1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec: kexec_file_load system call 4 * 5 * Copyright (C) 2014 Red Hat Inc. 6 * Authors: 7 * Vivek Goyal <vgoyal@redhat.com> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/capability.h> 13 #include <linux/mm.h> 14 #include <linux/file.h> 15 #include <linux/slab.h> 16 #include <linux/kexec.h> 17 #include <linux/memblock.h> 18 #include <linux/mutex.h> 19 #include <linux/list.h> 20 #include <linux/fs.h> 21 #include <linux/ima.h> 22 #include <crypto/sha2.h> 23 #include <linux/elf.h> 24 #include <linux/elfcore.h> 25 #include <linux/kernel.h> 26 #include <linux/kernel_read_file.h> 27 #include <linux/syscalls.h> 28 #include <linux/vmalloc.h> 29 #include <linux/dma-map-ops.h> 30 #include "kexec_internal.h" 31 32 #ifdef CONFIG_KEXEC_SIG 33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE); 34 35 void set_kexec_sig_enforced(void) 36 { 37 sig_enforce = true; 38 } 39 #endif 40 41 #ifdef CONFIG_IMA_KEXEC 42 static bool check_ima_segment_index(struct kimage *image, int i) 43 { 44 if (image->is_ima_segment_index_set && i == image->ima_segment_index) 45 return true; 46 else 47 return false; 48 } 49 #else 50 static bool check_ima_segment_index(struct kimage *image, int i) 51 { 52 return false; 53 } 54 #endif 55 56 static int kexec_calculate_store_digests(struct kimage *image); 57 58 /* Maximum size in bytes for kernel/initrd files. */ 59 #define KEXEC_FILE_SIZE_MAX min_t(s64, 4LL << 30, SSIZE_MAX) 60 61 /* 62 * Currently this is the only default function that is exported as some 63 * architectures need it to do additional handlings. 64 * In the future, other default functions may be exported too if required. 65 */ 66 int kexec_image_probe_default(struct kimage *image, void *buf, 67 unsigned long buf_len) 68 { 69 const struct kexec_file_ops * const *fops; 70 int ret = -ENOEXEC; 71 72 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) { 73 ret = (*fops)->probe(buf, buf_len); 74 if (!ret) { 75 image->fops = *fops; 76 return ret; 77 } 78 } 79 80 return ret; 81 } 82 83 static void *kexec_image_load_default(struct kimage *image) 84 { 85 if (!image->fops || !image->fops->load) 86 return ERR_PTR(-ENOEXEC); 87 88 return image->fops->load(image, image->kernel_buf, 89 image->kernel_buf_len, image->initrd_buf, 90 image->initrd_buf_len, image->cmdline_buf, 91 image->cmdline_buf_len); 92 } 93 94 int kexec_image_post_load_cleanup_default(struct kimage *image) 95 { 96 if (!image->fops || !image->fops->cleanup) 97 return 0; 98 99 return image->fops->cleanup(image->image_loader_data); 100 } 101 102 /* 103 * Free up memory used by kernel, initrd, and command line. This is temporary 104 * memory allocation which is not needed any more after these buffers have 105 * been loaded into separate segments and have been copied elsewhere. 106 */ 107 void kimage_file_post_load_cleanup(struct kimage *image) 108 { 109 struct purgatory_info *pi = &image->purgatory_info; 110 111 vfree(image->kernel_buf); 112 image->kernel_buf = NULL; 113 114 vfree(image->initrd_buf); 115 image->initrd_buf = NULL; 116 117 kfree(image->cmdline_buf); 118 image->cmdline_buf = NULL; 119 120 vfree(pi->purgatory_buf); 121 pi->purgatory_buf = NULL; 122 123 vfree(pi->sechdrs); 124 pi->sechdrs = NULL; 125 126 #ifdef CONFIG_IMA_KEXEC 127 vfree(image->ima_buffer); 128 image->ima_buffer = NULL; 129 #endif /* CONFIG_IMA_KEXEC */ 130 131 /* See if architecture has anything to cleanup post load */ 132 arch_kimage_file_post_load_cleanup(image); 133 134 /* 135 * Above call should have called into bootloader to free up 136 * any data stored in kimage->image_loader_data. It should 137 * be ok now to free it up. 138 */ 139 kfree(image->image_loader_data); 140 image->image_loader_data = NULL; 141 142 kexec_file_dbg_print = false; 143 } 144 145 #ifdef CONFIG_KEXEC_SIG 146 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION 147 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len) 148 { 149 int ret; 150 151 ret = verify_pefile_signature(kernel, kernel_len, 152 VERIFY_USE_SECONDARY_KEYRING, 153 VERIFYING_KEXEC_PE_SIGNATURE); 154 if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) { 155 ret = verify_pefile_signature(kernel, kernel_len, 156 VERIFY_USE_PLATFORM_KEYRING, 157 VERIFYING_KEXEC_PE_SIGNATURE); 158 } 159 return ret; 160 } 161 #endif 162 163 static int kexec_image_verify_sig(struct kimage *image, void *buf, 164 unsigned long buf_len) 165 { 166 if (!image->fops || !image->fops->verify_sig) { 167 pr_debug("kernel loader does not support signature verification.