1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SuperH MSIOF SPI Controller Interface
4 *
5 * Copyright (c) 2009 Magnus Damm
6 * Copyright (C) 2014 Renesas Electronics Corporation
7 * Copyright (C) 2014-2017 Glider bvba
8 */
9
10 #include <linux/bitmap.h>
11 #include <linux/clk.h>
12 #include <linux/completion.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmaengine.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_graph.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/sh_dma.h>
27
28 #include <linux/spi/sh_msiof.h>
29 #include <linux/spi/spi.h>
30
31 #include <linux/unaligned.h>
32
33 #define SH_MSIOF_FLAG_FIXED_DTDL_200 BIT(0)
34
35 struct sh_msiof_chipdata {
36 u32 bits_per_word_mask;
37 u16 tx_fifo_size;
38 u16 rx_fifo_size;
39 u16 ctlr_flags;
40 u16 min_div_pow;
41 u32 flags;
42 };
43
44 struct sh_msiof_spi_priv {
45 struct spi_controller *ctlr;
46 void __iomem *mapbase;
47 struct clk *clk;
48 struct platform_device *pdev;
49 struct sh_msiof_spi_info *info;
50 struct completion done;
51 struct completion done_txdma;
52 unsigned int tx_fifo_size;
53 unsigned int rx_fifo_size;
54 unsigned int min_div_pow;
55 void *tx_dma_page;
56 void *rx_dma_page;
57 dma_addr_t tx_dma_addr;
58 dma_addr_t rx_dma_addr;
59 bool native_cs_inited;
60 bool native_cs_high;
61 bool target_aborted;
62 };
63
64 #define MAX_SS 3 /* Maximum number of native chip selects */
65
sh_msiof_read(struct sh_msiof_spi_priv * p,int reg_offs)66 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
67 {
68 switch (reg_offs) {
69 case SITSCR:
70 case SIRSCR:
71 return ioread16(p->mapbase + reg_offs);
72 default:
73 return ioread32(p->mapbase + reg_offs);
74 }
75 }
76
sh_msiof_write(struct sh_msiof_spi_priv * p,int reg_offs,u32 value)77 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
78 u32 value)
79 {
80 switch (reg_offs) {
81 case SITSCR:
82 case SIRSCR:
83 iowrite16(value, p->mapbase + reg_offs);
84 break;
85 default:
86 iowrite32(value, p->mapbase + reg_offs);
87 break;
88 }
89 }
90
sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv * p,u32 clr,u32 set)91 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
92 u32 clr, u32 set)
93 {
94 u32 mask = clr | set;
95 u32 data;
96
97 data = sh_msiof_read(p, SICTR);
98 data &= ~clr;
99 data |= set;
100 sh_msiof_write(p, SICTR, data);
101
102 return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
103 (data & mask) == set, 1, 100);
104 }
105
sh_msiof_spi_irq(int irq,void * data)106 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
107 {
108 struct sh_msiof_spi_priv *p = data;
109
110 /* just disable the interrupt and wake up */
111 sh_msiof_write(p, SIIER, 0);
112 complete(&p->done);
113
114 return IRQ_HANDLED;
115 }
116
sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv * p)117 static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
118 {
119 u32 mask = SICTR_TXRST | SICTR_RXRST;
120 u32 data;
121
122 data = sh_msiof_read(p, SICTR);
123 data |= mask;
124 sh_msiof_write(p, SICTR, data);
125
126 readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
127 100);
128 }
129
sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv * p,struct spi_transfer * t)130 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
131 struct spi_transfer *t)
132 {
133 unsigned long parent_rate = clk_get_rate(p->clk);
134 unsigned int div_pow = p->min_div_pow;
135 u32 spi_hz = t->speed_hz;
136 unsigned long div;
137 u32 brps, scr;
138
139 if (!spi_hz || !parent_rate) {
140 WARN(1, "Invalid clock rate parameters %lu and %u\n",
141 parent_rate, spi_hz);
142 return;
143 }
144
145 div = DIV_ROUND_UP(parent_rate, spi_hz);
146 if (div <= 1024) {
147 /* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
148 if (!div_pow && div <= 32 && div > 2)
149 div_pow = 1;
150
151 if (div_pow)
152 brps = (div + 1) >> div_pow;
153 else
154 brps = div;
155
156 for (; brps > 32; div_pow++)
157 brps = (brps + 1) >> 1;
158 } else {
159 /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
160 dev_err(&p->pdev->dev,
161 "Requested SPI transfer rate %d is too low\n", spi_hz);
162 div_pow = 5;
163 brps = 32;
164 }
165
166 t->effective_speed_hz = parent_rate / (brps << div_pow);
167
168 /* div_pow == 0 maps to SISCR_BRDV_DIV_1 == all ones */
169 scr = FIELD_PREP(SISCR_BRDV, div_pow - 1) |
170 FIELD_PREP(SISCR_BRPS, brps - 1);
171 sh_msiof_write(p, SITSCR, scr);
172 if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
173 sh_msiof_write(p, SIRSCR, scr);
174 }
175
sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)176 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
177 {
178 /*
179 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
180 * b'000 : 0
181 * b'001 : 100
182 * b'010 : 200
183 * b'011 (SYNCDL only) : 300
184 * b'101 : 50
185 * b'110 : 150
186 */
187 if (dtdl_or_syncdl % 100)
188 return dtdl_or_syncdl / 100 + 5;
189 else
190 return dtdl_or_syncdl / 100;
191 }
192
sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv * p)193 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
194 {
195 u32 val;
196
197 if (!p->info)
198 return 0;
199
200 /* check if DTDL and SYNCDL is allowed value */
