undo it, and (b) it may not be a
1595 * good idea to continue anyway, once we're pushing into swap. So
1596 * reactivate the folio, and let shmem_fallocate() quit when too many.
1597 */
1598 if (!folio_test_uptodate(folio)) {
1599 if (inode->i_private) {
1600 struct shmem_falloc *shmem_falloc;
1601 spin_lock(&inode->i_lock);
1602 shmem_falloc = inode->i_private;
1603 if (shmem_falloc &&
1604 !shmem_falloc->waitq &&
1605 index >= shmem_falloc->start &&
1606 index < shmem_falloc->next)
1607 shmem_falloc->nr_unswapped += nr_pages;
1608 else
1609 shmem_falloc = NULL;
1610 spin_unlock(&inode->i_lock);
1611 if (shmem_falloc)
1612 goto redirty;
1613 }
1614 folio_zero_range(folio, 0, folio_size(folio));
1615 flush_dcache_folio(folio);
1616 folio_mark_uptodate(folio);
1617 }
1618
1619 if (!folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN)) {
1620 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages);
1621 int error;
1622
1623 /*
1624 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1625 * if it's not already there. Do it now before the folio is
1626 * removed from page cache, when its pagelock no longer
1627 * protects the inode from eviction. And do it now, after
1628 * we've incremented swapped, because shmem_unuse() will
1629 * prune a !swapped inode from the swaplist.
1630 */
1631 if (first_swapped) {
1632 spin_lock(&shmem_swaplist_lock);
1633 if (list_empty(&info->swaplist))
1634 list_add(&info->swaplist, &shmem_swaplist);
1635 spin_unlock(&shmem_swaplist_lock);
1636 }
1637
1638 swap_shmem_alloc(folio->swap, nr_pages);
1639 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap));
1640
1641 BUG_ON(folio_mapped(folio));
1642 error = swap_writeout(folio, plug);
1643 if (error != AOP_WRITEPAGE_ACTIVATE) {
1644 /* folio has been unlocked */
1645 return error;
1646 }
1647
1648 /*
1649 * The intention here is to avoid holding on to the swap when
1650 * zswap was unable to compress and unable to writeback; but
1651 * it will be appropriate if other reactivate cases are added.
1652 */
1653 error = shmem_add_to_page_cache(folio, mapping, index,
1654 swp_to_radix_entry(folio->swap),
1655 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
1656 /* Swap entry might be erased by racing shmem_free_swap() */
1657 if (!error) {
1658 shmem_recalc_inode(inode, 0, -nr_pages);
1659 swap_free_nr(folio->swap, nr_pages);
1660 }
1661
1662 /*
1663 * The swap_cache_del_folio() below could be left for
1664 * shrink_folio_list()'s folio_free_swap() to dispose of;
1665 * but I'm a little nervous about letting this folio out of
1666 * shmem_writeout() in a hybrid half-tmpfs-half-swap state
1667 * e.g. folio_mapping(folio) might give an unexpected answer.
1668 */
1669 swap_cache_del_folio(folio);
1670 goto redirty;
1671 }
1672 if (nr_pages > 1)
1673 goto try_split;
1674 redirty:
1675 folio_mark_dirty(folio);
1676 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1677 }
1678 EXPORT_SYMBOL_GPL(shmem_writeout);
1679
1680 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1681 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1682 {
1683 char buffer[64];
1684
1685 if (!mpol || mpol->mode == MPOL_DEFAULT)
1686 return; /* show nothing */
1687
1688 mpol_to_str(buffer, sizeof(buffer), mpol);
1689
1690 seq_printf(seq, ",mpol=%s", buffer);
1691 }
1692
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1693 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1694 {
1695 struct mempolicy *mpol = NULL;
1696 if (sbinfo->mpol) {
1697 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1698 mpol = sbinfo->mpol;
1699 mpol_get(mpol);
1700 raw_spin_unlock(&sbinfo->stat_lock);
1701 }
1702 return mpol;
1703 }
1704 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1705 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1706 {
1707 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1708 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1709 {
1710 return NULL;
1711 }
1712 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1713
1714 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1715 pgoff_t index, unsigned int order, pgoff_t *ilx);
1716
shmem_swapin_cluster(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1717 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1718 struct shmem_inode_info *info, pgoff_t index)
1719 {
1720 struct mempolicy *mpol;
1721 pgoff_t ilx;
1722 struct folio *folio;
1723
1724 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1725 folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1726 mpol_cond_put(mpol);
1727
1728 return folio;
1729 }
1730
1731 /*
1732 * Make sure huge_gfp is always more limited than limit_gfp.
1733 * Some of the flags set permissions, while others set limitations.
1734 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1735 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1736 {
1737 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1738 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1739 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1740 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1741
1742 /* Allow allocations only from the originally specified zones. */
1743 result |= zoneflags;
1744
1745 /*
1746 * Minimize the result gfp by taking the union with the deny flags,
1747 * and the intersection of the allow flags.
1748 */
1749 result |= (limit_gfp & denyflags);
1750 result |= (huge_gfp & limit_gfp) & allowflags;
1751
1752 return result;
1753 }
1754
1755 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_hpage_pmd_enabled(void)1756 bool shmem_hpage_pmd_enabled(void)
1757 {
1758 if (shmem_huge == SHMEM_HUGE_DENY)
1759 return false;
1760 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1761 return true;
1762 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1763 return true;
1764 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1765 return true;
1766 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1767 shmem_huge != SHMEM_HUGE_NEVER)
1768 return true;
1769
1770 return false;
1771 }
1772
shmem_allowable_huge_orders(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,loff_t write_end,bool shmem_huge_force)1773 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1774 struct vm_area_struct *vma, pgoff_t index,
1775 loff_t write_end, bool shmem_huge_force)
1776 {
1777 unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1778 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1779 vm_flags_t vm_flags = vma ? vma->vm_flags : 0;
1780 unsigned int global_orders;
1781
1782 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force)))
1783 return 0;
1784
1785 global_orders = shmem_huge_global_enabled(inode, index, write_end,
1786 shmem_huge_force, vma, vm_flags);
1787 /* Tmpfs huge pages allocation */
1788 if (!vma || !vma_is_anon_shmem(vma))
1789 return global_orders;
1790
1791 /*
1792 * Following the 'deny' semantics of the top level, force the huge
1793 * option off from all mounts.
1794 */
1795 if (shmem_huge == SHMEM_HUGE_DENY)
1796 return 0;
1797
1798 /*
1799 * Only allow inherit orders if the top-level value is 'force', which
1800 * means non-PMD sized THP can not override 'huge' mount option now.
1801 */
1802 if (shmem_huge == SHMEM_HUGE_FORCE)
1803 return READ_ONCE(huge_shmem_orders_inherit);
1804
1805 /* Allow mTHP that will be fully within i_size. */
1806 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0);
1807
1808 if (vm_flags & VM_HUGEPAGE)
1809 mask |= READ_ONCE(huge_shmem_orders_madvise);
1810
1811 if (global_orders > 0)
1812 mask |= READ_ONCE(huge_shmem_orders_inherit);
1813
1814 return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1815 }
1816
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1817 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1818 struct address_space *mapping, pgoff_t index,
1819 unsigned long orders)
1820 {
1821 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1822 pgoff_t aligned_index;
1823 unsigned long pages;
1824 int order;
1825
1826 if (vma) {
1827 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1828 if (!orders)
1829 return 0;
1830 }
1831
1832 /* Find the highest order that can add into the page cache */
1833 order = highest_order(orders);
1834 while (orders) {
1835 pages = 1UL << order;
1836 aligned_index = round_down(index, pages);
1837 /*
1838 * Check for conflict before waiting on a huge allocation.
1839 * Conflict might be that a huge page has just been allocated
1840 * and added to page cache by a racing thread, or that there
1841 * is already at least one small page in the huge extent.
1842 * Be careful to retry when appropriate, but not forever!
1843 * Elsewhere -EEXIST would be the right code, but not here.
1844 */
1845 if (!xa_find(&mapping->i_pages, &aligned_index,
1846 aligned_index + pages - 1, XA_PRESENT))
1847 break;
1848 order = next_order(&orders, order);
1849 }
1850
1851 return orders;
1852 }
1853 #else
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1854 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1855 struct address_space *mapping, pgoff_t index,
1856 unsigned long orders)
1857 {
1858 return 0;
1859 }
1860 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1861
shmem_alloc_folio(gfp_t gfp,int order,struct shmem_inode_info * info,pgoff_t index)1862 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1863 struct shmem_inode_info *info, pgoff_t index)
1864 {
1865 struct mempolicy *mpol;
1866 pgoff_t ilx;
1867 struct folio *folio;
1868
1869 mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1870 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1871 mpol_cond_put(mpol);
1872
1873 return folio;
1874 }
1875
shmem_alloc_and_add_folio(struct vm_fault * vmf,gfp_t gfp,struct inode * inode,pgoff_t index,struct mm_struct * fault_mm,unsigned long orders)1876 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1877 gfp_t gfp, struct inode *inode, pgoff_t index,
1878 struct mm_struct *fault_mm, unsigned long orders)
1879 {
1880 struct address_space *mapping = inode->i_mapping;
1881 struct shmem_inode_info *info = SHMEM_I(inode);
1882 unsigned long suitable_orders = 0;
1883 struct folio *folio = NULL;
1884 pgoff_t aligned_index;
1885 long pages;
1886 int error, order;
1887
1888 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1889 orders = 0;
1890
1891 if (orders > 0) {
1892 suitable_orders = shmem_suitable_orders(inode, vmf,
1893 mapping, index, orders);
1894
1895 order = highest_order(suitable_orders);
1896 while (suitable_orders) {
1897 pages = 1UL << order;
1898 aligned_index = round_down(index, pages);
1899 folio = shmem_alloc_folio(gfp, order, info, aligned_index);
1900 if (folio) {
1901 index = aligned_index;
1902 goto allocated;
1903 }
1904
1905 if (pages == HPAGE_PMD_NR)
1906 count_vm_event(THP_FILE_FALLBACK);
1907 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1908 order = next_order(&suitable_orders, order);
1909 }
1910 } else {
1911 pages = 1;
1912 folio = shmem_alloc_folio(gfp, 0, info, index);
1913 }
1914 if (!folio)
1915 return ERR_PTR(-ENOMEM);
1916
1917 allocated:
1918 __folio_set_locked(folio);
1919 __folio_set_swapbacked(folio);
1920
1921 gfp &= GFP_RECLAIM_MASK;
1922 error = mem_cgroup_charge(folio, fault_mm, gfp);
1923 if (error) {
1924 if (xa_find(&mapping->i_pages, &index,
1925 index + pages - 1, XA_PRESENT)) {
1926 error = -EEXIST;
1927 } else if (pages > 1) {
1928 if (pages == HPAGE_PMD_NR) {
1929 count_vm_event(THP_FILE_FALLBACK);
1930 count_vm_event(THP_FILE_FALLBACK_CHARGE);
1931 }
1932 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1933 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1934 }
1935 goto unlock;
1936 }
1937
1938 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1939 if (error)
1940 goto unlock;
1941
1942 error = shmem_inode_acct_blocks(inode, pages);
1943 if (error) {
1944 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1945 long freed;
1946 /*
1947 * Try to reclaim some space by splitting a few
1948 * large folios beyond i_size on the filesystem.
1949 */
1950 shmem_unused_huge_shrink(sbinfo, NULL, pages);
1951 /*
1952 * And do a shmem_recalc_inode() to account for freed pages:
1953 * except our folio is there in cache, so not quite balanced.
1954 */
1955 spin_lock(&info->lock);
1956 freed = pages + info->alloced - info->swapped -
1957 READ_ONCE(mapping->nrpages);
1958 if (freed > 0)
1959 info->alloced -= freed;
1960 spin_unlock(&info->lock);
1961 if (freed > 0)
1962 shmem_inode_unacct_blocks(inode, freed);
1963 error = shmem_inode_acct_blocks(inode, pages);
1964 if (error) {
1965 filemap_remove_folio(folio);
1966 goto unlock;
1967 }
1968 }
1969
1970 shmem_recalc_inode(inode, pages, 0);
1971 folio_add_lru(folio);
1972 return folio;
1973
1974 unlock:
1975 folio_unlock(folio);
1976 folio_put(folio);
1977 return ERR_PTR(error);
1978 }
1979
shmem_swap_alloc_folio(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,swp_entry_t entry,int order,gfp_t gfp)1980 static struct folio *shmem_swap_alloc_folio(struct inode *inode,
1981 struct vm_area_struct *vma, pgoff_t index,
1982 swp_entry_t entry, int order, gfp_t gfp)
1983 {
1984 struct shmem_inode_info *info = SHMEM_I(inode);
1985 int nr_pages = 1 << order;
1986 struct folio *new;
1987 gfp_t alloc_gfp;
1988 void *shadow;
1989
1990 /*
1991 * We have arrived here because our zones are constrained, so don't
1992 * limit chance of success with further cpuset and node constraints.
1993 */
1994 gfp &= ~GFP_CONSTRAINT_MASK;
1995 alloc_gfp = gfp;
1996 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1997 if (WARN_ON_ONCE(order))
1998 return ERR_PTR(-EINVAL);
1999 } else if (order) {
2000 /*
2001 * If uffd is active for the vma, we need per-page fault
2002 * fidelity to maintain the uffd semantics, then fallback
2003 * to swapin order-0 folio, as well as for zswap case.
2004 * Any existing sub folio in the swap cache also blocks
2005 * mTHP swapin.
2006 */
2007 if ((vma && unlikely(userfaultfd_armed(vma))) ||
2008 !zswap_never_enabled() ||
2009 non_swapcache_batch(entry, nr_pages) != nr_pages)
2010 goto fallback;
2011
2012 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp);
2013 }
2014 retry:
2015 new = shmem_alloc_folio(alloc_gfp, order, info, index);
2016 if (!new) {
2017 new = ERR_PTR(-ENOMEM);
2018 goto fallback;
2019 }
2020
2021 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL,
2022 alloc_gfp, entry)) {
2023 folio_put(new);
2024 new = ERR_PTR(-ENOMEM);
2025 goto fallback;
2026 }
2027
2028 /*
2029 * Prevent parallel swapin from proceeding with the swap cache flag.
2030 *
2031 * Of course there is another possible concurrent scenario as well,
2032 * that is to say, the swap cache flag of a large folio has already
2033 * been set by swapcache_prepare(), while another thread may have
2034 * already split the large swap entry stored in the shmem mapping.
2035 * In this case, shmem_add_to_page_cache() will help identify the
2036 * concurrent swapin and return -EEXIST.
2037 */
2038 if (swapcache_prepare(entry, nr_pages)) {
2039 folio_put(new);
2040 new = ERR_PTR(-EEXIST);
2041 /* Try smaller folio to avoid cache conflict */
2042 goto fallback;
2043 }
2044
2045 __folio_set_locked(new);
2046 __folio_set_swapbacked(new);
2047 new->swap = entry;
2048
2049 memcg1_swapin(entry, nr_pages);
2050 shadow = swap_cache_get_shadow(entry);
2051 if (shadow)
2052 workingset_refault(new, shadow);
2053 folio_add_lru(new);
2054 swap_read_folio(new, NULL);
2055 return new;
2056 fallback:
2057 /* Order 0 swapin failed, nothing to fallback to, abort */
2058 if (!order)
2059 return new;
2060 entry.val += index - round_down(index, nr_pages);
2061 alloc_gfp = gfp;
2062 nr_pages = 1;
2063 order = 0;
2064 goto retry;
2065 }
2066
2067 /*
2068 * When a page is moved from swapcache to shmem filecache (either by the
2069 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
2070 * shmem_unuse_inode()), it may have been read in earlier from swap, in
2071 * ignorance of the mapping it belongs to. If that mapping has special
2072 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
2073 * we may need to copy to a suitable page before moving to filecache.
2074 *
2075 * In a future release, this may well be extended to respect cpuset and
2076 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
2077 * but for now it is a simple matter of zone.
2078 */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)2079 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
2080 {
2081 return folio_zonenum(folio) > gfp_zone(gfp);
2082 }
2083
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index,struct vm_area_struct * vma)2084 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
2085 struct shmem_inode_info *info, pgoff_t index,
2086 struct vm_area_struct *vma)
2087 {
2088 struct swap_cluster_info *ci;
2089 struct folio *new, *old = *foliop;
2090 swp_entry_t entry = old->swap;
2091 int nr_pages = folio_nr_pages(old);
2092 int error = 0;
2093
2094 /*
2095 * We have arrived here because our zones are constrained, so don't
2096 * limit chance of success by further cpuset and node constraints.
2097 */
2098 gfp &= ~GFP_CONSTRAINT_MASK;
2099 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2100 if (nr_pages > 1) {
2101 gfp_t huge_gfp = vma_thp_gfp_mask(vma);
2102
2103 gfp = limit_gfp_mask(huge_gfp, gfp);
2104 }
2105 #endif
2106
2107 new = shmem_alloc_folio(gfp, folio_order(old), info, index);
2108 if (!new)
2109 return -ENOMEM;
2110
2111 folio_ref_add(new, nr_pages);
2112 folio_copy(new, old);
2113 flush_dcache_folio(new);
2114
2115 __folio_set_locked(new);
2116 __folio_set_swapbacked(new);
2117 folio_mark_uptodate(new);
2118 new->swap = entry;
2119 folio_set_swapcache(new);
2120
2121 ci = swap_cluster_get_and_lock_irq(old);
2122 __swap_cache_replace_folio(ci, old, new);
2123 mem_cgroup_replace_folio(old, new);
2124 shmem_update_stats(new, nr_pages);
2125 shmem_update_stats(old, -nr_pages);
2126 swap_cluster_unlock_irq(ci);
2127
2128 folio_add_lru(new);
2129 *foliop = new;
2130
2131 folio_clear_swapcache(old);
2132 old->private = NULL;
2133
2134 folio_unlock(old);
2135 /*
2136 * The old folio are removed from swap cache, drop the 'nr_pages'
2137 * reference, as well as one temporary reference getting from swap
2138 * cache.
