1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2008 Yahoo!, Inc.
5 * All rights reserved.
6 * Written by: John Baldwin <jhb@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/bio.h>
36 #include <sys/malloc.h>
37 #include <sys/mbuf.h>
38 #include <sys/proc.h>
39 #include <sys/sglist.h>
40 #include <sys/uio.h>
41
42 #include <vm/vm.h>
43 #include <vm/vm_page.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_map.h>
46
47 #include <sys/ktr.h>
48
49 static MALLOC_DEFINE(M_SGLIST, "sglist", "scatter/gather lists");
50
51 /*
52 * Convenience macros to save the state of an sglist so it can be restored
53 * if an append attempt fails. Since sglist's only grow we only need to
54 * save the current count of segments and the length of the ending segment.
55 * Earlier segments will not be changed by an append, and the only change
56 * that can occur to the ending segment is that it can be extended.
57 */
58 struct sgsave {
59 u_short sg_nseg;
60 size_t ss_len;
61 };
62
63 #define SGLIST_SAVE(sg, sgsave) do { \
64 (sgsave).sg_nseg = (sg)->sg_nseg; \
65 if ((sgsave).sg_nseg > 0) \
66 (sgsave).ss_len = (sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len; \
67 else \
68 (sgsave).ss_len = 0; \
69 } while (0)
70
71 #define SGLIST_RESTORE(sg, sgsave) do { \
72 (sg)->sg_nseg = (sgsave).sg_nseg; \
73 if ((sgsave).sg_nseg > 0) \
74 (sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len = (sgsave).ss_len; \
75 } while (0)
76
77 /*
78 * Append a single (paddr, len) to a sglist. sg is the list and ss is
79 * the current segment in the list. If we run out of segments then
80 * EFBIG will be returned.
81 */
82 static __inline int
_sglist_append_range(struct sglist * sg,struct sglist_seg ** ssp,vm_paddr_t paddr,size_t len)83 _sglist_append_range(struct sglist *sg, struct sglist_seg **ssp,
84 vm_paddr_t paddr, size_t len)
85 {
86 struct sglist_seg *ss;
87
88 ss = *ssp;
89 if (ss->ss_paddr + ss->ss_len == paddr)
90 ss->ss_len += len;
91 else {
92 if (sg->sg_nseg == sg->sg_maxseg)
93 return (EFBIG);
94 ss++;
95 ss->ss_paddr = paddr;
96 ss->ss_len = len;
97 sg->sg_nseg++;
98 *ssp = ss;
99 }
100 return (0);
101 }
102
103 /*
104 * Worker routine to append a virtual address range (either kernel or
105 * user) to a scatter/gather list.
106 */
107 static __inline int
_sglist_append_buf(struct sglist * sg,void * buf,size_t len,pmap_t pmap,size_t * donep)108 _sglist_append_buf(struct sglist *sg, void *buf, size_t len, pmap_t pmap,
109 size_t *donep)
110 {
111 struct sglist_seg *ss;
112 vm_offset_t vaddr, offset;
113 vm_paddr_t paddr;
114 size_t seglen;
115 int error;
116
117 if (donep)
118 *donep = 0;
119 if (len == 0)
120 return (0);
121
122 /* Do the first page. It may have an offset. */
123 vaddr = (vm_offset_t)buf;
124 offset = vaddr & PAGE_MASK;
125 if (pmap != NULL)
126 paddr = pmap_extract(pmap, vaddr);
127 else
128 paddr = pmap_kextract(vaddr);
129 seglen = MIN(len, PAGE_SIZE - offset);
130 if (sg->sg_nseg == 0) {
131 ss = sg->sg_segs;
132 ss->ss_paddr = paddr;
133 ss->ss_len = seglen;
134 sg->sg_nseg = 1;
135 } else {
136 ss = &sg->sg_segs[sg->sg_nseg - 1];
137 error = _sglist_append_range(sg, &ss, paddr, seglen);
138 if (error)
139 return (error);
140 }
141 vaddr += seglen;
142 len -= seglen;
143 if (donep)
144 *donep += seglen;
145
146 while (len > 0) {
147 seglen = MIN(len, PAGE_SIZE);
148 if (pmap != NULL)
149 paddr = pmap_extract(pmap, vaddr);
150 else
151 paddr = pmap_kextract(vaddr);
152 error = _sglist_append_range(sg, &ss, paddr, seglen);
153 if (error)
154 return (error);
155 vaddr += seglen;
156 len -= seglen;
157 if (donep)
158 *donep += seglen;
159 }
160
161 return (0);
162 }
163
164 /*
165 * Determine the number of scatter/gather list elements needed to
166 * describe a kernel virtual address range.
