xref: /linux/drivers/tty/serial/sh-sci.c (revision 2c1ed907520c50326b8f604907a8478b27881a2e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4  *
5  *  Copyright (C) 2002 - 2011  Paul Mundt
6  *  Copyright (C) 2015 Glider bvba
7  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8  *
9  * based off of the old drivers/char/sh-sci.c by:
10  *
11  *   Copyright (C) 1999, 2000  Niibe Yutaka
12  *   Copyright (C) 2000  Sugioka Toshinobu
13  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14  *   Modified to support SecureEdge. David McCullough (2002)
15  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16  *   Removed SH7300 support (Jul 2007).
17  */
18 #undef DEBUG
19 
20 #include <linux/clk.h>
21 #include <linux/console.h>
22 #include <linux/ctype.h>
23 #include <linux/cpufreq.h>
24 #include <linux/delay.h>
25 #include <linux/dmaengine.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/ioport.h>
32 #include <linux/ktime.h>
33 #include <linux/major.h>
34 #include <linux/minmax.h>
35 #include <linux/module.h>
36 #include <linux/mm.h>
37 #include <linux/of.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/reset.h>
41 #include <linux/scatterlist.h>
42 #include <linux/serial.h>
43 #include <linux/serial_sci.h>
44 #include <linux/sh_dma.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/sysrq.h>
48 #include <linux/timer.h>
49 #include <linux/tty.h>
50 #include <linux/tty_flip.h>
51 
52 #ifdef CONFIG_SUPERH
53 #include <asm/sh_bios.h>
54 #include <asm/platform_early.h>
55 #endif
56 
57 #include "serial_mctrl_gpio.h"
58 #include "sh-sci.h"
59 
60 /* Offsets into the sci_port->irqs array */
61 enum {
62 	SCIx_ERI_IRQ,
63 	SCIx_RXI_IRQ,
64 	SCIx_TXI_IRQ,
65 	SCIx_BRI_IRQ,
66 	SCIx_DRI_IRQ,
67 	SCIx_TEI_IRQ,
68 	SCIx_NR_IRQS,
69 
70 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
71 };
72 
73 #define SCIx_IRQ_IS_MUXED(port)			\
74 	((port)->irqs[SCIx_ERI_IRQ] ==	\
75 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
76 	((port)->irqs[SCIx_ERI_IRQ] &&	\
77 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78 
79 enum SCI_CLKS {
80 	SCI_FCK,		/* Functional Clock */
81 	SCI_SCK,		/* Optional External Clock */
82 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
83 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
84 	SCI_NUM_CLKS
85 };
86 
87 /* Bit x set means sampling rate x + 1 is supported */
88 #define SCI_SR(x)		BIT((x) - 1)
89 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
90 
91 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
92 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
93 				SCI_SR(19) | SCI_SR(27)
94 
95 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
96 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
97 
98 /* Iterate over all supported sampling rates, from high to low */
99 #define for_each_sr(_sr, _port)						\
100 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
101 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
102 
103 struct plat_sci_reg {
104 	u8 offset, size;
105 };
106 
107 struct sci_port_params {
108 	const struct plat_sci_reg regs[SCIx_NR_REGS];
109 	unsigned int fifosize;
110 	unsigned int overrun_reg;
111 	unsigned int overrun_mask;
112 	unsigned int sampling_rate_mask;
113 	unsigned int error_mask;
114 	unsigned int error_clear;
115 };
116 
117 struct sci_port {
118 	struct uart_port	port;
119 
120 	/* Platform configuration */
121 	const struct sci_port_params *params;
122 	const struct plat_sci_port *cfg;
123 	unsigned int		sampling_rate_mask;
124 	resource_size_t		reg_size;
125 	struct mctrl_gpios	*gpios;
126 
127 	/* Clocks */
128 	struct clk		*clks[SCI_NUM_CLKS];
129 	unsigned long		clk_rates[SCI_NUM_CLKS];
130 
131 	int			irqs[SCIx_NR_IRQS];
132 	char			*irqstr[SCIx_NR_IRQS];
133 
134 	struct dma_chan			*chan_tx;
135 	struct dma_chan			*chan_rx;
136 
137 #ifdef CONFIG_SERIAL_SH_SCI_DMA
138 	struct dma_chan			*chan_tx_saved;
139 	struct dma_chan			*chan_rx_saved;
140 	dma_cookie_t			cookie_tx;
141 	dma_cookie_t			cookie_rx[2];
142 	dma_cookie_t			active_rx;
143 	dma_addr_t			tx_dma_addr;
144 	unsigned int			tx_dma_len;
145 	struct scatterlist		sg_rx[2];
146 	void				*rx_buf[2];
147 	size_t				buf_len_rx;
148 	struct work_struct		work_tx;
149 	struct hrtimer			rx_timer;
150 	unsigned int			rx_timeout;	/* microseconds */
151 #endif
152 	unsigned int			rx_frame;
153 	int				rx_trigger;
154 	struct timer_list		rx_fifo_timer;
155 	int				rx_fifo_timeout;
156 	u16				hscif_tot;
157 
158 	bool has_rtscts;
159 	bool autorts;
160 	bool tx_occurred;
161 };
162 
163 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
164 
165 static struct sci_port sci_ports[SCI_NPORTS];
166 static unsigned long sci_ports_in_use;
167 static struct uart_driver sci_uart_driver;
168 static bool sci_uart_earlycon;
169 static bool sci_uart_earlycon_dev_probing;
170 
171 static inline struct sci_port *
to_sci_port(struct uart_port * uart)172 to_sci_port(struct uart_port *uart)
173 {
174 	return container_of(uart, struct sci_port, port);
175 }
176 
177 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
178 	/*
179 	 * Common SCI definitions, dependent on the port's regshift
180 	 * value.