2139 */
2140 folio_put_refs(old, nr_pages + 1);
2141 return error;
2142 }
2143
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap,bool skip_swapcache)2144 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2145 struct folio *folio, swp_entry_t swap,
2146 bool skip_swapcache)
2147 {
2148 struct address_space *mapping = inode->i_mapping;
2149 swp_entry_t swapin_error;
2150 void *old;
2151 int nr_pages;
2152
2153 swapin_error = make_poisoned_swp_entry();
2154 old = xa_cmpxchg_irq(&mapping->i_pages, index,
2155 swp_to_radix_entry(swap),
2156 swp_to_radix_entry(swapin_error), 0);
2157 if (old != swp_to_radix_entry(swap))
2158 return;
2159
2160 nr_pages = folio_nr_pages(folio);
2161 folio_wait_writeback(folio);
2162 if (!skip_swapcache)
2163 swap_cache_del_folio(folio);
2164 /*
2165 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2166 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2167 * in shmem_evict_inode().
2168 */
2169 shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2170 swap_free_nr(swap, nr_pages);
2171 }
2172
shmem_split_large_entry(struct inode * inode,pgoff_t index,swp_entry_t swap,gfp_t gfp)2173 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2174 swp_entry_t swap, gfp_t gfp)
2175 {
2176 struct address_space *mapping = inode->i_mapping;
2177 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2178 int split_order = 0;
2179 int i;
2180
2181 /* Convert user data gfp flags to xarray node gfp flags */
2182 gfp &= GFP_RECLAIM_MASK;
2183
2184 for (;;) {
2185 void *old = NULL;
2186 int cur_order;
2187 pgoff_t swap_index;
2188
2189 xas_lock_irq(&xas);
2190 old = xas_load(&xas);
2191 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2192 xas_set_err(&xas, -EEXIST);
2193 goto unlock;
2194 }
2195
2196 cur_order = xas_get_order(&xas);
2197 if (!cur_order)
2198 goto unlock;
2199
2200 /* Try to split large swap entry in pagecache */
2201 swap_index = round_down(index, 1 << cur_order);
2202 split_order = xas_try_split_min_order(cur_order);
2203
2204 while (cur_order > 0) {
2205 pgoff_t aligned_index =
2206 round_down(index, 1 << cur_order);
2207 pgoff_t swap_offset = aligned_index - swap_index;
2208
2209 xas_set_order(&xas, index, split_order);
2210 xas_try_split(&xas, old, cur_order);
2211 if (xas_error(&xas))
2212 goto unlock;
2213
2214 /*
2215 * Re-set the swap entry after splitting, and the swap
2216 * offset of the original large entry must be continuous.
2217 */
2218 for (i = 0; i < 1 << cur_order;
2219 i += (1 << split_order)) {
2220 swp_entry_t tmp;
2221
2222 tmp = swp_entry(swp_type(swap),
2223 swp_offset(swap) + swap_offset +
2224 i);
2225 __xa_store(&mapping->i_pages, aligned_index + i,
2226 swp_to_radix_entry(tmp), 0);
2227 }
2228 cur_order = split_order;
2229 split_order = xas_try_split_min_order(split_order);
2230 }
2231
2232 unlock:
2233 xas_unlock_irq(&xas);
2234
2235 if (!xas_nomem(&xas, gfp))
2236 break;
2237 }
2238
2239 if (xas_error(&xas))
2240 return xas_error(&xas);
2241
2242 return 0;
2243 }
2244
2245 /*
2246 * Swap in the folio pointed to by *foliop.
2247 * Caller has to make sure that *foliop contains a valid swapped folio.
2248 * Returns 0 and the folio in foliop if success. On failure, returns the
2249 * error code and NULL in *foliop.
2250 */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)2251 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2252 struct folio **foliop, enum sgp_type sgp,
2253 gfp_t gfp, struct vm_area_struct *vma,
2254 vm_fault_t *fault_type)
2255 {
2256 struct address_space *mapping = inode->i_mapping;
2257 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2258 struct shmem_inode_info *info = SHMEM_I(inode);
2259 swp_entry_t swap, index_entry;
2260 struct swap_info_struct *si;
2261 struct folio *folio = NULL;
2262 bool skip_swapcache = false;
2263 int error, nr_pages, order;
2264 pgoff_t offset;
2265
2266 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2267 index_entry = radix_to_swp_entry(*foliop);
2268 swap = index_entry;
2269 *foliop = NULL;
2270
2271 if (is_poisoned_swp_entry(index_entry))
2272 return -EIO;
2273
2274 si = get_swap_device(index_entry);
2275 order = shmem_confirm_swap(mapping, index, index_entry);
2276 if (unlikely(!si)) {
2277 if (order < 0)
2278 return -EEXIST;
2279 else
2280 return -EINVAL;
2281 }
2282 if (unlikely(order < 0)) {
2283 put_swap_device(si);
2284 return -EEXIST;
2285 }
2286
2287 /* index may point to the middle of a large entry, get the sub entry */
2288 if (order) {
2289 offset = index - round_down(index, 1 << order);
2290 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2291 }
2292
2293 /* Look it up and read it in.. */
2294 folio = swap_cache_get_folio(swap);
2295 if (!folio) {
2296 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
2297 /* Direct swapin skipping swap cache & readahead */
2298 folio = shmem_swap_alloc_folio(inode, vma, index,
2299 index_entry, order, gfp);
2300 if (IS_ERR(folio)) {
2301 error = PTR_ERR(folio);
2302 folio = NULL;
2303 goto failed;
2304 }
2305 skip_swapcache = true;
2306 } else {
2307 /* Cached swapin only supports order 0 folio */
2308 folio = shmem_swapin_cluster(swap, gfp, info, index);
2309 if (!folio) {
2310 error = -ENOMEM;
2311 goto failed;
2312 }
2313 }
2314 if (fault_type) {
2315 *fault_type |= VM_FAULT_MAJOR;
2316 count_vm_event(PGMAJFAULT);
2317 count_memcg_event_mm(fault_mm, PGMAJFAULT);
2318 }
2319 } else {
2320 swap_update_readahead(folio, NULL, 0);
2321 }
2322
2323 if (order > folio_order(folio)) {
2324 /*
2325 * Swapin may get smaller folios due to various reasons:
2326 * It may fallback to order 0 due to memory pressure or race,
2327 * swap readahead may swap in order 0 folios into swapcache
2328 * asynchronously, while the shmem mapping can still stores
2329 * large swap entries. In such cases, we should split the
2330 * large swap entry to prevent possible data corruption.
2331 */
2332 error = shmem_split_large_entry(inode, index, index_entry, gfp);
2333 if (error)
2334 goto failed_nolock;
2335 }
2336
2337 /*
2338 * If the folio is large, round down swap and index by folio size.
2339 * No matter what race occurs, the swap layer ensures we either get
2340 * a valid folio that has its swap entry aligned by size, or a
2341 * temporarily invalid one which we'll abort very soon and retry.
2342 *
2343 * shmem_add_to_page_cache ensures the whole range contains expected
2344 * entries and prevents any corruption, so any race split is fine
2345 * too, it will succeed as long as the entries are still there.
2346 */
2347 nr_pages = folio_nr_pages(folio);
2348 if (nr_pages > 1) {
2349 swap.val = round_down(swap.val, nr_pages);
2350 index = round_down(index, nr_pages);
2351 }
2352
2353 /*
2354 * We have to do this with the folio locked to prevent races.
2355 * The shmem_confirm_swap below only checks if the first swap
2356 * entry matches the folio, that's enough to ensure the folio
2357 * is not used outside of shmem, as shmem swap entries
2358 * and swap cache folios are never partially freed.
2359 */
2360 folio_lock(folio);
2361 if ((!skip_swapcache && !folio_test_swapcache(folio)) ||
2362 shmem_confirm_swap(mapping, index, swap) < 0 ||
2363 folio->swap.val != swap.val) {
2364 error = -EEXIST;
2365 goto unlock;
2366 }
2367 if (!folio_test_uptodate(folio)) {
2368 error = -EIO;
2369 goto failed;
2370 }
2371 folio_wait_writeback(folio);
2372
2373 /*
2374 * Some architectures may have to restore extra metadata to the
2375 * folio after reading from swap.
2376 */
2377 arch_swap_restore(folio_swap(swap, folio), folio);
2378
2379 if (shmem_should_replace_folio(folio, gfp)) {
2380 error = shmem_replace_folio(&folio, gfp, info, index, vma);
2381 if (error)
2382 goto failed;
2383 }
2384
2385 error = shmem_add_to_page_cache(folio, mapping, index,
2386 swp_to_radix_entry(swap), gfp);
2387 if (error)
2388 goto failed;
2389
2390 shmem_recalc_inode(inode, 0, -nr_pages);
2391
2392 if (sgp == SGP_WRITE)
2393 folio_mark_accessed(folio);
2394
2395 if (skip_swapcache) {
2396 folio->swap.val = 0;
2397 swapcache_clear(si, swap, nr_pages);
2398 } else {
2399 swap_cache_del_folio(folio);
2400 }
2401 folio_mark_dirty(folio);
2402 swap_free_nr(swap, nr_pages);
2403 put_swap_device(si);
2404
2405 *foliop = folio;
2406 return 0;
2407 failed:
2408 if (shmem_confirm_swap(mapping, index, swap) < 0)
2409 error = -EEXIST;
2410 if (error == -EIO)
2411 shmem_set_folio_swapin_error(inode, index, folio, swap,
2412 skip_swapcache);
2413 unlock:
2414 if (folio)
2415 folio_unlock(folio);
2416 failed_nolock:
2417 if (skip_swapcache)
2418 swapcache_clear(si, folio->swap, folio_nr_pages(folio));
2419 if (folio)
2420 folio_put(folio);
2421 put_swap_device(si);
2422
2423 return error;
2424 }
2425
2426 /*
2427 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2428 *
2429 * If we allocate a new one we do not mark it dirty. That's up to the
2430 * vm. If we swap it in we mark it dirty since we also free the swap
2431 * entry since a page cannot live in both the swap and page cache.
2432 *
2433 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2434 */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_fault * vmf,vm_fault_t * fault_type)2435 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2436 loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2437 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2438 {
2439 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2440 struct mm_struct *fault_mm;
2441 struct folio *folio;
2442 int error;
2443 bool alloced;
2444 unsigned long orders = 0;
2445
2446 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2447 return -EINVAL;
2448
2449 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2450 return -EFBIG;
2451 repeat:
2452 if (sgp <= SGP_CACHE &&
2453 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2454 return -EINVAL;
2455
2456 alloced = false;
2457 fault_mm = vma ? vma->vm_mm : NULL;
2458
2459 folio = filemap_get_entry(inode->i_mapping, index);
2460 if (folio && vma && userfaultfd_minor(vma)) {
2461 if (!xa_is_value(folio))
2462 folio_put(folio);
2463 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2464 return 0;
2465 }
2466
2467 if (xa_is_value(folio)) {
2468 error = shmem_swapin_folio(inode, index, &folio,
2469 sgp, gfp, vma, fault_type);
2470 if (error == -EEXIST)
2471 goto repeat;
2472
2473 *foliop = folio;
2474 return error;
2475 }
2476
2477 if (folio) {
2478 folio_lock(folio);
2479
2480 /* Has the folio been truncated or swapped out? */
2481 if (unlikely(folio->mapping != inode->i_mapping)) {
2482 folio_unlock(folio);
2483 folio_put(folio);
2484 goto repeat;
2485 }
2486 if (sgp == SGP_WRITE)
2487 folio_mark_accessed(folio);
2488 if (folio_test_uptodate(folio))
2489 goto out;
2490 /* fallocated folio */
2491 if (sgp != SGP_READ)
2492 goto clear;
2493 folio_unlock(folio);
2494 folio_put(folio);
2495 }
2496
2497 /*
2498 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2499 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2500 */
2501 *foliop = NULL;
2502 if (sgp == SGP_READ)
2503 return 0;
2504 if (sgp == SGP_NOALLOC)
2505 return -ENOENT;
2506
2507 /*
2508 * Fast cache lookup and swap lookup did not find it: allocate.
2509 */
2510
2511 if (vma && userfaultfd_missing(vma)) {
2512 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2513 return 0;
2514 }
2515
2516 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2517 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2518 if (orders > 0) {
2519 gfp_t huge_gfp;
2520
2521 huge_gfp = vma_thp_gfp_mask(vma);
2522 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2523 folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2524 inode, index, fault_mm, orders);
2525 if (!IS_ERR(folio)) {
2526 if (folio_test_pmd_mappable(folio))
2527 count_vm_event(THP_FILE_ALLOC);
2528 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2529 goto alloced;
2530 }
2531 if (PTR_ERR(folio) == -EEXIST)
2532 goto repeat;
2533 }
2534
2535 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2536 if (IS_ERR(folio)) {
2537 error = PTR_ERR(folio);
2538 if (error == -EEXIST)
2539 goto repeat;
2540 folio = NULL;
2541 goto unlock;
2542 }
2543
2544 alloced:
2545 alloced = true;
2546 if (folio_test_large(folio) &&
2547 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2548 folio_next_index(folio)) {
2549 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2550 struct shmem_inode_info *info = SHMEM_I(inode);
2551 /*
2552 * Part of the large folio is beyond i_size: subject
2553 * to shrink under memory pressure.
2554 */
2555 spin_lock(&sbinfo->shrinklist_lock);
2556 /*
2557 * _careful to defend against unlocked access to
2558 * ->shrink_list in shmem_unused_huge_shrink()
2559 */
2560 if (list_empty_careful(&info->shrinklist)) {
2561 list_add_tail(&info->shrinklist,
2562 &sbinfo->shrinklist);
2563 sbinfo->shrinklist_len++;
2564 }
2565 spin_unlock(&sbinfo->shrinklist_lock);
2566 }
2567
2568 if (sgp == SGP_WRITE)
2569 folio_set_referenced(folio);
2570 /*
2571 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2572 */
2573 if (sgp == SGP_FALLOC)
2574 sgp = SGP_WRITE;
2575 clear:
2576 /*
2577 * Let SGP_WRITE caller clear ends if write does not fill folio;
2578 * but SGP_FALLOC on a folio fallocated earlier must initialize
2579 * it now, lest undo on failure cancel our earlier guarantee.
2580 */
2581 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2582 long i, n = folio_nr_pages(folio);
2583
2584 for (i = 0; i < n; i++)
2585 clear_highpage(folio_page(folio, i));
2586 flush_dcache_folio(folio);
2587 folio_mark_uptodate(folio);
2588 }
2589
2590 /* Perhaps the file has been truncated since we checked */
2591 if (sgp <= SGP_CACHE &&
2592 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2593 error = -EINVAL;
2594 goto unlock;
2595 }
2596 out:
2597 *foliop = folio;
2598 return 0;
2599
2600 /*
2601 * Error recovery.
2602 */
2603 unlock:
2604 if (alloced)
2605 filemap_remove_folio(folio);
2606 shmem_recalc_inode(inode, 0, 0);
2607 if (folio) {
2608 folio_unlock(folio);
2609 folio_put(folio);
2610 }
2611 return error;
2612 }
2613
2614 /**
2615 * shmem_get_folio - find, and lock a shmem folio.
2616 * @inode: inode to search
2617 * @index: the page index.
2618 * @write_end: end of a write, could extend inode size
2619 * @foliop: pointer to the folio if found
2620 * @sgp: SGP_* flags to control behavior
2621 *
2622 * Looks up the page cache entry at @inode & @index. If a folio is
2623 * present, it is returned locked with an increased refcount.
2624 *
2625 * If the caller modifies data in the folio, it must call folio_mark_dirty()
2626 * before unlocking the folio to ensure that the folio is not reclaimed.
2627 * There is no need to reserve space before calling folio_mark_dirty().
2628 *
2629 * When no folio is found, the behavior depends on @sgp:
2630 * - for SGP_READ, *@foliop is %NULL and 0 is returned
2631 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2632 * - for all other flags a new folio is allocated, inserted into the
2633 * page cache and returned locked in @foliop.
2634 *
2635 * Context: May sleep.
2636 * Return: 0 if successful, else a negative error code.
2637 */
shmem_get_folio(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp)2638 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2639 struct folio **foliop, enum sgp_type sgp)
2640 {
2641 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2642 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2643 }
2644 EXPORT_SYMBOL_GPL(shmem_get_folio);
2645
2646 /*
2647 * This is like autoremove_wake_function, but it removes the wait queue
2648 * entry unconditionally - even if something else had already woken the
2649 * target.
2650 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)2651 static int synchronous_wake_function(wait_queue_entry_t *wait,
2652 unsigned int mode, int sync, void *key)
2653 {
2654 int ret = default_wake_function(wait, mode, sync, key);
2655 list_del_init(&wait->entry);
2656 return ret;
2657 }
2658
2659 /*
2660 * Trinity finds that probing a hole which tmpfs is punching can
2661 * prevent the hole-punch from ever completing: which in turn
2662 * locks writers out with its hold on i_rwsem. So refrain from
2663 * faulting pages into the hole while it's being punched. Although
2664 * shmem_undo_range() does remove the additions, it may be unable to
2665 * keep up, as each new page needs its own unmap_mapping_range() call,
2666 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2667 *
2668 * It does not matter if we sometimes reach this check just before the
2669 * hole-punch begins, so that one fault then races with the punch:
2670 * we just need to make racing faults a rare case.