167 */
168 int
sglist_count(void * buf,size_t len)169 sglist_count(void *buf, size_t len)
170 {
171 vm_offset_t vaddr, vendaddr;
172 vm_paddr_t lastaddr, paddr;
173 int nsegs;
174
175 if (len == 0)
176 return (0);
177
178 vaddr = trunc_page((vm_offset_t)buf);
179 vendaddr = (vm_offset_t)buf + len;
180 nsegs = 1;
181 lastaddr = pmap_kextract(vaddr);
182 vaddr += PAGE_SIZE;
183 while (vaddr < vendaddr) {
184 paddr = pmap_kextract(vaddr);
185 if (lastaddr + PAGE_SIZE != paddr)
186 nsegs++;
187 lastaddr = paddr;
188 vaddr += PAGE_SIZE;
189 }
190 return (nsegs);
191 }
192
193 /*
194 * Determine the number of scatter/gather list elements needed to
195 * describe a buffer backed by an array of VM pages.
196 */
197 int
sglist_count_vmpages(vm_page_t * m,size_t pgoff,size_t len)198 sglist_count_vmpages(vm_page_t *m, size_t pgoff, size_t len)
199 {
200 vm_paddr_t lastaddr, paddr;
201 int i, nsegs;
202
203 if (len == 0)
204 return (0);
205
206 len += pgoff;
207 nsegs = 1;
208 lastaddr = VM_PAGE_TO_PHYS(m[0]);
209 for (i = 1; len > PAGE_SIZE; len -= PAGE_SIZE, i++) {
210 paddr = VM_PAGE_TO_PHYS(m[i]);
211 if (lastaddr + PAGE_SIZE != paddr)
212 nsegs++;
213 lastaddr = paddr;
214 }
215 return (nsegs);
216 }
217
218 /*
219 * Determine the number of scatter/gather list elements needed to
220 * describe an M_EXTPG mbuf.
221 */
222 int
sglist_count_mbuf_epg(struct mbuf * m,size_t off,size_t len)223 sglist_count_mbuf_epg(struct mbuf *m, size_t off, size_t len)
224 {
225 vm_paddr_t nextaddr, paddr;
226 size_t seglen, segoff;
227 int i, nsegs, pglen, pgoff;
228
229 if (len == 0)
230 return (0);
231
232 nsegs = 0;
233 if (m->m_epg_hdrlen != 0) {
234 if (off >= m->m_epg_hdrlen) {
235 off -= m->m_epg_hdrlen;
236 } else {
237 seglen = m->m_epg_hdrlen - off;
238 segoff = off;
239 seglen = MIN(seglen, len);
240 off = 0;
241 len -= seglen;
242 nsegs += sglist_count(&m->m_epg_hdr[segoff],
243 seglen);
244 }
245 }
246 nextaddr = 0;
247 pgoff = m->m_epg_1st_off;
248 for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
249 pglen = m_epg_pagelen(m, i, pgoff);
250 if (off >= pglen) {
251 off -= pglen;
252 pgoff = 0;
253 continue;
254 }
255 seglen = pglen - off;
256 segoff = pgoff + off;
257 off = 0;
258 seglen = MIN(seglen, len);
259 len -= seglen;
260 paddr = m->m_epg_pa[i] + segoff;
261 if (paddr != nextaddr)
262 nsegs++;
263 nextaddr = paddr + seglen;
264 pgoff = 0;
265 };
266 if (len != 0) {
267 seglen = MIN(len, m->m_epg_trllen - off);
268 len -= seglen;
269 nsegs += sglist_count(&m->m_epg_trail[off], seglen);
270 }
271 KASSERT(len == 0, ("len != 0"));
272 return (nsegs);
273 }
274
275 /*
276 * Allocate a scatter/gather list along with 'nsegs' segments. The
277 * 'mflags' parameters are the same as passed to malloc(9). The caller
278 * should use sglist_free() to free this list.
