xref: /linux/drivers/spi/spi-sh-msiof.c (revision 5722a6cecfff3e381b96bbbd7e9b3911731e80d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH MSIOF SPI Controller Interface
4  *
5  * Copyright (c) 2009 Magnus Damm
6  * Copyright (C) 2014 Renesas Electronics Corporation
7  * Copyright (C) 2014-2017 Glider bvba
8  */
9 
10 #include <linux/bitmap.h>
11 #include <linux/clk.h>
12 #include <linux/completion.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmaengine.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_graph.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/sh_dma.h>
27 
28 #include <linux/spi/sh_msiof.h>
29 #include <linux/spi/spi.h>
30 
31 #include <linux/unaligned.h>
32 
33 #define SH_MSIOF_FLAG_FIXED_DTDL_200	BIT(0)
34 
35 struct sh_msiof_chipdata {
36 	u32 bits_per_word_mask;
37 	u16 tx_fifo_size;
38 	u16 rx_fifo_size;
39 	u16 ctlr_flags;
40 	u16 min_div_pow;
41 	u32 flags;
42 };
43 
44 struct sh_msiof_spi_priv {
45 	struct spi_controller *ctlr;
46 	void __iomem *mapbase;
47 	struct clk *clk;
48 	struct platform_device *pdev;
49 	struct sh_msiof_spi_info *info;
50 	struct completion done;
51 	struct completion done_txdma;
52 	unsigned int tx_fifo_size;
53 	unsigned int rx_fifo_size;
54 	unsigned int min_div_pow;
55 	void *tx_dma_page;
56 	void *rx_dma_page;
57 	dma_addr_t tx_dma_addr;
58 	dma_addr_t rx_dma_addr;
59 	bool native_cs_inited;
60 	bool native_cs_high;
61 	bool target_aborted;
62 };
63 
64 #define MAX_SS	3	/* Maximum number of native chip selects */
65 
sh_msiof_read(struct sh_msiof_spi_priv * p,int reg_offs)66 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
67 {
68 	switch (reg_offs) {
69 	case SITSCR:
70 	case SIRSCR:
71 		return ioread16(p->mapbase + reg_offs);
72 	default:
73 		return ioread32(p->mapbase + reg_offs);
74 	}
75 }
76 
sh_msiof_write(struct sh_msiof_spi_priv * p,int reg_offs,u32 value)77 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
78 			   u32 value)
79 {
80 	switch (reg_offs) {
81 	case SITSCR:
82 	case SIRSCR:
83 		iowrite16(value, p->mapbase + reg_offs);
84 		break;
85 	default:
86 		iowrite32(value, p->mapbase + reg_offs);
87 		break;
88 	}
89 }
90 
sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv * p,u32 clr,u32 set)91 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
92 				    u32 clr, u32 set)
93 {
94 	u32 mask = clr | set;
95 	u32 data;
96 
97 	data = sh_msiof_read(p, SICTR);
98 	data &= ~clr;
99 	data |= set;
100 	sh_msiof_write(p, SICTR, data);
101 
102 	return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
103 					 (data & mask) == set, 1, 100);
104 }
105 
sh_msiof_spi_irq(int irq,void * data)106 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
107 {
108 	struct sh_msiof_spi_priv *p = data;
109 
110 	/* just disable the interrupt and wake up */
111 	sh_msiof_write(p, SIIER, 0);
112 	complete(&p->done);
113 
114 	return IRQ_HANDLED;
115 }
116 
sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv * p)117 static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
118 {
119 	u32 mask = SICTR_TXRST | SICTR_RXRST;
120 	u32 data;
121 
122 	data = sh_msiof_read(p, SICTR);
123 	data |= mask;
124 	sh_msiof_write(p, SICTR, data);
125 
126 	readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
127 				  100);
128 }
129 
sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv * p,struct spi_transfer * t)130 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
131 				      struct spi_transfer *t)
132 {
133 	unsigned long parent_rate = clk_get_rate(p->clk);
134 	unsigned int div_pow = p->min_div_pow;
135 	u32 spi_hz = t->speed_hz;
136 	unsigned long div;
137 	u32 brps, scr;
138 
139 	if (!spi_hz || !parent_rate) {
140 		WARN(1, "Invalid clock rate parameters %lu and %u\n",
141 		     parent_rate, spi_hz);
142 		return;
143 	}
144 
145 	div = DIV_ROUND_UP(parent_rate, spi_hz);
146 	if (div <= 1024) {
147 		/* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
148 		if (!div_pow && div <= 32 && div > 2)
149 			div_pow = 1;
150 
151 		if (div_pow)
152 			brps = (div + 1) >> div_pow;
153 		else
154 			brps = div;
155 
156 		for (; brps > 32; div_pow++)
157 			brps = (brps + 1) >> 1;
158 	} else {
159 		/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
160 		dev_err(&p->pdev->dev,
161 			"Requested SPI transfer rate %d is too low\n", spi_hz);
162 		div_pow = 5;
163 		brps = 32;
164 	}
165 
166 	t->effective_speed_hz = parent_rate / (brps << div_pow);
167 
168 	/* div_pow == 0 maps to SISCR_BRDV_DIV_1 == all ones */
169 	scr = FIELD_PREP(SISCR_BRDV, div_pow - 1) |
170 	      FIELD_PREP(SISCR_BRPS, brps - 1);
171 	sh_msiof_write(p, SITSCR, scr);
172 	if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
173 		sh_msiof_write(p, SIRSCR, scr);
174 }
175 
sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)176 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
177 {
178 	/*
179 	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
180 	 * b'000		: 0
181 	 * b'001		: 100
182 	 * b'010		: 200
183 	 * b'011 (SYNCDL only)	: 300
184 	 * b'101		: 50
185 	 * b'110		: 150
186 	 */
187 	if (dtdl_or_syncdl % 100)
188 		return dtdl_or_syncdl / 100 + 5;
189 	else
190 		return dtdl_or_syncdl / 100;
191 }
192 
sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv * p)193 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
194 {
195 	u32 val;
196 
197 	if (!p->info)
198 		return 0;
199 
200 	/* check if DTDL and SYNCDL is allowed value */