\n"); 168 return -EKEYREJECTED; 169 } 170 171 return image->fops->verify_sig(buf, buf_len); 172 } 173 174 static int 175 kimage_validate_signature(struct kimage *image) 176 { 177 int ret; 178 179 ret = kexec_image_verify_sig(image, image->kernel_buf, 180 image->kernel_buf_len); 181 if (ret) { 182 183 if (sig_enforce) { 184 pr_notice("Enforced kernel signature verification failed (%d).\n", ret); 185 return ret; 186 } 187 188 /* 189 * If IMA is guaranteed to appraise a signature on the kexec 190 * image, permit it even if the kernel is otherwise locked 191 * down. 192 */ 193 if (!ima_appraise_signature(READING_KEXEC_IMAGE) && 194 security_locked_down(LOCKDOWN_KEXEC)) 195 return -EPERM; 196 197 pr_debug("kernel signature verification failed (%d).\n", ret); 198 } 199 200 return 0; 201 } 202 #endif 203 204 static int kexec_post_load(struct kimage *image, unsigned long flags) 205 { 206 #ifdef CONFIG_IMA_KEXEC 207 if (!(flags & KEXEC_FILE_ON_CRASH)) 208 ima_kexec_post_load(image); 209 #endif 210 return machine_kexec_post_load(image); 211 } 212 213 /* 214 * In file mode list of segments is prepared by kernel. Copy relevant 215 * data from user space, do error checking, prepare segment list 216 */ 217 static int 218 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 219 const char __user *cmdline_ptr, 220 unsigned long cmdline_len, unsigned flags) 221 { 222 ssize_t ret; 223 void *ldata; 224 225 ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf, 226 KEXEC_FILE_SIZE_MAX, NULL, 227 READING_KEXEC_IMAGE); 228 if (ret < 0) 229 return ret; 230 image->kernel_buf_len = ret; 231 kexec_dprintk("kernel: %p kernel_size: %#lx\n", 232 image->kernel_buf, image->kernel_buf_len); 233 234 /* Call arch image probe handlers */ 235 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 236 image->kernel_buf_len); 237 if (ret) 238 goto out; 239 240 #ifdef CONFIG_KEXEC_SIG 241 ret = kimage_validate_signature(image); 242 243 if (ret) 244 goto out; 245 #endif 246 /* It is possible that there no initramfs is being loaded */ 247 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 248 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf, 249 KEXEC_FILE_SIZE_MAX, NULL, 250 READING_KEXEC_INITRAMFS); 251 if (ret < 0) 252 goto out; 253 image->initrd_buf_len = ret; 254 ret = 0; 255 } 256 257 image->no_cma = !!(flags & KEXEC_FILE_NO_CMA); 258 image->force_dtb = flags & KEXEC_FILE_FORCE_DTB; 259 260 if (cmdline_len) { 261 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); 262 if (IS_ERR(image->cmdline_buf)) { 263 ret = PTR_ERR(image->cmdline_buf); 264 image->cmdline_buf = NULL; 265 goto out; 266 } 267 268 image->cmdline_buf_len = cmdline_len; 269 270 /* command line should be a string with last byte null */ 271 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 272 ret = -EINVAL; 273 goto out; 274 } 275 276 ima_kexec_cmdline(kernel_fd, image->cmdline_buf, 277 image->cmdline_buf_len - 1); 278 } 279 280 /* IMA needs to pass the measurement list to the next kernel. */ 281 ima_add_kexec_buffer(image); 282 283 /* If KHO is active, add its images to the list */ 284 ret = kho_fill_kimage(image); 285 if (ret) 286 goto out; 287 288 /* Call image load handler */ 289 ldata = kexec_image_load_default(image); 290 291 if (IS_ERR(ldata)) { 292 ret = PTR_ERR(ldata); 293 goto out; 294 } 295 296 image->image_loader_data = ldata; 297 out: 298 /* In case of error, free up all allocated memory in this function */ 299 if (ret) 300 kimage_file_post_load_cleanup(image); 301 return ret; 302 } 303 304 static int 305 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 306 int initrd_fd, const char __user *cmdline_ptr, 307 unsigned long cmdline_len, unsigned long flags) 308 { 309 int ret; 310 struct kimage *image; 311 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 312 313 image = do_kimage_alloc_init(); 314 if (!image) 315 return -ENOMEM; 316 317 kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG); 318 image->file_mode = 1; 319 320 #ifdef CONFIG_CRASH_DUMP 321 if (kexec_on_panic) { 322 /* Enable special crash kernel control page alloc policy. */ 323 image->control_page = crashk_res.start; 324 image->type = KEXEC_TYPE_CRASH; 325 } 326 #endif 327 328 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 329 cmdline_ptr, cmdline_len, flags); 