279 */
280 struct sglist *
sglist_alloc(int nsegs,int mflags)281 sglist_alloc(int nsegs, int mflags)
282 {
283 struct sglist *sg;
284
285 sg = malloc(sizeof(struct sglist) + nsegs * sizeof(struct sglist_seg),
286 M_SGLIST, mflags);
287 if (sg == NULL)
288 return (NULL);
289 sglist_init(sg, nsegs, (struct sglist_seg *)(sg + 1));
290 return (sg);
291 }
292
293 /*
294 * Free a scatter/gather list allocated via sglist_allc().
295 */
296 void
sglist_free(struct sglist * sg)297 sglist_free(struct sglist *sg)
298 {
299
300 if (sg == NULL)
301 return;
302
303 if (refcount_release(&sg->sg_refs))
304 free(sg, M_SGLIST);
305 }
306
307 /*
308 * Append the segments to describe a single kernel virtual address
309 * range to a scatter/gather list. If there are insufficient
310 * segments, then this fails with EFBIG.
311 */
312 int
sglist_append(struct sglist * sg,void * buf,size_t len)313 sglist_append(struct sglist *sg, void *buf, size_t len)
314 {
315 struct sgsave save;
316 int error;
317
318 if (sg->sg_maxseg == 0)
319 return (EINVAL);
320 SGLIST_SAVE(sg, save);
321 error = _sglist_append_buf(sg, buf, len, NULL, NULL);
322 if (error)
323 SGLIST_RESTORE(sg, save);
324 return (error);
325 }
326
327 /*
328 * Append the segments to describe a bio's data to a scatter/gather list.
329 * If there are insufficient segments, then this fails with EFBIG.
330 *
331 * NOTE: This function expects bio_bcount to be initialized.
332 */
333 int
sglist_append_bio(struct sglist * sg,struct bio * bp)334 sglist_append_bio(struct sglist *sg, struct bio *bp)
335 {
336 int error;
337
338 if ((bp->bio_flags & BIO_UNMAPPED) == 0)
339 error = sglist_append(sg, bp->bio_data, bp->bio_bcount);
340 else
341 error = sglist_append_vmpages(sg, bp->bio_ma,
342 bp->bio_ma_offset, bp->bio_bcount);
343 return (error);
344 }
345
346 /*
347 * Append a single physical address range to a scatter/gather list.
348 * If there are insufficient segments, then this fails with EFBIG.
349 */
350 int
sglist_append_phys(struct sglist * sg,vm_paddr_t paddr,size_t len)351 sglist_append_phys(struct sglist *sg, vm_paddr_t paddr, size_t len)
352 {
353 struct sglist_seg *ss;
354 struct sgsave save;
355 int error;
356
357 if (sg->sg_maxseg == 0)
358 return (EINVAL);
359 if (len == 0)
360 return (0);
361
362 if (sg->sg_nseg == 0) {
363 sg->sg_segs[0].ss_paddr = paddr;
364 sg->sg_segs[0].ss_len = len;
365 sg->sg_nseg = 1;
366 return (0);
367 }
368 ss = &sg->sg_segs[sg->sg_nseg - 1];
369 SGLIST_SAVE(sg, save);
370 error = _sglist_append_range(sg, &ss, paddr, len);
371 if (error)
372 SGLIST_RESTORE(sg, save);
373 return (error);
374 }
375
376 /*
377 * Append the segments of single multi-page mbuf.
378 * If there are insufficient segments, then this fails with EFBIG.