201 	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
202 		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
203 		return 0;
204 	}
205 
206 	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
207 	if ((p->info->dtdl + p->info->syncdl) % 100) {
208 		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
209 		return 0;
210 	}
211 
212 	val = FIELD_PREP(SIMDR1_DTDL, sh_msiof_get_delay_bit(p->info->dtdl)) |
213 	      FIELD_PREP(SIMDR1_SYNCDL,
214 			 sh_msiof_get_delay_bit(p->info->syncdl));
215 
216 	return val;
217 }
218 
sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv * p,u32 ss,bool cpol,bool cpha,bool tx_hi_z,bool lsb_first,bool cs_high)219 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
220 				      bool cpol, bool cpha, bool tx_hi_z,
221 				      bool lsb_first, bool cs_high)
222 {
223 	bool edge;
224 	u32 tmp;
225 
226 	/*
227 	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
228 	 *    0    0         10     10    1    1
229 	 *    0    1         10     10    0    0
230 	 *    1    0         11     11    0    0
231 	 *    1    1         11     11    1    1
232 	 */
233 	tmp = FIELD_PREP(SIMDR1_SYNCMD, SIMDR1_SYNCMD_SPI) |
234 	      FIELD_PREP(SIMDR1_FLD, 1) | SIMDR1_XXSTP |
235 	      FIELD_PREP(SIMDR1_SYNCAC, !cs_high) |
236 	      FIELD_PREP(SIMDR1_BITLSB, lsb_first);
237 	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
238 	if (spi_controller_is_target(p->ctlr)) {
239 		sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
240 	} else {
241 		sh_msiof_write(p, SITMDR1,
242 			       tmp | SIMDR1_TRMD | SITMDR1_PCON |
243 			       FIELD_PREP(SITMDR1_SYNCCH,
244 					  ss < MAX_SS ? ss : 0));
245 	}
246 	if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
247 		/* These bits are reserved if RX needs TX */
248 		tmp &= ~0x0000ffff;
249 	}
250 	sh_msiof_write(p, SIRMDR1, tmp);
251 
252 	tmp = 0;
253 	tmp |= SICTR_TSCKIZ_SCK | FIELD_PREP(SICTR_TSCKIZ_POL, cpol);
254 	tmp |= SICTR_RSCKIZ_SCK | FIELD_PREP(SICTR_RSCKIZ_POL, cpol);
255 
256 	edge = cpol ^ !cpha;
257 
258 	tmp |= FIELD_PREP(SICTR_TEDG, edge);
259 	tmp |= FIELD_PREP(SICTR_REDG, edge);
260 	tmp |= FIELD_PREP(SICTR_TXDIZ,
261 			  tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW);
262 	sh_msiof_write(p, SICTR, tmp);
263 }
264 
sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv * p,const void * tx_buf,void * rx_buf,u32 bits,u32 words1,u32 words2)265 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
266 				       const void *tx_buf, void *rx_buf,
267 				       u32 bits, u32 words1, u32 words2)
268 {
269 	u32 dr2 = FIELD_PREP(SIMDR2_GRP, words2 ? 1 : 0) |
270 		  FIELD_PREP(SIMDR2_BITLEN1, bits - 1) |
271 		  FIELD_PREP(SIMDR2_WDLEN1, words1 - 1);
272 
273 	if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
274 		sh_msiof_write(p, SITMDR2, dr2);
275 	else
276 		sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK);
277 
278 	if (rx_buf)
279 		sh_msiof_write(p, SIRMDR2, dr2);
280 
281 	if (words2) {
282 		u32 dr3 = FIELD_PREP(SIMDR3_BITLEN2, bits - 1) |
283 			  FIELD_PREP(SIMDR3_WDLEN2, words2 - 1);
284 
285 		sh_msiof_write(p, SITMDR3, dr3);
286 		if (rx_buf)
287 			sh_msiof_write(p, SIRMDR3, dr3);
288 	}
289 }
290 
sh_msiof_reset_str(struct sh_msiof_spi_priv * p)291 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
292 {
293 	sh_msiof_write(p, SISTR,
294 		       sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
295 }
296 
sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv * p,const void * tx_buf,unsigned int words,unsigned int fs)297 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
298 				      const void *tx_buf, unsigned int words,
299 				      unsigned int fs)
300 {
301 	const u8 *buf_8 = tx_buf;
302 	unsigned int k;
303 
304 	for (k = 0; k < words; k++)
305 		sh_msiof_write(p, SITFDR, buf_8[k] << fs);
306 }
307 
sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv * p,const void * tx_buf,unsigned int words,unsigned int fs)308 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
309 				       const void *tx_buf, unsigned int words,
310 				       unsigned int fs)
311 {
312 	const u16 *buf_16 = tx_buf;
313 	unsigned int k;
314 
315 	for (k = 0; k < words; k++)
316 		sh_msiof_write(p, SITFDR, buf_16[k] << fs);
317 }
318 
sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv * p,const void * tx_buf,unsigned int words,unsigned int fs)319 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
320 					const void *tx_buf, unsigned int words,
321 					unsigned int fs)
322 {
323 	const u16 *buf_16 = tx_buf;
324 	unsigned int k;
325 
326 	for (k = 0; k < words; k++)
327 		sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
328 }
329 
sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv * p,const void * tx_buf,unsigned int words,unsigned int fs)330 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
331 				       const void *tx_buf, unsigned int words,
332 				       unsigned int fs)
333 {
334 	const u32 *buf_32 = tx_buf;
335 	unsigned int k;
336 
337 	for (k = 0; k < words; k++)
338 		sh_msiof_write(p, SITFDR, buf_32[k] << fs);
339 }
340 
sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv * p,const void * tx_buf,unsigned int words,unsigned int fs)341 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
342 					const void *tx_buf, unsigned int words,
343 					unsigned int fs)
344 {
345 	const u32 *buf_32 = tx_buf;
346 	unsigned int k;
347 
348 	for (k = 0; k < words; k++)