2671 *
2672 * The implementation below would be much simpler if we just used a
2673 * standard mutex or completion: but we cannot take i_rwsem in fault,
2674 * and bloating every shmem inode for this unlikely case would be sad.
2675 */
shmem_falloc_wait(struct vm_fault * vmf,struct inode * inode)2676 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2677 {
2678 struct shmem_falloc *shmem_falloc;
2679 struct file *fpin = NULL;
2680 vm_fault_t ret = 0;
2681
2682 spin_lock(&inode->i_lock);
2683 shmem_falloc = inode->i_private;
2684 if (shmem_falloc &&
2685 shmem_falloc->waitq &&
2686 vmf->pgoff >= shmem_falloc->start &&
2687 vmf->pgoff < shmem_falloc->next) {
2688 wait_queue_head_t *shmem_falloc_waitq;
2689 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2690
2691 ret = VM_FAULT_NOPAGE;
2692 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2693 shmem_falloc_waitq = shmem_falloc->waitq;
2694 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2695 TASK_UNINTERRUPTIBLE);
2696 spin_unlock(&inode->i_lock);
2697 schedule();
2698
2699 /*
2700 * shmem_falloc_waitq points into the shmem_fallocate()
2701 * stack of the hole-punching task: shmem_falloc_waitq
2702 * is usually invalid by the time we reach here, but
2703 * finish_wait() does not dereference it in that case;
2704 * though i_lock needed lest racing with wake_up_all().
2705 */
2706 spin_lock(&inode->i_lock);
2707 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2708 }
2709 spin_unlock(&inode->i_lock);
2710 if (fpin) {
2711 fput(fpin);
2712 ret = VM_FAULT_RETRY;
2713 }
2714 return ret;
2715 }
2716
shmem_fault(struct vm_fault * vmf)2717 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2718 {
2719 struct inode *inode = file_inode(vmf->vma->vm_file);
2720 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2721 struct folio *folio = NULL;
2722 vm_fault_t ret = 0;
2723 int err;
2724
2725 /*
2726 * Trinity finds that probing a hole which tmpfs is punching can
2727 * prevent the hole-punch from ever completing: noted in i_private.
2728 */
2729 if (unlikely(inode->i_private)) {
2730 ret = shmem_falloc_wait(vmf, inode);
2731 if (ret)
2732 return ret;
2733 }
2734
2735 WARN_ON_ONCE(vmf->page != NULL);
2736 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2737 gfp, vmf, &ret);
2738 if (err)
2739 return vmf_error(err);
2740 if (folio) {
2741 vmf->page = folio_file_page(folio, vmf->pgoff);
2742 ret |= VM_FAULT_LOCKED;
2743 }
2744 return ret;
2745 }
2746
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2747 unsigned long shmem_get_unmapped_area(struct file *file,
2748 unsigned long uaddr, unsigned long len,
2749 unsigned long pgoff, unsigned long flags)
2750 {
2751 unsigned long addr;
2752 unsigned long offset;
2753 unsigned long inflated_len;
2754 unsigned long inflated_addr;
2755 unsigned long inflated_offset;
2756 unsigned long hpage_size;
2757
2758 if (len > TASK_SIZE)
2759 return -ENOMEM;
2760
2761 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2762 flags);
2763
2764 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2765 return addr;
2766 if (IS_ERR_VALUE(addr))
2767 return addr;
2768 if (addr & ~PAGE_MASK)
2769 return addr;
2770 if (addr > TASK_SIZE - len)
2771 return addr;
2772
2773 if (shmem_huge == SHMEM_HUGE_DENY)
2774 return addr;
2775 if (flags & MAP_FIXED)
2776 return addr;
2777 /*
2778 * Our priority is to support MAP_SHARED mapped hugely;
2779 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2780 * But if caller specified an address hint and we allocated area there
2781 * successfully, respect that as before.
2782 */
2783 if (uaddr == addr)
2784 return addr;
2785
2786 hpage_size = HPAGE_PMD_SIZE;
2787 if (shmem_huge != SHMEM_HUGE_FORCE) {
2788 struct super_block *sb;
2789 unsigned long __maybe_unused hpage_orders;
2790 int order = 0;
2791
2792 if (file) {
2793 VM_BUG_ON(file->f_op != &shmem_file_operations);
2794 sb = file_inode(file)->i_sb;
2795 } else {
2796 /*
2797 * Called directly from mm/mmap.c, or drivers/char/mem.c
2798 * for "/dev/zero", to create a shared anonymous object.
2799 */
2800 if (IS_ERR(shm_mnt))
2801 return addr;
2802 sb = shm_mnt->mnt_sb;
2803
2804 /*
2805 * Find the highest mTHP order used for anonymous shmem to
2806 * provide a suitable alignment address.
2807 */
2808 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2809 hpage_orders = READ_ONCE(huge_shmem_orders_always);
2810 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2811 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2812 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2813 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2814
2815 if (hpage_orders > 0) {
2816 order = highest_order(hpage_orders);
2817 hpage_size = PAGE_SIZE << order;
2818 }
2819 #endif
2820 }
2821 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2822 return addr;
2823 }
2824
2825 if (len < hpage_size)
2826 return addr;
2827
2828 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2829 if (offset && offset + len < 2 * hpage_size)
2830 return addr;
2831 if ((addr & (hpage_size - 1)) == offset)
2832 return addr;
2833
2834 inflated_len = len + hpage_size - PAGE_SIZE;
2835 if (inflated_len > TASK_SIZE)
2836 return addr;
2837 if (inflated_len < len)
2838 return addr;
2839
2840 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2841 inflated_len, 0, flags);
2842 if (IS_ERR_VALUE(inflated_addr))
2843 return addr;
2844 if (inflated_addr & ~PAGE_MASK)
2845 return addr;
2846
2847 inflated_offset = inflated_addr & (hpage_size - 1);
2848 inflated_addr += offset - inflated_offset;
2849 if (inflated_offset > offset)
2850 inflated_addr += hpage_size;
2851
2852 if (inflated_addr > TASK_SIZE - len)
2853 return addr;
2854 return inflated_addr;
2855 }
2856
2857 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2858 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2859 {
2860 struct inode *inode = file_inode(vma->vm_file);
2861 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2862 }
2863
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)2864 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2865 unsigned long addr, pgoff_t *ilx)
2866 {
2867 struct inode *inode = file_inode(vma->vm_file);
2868 pgoff_t index;
2869
2870 /*
2871 * Bias interleave by inode number to distribute better across nodes;
2872 * but this interface is independent of which page order is used, so
2873 * supplies only that bias, letting caller apply the offset (adjusted
2874 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2875 */
2876 *ilx = inode->i_ino;
2877 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2878 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2879 }
2880
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2881 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2882 pgoff_t index, unsigned int order, pgoff_t *ilx)
2883 {
2884 struct mempolicy *mpol;
2885
2886 /* Bias interleave by inode number to distribute better across nodes */
2887 *ilx = info->vfs_inode.i_ino + (index >> order);
2888
2889 mpol = mpol_shared_policy_lookup(&info->policy, index);
2890 return mpol ? mpol : get_task_policy(current);
2891 }
2892 #else
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2893 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2894 pgoff_t index, unsigned int order, pgoff_t *ilx)
2895 {
2896 *ilx = 0;
2897 return NULL;
2898 }
2899 #endif /* CONFIG_NUMA */
2900
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2901 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2902 {
2903 struct inode *inode = file_inode(file);
2904 struct shmem_inode_info *info = SHMEM_I(inode);
2905 int retval = -ENOMEM;
2906
2907 /*
2908 * What serializes the accesses to info->flags?
2909 * ipc_lock_object() when called from shmctl_do_lock(),
2910 * no serialization needed when called from shm_destroy().
2911 */
2912 if (lock && !(info->flags & VM_LOCKED)) {
2913 if (!user_shm_lock(inode->i_size, ucounts))
2914 goto out_nomem;
2915 info->flags |= VM_LOCKED;
2916 mapping_set_unevictable(file->f_mapping);
2917 }
2918 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2919 user_shm_unlock(inode->i_size, ucounts);
2920 info->flags &= ~VM_LOCKED;
2921 mapping_clear_unevictable(file->f_mapping);
2922 }
2923 retval = 0;
2924
2925 out_nomem:
2926 return retval;
2927 }
2928
shmem_mmap(struct file * file,struct vm_area_struct * vma)2929 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2930 {
2931 struct inode *inode = file_inode(file);
2932
2933 file_accessed(file);
2934 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2935 if (inode->i_nlink)
2936 vma->vm_ops = &shmem_vm_ops;
2937 else
2938 vma->vm_ops = &shmem_anon_vm_ops;
2939 return 0;
2940 }
2941
shmem_file_open(struct inode * inode,struct file * file)2942 static int shmem_file_open(struct inode *inode, struct file *file)
2943 {
2944 file->f_mode |= FMODE_CAN_ODIRECT;
2945 return generic_file_open(inode, file);
2946 }
2947
2948 #ifdef CONFIG_TMPFS_XATTR
2949 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2950
2951 #if IS_ENABLED(CONFIG_UNICODE)
2952 /*
2953 * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2954 *
2955 * The casefold file attribute needs some special checks. I can just be added to
2956 * an empty dir, and can't be removed from a non-empty dir.
2957 */
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)2958 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2959 struct dentry *dentry, unsigned int *i_flags)
2960 {
2961 unsigned int old = inode->i_flags;
2962 struct super_block *sb = inode->i_sb;
2963
2964 if (fsflags & FS_CASEFOLD_FL) {
2965 if (!(old & S_CASEFOLD)) {
2966 if (!sb->s_encoding)
2967 return -EOPNOTSUPP;
2968
2969 if (!S_ISDIR(inode->i_mode))
2970 return -ENOTDIR;
2971
2972 if (dentry && !simple_empty(dentry))
2973 return -ENOTEMPTY;
2974 }
2975
2976 *i_flags = *i_flags | S_CASEFOLD;
2977 } else if (old & S_CASEFOLD) {
2978 if (dentry && !simple_empty(dentry))
2979 return -ENOTEMPTY;
2980 }
2981
2982 return 0;
2983 }
2984 #else
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)2985 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2986 struct dentry *dentry, unsigned int *i_flags)
2987 {
2988 if (fsflags & FS_CASEFOLD_FL)
2989 return -EOPNOTSUPP;
2990
2991 return 0;
2992 }
2993 #endif
2994
2995 /*
2996 * chattr's fsflags are unrelated to extended attributes,
2997 * but tmpfs has chosen to enable them under the same config option.
2998 */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)2999 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3000 {
3001 unsigned int i_flags = 0;
3002 int ret;
3003
3004 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
3005 if (ret)
3006 return ret;
3007
3008 if (fsflags & FS_NOATIME_FL)
3009 i_flags |= S_NOATIME;
3010 if (fsflags & FS_APPEND_FL)
3011 i_flags |= S_APPEND;
3012 if (fsflags & FS_IMMUTABLE_FL)
3013 i_flags |= S_IMMUTABLE;
3014 /*
3015 * But FS_NODUMP_FL does not require any action in i_flags.
3016 */
3017 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
3018
3019 return 0;
3020 }
3021 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3022 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3023 {
3024 }
3025 #define shmem_initxattrs NULL
3026 #endif
3027
shmem_get_offset_ctx(struct inode * inode)3028 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
3029 {
3030 return &SHMEM_I(inode)->dir_offsets;
3031 }
3032
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3033 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
3034 struct super_block *sb,
3035 struct inode *dir, umode_t mode,
3036 dev_t dev, unsigned long flags)
3037 {
3038 struct inode *inode;
3039 struct shmem_inode_info *info;
3040 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3041 ino_t ino;
3042 int err;
3043
3044 err = shmem_reserve_inode(sb, &ino);
3045 if (err)
3046 return ERR_PTR(err);
3047
3048 inode = new_inode(sb);
3049 if (!inode) {
3050 shmem_free_inode(sb, 0);
3051 return ERR_PTR(-ENOSPC);
3052 }
3053
3054 inode->i_ino = ino;
3055 inode_init_owner(idmap, inode, dir, mode);
3056 inode->i_blocks = 0;
3057 simple_inode_init_ts(inode);
3058 inode->i_generation = get_random_u32();
3059 info = SHMEM_I(inode);
3060 memset(info, 0, (char *)inode - (char *)info);
3061 spin_lock_init(&info->lock);
3062 atomic_set(&info->stop_eviction, 0);
3063 info->seals = F_SEAL_SEAL;
3064 info->flags = flags & VM_NORESERVE;
3065 info->i_crtime = inode_get_mtime(inode);
3066 info->fsflags = (dir == NULL) ? 0 :
3067 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
3068 if (info->fsflags)
3069 shmem_set_inode_flags(inode, info->fsflags, NULL);
3070 INIT_LIST_HEAD(&info->shrinklist);
3071 INIT_LIST_HEAD(&info->swaplist);
3072 simple_xattrs_init(&info->xattrs);
3073 cache_no_acl(inode);
3074 if (sbinfo->noswap)
3075 mapping_set_unevictable(inode->i_mapping);
3076
3077 /* Don't consider 'deny' for emergencies and 'force' for testing */
3078 if (sbinfo->huge)
3079 mapping_set_large_folios(inode->i_mapping);
3080
3081 switch (mode & S_IFMT) {
3082 default:
3083 inode->i_op = &shmem_special_inode_operations;
3084 init_special_inode(inode, mode, dev);
3085 break;
3086 case S_IFREG:
3087 inode->i_mapping->a_ops = &shmem_aops;
3088 inode->i_op = &shmem_inode_operations;
3089 inode->i_fop = &shmem_file_operations;
3090 mpol_shared_policy_init(&info->policy,
3091 shmem_get_sbmpol(sbinfo));
3092 break;
3093 case S_IFDIR:
3094 inc_nlink(inode);
3095 /* Some things misbehave if size == 0 on a directory */
3096 inode->i_size = 2 * BOGO_DIRENT_SIZE;
3097 inode->i_op = &shmem_dir_inode_operations;
3098 inode->i_fop = &simple_offset_dir_operations;
3099 simple_offset_init(shmem_get_offset_ctx(inode));
3100 break;
3101 case S_IFLNK:
3102 /*
3103 * Must not load anything in the rbtree,
3104 * mpol_free_shared_policy will not be called.
3105 */
3106 mpol_shared_policy_init(&info->policy, NULL);
3107 break;
3108 }
3109
3110 lockdep_annotate_inode_mutex_key(inode);
3111 return inode;
3112 }
3113
3114 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3115 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3116 struct super_block *sb, struct inode *dir,
3117 umode_t mode, dev_t dev, unsigned long flags)
3118 {
3119 int err;
3120 struct inode *inode;
3121
3122 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3123 if (IS_ERR(inode))
3124 return inode;
3125
3126 err = dquot_initialize(inode);
3127 if (err)
3128 goto errout;
3129
3130 err = dquot_alloc_inode(inode);
3131 if (err) {
3132 dquot_drop(inode);
3133 goto errout;
3134 }
3135 return inode;
3136
3137 errout:
3138 inode->i_flags |= S_NOQUOTA;
3139 iput(inode);
3140 return ERR_PTR(err);
3141 }
3142 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3143 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3144 struct super_block *sb, struct inode *dir,
3145 umode_t mode, dev_t dev, unsigned long flags)
3146 {
3147 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3148 }
3149 #endif /* CONFIG_TMPFS_QUOTA */
3150
3151 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)3152 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
3153 struct vm_area_struct *dst_vma,
3154 unsigned long dst_addr,
3155 unsigned long src_addr,
3156 uffd_flags_t flags,
3157 struct folio **foliop)
3158 {
3159 struct inode *inode = file_inode(dst_vma->vm_file);
3160 struct shmem_inode_info *info = SHMEM_I(inode);
3161 struct address_space *mapping = inode->i_mapping;
3162 gfp_t gfp = mapping_gfp_mask(mapping);
3163 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
3164 void *page_kaddr;
3165 struct folio *folio;
3166 int ret;
3167 pgoff_t max_off;
3168
3169 if (shmem_inode_acct_blocks(inode, 1)) {
3170 /*
3171 * We may have got a page, returned -ENOENT triggering a retry,
3172 * and now we find ourselves with -ENOMEM. Release the page, to
3173 * avoid a BUG_ON in our caller.
3174 */
3175 if (unlikely(*foliop)) {
3176 folio_put(*foliop);
3177 *foliop = NULL;
3178 }
3179 return -ENOMEM;
3180 }
3181
3182 if (!*foliop) {
3183 ret = -ENOMEM;
3184 folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3185 if (!folio)
3186 goto out_unacct_blocks;
3187
3188 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3189 page_kaddr = kmap_local_folio(folio, 0);
3190 /*
3191 * The read mmap_lock is held here. Despite the
3192 * mmap_lock being read recursive a deadlock is still
3193 * possible if a writer has taken a lock. For example:
3194 *
3195 * process A thread 1 takes read lock on own mmap_lock
3196 * process A thread 2 calls mmap, blocks taking write lock
3197 * process B thread 1 takes page fault, read lock on own mmap lock
3198 * process B thread 2 calls mmap, blocks taking write lock
3199 * process A thread 1 blocks taking read lock on process B
3200 * process B thread 1 blocks taking read lock on process A
3201 *
3202 * Disable page faults to prevent potential deadlock
3203 * and retry the copy outside the mmap_lock.