201 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
202 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
203 return 0;
204 }
205
206 /* check if the sum of DTDL and SYNCDL becomes an integer value */
207 if ((p->info->dtdl + p->info->syncdl) % 100) {
208 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
209 return 0;
210 }
211
212 val = FIELD_PREP(SIMDR1_DTDL, sh_msiof_get_delay_bit(p->info->dtdl)) |
213 FIELD_PREP(SIMDR1_SYNCDL,
214 sh_msiof_get_delay_bit(p->info->syncdl));
215
216 return val;
217 }
218
sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv * p,u32 ss,bool cpol,bool cpha,bool tx_hi_z,bool lsb_first,bool cs_high)219 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
220 bool cpol, bool cpha, bool tx_hi_z,
221 bool lsb_first, bool cs_high)
222 {
223 bool edge;
224 u32 tmp;
225
226 /*
227 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
228 * 0 0 10 10 1 1
229 * 0 1 10 10 0 0
230 * 1 0 11 11 0 0
231 * 1 1 11 11 1 1
232 */
233 tmp = FIELD_PREP(SIMDR1_SYNCMD, SIMDR1_SYNCMD_SPI) |
234 FIELD_PREP(SIMDR1_FLD, 1) | SIMDR1_XXSTP |
235 FIELD_PREP(SIMDR1_SYNCAC, !cs_high) |
236 FIELD_PREP(SIMDR1_BITLSB, lsb_first);
237 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
238 if (spi_controller_is_target(p->ctlr)) {
239 sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
240 } else {
241 sh_msiof_write(p, SITMDR1,
242 tmp | SIMDR1_TRMD | SITMDR1_PCON |
243 FIELD_PREP(SITMDR1_SYNCCH,
244 ss < MAX_SS ? ss : 0));
245 }
246 if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
247 /* These bits are reserved if RX needs TX */
248 tmp &= ~0x0000ffff;
249 }
250 sh_msiof_write(p, SIRMDR1, tmp);
251
252 tmp = 0;
253 tmp |= SICTR_TSCKIZ_SCK | FIELD_PREP(SICTR_TSCKIZ_POL, cpol);
254 tmp |= SICTR_RSCKIZ_SCK | FIELD_PREP(SICTR_RSCKIZ_POL, cpol);
255
256 edge = cpol ^ !cpha;
257
258 tmp |= FIELD_PREP(SICTR_TEDG, edge);
259 tmp |= FIELD_PREP(SICTR_REDG, edge);
260 tmp |= FIELD_PREP(SICTR_TXDIZ,
261 tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW);
262 sh_msiof_write(p, SICTR, tmp);
263 }
264
sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv * p,const void * tx_buf,void * rx_buf,u32 bits,u32 words1,u32 words2)265 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
266 const void *tx_buf, void *rx_buf,
267 u32 bits, u32 words1, u32 words2)
268 {
269 u32 dr2 = FIELD_PREP(SIMDR2_GRP, words2 ? 1 : 0) |
270 FIELD_PREP(SIMDR2_BITLEN1, bits - 1) |
271 FIELD_PREP(SIMDR2_WDLEN1, words1 - 1);
272
273 if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
274 sh_msiof_write(p, SITMDR2, dr2);
275 else
276 sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK);
277
278 if (rx_buf)
279 sh_msiof_write(p, SIRMDR2, dr2);
280
281 if (words2) {
282 u32 dr3 = FIELD_PREP(SIMDR3_BITLEN2, bits - 1) |
283 FIELD_PREP(SIMDR3_WDLEN2, words2 - 1);
284
285 sh_msiof_write(p, SITMDR3, dr3);
286 if (rx_buf)
287 sh_msiof_write(p, SIRMDR3, dr3);
288 }
289 }
290
sh_msiof_reset_str(struct sh_msiof_spi_priv * p)291 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
292 {
293 sh_msiof_write(p, SISTR,
294 sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
295 }
296
sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv * p,const void * tx_buf,unsigned int words,unsigned int fs)297 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
298 const void *tx_buf, unsigned int words,
299 unsigned int fs)
300 {
301 const u8 *buf_8 = tx_buf;
302 unsigned int k;
303
304 for (k = 0; k < words; k++)
305 sh_msiof_write(p, SITFDR, buf_8[k] << fs);
306 }
307
sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv * p,const void * tx_buf,unsigned int words,unsigned int fs)308 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
309 const void *tx_buf, unsigned int words,
310 unsigned int fs)
311 {
312 const u16 *buf_16 = tx_buf;
313 unsigned int k;
314
315 for (k = 0; k < words; k++)
316 sh_msiof_write(p, SITFDR, buf_16[k] << fs);
317 }
318
sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv * p,const void * tx_buf,unsigned int words,unsigned int fs)319 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
320 const void *tx_buf, unsigned int words,
321 unsigned int fs)
322 {
323 const u16 *buf_16 = tx_buf;
324 unsigned int k;
325
326 for (k = 0; k < words; k++)
327 sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
328 }
329
sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv * p,const void * tx_buf,unsigned int words,unsigned int fs)330 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
331 const void *tx_buf, unsigned int words,
332 unsigned int fs)
333 {
334 const u32 *buf_32 = tx_buf;
335 unsigned int k;
336
337 for (k = 0; k < words; k++)
338 sh_msiof_write(p, SITFDR, buf_32[k] << fs);
339 }
340
sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv * p,const void * tx_buf,unsigned int words,unsigned int fs)341 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
342 const void *tx_buf, unsigned int words,
343 unsigned int fs)
344 {
345 const u32 *buf_32 = tx_buf;
346 unsigned int k;
347
348 for (k = 0; k < words; k++)
349 sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
350 }
351
sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv * p,const void * tx_buf,unsigned int words,unsigned int fs)352 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
353 const void *tx_buf, unsigned int words,
354 unsigned int fs)
355 {
356 const u32 *buf_32 = tx_buf;
357 unsigned int k;
358
359 for (k = 0; k < words; k++)
360 sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
361 }
362
sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv * p,const void * tx_buf,unsigned int words,unsigned int fs)363 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
364 const void *tx_buf,
365 unsigned int words, unsigned int fs)
366 {
367 const u32 *buf_32 = tx_buf;
368 unsigned int k;
369
370 for (k = 0; k < words; k++)
371 sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
372 }
373
sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv * p,void * rx_buf,unsigned int words,unsigned int fs)374 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
375 void *rx_buf, unsigned int words,
376 unsigned int fs)
377 {
378 u8 *buf_8 = rx_buf;
379 unsigned int k;
380
381 for (k = 0; k < words; k++)
382 buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
383 }
384
sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv * p,void * rx_buf,unsigned int words,unsigned int fs)385 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
386 void *rx_buf, unsigned int words,
387 unsigned int fs)
388 {
389 u16 *buf_16 = rx_buf;
390 unsigned int k;
391
392 for (k = 0; k < words; k++)
393 buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
394 }
395
sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv * p,void * rx_buf,unsigned int words,unsigned int fs)396 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
397 void *rx_buf, unsigned int words,
398 unsigned int fs)
399 {
400 u16 *buf_16 = rx_buf;
401 unsigned int k;
402
403 for (k = 0; k < words; k++)
404 put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
405 }
406
sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv * p,void * rx_buf,unsigned int words,unsigned int fs)407 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
408 void *rx_buf, unsigned int words,
409 unsigned int fs)
410 {
411 u32 *buf_32 = rx_buf;
412 unsigned int k;
413
414 for (k = 0; k < words; k++)
415 buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
416 }
417
sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv * p,void * rx_buf,unsigned int words,unsigned int fs)418 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
419 void *rx_buf, unsigned int words,
420 unsigned int fs)
421 {
422 u32 *buf_32 = rx_buf;
423 unsigned int k;
424
425 for (k = 0; k < words; k++)
426 put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
427 }
428
sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv * p,void * rx_buf,unsigned int words,unsigned int fs)429 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
430 void *rx_buf, unsigned int words,
431 unsigned int fs)
432 {
433 u32 *buf_32 = rx_buf;
434 unsigned int k;
435
436 for (k = 0; k < words; k++)
437 buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
438 }
439
sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv * p,void * rx_buf,unsigned int words,unsigned int fs)440 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
441 void *rx_buf, unsigned int words,
442 unsigned int fs)
443 {
444 u32 *buf_32 = rx_buf;
445 unsigned int k;
446
447 for (k = 0; k < words; k++)
448 put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
449 }
450
sh_msiof_spi_setup(struct spi_device * spi)451 static int sh_msiof_spi_setup(struct spi_device *spi)
452 {
453 struct sh_msiof_spi_priv *p =
454 spi_controller_get_devdata(spi->controller);
455 u32 clr, set, tmp;
456
457 if (spi_get_csgpiod(spi, 0) || spi_controller_is_target(p->ctlr))
458 return 0;
459
460 if (p->native_cs_inited &&
461 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
462 return 0;
463
464 /* Configure native chip select mode/polarity early */
465 clr = SIMDR1_SYNCMD;
466 set = FIELD_PREP(SIMDR1_SYNCMD, SIMDR1_SYNCMD_SPI);
467 if (spi->mode & SPI_CS_HIGH)
468 clr |= SIMDR1_SYNCAC;
469 else
470 set |= SIMDR1_SYNCAC;
471 pm_runtime_get_sync(&p->pdev->dev);
472 tmp = sh_msiof_read(p, SITMDR1) & ~clr;
473 sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
474 tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
475 sh_msiof_write(p, SIRMDR1, tmp | set);
476 pm_runtime_put(&p->pdev->dev);
477 p->native_cs_high = spi->mode & SPI_CS_HIGH;
478 p->native_cs_inited = true;
479 return 0;
480 }
481
sh_msiof_prepare_message(struct spi_controller * ctlr,struct spi_message * msg)482 static int sh_msiof_prepare_message(struct spi_controller *ctlr,
483 struct spi_message *msg)
484 {
485 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
486 const struct spi_device *spi = msg->spi;
487 bool cs_high;
488 u32 ss;
489
490 /* Configure pins before asserting CS */
491 if (spi_get_csgpiod(spi, 0)) {
492 ss = ctlr->unused_native_cs;
493 cs_high = p->native_cs_high;
494 } else {
495 ss = spi_get_chipselect(spi, 0);
496 cs_high = spi->mode & SPI_CS_HIGH;
497 }
498 sh_msiof_spi_set_pin_regs(p, ss, spi->mode & SPI_CPOL,
499 spi->mode & SPI_CPHA, spi->mode & SPI_3WIRE,