379 */
380 int
sglist_append_mbuf_epg(struct sglist * sg,struct mbuf * m,size_t off,size_t len)381 sglist_append_mbuf_epg(struct sglist *sg, struct mbuf *m, size_t off,
382 size_t len)
383 {
384 size_t seglen, segoff;
385 vm_paddr_t paddr;
386 int error, i, pglen, pgoff;
387
388 M_ASSERTEXTPG(m);
389
390 error = 0;
391 if (m->m_epg_hdrlen != 0) {
392 if (off >= m->m_epg_hdrlen) {
393 off -= m->m_epg_hdrlen;
394 } else {
395 seglen = m->m_epg_hdrlen - off;
396 segoff = off;
397 seglen = MIN(seglen, len);
398 off = 0;
399 len -= seglen;
400 error = sglist_append(sg,
401 &m->m_epg_hdr[segoff], seglen);
402 }
403 }
404 pgoff = m->m_epg_1st_off;
405 for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
406 pglen = m_epg_pagelen(m, i, pgoff);
407 if (off >= pglen) {
408 off -= pglen;
409 pgoff = 0;
410 continue;
411 }
412 seglen = pglen - off;
413 segoff = pgoff + off;
414 off = 0;
415 seglen = MIN(seglen, len);
416 len -= seglen;
417 paddr = m->m_epg_pa[i] + segoff;
418 error = sglist_append_phys(sg, paddr, seglen);
419 pgoff = 0;
420 };
421 if (error == 0 && len > 0) {
422 seglen = MIN(len, m->m_epg_trllen - off);
423 len -= seglen;
424 error = sglist_append(sg,
425 &m->m_epg_trail[off], seglen);
426 }
427 if (error == 0)
428 KASSERT(len == 0, ("len != 0"));
429 return (error);
430 }
431
432 /*
433 * Append the segments that describe a single mbuf chain to a
434 * scatter/gather list. If there are insufficient segments, then this
435 * fails with EFBIG.
436 */
437 int
sglist_append_mbuf(struct sglist * sg,struct mbuf * m0)438 sglist_append_mbuf(struct sglist *sg, struct mbuf *m0)
439 {
440 struct sgsave save;
441 struct mbuf *m;
442 int error;
443
444 if (sg->sg_maxseg == 0)
445 return (EINVAL);
446
447 error = 0;
448 SGLIST_SAVE(sg, save);
449 for (m = m0; m != NULL; m = m->m_next) {
450 if (m->m_len > 0) {
451 if ((m->m_flags & M_EXTPG) != 0)
452 error = sglist_append_mbuf_epg(sg, m,
453 mtod(m, vm_offset_t), m->m_len);
454 else
455 error = sglist_append(sg, m->m_data,
456 m->m_len);
457 if (error) {
458 SGLIST_RESTORE(sg, save);
459 return (error);
460 }
461 }
462 }
463 return (0);
464 }
465
466 /*
467 * Append the segments that describe a single mbuf to a scatter/gather
468 * list. If there are insufficient segments, then this fails with
469 * EFBIG.
470 */
471 int
sglist_append_single_mbuf(struct sglist * sg,struct mbuf * m)472 sglist_append_single_mbuf(struct sglist *sg, struct mbuf *m)
473 {
474 if ((m->m_flags & M_EXTPG) != 0)
475 return (sglist_append_mbuf_epg(sg, m,
476 mtod(m, vm_offset_t), m->m_len));
477 else
478 return (sglist_append(sg, m->m_data, m->m_len));
479 }
480
481 /*
482 * Append the segments that describe a buffer spanning an array of VM
483 * pages. The buffer begins at an offset of 'pgoff' in the first
484 * page.