330 if (ret) 331 goto out_free_image; 332 333 ret = sanity_check_segment_list(image); 334 if (ret) 335 goto out_free_post_load_bufs; 336 337 ret = -ENOMEM; 338 image->control_code_page = kimage_alloc_control_pages(image, 339 get_order(KEXEC_CONTROL_PAGE_SIZE)); 340 if (!image->control_code_page) { 341 pr_err("Could not allocate control_code_buffer\n"); 342 goto out_free_post_load_bufs; 343 } 344 345 if (!kexec_on_panic) { 346 image->swap_page = kimage_alloc_control_pages(image, 0); 347 if (!image->swap_page) { 348 pr_err("Could not allocate swap buffer\n"); 349 goto out_free_control_pages; 350 } 351 } 352 353 *rimage = image; 354 return 0; 355 out_free_control_pages: 356 kimage_free_page_list(&image->control_pages); 357 out_free_post_load_bufs: 358 kimage_file_post_load_cleanup(image); 359 out_free_image: 360 kfree(image); 361 return ret; 362 } 363 364 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 365 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 366 unsigned long, flags) 367 { 368 int image_type = (flags & KEXEC_FILE_ON_CRASH) ? 369 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT; 370 struct kimage **dest_image, *image; 371 int ret = 0, i; 372 373 /* We only trust the superuser with rebooting the system. */ 374 if (!kexec_load_permitted(image_type)) 375 return -EPERM; 376 377 /* Make sure we have a legal set of flags */ 378 if (flags != (flags & KEXEC_FILE_FLAGS)) 379 return -EINVAL; 380 381 image = NULL; 382 383 if (!kexec_trylock()) 384 return -EBUSY; 385 386 #ifdef CONFIG_CRASH_DUMP 387 if (image_type == KEXEC_TYPE_CRASH) { 388 dest_image = &kexec_crash_image; 389 if (kexec_crash_image) 390 arch_kexec_unprotect_crashkres(); 391 } else 392 #endif 393 dest_image = &kexec_image; 394 395 if (flags & KEXEC_FILE_UNLOAD) 396 goto exchange; 397 398 /* 399 * In case of crash, new kernel gets loaded in reserved region. It is 400 * same memory where old crash kernel might be loaded. Free any 401 * current crash dump kernel before we corrupt it. 402 */ 403 if (flags & KEXEC_FILE_ON_CRASH) 404 kimage_free(xchg(&kexec_crash_image, NULL)); 405 406 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 407 cmdline_len, flags); 408 if (ret) 409 goto out; 410 411 #ifdef CONFIG_CRASH_HOTPLUG 412 if ((flags & KEXEC_FILE_ON_CRASH) && arch_crash_hotplug_support(image, flags)) 413 image->hotplug_support = 1; 414 #endif 415 416 ret = machine_kexec_prepare(image); 417 if (ret) 418 goto out; 419 420 /* 421 * Some architecture(like S390) may touch the crash memory before 422 * machine_kexec_prepare(), we must copy vmcoreinfo data after it. 423 */ 424 ret = kimage_crash_copy_vmcoreinfo(image); 425 if (ret) 426 goto out; 427 428 ret = kexec_calculate_store_digests(image); 429 if (ret) 430 goto out; 431 432 kexec_dprintk("nr_segments = %lu\n", image->nr_segments); 433 for (i = 0; i < image->nr_segments; i++) { 434 struct kexec_segment *ksegment; 435 436 ksegment = &image->segment[i]; 437 kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 438 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 439 ksegment->memsz); 440 441 ret = kimage_load_segment(image, i); 442 if (ret) 443 goto out; 444 } 445 446 kimage_terminate(image); 447 448 ret = kexec_post_load(image, flags); 449 if (ret) 450 goto out; 451 452 kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n", 453 image->type, image->start, image->head, flags); 454 /* 455 * Free up any temporary buffers allocated which are not needed 456 * after image has been loaded 457 */ 458 kimage_file_post_load_cleanup(image); 459 exchange: 460 image = xchg(dest_image, image); 461 out: 462 #ifdef CONFIG_CRASH_DUMP 463 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) 464 arch_kexec_protect_crashkres(); 465 #endif 466 467 kexec_unlock(); 468 kimage_free(image); 469 return ret; 470 } 471 472 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 473 struct kexec_buf *kbuf) 474 { 475 struct kimage *image = kbuf->image; 476 unsigned long temp_start, temp_end; 477 478 temp_end = min(end, kbuf->buf_max); 479 temp_start = temp_end - kbuf->memsz + 1; 480 kexec_random_range_start(temp_start, temp_end, kbuf, &temp_start); 481 482 do { 483 /* align down start */ 484 temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align); 485 486 if (temp_start < start || temp_start < kbuf->buf_min) 487 return 0; 488 489 temp_end = temp_start + kbuf->memsz - 1; 490 491 /* 492 * Make