349 		sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
350 }
351 
sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv * p,const void * tx_buf,unsigned int words,unsigned int fs)352 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
353 					const void *tx_buf, unsigned int words,
354 					unsigned int fs)
355 {
356 	const u32 *buf_32 = tx_buf;
357 	unsigned int k;
358 
359 	for (k = 0; k < words; k++)
360 		sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
361 }
362 
sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv * p,const void * tx_buf,unsigned int words,unsigned int fs)363 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
364 					 const void *tx_buf,
365 					 unsigned int words, unsigned int fs)
366 {
367 	const u32 *buf_32 = tx_buf;
368 	unsigned int k;
369 
370 	for (k = 0; k < words; k++)
371 		sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
372 }
373 
sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv * p,void * rx_buf,unsigned int words,unsigned int fs)374 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
375 				     void *rx_buf, unsigned int words,
376 				     unsigned int fs)
377 {
378 	u8 *buf_8 = rx_buf;
379 	unsigned int k;
380 
381 	for (k = 0; k < words; k++)
382 		buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
383 }
384 
sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv * p,void * rx_buf,unsigned int words,unsigned int fs)385 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
386 				      void *rx_buf, unsigned int words,
387 				      unsigned int fs)
388 {
389 	u16 *buf_16 = rx_buf;
390 	unsigned int k;
391 
392 	for (k = 0; k < words; k++)
393 		buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
394 }
395 
sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv * p,void * rx_buf,unsigned int words,unsigned int fs)396 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
397 				       void *rx_buf, unsigned int words,
398 				       unsigned int fs)
399 {
400 	u16 *buf_16 = rx_buf;
401 	unsigned int k;
402 
403 	for (k = 0; k < words; k++)
404 		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
405 }
406 
sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv * p,void * rx_buf,unsigned int words,unsigned int fs)407 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
408 				      void *rx_buf, unsigned int words,
409 				      unsigned int fs)
410 {
411 	u32 *buf_32 = rx_buf;
412 	unsigned int k;
413 
414 	for (k = 0; k < words; k++)
415 		buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
416 }
417 
sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv * p,void * rx_buf,unsigned int words,unsigned int fs)418 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
419 				       void *rx_buf, unsigned int words,
420 				       unsigned int fs)
421 {
422 	u32 *buf_32 = rx_buf;
423 	unsigned int k;
424 
425 	for (k = 0; k < words; k++)
426 		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
427 }
428 
sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv * p,void * rx_buf,unsigned int words,unsigned int fs)429 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
430 				       void *rx_buf, unsigned int words,
431 				       unsigned int fs)
432 {
433 	u32 *buf_32 = rx_buf;
434 	unsigned int k;
435 
436 	for (k = 0; k < words; k++)
437 		buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
438 }
439 
sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv * p,void * rx_buf,unsigned int words,unsigned int fs)440 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
441 				       void *rx_buf, unsigned int words,
442 				       unsigned int fs)
443 {
444 	u32 *buf_32 = rx_buf;
445 	unsigned int k;
446 
447 	for (k = 0; k < words; k++)
448 		put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
449 }
450 
sh_msiof_spi_setup(struct spi_device * spi)451 static int sh_msiof_spi_setup(struct spi_device *spi)
452 {
453 	struct sh_msiof_spi_priv *p =
454 		spi_controller_get_devdata(spi->controller);
455 	u32 clr, set, tmp;
456 
457 	if (spi_get_csgpiod(spi, 0) || spi_controller_is_target(p->ctlr))
458 		return 0;
459 
460 	if (p->native_cs_inited &&
461 	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
462 		return 0;
463 
464 	/* Configure native chip select mode/polarity early */
465 	clr = SIMDR1_SYNCMD;
466 	set = FIELD_PREP(SIMDR1_SYNCMD, SIMDR1_SYNCMD_SPI);
467 	if (spi->mode & SPI_CS_HIGH)
468 		clr |= SIMDR1_SYNCAC;
469 	else
470 		set |= SIMDR1_SYNCAC;
471 	pm_runtime_get_sync(&p->pdev->dev);
472 	tmp = sh_msiof_read(p, SITMDR1) & ~clr;
473 	sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
474 	tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
475 	sh_msiof_write(p, SIRMDR1, tmp | set);
476 	pm_runtime_put(&p->pdev->dev);
477 	p->native_cs_high = spi->mode & SPI_CS_HIGH;
478 	p->native_cs_inited = true;
479 	return 0;
480 }
481 
sh_msiof_prepare_message(struct spi_controller * ctlr,struct spi_message * msg)482 static int sh_msiof_prepare_message(struct spi_controller *ctlr,
483 				    struct spi_message *msg)
484 {
485 	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
486 	const struct spi_device *spi = msg->spi;
487 	bool cs_high;
488 	u32 ss;
489 
490 	/* Configure pins before asserting CS */
491 	if (spi_get_csgpiod(spi, 0)) {
492 		ss = ctlr->unused_native_cs;
493 		cs_high = p->native_cs_high;
494 	} else {
495 		ss = spi_get_chipselect(spi, 0);
496 		cs_high = spi->mode & SPI_CS_HIGH;
497 	}