3204 */
3205 pagefault_disable();
3206 ret = copy_from_user(page_kaddr,
3207 (const void __user *)src_addr,
3208 PAGE_SIZE);
3209 pagefault_enable();
3210 kunmap_local(page_kaddr);
3211
3212 /* fallback to copy_from_user outside mmap_lock */
3213 if (unlikely(ret)) {
3214 *foliop = folio;
3215 ret = -ENOENT;
3216 /* don't free the page */
3217 goto out_unacct_blocks;
3218 }
3219
3220 flush_dcache_folio(folio);
3221 } else { /* ZEROPAGE */
3222 clear_user_highpage(&folio->page, dst_addr);
3223 }
3224 } else {
3225 folio = *foliop;
3226 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3227 *foliop = NULL;
3228 }
3229
3230 VM_BUG_ON(folio_test_locked(folio));
3231 VM_BUG_ON(folio_test_swapbacked(folio));
3232 __folio_set_locked(folio);
3233 __folio_set_swapbacked(folio);
3234 __folio_mark_uptodate(folio);
3235
3236 ret = -EFAULT;
3237 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3238 if (unlikely(pgoff >= max_off))
3239 goto out_release;
3240
3241 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3242 if (ret)
3243 goto out_release;
3244 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3245 if (ret)
3246 goto out_release;
3247
3248 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3249 &folio->page, true, flags);
3250 if (ret)
3251 goto out_delete_from_cache;
3252
3253 shmem_recalc_inode(inode, 1, 0);
3254 folio_unlock(folio);
3255 return 0;
3256 out_delete_from_cache:
3257 filemap_remove_folio(folio);
3258 out_release:
3259 folio_unlock(folio);
3260 folio_put(folio);
3261 out_unacct_blocks:
3262 shmem_inode_unacct_blocks(inode, 1);
3263 return ret;
3264 }
3265 #endif /* CONFIG_USERFAULTFD */
3266
3267 #ifdef CONFIG_TMPFS
3268 static const struct inode_operations shmem_symlink_inode_operations;
3269 static const struct inode_operations shmem_short_symlink_operations;
3270
3271 static int
shmem_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3272 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping,
3273 loff_t pos, unsigned len,
3274 struct folio **foliop, void **fsdata)
3275 {
3276 struct inode *inode = mapping->host;
3277 struct shmem_inode_info *info = SHMEM_I(inode);
3278 pgoff_t index = pos >> PAGE_SHIFT;
3279 struct folio *folio;
3280 int ret = 0;
3281
3282 /* i_rwsem is held by caller */
3283 if (unlikely(info->seals & (F_SEAL_GROW |
3284 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3285 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3286 return -EPERM;
3287 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3288 return -EPERM;
3289 }
3290
3291 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3292 if (ret)
3293 return ret;
3294
3295 if (folio_contain_hwpoisoned_page(folio)) {
3296 folio_unlock(folio);
3297 folio_put(folio);
3298 return -EIO;
3299 }
3300
3301 *foliop = folio;
3302 return 0;
3303 }
3304
3305 static int
shmem_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3306 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping,
3307 loff_t pos, unsigned len, unsigned copied,
3308 struct folio *folio, void *fsdata)
3309 {
3310 struct inode *inode = mapping->host;
3311
3312 if (pos + copied > inode->i_size)
3313 i_size_write(inode, pos + copied);
3314
3315 if (!folio_test_uptodate(folio)) {
3316 if (copied < folio_size(folio)) {
3317 size_t from = offset_in_folio(folio, pos);
3318 folio_zero_segments(folio, 0, from,
3319 from + copied, folio_size(folio));
3320 }
3321 folio_mark_uptodate(folio);
3322 }
3323 folio_mark_dirty(folio);
3324 folio_unlock(folio);
3325 folio_put(folio);
3326
3327 return copied;
3328 }
3329
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3330 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3331 {
3332 struct file *file = iocb->ki_filp;
3333 struct inode *inode = file_inode(file);
3334 struct address_space *mapping = inode->i_mapping;
3335 pgoff_t index;
3336 unsigned long offset;
3337 int error = 0;
3338 ssize_t retval = 0;
3339
3340 for (;;) {
3341 struct folio *folio = NULL;
3342 struct page *page = NULL;
3343 unsigned long nr, ret;
3344 loff_t end_offset, i_size = i_size_read(inode);
3345 bool fallback_page_copy = false;
3346 size_t fsize;
3347
3348 if (unlikely(iocb->ki_pos >= i_size))
3349 break;
3350
3351 index = iocb->ki_pos >> PAGE_SHIFT;
3352 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3353 if (error) {
3354 if (error == -EINVAL)
3355 error = 0;
3356 break;
3357 }
3358 if (folio) {
3359 folio_unlock(folio);
3360
3361 page = folio_file_page(folio, index);
3362 if (PageHWPoison(page)) {
3363 folio_put(folio);
3364 error = -EIO;
3365 break;
3366 }
3367
3368 if (folio_test_large(folio) &&
3369 folio_test_has_hwpoisoned(folio))
3370 fallback_page_copy = true;
3371 }
3372
3373 /*
3374 * We must evaluate after, since reads (unlike writes)
3375 * are called without i_rwsem protection against truncate
3376 */
3377 i_size = i_size_read(inode);
3378 if (unlikely(iocb->ki_pos >= i_size)) {
3379 if (folio)
3380 folio_put(folio);
3381 break;
3382 }
3383 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3384 if (folio && likely(!fallback_page_copy))
3385 fsize = folio_size(folio);
3386 else
3387 fsize = PAGE_SIZE;
3388 offset = iocb->ki_pos & (fsize - 1);
3389 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3390
3391 if (folio) {
3392 /*
3393 * If users can be writing to this page using arbitrary
3394 * virtual addresses, take care about potential aliasing
3395 * before reading the page on the kernel side.
3396 */
3397 if (mapping_writably_mapped(mapping)) {
3398 if (likely(!fallback_page_copy))
3399 flush_dcache_folio(folio);
3400 else
3401 flush_dcache_page(page);
3402 }
3403
3404 /*
3405 * Mark the folio accessed if we read the beginning.
3406 */
3407 if (!offset)
3408 folio_mark_accessed(folio);
3409 /*
3410 * Ok, we have the page, and it's up-to-date, so
3411 * now we can copy it to user space...
3412 */
3413 if (likely(!fallback_page_copy))
3414 ret = copy_folio_to_iter(folio, offset, nr, to);
3415 else
3416 ret = copy_page_to_iter(page, offset, nr, to);
3417 folio_put(folio);
3418 } else if (user_backed_iter(to)) {
3419 /*
3420 * Copy to user tends to be so well optimized, but
3421 * clear_user() not so much, that it is noticeably
3422 * faster to copy the zero page instead of clearing.
3423 */
3424 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3425 } else {
3426 /*
3427 * But submitting the same page twice in a row to
3428 * splice() - or others? - can result in confusion:
3429 * so don't attempt that optimization on pipes etc.
3430 */
3431 ret = iov_iter_zero(nr, to);
3432 }
3433
3434 retval += ret;
3435 iocb->ki_pos += ret;
3436
3437 if (!iov_iter_count(to))
3438 break;
3439 if (ret < nr) {
3440 error = -EFAULT;
3441 break;
3442 }
3443 cond_resched();
3444 }
3445
3446 file_accessed(file);
3447 return retval ? retval : error;
3448 }
3449
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3450 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3451 {
3452 struct file *file = iocb->ki_filp;
3453 struct inode *inode = file->f_mapping->host;
3454 ssize_t ret;
3455
3456 inode_lock(inode);
3457 ret = generic_write_checks(iocb, from);
3458 if (ret <= 0)
3459 goto unlock;
3460 ret = file_remove_privs(file);
3461 if (ret)
3462 goto unlock;
3463 ret = file_update_time(file);
3464 if (ret)
3465 goto unlock;
3466 ret = generic_perform_write(iocb, from);
3467 unlock:
3468 inode_unlock(inode);
3469 return ret;
3470 }
3471
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3472 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3473 struct pipe_buffer *buf)
3474 {
3475 return true;
3476 }
3477
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3478 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3479 struct pipe_buffer *buf)
3480 {
3481 }
3482
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3483 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3484 struct pipe_buffer *buf)
3485 {
3486 return false;
3487 }
3488
3489 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3490 .release = zero_pipe_buf_release,
3491 .try_steal = zero_pipe_buf_try_steal,
3492 .get = zero_pipe_buf_get,
3493 };
3494
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)3495 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3496 loff_t fpos, size_t size)
3497 {
3498 size_t offset = fpos & ~PAGE_MASK;
3499
3500 size = min_t(size_t, size, PAGE_SIZE - offset);
3501
3502 if (!pipe_is_full(pipe)) {
3503 struct pipe_buffer *buf = pipe_head_buf(pipe);
3504
3505 *buf = (struct pipe_buffer) {
3506 .ops = &zero_pipe_buf_ops,
3507 .page = ZERO_PAGE(0),
3508 .offset = offset,
3509 .len = size,
3510 };
3511 pipe->head++;
3512 }
3513
3514 return size;
3515 }
3516
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3517 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3518 struct pipe_inode_info *pipe,
3519 size_t len, unsigned int flags)
3520 {
3521 struct inode *inode = file_inode(in);
3522 struct address_space *mapping = inode->i_mapping;
3523 struct folio *folio = NULL;
3524 size_t total_spliced = 0, used, npages, n, part;
3525 loff_t isize;
3526 int error = 0;
3527
3528 /* Work out how much data we can actually add into the pipe */
3529 used = pipe_buf_usage(pipe);
3530 npages = max_t(ssize_t, pipe->max_usage - used, 0);
3531 len = min_t(size_t, len, npages * PAGE_SIZE);
3532
3533 do {
3534 bool fallback_page_splice = false;
3535 struct page *page = NULL;
3536 pgoff_t index;
3537 size_t size;
3538
3539 if (*ppos >= i_size_read(inode))
3540 break;
3541
3542 index = *ppos >> PAGE_SHIFT;
3543 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3544 if (error) {
3545 if (error == -EINVAL)
3546 error = 0;
3547 break;
3548 }
3549 if (folio) {
3550 folio_unlock(folio);
3551
3552 page = folio_file_page(folio, index);
3553 if (PageHWPoison(page)) {
3554 error = -EIO;
3555 break;
3556 }
3557
3558 if (folio_test_large(folio) &&
3559 folio_test_has_hwpoisoned(folio))
3560 fallback_page_splice = true;
3561 }
3562
3563 /*
3564 * i_size must be checked after we know the pages are Uptodate.
3565 *
3566 * Checking i_size after the check allows us to calculate
3567 * the correct value for "nr", which means the zero-filled
3568 * part of the page is not copied back to userspace (unless
3569 * another truncate extends the file - this is desired though).
3570 */
3571 isize = i_size_read(inode);
3572 if (unlikely(*ppos >= isize))
3573 break;
3574 /*
3575 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3576 * pages.
3577 */
3578 size = len;
3579 if (unlikely(fallback_page_splice)) {
3580 size_t offset = *ppos & ~PAGE_MASK;
3581
3582 size = umin(size, PAGE_SIZE - offset);
3583 }
3584 part = min_t(loff_t, isize - *ppos, size);
3585
3586 if (folio) {
3587 /*
3588 * If users can be writing to this page using arbitrary
3589 * virtual addresses, take care about potential aliasing
3590 * before reading the page on the kernel side.
3591 */
3592 if (mapping_writably_mapped(mapping)) {
3593 if (likely(!fallback_page_splice))
3594 flush_dcache_folio(folio);
3595 else
3596 flush_dcache_page(page);
3597 }
3598 folio_mark_accessed(folio);
3599 /*
3600 * Ok, we have the page, and it's up-to-date, so we can
3601 * now splice it into the pipe.
3602 */
3603 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3604 folio_put(folio);
3605 folio = NULL;
3606 } else {
3607 n = splice_zeropage_into_pipe(pipe, *ppos, part);
3608 }
3609
3610 if (!n)
3611 break;
3612 len -= n;
3613 total_spliced += n;
3614 *ppos += n;
3615 in->f_ra.prev_pos = *ppos;
3616 if (pipe_is_full(pipe))
3617 break;
3618
3619 cond_resched();
3620 } while (len);
3621
3622 if (folio)
3623 folio_put(folio);
3624
3625 file_accessed(in);
3626 return total_spliced ? total_spliced : error;
3627 }
3628
shmem_file_llseek(struct file * file,loff_t offset,int whence)3629 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3630 {
3631 struct address_space *mapping = file->f_mapping;
3632 struct inode *inode = mapping->host;
3633
3634 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3635 return generic_file_llseek_size(file, offset, whence,
3636 MAX_LFS_FILESIZE, i_size_read(inode));
3637 if (offset < 0)
3638 return -ENXIO;
3639
3640 inode_lock(inode);
3641 /* We're holding i_rwsem so we can access i_size directly */
3642 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3643 if (offset >= 0)
3644 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3645 inode_unlock(inode);
3646 return offset;
3647 }
3648
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3649 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3650 loff_t len)
3651 {
3652 struct inode *inode = file_inode(file);
3653 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3654 struct shmem_inode_info *info = SHMEM_I(inode);
3655 struct shmem_falloc shmem_falloc;
3656 pgoff_t start, index, end, undo_fallocend;
3657 int error;
3658
3659 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3660 return -EOPNOTSUPP;
3661
3662 inode_lock(inode);
3663
3664 if (mode & FALLOC_FL_PUNCH_HOLE) {
3665 struct address_space *mapping = file->f_mapping;
3666 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3667 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3668 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3669
3670 /* protected by i_rwsem */
3671 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3672 error = -EPERM;
3673 goto out;
3674 }
3675
3676 shmem_falloc.waitq = &shmem_falloc_waitq;
3677 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3678 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3679 spin_lock(&inode->i_lock);
3680 inode->i_private = &shmem_falloc;
3681 spin_unlock(&inode->i_lock);
3682
3683 if ((u64)unmap_end > (u64)unmap_start)
3684 unmap_mapping_range(mapping, unmap_start,
3685 1 + unmap_end - unmap_start, 0);
3686 shmem_truncate_range(inode, offset, offset + len - 1);
3687 /* No need to unmap again: hole-punching leaves COWed pages */
3688
3689 spin_lock(&inode->i_lock);
3690 inode->i_private = NULL;
3691 wake_up_all(&shmem_falloc_waitq);
3692 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3693 spin_unlock(&inode->i_lock);
3694 error = 0;
3695 goto out;
3696 }
3697
3698 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3699 error = inode_newsize_ok(inode, offset + len);
3700 if (error)
3701 goto out;
3702
3703 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3704 error = -EPERM;
3705 goto out;
3706 }
3707
3708 start = offset >> PAGE_SHIFT;
3709 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3710 /* Try to avoid a swapstorm if len is impossible to satisfy */
3711 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3712 error = -ENOSPC;
3713 goto out;
3714 }
3715
3716 shmem_falloc.waitq = NULL;
3717 shmem_falloc.start = start;
3718 shmem_falloc.next = start;
3719 shmem_falloc.nr_falloced = 0;
3720 shmem_falloc.nr_unswapped = 0;
3721 spin_lock(&inode->i_lock);
3722 inode->i_private = &shmem_falloc;
3723 spin_unlock(&inode->i_lock);
3724
3725 /*
3726 * info->fallocend is only relevant when huge pages might be
3727 * involved: to prevent split_huge_page() freeing fallocated
3728 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3729 */
3730 undo_fallocend = info->fallocend;
3731 if (info->fallocend < end)
3732 info->fallocend = end;
3733
3734 for (index = start; index < end; ) {
3735 struct folio *folio;
3736
3737 /*
3738 * Check for fatal signal so that we abort early in OOM
3739 * situations. We don't want to abort in case of non-fatal
3740 * signals as large fallocate can take noticeable time and
3741 * e.g. periodic timers may result in fallocate constantly
3742 * restarting.
3743 */
3744 if (fatal_signal_pending(current))
3745 error = -EINTR;
3746 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3747 error = -ENOMEM;
3748 else
3749 error = shmem_get_folio(inode, index, offset + len,
3750 &folio, SGP_FALLOC);
3751 if (error) {
3752 info->fallocend = undo_fallocend;
3753 /* Remove the !uptodate folios we added */
3754 if (index > start) {
3755 shmem_undo_range(inode,
3756 (loff_t)start << PAGE_SHIFT,
3757 ((loff_t)index << PAGE_SHIFT) - 1, true);
3758 }
3759 goto undone;
3760 }
3761
3762 /*
3763 * Here is a more important optimization than it appears:
3764 * a second SGP_FALLOC on the same large folio will clear it,
3765 * making it uptodate and un-undoable if we fail later.
3766 */
3767 index = folio_next_index(folio);
3768 /* Beware 32-bit wraparound */
3769 if (!index)
3770 index--;
3771
3772 /*
3773 * Inform shmem_writeout() how far we have reached.
3774 * No need for lock or barrier: we have the page lock.
3775 */
3776 if (!folio_test_uptodate(folio))
3777 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3778 shmem_falloc.next = index;
3779
3780 /*
3781 * If !uptodate, leave it that way so that freeable folios
3782 * can be recognized if we need to rollback on error later.
3783 * But mark it dirty so that memory pressure will swap rather
3784 * than free the folios we are allocating (and SGP_CACHE folios
3785 * might still be clean: we now need to mark those dirty too).