181 	 */
182 	[SCIx_SCI_REGTYPE] = {
183 		.regs = {
184 			[SCSMR]		= { 0x00,  8 },
185 			[SCBRR]		= { 0x01,  8 },
186 			[SCSCR]		= { 0x02,  8 },
187 			[SCxTDR]	= { 0x03,  8 },
188 			[SCxSR]		= { 0x04,  8 },
189 			[SCxRDR]	= { 0x05,  8 },
190 		},
191 		.fifosize = 1,
192 		.overrun_reg = SCxSR,
193 		.overrun_mask = SCI_ORER,
194 		.sampling_rate_mask = SCI_SR(32),
195 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
196 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
197 	},
198 
199 	/*
200 	 * Common definitions for legacy IrDA ports.
201 	 */
202 	[SCIx_IRDA_REGTYPE] = {
203 		.regs = {
204 			[SCSMR]		= { 0x00,  8 },
205 			[SCBRR]		= { 0x02,  8 },
206 			[SCSCR]		= { 0x04,  8 },
207 			[SCxTDR]	= { 0x06,  8 },
208 			[SCxSR]		= { 0x08, 16 },
209 			[SCxRDR]	= { 0x0a,  8 },
210 			[SCFCR]		= { 0x0c,  8 },
211 			[SCFDR]		= { 0x0e, 16 },
212 		},
213 		.fifosize = 1,
214 		.overrun_reg = SCxSR,
215 		.overrun_mask = SCI_ORER,
216 		.sampling_rate_mask = SCI_SR(32),
217 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
218 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
219 	},
220 
221 	/*
222 	 * Common SCIFA definitions.
223 	 */
224 	[SCIx_SCIFA_REGTYPE] = {
225 		.regs = {
226 			[SCSMR]		= { 0x00, 16 },
227 			[SCBRR]		= { 0x04,  8 },
228 			[SCSCR]		= { 0x08, 16 },
229 			[SCxTDR]	= { 0x20,  8 },
230 			[SCxSR]		= { 0x14, 16 },
231 			[SCxRDR]	= { 0x24,  8 },
232 			[SCFCR]		= { 0x18, 16 },
233 			[SCFDR]		= { 0x1c, 16 },
234 			[SCPCR]		= { 0x30, 16 },
235 			[SCPDR]		= { 0x34, 16 },
236 		},
237 		.fifosize = 64,
238 		.overrun_reg = SCxSR,
239 		.overrun_mask = SCIFA_ORER,
240 		.sampling_rate_mask = SCI_SR_SCIFAB,
241 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
242 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
243 	},
244 
245 	/*
246 	 * Common SCIFB definitions.
247 	 */
248 	[SCIx_SCIFB_REGTYPE] = {
249 		.regs = {
250 			[SCSMR]		= { 0x00, 16 },
251 			[SCBRR]		= { 0x04,  8 },
252 			[SCSCR]		= { 0x08, 16 },
253 			[SCxTDR]	= { 0x40,  8 },
254 			[SCxSR]		= { 0x14, 16 },
255 			[SCxRDR]	= { 0x60,  8 },
256 			[SCFCR]		= { 0x18, 16 },
257 			[SCTFDR]	= { 0x38, 16 },
258 			[SCRFDR]	= { 0x3c, 16 },
259 			[SCPCR]		= { 0x30, 16 },
260 			[SCPDR]		= { 0x34, 16 },
261 		},
262 		.fifosize = 256,
263 		.overrun_reg = SCxSR,
264 		.overrun_mask = SCIFA_ORER,
265 		.sampling_rate_mask = SCI_SR_SCIFAB,
266 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
267 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
268 	},
269 
270 	/*
271 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
272 	 * count registers.
273 	 */
274 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
275 		.regs = {
276 			[SCSMR]		= { 0x00, 16 },
277 			[SCBRR]		= { 0x04,  8 },
278 			[SCSCR]		= { 0x08, 16 },
279 			[SCxTDR]	= { 0x0c,  8 },
280 			[SCxSR]		= { 0x10, 16 },
281 			[SCxRDR]	= { 0x14,  8 },
282 			[SCFCR]		= { 0x18, 16 },
283 			[SCFDR]		= { 0x1c, 16 },
284 			[SCSPTR]	= { 0x20, 16 },
285 			[SCLSR]		= { 0x24, 16 },
286 		},
287 		.fifosize = 16,
288 		.overrun_reg = SCLSR,
289 		.overrun_mask = SCLSR_ORER,
290 		.sampling_rate_mask = SCI_SR(32),
291 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
292 		.error_clear = SCIF_ERROR_CLEAR,
293 	},
294 
295 	/*
296 	 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T.
297 	 * It looks like a normal SCIF with FIFO data, but with a
298 	 * compressed address space. Also, the break out of interrupts
299 	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
300 	 */
301 	[SCIx_RZ_SCIFA_REGTYPE] = {
302 		.regs = {
303 			[SCSMR]		= { 0x00, 16 },
304 			[SCBRR]		= { 0x02,  8 },
305 			[SCSCR]		= { 0x04, 16 },
306 			[SCxTDR]	= { 0x06,  8 },
307 			[SCxSR]		= { 0x08, 16 },
308 			[SCxRDR]	= { 0x0A,  8 },
309 			[SCFCR]		= { 0x0C, 16 },
310 			[SCFDR]		= { 0x0E, 16 },
311 			[SCSPTR]	= { 0x10, 16 },
312 			[SCLSR]		= { 0x12, 16 },
313 			[SEMR]		= { 0x14, 8 },
314 		},
315 		.fifosize = 16,
316 		.overrun_reg = SCLSR,
317 		.overrun_mask = SCLSR_ORER,
318 		.sampling_rate_mask = SCI_SR(32),
319 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
320 		.error_clear = SCIF_ERROR_CLEAR,
321 	},
322 
323 	/*
324 	 * The "SCIF" that is in RZ/V2H(P) SoC is similar to one found on RZ/G2L SoC
325 	 * with below differences,
326 	 * - Break out of interrupts are different: ERI, BRI, RXI, TXI, TEI, DRI,
327 	 *   TEI-DRI, RXI-EDGE and TXI-EDGE.
