xref: /linux/drivers/clocksource/sh_cmt.c (revision 70de5572a82b3d510df31d2c572c15cd53a00870)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/ioport.h>
18 #include <linux/irq.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
31 
32 struct sh_cmt_device;
33 
34 /*
35  * The CMT comes in 5 different identified flavours, depending not only on the
36  * SoC but also on the particular instance. The following table lists the main
37  * characteristics of those flavours.
38  *
39  *			16B	32B	32B-F	48B	R-Car Gen2
40  * -----------------------------------------------------------------------------
41  * Channels		2	1/4	1	6	2/8
42  * Control Width	16	16	16	16	32
43  * Counter Width	16	32	32	32/48	32/48
44  * Shared Start/Stop	Y	Y	Y	Y	N
45  *
46  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47  * located in the channel registers block. All other versions have a shared
48  * start/stop register located in the global space.
49  *
50  * Channels are indexed from 0 to N-1 in the documentation. The channel index
51  * infers the start/stop bit position in the control register and the channel
52  * registers block address. Some CMT instances have a subset of channels
53  * available, in which case the index in the documentation doesn't match the
54  * "real" index as implemented in hardware. This is for instance the case with
55  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56  * in the documentation but using start/stop bit 5 and having its registers
57  * block at 0x60.
58  *
59  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61  */
62 
63 enum sh_cmt_model {
64 	SH_CMT_16BIT,
65 	SH_CMT_32BIT,
66 	SH_CMT_48BIT,
67 	SH_CMT0_RCAR_GEN2,
68 	SH_CMT1_RCAR_GEN2,
69 };
70 
71 struct sh_cmt_info {
72 	enum sh_cmt_model model;
73 
74 	unsigned int channels_mask;
75 
76 	unsigned long width; /* 16 or 32 bit version of hardware block */
77 	u32 overflow_bit;
78 	u32 clear_bits;
79 
80 	/* callbacks for CMSTR and CMCSR access */
81 	u32 (*read_control)(void __iomem *base, unsigned long offs);
82 	void (*write_control)(void __iomem *base, unsigned long offs,
83 			      u32 value);
84 
85 	/* callbacks for CMCNT and CMCOR access */
86 	u32 (*read_count)(void __iomem *base, unsigned long offs);
87 	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88 };
89 
90 struct sh_cmt_channel {
91 	struct sh_cmt_device *cmt;
92 
93 	unsigned int index;	/* Index in the documentation */
94 	unsigned int hwidx;	/* Real hardware index */
95 
96 	void __iomem *iostart;
97 	void __iomem *ioctrl;
98 
99 	unsigned int timer_bit;
100 	unsigned long flags;
101 	u32 match_value;
102 	u32 next_match_value;
103 	u32 max_match_value;
104 	raw_spinlock_t lock;
105 	struct clock_event_device ced;
106 	struct clocksource cs;
107 	u64 total_cycles;
108 	bool cs_enabled;
109 };
110 
111 struct sh_cmt_device {
112 	struct platform_device *pdev;
113 
114 	const struct sh_cmt_info *info;
115 
116 	void __iomem *mapbase;
117 	struct clk *clk;
118 	unsigned long rate;
119 	unsigned int reg_delay;
120 
121 	raw_spinlock_t lock; /* Protect the shared start/stop register */
122 
123 	struct sh_cmt_channel *channels;
124 	unsigned int num_channels;
125 	unsigned int hw_channels;
126 
127 	bool has_clockevent;
128 	bool has_clocksource;
129 };
130 
131 #define SH_CMT16_CMCSR_CMF		(1 << 7)
132 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
133 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
134 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
135 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
136 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
137 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
138 
139 #define SH_CMT32_CMCSR_CMF		(1 << 15)
140 #define SH_CMT32_CMCSR_OVF		(1 << 14)
141 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
142 #define SH_CMT32_CMCSR_STTF		(1 << 12)
143 #define SH_CMT32_CMCSR_STPF		(1 << 11)
144 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
145 #define SH_CMT32_CMCSR_CMS		(1 << 9)
146 #define SH_CMT32_CMCSR_CMM		(1 << 8)
147 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
148 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
149 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
150 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
151 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
152 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
153 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
157 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
158 
sh_cmt_read16(void __iomem * base,unsigned long offs)159 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
160 {
161 	return ioread16(base + (offs << 1));
162 }
163 
sh_cmt_read32(void __iomem * base,unsigned long offs)164 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