485 */
486 int
sglist_append_vmpages(struct sglist * sg,vm_page_t * m,size_t pgoff,size_t len)487 sglist_append_vmpages(struct sglist *sg, vm_page_t *m, size_t pgoff,
488 size_t len)
489 {
490 struct sgsave save;
491 struct sglist_seg *ss;
492 vm_paddr_t paddr;
493 size_t seglen;
494 int error, i;
495
496 if (sg->sg_maxseg == 0)
497 return (EINVAL);
498 if (len == 0)
499 return (0);
500
501 SGLIST_SAVE(sg, save);
502 i = 0;
503 if (sg->sg_nseg == 0) {
504 seglen = min(PAGE_SIZE - pgoff, len);
505 sg->sg_segs[0].ss_paddr = VM_PAGE_TO_PHYS(m[0]) + pgoff;
506 sg->sg_segs[0].ss_len = seglen;
507 sg->sg_nseg = 1;
508 pgoff = 0;
509 len -= seglen;
510 i++;
511 }
512 ss = &sg->sg_segs[sg->sg_nseg - 1];
513 for (; len > 0; i++, len -= seglen) {
514 seglen = min(PAGE_SIZE - pgoff, len);
515 paddr = VM_PAGE_TO_PHYS(m[i]) + pgoff;
516 error = _sglist_append_range(sg, &ss, paddr, seglen);
517 if (error) {
518 SGLIST_RESTORE(sg, save);
519 return (error);
520 }
521 pgoff = 0;
522 }
523 return (0);
524 }
525
526 /*
527 * Append the segments that describe a single user address range to a
528 * scatter/gather list. If there are insufficient segments, then this
529 * fails with EFBIG.
530 */
531 int
sglist_append_user(struct sglist * sg,void * buf,size_t len,struct thread * td)532 sglist_append_user(struct sglist *sg, void *buf, size_t len, struct thread *td)
533 {
534 struct sgsave save;
535 int error;
536
537 if (sg->sg_maxseg == 0)
538 return (EINVAL);
539 SGLIST_SAVE(sg, save);
540 error = _sglist_append_buf(sg, buf, len,
541 vmspace_pmap(td->td_proc->p_vmspace), NULL);
542 if (error)
543 SGLIST_RESTORE(sg, save);
544 return (error);
545 }
546
547 /*
548 * Append a subset of an existing scatter/gather list 'source' to a
549 * the scatter/gather list 'sg'. If there are insufficient segments,
550 * then this fails with EFBIG.
551 */
552 int
sglist_append_sglist(struct sglist * sg,struct sglist * source,size_t offset,size_t length)553 sglist_append_sglist(struct sglist *sg, struct sglist *source, size_t offset,
554 size_t length)
555 {
556 struct sgsave save;
557 struct sglist_seg *ss;
558 size_t seglen;
559 int error, i;
560
561 if (sg->sg_maxseg == 0 || length == 0)
562 return (EINVAL);
563 SGLIST_SAVE(sg, save);
564 error = EINVAL;
565 ss = &sg->sg_segs[sg->sg_nseg - 1];
566 for (i = 0; i < source->sg_nseg; i++) {
567 if (offset >= source->sg_segs[i].ss_len) {
568 offset -= source->sg_segs[i].ss_len;
569 continue;
570 }
571 seglen = source->sg_segs[i].ss_len - offset;
572 if (seglen > length)
573 seglen = length;
574 error = _sglist_append_range(sg, &ss,
575 source->sg_segs[i].ss_paddr + offset, seglen);
576 if (error)
577 break;
578 offset = 0;
579 length -= seglen;
580 if (length == 0)
581 break;
582 }
583 if (length != 0)
584 error = EINVAL;
585 if (error)
586 SGLIST_RESTORE(sg, save);
587 return (error);
588 }
589
590 /*
591 * Append the segments that describe a single uio to a scatter/gather
592 * list. If there are insufficient segments, then this fails with
593 * EFBIG.
594 */
595 int
sglist_append_uio(struct sglist * sg,struct uio * uio)596 sglist_append_uio(struct sglist *sg, struct uio *uio)
597 {
598 struct iovec *iov;
599 struct sgsave save;
600 size_t resid, minlen;
601 pmap_t pmap;
602 int error, i;
603
604 if (sg->sg_maxseg == 0)
605 return (EINVAL);
606
607 resid = uio->uio_resid;
608 iov = uio->uio_iov;
609
610 if (uio->uio_segflg == UIO_USERSPACE) {
611 KASSERT(uio->uio_td != NULL,
612 ("sglist_append_uio: USERSPACE but no thread"));
613 pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
614 } else
615 pmap = NULL;
616
617 error = 0;
618 SGLIST_SAVE(sg, save);
619 for (i = 0; i < uio->uio_iovcnt && resid != 0; i++) {
620 /*
621 * Now at the first iovec to load. Load each iovec
622 * until we have exhausted the residual count.