328 	 * - SCSMR register does not have CM bit (BIT(7)) ie it does not support synchronous mode.
329 	 * - SCFCR register does not have SCFCR_MCE bit.
330 	 * - SCSPTR register has only bits SCSPTR_SPB2DT and SCSPTR_SPB2IO.
331 	 */
332 	[SCIx_RZV2H_SCIF_REGTYPE] = {
333 		.regs = {
334 			[SCSMR]		= { 0x00, 16 },
335 			[SCBRR]		= { 0x02,  8 },
336 			[SCSCR]		= { 0x04, 16 },
337 			[SCxTDR]	= { 0x06,  8 },
338 			[SCxSR]		= { 0x08, 16 },
339 			[SCxRDR]	= { 0x0a,  8 },
340 			[SCFCR]		= { 0x0c, 16 },
341 			[SCFDR]		= { 0x0e, 16 },
342 			[SCSPTR]	= { 0x10, 16 },
343 			[SCLSR]		= { 0x12, 16 },
344 			[SEMR]		= { 0x14, 8 },
345 		},
346 		.fifosize = 16,
347 		.overrun_reg = SCLSR,
348 		.overrun_mask = SCLSR_ORER,
349 		.sampling_rate_mask = SCI_SR(32),
350 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
351 		.error_clear = SCIF_ERROR_CLEAR,
352 	},
353 
354 	/*
355 	 * Common SH-3 SCIF definitions.
356 	 */
357 	[SCIx_SH3_SCIF_REGTYPE] = {
358 		.regs = {
359 			[SCSMR]		= { 0x00,  8 },
360 			[SCBRR]		= { 0x02,  8 },
361 			[SCSCR]		= { 0x04,  8 },
362 			[SCxTDR]	= { 0x06,  8 },
363 			[SCxSR]		= { 0x08, 16 },
364 			[SCxRDR]	= { 0x0a,  8 },
365 			[SCFCR]		= { 0x0c,  8 },
366 			[SCFDR]		= { 0x0e, 16 },
367 		},
368 		.fifosize = 16,
369 		.overrun_reg = SCLSR,
370 		.overrun_mask = SCLSR_ORER,
371 		.sampling_rate_mask = SCI_SR(32),
372 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
373 		.error_clear = SCIF_ERROR_CLEAR,
374 	},
375 
376 	/*
377 	 * Common SH-4(A) SCIF(B) definitions.
378 	 */
379 	[SCIx_SH4_SCIF_REGTYPE] = {
380 		.regs = {
381 			[SCSMR]		= { 0x00, 16 },
382 			[SCBRR]		= { 0x04,  8 },
383 			[SCSCR]		= { 0x08, 16 },
384 			[SCxTDR]	= { 0x0c,  8 },
385 			[SCxSR]		= { 0x10, 16 },
386 			[SCxRDR]	= { 0x14,  8 },
387 			[SCFCR]		= { 0x18, 16 },
388 			[SCFDR]		= { 0x1c, 16 },
389 			[SCSPTR]	= { 0x20, 16 },
390 			[SCLSR]		= { 0x24, 16 },
391 		},
392 		.fifosize = 16,
393 		.overrun_reg = SCLSR,
394 		.overrun_mask = SCLSR_ORER,
395 		.sampling_rate_mask = SCI_SR(32),
396 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
397 		.error_clear = SCIF_ERROR_CLEAR,
398 	},
399 
400 	/*
401 	 * Common SCIF definitions for ports with a Baud Rate Generator for
402 	 * External Clock (BRG).
403 	 */
404 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
405 		.regs = {
406 			[SCSMR]		= { 0x00, 16 },
407 			[SCBRR]		= { 0x04,  8 },
408 			[SCSCR]		= { 0x08, 16 },
409 			[SCxTDR]	= { 0x0c,  8 },
410 			[SCxSR]		= { 0x10, 16 },
411 			[SCxRDR]	= { 0x14,  8 },
412 			[SCFCR]		= { 0x18, 16 },
413 			[SCFDR]		= { 0x1c, 16 },
414 			[SCSPTR]	= { 0x20, 16 },
415 			[SCLSR]		= { 0x24, 16 },
416 			[SCDL]		= { 0x30, 16 },
417 			[SCCKS]		= { 0x34, 16 },
418 		},
419 		.fifosize = 16,
420 		.overrun_reg = SCLSR,
421 		.overrun_mask = SCLSR_ORER,
422 		.sampling_rate_mask = SCI_SR(32),
423 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
424 		.error_clear = SCIF_ERROR_CLEAR,
425 	},
426 
427 	/*
428 	 * Common HSCIF definitions.