sure this does not conflict with any of existing 493 * segments 494 */ 495 if (kimage_is_destination_range(image, temp_start, temp_end)) { 496 temp_start = temp_start - PAGE_SIZE; 497 continue; 498 } 499 500 /* Make sure this does not conflict with exclude range */ 501 if (arch_check_excluded_range(image, temp_start, temp_end)) { 502 temp_start = temp_start - PAGE_SIZE; 503 continue; 504 } 505 506 /* We found a suitable memory range */ 507 break; 508 } while (1); 509 510 /* If we are here, we found a suitable memory range */ 511 kbuf->mem = temp_start; 512 513 /* Success, stop navigating through remaining System RAM ranges */ 514 return 1; 515 } 516 517 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 518 struct kexec_buf *kbuf) 519 { 520 struct kimage *image = kbuf->image; 521 unsigned long temp_start, temp_end; 522 523 temp_start = max(start, kbuf->buf_min); 524 525 kexec_random_range_start(temp_start, end, kbuf, &temp_start); 526 527 do { 528 temp_start = ALIGN(temp_start, kbuf->buf_align); 529 temp_end = temp_start + kbuf->memsz - 1; 530 531 if (temp_end > end || temp_end > kbuf->buf_max) 532 return 0; 533 /* 534 * Make sure this does not conflict with any of existing 535 * segments 536 */ 537 if (kimage_is_destination_range(image, temp_start, temp_end)) { 538 temp_start = temp_start + PAGE_SIZE; 539 continue; 540 } 541 542 /* Make sure this does not conflict with exclude range */ 543 if (arch_check_excluded_range(image, temp_start, temp_end)) { 544 temp_start = temp_start + PAGE_SIZE; 545 continue; 546 } 547 548 /* We found a suitable memory range */ 549 break; 550 } while (1); 551 552 /* If we are here, we found a suitable memory range */ 553 kbuf->mem = temp_start; 554 555 /* Success, stop navigating through remaining System RAM ranges */ 556 return 1; 557 } 558 559 static int locate_mem_hole_callback(struct resource *res, void *arg) 560 { 561 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 562 u64 start = res->start, end = res->end; 563 unsigned long sz = end - start + 1; 564 565 /* Returning 0 will take to next memory range */ 566 567 /* Don't use memory that will be detected and handled by a driver. */ 568 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 569 return 0; 570 571 if (sz < kbuf->memsz) 572 return 0; 573 574 if (end < kbuf->buf_min || start > kbuf->buf_max) 575 return 0; 576 577 /* 578 * Allocate memory top down with-in ram range. Otherwise bottom up 579 * allocation. 580 */ 581 if (kbuf->top_down) 582 return locate_mem_hole_top_down(start, end, kbuf); 583 return locate_mem_hole_bottom_up(start, end, kbuf); 584 } 585 586 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK 587 static int kexec_walk_memblock(struct kexec_buf *kbuf, 588 int (*func)(struct resource *, void *)) 589 { 590 int ret = 0; 591 u64 i; 592 phys_addr_t mstart, mend; 593 struct resource res = { }; 594 595 #ifdef CONFIG_CRASH_DUMP 596 if (kbuf->image->type == KEXEC_TYPE_CRASH) 597 return func(&crashk_res, kbuf); 598 #endif 599 600 /* 601 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See 602 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in 603 * locate_mem_hole_callback(). 604 */ 605 if (kbuf->top_down) { 606 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE, 607 &mstart, &mend, NULL) { 608 /* 609 * In memblock, end points to the first byte after the 610 * range while in kexec, end points to the last byte 611 * in the range. 612 */ 613 res.start = mstart; 614 res.end = mend - 1; 615 ret = func(&res, kbuf); 616 if (ret) 617 break; 618 } 619 } else { 620 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, 621 &mstart, &mend, NULL) { 622 /* 623 * In memblock, end points to the first byte after the 624 * range while in kexec, end points to the last byte 625 * in the range. 626 */ 627 res.start = mstart; 628 res.end = mend - 1; 629 ret = func(&res, kbuf); 630 if (ret) 631 break; 632 } 633 } 634 635 return ret; 636 } 637 #else 638 static int kexec_walk_memblock(struct kexec_buf *kbuf, 639 int (*func)(struct resource *, void *)) 640 { 641 return 0; 642 } 643 #endif 644 645 /** 646 * kexec_walk_resources - call func(data) on free memory regions 647 * @kbuf: Context info for the search. Also passed to @func. 648 * @func: Function to call for each memory region. 649 * 650 * Return: The memory walk will stop when func returns a non-zero value 651 * and that value will be returned. If all free regions are visited without 652 * func returning non-zero, then zero will be returned. 