165 {
166 	return ioread32(base + (offs << 2));
167 }
168 
sh_cmt_write16(void __iomem * base,unsigned long offs,u32 value)169 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
170 {
171 	iowrite16(value, base + (offs << 1));
172 }
173 
sh_cmt_write32(void __iomem * base,unsigned long offs,u32 value)174 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
175 {
176 	iowrite32(value, base + (offs << 2));
177 }
178 
179 static const struct sh_cmt_info sh_cmt_info[] = {
180 	[SH_CMT_16BIT] = {
181 		.model = SH_CMT_16BIT,
182 		.width = 16,
183 		.overflow_bit = SH_CMT16_CMCSR_CMF,
184 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
185 		.read_control = sh_cmt_read16,
186 		.write_control = sh_cmt_write16,
187 		.read_count = sh_cmt_read16,
188 		.write_count = sh_cmt_write16,
189 	},
190 	[SH_CMT_32BIT] = {
191 		.model = SH_CMT_32BIT,
192 		.width = 32,
193 		.overflow_bit = SH_CMT32_CMCSR_CMF,
194 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
195 		.read_control = sh_cmt_read16,
196 		.write_control = sh_cmt_write16,
197 		.read_count = sh_cmt_read32,
198 		.write_count = sh_cmt_write32,
199 	},
200 	[SH_CMT_48BIT] = {
201 		.model = SH_CMT_48BIT,
202 		.channels_mask = 0x3f,
203 		.width = 32,
204 		.overflow_bit = SH_CMT32_CMCSR_CMF,
205 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
206 		.read_control = sh_cmt_read32,
207 		.write_control = sh_cmt_write32,
208 		.read_count = sh_cmt_read32,
209 		.write_count = sh_cmt_write32,
210 	},
211 	[SH_CMT0_RCAR_GEN2] = {
212 		.model = SH_CMT0_RCAR_GEN2,
213 		.channels_mask = 0x60,
214 		.width = 32,
215 		.overflow_bit = SH_CMT32_CMCSR_CMF,
216 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
217 		.read_control = sh_cmt_read32,
218 		.write_control = sh_cmt_write32,
219 		.read_count = sh_cmt_read32,
220 		.write_count = sh_cmt_write32,
221 	},
222 	[SH_CMT1_RCAR_GEN2] = {
223 		.model = SH_CMT1_RCAR_GEN2,
224 		.channels_mask = 0xff,
225 		.width = 32,
226 		.overflow_bit = SH_CMT32_CMCSR_CMF,
227 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228 		.read_control = sh_cmt_read32,
229 		.write_control = sh_cmt_write32,
230 		.read_count = sh_cmt_read32,
231 		.write_count = sh_cmt_write32,
232 	},
233 };
234 
235 #define CMCSR 0 /* channel register */
236 #define CMCNT 1 /* channel register */
237 #define CMCOR 2 /* channel register */
238 
239 #define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
240 
sh_cmt_read_cmstr(struct sh_cmt_channel * ch)241 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
242 {
243 	if (ch->iostart)
244 		return ch->cmt->info->read_control(ch->iostart, 0);
245 	else
246 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
247 }
248 
sh_cmt_write_cmstr(struct sh_cmt_channel * ch,u32 value)249 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
250 {
251 	u32 old_value = sh_cmt_read_cmstr(ch);
252 
253 	if (value != old_value) {
254 		if (ch->iostart) {
255 			ch->cmt->info->write_control(ch->iostart, 0, value);
256 			udelay(ch->cmt->reg_delay);
257 		} else {
258 			ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
259 			udelay(ch->cmt->reg_delay);
260 		}
261 	}
262 }
263 
sh_cmt_read_cmcsr(struct sh_cmt_channel * ch)264 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
265 {
266 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
267 }
268 
sh_cmt_write_cmcsr(struct sh_cmt_channel * ch,u32 value)269 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
270 {
271 	u32 old_value = sh_cmt_read_cmcsr(ch);
272 
273 	if (value != old_value) {
274 		ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
275 		udelay(ch->cmt->reg_delay);
276 	}
277 }
278 
sh_cmt_read_cmcnt(struct sh_cmt_channel * ch)279 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
280 {
281 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
282 }
283 
sh_cmt_write_cmcnt(struct sh_cmt_channel * ch,u32 value)284 static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
285 {
286 	/* Tests showed that we need to wait 3 clocks here */
287 	unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
288 	u32 reg;
289 
290 	if (ch->cmt->info->model > SH_CMT_16BIT) {
291 		int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
292 						   !(reg & SH_CMT32_CMCSR_WRFLG),
293 						   1, cmcnt_delay, false, ch);
294 		if (ret < 0)
295 			return ret;
296 	}
297 
298 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
299 	udelay(cmcnt_delay);
300 	return 0;
301 }
302 
sh_cmt_write_cmcor(struct sh_cmt_channel * ch,u32 value)303 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
304 {
305 	u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
306 
307 	if (value != old_value) {
308 		ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