429 	 */
430 	[SCIx_HSCIF_REGTYPE] = {
431 		.regs = {
432 			[SCSMR]		= { 0x00, 16 },
433 			[SCBRR]		= { 0x04,  8 },
434 			[SCSCR]		= { 0x08, 16 },
435 			[SCxTDR]	= { 0x0c,  8 },
436 			[SCxSR]		= { 0x10, 16 },
437 			[SCxRDR]	= { 0x14,  8 },
438 			[SCFCR]		= { 0x18, 16 },
439 			[SCFDR]		= { 0x1c, 16 },
440 			[SCSPTR]	= { 0x20, 16 },
441 			[SCLSR]		= { 0x24, 16 },
442 			[HSSRR]		= { 0x40, 16 },
443 			[SCDL]		= { 0x30, 16 },
444 			[SCCKS]		= { 0x34, 16 },
445 			[HSRTRGR]	= { 0x54, 16 },
446 			[HSTTRGR]	= { 0x58, 16 },
447 		},
448 		.fifosize = 128,
449 		.overrun_reg = SCLSR,
450 		.overrun_mask = SCLSR_ORER,
451 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
452 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
453 		.error_clear = SCIF_ERROR_CLEAR,
454 	},
455 
456 	/*
457 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
458 	 * register.
459 	 */
460 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
461 		.regs = {
462 			[SCSMR]		= { 0x00, 16 },
463 			[SCBRR]		= { 0x04,  8 },
464 			[SCSCR]		= { 0x08, 16 },
465 			[SCxTDR]	= { 0x0c,  8 },
466 			[SCxSR]		= { 0x10, 16 },
467 			[SCxRDR]	= { 0x14,  8 },
468 			[SCFCR]		= { 0x18, 16 },
469 			[SCFDR]		= { 0x1c, 16 },
470 			[SCLSR]		= { 0x24, 16 },
471 		},
472 		.fifosize = 16,
473 		.overrun_reg = SCLSR,
474 		.overrun_mask = SCLSR_ORER,
475 		.sampling_rate_mask = SCI_SR(32),
476 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
477 		.error_clear = SCIF_ERROR_CLEAR,
478 	},
479 
480 	/*
481 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
482 	 * count registers.
483 	 */
484 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
485 		.regs = {
486 			[SCSMR]		= { 0x00, 16 },
487 			[SCBRR]		= { 0x04,  8 },
488 			[SCSCR]		= { 0x08, 16 },
489 			[SCxTDR]	= { 0x0c,  8 },
490 			[SCxSR]		= { 0x10, 16 },
491 			[SCxRDR]	= { 0x14,  8 },
492 			[SCFCR]		= { 0x18, 16 },
493 			[SCFDR]		= { 0x1c, 16 },
494 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
495 			[SCRFDR]	= { 0x20, 16 },
496 			[SCSPTR]	= { 0x24, 16 },
497 			[SCLSR]		= { 0x28, 16 },
498 		},
499 		.fifosize = 16,
500 		.overrun_reg = SCLSR,
501 		.overrun_mask = SCLSR_ORER,
502 		.sampling_rate_mask = SCI_SR(32),
503 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
504 		.error_clear = SCIF_ERROR_CLEAR,
505 	},
506 
507 	/*
508 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
509 	 * registers.
510 	 */
511 	[SCIx_SH7705_SCIF_REGTYPE] = {
512 		.regs = {
513 			[SCSMR]		= { 0x00, 16 },
514 			[SCBRR]		= { 0x04,  8 },
515 			[SCSCR]		= { 0x08, 16 },
516 			[SCxTDR]	= { 0x20,  8 },
517 			[SCxSR]		= { 0x14, 16 },
518 			[SCxRDR]	= { 0x24,  8 },
519 			[SCFCR]		= { 0x18, 16 },
520 			[SCFDR]		= { 0x1c, 16 },
521 		},
522 		.fifosize = 64,
523 		.overrun_reg = SCxSR,
524 		.overrun_mask = SCIFA_ORER,
525 		.sampling_rate_mask = SCI_SR(16),
526 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
527 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
528 	},
529 };
530 
531 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
532 
533 /*
534  * The "offset" here is rather misleading, in that it refers to an enum
535  * value relative to the port mapping rather than the fixed offset
536  * itself, which needs to be manually retrieved from the platform's
537  * register map for the given port.
538  */
sci_serial_in(struct uart_port * p,int offset)539 static unsigned int sci_serial_in(struct uart_port *p, int offset)
540 {
541 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
542 
543 	if (reg->size == 8)
544 		return ioread8(p->membase + (reg->offset << p->regshift));
545 	else if (reg->size == 16)
546 		return ioread16(p->membase + (reg->offset << p->regshift));
547 	else
548 		WARN(1, "Invalid register access\n");
549 
550 	return 0;
551 }
552 
sci_serial_out(struct uart_port * p,int offset,int value)553 static void sci_serial_out(struct uart_port *p, int offset, int value)
554 {
555 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
556 
557 	if (reg->size == 8)
558 		iowrite8(value, p->membase + (reg->offset << p->regshift));
559 	else if (reg->size == 16)
560 		iowrite16(value, p->membase + (reg->offset << p->regshift));
561 	else
562 		WARN(1, "Invalid register access\n");
563 }
564 
sci_port_enable(struct sci_port * sci_port)565 static void sci_port_enable(struct sci_port *sci_port)
566 {
567 	unsigned int i;
568 
569 	if (!sci_port->port.dev)
570 		return;
571 
572 	pm_runtime_get_sync(sci_port->port.dev);
573 
574 	for (i = 0; i < SCI_NUM_CLKS; i++) {
575 		clk_prepare_enable(sci_port->clks[i]);
576 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
577 	}
578 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
579 }
580 
sci_port_disable(struct sci_port * sci_port)581 static void sci_port_disable(struct sci_port *sci_port)
582 {
583 	unsigned int i;
584 
585 	if (!sci_port->port.dev)
586 		return;
587 
588 	for (i = SCI_NUM_CLKS; i-- > 0; )
589 		clk_disable_unprepare(sci_port->clks[i]);
590 
591 	pm_runtime_put_sync(sci_port->port.dev);
592 }
593 
port_rx_irq_mask(struct uart_port * port)594 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
595 {
596 	/*
597 	 * Not all ports (such as SCIFA) will support REIE. Rather than
598 	 * special-casing the port type, we check the port initialization
599 	 * IRQ enable mask to see whether the IRQ is desired at all. If
600 	 * it's unset, it's logically inferred that there's no point in
601 	 * testing for it.