653 */ 654 static int kexec_walk_resources(struct kexec_buf *kbuf, 655 int (*func)(struct resource *, void *)) 656 { 657 #ifdef CONFIG_CRASH_DUMP 658 if (kbuf->image->type == KEXEC_TYPE_CRASH) 659 return walk_iomem_res_desc(crashk_res.desc, 660 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, 661 crashk_res.start, crashk_res.end, 662 kbuf, func); 663 #endif 664 if (kbuf->top_down) 665 return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func); 666 else 667 return walk_system_ram_res(0, ULONG_MAX, kbuf, func); 668 } 669 670 static int kexec_alloc_contig(struct kexec_buf *kbuf) 671 { 672 size_t nr_pages = kbuf->memsz >> PAGE_SHIFT; 673 unsigned long mem; 674 struct page *p; 675 676 /* User space disabled CMA allocations, bail out. */ 677 if (kbuf->image->no_cma) 678 return -EPERM; 679 680 /* Skip CMA logic for crash kernel */ 681 if (kbuf->image->type == KEXEC_TYPE_CRASH) 682 return -EPERM; 683 684 p = dma_alloc_from_contiguous(NULL, nr_pages, get_order(kbuf->buf_align), true); 685 if (!p) 686 return -ENOMEM; 687 688 pr_debug("allocated %zu DMA pages at 0x%lx", nr_pages, page_to_boot_pfn(p)); 689 690 mem = page_to_boot_pfn(p) << PAGE_SHIFT; 691 692 if (kimage_is_destination_range(kbuf->image, mem, mem + kbuf->memsz)) { 693 /* Our region is already in use by a statically defined one. Bail out. */ 694 pr_debug("CMA overlaps existing mem: 0x%lx+0x%lx\n", mem, kbuf->memsz); 695 dma_release_from_contiguous(NULL, p, nr_pages); 696 return -EBUSY; 697 } 698 699 kbuf->mem = page_to_boot_pfn(p) << PAGE_SHIFT; 700 kbuf->cma = p; 701 702 arch_kexec_post_alloc_pages(page_address(p), (int)nr_pages, 0); 703 704 return 0; 705 } 706 707 /** 708 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel 709 * @kbuf: Parameters for the memory search. 710 * 711 * On success, kbuf->mem will have the start address of the memory region found. 712 * 713 * Return: 0 on success, negative errno on error. 714 */ 715 int kexec_locate_mem_hole(struct kexec_buf *kbuf) 716 { 717 int ret; 718 719 /* Arch knows where to place */ 720 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN) 721 return 0; 722 723 /* 724 * If KHO is active, only use KHO scratch memory. All other memory 725 * could potentially be handed over. 726 */ 727 ret = kho_locate_mem_hole(kbuf, locate_mem_hole_callback); 728 if (ret <= 0) 729 return ret; 730 731 /* 732 * Try to find a free physically contiguous block of memory first. With that, we 733 * can avoid any copying at kexec time. 734 */ 735 if (!kexec_alloc_contig(kbuf)) 736 return 0; 737 738 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 739 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback); 740 else 741 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback); 742 743 return ret == 1 ? 0 : -EADDRNOTAVAIL; 744 } 745 746 /** 747 * kexec_add_buffer - place a buffer in a kexec segment 748 * @kbuf: Buffer contents and memory parameters. 749 * 750 * This function assumes that kexec_lock is held. 751 * On successful return, @kbuf->mem will have the physical address of 752 * the buffer in memory. 753 * 754 * Return: 0 on success, negative errno on error. 755 */ 756 int kexec_add_buffer(struct kexec_buf *kbuf) 757 { 758 struct kexec_segment *ksegment; 759 int ret; 760 761 /* Currently adding segment this way is allowed only in file mode */ 762 if (!kbuf->image->file_mode) 763 return -EINVAL; 764 765 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) 766 return -EINVAL; 767 768 /* 769 * Make sure we are not trying to add buffer after allocating 770 * control pages. All segments need to be placed first before 771 * any control pages are allocated. As control page allocation 772 * logic goes through list of segments to make sure there are 773 * no destination overlaps. 