500 spi->mode & SPI_LSB_FIRST, cs_high);
501 return 0;
502 }
503
sh_msiof_spi_start(struct sh_msiof_spi_priv * p,void * rx_buf)504 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
505 {
506 bool target = spi_controller_is_target(p->ctlr);
507 int ret = 0;
508
509 /* setup clock and rx/tx signals */
510 if (!target)
511 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
512 if (rx_buf && !ret)
513 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
514 if (!ret)
515 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
516
517 /* start by setting frame bit */
518 if (!ret && !target)
519 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
520
521 return ret;
522 }
523
sh_msiof_spi_stop(struct sh_msiof_spi_priv * p,void * rx_buf)524 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
525 {
526 bool target = spi_controller_is_target(p->ctlr);
527 int ret = 0;
528
529 /* shut down frame, rx/tx and clock signals */
530 if (!target)
531 ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
532 if (!ret)
533 ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
534 if (rx_buf && !ret)
535 ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
536 if (!ret && !target)
537 ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
538
539 return ret;
540 }
541
sh_msiof_target_abort(struct spi_controller * ctlr)542 static int sh_msiof_target_abort(struct spi_controller *ctlr)
543 {
544 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
545
546 p->target_aborted = true;
547 complete(&p->done);
548 complete(&p->done_txdma);
549 return 0;
550 }
551
sh_msiof_wait_for_completion(struct sh_msiof_spi_priv * p,struct completion * x)552 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
553 struct completion *x)
554 {
555 if (spi_controller_is_target(p->ctlr)) {
556 if (wait_for_completion_interruptible(x) ||
557 p->target_aborted) {
558 dev_dbg(&p->pdev->dev, "interrupted\n");
559 return -EINTR;
560 }
561 } else {
562 if (!wait_for_completion_timeout(x, HZ)) {
563 dev_err(&p->pdev->dev, "timeout\n");
564 return -ETIMEDOUT;
565 }
566 }
567
568 return 0;
569 }
570
sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv * p,void (* tx_fifo)(struct sh_msiof_spi_priv *,const void *,unsigned int,unsigned int),void (* rx_fifo)(struct sh_msiof_spi_priv *,void *,unsigned int,unsigned int),const void * tx_buf,void * rx_buf,unsigned int words,unsigned int bits)571 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
572 void (*tx_fifo)(struct sh_msiof_spi_priv *,
573 const void *, unsigned int,
574 unsigned int),
575 void (*rx_fifo)(struct sh_msiof_spi_priv *,
576 void *, unsigned int,
577 unsigned int),
578 const void *tx_buf, void *rx_buf,
579 unsigned int words, unsigned int bits)
580 {
581 unsigned int fifo_shift;
582 int ret;
583
584 /* limit maximum word transfer to rx/tx fifo size */
585 if (tx_buf)
586 words = min(words, p->tx_fifo_size);
587 if (rx_buf)
588 words = min(words, p->rx_fifo_size);
589
590 /* the fifo contents need shifting */
591 fifo_shift = 32 - bits;
592
593 /* default FIFO watermarks for PIO */
594 sh_msiof_write(p, SIFCTR, 0);
595
596 /* setup msiof transfer mode registers */
597 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words, 0);
598 sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
599
600 /* write tx fifo */
601 if (tx_buf)
602 tx_fifo(p, tx_buf, words, fifo_shift);
603
604 reinit_completion(&p->done);
605 p->target_aborted = false;
606
607 ret = sh_msiof_spi_start(p, rx_buf);
608 if (ret) {
609 dev_err(&p->pdev->dev, "failed to start hardware\n");
610 goto stop_ier;
611 }
612
613 /* wait for tx fifo to be emptied / rx fifo to be filled */
614 ret = sh_msiof_wait_for_completion(p, &p->done);
615 if (ret)
616 goto stop_reset;
617
618 /* read rx fifo */
619 if (rx_buf)
620 rx_fifo(p, rx_buf, words, fifo_shift);
621
622 /* clear status bits */
623 sh_msiof_reset_str(p);
624
625 ret = sh_msiof_spi_stop(p, rx_buf);
626 if (ret) {
627 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
628 return ret;
629 }
630
631 return words;
632
633 stop_reset:
634 sh_msiof_reset_str(p);
635 sh_msiof_spi_stop(p, rx_buf);
636 stop_ier:
637 sh_msiof_write(p, SIIER, 0);
638 return ret;
639 }
640
sh_msiof_dma_complete(void * arg)641 static void sh_msiof_dma_complete(void *arg)
642 {
643 complete(arg);
644 }
645
sh_msiof_dma_once(struct sh_msiof_spi_priv * p,const void * tx,void * rx,unsigned int len,unsigned int max_wdlen)646 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
647 void *rx, unsigned int len,
648 unsigned int max_wdlen)
649 {
650 u32 ier_bits = 0;
651 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
652 unsigned int words1, words2;
653 dma_cookie_t cookie;
654 int ret;
655
656 /* First prepare and submit the DMA request(s), as this may fail */
657 if (rx) {
658 ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
659 desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
660 p->rx_dma_addr, len, DMA_DEV_TO_MEM,
661 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
662 if (!desc_rx)
663 return -EAGAIN;
664
665 desc_rx->callback = sh_msiof_dma_complete;