3786 */
3787 folio_mark_dirty(folio);
3788 folio_unlock(folio);
3789 folio_put(folio);
3790 cond_resched();
3791 }
3792
3793 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3794 i_size_write(inode, offset + len);
3795 undone:
3796 spin_lock(&inode->i_lock);
3797 inode->i_private = NULL;
3798 spin_unlock(&inode->i_lock);
3799 out:
3800 if (!error)
3801 file_modified(file);
3802 inode_unlock(inode);
3803 return error;
3804 }
3805
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3806 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3807 {
3808 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3809
3810 buf->f_type = TMPFS_MAGIC;
3811 buf->f_bsize = PAGE_SIZE;
3812 buf->f_namelen = NAME_MAX;
3813 if (sbinfo->max_blocks) {
3814 buf->f_blocks = sbinfo->max_blocks;
3815 buf->f_bavail =
3816 buf->f_bfree = sbinfo->max_blocks -
3817 percpu_counter_sum(&sbinfo->used_blocks);
3818 }
3819 if (sbinfo->max_inodes) {
3820 buf->f_files = sbinfo->max_inodes;
3821 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3822 }
3823 /* else leave those fields 0 like simple_statfs */
3824
3825 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3826
3827 return 0;
3828 }
3829
3830 /*
3831 * File creation. Allocate an inode, and we're done..
3832 */
3833 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3834 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3835 struct dentry *dentry, umode_t mode, dev_t dev)
3836 {
3837 struct inode *inode;
3838 int error;
3839
3840 if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3841 return -EINVAL;
3842
3843 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3844 if (IS_ERR(inode))
3845 return PTR_ERR(inode);
3846
3847 error = simple_acl_create(dir, inode);
3848 if (error)
3849 goto out_iput;
3850 error = security_inode_init_security(inode, dir, &dentry->d_name,
3851 shmem_initxattrs, NULL);
3852 if (error && error != -EOPNOTSUPP)
3853 goto out_iput;
3854
3855 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3856 if (error)
3857 goto out_iput;
3858
3859 dir->i_size += BOGO_DIRENT_SIZE;
3860 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3861 inode_inc_iversion(dir);
3862
3863 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3864 d_add(dentry, inode);
3865 else
3866 d_instantiate(dentry, inode);
3867
3868 dget(dentry); /* Extra count - pin the dentry in core */
3869 return error;
3870
3871 out_iput:
3872 iput(inode);
3873 return error;
3874 }
3875
3876 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3877 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3878 struct file *file, umode_t mode)
3879 {
3880 struct inode *inode;
3881 int error;
3882
3883 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3884 if (IS_ERR(inode)) {
3885 error = PTR_ERR(inode);
3886 goto err_out;
3887 }
3888 error = security_inode_init_security(inode, dir, NULL,
3889 shmem_initxattrs, NULL);
3890 if (error && error != -EOPNOTSUPP)
3891 goto out_iput;
3892 error = simple_acl_create(dir, inode);
3893 if (error)
3894 goto out_iput;
3895 d_tmpfile(file, inode);
3896
3897 err_out:
3898 return finish_open_simple(file, error);
3899 out_iput:
3900 iput(inode);
3901 return error;
3902 }
3903
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3904 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3905 struct dentry *dentry, umode_t mode)
3906 {
3907 int error;
3908
3909 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3910 if (error)
3911 return ERR_PTR(error);
3912 inc_nlink(dir);
3913 return NULL;
3914 }
3915
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3916 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3917 struct dentry *dentry, umode_t mode, bool excl)
3918 {
3919 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3920 }
3921
3922 /*
3923 * Link a file..
3924 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3925 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3926 struct dentry *dentry)
3927 {
3928 struct inode *inode = d_inode(old_dentry);
3929 int ret = 0;
3930
3931 /*
3932 * No ordinary (disk based) filesystem counts links as inodes;
3933 * but each new link needs a new dentry, pinning lowmem, and
3934 * tmpfs dentries cannot be pruned until they are unlinked.
3935 * But if an O_TMPFILE file is linked into the tmpfs, the
3936 * first link must skip that, to get the accounting right.
3937 */
3938 if (inode->i_nlink) {
3939 ret = shmem_reserve_inode(inode->i_sb, NULL);
3940 if (ret)
3941 goto out;
3942 }
3943
3944 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3945 if (ret) {
3946 if (inode->i_nlink)
3947 shmem_free_inode(inode->i_sb, 0);
3948 goto out;
3949 }
3950
3951 dir->i_size += BOGO_DIRENT_SIZE;
3952 inode_set_mtime_to_ts(dir,
3953 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3954 inode_inc_iversion(dir);
3955 inc_nlink(inode);
3956 ihold(inode); /* New dentry reference */
3957 dget(dentry); /* Extra pinning count for the created dentry */
3958 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3959 d_add(dentry, inode);
3960 else
3961 d_instantiate(dentry, inode);
3962 out:
3963 return ret;
3964 }
3965
shmem_unlink(struct inode * dir,struct dentry * dentry)3966 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3967 {
3968 struct inode *inode = d_inode(dentry);
3969
3970 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3971 shmem_free_inode(inode->i_sb, 0);
3972
3973 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3974
3975 dir->i_size -= BOGO_DIRENT_SIZE;
3976 inode_set_mtime_to_ts(dir,
3977 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3978 inode_inc_iversion(dir);
3979 drop_nlink(inode);
3980 dput(dentry); /* Undo the count from "create" - does all the work */
3981
3982 /*
3983 * For now, VFS can't deal with case-insensitive negative dentries, so
3984 * we invalidate them
3985 */
3986 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3987 d_invalidate(dentry);
3988
3989 return 0;
3990 }
3991
shmem_rmdir(struct inode * dir,struct dentry * dentry)3992 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3993 {
3994 if (!simple_empty(dentry))
3995 return -ENOTEMPTY;
3996
3997 drop_nlink(d_inode(dentry));
3998 drop_nlink(dir);
3999 return shmem_unlink(dir, dentry);
4000 }
4001
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)4002 static int shmem_whiteout(struct mnt_idmap *idmap,
4003 struct inode *old_dir, struct dentry *old_dentry)
4004 {
4005 struct dentry *whiteout;
4006 int error;
4007
4008 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
4009 if (!whiteout)
4010 return -ENOMEM;
4011
4012 error = shmem_mknod(idmap, old_dir, whiteout,
4013 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4014 dput(whiteout);
4015 if (error)
4016 return error;
4017
4018 /*
4019 * Cheat and hash the whiteout while the old dentry is still in
4020 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
4021 *
4022 * d_lookup() will consistently find one of them at this point,
4023 * not sure which one, but that isn't even important.
4024 */
4025 d_rehash(whiteout);
4026 return 0;
4027 }
4028
4029 /*
4030 * The VFS layer already does all the dentry stuff for rename,
4031 * we just have to decrement the usage count for the target if
4032 * it exists so that the VFS layer correctly free's it when it
4033 * gets overwritten.
4034 */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)4035 static int shmem_rename2(struct mnt_idmap *idmap,
4036 struct inode *old_dir, struct dentry *old_dentry,
4037 struct inode *new_dir, struct dentry *new_dentry,
4038 unsigned int flags)
4039 {
4040 struct inode *inode = d_inode(old_dentry);
4041 int they_are_dirs = S_ISDIR(inode->i_mode);
4042 int error;
4043
4044 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4045 return -EINVAL;
4046
4047 if (flags & RENAME_EXCHANGE)
4048 return simple_offset_rename_exchange(old_dir, old_dentry,
4049 new_dir, new_dentry);
4050
4051 if (!simple_empty(new_dentry))
4052 return -ENOTEMPTY;
4053
4054 if (flags & RENAME_WHITEOUT) {
4055 error = shmem_whiteout(idmap, old_dir, old_dentry);
4056 if (error)
4057 return error;
4058 }
4059
4060 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
4061 if (error)
4062 return error;
4063
4064 if (d_really_is_positive(new_dentry)) {
4065 (void) shmem_unlink(new_dir, new_dentry);
4066 if (they_are_dirs) {
4067 drop_nlink(d_inode(new_dentry));
4068 drop_nlink(old_dir);
4069 }
4070 } else if (they_are_dirs) {
4071 drop_nlink(old_dir);
4072 inc_nlink(new_dir);
4073 }
4074
4075 old_dir->i_size -= BOGO_DIRENT_SIZE;
4076 new_dir->i_size += BOGO_DIRENT_SIZE;
4077 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
4078 inode_inc_iversion(old_dir);
4079 inode_inc_iversion(new_dir);
4080 return 0;
4081 }
4082
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)4083 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
4084 struct dentry *dentry, const char *symname)
4085 {
4086 int error;
4087 int len;
4088 struct inode *inode;
4089 struct folio *folio;
4090 char *link;
4091
4092 len = strlen(symname) + 1;
4093 if (len > PAGE_SIZE)
4094 return -ENAMETOOLONG;
4095
4096 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
4097 VM_NORESERVE);
4098 if (IS_ERR(inode))
4099 return PTR_ERR(inode);
4100
4101 error = security_inode_init_security(inode, dir, &dentry->d_name,
4102 shmem_initxattrs, NULL);
4103 if (error && error != -EOPNOTSUPP)
4104 goto out_iput;
4105
4106 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
4107 if (error)
4108 goto out_iput;
4109
4110 inode->i_size = len-1;
4111 if (len <= SHORT_SYMLINK_LEN) {
4112 link = kmemdup(symname, len, GFP_KERNEL);
4113 if (!link) {
4114 error = -ENOMEM;
4115 goto out_remove_offset;
4116 }
4117 inode->i_op = &shmem_short_symlink_operations;
4118 inode_set_cached_link(inode, link, len - 1);
4119 } else {
4120 inode_nohighmem(inode);
4121 inode->i_mapping->a_ops = &shmem_aops;
4122 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
4123 if (error)
4124 goto out_remove_offset;
4125 inode->i_op = &shmem_symlink_inode_operations;
4126 memcpy(folio_address(folio), symname, len);
4127 folio_mark_uptodate(folio);
4128 folio_mark_dirty(folio);
4129 folio_unlock(folio);
4130 folio_put(folio);
4131 }
4132 dir->i_size += BOGO_DIRENT_SIZE;
4133 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
4134 inode_inc_iversion(dir);
4135 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
4136 d_add(dentry, inode);
4137 else
4138 d_instantiate(dentry, inode);
4139 dget(dentry);
4140 return 0;
4141
4142 out_remove_offset:
4143 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4144 out_iput:
4145 iput(inode);
4146 return error;
4147 }
4148
shmem_put_link(void * arg)4149 static void shmem_put_link(void *arg)
4150 {
4151 folio_mark_accessed(arg);
4152 folio_put(arg);
4153 }
4154
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)4155 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
4156 struct delayed_call *done)
4157 {
4158 struct folio *folio = NULL;
4159 int error;
4160
4161 if (!dentry) {
4162 folio = filemap_get_folio(inode->i_mapping, 0);
4163 if (IS_ERR(folio))
4164 return ERR_PTR(-ECHILD);
4165 if (PageHWPoison(folio_page(folio, 0)) ||
4166 !folio_test_uptodate(folio)) {
4167 folio_put(folio);
4168 return ERR_PTR(-ECHILD);
4169 }
4170 } else {
4171 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4172 if (error)
4173 return ERR_PTR(error);
4174 if (!folio)
4175 return ERR_PTR(-ECHILD);
4176 if (PageHWPoison(folio_page(folio, 0))) {
4177 folio_unlock(folio);
4178 folio_put(folio);
4179 return ERR_PTR(-ECHILD);
4180 }
4181 folio_unlock(folio);
4182 }
4183 set_delayed_call(done, shmem_put_link, folio);
4184 return folio_address(folio);
4185 }
4186
4187 #ifdef CONFIG_TMPFS_XATTR
4188
shmem_fileattr_get(struct dentry * dentry,struct file_kattr * fa)4189 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
4190 {
4191 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4192
4193 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4194
4195 return 0;
4196 }
4197
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct file_kattr * fa)4198 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4199 struct dentry *dentry, struct file_kattr *fa)
4200 {
4201 struct inode *inode = d_inode(dentry);
4202 struct shmem_inode_info *info = SHMEM_I(inode);
4203 int ret, flags;
4204
4205 if (fileattr_has_fsx(fa))
4206 return -EOPNOTSUPP;
4207 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4208 return -EOPNOTSUPP;
4209
4210 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4211 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
4212
4213 ret = shmem_set_inode_flags(inode, flags, dentry);
4214
4215 if (ret)
4216 return ret;
4217
4218 info->fsflags = flags;
4219
4220 inode_set_ctime_current(inode);
4221 inode_inc_iversion(inode);
4222 return 0;
4223 }
4224
4225 /*
4226 * Superblocks without xattr inode operations may get some security.* xattr
4227 * support from the LSM "for free". As soon as we have any other xattrs
4228 * like ACLs, we also need to implement the security.* handlers at
4229 * filesystem level, though.
4230 */
4231
4232 /*
4233 * Callback for security_inode_init_security() for acquiring xattrs.