309 		udelay(ch->cmt->reg_delay);
310 	}
311 }
312 
sh_cmt_get_counter(struct sh_cmt_channel * ch,u32 * has_wrapped)313 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
314 {
315 	u32 v1, v2, v3;
316 	u32 o1, o2;
317 
318 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
319 
320 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
321 	do {
322 		o2 = o1;
323 		v1 = sh_cmt_read_cmcnt(ch);
324 		v2 = sh_cmt_read_cmcnt(ch);
325 		v3 = sh_cmt_read_cmcnt(ch);
326 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
327 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
328 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
329 
330 	*has_wrapped = o1;
331 	return v2;
332 }
333 
sh_cmt_start_stop_ch(struct sh_cmt_channel * ch,int start)334 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
335 {
336 	unsigned long flags;
337 	u32 value;
338 
339 	/* start stop register shared by multiple timer channels */
340 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
341 	value = sh_cmt_read_cmstr(ch);
342 
343 	if (start)
344 		value |= 1 << ch->timer_bit;
345 	else
346 		value &= ~(1 << ch->timer_bit);
347 
348 	sh_cmt_write_cmstr(ch, value);
349 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
350 }
351 
sh_cmt_enable(struct sh_cmt_channel * ch)352 static int sh_cmt_enable(struct sh_cmt_channel *ch)
353 {
354 	int ret;
355 
356 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
357 
358 	/* enable clock */
359 	ret = clk_enable(ch->cmt->clk);
360 	if (ret) {
361 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
362 			ch->index);
363 		goto err0;
364 	}
365 
366 	/* make sure channel is disabled */
367 	sh_cmt_start_stop_ch(ch, 0);
368 
369 	/* configure channel, periodic mode and maximum timeout */
370 	if (ch->cmt->info->width == 16) {
371 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
372 				   SH_CMT16_CMCSR_CKS512);
373 	} else {
374 		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
375 			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
376 		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
377 				   SH_CMT32_CMCSR_CMR_IRQ |
378 				   SH_CMT32_CMCSR_CKS_RCLK8);
379 	}
380 
381 	sh_cmt_write_cmcor(ch, 0xffffffff);
382 	ret = sh_cmt_write_cmcnt(ch, 0);
383 
384 	if (ret || sh_cmt_read_cmcnt(ch)) {
385 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
386 			ch->index);
387 		ret = -ETIMEDOUT;
388 		goto err1;
389 	}
390 
391 	/* enable channel */
392 	sh_cmt_start_stop_ch(ch, 1);
393 	return 0;
394  err1:
395 	/* stop clock */
396 	clk_disable(ch->cmt->clk);
397 
398  err0:
399 	return ret;
400 }
401 
sh_cmt_disable(struct sh_cmt_channel * ch)402 static void sh_cmt_disable(struct sh_cmt_channel *ch)
403 {
404 	/* disable channel */
405 	sh_cmt_start_stop_ch(ch, 0);
406 
407 	/* disable interrupts in CMT block */
408 	sh_cmt_write_cmcsr(ch, 0);
409 
410 	/* stop clock */
411 	clk_disable(ch->cmt->clk);
412 
413 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
414 }
415 
416 /* private flags */
417 #define FLAG_CLOCKEVENT (1 << 0)
418 #define FLAG_CLOCKSOURCE (1 << 1)
419 #define FLAG_REPROGRAM (1 << 2)
420 #define FLAG_SKIPEVENT (1 << 3)
421 #define FLAG_IRQCONTEXT (1 << 4)
422 
sh_cmt_clock_event_program_verify(struct sh_cmt_channel * ch,int absolute)423 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
424 					      int absolute)
425 {
426 	u32 value = ch->next_match_value;
427 	u32 new_match;
428 	u32 delay = 0;
429 	u32 now = 0;
430 	u32 has_wrapped;
431 
432 	now = sh_cmt_get_counter(ch, &has_wrapped);
433 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
434 
435 	if (has_wrapped) {
436 		/* we're competing with the interrupt handler.
437 		 *  -> let the interrupt handler reprogram the timer.
438 		 *  -> interrupt number two handles the event.
439 		 */
440 		ch->flags |= FLAG_SKIPEVENT;
441 		return;
442 	}
443 
444 	if (absolute)
445 		now = 0;
446 
447 	do {
448 		/* reprogram the timer hardware,
449 		 * but don't save the new match value yet.
450 		 */
451 		new_match = now + value + delay;
452 		if (new_match > ch->max_match_value)
453 			new_match = ch->max_match_value;
454 
455 		sh_cmt_write_cmcor(ch, new_match);
456 
457 		now = sh_cmt_get_counter(ch, &has_wrapped);
458 		if (has_wrapped && (new_match > ch->match_value)) {
459 			/* we are changing to a greater match value,
460 			 * so this wrap must be caused by the counter
461 			 * matching the old value.
462 			 * -> first interrupt reprograms the timer.
463 			 * -> interrupt number two handles the event.
464 			 */
465 			ch->flags |= FLAG_SKIPEVENT;
466 			break;
467 		}
468 
469 		if (has_wrapped) {
470 			/* we are changing to a smaller match value,
471 			 * so the wrap must be caused by the counter
472 			 * matching the new value.