666 desc_rx->callback_param = &p->done;
667 cookie = dmaengine_submit(desc_rx);
668 if (dma_submit_error(cookie))
669 return cookie;
670 }
671
672 if (tx) {
673 ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
674 dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
675 p->tx_dma_addr, len, DMA_TO_DEVICE);
676 desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
677 p->tx_dma_addr, len, DMA_MEM_TO_DEV,
678 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
679 if (!desc_tx) {
680 ret = -EAGAIN;
681 goto no_dma_tx;
682 }
683
684 desc_tx->callback = sh_msiof_dma_complete;
685 desc_tx->callback_param = &p->done_txdma;
686 cookie = dmaengine_submit(desc_tx);
687 if (dma_submit_error(cookie)) {
688 ret = cookie;
689 goto no_dma_tx;
690 }
691 }
692
693 /* 1 stage FIFO watermarks for DMA */
694 sh_msiof_write(p, SIFCTR,
695 FIELD_PREP(SIFCTR_TFWM, SIFCTR_TFWM_1) |
696 FIELD_PREP(SIFCTR_RFWM, SIFCTR_RFWM_1));
697
698 /* setup msiof transfer mode registers (32-bit words) */
699 words1 = min(len / 4, max_wdlen);
700 words2 = len / 4 - words1;
701 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, words1, words2);
702
703 sh_msiof_write(p, SIIER, ier_bits);
704
705 reinit_completion(&p->done);
706 if (tx)
707 reinit_completion(&p->done_txdma);
708 p->target_aborted = false;
709
710 /* Now start DMA */
711 if (rx)
712 dma_async_issue_pending(p->ctlr->dma_rx);
713 if (tx)
714 dma_async_issue_pending(p->ctlr->dma_tx);
715
716 ret = sh_msiof_spi_start(p, rx);
717 if (ret) {
718 dev_err(&p->pdev->dev, "failed to start hardware\n");
719 goto stop_dma;
720 }
721
722 if (tx) {
723 /* wait for tx DMA completion */
724 ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
725 if (ret)
726 goto stop_reset;
727 }
728
729 if (rx) {
730 /* wait for rx DMA completion */
731 ret = sh_msiof_wait_for_completion(p, &p->done);
732 if (ret)
733 goto stop_reset;
734
735 sh_msiof_write(p, SIIER, 0);
736 } else {
737 /* wait for tx fifo to be emptied */
738 sh_msiof_write(p, SIIER, SIIER_TEOFE);
739 ret = sh_msiof_wait_for_completion(p, &p->done);
740 if (ret)
741 goto stop_reset;
742 }
743
744 /* clear status bits */
745 sh_msiof_reset_str(p);
746
747 ret = sh_msiof_spi_stop(p, rx);
748 if (ret) {
749 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
750 return ret;
751 }
752
753 if (rx)
754 dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
755 p->rx_dma_addr, len, DMA_FROM_DEVICE);
756
757 return 0;
758
759 stop_reset:
760 sh_msiof_reset_str(p);
761 sh_msiof_spi_stop(p, rx);
762 stop_dma:
763 if (tx)
764 dmaengine_terminate_sync(p->ctlr->dma_tx);
765 no_dma_tx:
766 if (rx)
767 dmaengine_terminate_sync(p->ctlr->dma_rx);
768 sh_msiof_write(p, SIIER, 0);
769 return ret;
770 }
771
copy_bswap32(u32 * dst,const u32 * src,unsigned int words)772 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
773 {
774 /* src or dst can be unaligned, but not both */
775 if ((unsigned long)src & 3) {
776 while (words--) {
777 *dst++ = swab32(get_unaligned(src));
778 src++;
779 }
780 } else if ((unsigned long)dst & 3) {
781 while (words--) {
782 put_unaligned(swab32(*src++), dst);
783 dst++;
784 }
785 } else {
786 while (words--)
787 *dst++ = swab32(*src++);
788 }
789 }
790
copy_wswap32(u32 * dst,const u32 * src,unsigned int words)791 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
792 {
793 /* src or dst can be unaligned, but not both */
794 if ((unsigned long)src & 3) {
795 while (words--) {
796 *dst++ = swahw32(get_unaligned(src));
797 src++;
798 }
799 } else if ((unsigned long)dst & 3) {
800 while (words--) {
801 put_unaligned(swahw32(*src++), dst);
802 dst++;
803 }
804 } else {
805 while (words--)
806 *dst++ = swahw32(*src++);
807 }
808 }
809
copy_plain32(u32 * dst,const u32 * src,unsigned int words)810 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
811 {
812 memcpy(dst, src, words * 4);
813 }
814
sh_msiof_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * t)815 static int sh_msiof_transfer_one(struct spi_controller *ctlr,
816 struct spi_device *spi,
817 struct spi_transfer *t)
818 {
819 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
820 unsigned int max_wdlen = FIELD_MAX(SIMDR2_WDLEN1) + 1;
821 void (*copy32)(u32 *, const u32 *, unsigned int);
822 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, unsigned int,
823 unsigned int);
824 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, unsigned int,
825 unsigned int);
826 const void *tx_buf = t->tx_buf;
827 void *rx_buf = t->rx_buf;
828 unsigned int len = t->len;
829 unsigned int bits = t->bits_per_word;
830 unsigned int bytes_per_word;
831 unsigned int words;
832 int n;
833 bool swab;
834 int ret;
835
836 /* reset registers */
837 sh_msiof_spi_reset_regs(p);
838
839 /* setup clocks (clock already enabled in chipselect()) */
840 if (!spi_controller_is_target(p->ctlr))
841 sh_msiof_spi_set_clk_regs(p, t);
842
843 if (tx_buf)
844 max_wdlen = min(max_wdlen, p->tx_fifo_size);
845 if (rx_buf)
846 max_wdlen = min(max_wdlen, p->rx_fifo_size);
847
848 while (ctlr->dma_tx && len > 15) {
849 /*
850 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
851 * words, with byte resp. word swapping.