602 	 */
603 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
604 }
605 
sci_start_tx(struct uart_port * port)606 static void sci_start_tx(struct uart_port *port)
607 {
608 	struct sci_port *s = to_sci_port(port);
609 	unsigned short ctrl;
610 
611 #ifdef CONFIG_SERIAL_SH_SCI_DMA
612 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
613 		u16 new, scr = sci_serial_in(port, SCSCR);
614 		if (s->chan_tx)
615 			new = scr | SCSCR_TDRQE;
616 		else
617 			new = scr & ~SCSCR_TDRQE;
618 		if (new != scr)
619 			sci_serial_out(port, SCSCR, new);
620 	}
621 
622 	if (s->chan_tx && !kfifo_is_empty(&port->state->port.xmit_fifo) &&
623 	    dma_submit_error(s->cookie_tx)) {
624 		if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
625 			/* Switch irq from SCIF to DMA */
626 			disable_irq_nosync(s->irqs[SCIx_TXI_IRQ]);
627 
628 		s->cookie_tx = 0;
629 		schedule_work(&s->work_tx);
630 	}
631 #endif
632 
633 	if (!s->chan_tx || s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE ||
634 	    port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
635 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
636 		ctrl = sci_serial_in(port, SCSCR);
637 
638 		/*
639 		 * For SCI, TE (transmit enable) must be set after setting TIE
640 		 * (transmit interrupt enable) or in the same instruction to start
641 		 * the transmit process.
642 		 */
643 		if (port->type == PORT_SCI)
644 			ctrl |= SCSCR_TE;
645 
646 		sci_serial_out(port, SCSCR, ctrl | SCSCR_TIE);
647 	}
648 }
649 
sci_stop_tx(struct uart_port * port)650 static void sci_stop_tx(struct uart_port *port)
651 {
652 	unsigned short ctrl;
653 
654 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
655 	ctrl = sci_serial_in(port, SCSCR);
656 
657 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
658 		ctrl &= ~SCSCR_TDRQE;
659 
660 	ctrl &= ~SCSCR_TIE;
661 
662 	sci_serial_out(port, SCSCR, ctrl);
663 
664 #ifdef CONFIG_SERIAL_SH_SCI_DMA
665 	if (to_sci_port(port)->chan_tx &&
666 	    !dma_submit_error(to_sci_port(port)->cookie_tx)) {
667 		dmaengine_terminate_async(to_sci_port(port)->chan_tx);
668 		to_sci_port(port)->cookie_tx = -EINVAL;
669 	}
670 #endif
671 }
672 
sci_start_rx(struct uart_port * port)673 static void sci_start_rx(struct uart_port *port)
674 {
675 	unsigned short ctrl;
676 
677 	ctrl = sci_serial_in(port, SCSCR) | port_rx_irq_mask(port);
678 
679 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
680 		ctrl &= ~SCSCR_RDRQE;
681 
682 	sci_serial_out(port, SCSCR, ctrl);
683 }
684 
sci_stop_rx(struct uart_port * port)685 static void sci_stop_rx(struct uart_port *port)
686 {
687 	unsigned short ctrl;
688 
689 	ctrl = sci_serial_in(port, SCSCR);
690 
691 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
692 		ctrl &= ~SCSCR_RDRQE;
693 
694 	ctrl &= ~port_rx_irq_mask(port);
695 
696 	sci_serial_out(port, SCSCR, ctrl);
697 }
698 
sci_clear_SCxSR(struct uart_port * port,unsigned int mask)699 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
700 {
701 	if (port->type == PORT_SCI) {
702 		/* Just store the mask */
703 		sci_serial_out(port, SCxSR, mask);
704 	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
705 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
706 		/* Only clear the status bits we want to clear */
707 		sci_serial_out(port, SCxSR, sci_serial_in(port, SCxSR) & mask);
708 	} else {
709 		/* Store the mask, clear parity/framing errors */
710 		sci_serial_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
711 	}
712 }
713 
714 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
715     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
716 
717 #ifdef CONFIG_CONSOLE_POLL
sci_poll_get_char(struct uart_port * port)718 static int sci_poll_get_char(struct uart_port *port)
719 {
720 	unsigned short status;
721 	int c;
722 
723 	do {
724 		status = sci_serial_in(port, SCxSR);
725 		if (status & SCxSR_ERRORS(port)) {
726 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
727 			continue;
728 		}
729 		break;
730 	} while (1);
731 
732 	if (!(status & SCxSR_RDxF(port)))
733 		return NO_POLL_CHAR;
734 
735 	c = sci_serial_in(port, SCxRDR);
736 
737 	/* Dummy read */
738 	sci_serial_in(port, SCxSR);
739 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
740 
741 	return c;
742 }
743 #endif
744 
sci_poll_put_char(struct uart_port * port,unsigned char c)745 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
746 {
747 	unsigned short status;
748 
749 	do {
750 		status = sci_serial_in(port, SCxSR);
751 	} while (!(status & SCxSR_TDxE(port)));
752 
753 	sci_serial_out(port, SCxTDR, c);
754 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
755 }
756 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
757 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
758 
sci_init_pins(struct uart_port * port,unsigned int cflag)759 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
760 {
761 	struct sci_port *s = to_sci_port(port);
762 
763 	/*
764 	 * Use port-specific handler if provided.