473 			 * -> save programmed match value.
474 			 * -> let isr handle the event.
475 			 */
476 			ch->match_value = new_match;
477 			break;
478 		}
479 
480 		/* be safe: verify hardware settings */
481 		if (now < new_match) {
482 			/* timer value is below match value, all good.
483 			 * this makes sure we won't miss any match events.
484 			 * -> save programmed match value.
485 			 * -> let isr handle the event.
486 			 */
487 			ch->match_value = new_match;
488 			break;
489 		}
490 
491 		/* the counter has reached a value greater
492 		 * than our new match value. and since the
493 		 * has_wrapped flag isn't set we must have
494 		 * programmed a too close event.
495 		 * -> increase delay and retry.
496 		 */
497 		if (delay)
498 			delay <<= 1;
499 		else
500 			delay = 1;
501 
502 		if (!delay)
503 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
504 				 ch->index);
505 
506 	} while (delay);
507 }
508 
__sh_cmt_set_next(struct sh_cmt_channel * ch,unsigned long delta)509 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
510 {
511 	if (delta > ch->max_match_value)
512 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
513 			 ch->index);
514 
515 	ch->next_match_value = delta;
516 	sh_cmt_clock_event_program_verify(ch, 0);
517 }
518 
sh_cmt_set_next(struct sh_cmt_channel * ch,unsigned long delta)519 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
520 {
521 	unsigned long flags;
522 
523 	raw_spin_lock_irqsave(&ch->lock, flags);
524 	__sh_cmt_set_next(ch, delta);
525 	raw_spin_unlock_irqrestore(&ch->lock, flags);
526 }
527 
sh_cmt_interrupt(int irq,void * dev_id)528 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
529 {
530 	struct sh_cmt_channel *ch = dev_id;
531 	unsigned long flags;
532 
533 	/* clear flags */
534 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
535 			   ch->cmt->info->clear_bits);
536 
537 	/* update clock source counter to begin with if enabled
538 	 * the wrap flag should be cleared by the timer specific
539 	 * isr before we end up here.
540 	 */
541 	if (ch->flags & FLAG_CLOCKSOURCE)
542 		ch->total_cycles += ch->match_value + 1;
543 
544 	if (!(ch->flags & FLAG_REPROGRAM))
545 		ch->next_match_value = ch->max_match_value;
546 
547 	ch->flags |= FLAG_IRQCONTEXT;
548 
549 	if (ch->flags & FLAG_CLOCKEVENT) {
550 		if (!(ch->flags & FLAG_SKIPEVENT)) {
551 			if (clockevent_state_oneshot(&ch->ced)) {
552 				ch->next_match_value = ch->max_match_value;
553 				ch->flags |= FLAG_REPROGRAM;
554 			}
555 
556 			ch->ced.event_handler(&ch->ced);
557 		}
558 	}
559 
560 	ch->flags &= ~FLAG_SKIPEVENT;
561 
562 	raw_spin_lock_irqsave(&ch->lock, flags);
563 
564 	if (ch->flags & FLAG_REPROGRAM) {
565 		ch->flags &= ~FLAG_REPROGRAM;
566 		sh_cmt_clock_event_program_verify(ch, 1);
567 
568 		if (ch->flags & FLAG_CLOCKEVENT)
569 			if ((clockevent_state_shutdown(&ch->ced))
570 			    || (ch->match_value == ch->next_match_value))
571 				ch->flags &= ~FLAG_REPROGRAM;
572 	}
573 
574 	ch->flags &= ~FLAG_IRQCONTEXT;
575 
576 	raw_spin_unlock_irqrestore(&ch->lock, flags);
577 
578 	return IRQ_HANDLED;
579 }
580 
sh_cmt_start_clocksource(struct sh_cmt_channel * ch)581 static int sh_cmt_start_clocksource(struct sh_cmt_channel *ch)
582 {
583 	int ret = 0;
584 	unsigned long flags;
585 
586 	pm_runtime_get_sync(&ch->cmt->pdev->dev);
587 
588 	raw_spin_lock_irqsave(&ch->lock, flags);
589 
590 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
591 		ret = sh_cmt_enable(ch);
592 
593 	if (ret)
594 		goto out;
595 
596 	ch->flags |= FLAG_CLOCKSOURCE;
597 
598 	/* setup timeout if no clockevent */
599 	if (ch->cmt->num_channels == 1 && !(ch->flags & FLAG_CLOCKEVENT))
600 		__sh_cmt_set_next(ch, ch->max_match_value);
601 out:
602 	raw_spin_unlock_irqrestore(&ch->lock, flags);
603 
604 	return ret;
605 }
606 
sh_cmt_stop_clocksource(struct sh_cmt_channel * ch)607 static void sh_cmt_stop_clocksource(struct sh_cmt_channel *ch)
608 {
609 	unsigned long flags;
610 	unsigned long f;
611 
612 	raw_spin_lock_irqsave(&ch->lock, flags);
613 
614 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
615 
616 	ch->flags &= ~FLAG_CLOCKSOURCE;
617 
618 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
619 		sh_cmt_disable(ch);
620 
621 	raw_spin_unlock_irqrestore(&ch->lock, flags);
622 
623 	pm_runtime_put(&ch->cmt->pdev->dev);
624 }
625 
sh_cmt_start_clockevent(struct sh_cmt_channel * ch)626 static int sh_cmt_start_clockevent(struct sh_cmt_channel *ch)
627 {
628 	int ret = 0;
629 	unsigned long flags;
630 
631 	raw_spin_lock_irqsave(&ch->lock, flags);
632 
633 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
634 		pm_runtime_get_sync(&ch->cmt->pdev->dev);
635 		ret = sh_cmt_enable(ch);
636 	}
637 
638 	if (ret)
639 		goto out;