623 */
624 minlen = MIN(resid, iov[i].iov_len);
625 if (minlen > 0) {
626 error = _sglist_append_buf(sg, iov[i].iov_base, minlen,
627 pmap, NULL);
628 if (error) {
629 SGLIST_RESTORE(sg, save);
630 return (error);
631 }
632 resid -= minlen;
633 }
634 }
635 return (0);
636 }
637
638 /*
639 * Append the segments that describe at most 'resid' bytes from a
640 * single uio to a scatter/gather list. If there are insufficient
641 * segments, then only the amount that fits is appended.
642 */
643 int
sglist_consume_uio(struct sglist * sg,struct uio * uio,size_t resid)644 sglist_consume_uio(struct sglist *sg, struct uio *uio, size_t resid)
645 {
646 struct iovec *iov;
647 size_t done;
648 pmap_t pmap;
649 int error, len;
650
651 if (sg->sg_maxseg == 0)
652 return (EINVAL);
653
654 if (uio->uio_segflg == UIO_USERSPACE) {
655 KASSERT(uio->uio_td != NULL,
656 ("sglist_consume_uio: USERSPACE but no thread"));
657 pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
658 } else
659 pmap = NULL;
660
661 error = 0;
662 while (resid > 0 && uio->uio_resid) {
663 iov = uio->uio_iov;
664 len = iov->iov_len;
665 if (len == 0) {
666 uio->uio_iov++;
667 uio->uio_iovcnt--;
668 continue;
669 }
670 if (len > resid)
671 len = resid;
672
673 /*
674 * Try to append this iovec. If we run out of room,
675 * then break out of the loop.
676 */
677 error = _sglist_append_buf(sg, iov->iov_base, len, pmap, &done);
678 iov->iov_base = (char *)iov->iov_base + done;
679 iov->iov_len -= done;
680 uio->uio_resid -= done;
681 uio->uio_offset += done;
682 resid -= done;
683 if (error)
684 break;
685 }
686 return (0);
687 }
688
689 /*
690 * Allocate and populate a scatter/gather list to describe a single
691 * kernel virtual address range.
692 */
693 struct sglist *
sglist_build(void * buf,size_t len,int mflags)694 sglist_build(void *buf, size_t len, int mflags)
695 {
696 struct sglist *sg;
697 int nsegs;
698
699 if (len == 0)
700 return (NULL);
701
702 nsegs = sglist_count(buf, len);
703 sg = sglist_alloc(nsegs, mflags);
704 if (sg == NULL)
705 return (NULL);
706 if (sglist_append(sg, buf, len) != 0) {
707 sglist_free(sg);
708 return (NULL);
709 }
710 return (sg);
711 }
712
713 /*
714 * Clone a new copy of a scatter/gather list.
715 */
716 struct sglist *
sglist_clone(struct sglist * sg,int mflags)717 sglist_clone(struct sglist *sg, int mflags)
718 {
719 struct sglist *new;
720
721 if (sg == NULL)
722 return (NULL);
723 new = sglist_alloc(sg->sg_maxseg, mflags);
724 if (new == NULL)
725 return (NULL);
726 new->sg_nseg = sg->sg_nseg;
727 bcopy(sg->sg_segs, new->sg_segs, sizeof(struct sglist_seg) *
728 sg->sg_nseg);
729 return (new);
730 }
731
732 /*
733 * Calculate the total length of the segments described in a
734 * scatter/gather list.
735 */
736 size_t
sglist_length(struct sglist * sg)737 sglist_length(struct sglist *sg)
738 {
739 size_t space;
740 int i;
741
742 space = 0;
743 for (i = 0; i < sg->sg_nseg; i++)
744 space += sg->sg_segs[i].ss_len;
745 return (space);
746 }
747
748 /*
749 * Split a scatter/gather list into two lists. The scatter/gather
750 * entries for the first 'length' bytes of the 'original' list are
751 * stored in the '*head' list and are removed from 'original'.