765 	 */
766 	if (s->cfg->ops && s->cfg->ops->init_pins) {
767 		s->cfg->ops->init_pins(port, cflag);
768 		return;
769 	}
770 
771 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
772 		u16 data = sci_serial_in(port, SCPDR);
773 		u16 ctrl = sci_serial_in(port, SCPCR);
774 
775 		/* Enable RXD and TXD pin functions */
776 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
777 		if (to_sci_port(port)->has_rtscts) {
778 			/* RTS# is output, active low, unless autorts */
779 			if (!(port->mctrl & TIOCM_RTS)) {
780 				ctrl |= SCPCR_RTSC;
781 				data |= SCPDR_RTSD;
782 			} else if (!s->autorts) {
783 				ctrl |= SCPCR_RTSC;
784 				data &= ~SCPDR_RTSD;
785 			} else {
786 				/* Enable RTS# pin function */
787 				ctrl &= ~SCPCR_RTSC;
788 			}
789 			/* Enable CTS# pin function */
790 			ctrl &= ~SCPCR_CTSC;
791 		}
792 		sci_serial_out(port, SCPDR, data);
793 		sci_serial_out(port, SCPCR, ctrl);
794 	} else if (sci_getreg(port, SCSPTR)->size && s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE) {
795 		u16 status = sci_serial_in(port, SCSPTR);
796 
797 		/* RTS# is always output; and active low, unless autorts */
798 		status |= SCSPTR_RTSIO;
799 		if (!(port->mctrl & TIOCM_RTS))
800 			status |= SCSPTR_RTSDT;
801 		else if (!s->autorts)
802 			status &= ~SCSPTR_RTSDT;
803 		/* CTS# and SCK are inputs */
804 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
805 		sci_serial_out(port, SCSPTR, status);
806 	}
807 }
808 
sci_txfill(struct uart_port * port)809 static int sci_txfill(struct uart_port *port)
810 {
811 	struct sci_port *s = to_sci_port(port);
812 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
813 	const struct plat_sci_reg *reg;
814 
815 	reg = sci_getreg(port, SCTFDR);
816 	if (reg->size)
817 		return sci_serial_in(port, SCTFDR) & fifo_mask;
818 
819 	reg = sci_getreg(port, SCFDR);
820 	if (reg->size)
821 		return sci_serial_in(port, SCFDR) >> 8;
822 
823 	return !(sci_serial_in(port, SCxSR) & SCI_TDRE);
824 }
825 
sci_txroom(struct uart_port * port)826 static int sci_txroom(struct uart_port *port)
827 {
828 	return port->fifosize - sci_txfill(port);
829 }
830 
sci_rxfill(struct uart_port * port)831 static int sci_rxfill(struct uart_port *port)
832 {
833 	struct sci_port *s = to_sci_port(port);
834 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
835 	const struct plat_sci_reg *reg;
836 
837 	reg = sci_getreg(port, SCRFDR);
838 	if (reg->size)
839 		return sci_serial_in(port, SCRFDR) & fifo_mask;
840 
841 	reg = sci_getreg(port, SCFDR);
842 	if (reg->size)
843 		return sci_serial_in(port, SCFDR) & fifo_mask;
844 
845 	return (sci_serial_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
846 }
847 
848 /* ********************************************************************** *
849  *                   the interrupt related routines                       *
850  * ********************************************************************** */
851 
sci_transmit_chars(struct uart_port * port)852 static void sci_transmit_chars(struct uart_port *port)
853 {
854 	struct tty_port *tport = &port->state->port;
855 	unsigned int stopped = uart_tx_stopped(port);
856 	struct sci_port *s = to_sci_port(port);
857 	unsigned short status;
858 	unsigned short ctrl;
859 	int count;
860 
861 	status = sci_serial_in(port, SCxSR);
862 	if (!(status & SCxSR_TDxE(port))) {
863 		ctrl = sci_serial_in(port, SCSCR);
864 		if (kfifo_is_empty(&tport->xmit_fifo))
865 			ctrl &= ~SCSCR_TIE;
866 		else
867 			ctrl |= SCSCR_TIE;
868 		sci_serial_out(port, SCSCR, ctrl);
869 		return;
870 	}
871 
872 	count = sci_txroom(port);
873 
874 	do {
875 		unsigned char c;
876 
877 		if (port->x_char) {
878 			c = port->x_char;
879 			port->x_char = 0;
880 		} else if (stopped || !kfifo_get(&tport->xmit_fifo, &c)) {
881 			if (port->type == PORT_SCI &&
882 				   kfifo_is_empty(&tport->xmit_fifo)) {
883 				ctrl = sci_serial_in(port, SCSCR);
884 				ctrl &= ~SCSCR_TE;
885 				sci_serial_out(port, SCSCR, ctrl);
886 				return;
887 			}
888 			break;
889 		}
890 
891 		sci_serial_out(port, SCxTDR, c);
892 		s->tx_occurred = true;
893 
894 		port->icount.tx++;
895 	} while (--count > 0);
896 
897 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
898 
899 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
900 		uart_write_wakeup(port);
901 	if (kfifo_is_empty(&tport->xmit_fifo)) {
902 		if (port->type == PORT_SCI) {
903 			ctrl = sci_serial_in(port, SCSCR);
904 			ctrl &= ~SCSCR_TIE;
905 			ctrl |= SCSCR_TEIE;
906 			sci_serial_out(port, SCSCR, ctrl);
907 		}
908 
909 		sci_stop_tx(port);
910 	}
911 }
912 
sci_receive_chars(struct uart_port * port)913 static void sci_receive_chars(struct uart_port *port)
914 {