640 
641 	ch->flags |= FLAG_CLOCKEVENT;
642  out:
643 	raw_spin_unlock_irqrestore(&ch->lock, flags);
644 
645 	return ret;
646 }
647 
sh_cmt_stop_clockevent(struct sh_cmt_channel * ch)648 static void sh_cmt_stop_clockevent(struct sh_cmt_channel *ch)
649 {
650 	unsigned long flags;
651 	unsigned long f;
652 
653 	raw_spin_lock_irqsave(&ch->lock, flags);
654 
655 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
656 
657 	ch->flags &= ~FLAG_CLOCKEVENT;
658 
659 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
660 		sh_cmt_disable(ch);
661 		pm_runtime_put(&ch->cmt->pdev->dev);
662 	}
663 
664 	/* adjust the timeout to maximum if only clocksource left */
665 	if (ch->flags & FLAG_CLOCKSOURCE)
666 		__sh_cmt_set_next(ch, ch->max_match_value);
667 
668 	raw_spin_unlock_irqrestore(&ch->lock, flags);
669 }
670 
cs_to_sh_cmt(struct clocksource * cs)671 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
672 {
673 	return container_of(cs, struct sh_cmt_channel, cs);
674 }
675 
sh_cmt_clocksource_read(struct clocksource * cs)676 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
677 {
678 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
679 	u32 has_wrapped;
680 
681 	if (ch->cmt->num_channels == 1) {
682 		unsigned long flags;
683 		u64 value;
684 		u32 raw;
685 
686 		raw_spin_lock_irqsave(&ch->lock, flags);
687 		value = ch->total_cycles;
688 		raw = sh_cmt_get_counter(ch, &has_wrapped);
689 
690 		if (unlikely(has_wrapped))
691 			raw += ch->match_value + 1;
692 		raw_spin_unlock_irqrestore(&ch->lock, flags);
693 
694 		return value + raw;
695 	}
696 
697 	return sh_cmt_get_counter(ch, &has_wrapped);
698 }
699 
sh_cmt_clocksource_enable(struct clocksource * cs)700 static int sh_cmt_clocksource_enable(struct clocksource *cs)
701 {
702 	int ret;
703 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
704 
705 	WARN_ON(ch->cs_enabled);
706 
707 	ch->total_cycles = 0;
708 
709 	ret = sh_cmt_start_clocksource(ch);
710 	if (!ret)
711 		ch->cs_enabled = true;
712 
713 	return ret;
714 }
715 
sh_cmt_clocksource_disable(struct clocksource * cs)716 static void sh_cmt_clocksource_disable(struct clocksource *cs)
717 {
718 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
719 
720 	WARN_ON(!ch->cs_enabled);
721 
722 	sh_cmt_stop_clocksource(ch);
723 	ch->cs_enabled = false;
724 }
725 
sh_cmt_clocksource_suspend(struct clocksource * cs)726 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
727 {
728 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
729 
730 	if (!ch->cs_enabled)
731 		return;
732 
733 	sh_cmt_stop_clocksource(ch);
734 	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
735 }
736 
sh_cmt_clocksource_resume(struct clocksource * cs)737 static void sh_cmt_clocksource_resume(struct clocksource *cs)
738 {
739 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
740 
741 	if (!ch->cs_enabled)
742 		return;
743 
744 	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
745 	sh_cmt_start_clocksource(ch);
746 }
747 
sh_cmt_register_clocksource(struct sh_cmt_channel * ch,const char * name)748 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
749 				       const char *name)
750 {
751 	struct clocksource *cs = &ch->cs;
752 
753 	cs->name = name;
754 	cs->rating = 125;
755 	cs->read = sh_cmt_clocksource_read;
756 	cs->enable = sh_cmt_clocksource_enable;
757 	cs->disable = sh_cmt_clocksource_disable;
758 	cs->suspend = sh_cmt_clocksource_suspend;
759 	cs->resume = sh_cmt_clocksource_resume;
760 	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
761 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
762 
763 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
764 		 ch->index);
765 
766 	clocksource_register_hz(cs, ch->cmt->rate);
767 	return 0;
768 }
769 
ced_to_sh_cmt(struct clock_event_device * ced)770 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
771 {
772 	return container_of(ced, struct sh_cmt_channel, ced);
773 }
774 
sh_cmt_clock_event_start(struct sh_cmt_channel * ch,int periodic)775 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
776 {
777 	sh_cmt_start_clockevent(ch);
778 
779 	if (periodic)
780 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
781 	else
782 		sh_cmt_set_next(ch, ch->max_match_value);
783 }
784 
sh_cmt_clock_event_shutdown(struct clock_event_device * ced)785 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
786 {
787 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
788 
789 	sh_cmt_stop_clockevent(ch);
790 	return 0;
791 }
792 
sh_cmt_clock_event_set_state(struct clock_event_device * ced,int periodic)793 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
794 					int periodic)
795 {
796 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
797 