4234 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)4235 static int shmem_initxattrs(struct inode *inode,
4236 const struct xattr *xattr_array, void *fs_info)
4237 {
4238 struct shmem_inode_info *info = SHMEM_I(inode);
4239 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4240 const struct xattr *xattr;
4241 struct simple_xattr *new_xattr;
4242 size_t ispace = 0;
4243 size_t len;
4244
4245 if (sbinfo->max_inodes) {
4246 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4247 ispace += simple_xattr_space(xattr->name,
4248 xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4249 }
4250 if (ispace) {
4251 raw_spin_lock(&sbinfo->stat_lock);
4252 if (sbinfo->free_ispace < ispace)
4253 ispace = 0;
4254 else
4255 sbinfo->free_ispace -= ispace;
4256 raw_spin_unlock(&sbinfo->stat_lock);
4257 if (!ispace)
4258 return -ENOSPC;
4259 }
4260 }
4261
4262 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4263 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4264 if (!new_xattr)
4265 break;
4266
4267 len = strlen(xattr->name) + 1;
4268 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4269 GFP_KERNEL_ACCOUNT);
4270 if (!new_xattr->name) {
4271 kvfree(new_xattr);
4272 break;
4273 }
4274
4275 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4276 XATTR_SECURITY_PREFIX_LEN);
4277 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4278 xattr->name, len);
4279
4280 simple_xattr_add(&info->xattrs, new_xattr);
4281 }
4282
4283 if (xattr->name != NULL) {
4284 if (ispace) {
4285 raw_spin_lock(&sbinfo->stat_lock);
4286 sbinfo->free_ispace += ispace;
4287 raw_spin_unlock(&sbinfo->stat_lock);
4288 }
4289 simple_xattrs_free(&info->xattrs, NULL);
4290 return -ENOMEM;
4291 }
4292
4293 return 0;
4294 }
4295
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)4296 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4297 struct dentry *unused, struct inode *inode,
4298 const char *name, void *buffer, size_t size)
4299 {
4300 struct shmem_inode_info *info = SHMEM_I(inode);
4301
4302 name = xattr_full_name(handler, name);
4303 return simple_xattr_get(&info->xattrs, name, buffer, size);
4304 }
4305
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)4306 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4307 struct mnt_idmap *idmap,
4308 struct dentry *unused, struct inode *inode,
4309 const char *name, const void *value,
4310 size_t size, int flags)
4311 {
4312 struct shmem_inode_info *info = SHMEM_I(inode);
4313 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4314 struct simple_xattr *old_xattr;
4315 size_t ispace = 0;
4316
4317 name = xattr_full_name(handler, name);
4318 if (value && sbinfo->max_inodes) {
4319 ispace = simple_xattr_space(name, size);
4320 raw_spin_lock(&sbinfo->stat_lock);
4321 if (sbinfo->free_ispace < ispace)
4322 ispace = 0;
4323 else
4324 sbinfo->free_ispace -= ispace;
4325 raw_spin_unlock(&sbinfo->stat_lock);
4326 if (!ispace)
4327 return -ENOSPC;
4328 }
4329
4330 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4331 if (!IS_ERR(old_xattr)) {
4332 ispace = 0;
4333 if (old_xattr && sbinfo->max_inodes)
4334 ispace = simple_xattr_space(old_xattr->name,
4335 old_xattr->size);
4336 simple_xattr_free(old_xattr);
4337 old_xattr = NULL;
4338 inode_set_ctime_current(inode);
4339 inode_inc_iversion(inode);
4340 }
4341 if (ispace) {
4342 raw_spin_lock(&sbinfo->stat_lock);
4343 sbinfo->free_ispace += ispace;
4344 raw_spin_unlock(&sbinfo->stat_lock);
4345 }
4346 return PTR_ERR(old_xattr);
4347 }
4348
4349 static const struct xattr_handler shmem_security_xattr_handler = {
4350 .prefix = XATTR_SECURITY_PREFIX,
4351 .get = shmem_xattr_handler_get,
4352 .set = shmem_xattr_handler_set,
4353 };
4354
4355 static const struct xattr_handler shmem_trusted_xattr_handler = {
4356 .prefix = XATTR_TRUSTED_PREFIX,
4357 .get = shmem_xattr_handler_get,
4358 .set = shmem_xattr_handler_set,
4359 };
4360
4361 static const struct xattr_handler shmem_user_xattr_handler = {
4362 .prefix = XATTR_USER_PREFIX,
4363 .get = shmem_xattr_handler_get,
4364 .set = shmem_xattr_handler_set,
4365 };
4366
4367 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4368 &shmem_security_xattr_handler,
4369 &shmem_trusted_xattr_handler,
4370 &shmem_user_xattr_handler,
4371 NULL
4372 };
4373
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)4374 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4375 {
4376 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4377 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4378 }
4379 #endif /* CONFIG_TMPFS_XATTR */
4380
4381 static const struct inode_operations shmem_short_symlink_operations = {
4382 .getattr = shmem_getattr,
4383 .setattr = shmem_setattr,
4384 .get_link = simple_get_link,
4385 #ifdef CONFIG_TMPFS_XATTR
4386 .listxattr = shmem_listxattr,
4387 #endif
4388 };
4389
4390 static const struct inode_operations shmem_symlink_inode_operations = {
4391 .getattr = shmem_getattr,
4392 .setattr = shmem_setattr,
4393 .get_link = shmem_get_link,
4394 #ifdef CONFIG_TMPFS_XATTR
4395 .listxattr = shmem_listxattr,
4396 #endif
4397 };
4398
shmem_get_parent(struct dentry * child)4399 static struct dentry *shmem_get_parent(struct dentry *child)
4400 {
4401 return ERR_PTR(-ESTALE);
4402 }
4403
shmem_match(struct inode * ino,void * vfh)4404 static int shmem_match(struct inode *ino, void *vfh)
4405 {
4406 __u32 *fh = vfh;
4407 __u64 inum = fh[2];
4408 inum = (inum << 32) | fh[1];
4409 return ino->i_ino == inum && fh[0] == ino->i_generation;
4410 }
4411
4412 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)4413 static struct dentry *shmem_find_alias(struct inode *inode)
4414 {
4415 struct dentry *alias = d_find_alias(inode);
4416
4417 return alias ?: d_find_any_alias(inode);
4418 }
4419
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)4420 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4421 struct fid *fid, int fh_len, int fh_type)
4422 {
4423 struct inode *inode;
4424 struct dentry *dentry = NULL;
4425 u64 inum;
4426
4427 if (fh_len < 3)
4428 return NULL;
4429
4430 inum = fid->raw[2];
4431 inum = (inum << 32) | fid->raw[1];
4432
4433 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4434 shmem_match, fid->raw);
4435 if (inode) {
4436 dentry = shmem_find_alias(inode);
4437 iput(inode);
4438 }
4439
4440 return dentry;
4441 }
4442
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)4443 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4444 struct inode *parent)
4445 {
4446 if (*len < 3) {
4447 *len = 3;
4448 return FILEID_INVALID;
4449 }
4450
4451 if (inode_unhashed(inode)) {
4452 /* Unfortunately insert_inode_hash is not idempotent,
4453 * so as we hash inodes here rather than at creation
4454 * time, we need a lock to ensure we only try
4455 * to do it once
4456 */
4457 static DEFINE_SPINLOCK(lock);
4458 spin_lock(&lock);
4459 if (inode_unhashed(inode))
4460 __insert_inode_hash(inode,
4461 inode->i_ino + inode->i_generation);
4462 spin_unlock(&lock);
4463 }
4464
4465 fh[0] = inode->i_generation;
4466 fh[1] = inode->i_ino;
4467 fh[2] = ((__u64)inode->i_ino) >> 32;
4468
4469 *len = 3;
4470 return 1;
4471 }
4472
4473 static const struct export_operations shmem_export_ops = {
4474 .get_parent = shmem_get_parent,
4475 .encode_fh = shmem_encode_fh,
4476 .fh_to_dentry = shmem_fh_to_dentry,
4477 };
4478
4479 enum shmem_param {
4480 Opt_gid,
4481 Opt_huge,
4482 Opt_mode,
4483 Opt_mpol,
4484 Opt_nr_blocks,
4485 Opt_nr_inodes,
4486 Opt_size,
4487 Opt_uid,
4488 Opt_inode32,
4489 Opt_inode64,
4490 Opt_noswap,
4491 Opt_quota,
4492 Opt_usrquota,
4493 Opt_grpquota,
4494 Opt_usrquota_block_hardlimit,
4495 Opt_usrquota_inode_hardlimit,
4496 Opt_grpquota_block_hardlimit,
4497 Opt_grpquota_inode_hardlimit,
4498 Opt_casefold_version,
4499 Opt_casefold,
4500 Opt_strict_encoding,
4501 };
4502
4503 static const struct constant_table shmem_param_enums_huge[] = {
4504 {"never", SHMEM_HUGE_NEVER },
4505 {"always", SHMEM_HUGE_ALWAYS },
4506 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
4507 {"advise", SHMEM_HUGE_ADVISE },
4508 {}
4509 };
4510
4511 const struct fs_parameter_spec shmem_fs_parameters[] = {
4512 fsparam_gid ("gid", Opt_gid),
4513 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
4514 fsparam_u32oct("mode", Opt_mode),
4515 fsparam_string("mpol", Opt_mpol),
4516 fsparam_string("nr_blocks", Opt_nr_blocks),
4517 fsparam_string("nr_inodes", Opt_nr_inodes),
4518 fsparam_string("size", Opt_size),
4519 fsparam_uid ("uid", Opt_uid),
4520 fsparam_flag ("inode32", Opt_inode32),
4521 fsparam_flag ("inode64", Opt_inode64),
4522 fsparam_flag ("noswap", Opt_noswap),
4523 #ifdef CONFIG_TMPFS_QUOTA
4524 fsparam_flag ("quota", Opt_quota),
4525 fsparam_flag ("usrquota", Opt_usrquota),
4526 fsparam_flag ("grpquota", Opt_grpquota),
4527 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4528 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4529 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4530 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4531 #endif
4532 fsparam_string("casefold", Opt_casefold_version),
4533 fsparam_flag ("casefold", Opt_casefold),
4534 fsparam_flag ("strict_encoding", Opt_strict_encoding),
4535 {}
4536 };
4537
4538 #if IS_ENABLED(CONFIG_UNICODE)
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4539 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4540 bool latest_version)
4541 {
4542 struct shmem_options *ctx = fc->fs_private;
4543 int version = UTF8_LATEST;
4544 struct unicode_map *encoding;
4545 char *version_str = param->string + 5;
4546
4547 if (!latest_version) {
4548 if (strncmp(param->string, "utf8-", 5))
4549 return invalfc(fc, "Only UTF-8 encodings are supported "
4550 "in the format: utf8-<version number>");
4551
4552 version = utf8_parse_version(version_str);
4553 if (version < 0)
4554 return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4555 }
4556
4557 encoding = utf8_load(version);
4558
4559 if (IS_ERR(encoding)) {
4560 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4561 unicode_major(version), unicode_minor(version),
4562 unicode_rev(version));
4563 }
4564
4565 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4566 unicode_major(version), unicode_minor(version), unicode_rev(version));
4567
4568 ctx->encoding = encoding;
4569
4570 return 0;
4571 }
4572 #else
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4573 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4574 bool latest_version)
4575 {
4576 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4577 }
4578 #endif
4579
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)4580 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4581 {
4582 struct shmem_options *ctx = fc->fs_private;
4583 struct fs_parse_result result;
4584 unsigned long long size;
4585 char *rest;
4586 int opt;
4587 kuid_t kuid;
4588 kgid_t kgid;
4589
4590 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4591 if (opt < 0)
4592 return opt;
4593
4594 switch (opt) {
4595 case Opt_size:
4596 size = memparse(param->string, &rest);
4597 if (*rest == '%') {
4598 size <<= PAGE_SHIFT;
4599 size *= totalram_pages();
4600 do_div(size, 100);
4601 rest++;
4602 }
4603 if (*rest)
4604 goto bad_value;
4605 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4606 ctx->seen |= SHMEM_SEEN_BLOCKS;
4607 break;
4608 case Opt_nr_blocks:
4609 ctx->blocks = memparse(param->string, &rest);
4610 if (*rest || ctx->blocks > LONG_MAX)
4611 goto bad_value;
4612 ctx->seen |= SHMEM_SEEN_BLOCKS;
4613 break;
4614 case Opt_nr_inodes:
4615 ctx->inodes = memparse(param->string, &rest);
4616 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4617 goto bad_value;
4618 ctx->seen |= SHMEM_SEEN_INODES;
4619 break;
4620 case Opt_mode:
4621 ctx->mode = result.uint_32 & 07777;
4622 break;
4623 case Opt_uid:
4624 kuid = result.uid;
4625
4626 /*
4627 * The requested uid must be representable in the
4628 * filesystem's idmapping.
4629 */
4630 if (!kuid_has_mapping(fc->user_ns, kuid))
4631 goto bad_value;
4632
4633 ctx->uid = kuid;
4634 break;
4635 case Opt_gid:
4636 kgid = result.gid;
4637
4638 /*
4639 * The requested gid must be representable in the
4640 * filesystem's idmapping.
4641 */
4642 if (!kgid_has_mapping(fc->user_ns, kgid))
4643 goto bad_value;
4644
4645 ctx->gid = kgid;
4646 break;
4647 case Opt_huge:
4648 ctx->huge = result.uint_32;
4649 if (ctx->huge != SHMEM_HUGE_NEVER &&
4650 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4651 has_transparent_hugepage()))
4652 goto unsupported_parameter;
4653 ctx->seen |= SHMEM_SEEN_HUGE;
4654 break;
4655 case Opt_mpol:
4656 if (IS_ENABLED(CONFIG_NUMA)) {
4657 mpol_put(ctx->mpol);
4658 ctx->mpol = NULL;
4659 if (mpol_parse_str(param->string, &ctx->mpol))
4660 goto bad_value;
4661 break;
4662 }
4663 goto unsupported_parameter;
4664 case Opt_inode32:
4665 ctx->full_inums = false;
4666 ctx->seen |= SHMEM_SEEN_INUMS;
4667 break;
4668 case Opt_inode64:
4669 if (sizeof(ino_t) < 8) {
4670 return invalfc(fc,
4671 "Cannot use inode64 with <64bit inums in kernel\n");
4672 }
4673 ctx->full_inums = true;
4674 ctx->seen |= SHMEM_SEEN_INUMS;
4675 break;
4676 case Opt_noswap:
4677 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4678 return invalfc(fc,
4679 "Turning off swap in unprivileged tmpfs mounts unsupported");
4680 }
4681 ctx->noswap = true;
4682 break;
4683 case Opt_quota:
4684 if (fc->user_ns != &init_user_ns)
4685 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4686 ctx->seen |= SHMEM_SEEN_QUOTA;
4687 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4688 break;
4689 case Opt_usrquota:
4690 if (fc->user_ns != &init_user_ns)
4691 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4692 ctx->seen |= SHMEM_SEEN_QUOTA;
4693 ctx->quota_types |= QTYPE_MASK_USR;
4694 break;
4695 case Opt_grpquota:
4696 if (fc->user_ns != &init_user_ns)
4697 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4698 ctx->seen |= SHMEM_SEEN_QUOTA;
4699 ctx->quota_types |= QTYPE_MASK_GRP;
4700 break;
4701 case Opt_usrquota_block_hardlimit:
4702 size = memparse(param->string, &rest);
4703 if (*rest || !size)
4704 goto bad_value;
4705 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4706 return invalfc(fc,
4707 "User quota block hardlimit too large.");
4708 ctx->qlimits.usrquota_bhardlimit = size;
4709 break;
4710 case Opt_grpquota_block_hardlimit:
4711 size = memparse(param->string, &rest);
4712 if (*rest || !size)
4713 goto bad_value;
4714 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4715 return invalfc(fc,
4716 "Group quota block hardlimit too large.");
4717 ctx->qlimits.grpquota_bhardlimit = size;
4718 break;
4719 case Opt_usrquota_inode_hardlimit:
4720 size = memparse(param->string, &rest);
4721 if (*rest || !size)
4722 goto bad_value;
4723 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4724 return invalfc(fc,
4725 "User quota inode hardlimit too large.");
4726 ctx->qlimits.usrquota_ihardlimit = size;
4727 break;
4728 case Opt_grpquota_inode_hardlimit:
4729 size = memparse(param->string, &rest);
4730 if (*rest || !size)
4731 goto bad_value;
4732 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4733 return invalfc(fc,
4734 "Group quota inode hardlimit too large.");
4735 ctx->qlimits.grpquota_ihardlimit = size;
4736 break;
4737 case Opt_casefold_version:
4738 return shmem_parse_opt_casefold(fc, param, false);
4739 case Opt_casefold:
4740 return shmem_parse_opt_casefold(fc, param, true);
4741 case Opt_strict_encoding:
4742 #if IS_ENABLED(CONFIG_UNICODE)
4743 ctx->strict_encoding = true;
4744 break;
4745 #else
4746 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4747 #endif
4748 }
4749 return 0;
4750
4751 unsupported_parameter:
4752 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4753 bad_value:
4754 return invalfc(fc, "Bad value for '%s'", param->key);
4755 }
4756
shmem_next_opt(char ** s)4757 static char *shmem_next_opt(char **s)
4758 {
4759 char *sbegin = *s;
4760 char *p;
4761
4762 if (sbegin == NULL)
4763 return NULL;
4764
4765 /*
4766 * NUL-terminate this option: unfortunately,
4767 * mount options form a comma-separated list,
4768 * but mpol's nodelist may also contain commas.
4769 */
4770 for (;;) {
4771 p = strchr(*s, ',');
4772 if (p == NULL)
4773 break;
4774 *s = p + 1;
4775 if (!isdigit(*(p+1))) {
4776 *p = '\0';
4777 return sbegin;
4778 }
4779 }
4780
4781 *s = NULL;
4782 return sbegin;
4783 }
4784
shmem_parse_monolithic(struct fs_context * fc,void * data)4785 static int shmem_parse_monolithic(struct fs_context *fc, void *data)
4786 {
4787 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt);
4788 }
4789
4790 /*
4791 * Reconfigure a shmem filesystem.
4792 */
shmem_reconfigure(struct fs_context * fc)4793 static int shmem_reconfigure(struct fs_context *fc)
4794 {
4795 struct shmem_options *ctx = fc->fs_private;
4796 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4797 unsigned long used_isp;
4798 struct mempolicy *mpol = NULL;
4799 const char *err;
4800
4801 raw_spin_lock(&sbinfo->stat_lock);
4802 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4803
4804 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4805 if (!sbinfo->max_blocks) {
4806 err = "Cannot retroactively limit size";
4807 goto out;
4808 }
4809 if (percpu_counter_compare(&sbinfo->used_blocks,
4810 ctx->blocks) > 0) {
4811 err = "Too small a size for current use";
4812 goto out;
4813 }
4814 }
4815 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4816 if (!sbinfo->max_inodes) {
4817 err = "Cannot retroactively limit inodes";
4818 goto out;
4819 }
4820 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4821 err = "Too few inodes for current use";
4822 goto out;
4823 }
4824 }
4825
4826 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4827 sbinfo->next_ino > UINT_MAX) {
4828 err = "Current inum too high to switch to 32-bit inums";
4829 goto out;
4830 }
4831
4832 /*
4833 * "noswap" doesn't use fsparam_flag_no, i.e. there's no "swap"
4834 * counterpart for (re-)enabling swap.
4835 */
4836 if (ctx->noswap && !sbinfo->noswap) {
4837 err = "Cannot disable swap on remount";
4838 goto out;
4839 }
4840
4841 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4842 !sb_any_quota_loaded(fc->root->d_sb)) {
4843 err = "Cannot enable quota on remount";
4844 goto out;
4845 }
4846
4847 #ifdef CONFIG_TMPFS_QUOTA
4848 #define CHANGED_LIMIT(name) \
4849 (ctx->qlimits.name## hardlimit && \
4850 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4851
4852 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4853 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4854 err = "Cannot change global quota limit on remount";
4855 goto out;
4856 }
4857 #endif /* CONFIG_TMPFS_QUOTA */
4858
4859 if (ctx->seen & SHMEM_SEEN_HUGE)
4860 sbinfo->huge = ctx->huge;
4861 if (ctx->seen & SHMEM_SEEN_INUMS)
4862 sbinfo->full_inums = ctx->full_inums;
4863 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4864 sbinfo->max_blocks = ctx->blocks;
4865 if (ctx->seen & SHMEM_SEEN_INODES) {
4866 sbinfo->max_inodes = ctx->inodes;
4867 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4868 }
4869
4870 /*
4871 * Preserve previous mempolicy unless mpol remount option was specified.
4872 */
4873 if (ctx->mpol) {
4874 mpol = sbinfo->mpol;
4875 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4876 ctx->mpol = NULL;
4877 }
4878
4879 if (ctx->noswap)
4880 sbinfo->noswap = true;
4881
4882 raw_spin_unlock(&sbinfo->stat_lock);
4883 mpol_put(mpol);
4884 return 0;
4885 out:
4886 raw_spin_unlock(&sbinfo->stat_lock);
4887 return invalfc(fc, "%s", err);
4888 }
4889
shmem_show_options(struct seq_file * seq,struct dentry * root)4890 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4891 {
4892 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4893 struct mempolicy *mpol;
4894
4895 if (sbinfo->max_blocks != shmem_default_max_blocks())
4896 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4897 if (sbinfo->max_inodes != shmem_default_max_inodes())
4898 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4899 if (sbinfo->mode != (0777 | S_ISVTX))
4900 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4901 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4902 seq_printf(seq, ",uid=%u",
4903 from_kuid_munged(&init_user_ns, sbinfo->uid));
4904 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4905 seq_printf(seq, ",gid=%u",
4906 from_kgid_munged(&init_user_ns, sbinfo->gid));
4907
4908 /*
4909 * Showing inode{64,32} might be useful even if it's the system default,
4910 * since then people don't have to resort to checking both here and
4911 * /proc/config.gz to confirm 64-bit inums were successfully applied
4912 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4913 *
4914 * We hide it when inode64 isn't the default and we are using 32-bit
4915 * inodes, since that probably just means the feature isn't even under
4916 * consideration.