498 	sh_msiof_spi_set_pin_regs(p, ss, spi->mode & SPI_CPOL,
499 				  spi->mode & SPI_CPHA, spi->mode & SPI_3WIRE,
500 				  spi->mode & SPI_LSB_FIRST, cs_high);
501 	return 0;
502 }
503 
sh_msiof_spi_start(struct sh_msiof_spi_priv * p,void * rx_buf)504 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
505 {
506 	bool target = spi_controller_is_target(p->ctlr);
507 	int ret = 0;
508 
509 	/* setup clock and rx/tx signals */
510 	if (!target)
511 		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
512 	if (rx_buf && !ret)
513 		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
514 	if (!ret)
515 		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
516 
517 	/* start by setting frame bit */
518 	if (!ret && !target)
519 		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
520 
521 	return ret;
522 }
523 
sh_msiof_spi_stop(struct sh_msiof_spi_priv * p,void * rx_buf)524 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
525 {
526 	bool target = spi_controller_is_target(p->ctlr);
527 	int ret = 0;
528 
529 	/* shut down frame, rx/tx and clock signals */
530 	if (!target)
531 		ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
532 	if (!ret)
533 		ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
534 	if (rx_buf && !ret)
535 		ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
536 	if (!ret && !target)
537 		ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
538 
539 	return ret;
540 }
541 
sh_msiof_target_abort(struct spi_controller * ctlr)542 static int sh_msiof_target_abort(struct spi_controller *ctlr)
543 {
544 	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
545 
546 	p->target_aborted = true;
547 	complete(&p->done);
548 	complete(&p->done_txdma);
549 	return 0;
550 }
551 
sh_msiof_wait_for_completion(struct sh_msiof_spi_priv * p,struct completion * x)552 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
553 					struct completion *x)
554 {
555 	if (spi_controller_is_target(p->ctlr)) {
556 		if (wait_for_completion_interruptible(x) ||
557 		    p->target_aborted) {
558 			dev_dbg(&p->pdev->dev, "interrupted\n");
559 			return -EINTR;
560 		}
561 	} else {
562 		if (!wait_for_completion_timeout(x, HZ)) {
563 			dev_err(&p->pdev->dev, "timeout\n");
564 			return -ETIMEDOUT;
565 		}
566 	}
567 
568 	return 0;
569 }
570 
sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv * p,void (* tx_fifo)(struct sh_msiof_spi_priv *,const void *,unsigned int,unsigned int),void (* rx_fifo)(struct sh_msiof_spi_priv *,void *,unsigned int,unsigned int),const void * tx_buf,void * rx_buf,unsigned int words,unsigned int bits)571 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
572 				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
573 						  const void *, unsigned int,
574 						  unsigned int),
575 				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
576 						  void *, unsigned int,
577 						  unsigned int),
578 				  const void *tx_buf, void *rx_buf,
579 				  unsigned int words, unsigned int bits)
580 {
581 	unsigned int fifo_shift;
582 	int ret;
583 
584 	/* limit maximum word transfer to rx/tx fifo size */
585 	if (tx_buf)
586 		words = min(words, p->tx_fifo_size);
587 	if (rx_buf)
588 		words = min(words, p->rx_fifo_size);
589 
590 	/* the fifo contents need shifting */
591 	fifo_shift = 32 - bits;
592 
593 	/* default FIFO watermarks for PIO */
594 	sh_msiof_write(p, SIFCTR, 0);
595 
596 	/* setup msiof transfer mode registers */
597 	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words, 0);
598 	sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
599 
600 	/* write tx fifo */
601 	if (tx_buf)
602 		tx_fifo(p, tx_buf, words, fifo_shift);
603 
604 	reinit_completion(&p->done);
605 	p->target_aborted = false;
606 
607 	ret = sh_msiof_spi_start(p, rx_buf);
608 	if (ret) {
609 		dev_err(&p->pdev->dev, "failed to start hardware\n");
610 		goto stop_ier;
611 	}
612 
613 	/* wait for tx fifo to be emptied / rx fifo to be filled */
614 	ret = sh_msiof_wait_for_completion(p, &p->done);
615 	if (ret)
616 		goto stop_reset;
617 
618 	/* read rx fifo */
619 	if (rx_buf)
620 		rx_fifo(p, rx_buf, words, fifo_shift);
621 
622 	/* clear status bits */
623 	sh_msiof_reset_str(p);
624 
625 	ret = sh_msiof_spi_stop(p, rx_buf);
626 	if (ret) {
627 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
628 		return ret;
629 	}
630 
631 	return words;
632 
633 stop_reset:
634 	sh_msiof_reset_str(p);
635 	sh_msiof_spi_stop(p, rx_buf);
636 stop_ier:
637 	sh_msiof_write(p, SIIER, 0);
638 	return ret;
639 }
640 
sh_msiof_dma_complete(void * arg)641 static void sh_msiof_dma_complete(void *arg)
642 {
643 	complete(arg);
644 }
645 
sh_msiof_dma_once(struct sh_msiof_spi_priv * p,const void * tx,void * rx,unsigned int len,unsigned int max_wdlen)646 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
647 			     void *rx, unsigned int len,
648 			     unsigned int max_wdlen)
649 {
650 	u32 ier_bits = 0;
651 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
652 	unsigned int words1, words2;
653 	dma_cookie_t cookie;
654 	int ret;
655 
656 	/* First prepare and submit the DMA request(s), as this may fail */
657 	if (rx) {
658 		ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
659 		desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
660 					p->rx_dma_addr, len, DMA_DEV_TO_MEM,
661 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
662 		if (!desc_rx)
663 			return -EAGAIN;
664 
665 		desc_rx->callback = sh_msiof_dma_complete;