798 	/* deal with old setting first */
799 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
800 		sh_cmt_stop_clockevent(ch);
801 
802 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
803 		 ch->index, periodic ? "periodic" : "oneshot");
804 	sh_cmt_clock_event_start(ch, periodic);
805 	return 0;
806 }
807 
sh_cmt_clock_event_set_oneshot(struct clock_event_device * ced)808 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
809 {
810 	return sh_cmt_clock_event_set_state(ced, 0);
811 }
812 
sh_cmt_clock_event_set_periodic(struct clock_event_device * ced)813 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
814 {
815 	return sh_cmt_clock_event_set_state(ced, 1);
816 }
817 
sh_cmt_clock_event_next(unsigned long delta,struct clock_event_device * ced)818 static int sh_cmt_clock_event_next(unsigned long delta,
819 				   struct clock_event_device *ced)
820 {
821 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
822 	unsigned long flags;
823 
824 	BUG_ON(!clockevent_state_oneshot(ced));
825 
826 	raw_spin_lock_irqsave(&ch->lock, flags);
827 
828 	if (likely(ch->flags & FLAG_IRQCONTEXT))
829 		ch->next_match_value = delta - 1;
830 	else
831 		__sh_cmt_set_next(ch, delta - 1);
832 
833 	raw_spin_unlock_irqrestore(&ch->lock, flags);
834 
835 	return 0;
836 }
837 
sh_cmt_clock_event_suspend(struct clock_event_device * ced)838 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
839 {
840 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
841 
842 	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
843 	clk_unprepare(ch->cmt->clk);
844 }
845 
sh_cmt_clock_event_resume(struct clock_event_device * ced)846 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
847 {
848 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
849 
850 	clk_prepare(ch->cmt->clk);
851 	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
852 }
853 
sh_cmt_register_clockevent(struct sh_cmt_channel * ch,const char * name)854 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
855 				      const char *name)
856 {
857 	struct clock_event_device *ced = &ch->ced;
858 	int irq;
859 	int ret;
860 
861 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
862 	if (irq < 0)
863 		return irq;
864 
865 	ret = request_irq(irq, sh_cmt_interrupt,
866 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
867 			  dev_name(&ch->cmt->pdev->dev), ch);
868 	if (ret) {
869 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
870 			ch->index, irq);
871 		return ret;
872 	}
873 
874 	ced->name = name;
875 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
876 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
877 	ced->rating = 125;
878 	ced->cpumask = cpu_possible_mask;
879 	ced->set_next_event = sh_cmt_clock_event_next;
880 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
881 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
882 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
883 	ced->suspend = sh_cmt_clock_event_suspend;
884 	ced->resume = sh_cmt_clock_event_resume;
885 
886 	/* TODO: calculate good shift from rate and counter bit width */
887 	ced->shift = 32;
888 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
889 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
890 	ced->max_delta_ticks = ch->max_match_value;
891 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
892 	ced->min_delta_ticks = 0x1f;
893 
894 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
895 		 ch->index);
896 	clockevents_register_device(ced);
897 
898 	return 0;
899 }
900 
sh_cmt_register(struct sh_cmt_channel * ch,const char * name,bool clockevent,bool clocksource)901 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
902 			   bool clockevent, bool clocksource)
903 {
904 	int ret;
905 
906 	if (clockevent) {
907 		ch->cmt->has_clockevent = true;
908 		ret = sh_cmt_register_clockevent(ch, name);
909 		if (ret < 0)
910 			return ret;
911 	}
912 
913 	if (clocksource) {
914 		ch->cmt->has_clocksource = true;
915 		sh_cmt_register_clocksource(ch, name);
916 	}
917 
918 	return 0;
919 }
920 
sh_cmt_setup_channel(struct sh_cmt_channel * ch,unsigned int index,unsigned int hwidx,bool clockevent,bool clocksource,struct sh_cmt_device * cmt)921 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
922 				unsigned int hwidx, bool clockevent,
923 				bool clocksource, struct sh_cmt_device *cmt)
924 {
925 	u32 value;
926 	int ret;
927 
928 	/* Skip unused channels. */
929 	if (!clockevent && !clocksource)
930 		return 0;
931 
932 	ch->cmt = cmt;
933 	ch->index = index;
934 	ch->hwidx = hwidx;
935 	ch->timer_bit = hwidx;
936 
937 	/*
938 	 * Compute the address of the channel control register block. For the
939 	 * timers with a per-channel start/stop register, compute its address
940 	 * as well.