752 *
753 * If '*head' is NULL, then a new list will be allocated using
754 * 'mflags'. If M_NOWAIT is specified and the allocation fails,
755 * ENOMEM will be returned.
756 *
757 * If '*head' is not NULL, it should point to an empty sglist. If it
758 * does not have enough room for the remaining space, then EFBIG will
759 * be returned. If '*head' is not empty, then EINVAL will be
760 * returned.
761 *
762 * If 'original' is shared (refcount > 1), then EDOOFUS will be
763 * returned.
764 */
765 int
sglist_split(struct sglist * original,struct sglist ** head,size_t length,int mflags)766 sglist_split(struct sglist *original, struct sglist **head, size_t length,
767 int mflags)
768 {
769 struct sglist *sg;
770 size_t space, split;
771 int count, i;
772
773 if (original->sg_refs > 1)
774 return (EDOOFUS);
775
776 /* Figure out how big of a sglist '*head' has to hold. */
777 count = 0;
778 space = 0;
779 split = 0;
780 for (i = 0; i < original->sg_nseg; i++) {
781 space += original->sg_segs[i].ss_len;
782 count++;
783 if (space >= length) {
784 /*
785 * If 'length' falls in the middle of a
786 * scatter/gather list entry, then 'split'
787 * holds how much of that entry will remain in
788 * 'original'.
789 */
790 split = space - length;
791 break;
792 }
793 }
794
795 /* Nothing to do, so leave head empty. */
796 if (count == 0)
797 return (0);
798
799 if (*head == NULL) {
800 sg = sglist_alloc(count, mflags);
801 if (sg == NULL)
802 return (ENOMEM);
803 *head = sg;
804 } else {
805 sg = *head;
806 if (sg->sg_maxseg < count)
807 return (EFBIG);
808 if (sg->sg_nseg != 0)
809 return (EINVAL);
810 }
811
812 /* Copy 'count' entries to 'sg' from 'original'. */
813 bcopy(original->sg_segs, sg->sg_segs, count *
814 sizeof(struct sglist_seg));
815 sg->sg_nseg = count;
816
817 /*
818 * If we had to split a list entry, fixup the last entry in
819 * 'sg' and the new first entry in 'original'. We also
820 * decrement 'count' by 1 since we will only be removing
821 * 'count - 1' segments from 'original' now.
822 */
823 if (split != 0) {
824 count--;
825 sg->sg_segs[count].ss_len -= split;
826 original->sg_segs[count].ss_paddr =
827 sg->sg_segs[count].ss_paddr + split;
828 original->sg_segs[count].ss_len = split;
829 }
830
831 /* Trim 'count' entries from the front of 'original'. */
832 original->sg_nseg -= count;
833 bcopy(original->sg_segs + count, original->sg_segs, count *
834 sizeof(struct sglist_seg));
835 return (0);
836 }
837
838 /*
839 * Append the scatter/gather list elements in 'second' to the
840 * scatter/gather list 'first'. If there is not enough space in
841 * 'first', EFBIG is returned.
842 */
843 int
sglist_join(struct sglist * first,struct sglist * second)844 sglist_join(struct sglist *first, struct sglist *second)
845 {
846 struct sglist_seg *flast, *sfirst;
847 int append;
848
849 /* If 'second' is empty, there is nothing to do. */
850 if (second->sg_nseg == 0)
851 return (0);
852
853 /*
854 * If the first entry in 'second' can be appended to the last entry
855 * in 'first' then set append to '1'.