915 	struct tty_port *tport = &port->state->port;
916 	int i, count, copied = 0;
917 	unsigned short status;
918 	unsigned char flag;
919 
920 	status = sci_serial_in(port, SCxSR);
921 	if (!(status & SCxSR_RDxF(port)))
922 		return;
923 
924 	while (1) {
925 		/* Don't copy more bytes than there is room for in the buffer */
926 		count = tty_buffer_request_room(tport, sci_rxfill(port));
927 
928 		/* If for any reason we can't copy more data, we're done! */
929 		if (count == 0)
930 			break;
931 
932 		if (port->type == PORT_SCI) {
933 			char c = sci_serial_in(port, SCxRDR);
934 			if (uart_handle_sysrq_char(port, c))
935 				count = 0;
936 			else
937 				tty_insert_flip_char(tport, c, TTY_NORMAL);
938 		} else {
939 			for (i = 0; i < count; i++) {
940 				char c;
941 
942 				if (port->type == PORT_SCIF ||
943 				    port->type == PORT_HSCIF) {
944 					status = sci_serial_in(port, SCxSR);
945 					c = sci_serial_in(port, SCxRDR);
946 				} else {
947 					c = sci_serial_in(port, SCxRDR);
948 					status = sci_serial_in(port, SCxSR);
949 				}
950 				if (uart_handle_sysrq_char(port, c)) {
951 					count--; i--;
952 					continue;
953 				}
954 
955 				/* Store data and status */
956 				if (status & SCxSR_FER(port)) {
957 					flag = TTY_FRAME;
958 					port->icount.frame++;
959 				} else if (status & SCxSR_PER(port)) {
960 					flag = TTY_PARITY;
961 					port->icount.parity++;
962 				} else
963 					flag = TTY_NORMAL;
964 
965 				tty_insert_flip_char(tport, c, flag);
966 			}
967 		}
968 
969 		sci_serial_in(port, SCxSR); /* dummy read */
970 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
971 
972 		copied += count;
973 		port->icount.rx += count;
974 	}
975 
976 	if (copied) {
977 		/* Tell the rest of the system the news. New characters! */
978 		tty_flip_buffer_push(tport);
979 	} else {
980 		/* TTY buffers full; read from RX reg to prevent lockup */
981 		sci_serial_in(port, SCxRDR);
982 		sci_serial_in(port, SCxSR); /* dummy read */
983 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
984 	}
985 }
986 
sci_handle_errors(struct uart_port * port)987 static int sci_handle_errors(struct uart_port *port)
988 {
989 	int copied = 0;
990 	unsigned short status = sci_serial_in(port, SCxSR);
991 	struct tty_port *tport = &port->state->port;
992 	struct sci_port *s = to_sci_port(port);
993 
994 	/* Handle overruns */
995 	if (status & s->params->overrun_mask) {
996 		port->icount.overrun++;
997 
998 		/* overrun error */
999 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
1000 			copied++;
1001 	}
1002 
1003 	if (status & SCxSR_FER(port)) {
1004 		/* frame error */
1005 		port->icount.frame++;
1006 
1007 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
1008 			copied++;
1009 	}
1010 
1011 	if (status & SCxSR_PER(port)) {
1012 		/* parity error */
1013 		port->icount.parity++;
1014 
1015 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1016 			copied++;
1017 	}
1018 
1019 	if (copied)
1020 		tty_flip_buffer_push(tport);
1021 
1022 	return copied;
1023 }
1024 
sci_handle_fifo_overrun(struct uart_port * port)1025 static int sci_handle_fifo_overrun(struct uart_port *port)
1026 {
1027 	struct tty_port *tport = &port->state->port;
1028 	struct sci_port *s = to_sci_port(port);
1029 	const struct plat_sci_reg *reg;
1030 	int copied = 0;
1031 	u16 status;
1032 
1033 	reg = sci_getreg(port, s->params->overrun_reg);
1034 	if (!reg->size)
1035 		return 0;
1036 
1037 	status = sci_serial_in(port, s->params->overrun_reg);
1038 	if (status & s->params->overrun_mask) {
1039 		status &= ~s->params->overrun_mask;
1040 		sci_serial_out(port, s->params->overrun_reg, status);
1041 
1042 		port->icount.overrun++;
1043 
1044 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1045 		tty_flip_buffer_push(tport);
1046 		copied++;
1047 	}
1048 
1049 	return copied;
1050 }
1051 
sci_handle_breaks(struct uart_port * port)1052 static int sci_handle_breaks(struct uart_port *port)
1053 {
1054 	int copied = 0;
1055 	unsigned short status = sci_serial_in(port, SCxSR);
1056 	struct tty_port *tport = &port->state->port;
1057 
1058 	if (uart_handle_break(port))
1059 		return 0;
1060 
1061 	if (status & SCxSR_BRK(port)) {
1062 		port->icount.brk++;
1063 
1064 		/* Notify of BREAK */
1065 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1066 			copied++;
1067 	}
1068 
1069 	if (copied)
1070 		tty_flip_buffer_push(tport);
1071 
1072 	copied += sci_handle_fifo_overrun(port);
1073 
1074 	return copied;
1075 }
1076 
scif_set_rtrg(struct uart_port * port,int rx_trig)1077 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1078 {
1079 	unsigned int bits;
1080 
1081 	if (rx_trig >= port->fifosize)
1082 		rx_trig = port->fifosize - 1;