941 	 */
942 	switch (cmt->info->model) {
943 	case SH_CMT_16BIT:
944 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
945 		break;
946 	case SH_CMT_32BIT:
947 	case SH_CMT_48BIT:
948 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
949 		break;
950 	case SH_CMT0_RCAR_GEN2:
951 	case SH_CMT1_RCAR_GEN2:
952 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
953 		ch->ioctrl = ch->iostart + 0x10;
954 		ch->timer_bit = 0;
955 
956 		/* Enable the clock supply to the channel */
957 		value = ioread32(cmt->mapbase + CMCLKE);
958 		value |= BIT(hwidx);
959 		iowrite32(value, cmt->mapbase + CMCLKE);
960 		break;
961 	}
962 
963 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
964 		ch->max_match_value = ~0;
965 	else
966 		ch->max_match_value = (1 << cmt->info->width) - 1;
967 
968 	ch->match_value = ch->max_match_value;
969 	raw_spin_lock_init(&ch->lock);
970 
971 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
972 			      clockevent, clocksource);
973 	if (ret) {
974 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
975 			ch->index);
976 		return ret;
977 	}
978 	ch->cs_enabled = false;
979 
980 	return 0;
981 }
982 
sh_cmt_map_memory(struct sh_cmt_device * cmt)983 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
984 {
985 	struct resource *mem;
986 
987 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
988 	if (!mem) {
989 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
990 		return -ENXIO;
991 	}
992 
993 	cmt->mapbase = ioremap(mem->start, resource_size(mem));
994 	if (cmt->mapbase == NULL) {
995 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
996 		return -ENXIO;
997 	}
998 
999 	return 0;
1000 }
1001 
1002 static const struct platform_device_id sh_cmt_id_table[] = {
1003 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
1004 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
1005 	{ }
1006 };
1007 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
1008 
1009 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
1010 	{
1011 		/* deprecated, preserved for backward compatibility */
1012 		.compatible = "renesas,cmt-48",
1013 		.data = &sh_cmt_info[SH_CMT_48BIT]
1014 	},
1015 	{
1016 		/* deprecated, preserved for backward compatibility */
1017 		.compatible = "renesas,cmt-48-gen2",
1018 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1019 	},
1020 	{
1021 		.compatible = "renesas,r8a7740-cmt1",
1022 		.data = &sh_cmt_info[SH_CMT_48BIT]
1023 	},
1024 	{
1025 		.compatible = "renesas,sh73a0-cmt1",
1026 		.data = &sh_cmt_info[SH_CMT_48BIT]
1027 	},
1028 	{
1029 		.compatible = "renesas,rcar-gen2-cmt0",
1030 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1031 	},
1032 	{
1033 		.compatible = "renesas,rcar-gen2-cmt1",
1034 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1035 	},
1036 	{
1037 		.compatible = "renesas,rcar-gen3-cmt0",
1038 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1039 	},
1040 	{
1041 		.compatible = "renesas,rcar-gen3-cmt1",
1042 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1043 	},
1044 	{
1045 		.compatible = "renesas,rcar-gen4-cmt0",
1046 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1047 	},
1048 	{
1049 		.compatible = "renesas,rcar-gen4-cmt1",
1050 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1051 	},
1052 	{ }
1053 };
1054 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1055 
sh_cmt_setup(struct sh_cmt_device * cmt,struct platform_device * pdev)1056 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1057 {
1058 	unsigned int mask, i;
1059 	unsigned long rate;
1060 	int ret;
1061 
1062 	cmt->pdev = pdev;
1063 	raw_spin_lock_init(&cmt->lock);
1064 
1065 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1066 		cmt->info = of_device_get_match_data(&pdev->dev);
1067 		cmt->hw_channels = cmt->info->channels_mask;
1068 	} else if (pdev->dev.platform_data) {
1069 		struct sh_timer_config *cfg = pdev->dev.platform_data;
1070 		const struct platform_device_id *id = pdev->id_entry;
1071 
1072 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1073 		cmt->hw_channels = cfg->channels_mask;