774 */ 775 if (!list_empty(&kbuf->image->control_pages)) { 776 WARN_ON(1); 777 return -EINVAL; 778 } 779 780 /* Ensure minimum alignment needed for segments. */ 781 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); 782 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); 783 kbuf->cma = NULL; 784 785 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 786 ret = arch_kexec_locate_mem_hole(kbuf); 787 if (ret) 788 return ret; 789 790 /* Found a suitable memory range */ 791 ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; 792 ksegment->kbuf = kbuf->buffer; 793 ksegment->bufsz = kbuf->bufsz; 794 ksegment->mem = kbuf->mem; 795 ksegment->memsz = kbuf->memsz; 796 kbuf->image->segment_cma[kbuf->image->nr_segments] = kbuf->cma; 797 kbuf->image->nr_segments++; 798 return 0; 799 } 800 801 /* Calculate and store the digest of segments */ 802 static int kexec_calculate_store_digests(struct kimage *image) 803 { 804 struct sha256_ctx sctx; 805 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 806 size_t nullsz; 807 u8 digest[SHA256_DIGEST_SIZE]; 808 void *zero_buf; 809 struct kexec_sha_region *sha_regions; 810 struct purgatory_info *pi = &image->purgatory_info; 811 812 if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY)) 813 return 0; 814 815 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 816 zero_buf_sz = PAGE_SIZE; 817 818 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 819 sha_regions = vzalloc(sha_region_sz); 820 if (!sha_regions) 821 return -ENOMEM; 822 823 sha256_init(&sctx); 824 825 for (j = i = 0; i < image->nr_segments; i++) { 826 struct kexec_segment *ksegment; 827 828 #ifdef CONFIG_CRASH_HOTPLUG 829 /* Exclude elfcorehdr segment to allow future changes via hotplug */ 830 if (i == image->elfcorehdr_index) 831 continue; 832 #endif 833 834 ksegment = &image->segment[i]; 835 /* 836 * Skip purgatory as it will be modified once we put digest 837 * info in purgatory. 838 */ 839 if (ksegment->kbuf == pi->purgatory_buf) 840 continue; 841 842 /* 843 * Skip the segment if ima_segment_index is set and matches 844 * the current index 845 */ 846 if (check_ima_segment_index(image, i)) 847 continue; 848 849 sha256_update(&sctx, ksegment->kbuf, ksegment->bufsz); 850 851 /* 852 * Assume rest of the buffer is filled with zero and 853 * update digest accordingly. 854 */ 855 nullsz = ksegment->memsz - ksegment->bufsz; 856 while (nullsz) { 857 unsigned long bytes = nullsz; 858 859 if (bytes > zero_buf_sz) 860 bytes = zero_buf_sz; 861 sha256_update(&sctx, zero_buf, bytes); 862 nullsz -= bytes; 863 } 864 865 sha_regions[j].start = ksegment->mem; 866 sha_regions[j].len = ksegment->memsz; 867 j++; 868 } 869 870 sha256_final(&sctx, digest); 871 872 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", 873 sha_regions, sha_region_sz, 0); 874 if (ret) 875 goto out_free_sha_regions; 876 877 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", 878 digest, SHA256_DIGEST_SIZE, 0); 879 out_free_sha_regions: 880 vfree(sha_regions); 881 return ret; 882 } 883 884 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY 885 /* 886 * kexec_purgatory_find_symbol - find a symbol in the purgatory 887 * @pi: Purgatory to search in. 888 * @name: Name of the symbol. 889 * 890 * Return: pointer to symbol in read-only symtab on success, NULL on error. 891 */ 892 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 893 const char *name) 894 { 895 const Elf_Shdr *sechdrs; 896 const Elf_Ehdr *ehdr; 897 const Elf_Sym *syms; 898 const char *strtab; 899 int i, k; 900 901 if (!pi->ehdr) 902 return NULL; 903 904 ehdr = pi->ehdr; 905 sechdrs = (void *)ehdr + ehdr->e_shoff; 906 907 for (i = 0; i < ehdr->e_shnum; i++) { 908 if (sechdrs[i].sh_type != SHT_SYMTAB) 909 continue; 910 911 if (sechdrs[i].sh_link >= ehdr->e_shnum) 912 /* Invalid strtab section number */ 913 continue; 914 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset; 915 syms = (void *)ehdr + sechdrs[i].sh_offset; 916 917 /* Go through symbols for a match */ 918 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 919 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 920 continue; 921 922 if (strcmp(strtab + syms[k].st_name, name) != 0) 923 continue; 924 925 if (syms[k].st_shndx == SHN_UNDEF || 926 syms[k].st_shndx >= ehdr->e_shnum) { 927 pr_debug("Symbol: %s has bad section index %d.\n", 928 name, syms[k].st_shndx); 929 return NULL; 930 } 931 932 /* Found the symbol we are looking for */ 933 return &syms[k]; 934 } 935 } 936 937 return NULL; 938 } 939 /* 940 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory. 941 * @pi: Purgatory to be loaded. 942 * @kbuf: Buffer to setup. 943 * 944 * Allocates the memory needed for the buffer. Caller is responsible to free 945 * the memory after use. 946 * 947 * Return: 0 on success, negative errno on error. 