666 		desc_rx->callback_param = &p->done;
667 		cookie = dmaengine_submit(desc_rx);
668 		if (dma_submit_error(cookie))
669 			return cookie;
670 	}
671 
672 	if (tx) {
673 		ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
674 		dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
675 					   p->tx_dma_addr, len, DMA_TO_DEVICE);
676 		desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
677 					p->tx_dma_addr, len, DMA_MEM_TO_DEV,
678 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
679 		if (!desc_tx) {
680 			ret = -EAGAIN;
681 			goto no_dma_tx;
682 		}
683 
684 		desc_tx->callback = sh_msiof_dma_complete;
685 		desc_tx->callback_param = &p->done_txdma;
686 		cookie = dmaengine_submit(desc_tx);
687 		if (dma_submit_error(cookie)) {
688 			ret = cookie;
689 			goto no_dma_tx;
690 		}
691 	}
692 
693 	/* 1 stage FIFO watermarks for DMA */
694 	sh_msiof_write(p, SIFCTR,
695 		       FIELD_PREP(SIFCTR_TFWM, SIFCTR_TFWM_1) |
696 		       FIELD_PREP(SIFCTR_RFWM, SIFCTR_RFWM_1));
697 
698 	/* setup msiof transfer mode registers (32-bit words) */
699 	words1 = min(len / 4, max_wdlen);
700 	words2 = len / 4 - words1;
701 	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, words1, words2);
702 
703 	sh_msiof_write(p, SIIER, ier_bits);
704 
705 	reinit_completion(&p->done);
706 	if (tx)
707 		reinit_completion(&p->done_txdma);
708 	p->target_aborted = false;
709 
710 	/* Now start DMA */
711 	if (rx)
712 		dma_async_issue_pending(p->ctlr->dma_rx);
713 	if (tx)
714 		dma_async_issue_pending(p->ctlr->dma_tx);
715 
716 	ret = sh_msiof_spi_start(p, rx);
717 	if (ret) {
718 		dev_err(&p->pdev->dev, "failed to start hardware\n");
719 		goto stop_dma;
720 	}
721 
722 	if (tx) {
723 		/* wait for tx DMA completion */
724 		ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
725 		if (ret)
726 			goto stop_reset;
727 	}
728 
729 	if (rx) {
730 		/* wait for rx DMA completion */
731 		ret = sh_msiof_wait_for_completion(p, &p->done);
732 		if (ret)
733 			goto stop_reset;
734 
735 		sh_msiof_write(p, SIIER, 0);
736 	} else {
737 		/* wait for tx fifo to be emptied */
738 		sh_msiof_write(p, SIIER, SIIER_TEOFE);
739 		ret = sh_msiof_wait_for_completion(p, &p->done);
740 		if (ret)
741 			goto stop_reset;
742 	}
743 
744 	/* clear status bits */
745 	sh_msiof_reset_str(p);
746 
747 	ret = sh_msiof_spi_stop(p, rx);
748 	if (ret) {
749 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
750 		return ret;
751 	}
752 
753 	if (rx)
754 		dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
755 					p->rx_dma_addr, len, DMA_FROM_DEVICE);
756 
757 	return 0;
758 
759 stop_reset:
760 	sh_msiof_reset_str(p);
761 	sh_msiof_spi_stop(p, rx);
762 stop_dma:
763 	if (tx)
764 		dmaengine_terminate_sync(p->ctlr->dma_tx);
765 no_dma_tx:
766 	if (rx)
767 		dmaengine_terminate_sync(p->ctlr->dma_rx);
768 	sh_msiof_write(p, SIIER, 0);
769 	return ret;
770 }
771 
copy_bswap32(u32 * dst,const u32 * src,unsigned int words)772 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
773 {
774 	/* src or dst can be unaligned, but not both */
775 	if ((unsigned long)src & 3) {
776 		while (words--) {
777 			*dst++ = swab32(get_unaligned(src));
778 			src++;
779 		}
780 	} else if ((unsigned long)dst & 3) {
781 		while (words--) {
782 			put_unaligned(swab32(*src++), dst);
783 			dst++;
784 		}
785 	} else {
786 		while (words--)
787 			*dst++ = swab32(*src++);
788 	}
789 }
790 
copy_wswap32(u32 * dst,const u32 * src,unsigned int words)791 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
792 {
793 	/* src or dst can be unaligned, but not both */
794 	if ((unsigned long)src & 3) {
795 		while (words--) {
796 			*dst++ = swahw32(get_unaligned(src));
797 			src++;
798 		}
799 	} else if ((unsigned long)dst & 3) {
800 		while (words--) {
801 			put_unaligned(swahw32(*src++), dst);
802 			dst++;
803 		}
804 	} else {
805 		while (words--)
806 			*dst++ = swahw32(*src++);
807 	}
808 }
809 
copy_plain32(u32 * dst,const u32 * src,unsigned int words)810 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
811 {
812 	memcpy(dst, src, words * 4);
813 }
814 
sh_msiof_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * t)815 static int sh_msiof_transfer_one(struct spi_controller *ctlr,
816 				 struct spi_device *spi,
817 				 struct spi_transfer *t)
818 {
819 	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
820 	unsigned int max_wdlen = FIELD_MAX(SIMDR2_WDLEN1) + 1;
821 	void (*copy32)(u32 *, const u32 *, unsigned int);
822 	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, unsigned int,
823 			unsigned int);
824 	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, unsigned int,
825 			unsigned int);
826 	const void *tx_buf = t->tx_buf;
827 	void *rx_buf = t->rx_buf;
828 	unsigned int len = t->len;
829 	unsigned int bits = t->bits_per_word;
830 	unsigned int bytes_per_word;
831 	unsigned int words;
832 	int n;
833 	bool swab;
834 	int ret;
835 
836 	/* reset registers */
837 	sh_msiof_spi_reset_regs(p);
838 
839 	/* setup clocks (clock already enabled in chipselect()) */
840 	if (!spi_controller_is_target(p->ctlr))
841 		sh_msiof_spi_set_clk_regs(p, t);
842 
843 	if (tx_buf)
844 		max_wdlen = min(max_wdlen, p->tx_fifo_size);
845 	if (rx_buf)
846 		max_wdlen = min(max_wdlen, p->rx_fifo_size);
847 
848 	while (ctlr->dma_tx && len > 15) {
849 		/*
850 		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
851 		 *  words, with byte resp. word swapping.