852 */
853 unsigned int l = min(round_down(len, 4), 2 * max_wdlen * 4);
854
855 if (bits <= 8) {
856 copy32 = copy_bswap32;
857 } else if (bits <= 16) {
858 copy32 = copy_wswap32;
859 } else {
860 copy32 = copy_plain32;
861 }
862
863 if (tx_buf)
864 copy32(p->tx_dma_page, tx_buf, l / 4);
865
866 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l, max_wdlen);
867 if (ret == -EAGAIN) {
868 dev_warn_once(&p->pdev->dev,
869 "DMA not available, falling back to PIO\n");
870 break;
871 }
872 if (ret)
873 return ret;
874
875 if (rx_buf) {
876 copy32(rx_buf, p->rx_dma_page, l / 4);
877 rx_buf += l;
878 }
879 if (tx_buf)
880 tx_buf += l;
881
882 len -= l;
883 if (!len)
884 return 0;
885 }
886
887 if (bits <= 8 && len > 15) {
888 bits = 32;
889 swab = true;
890 } else {
891 swab = false;
892 }
893
894 /* setup bytes per word and fifo read/write functions */
895 if (bits <= 8) {
896 bytes_per_word = 1;
897 tx_fifo = sh_msiof_spi_write_fifo_8;
898 rx_fifo = sh_msiof_spi_read_fifo_8;
899 } else if (bits <= 16) {
900 bytes_per_word = 2;
901 if ((unsigned long)tx_buf & 0x01)
902 tx_fifo = sh_msiof_spi_write_fifo_16u;
903 else
904 tx_fifo = sh_msiof_spi_write_fifo_16;
905
906 if ((unsigned long)rx_buf & 0x01)
907 rx_fifo = sh_msiof_spi_read_fifo_16u;
908 else
909 rx_fifo = sh_msiof_spi_read_fifo_16;
910 } else if (swab) {
911 bytes_per_word = 4;
912 if ((unsigned long)tx_buf & 0x03)
913 tx_fifo = sh_msiof_spi_write_fifo_s32u;
914 else
915 tx_fifo = sh_msiof_spi_write_fifo_s32;
916
917 if ((unsigned long)rx_buf & 0x03)
918 rx_fifo = sh_msiof_spi_read_fifo_s32u;
919 else
920 rx_fifo = sh_msiof_spi_read_fifo_s32;
921 } else {
922 bytes_per_word = 4;
923 if ((unsigned long)tx_buf & 0x03)
924 tx_fifo = sh_msiof_spi_write_fifo_32u;
925 else
926 tx_fifo = sh_msiof_spi_write_fifo_32;
927
928 if ((unsigned long)rx_buf & 0x03)
929 rx_fifo = sh_msiof_spi_read_fifo_32u;
930 else
931 rx_fifo = sh_msiof_spi_read_fifo_32;
932 }
933
934 /* transfer in fifo sized chunks */
935 words = len / bytes_per_word;
936
937 while (words > 0) {
938 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
939 words, bits);
940 if (n < 0)
941 return n;
942
943 if (tx_buf)
944 tx_buf += n * bytes_per_word;
945 if (rx_buf)
946 rx_buf += n * bytes_per_word;
947 words -= n;
948
949 if (words == 0 && (len % bytes_per_word)) {
950 words = len % bytes_per_word;
951 bits = t->bits_per_word;
952 bytes_per_word = 1;
953 tx_fifo = sh_msiof_spi_write_fifo_8;
954 rx_fifo = sh_msiof_spi_read_fifo_8;
955 }
956 }
957
958 return 0;
959 }
960
961 static const struct sh_msiof_chipdata sh_data = {
962 .bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
963 .tx_fifo_size = 64,
964 .rx_fifo_size = 64,
965 .ctlr_flags = 0,
966 .min_div_pow = 0,
967 };
968
969 static const struct sh_msiof_chipdata rcar_gen2_data = {
970 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
971 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
972 .tx_fifo_size = 64,
973 .rx_fifo_size = 128,
974 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
975 .min_div_pow = 0,
976 };
977
978 static const struct sh_msiof_chipdata rcar_gen3_data = {
979 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
980 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
981 .tx_fifo_size = 64,
982 .rx_fifo_size = 256,
983 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
984 .min_div_pow = 1,
985 };
986
987 static const struct sh_msiof_chipdata rcar_gen4_data = {
988 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
989 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
990 .tx_fifo_size = 256,
991 .rx_fifo_size = 256,
992 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
993 .min_div_pow = 1,
994 };
995
996 static const struct sh_msiof_chipdata rcar_r8a7795_data = {
997 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
998 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
999 .tx_fifo_size = 64,
1000 .rx_fifo_size = 256,
1001 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1002 .min_div_pow = 1,
1003 .flags = SH_MSIOF_FLAG_FIXED_DTDL_200,
1004 };
1005
1006 static const struct of_device_id sh_msiof_match[] __maybe_unused = {
1007 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1008 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1009 { .compatible = "renesas,msiof-r8a7795", .data = &rcar_r8a7795_data },
1010 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1011 { .compatible = "renesas,msiof-r8a779a0", .data = &rcar_gen3_data },
1012 { .compatible = "renesas,msiof-r8a779f0", .data = &rcar_gen3_data },
1013 { .compatible = "renesas,rcar-gen4-msiof", .data = &rcar_gen4_data },
1014 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
1015 { /* sentinel */ }
1016 };
1017 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1018
1019 #ifdef CONFIG_OF
sh_msiof_spi_parse_dt(struct device * dev)1020 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1021 {
1022 struct sh_msiof_spi_info *info;
1023 struct device_node *np = dev->of_node;
1024 u32 num_cs = 1;
1025
1026 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1027 if (!info)
1028 return NULL;
1029