1074 	} else {
1075 		dev_err(&cmt->pdev->dev, "missing platform data\n");
1076 		return -ENXIO;
1077 	}
1078 
1079 	/* Get hold of clock. */
1080 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1081 	if (IS_ERR(cmt->clk)) {
1082 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1083 		return PTR_ERR(cmt->clk);
1084 	}
1085 
1086 	ret = clk_prepare(cmt->clk);
1087 	if (ret < 0)
1088 		goto err_clk_put;
1089 
1090 	/* Determine clock rate. */
1091 	ret = clk_enable(cmt->clk);
1092 	if (ret < 0)
1093 		goto err_clk_unprepare;
1094 
1095 	rate = clk_get_rate(cmt->clk);
1096 	if (!rate) {
1097 		ret = -EINVAL;
1098 		goto err_clk_disable;
1099 	}
1100 
1101 	/* We shall wait 2 input clks after register writes */
1102 	if (cmt->info->model >= SH_CMT_48BIT)
1103 		cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1104 	cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1105 
1106 	/* Map the memory resource(s). */
1107 	ret = sh_cmt_map_memory(cmt);
1108 	if (ret < 0)
1109 		goto err_clk_disable;
1110 
1111 	/* Allocate and setup the channels. */
1112 	cmt->num_channels = hweight8(cmt->hw_channels);
1113 	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1114 				GFP_KERNEL);
1115 	if (cmt->channels == NULL) {
1116 		ret = -ENOMEM;
1117 		goto err_unmap;
1118 	}
1119 
1120 	/*
1121 	 * Use the first channel as a clock event device and the second channel
1122 	 * as a clock source. If only one channel is available use it for both.
1123 	 */
1124 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1125 		unsigned int hwidx = ffs(mask) - 1;
1126 		bool clocksource = i == 1 || cmt->num_channels == 1;
1127 		bool clockevent = i == 0;
1128 
1129 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1130 					   clockevent, clocksource, cmt);
1131 		if (ret < 0)
1132 			goto err_unmap;
1133 
1134 		mask &= ~(1 << hwidx);
1135 	}
1136 
1137 	clk_disable(cmt->clk);
1138 
1139 	platform_set_drvdata(pdev, cmt);
1140 
1141 	return 0;
1142 
1143 err_unmap:
1144 	kfree(cmt->channels);
1145 	iounmap(cmt->mapbase);
1146 err_clk_disable:
1147 	clk_disable(cmt->clk);
1148 err_clk_unprepare:
1149 	clk_unprepare(cmt->clk);
1150 err_clk_put:
1151 	clk_put(cmt->clk);
1152 	return ret;
1153 }
1154 
sh_cmt_probe(struct platform_device * pdev)1155 static int sh_cmt_probe(struct platform_device *pdev)
1156 {
1157 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1158 	int ret;
1159 
1160 	if (!is_sh_early_platform_device(pdev)) {
1161 		pm_runtime_set_active(&pdev->dev);
1162 		pm_runtime_enable(&pdev->dev);
1163 	}
1164 
1165 	if (cmt) {
1166 		dev_info(&pdev->dev, "kept as earlytimer\n");
1167 		goto out;
1168 	}
1169 
1170 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1171 	if (cmt == NULL)
1172 		return -ENOMEM;
1173 
1174 	ret = sh_cmt_setup(cmt, pdev);
1175 	if (ret) {
1176 		kfree(cmt);
1177 		pm_runtime_idle(&pdev->dev);
1178 		return ret;
1179 	}
1180 	if (is_sh_early_platform_device(pdev))
1181 		return 0;
1182 
1183  out:
1184 	if (cmt->has_clockevent || cmt->has_clocksource)
1185 		pm_runtime_irq_safe(&pdev->dev);
1186 	else
1187 		pm_runtime_idle(&pdev->dev);
1188 
1189 	return 0;
1190 }
1191 
1192 static struct platform_driver sh_cmt_device_driver = {
1193 	.probe		= sh_cmt_probe,
1194 	.driver		= {
1195 		.name	= "sh_cmt",
1196 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1197 		.suppress_bind_attrs = true,
1198 	},
1199 	.id_table	= sh_cmt_id_table,
1200 };
1201 
sh_cmt_init(void)1202 static int __init sh_cmt_init(void)
1203 {
1204 	return platform_driver_register(&sh_cmt_device_driver);
1205 }
1206 
sh_cmt_exit(void)1207 static void __exit sh_cmt_exit(void)
1208 {
1209 	platform_driver_unregister(&sh_cmt_device_driver);
1210 }
1211 
1212 #ifdef CONFIG_SUPERH
1213 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1214 #endif
1215 
1216 subsys_initcall(sh_cmt_init);
1217 module_exit(sh_cmt_exit);
1218 
1219 MODULE_AUTHOR("Magnus Damm");
1220 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1221