852 		 */
853 		unsigned int l = min(round_down(len, 4), 2 * max_wdlen * 4);
854 
855 		if (bits <= 8) {
856 			copy32 = copy_bswap32;
857 		} else if (bits <= 16) {
858 			copy32 = copy_wswap32;
859 		} else {
860 			copy32 = copy_plain32;
861 		}
862 
863 		if (tx_buf)
864 			copy32(p->tx_dma_page, tx_buf, l / 4);
865 
866 		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l, max_wdlen);
867 		if (ret == -EAGAIN) {
868 			dev_warn_once(&p->pdev->dev,
869 				"DMA not available, falling back to PIO\n");
870 			break;
871 		}
872 		if (ret)
873 			return ret;
874 
875 		if (rx_buf) {
876 			copy32(rx_buf, p->rx_dma_page, l / 4);
877 			rx_buf += l;
878 		}
879 		if (tx_buf)
880 			tx_buf += l;
881 
882 		len -= l;
883 		if (!len)
884 			return 0;
885 	}
886 
887 	if (bits <= 8 && len > 15) {
888 		bits = 32;
889 		swab = true;
890 	} else {
891 		swab = false;
892 	}
893 
894 	/* setup bytes per word and fifo read/write functions */
895 	if (bits <= 8) {
896 		bytes_per_word = 1;
897 		tx_fifo = sh_msiof_spi_write_fifo_8;
898 		rx_fifo = sh_msiof_spi_read_fifo_8;
899 	} else if (bits <= 16) {
900 		bytes_per_word = 2;
901 		if ((unsigned long)tx_buf & 0x01)
902 			tx_fifo = sh_msiof_spi_write_fifo_16u;
903 		else
904 			tx_fifo = sh_msiof_spi_write_fifo_16;
905 
906 		if ((unsigned long)rx_buf & 0x01)
907 			rx_fifo = sh_msiof_spi_read_fifo_16u;
908 		else
909 			rx_fifo = sh_msiof_spi_read_fifo_16;
910 	} else if (swab) {
911 		bytes_per_word = 4;
912 		if ((unsigned long)tx_buf & 0x03)
913 			tx_fifo = sh_msiof_spi_write_fifo_s32u;
914 		else
915 			tx_fifo = sh_msiof_spi_write_fifo_s32;
916 
917 		if ((unsigned long)rx_buf & 0x03)
918 			rx_fifo = sh_msiof_spi_read_fifo_s32u;
919 		else
920 			rx_fifo = sh_msiof_spi_read_fifo_s32;
921 	} else {
922 		bytes_per_word = 4;
923 		if ((unsigned long)tx_buf & 0x03)
924 			tx_fifo = sh_msiof_spi_write_fifo_32u;
925 		else
926 			tx_fifo = sh_msiof_spi_write_fifo_32;
927 
928 		if ((unsigned long)rx_buf & 0x03)
929 			rx_fifo = sh_msiof_spi_read_fifo_32u;
930 		else
931 			rx_fifo = sh_msiof_spi_read_fifo_32;
932 	}
933 
934 	/* transfer in fifo sized chunks */
935 	words = len / bytes_per_word;
936 
937 	while (words > 0) {
938 		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
939 					   words, bits);
940 		if (n < 0)
941 			return n;
942 
943 		if (tx_buf)
944 			tx_buf += n * bytes_per_word;
945 		if (rx_buf)
946 			rx_buf += n * bytes_per_word;
947 		words -= n;
948 
949 		if (words == 0 && (len % bytes_per_word)) {
950 			words = len % bytes_per_word;
951 			bits = t->bits_per_word;
952 			bytes_per_word = 1;
953 			tx_fifo = sh_msiof_spi_write_fifo_8;
954 			rx_fifo = sh_msiof_spi_read_fifo_8;
955 		}
956 	}
957 
958 	return 0;
959 }
960 
961 static const struct sh_msiof_chipdata sh_data = {
962 	.bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
963 	.tx_fifo_size = 64,
964 	.rx_fifo_size = 64,
965 	.ctlr_flags = 0,
966 	.min_div_pow = 0,
967 };
968 
969 static const struct sh_msiof_chipdata rcar_gen2_data = {
970 	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
971 			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
972 	.tx_fifo_size = 64,
973 	.rx_fifo_size = 128,
974 	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
975 	.min_div_pow = 0,
976 };
977 
978 static const struct sh_msiof_chipdata rcar_gen3_data = {
979 	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
980 			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
981 	.tx_fifo_size = 64,
982 	.rx_fifo_size = 256,
983 	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
984 	.min_div_pow = 1,
985 };
986 
987 static const struct sh_msiof_chipdata rcar_gen4_data = {
988 	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
989 			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
990 	.tx_fifo_size = 256,
991 	.rx_fifo_size = 256,
992 	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
993 	.min_div_pow = 1,
994 };
995 
996 static const struct sh_msiof_chipdata rcar_r8a7795_data = {
997 	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
998 			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
999 	.tx_fifo_size = 64,
1000 	.rx_fifo_size = 256,
1001 	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1002 	.min_div_pow = 1,
1003 	.flags = SH_MSIOF_FLAG_FIXED_DTDL_200,
1004 };
1005 
1006 static const struct of_device_id sh_msiof_match[] __maybe_unused = {
1007 	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1008 	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1009 	{ .compatible = "renesas,msiof-r8a7795",   .data = &rcar_r8a7795_data },
1010 	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1011 	{ .compatible = "renesas,msiof-r8a779a0",  .data = &rcar_gen3_data },
1012 	{ .compatible = "renesas,msiof-r8a779f0",  .data = &rcar_gen3_data },
1013 	{ .compatible = "renesas,rcar-gen4-msiof", .data = &rcar_gen4_data },
1014 	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1015 	{ /* sentinel */ }
1016 };
1017 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1018 
1019 #ifdef CONFIG_OF
sh_msiof_spi_parse_dt(struct device * dev)1020 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1021 {
1022 	struct sh_msiof_spi_info *info;
1023 	struct device_node *np = dev->of_node;
1024 	u32 num_cs = 1;
1025 