948 */ 949 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi, 950 struct kexec_buf *kbuf) 951 { 952 const Elf_Shdr *sechdrs; 953 unsigned long bss_align; 954 unsigned long bss_sz; 955 unsigned long align; 956 int i, ret; 957 958 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 959 kbuf->buf_align = bss_align = 1; 960 kbuf->bufsz = bss_sz = 0; 961 962 for (i = 0; i < pi->ehdr->e_shnum; i++) { 963 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 964 continue; 965 966 align = sechdrs[i].sh_addralign; 967 if (sechdrs[i].sh_type != SHT_NOBITS) { 968 if (kbuf->buf_align < align) 969 kbuf->buf_align = align; 970 kbuf->bufsz = ALIGN(kbuf->bufsz, align); 971 kbuf->bufsz += sechdrs[i].sh_size; 972 } else { 973 if (bss_align < align) 974 bss_align = align; 975 bss_sz = ALIGN(bss_sz, align); 976 bss_sz += sechdrs[i].sh_size; 977 } 978 } 979 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align); 980 kbuf->memsz = kbuf->bufsz + bss_sz; 981 if (kbuf->buf_align < bss_align) 982 kbuf->buf_align = bss_align; 983 984 kbuf->buffer = vzalloc(kbuf->bufsz); 985 if (!kbuf->buffer) 986 return -ENOMEM; 987 pi->purgatory_buf = kbuf->buffer; 988 989 ret = kexec_add_buffer(kbuf); 990 if (ret) 991 goto out; 992 993 return 0; 994 out: 995 vfree(pi->purgatory_buf); 996 pi->purgatory_buf = NULL; 997 return ret; 998 } 999 1000 /* 1001 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer. 1002 * @pi: Purgatory to be loaded. 1003 * @kbuf: Buffer prepared to store purgatory. 1004 * 1005 * Allocates the memory needed for the buffer. Caller is responsible to free 1006 * the memory after use. 1007 * 1008 * Return: 0 on success, negative errno on error. 1009 */ 1010 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi, 1011 struct kexec_buf *kbuf) 1012 { 1013 unsigned long bss_addr; 1014 unsigned long offset; 1015 size_t sechdrs_size; 1016 Elf_Shdr *sechdrs; 1017 const Elf_Sym *entry_sym; 1018 u16 entry_shndx = 0; 1019 unsigned long entry_off = 0; 1020 bool start_fixed = false; 1021 int i; 1022 1023 /* 1024 * The section headers in kexec_purgatory are read-only. In order to 1025 * have them modifiable make a temporary copy. 1026 */ 1027 sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum); 1028 sechdrs = vzalloc(sechdrs_size); 1029 if (!sechdrs) 1030 return -ENOMEM; 1031 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size); 1032 pi->sechdrs = sechdrs; 1033 1034 offset = 0; 1035 bss_addr = kbuf->mem + kbuf->bufsz; 1036 kbuf->image->start = pi->ehdr->e_entry; 1037 1038 entry_sym = kexec_purgatory_find_symbol(pi, "purgatory_start"); 1039 if (entry_sym) { 1040 entry_shndx = entry_sym->st_shndx; 1041 entry_off = entry_sym->st_value; 1042 } 1043 1044 for (i = 0; i < pi->ehdr->e_shnum; i++) { 1045 unsigned long align; 1046 void *src, *dst; 1047 1048 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 1049 continue; 1050 1051 align = sechdrs[i].sh_addralign; 1052 if (sechdrs[i].sh_type == SHT_NOBITS) { 1053 bss_addr = ALIGN(bss_addr, align); 1054 sechdrs[i].sh_addr = bss_addr; 1055 bss_addr += sechdrs[i].sh_size; 1056 continue; 1057 } 1058 1059 offset = ALIGN(offset, align); 1060 1061 if (!start_fixed && entry_sym && i == entry_shndx && 1062 (sechdrs[i].sh_flags & SHF_EXECINSTR) && 1063 entry_off < sechdrs[i].sh_size) { 1064 kbuf->image->start = kbuf->mem + offset + entry_off; 1065 start_fixed = true; 1066 } 1067 1068 /* 1069 * Check if the segment contains the entry point, if so, 1070 * calculate the value of image->start based on it. 1071 * If the compiler has produced more than one .text section 1072 * (Eg: .text.hot), they are generally after the main .text 1073 * section, and they shall not be used to calculate 1074 * image->start. So do not re-calculate image->start if it 1075 * is not set to the initial value, and warn the user so they 1076 * have a chance to fix their purgatory's linker script. 1077 */ 1078 if (!start_fixed && sechdrs[i].sh_flags & SHF_EXECINSTR && 1079 pi->ehdr->e_entry >= sechdrs[i].sh_addr && 1080 pi->ehdr->e_entry < (sechdrs[i].sh_addr 1081 + sechdrs[i].sh_size) && 1082 kbuf->image->start == pi->ehdr->e_entry) { 1083 kbuf->image->start -= sechdrs[i].sh_addr; 1084 kbuf->image->start += kbuf->mem + offset; 1085 start_fixed = true; 1086 } 1087 1088 src = (void *)pi->ehdr + sechdrs[i].sh_offset; 1089 dst = pi->purgatory_buf + offset; 1090 memcpy(dst, src, sechdrs[i].sh_size); 1091 1092 sechdrs[i].sh_addr = kbuf->mem + offset; 1093 sechdrs[i].sh_offset = offset; 1094 offset += sechdrs[i].sh_size; 1095 } 1096 1097 return 0; 1098 } 1099 1100 static int kexec_apply_relocations(struct