856 */
857 append = 0;
858 flast = &first->sg_segs[first->sg_nseg - 1];
859 sfirst = &second->sg_segs[0];
860 if (first->sg_nseg != 0 &&
861 flast->ss_paddr + flast->ss_len == sfirst->ss_paddr)
862 append = 1;
863
864 /* Make sure 'first' has enough room. */
865 if (first->sg_nseg + second->sg_nseg - append > first->sg_maxseg)
866 return (EFBIG);
867
868 /* Merge last in 'first' and first in 'second' if needed. */
869 if (append)
870 flast->ss_len += sfirst->ss_len;
871
872 /* Append new segments from 'second' to 'first'. */
873 bcopy(first->sg_segs + first->sg_nseg, second->sg_segs + append,
874 (second->sg_nseg - append) * sizeof(struct sglist_seg));
875 first->sg_nseg += second->sg_nseg - append;
876 sglist_reset(second);
877 return (0);
878 }
879
880 /*
881 * Generate a new scatter/gather list from a range of an existing
882 * scatter/gather list. The 'offset' and 'length' parameters specify
883 * the logical range of the 'original' list to extract. If that range
884 * is not a subset of the length of 'original', then EINVAL is
885 * returned. The new scatter/gather list is stored in '*slice'.
886 *
887 * If '*slice' is NULL, then a new list will be allocated using
888 * 'mflags'. If M_NOWAIT is specified and the allocation fails,
889 * ENOMEM will be returned.
890 *
891 * If '*slice' is not NULL, it should point to an empty sglist. If it
892 * does not have enough room for the remaining space, then EFBIG will
893 * be returned. If '*slice' is not empty, then EINVAL will be
894 * returned.
895 */
896 int
sglist_slice(struct sglist * original,struct sglist ** slice,size_t offset,size_t length,int mflags)897 sglist_slice(struct sglist *original, struct sglist **slice, size_t offset,
898 size_t length, int mflags)
899 {
900 struct sglist *sg;
901 size_t space, end, foffs, loffs;
902 int count, i, fseg;
903
904 /* Nothing to do. */
905 if (length == 0)
906 return (0);
907
908 /* Figure out how many segments '*slice' needs to have. */
909 end = offset + length;
910 space = 0;
911 count = 0;
912 fseg = 0;
913 foffs = loffs = 0;
914 for (i = 0; i < original->sg_nseg; i++) {
915 space += original->sg_segs[i].ss_len;
916 if (space > offset) {
917 /*
918 * When we hit the first segment, store its index
919 * in 'fseg' and the offset into the first segment
920 * of 'offset' in 'foffs'.
921 */
922 if (count == 0) {
923 fseg = i;
924 foffs = offset - (space -
925 original->sg_segs[i].ss_len);
926 CTR1(KTR_DEV, "sglist_slice: foffs = %08lx",
927 foffs);
928 }
929 count++;
930
931 /*
932 * When we hit the last segment, break out of
933 * the loop. Store the amount of extra space
934 * at the end of this segment in 'loffs'.
935 */
936 if (space >= end) {
937 loffs = space - end;
938 CTR1(KTR_DEV, "sglist_slice: loffs = %08lx",
939 loffs);
940 break;
941 }
942 }
943 }
944
945 /* If we never hit 'end', then 'length' ran off the end, so fail. */
946 if (space < end)
947 return (EINVAL);
948
949 if (*slice == NULL) {
950 sg = sglist_alloc(count, mflags);
951 if (sg == NULL)
952 return (ENOMEM);
953 *slice = sg;
954 } else {
955 sg = *slice;
956 if (sg->sg_maxseg < count)
957 return (EFBIG);
958 if (sg->sg_nseg != 0)
959 return (EINVAL);
960 }
961
962 /*
963 * Copy over 'count' segments from 'original' starting at
964 * 'fseg' to 'sg'.
965 */
966 bcopy(original->sg_segs + fseg, sg->sg_segs,
967 count * sizeof(struct sglist_seg));
968 sg->sg_nseg = count;
969
970 /* Fixup first and last segments if needed. */
971 if (foffs != 0) {
972 sg->sg_segs[0].ss_paddr += foffs;
973 sg->sg_segs[0].ss_len -= foffs;
974 CTR2(KTR_DEV, "sglist_slice seg[0]: %08lx:%08lx",
975 (long)sg->sg_segs[0].ss_paddr, sg->sg_segs[0].ss_len);
976 }
977 if (loffs != 0) {
978 sg->sg_segs[count - 1].ss_len -= loffs;
979 CTR2(KTR_DEV, "sglist_slice seg[%d]: len %08x", count - 1,
980 sg->sg_segs[count - 1].ss_len);
981 }
982 return (0);
983 }
984