4917 *
4918 * As such:
4919 *
4920 * +-----------------+-----------------+
4921 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4922 * +------------------+-----------------+-----------------+
4923 * | full_inums=true | show | show |
4924 * | full_inums=false | show | hide |
4925 * +------------------+-----------------+-----------------+
4926 *
4927 */
4928 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4929 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4931 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4932 if (sbinfo->huge)
4933 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4934 #endif
4935 mpol = shmem_get_sbmpol(sbinfo);
4936 shmem_show_mpol(seq, mpol);
4937 mpol_put(mpol);
4938 if (sbinfo->noswap)
4939 seq_printf(seq, ",noswap");
4940 #ifdef CONFIG_TMPFS_QUOTA
4941 if (sb_has_quota_active(root->d_sb, USRQUOTA))
4942 seq_printf(seq, ",usrquota");
4943 if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4944 seq_printf(seq, ",grpquota");
4945 if (sbinfo->qlimits.usrquota_bhardlimit)
4946 seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4947 sbinfo->qlimits.usrquota_bhardlimit);
4948 if (sbinfo->qlimits.grpquota_bhardlimit)
4949 seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4950 sbinfo->qlimits.grpquota_bhardlimit);
4951 if (sbinfo->qlimits.usrquota_ihardlimit)
4952 seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4953 sbinfo->qlimits.usrquota_ihardlimit);
4954 if (sbinfo->qlimits.grpquota_ihardlimit)
4955 seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4956 sbinfo->qlimits.grpquota_ihardlimit);
4957 #endif
4958 return 0;
4959 }
4960
4961 #endif /* CONFIG_TMPFS */
4962
shmem_put_super(struct super_block * sb)4963 static void shmem_put_super(struct super_block *sb)
4964 {
4965 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4966
4967 #if IS_ENABLED(CONFIG_UNICODE)
4968 if (sb->s_encoding)
4969 utf8_unload(sb->s_encoding);
4970 #endif
4971
4972 #ifdef CONFIG_TMPFS_QUOTA
4973 shmem_disable_quotas(sb);
4974 #endif
4975 free_percpu(sbinfo->ino_batch);
4976 percpu_counter_destroy(&sbinfo->used_blocks);
4977 mpol_put(sbinfo->mpol);
4978 kfree(sbinfo);
4979 sb->s_fs_info = NULL;
4980 }
4981
4982 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4983 static const struct dentry_operations shmem_ci_dentry_ops = {
4984 .d_hash = generic_ci_d_hash,
4985 .d_compare = generic_ci_d_compare,
4986 };
4987 #endif
4988
shmem_fill_super(struct super_block * sb,struct fs_context * fc)4989 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4990 {
4991 struct shmem_options *ctx = fc->fs_private;
4992 struct inode *inode;
4993 struct shmem_sb_info *sbinfo;
4994 int error = -ENOMEM;
4995
4996 /* Round up to L1_CACHE_BYTES to resist false sharing */
4997 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4998 L1_CACHE_BYTES), GFP_KERNEL);
4999 if (!sbinfo)
5000 return error;
5001
5002 sb->s_fs_info = sbinfo;
5003
5004 #ifdef CONFIG_TMPFS
5005 /*
5006 * Per default we only allow half of the physical ram per
5007 * tmpfs instance, limiting inodes to one per page of lowmem;
5008 * but the internal instance is left unlimited.
5009 */
5010 if (!(sb->s_flags & SB_KERNMOUNT)) {
5011 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
5012 ctx->blocks = shmem_default_max_blocks();
5013 if (!(ctx->seen & SHMEM_SEEN_INODES))
5014 ctx->inodes = shmem_default_max_inodes();
5015 if (!(ctx->seen & SHMEM_SEEN_INUMS))
5016 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
5017 sbinfo->noswap = ctx->noswap;
5018 } else {
5019 sb->s_flags |= SB_NOUSER;
5020 }
5021 sb->s_export_op = &shmem_export_ops;
5022 sb->s_flags |= SB_NOSEC;
5023
5024 #if IS_ENABLED(CONFIG_UNICODE)
5025 if (!ctx->encoding && ctx->strict_encoding) {
5026 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
5027 error = -EINVAL;
5028 goto failed;
5029 }
5030
5031 if (ctx->encoding) {
5032 sb->s_encoding = ctx->encoding;
5033 set_default_d_op(sb, &shmem_ci_dentry_ops);
5034 if (ctx->strict_encoding)
5035 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
5036 }
5037 #endif
5038
5039 #else
5040 sb->s_flags |= SB_NOUSER;
5041 #endif /* CONFIG_TMPFS */
5042 sb->s_d_flags |= DCACHE_DONTCACHE;
5043 sbinfo->max_blocks = ctx->blocks;
5044 sbinfo->max_inodes = ctx->inodes;
5045 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
5046 if (sb->s_flags & SB_KERNMOUNT) {
5047 sbinfo->ino_batch = alloc_percpu(ino_t);
5048 if (!sbinfo->ino_batch)
5049 goto failed;
5050 }
5051 sbinfo->uid = ctx->uid;
5052 sbinfo->gid = ctx->gid;
5053 sbinfo->full_inums = ctx->full_inums;
5054 sbinfo->mode = ctx->mode;
5055 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5056 if (ctx->seen & SHMEM_SEEN_HUGE)
5057 sbinfo->huge = ctx->huge;
5058 else
5059 sbinfo->huge = tmpfs_huge;
5060 #endif
5061 sbinfo->mpol = ctx->mpol;
5062 ctx->mpol = NULL;
5063
5064 raw_spin_lock_init(&sbinfo->stat_lock);
5065 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
5066 goto failed;
5067 spin_lock_init(&sbinfo->shrinklist_lock);
5068 INIT_LIST_HEAD(&sbinfo->shrinklist);
5069
5070 sb->s_maxbytes = MAX_LFS_FILESIZE;
5071 sb->s_blocksize = PAGE_SIZE;
5072 sb->s_blocksize_bits = PAGE_SHIFT;
5073 sb->s_magic = TMPFS_MAGIC;
5074 sb->s_op = &shmem_ops;
5075 sb->s_time_gran = 1;
5076 #ifdef CONFIG_TMPFS_XATTR
5077 sb->s_xattr = shmem_xattr_handlers;
5078 #endif
5079 #ifdef CONFIG_TMPFS_POSIX_ACL
5080 sb->s_flags |= SB_POSIXACL;
5081 #endif
5082 uuid_t uuid;
5083 uuid_gen(&uuid);
5084 super_set_uuid(sb, uuid.b, sizeof(uuid));
5085
5086 #ifdef CONFIG_TMPFS_QUOTA
5087 if (ctx->seen & SHMEM_SEEN_QUOTA) {
5088 sb->dq_op = &shmem_quota_operations;
5089 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5090 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
5091
5092 /* Copy the default limits from ctx into sbinfo */
5093 memcpy(&sbinfo->qlimits, &ctx->qlimits,
5094 sizeof(struct shmem_quota_limits));
5095
5096 if (shmem_enable_quotas(sb, ctx->quota_types))
5097 goto failed;
5098 }
5099 #endif /* CONFIG_TMPFS_QUOTA */
5100
5101 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
5102 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
5103 if (IS_ERR(inode)) {
5104 error = PTR_ERR(inode);
5105 goto failed;
5106 }
5107 inode->i_uid = sbinfo->uid;
5108 inode->i_gid = sbinfo->gid;
5109 sb->s_root = d_make_root(inode);
5110 if (!sb->s_root)
5111 goto failed;
5112 return 0;
5113
5114 failed:
5115 shmem_put_super(sb);
5116 return error;
5117 }
5118
shmem_get_tree(struct fs_context * fc)5119 static int shmem_get_tree(struct fs_context *fc)
5120 {
5121 return get_tree_nodev(fc, shmem_fill_super);
5122 }
5123
shmem_free_fc(struct fs_context * fc)5124 static void shmem_free_fc(struct fs_context *fc)
5125 {
5126 struct shmem_options *ctx = fc->fs_private;
5127
5128 if (ctx) {
5129 mpol_put(ctx->mpol);
5130 kfree(ctx);
5131 }
5132 }
5133
5134 static const struct fs_context_operations shmem_fs_context_ops = {
5135 .free = shmem_free_fc,
5136 .get_tree = shmem_get_tree,
5137 #ifdef CONFIG_TMPFS
5138 .parse_monolithic = shmem_parse_monolithic,
5139 .parse_param = shmem_parse_one,
5140 .reconfigure = shmem_reconfigure,
5141 #endif
5142 };
5143
5144 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
5145
shmem_alloc_inode(struct super_block * sb)5146 static struct inode *shmem_alloc_inode(struct super_block *sb)
5147 {
5148 struct shmem_inode_info *info;
5149 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
5150 if (!info)
5151 return NULL;
5152 return &info->vfs_inode;
5153 }
5154
shmem_free_in_core_inode(struct inode * inode)5155 static void shmem_free_in_core_inode(struct inode *inode)
5156 {
5157 if (S_ISLNK(inode->i_mode))
5158 kfree(inode->i_link);
5159 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
5160 }
5161
shmem_destroy_inode(struct inode * inode)5162 static void shmem_destroy_inode(struct inode *inode)
5163 {
5164 if (S_ISREG(inode->i_mode))
5165 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5166 if (S_ISDIR(inode->i_mode))
5167 simple_offset_destroy(shmem_get_offset_ctx(inode));
5168 }
5169
shmem_init_inode(void * foo)5170 static void shmem_init_inode(void *foo)
5171 {
5172 struct shmem_inode_info *info = foo;
5173 inode_init_once(&info->vfs_inode);
5174 }
5175
shmem_init_inodecache(void)5176 static void __init shmem_init_inodecache(void)
5177 {
5178 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5179 sizeof(struct shmem_inode_info),
5180 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5181 }
5182
shmem_destroy_inodecache(void)5183 static void __init shmem_destroy_inodecache(void)
5184 {
5185 kmem_cache_destroy(shmem_inode_cachep);
5186 }
5187
5188 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_folio(struct address_space * mapping,struct folio * folio)5189 static int shmem_error_remove_folio(struct address_space *mapping,
5190 struct folio *folio)
5191 {
5192 return 0;
5193 }
5194
5195 static const struct address_space_operations shmem_aops = {
5196 .dirty_folio = noop_dirty_folio,
5197 #ifdef CONFIG_TMPFS
5198 .write_begin = shmem_write_begin,
5199 .write_end = shmem_write_end,
5200 #endif
5201 #ifdef CONFIG_MIGRATION
5202 .migrate_folio = migrate_folio,
5203 #endif
5204 .error_remove_folio = shmem_error_remove_folio,
5205 };
5206
5207 static const struct file_operations shmem_file_operations = {
5208 .mmap = shmem_mmap,
5209 .open = shmem_file_open,
5210 .get_unmapped_area = shmem_get_unmapped_area,
5211 #ifdef CONFIG_TMPFS
5212 .llseek = shmem_file_llseek,
5213 .read_iter = shmem_file_read_iter,
5214 .write_iter = shmem_file_write_iter,
5215 .fsync = noop_fsync,
5216 .splice_read = shmem_file_splice_read,
5217 .splice_write = iter_file_splice_write,
5218 .fallocate = shmem_fallocate,
5219 #endif
5220 };
5221
5222 static const struct inode_operations shmem_inode_operations = {
5223 .getattr = shmem_getattr,
5224 .setattr = shmem_setattr,
5225 #ifdef CONFIG_TMPFS_XATTR
5226 .listxattr = shmem_listxattr,
5227 .set_acl = simple_set_acl,
5228 .fileattr_get = shmem_fileattr_get,
5229 .fileattr_set = shmem_fileattr_set,
5230 #endif
5231 };
5232
5233 static const struct inode_operations shmem_dir_inode_operations = {
5234 #ifdef CONFIG_TMPFS
5235 .getattr = shmem_getattr,
5236 .create = shmem_create,
5237 .lookup = simple_lookup,
5238 .link = shmem_link,
5239 .unlink = shmem_unlink,
5240 .symlink = shmem_symlink,
5241 .mkdir = shmem_mkdir,
5242 .rmdir = shmem_rmdir,
5243 .mknod = shmem_mknod,
5244 .rename = shmem_rename2,
5245 .tmpfile = shmem_tmpfile,
5246 .get_offset_ctx = shmem_get_offset_ctx,
5247 #endif
5248 #ifdef CONFIG_TMPFS_XATTR
5249 .listxattr = shmem_listxattr,
5250 .fileattr_get = shmem_fileattr_get,
5251 .fileattr_set = shmem_fileattr_set,
5252 #endif
5253 #ifdef CONFIG_TMPFS_POSIX_ACL
5254 .setattr = shmem_setattr,
5255 .set_acl = simple_set_acl,
5256 #endif
5257 };
5258
5259 static const struct inode_operations shmem_special_inode_operations = {
5260 .getattr = shmem_getattr,
5261 #ifdef CONFIG_TMPFS_XATTR
5262 .listxattr = shmem_listxattr,
5263 #endif
5264 #ifdef CONFIG_TMPFS_POSIX_ACL
5265 .setattr = shmem_setattr,
5266 .set_acl = simple_set_acl,
5267 #endif
5268 };
5269
5270 static const struct super_operations shmem_ops = {
5271 .alloc_inode = shmem_alloc_inode,
5272 .free_inode = shmem_free_in_core_inode,
5273 .destroy_inode = shmem_destroy_inode,
5274 #ifdef CONFIG_TMPFS
5275 .statfs = shmem_statfs,
5276 .show_options = shmem_show_options,
5277 #endif
5278 #ifdef CONFIG_TMPFS_QUOTA
5279 .get_dquots = shmem_get_dquots,
5280 #endif
5281 .evict_inode = shmem_evict_inode,
5282 .drop_inode = inode_just_drop,
5283 .put_super = shmem_put_super,
5284 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5285 .nr_cached_objects = shmem_unused_huge_count,
5286 .free_cached_objects = shmem_unused_huge_scan,
5287 #endif
5288 };
5289
5290 static const struct vm_operations_struct shmem_vm_ops = {
5291 .fault = shmem_fault,
5292 .map_pages = filemap_map_pages,
5293 #ifdef CONFIG_NUMA
5294 .set_policy = shmem_set_policy,
5295 .get_policy = shmem_get_policy,
5296 #endif
5297 };
5298
5299 static const struct vm_operations_struct shmem_anon_vm_ops = {
5300 .fault = shmem_fault,
5301 .map_pages = filemap_map_pages,
5302 #ifdef CONFIG_NUMA
5303 .set_policy = shmem_set_policy,
5304 .get_policy = shmem_get_policy,
5305 #endif
5306 };
5307
shmem_init_fs_context(struct fs_context * fc)5308 int shmem_init_fs_context(struct fs_context *fc)
5309 {
5310 struct shmem_options *ctx;
5311
5312 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5313 if (!ctx)
5314 return -ENOMEM;
5315
5316 ctx->mode = 0777 | S_ISVTX;
5317 ctx->uid = current_fsuid();
5318 ctx->gid = current_fsgid();
5319
5320 #if IS_ENABLED(CONFIG_UNICODE)
5321 ctx->encoding = NULL;
5322 #endif
5323
5324 fc->fs_private = ctx;
5325 fc->ops = &shmem_fs_context_ops;
5326 #ifdef CONFIG_TMPFS
5327 fc->sb_flags |= SB_I_VERSION;
5328 #endif
5329 return 0;
5330 }
5331
5332 static struct file_system_type shmem_fs_type = {
5333 .owner = THIS_MODULE,
5334 .name = "tmpfs",
5335 .init_fs_context = shmem_init_fs_context,
5336 #ifdef CONFIG_TMPFS
5337 .parameters = shmem_fs_parameters,
5338 #endif
5339 .kill_sb = kill_litter_super,
5340 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5341 };
5342
5343 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5344
5345 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \
5346 { \
5347 .attr = { .name = __stringify(_name), .mode = _mode }, \
5348 .show = _show, \
5349 .store = _store, \
5350 }
5351
5352 #define TMPFS_ATTR_W(_name, _store) \
5353 static struct kobj_attribute tmpfs_attr_##_name = \
5354 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5355
5356 #define TMPFS_ATTR_RW(_name, _show, _store) \
5357 static struct kobj_attribute tmpfs_attr_##_name = \
5358 __INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5359
5360 #define TMPFS_ATTR_RO(_name, _show) \
5361 static struct kobj_attribute tmpfs_attr_##_name = \
5362 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5363
5364 #if IS_ENABLED(CONFIG_UNICODE)
casefold_show(struct kobject * kobj,struct kobj_attribute * a,char * buf)5365 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5366 char *buf)
5367 {
5368 return sysfs_emit(buf, "supported\n");
5369 }
5370 TMPFS_ATTR_RO(casefold, casefold_show);
5371 #endif
5372
5373 static struct attribute *tmpfs_attributes[] = {
5374 #if IS_ENABLED(CONFIG_UNICODE)
5375 &tmpfs_attr_casefold.attr,
5376 #endif
5377 NULL
5378 };
5379
5380 static const struct attribute_group tmpfs_attribute_group = {
5381 .attrs = tmpfs_attributes,
5382 .name = "features"
5383 };
5384
5385 static struct kobject *tmpfs_kobj;
5386
tmpfs_sysfs_init(void)5387 static int __init tmpfs_sysfs_init(void)
5388 {
5389 int ret;
5390
5391 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5392 if (!tmpfs_kobj)
5393 return -ENOMEM;
5394
5395 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5396 if (ret)
5397 kobject_put(tmpfs_kobj);
5398
5399 return ret;
5400 }
5401 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5402
shmem_init(void)5403 void __init shmem_init(void)
5404 {
5405 int error;
5406
5407 shmem_init_inodecache();
5408
5409 #ifdef CONFIG_TMPFS_QUOTA
5410 register_quota_format(&shmem_quota_format);
5411 #endif
5412
5413 error = register_filesystem(&shmem_fs_type);
5414 if (error) {
5415 pr_err("Could not register tmpfs\n");
5416 goto out2;
5417 }
5418
5419 shm_mnt = kern_mount(&shmem_fs_type);
5420 if (IS_ERR(shm_mnt)) {
5421 error = PTR_ERR(shm_mnt);
5422 pr_err("Could not kern_mount tmpfs\n");
5423 goto out1;
5424 }
5425
5426 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5427 error = tmpfs_sysfs_init();
5428 if (error) {
5429 pr_err("Could not init tmpfs sysfs\n");
5430 goto out1;
5431 }
5432 #endif
5433
5434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5435 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5436 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5437 else
5438 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5439
5440 /*
5441 * Default to setting PMD-sized THP to inherit the global setting and
5442 * disable all other multi-size THPs.