1026 	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1027 	if (!info)
1028 		return NULL;
1029 
1030 	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_TARGET
1031 							    : MSIOF_SPI_HOST;
1032 
1033 	/* Parse the MSIOF properties */
1034 	if (info->mode == MSIOF_SPI_HOST)
1035 		of_property_read_u32(np, "num-cs", &num_cs);
1036 	of_property_read_u32(np, "renesas,tx-fifo-size",
1037 					&info->tx_fifo_override);
1038 	of_property_read_u32(np, "renesas,rx-fifo-size",
1039 					&info->rx_fifo_override);
1040 	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1041 	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1042 
1043 	info->num_chipselect = num_cs;
1044 
1045 	return info;
1046 }
1047 #else
sh_msiof_spi_parse_dt(struct device * dev)1048 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1049 {
1050 	return NULL;
1051 }
1052 #endif
1053 
sh_msiof_request_dma_chan(struct device * dev,enum dma_transfer_direction dir,unsigned int id,dma_addr_t port_addr)1054 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1055 	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1056 {
1057 	dma_cap_mask_t mask;
1058 	struct dma_chan *chan;
1059 	struct dma_slave_config cfg;
1060 	int ret;
1061 
1062 	dma_cap_zero(mask);
1063 	dma_cap_set(DMA_SLAVE, mask);
1064 
1065 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1066 				(void *)(unsigned long)id, dev,
1067 				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1068 	if (!chan) {
1069 		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1070 		return NULL;
1071 	}
1072 
1073 	memset(&cfg, 0, sizeof(cfg));
1074 	cfg.direction = dir;
1075 	if (dir == DMA_MEM_TO_DEV) {
1076 		cfg.dst_addr = port_addr;
1077 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1078 	} else {
1079 		cfg.src_addr = port_addr;
1080 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1081 	}
1082 
1083 	ret = dmaengine_slave_config(chan, &cfg);
1084 	if (ret) {
1085 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1086 		dma_release_channel(chan);
1087 		return NULL;
1088 	}
1089 
1090 	return chan;
1091 }
1092 
sh_msiof_request_dma(struct sh_msiof_spi_priv * p)1093 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1094 {
1095 	struct platform_device *pdev = p->pdev;
1096 	struct device *dev = &pdev->dev;
1097 	const struct sh_msiof_spi_info *info = p->info;
1098 	unsigned int dma_tx_id, dma_rx_id;
1099 	const struct resource *res;
1100 	struct spi_controller *ctlr;
1101 	struct device *tx_dev, *rx_dev;
1102 
1103 	if (dev->of_node) {
1104 		/* In the OF case we will get the slave IDs from the DT */
1105 		dma_tx_id = 0;
1106 		dma_rx_id = 0;
1107 	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1108 		dma_tx_id = info->dma_tx_id;
1109 		dma_rx_id = info->dma_rx_id;
1110 	} else {
1111 		/* The driver assumes no error */
1112 		return 0;
1113 	}
1114 
1115 	/* The DMA engine uses the second register set, if present */
1116 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1117 	if (!res)
1118 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1119 
1120 	ctlr = p->ctlr;
1121 	ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1122 						 dma_tx_id, res->start + SITFDR);
1123 	if (!ctlr->dma_tx)
1124 		return -ENODEV;
1125 
1126 	ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1127 						 dma_rx_id, res->start + SIRFDR);
1128 	if (!ctlr->dma_rx)
1129 		goto free_tx_chan;
1130 
1131 	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1132 	if (!p->tx_dma_page)
1133 		goto free_rx_chan;
1134 
1135 	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1136 	if (!p->rx_dma_page)
1137 		goto free_tx_page;
1138 
1139 	tx_dev = ctlr->dma_tx->device->dev;
1140 	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1141 					DMA_TO_DEVICE);
1142 	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1143 		goto free_rx_page;
1144 
1145 	rx_dev = ctlr->dma_rx->device->dev;
1146 	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1147 					DMA_FROM_DEVICE);
1148 	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1149 		goto unmap_tx_page;
1150 
1151 	dev_info(dev, "DMA available");
1152 	return 0;
1153 
1154 unmap_tx_page:
1155 	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1156 free_rx_page:
1157 	free_page((unsigned long)p->rx_dma_page);
1158 free_tx_page:
1159 	free_page((unsigned long)p->tx_dma_page);
1160 free_rx_chan:
1161 	dma_release_channel(ctlr->dma_rx);
1162 free_tx_chan:
1163 	dma_release_channel(ctlr->dma_tx);
1164 	ctlr->dma_tx = NULL;
1165 	return -ENODEV;
1166 }
1167 
sh_msiof_release_dma(struct sh_msiof_spi_priv * p)1168 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1169 {
1170 	struct spi_controller *ctlr = p->ctlr;
1171 
1172 	if (!ctlr->dma_tx)
1173 		return;
1174 
1175 	dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1176 			 DMA_FROM_DEVICE);
1177 	dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1178 			 DMA_TO_DEVICE);
1179 	free_page((unsigned long)p->rx_dma_page);
1180 	free_page((unsigned long)p->tx_dma_page);
1181 	dma_release_channel(ctlr->dma_rx);
1182 	dma_release_channel(ctlr->dma_tx);
1183 }
1184 
sh_msiof_spi_probe(struct platform_device * pdev)1185 static int sh_msiof_spi_probe(struct platform_device *pdev)
1186 {
1187 	struct spi_controller *ctlr;
1188 	const struct sh_msiof_chipdata *chipdata;
1189 	struct sh_msiof_spi_info *info;