1030 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_TARGET
1031 : MSIOF_SPI_HOST;
1032
1033 /* Parse the MSIOF properties */
1034 if (info->mode == MSIOF_SPI_HOST)
1035 of_property_read_u32(np, "num-cs", &num_cs);
1036 of_property_read_u32(np, "renesas,tx-fifo-size",
1037 &info->tx_fifo_override);
1038 of_property_read_u32(np, "renesas,rx-fifo-size",
1039 &info->rx_fifo_override);
1040 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1041 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1042
1043 info->num_chipselect = num_cs;
1044
1045 return info;
1046 }
1047 #else
sh_msiof_spi_parse_dt(struct device * dev)1048 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1049 {
1050 return NULL;
1051 }
1052 #endif
1053
sh_msiof_request_dma_chan(struct device * dev,enum dma_transfer_direction dir,unsigned int id,dma_addr_t port_addr)1054 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1055 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1056 {
1057 dma_cap_mask_t mask;
1058 struct dma_chan *chan;
1059 struct dma_slave_config cfg;
1060 int ret;
1061
1062 dma_cap_zero(mask);
1063 dma_cap_set(DMA_SLAVE, mask);
1064
1065 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1066 (void *)(unsigned long)id, dev,
1067 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1068 if (!chan) {
1069 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1070 return NULL;
1071 }
1072
1073 memset(&cfg, 0, sizeof(cfg));
1074 cfg.direction = dir;
1075 if (dir == DMA_MEM_TO_DEV) {
1076 cfg.dst_addr = port_addr;
1077 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1078 } else {
1079 cfg.src_addr = port_addr;
1080 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1081 }
1082
1083 ret = dmaengine_slave_config(chan, &cfg);
1084 if (ret) {
1085 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1086 dma_release_channel(chan);
1087 return NULL;
1088 }
1089
1090 return chan;
1091 }
1092
sh_msiof_request_dma(struct sh_msiof_spi_priv * p)1093 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1094 {
1095 struct platform_device *pdev = p->pdev;
1096 struct device *dev = &pdev->dev;
1097 const struct sh_msiof_spi_info *info = p->info;
1098 unsigned int dma_tx_id, dma_rx_id;
1099 const struct resource *res;
1100 struct spi_controller *ctlr;
1101 struct device *tx_dev, *rx_dev;
1102
1103 if (dev->of_node) {
1104 /* In the OF case we will get the slave IDs from the DT */
1105 dma_tx_id = 0;
1106 dma_rx_id = 0;
1107 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1108 dma_tx_id = info->dma_tx_id;
1109 dma_rx_id = info->dma_rx_id;
1110 } else {
1111 /* The driver assumes no error */
1112 return 0;
1113 }
1114
1115 /* The DMA engine uses the second register set, if present */
1116 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1117 if (!res)
1118 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1119
1120 ctlr = p->ctlr;
1121 ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1122 dma_tx_id, res->start + SITFDR);
1123 if (!ctlr->dma_tx)
1124 return -ENODEV;
1125
1126 ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1127 dma_rx_id, res->start + SIRFDR);
1128 if (!ctlr->dma_rx)
1129 goto free_tx_chan;
1130
1131 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1132 if (!p->tx_dma_page)
1133 goto free_rx_chan;
1134
1135 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1136 if (!p->rx_dma_page)
1137 goto free_tx_page;
1138
1139 tx_dev = ctlr->dma_tx->device->dev;
1140 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1141 DMA_TO_DEVICE);
1142 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1143 goto free_rx_page;
1144
1145 rx_dev = ctlr->dma_rx->device->dev;
1146 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1147 DMA_FROM_DEVICE);
1148 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1149 goto unmap_tx_page;
1150
1151 dev_info(dev, "DMA available");
1152 return 0;
1153
1154 unmap_tx_page:
1155 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1156 free_rx_page:
1157 free_page((unsigned long)p->rx_dma_page);
1158 free_tx_page:
1159 free_page((unsigned long)p->tx_dma_page);
1160 free_rx_chan:
1161 dma_release_channel(ctlr->dma_rx);
1162 free_tx_chan:
1163 dma_release_channel(ctlr->dma_tx);
1164 ctlr->dma_tx = NULL;
1165 return -ENODEV;
1166 }
1167
sh_msiof_release_dma(struct sh_msiof_spi_priv * p)1168 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1169 {
1170 struct spi_controller *ctlr = p->ctlr;
1171
1172 if (!ctlr->dma_tx)
1173 return;
1174
1175 dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1176 DMA_FROM_DEVICE);
1177 dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1178 DMA_TO_DEVICE);
1179 free_page((unsigned long)p->rx_dma_page);
1180 free_page((unsigned long)p->tx_dma_page);
1181 dma_release_channel(ctlr->dma_rx);
1182 dma_release_channel(ctlr->dma_tx);
1183 }
1184
sh_msiof_spi_probe(struct platform_device * pdev)1185 static int sh_msiof_spi_probe(struct platform_device *pdev)
1186 {
1187 struct spi_controller *ctlr;
1188 const struct sh_msiof_chipdata *chipdata;
1189 struct sh_msiof_spi_info *info;
1190 struct sh_msiof_spi_priv *p;