5443 */
5444 if (!shmem_orders_configured)
5445 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5446 #endif
5447 return;
5448
5449 out1:
5450 unregister_filesystem(&shmem_fs_type);
5451 out2:
5452 #ifdef CONFIG_TMPFS_QUOTA
5453 unregister_quota_format(&shmem_quota_format);
5454 #endif
5455 shmem_destroy_inodecache();
5456 shm_mnt = ERR_PTR(error);
5457 }
5458
5459 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5460 static ssize_t shmem_enabled_show(struct kobject *kobj,
5461 struct kobj_attribute *attr, char *buf)
5462 {
5463 static const int values[] = {
5464 SHMEM_HUGE_ALWAYS,
5465 SHMEM_HUGE_WITHIN_SIZE,
5466 SHMEM_HUGE_ADVISE,
5467 SHMEM_HUGE_NEVER,
5468 SHMEM_HUGE_DENY,
5469 SHMEM_HUGE_FORCE,
5470 };
5471 int len = 0;
5472 int i;
5473
5474 for (i = 0; i < ARRAY_SIZE(values); i++) {
5475 len += sysfs_emit_at(buf, len,
5476 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5477 i ? " " : "", shmem_format_huge(values[i]));
5478 }
5479 len += sysfs_emit_at(buf, len, "\n");
5480
5481 return len;
5482 }
5483
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5484 static ssize_t shmem_enabled_store(struct kobject *kobj,
5485 struct kobj_attribute *attr, const char *buf, size_t count)
5486 {
5487 char tmp[16];
5488 int huge, err;
5489
5490 if (count + 1 > sizeof(tmp))
5491 return -EINVAL;
5492 memcpy(tmp, buf, count);
5493 tmp[count] = '\0';
5494 if (count && tmp[count - 1] == '\n')
5495 tmp[count - 1] = '\0';
5496
5497 huge = shmem_parse_huge(tmp);
5498 if (huge == -EINVAL)
5499 return huge;
5500
5501 shmem_huge = huge;
5502 if (shmem_huge > SHMEM_HUGE_DENY)
5503 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5504
5505 err = start_stop_khugepaged();
5506 return err ? err : count;
5507 }
5508
5509 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5510 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5511
thpsize_shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5512 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5513 struct kobj_attribute *attr, char *buf)
5514 {
5515 int order = to_thpsize(kobj)->order;
5516 const char *output;
5517
5518 if (test_bit(order, &huge_shmem_orders_always))
5519 output = "[always] inherit within_size advise never";
5520 else if (test_bit(order, &huge_shmem_orders_inherit))
5521 output = "always [inherit] within_size advise never";
5522 else if (test_bit(order, &huge_shmem_orders_within_size))
5523 output = "always inherit [within_size] advise never";
5524 else if (test_bit(order, &huge_shmem_orders_madvise))
5525 output = "always inherit within_size [advise] never";
5526 else
5527 output = "always inherit within_size advise [never]";
5528
5529 return sysfs_emit(buf, "%s\n", output);
5530 }
5531
thpsize_shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5532 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5533 struct kobj_attribute *attr,
5534 const char *buf, size_t count)
5535 {
5536 int order = to_thpsize(kobj)->order;
5537 ssize_t ret = count;
5538
5539 if (sysfs_streq(buf, "always")) {
5540 spin_lock(&huge_shmem_orders_lock);
5541 clear_bit(order, &huge_shmem_orders_inherit);
5542 clear_bit(order, &huge_shmem_orders_madvise);
5543 clear_bit(order, &huge_shmem_orders_within_size);
5544 set_bit(order, &huge_shmem_orders_always);
5545 spin_unlock(&huge_shmem_orders_lock);
5546 } else if (sysfs_streq(buf, "inherit")) {
5547 /* Do not override huge allocation policy with non-PMD sized mTHP */
5548 if (shmem_huge == SHMEM_HUGE_FORCE &&
5549 order != HPAGE_PMD_ORDER)
5550 return -EINVAL;
5551
5552 spin_lock(&huge_shmem_orders_lock);
5553 clear_bit(order, &huge_shmem_orders_always);
5554 clear_bit(order, &huge_shmem_orders_madvise);
5555 clear_bit(order, &huge_shmem_orders_within_size);
5556 set_bit(order, &huge_shmem_orders_inherit);
5557 spin_unlock(&huge_shmem_orders_lock);
5558 } else if (sysfs_streq(buf, "within_size")) {
5559 spin_lock(&huge_shmem_orders_lock);
5560 clear_bit(order, &huge_shmem_orders_always);
5561 clear_bit(order, &huge_shmem_orders_inherit);
5562 clear_bit(order, &huge_shmem_orders_madvise);
5563 set_bit(order, &huge_shmem_orders_within_size);
5564 spin_unlock(&huge_shmem_orders_lock);
5565 } else if (sysfs_streq(buf, "advise")) {
5566 spin_lock(&huge_shmem_orders_lock);
5567 clear_bit(order, &huge_shmem_orders_always);
5568 clear_bit(order, &huge_shmem_orders_inherit);
5569 clear_bit(order, &huge_shmem_orders_within_size);
5570 set_bit(order, &huge_shmem_orders_madvise);
5571 spin_unlock(&huge_shmem_orders_lock);
5572 } else if (sysfs_streq(buf, "never")) {
5573 spin_lock(&huge_shmem_orders_lock);
5574 clear_bit(order, &huge_shmem_orders_always);
5575 clear_bit(order, &huge_shmem_orders_inherit);
5576 clear_bit(order, &huge_shmem_orders_within_size);
5577 clear_bit(order, &huge_shmem_orders_madvise);
5578 spin_unlock(&huge_shmem_orders_lock);
5579 } else {
5580 ret = -EINVAL;
5581 }
5582
5583 if (ret > 0) {
5584 int err = start_stop_khugepaged();
5585
5586 if (err)
5587 ret = err;
5588 }
5589 return ret;
5590 }
5591
5592 struct kobj_attribute thpsize_shmem_enabled_attr =
5593 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5594 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5595
5596 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5597
setup_transparent_hugepage_shmem(char * str)5598 static int __init setup_transparent_hugepage_shmem(char *str)
5599 {
5600 int huge;
5601
5602 huge = shmem_parse_huge(str);
5603 if (huge == -EINVAL) {
5604 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5605 return huge;
5606 }
5607
5608 shmem_huge = huge;
5609 return 1;
5610 }
5611 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5612
setup_transparent_hugepage_tmpfs(char * str)5613 static int __init setup_transparent_hugepage_tmpfs(char *str)
5614 {
5615 int huge;
5616
5617 huge = shmem_parse_huge(str);
5618 if (huge < 0) {
5619 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
5620 return huge;
5621 }
5622
5623 tmpfs_huge = huge;
5624 return 1;
5625 }
5626 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
5627
5628 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_shmem(char * str)5629 static int __init setup_thp_shmem(char *str)
5630 {
5631 char *token, *range, *policy, *subtoken;
5632 unsigned long always, inherit, madvise, within_size;
5633 char *start_size, *end_size;
5634 int start, end, nr;
5635 char *p;
5636
5637 if (!str || strlen(str) + 1 > PAGE_SIZE)
5638 goto err;
5639 strscpy(str_dup, str);
5640
5641 always = huge_shmem_orders_always;
5642 inherit = huge_shmem_orders_inherit;
5643 madvise = huge_shmem_orders_madvise;
5644 within_size = huge_shmem_orders_within_size;
5645 p = str_dup;
5646 while ((token = strsep(&p, ";")) != NULL) {
5647 range = strsep(&token, ":");
5648 policy = token;
5649
5650 if (!policy)
5651 goto err;
5652
5653 while ((subtoken = strsep(&range, ",")) != NULL) {
5654 if (strchr(subtoken, '-')) {
5655 start_size = strsep(&subtoken, "-");
5656 end_size = subtoken;
5657
5658 start = get_order_from_str(start_size,
5659 THP_ORDERS_ALL_FILE_DEFAULT);
5660 end = get_order_from_str(end_size,
5661 THP_ORDERS_ALL_FILE_DEFAULT);
5662 } else {
5663 start_size = end_size = subtoken;
5664 start = end = get_order_from_str(subtoken,
5665 THP_ORDERS_ALL_FILE_DEFAULT);
5666 }
5667
5668 if (start < 0) {
5669 pr_err("invalid size %s in thp_shmem boot parameter\n",
5670 start_size);
5671 goto err;
5672 }
5673
5674 if (end < 0) {
5675 pr_err("invalid size %s in thp_shmem boot parameter\n",
5676 end_size);
5677 goto err;
5678 }
5679
5680 if (start > end)
5681 goto err;
5682
5683 nr = end - start + 1;
5684 if (!strcmp(policy, "always")) {
5685 bitmap_set(&always, start, nr);
5686 bitmap_clear(&inherit, start, nr);
5687 bitmap_clear(&madvise, start, nr);
5688 bitmap_clear(&within_size, start, nr);
5689 } else if (!strcmp(policy, "advise")) {
5690 bitmap_set(&madvise, start, nr);
5691 bitmap_clear(&inherit, start, nr);
5692 bitmap_clear(&always, start, nr);
5693 bitmap_clear(&within_size, start, nr);
5694 } else if (!strcmp(policy, "inherit")) {
5695 bitmap_set(&inherit, start, nr);
5696 bitmap_clear(&madvise, start, nr);
5697 bitmap_clear(&always, start, nr);
5698 bitmap_clear(&within_size, start, nr);
5699 } else if (!strcmp(policy, "within_size")) {
5700 bitmap_set(&within_size, start, nr);
5701 bitmap_clear(&inherit, start, nr);
5702 bitmap_clear(&madvise, start, nr);
5703 bitmap_clear(&always, start, nr);
5704 } else if (!strcmp(policy, "never")) {
5705 bitmap_clear(&inherit, start, nr);
5706 bitmap_clear(&madvise, start, nr);
5707 bitmap_clear(&always, start, nr);
5708 bitmap_clear(&within_size, start, nr);
5709 } else {
5710 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5711 goto err;
5712 }
5713 }
5714 }
5715
5716 huge_shmem_orders_always = always;
5717 huge_shmem_orders_madvise = madvise;
5718 huge_shmem_orders_inherit = inherit;
5719 huge_shmem_orders_within_size = within_size;
5720 shmem_orders_configured = true;
5721 return 1;
5722
5723 err:
5724 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5725 return 0;
5726 }
5727 __setup("thp_shmem=", setup_thp_shmem);
5728
5729 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5730
5731 #else /* !CONFIG_SHMEM */
5732
5733 /*
5734 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5735 *
5736 * This is intended for small system where the benefits of the full
5737 * shmem code (swap-backed and resource-limited) are outweighed by
5738 * their complexity. On systems without swap this code should be
5739 * effectively equivalent, but much lighter weight.
5740 */
5741
5742 static struct file_system_type shmem_fs_type = {
5743 .name = "tmpfs",
5744 .init_fs_context = ramfs_init_fs_context,
5745 .parameters = ramfs_fs_parameters,
5746 .kill_sb = ramfs_kill_sb,
5747 .fs_flags = FS_USERNS_MOUNT,
5748 };
5749
shmem_init(void)5750 void __init shmem_init(void)
5751 {
5752 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5753
5754 shm_mnt = kern_mount(&shmem_fs_type);
5755 BUG_ON(IS_ERR(shm_mnt));
5756 }
5757
shmem_unuse(unsigned int type)5758 int shmem_unuse(unsigned int type)
5759 {
5760 return 0;
5761 }
5762
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)5763 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5764 {
5765 return 0;
5766 }
5767
shmem_unlock_mapping(struct address_space * mapping)5768 void shmem_unlock_mapping(struct address_space *mapping)
5769 {
5770 }
5771
5772 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)5773 unsigned long shmem_get_unmapped_area(struct file *file,
5774 unsigned long addr, unsigned long len,
5775 unsigned long pgoff, unsigned long flags)
5776 {
5777 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5778 }
5779 #endif
5780
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)5781 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5782 {
5783 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5784 }
5785 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5786
5787 #define shmem_vm_ops generic_file_vm_ops
5788 #define shmem_anon_vm_ops generic_file_vm_ops
5789 #define shmem_file_operations ramfs_file_operations
5790 #define shmem_acct_size(flags, size) 0
5791 #define shmem_unacct_size(flags, size) do {} while (0)
5792
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)5793 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5794 struct super_block *sb, struct inode *dir,
5795 umode_t mode, dev_t dev, unsigned long flags)
5796 {
5797 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5798 return inode ? inode : ERR_PTR(-ENOSPC);
5799 }
5800
5801 #endif /* CONFIG_SHMEM */
5802
5803 /* common code */
5804
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)5805 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5806 loff_t size, unsigned long flags, unsigned int i_flags)
5807 {
5808 struct inode *inode;
5809 struct file *res;
5810
5811 if (IS_ERR(mnt))
5812 return ERR_CAST(mnt);
5813
5814 if (size < 0 || size > MAX_LFS_FILESIZE)
5815 return ERR_PTR(-EINVAL);
5816
5817 if (is_idmapped_mnt(mnt))
5818 return ERR_PTR(-EINVAL);
5819
5820 if (shmem_acct_size(flags, size))
5821 return ERR_PTR(-ENOMEM);
5822
5823 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5824 S_IFREG | S_IRWXUGO, 0, flags);
5825 if (IS_ERR(inode)) {
5826 shmem_unacct_size(flags, size);
5827 return ERR_CAST(inode);
5828 }
5829 inode->i_flags |= i_flags;
5830 inode->i_size = size;
5831 clear_nlink(inode); /* It is unlinked */
5832 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5833 if (!IS_ERR(res))
5834 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5835 &shmem_file_operations);
5836 if (IS_ERR(res))
5837 iput(inode);
5838 return res;
5839 }
5840
5841 /**
5842 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5843 * kernel internal. There will be NO LSM permission checks against the
5844 * underlying inode. So users of this interface must do LSM checks at a
5845 * higher layer. The users are the big_key and shm implementations. LSM
5846 * checks are provided at the key or shm level rather than the inode.
5847 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5848 * @size: size to be set for the file
5849 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5850 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)5851 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5852 {
5853 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5854 }
5855 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5856
5857 /**
5858 * shmem_file_setup - get an unlinked file living in tmpfs
5859 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5860 * @size: size to be set for the file
5861 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5862 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)5863 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5864 {
5865 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5866 }
5867 EXPORT_SYMBOL_GPL(shmem_file_setup);
5868
5869 /**
5870 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5871 * @mnt: the tmpfs mount where the file will be created
5872 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5873 * @size: size to be set for the file
5874 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5875 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)5876 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5877 loff_t size, unsigned long flags)
5878 {
5879 return __shmem_file_setup(mnt, name, size, flags, 0);
5880 }
5881 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5882
5883 /**
5884 * shmem_zero_setup - setup a shared anonymous mapping
5885 * @vma: the vma to be mmapped is prepared by do_mmap
5886 */
shmem_zero_setup(struct vm_area_struct * vma)5887 int shmem_zero_setup(struct vm_area_struct *vma)
5888 {
5889 struct file *file;
5890 loff_t size = vma->vm_end - vma->vm_start;
5891
5892 /*
5893 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5894 * between XFS directory reading and selinux: since this file is only
5895 * accessible to the user through its mapping, use S_PRIVATE flag to
5896 * bypass file security, in the same way as shmem_kernel_file_setup().
5897 */
5898 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5899 if (IS_ERR(file))
5900 return PTR_ERR(file);
5901
5902 if (vma->vm_file)
5903 fput(vma->vm_file);
5904 vma->vm_file = file;
5905 vma->vm_ops = &shmem_anon_vm_ops;
5906
5907 return 0;
5908 }
5909
5910 /**
5911 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5912 * @mapping: the folio's address_space
5913 * @index: the folio index
5914 * @gfp: the page allocator flags to use if allocating
5915 *
5916 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5917 * with any new page allocations done using the specified allocation flags.
5918 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5919 * suit tmpfs, since it may have pages in swapcache, and needs to find those
5920 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5921 *
5922 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5923 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5924 */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5925 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5926 pgoff_t index, gfp_t gfp)
5927 {
5928 #ifdef CONFIG_SHMEM
5929 struct inode *inode = mapping->host;
5930 struct folio *folio;
5931 int error;
5932
5933 error = shmem_get_folio_gfp(inode, index, i_size_read(inode),
5934 &folio, SGP_CACHE, gfp, NULL, NULL);
5935 if (error)
5936 return ERR_PTR(error);
5937
5938 folio_unlock(folio);
5939 return folio;
5940 #else
5941 /*
5942 * The tiny !SHMEM case uses ramfs without swap
5943 */
5944 return mapping_read_folio_gfp(mapping, index, gfp);
5945 #endif
5946 }
5947 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5948
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5949 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5950 pgoff_t index, gfp_t gfp)
5951 {
5952 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5953 struct page *page;
5954
5955 if (IS_ERR(folio))
5956 return &folio->page;
5957
5958 page = folio_file_page(folio, index);
5959 if (PageHWPoison(page)) {
5960 folio_put(folio);
5961 return ERR_PTR(-EIO);
5962 }
5963
5964 return page;
5965 }
5966 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5967