1190 	struct sh_msiof_spi_priv *p;
1191 	struct device *dev = &pdev->dev;
1192 	unsigned long clksrc;
1193 	int i;
1194 	int ret;
1195 
1196 	/* Check whether MSIOF is used as I2S mode or SPI mode by checking "port" node */
1197 	struct device_node *port __free(device_node) = of_graph_get_next_port(dev->of_node, NULL);
1198 	if (port) /* It was MSIOF-I2S */
1199 		return -ENODEV;
1200 
1201 	chipdata = of_device_get_match_data(dev);
1202 	if (chipdata) {
1203 		info = sh_msiof_spi_parse_dt(dev);
1204 	} else {
1205 		chipdata = (const void *)pdev->id_entry->driver_data;
1206 		info = dev_get_platdata(dev);
1207 	}
1208 
1209 	if (!info) {
1210 		dev_err(dev, "failed to obtain device info\n");
1211 		return -ENXIO;
1212 	}
1213 
1214 	if (chipdata->flags & SH_MSIOF_FLAG_FIXED_DTDL_200)
1215 		info->dtdl = 200;
1216 
1217 	if (info->mode == MSIOF_SPI_TARGET)
1218 		ctlr = spi_alloc_target(dev, sizeof(struct sh_msiof_spi_priv));
1219 	else
1220 		ctlr = spi_alloc_host(dev, sizeof(struct sh_msiof_spi_priv));
1221 	if (ctlr == NULL)
1222 		return -ENOMEM;
1223 
1224 	p = spi_controller_get_devdata(ctlr);
1225 
1226 	platform_set_drvdata(pdev, p);
1227 	p->ctlr = ctlr;
1228 	p->info = info;
1229 	p->min_div_pow = chipdata->min_div_pow;
1230 
1231 	init_completion(&p->done);
1232 	init_completion(&p->done_txdma);
1233 
1234 	p->clk = devm_clk_get(dev, NULL);
1235 	if (IS_ERR(p->clk)) {
1236 		dev_err(dev, "cannot get clock\n");
1237 		ret = PTR_ERR(p->clk);
1238 		goto err1;
1239 	}
1240 
1241 	i = platform_get_irq(pdev, 0);
1242 	if (i < 0) {
1243 		ret = i;
1244 		goto err1;
1245 	}
1246 
1247 	p->mapbase = devm_platform_ioremap_resource(pdev, 0);
1248 	if (IS_ERR(p->mapbase)) {
1249 		ret = PTR_ERR(p->mapbase);
1250 		goto err1;
1251 	}
1252 
1253 	ret = devm_request_irq(dev, i, sh_msiof_spi_irq, 0, dev_name(dev), p);
1254 	if (ret) {
1255 		dev_err(dev, "unable to request irq\n");
1256 		goto err1;
1257 	}
1258 
1259 	p->pdev = pdev;
1260 	pm_runtime_enable(dev);
1261 
1262 	/* Platform data may override FIFO sizes */
1263 	p->tx_fifo_size = chipdata->tx_fifo_size;
1264 	p->rx_fifo_size = chipdata->rx_fifo_size;
1265 	if (p->info->tx_fifo_override)
1266 		p->tx_fifo_size = p->info->tx_fifo_override;
1267 	if (p->info->rx_fifo_override)
1268 		p->rx_fifo_size = p->info->rx_fifo_override;
1269 
1270 	/* init controller code */
1271 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1272 	ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1273 	clksrc = clk_get_rate(p->clk);
1274 	ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
1275 	ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
1276 	ctlr->flags = chipdata->ctlr_flags;
1277 	ctlr->bus_num = pdev->id;
1278 	ctlr->num_chipselect = p->info->num_chipselect;
1279 	ctlr->dev.of_node = dev->of_node;
1280 	ctlr->setup = sh_msiof_spi_setup;
1281 	ctlr->prepare_message = sh_msiof_prepare_message;
1282 	ctlr->target_abort = sh_msiof_target_abort;
1283 	ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1284 	ctlr->auto_runtime_pm = true;
1285 	ctlr->transfer_one = sh_msiof_transfer_one;
1286 	ctlr->use_gpio_descriptors = true;
1287 	ctlr->max_native_cs = MAX_SS;
1288 
1289 	ret = sh_msiof_request_dma(p);
1290 	if (ret < 0)
1291 		dev_warn(dev, "DMA not available, using PIO\n");
1292 
1293 	ret = devm_spi_register_controller(dev, ctlr);
1294 	if (ret < 0) {
1295 		dev_err(dev, "devm_spi_register_controller error.\n");
1296 		goto err2;
1297 	}
1298 
1299 	return 0;
1300 
1301  err2:
1302 	sh_msiof_release_dma(p);
1303 	pm_runtime_disable(dev);
1304  err1:
1305 	spi_controller_put(ctlr);
1306 	return ret;
1307 }
1308 
sh_msiof_spi_remove(struct platform_device * pdev)1309 static void sh_msiof_spi_remove(struct platform_device *pdev)
1310 {
1311 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1312 
1313 	sh_msiof_release_dma(p);
1314 	pm_runtime_disable(&pdev->dev);
1315 }
1316 
1317 static const struct platform_device_id spi_driver_ids[] = {
1318 	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1319 	{},
1320 };
1321 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1322 
1323 #ifdef CONFIG_PM_SLEEP
sh_msiof_spi_suspend(struct device * dev)1324 static int sh_msiof_spi_suspend(struct device *dev)
1325 {
1326 	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1327 
1328 	return spi_controller_suspend(p->ctlr);
1329 }
1330 
sh_msiof_spi_resume(struct device * dev)1331 static int sh_msiof_spi_resume(struct device *dev)
1332 {
1333 	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1334 
1335 	return spi_controller_resume(p->ctlr);
1336 }
1337 
1338 static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1339 			 sh_msiof_spi_resume);
1340 #define DEV_PM_OPS	(&sh_msiof_spi_pm_ops)
1341 #else
1342 #define DEV_PM_OPS	NULL
1343 #endif /* CONFIG_PM_SLEEP */
1344 
1345 static struct platform_driver sh_msiof_spi_drv = {
1346 	.probe		= sh_msiof_spi_probe,
1347 	.remove		= sh_msiof_spi_remove,
1348 	.id_table	= spi_driver_ids,
1349 	.driver		= {
1350 		.name		= "spi_sh_msiof",
1351 		.pm		= DEV_PM_OPS,
1352 		.of_match_table = of_match_ptr(sh_msiof_match),
1353 	},
1354 };
1355 module_platform_driver(sh_msiof_spi_drv);
1356 
1357 MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1358 MODULE_AUTHOR("Magnus Damm");
1359 MODULE_LICENSE("GPL v2");
1360