kimage *image) 1101 { 1102 int i, ret; 1103 struct purgatory_info *pi = &image->purgatory_info; 1104 const Elf_Shdr *sechdrs; 1105 1106 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 1107 1108 for (i = 0; i < pi->ehdr->e_shnum; i++) { 1109 const Elf_Shdr *relsec; 1110 const Elf_Shdr *symtab; 1111 Elf_Shdr *section; 1112 1113 relsec = sechdrs + i; 1114 1115 if (relsec->sh_type != SHT_RELA && 1116 relsec->sh_type != SHT_REL) 1117 continue; 1118 1119 /* 1120 * For section of type SHT_RELA/SHT_REL, 1121 * ->sh_link contains section header index of associated 1122 * symbol table. And ->sh_info contains section header 1123 * index of section to which relocations apply. 1124 */ 1125 if (relsec->sh_info >= pi->ehdr->e_shnum || 1126 relsec->sh_link >= pi->ehdr->e_shnum) 1127 return -ENOEXEC; 1128 1129 section = pi->sechdrs + relsec->sh_info; 1130 symtab = sechdrs + relsec->sh_link; 1131 1132 if (!(section->sh_flags & SHF_ALLOC)) 1133 continue; 1134 1135 /* 1136 * symtab->sh_link contain section header index of associated 1137 * string table. 1138 */ 1139 if (symtab->sh_link >= pi->ehdr->e_shnum) 1140 /* Invalid section number? */ 1141 continue; 1142 1143 /* 1144 * Respective architecture needs to provide support for applying 1145 * relocations of type SHT_RELA/SHT_REL. 1146 */ 1147 if (relsec->sh_type == SHT_RELA) 1148 ret = arch_kexec_apply_relocations_add(pi, section, 1149 relsec, symtab); 1150 else if (relsec->sh_type == SHT_REL) 1151 ret = arch_kexec_apply_relocations(pi, section, 1152 relsec, symtab); 1153 if (ret) 1154 return ret; 1155 } 1156 1157 return 0; 1158 } 1159 1160 /* 1161 * kexec_load_purgatory - Load and relocate the purgatory object. 1162 * @image: Image to add the purgatory to. 1163 * @kbuf: Memory parameters to use. 1164 * 1165 * Allocates the memory needed for image->purgatory_info.sechdrs and 1166 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible 1167 * to free the memory after use. 1168 * 1169 * Return: 0 on success, negative errno on error. 1170 */ 1171 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf) 1172 { 1173 struct purgatory_info *pi = &image->purgatory_info; 1174 int ret; 1175 1176 if (kexec_purgatory_size <= 0) 1177 return -EINVAL; 1178 1179 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory; 1180 1181 ret = kexec_purgatory_setup_kbuf(pi, kbuf); 1182 if (ret) 1183 return ret; 1184 1185 ret = kexec_purgatory_setup_sechdrs(pi, kbuf); 1186 if (ret) 1187 goto out_free_kbuf; 1188 1189 ret = kexec_apply_relocations(image); 1190 if (ret) 1191 goto out; 1192 1193 return 0; 1194 out: 1195 vfree(pi->sechdrs); 1196 pi->sechdrs = NULL; 1197 out_free_kbuf: 1198 vfree(pi->purgatory_buf); 1199 pi->purgatory_buf = NULL; 1200 return ret; 1201 } 1202 1203 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 1204 { 1205 struct purgatory_info *pi = &image->purgatory_info; 1206 const Elf_Sym *sym; 1207 Elf_Shdr *sechdr; 1208 1209 sym = kexec_purgatory_find_symbol(pi, name); 1210 if (!sym) 1211 return ERR_PTR(-EINVAL); 1212 1213 sechdr = &pi->sechdrs[sym->st_shndx]; 1214 1215 /* 1216 * Returns the address where symbol will finally be loaded after 1217 * kexec_load_segment() 1218 */ 1219 return (void *)(sechdr->sh_addr + sym->st_value); 1220 } 1221 1222 /* 1223 * Get or set value of a symbol. If "get_value" is true, symbol value is 1224 * returned in buf otherwise symbol value is set based on value in buf. 1225 */ 1226 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 1227 void *buf, unsigned int size, bool get_value) 1228 { 1229 struct purgatory_info *pi = &image->purgatory_info; 1230 const Elf_Sym *sym; 1231 Elf_Shdr *sec; 1232 char *sym_buf; 1233 1234 sym = kexec_purgatory_find_symbol(pi, name); 1235 if (!sym) 1236 return -EINVAL; 1237 1238 if (sym->st_size != size) { 1239 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 1240 name, (unsigned long)sym->st_size, size); 1241 return -EINVAL; 1242 } 1243 1244 sec = pi->sechdrs + sym->st_shndx; 1245 1246 if (sec->sh_type == SHT_NOBITS) { 1247 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 1248 get_value ? "get" : "set"); 1249 return -EINVAL; 1250 } 1251 1252 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value; 1253 1254 if (get_value) 1255 memcpy((void *)buf, sym_buf, size); 1256 else 1257 memcpy((void *)sym_buf, buf, size); 1258 1259 return 0; 1260 } 1261 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */ 1262