1191 struct device *dev = &pdev->dev;
1192 unsigned long clksrc;
1193 int i;
1194 int ret;
1195
1196 /* Check whether MSIOF is used as I2S mode or SPI mode by checking "port" node */
1197 struct device_node *port __free(device_node) = of_graph_get_next_port(dev->of_node, NULL);
1198 if (port) /* It was MSIOF-I2S */
1199 return -ENODEV;
1200
1201 chipdata = of_device_get_match_data(dev);
1202 if (chipdata) {
1203 info = sh_msiof_spi_parse_dt(dev);
1204 } else {
1205 chipdata = (const void *)pdev->id_entry->driver_data;
1206 info = dev_get_platdata(dev);
1207 }
1208
1209 if (!info) {
1210 dev_err(dev, "failed to obtain device info\n");
1211 return -ENXIO;
1212 }
1213
1214 if (chipdata->flags & SH_MSIOF_FLAG_FIXED_DTDL_200)
1215 info->dtdl = 200;
1216
1217 if (info->mode == MSIOF_SPI_TARGET)
1218 ctlr = spi_alloc_target(dev, sizeof(struct sh_msiof_spi_priv));
1219 else
1220 ctlr = spi_alloc_host(dev, sizeof(struct sh_msiof_spi_priv));
1221 if (ctlr == NULL)
1222 return -ENOMEM;
1223
1224 p = spi_controller_get_devdata(ctlr);
1225
1226 platform_set_drvdata(pdev, p);
1227 p->ctlr = ctlr;
1228 p->info = info;
1229 p->min_div_pow = chipdata->min_div_pow;
1230
1231 init_completion(&p->done);
1232 init_completion(&p->done_txdma);
1233
1234 p->clk = devm_clk_get(dev, NULL);
1235 if (IS_ERR(p->clk)) {
1236 dev_err(dev, "cannot get clock\n");
1237 ret = PTR_ERR(p->clk);
1238 goto err1;
1239 }
1240
1241 i = platform_get_irq(pdev, 0);
1242 if (i < 0) {
1243 ret = i;
1244 goto err1;
1245 }
1246
1247 p->mapbase = devm_platform_ioremap_resource(pdev, 0);
1248 if (IS_ERR(p->mapbase)) {
1249 ret = PTR_ERR(p->mapbase);
1250 goto err1;
1251 }
1252
1253 ret = devm_request_irq(dev, i, sh_msiof_spi_irq, 0, dev_name(dev), p);
1254 if (ret) {
1255 dev_err(dev, "unable to request irq\n");
1256 goto err1;
1257 }
1258
1259 p->pdev = pdev;
1260 pm_runtime_enable(dev);
1261
1262 /* Platform data may override FIFO sizes */
1263 p->tx_fifo_size = chipdata->tx_fifo_size;
1264 p->rx_fifo_size = chipdata->rx_fifo_size;
1265 if (p->info->tx_fifo_override)
1266 p->tx_fifo_size = p->info->tx_fifo_override;
1267 if (p->info->rx_fifo_override)
1268 p->rx_fifo_size = p->info->rx_fifo_override;
1269
1270 /* init controller code */
1271 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1272 ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1273 clksrc = clk_get_rate(p->clk);
1274 ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
1275 ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
1276 ctlr->flags = chipdata->ctlr_flags;
1277 ctlr->bus_num = pdev->id;
1278 ctlr->num_chipselect = p->info->num_chipselect;
1279 ctlr->dev.of_node = dev->of_node;
1280 ctlr->setup = sh_msiof_spi_setup;
1281 ctlr->prepare_message = sh_msiof_prepare_message;
1282 ctlr->target_abort = sh_msiof_target_abort;
1283 ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1284 ctlr->auto_runtime_pm = true;
1285 ctlr->transfer_one = sh_msiof_transfer_one;
1286 ctlr->use_gpio_descriptors = true;
1287 ctlr->max_native_cs = MAX_SS;
1288
1289 ret = sh_msiof_request_dma(p);
1290 if (ret < 0)
1291 dev_warn(dev, "DMA not available, using PIO\n");
1292
1293 ret = devm_spi_register_controller(dev, ctlr);
1294 if (ret < 0) {
1295 dev_err(dev, "devm_spi_register_controller error.\n");
1296 goto err2;
1297 }
1298
1299 return 0;
1300
1301 err2:
1302 sh_msiof_release_dma(p);
1303 pm_runtime_disable(dev);
1304 err1:
1305 spi_controller_put(ctlr);
1306 return ret;
1307 }
1308
sh_msiof_spi_remove(struct platform_device * pdev)1309 static void sh_msiof_spi_remove(struct platform_device *pdev)
1310 {
1311 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1312
1313 sh_msiof_release_dma(p);
1314 pm_runtime_disable(&pdev->dev);
1315 }
1316
1317 static const struct platform_device_id spi_driver_ids[] = {
1318 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1319 {},
1320 };
1321 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1322
1323 #ifdef CONFIG_PM_SLEEP
sh_msiof_spi_suspend(struct device * dev)1324 static int sh_msiof_spi_suspend(struct device *dev)
1325 {
1326 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1327
1328 return spi_controller_suspend(p->ctlr);
1329 }
1330
sh_msiof_spi_resume(struct device * dev)1331 static int sh_msiof_spi_resume(struct device *dev)
1332 {
1333 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1334
1335 return spi_controller_resume(p->ctlr);
1336 }
1337
1338 static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1339 sh_msiof_spi_resume);
1340 #define DEV_PM_OPS (&sh_msiof_spi_pm_ops)
1341 #else
1342 #define DEV_PM_OPS NULL
1343 #endif /* CONFIG_PM_SLEEP */
1344
1345 static struct platform_driver sh_msiof_spi_drv = {
1346 .probe = sh_msiof_spi_probe,
1347 .remove = sh_msiof_spi_remove,
1348 .id_table = spi_driver_ids,
1349 .driver = {
1350 .name = "spi_sh_msiof",
1351 .pm = DEV_PM_OPS,
1352 .of_match_table = of_match_ptr(sh_msiof_match),
1353 },
1354 };
1355 module_platform_driver(sh_msiof_spi_drv);
1356
1357 MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1358 MODULE_AUTHOR("Magnus Damm");
1359 MODULE_LICENSE("GPL v2");
1360