1083 	if (rx_trig < 1)
1084 		rx_trig = 1;
1085 
1086 	/* HSCIF can be set to an arbitrary level. */
1087 	if (sci_getreg(port, HSRTRGR)->size) {
1088 		sci_serial_out(port, HSRTRGR, rx_trig);
1089 		return rx_trig;
1090 	}
1091 
1092 	switch (port->type) {
1093 	case PORT_SCIF:
1094 		if (rx_trig < 4) {
1095 			bits = 0;
1096 			rx_trig = 1;
1097 		} else if (rx_trig < 8) {
1098 			bits = SCFCR_RTRG0;
1099 			rx_trig = 4;
1100 		} else if (rx_trig < 14) {
1101 			bits = SCFCR_RTRG1;
1102 			rx_trig = 8;
1103 		} else {
1104 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1105 			rx_trig = 14;
1106 		}
1107 		break;
1108 	case PORT_SCIFA:
1109 	case PORT_SCIFB:
1110 		if (rx_trig < 16) {
1111 			bits = 0;
1112 			rx_trig = 1;
1113 		} else if (rx_trig < 32) {
1114 			bits = SCFCR_RTRG0;
1115 			rx_trig = 16;
1116 		} else if (rx_trig < 48) {
1117 			bits = SCFCR_RTRG1;
1118 			rx_trig = 32;
1119 		} else {
1120 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1121 			rx_trig = 48;
1122 		}
1123 		break;
1124 	default:
1125 		WARN(1, "unknown FIFO configuration");
1126 		return 1;
1127 	}
1128 
1129 	sci_serial_out(port, SCFCR,
1130 		       (sci_serial_in(port, SCFCR) &
1131 			~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1132 
1133 	return rx_trig;
1134 }
1135 
scif_rtrg_enabled(struct uart_port * port)1136 static int scif_rtrg_enabled(struct uart_port *port)
1137 {
1138 	if (sci_getreg(port, HSRTRGR)->size)
1139 		return sci_serial_in(port, HSRTRGR) != 0;
1140 	else
1141 		return (sci_serial_in(port, SCFCR) &
1142 			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1143 }
1144 
rx_fifo_timer_fn(struct timer_list * t)1145 static void rx_fifo_timer_fn(struct timer_list *t)
1146 {
1147 	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1148 	struct uart_port *port = &s->port;
1149 
1150 	dev_dbg(port->dev, "Rx timed out\n");
1151 	scif_set_rtrg(port, 1);
1152 }
1153 
rx_fifo_trigger_show(struct device * dev,struct device_attribute * attr,char * buf)1154 static ssize_t rx_fifo_trigger_show(struct device *dev,
1155 				    struct device_attribute *attr, char *buf)
1156 {
1157 	struct uart_port *port = dev_get_drvdata(dev);
1158 	struct sci_port *sci = to_sci_port(port);
1159 
1160 	return sprintf(buf, "%d\n", sci->rx_trigger);
1161 }
1162 
rx_fifo_trigger_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1163 static ssize_t rx_fifo_trigger_store(struct device *dev,
1164 				     struct device_attribute *attr,
1165 				     const char *buf, size_t count)
1166 {
1167 	struct uart_port *port = dev_get_drvdata(dev);
1168 	struct sci_port *sci = to_sci_port(port);
1169 	int ret;
1170 	long r;
1171 
1172 	ret = kstrtol(buf, 0, &r);
1173 	if (ret)
1174 		return ret;
1175 
1176 	sci->rx_trigger = scif_set_rtrg(port, r);
1177 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1178 		scif_set_rtrg(port, 1);
1179 
1180 	return count;
1181 }
1182 
1183 static DEVICE_ATTR_RW(rx_fifo_trigger);
1184 
rx_fifo_timeout_show(struct device * dev,struct device_attribute * attr,char * buf)1185 static ssize_t rx_fifo_timeout_show(struct device *dev,
1186 			       struct device_attribute *attr,
1187 			       char *buf)
1188 {
1189 	struct uart_port *port = dev_get_drvdata(dev);
1190 	struct sci_port *sci = to_sci_port(port);
1191 	int v;
1192 
1193 	if (port->type == PORT_HSCIF)
1194 		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1195 	else
1196 		v = sci->rx_fifo_timeout;
1197 
1198 	return sprintf(buf, "%d\n", v);
1199 }
1200 
rx_fifo_timeout_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1201 static ssize_t rx_fifo_timeout_store(struct device *dev,
1202 				struct device_attribute *attr,
1203 				const char *buf,
1204 				size_t count)
1205 {
1206 	struct uart_port *port = dev_get_drvdata(dev);
1207 	struct sci_port *sci = to_sci_port(port);
1208 	int ret;
1209 	long r;
1210 
1211 	ret = kstrtol(buf, 0, &r);
1212 	if (ret)
1213 		return ret;
1214 
1215 	if (port->type == PORT_HSCIF) {
1216 		if (r < 0 || r > 3)
1217 			return -EINVAL;
1218 		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1219 	} else {
1220 		sci->rx_fifo_timeout = r;
1221 		scif_set_rtrg(port, 1);
1222 		if (r > 0)
1223 			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1224 	}
1225 
1226 	return count;
1227 }
1228 
1229 static DEVICE_ATTR_RW(rx_fifo_timeout);
1230 
1231 
1232 #ifdef CONFIG_SERIAL_SH_SCI_DMA
sci_dma_tx_complete(void * arg)1233 static void sci_dma_tx_complete(void *arg)
1234 {
1235 	struct sci_port *s = arg;
1236 	struct uart_port *port = &s->port;
1237 	struct tty_port *tport = &port->state->port;
1238 	unsigned long flags;
1239 
1240 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1241 
1242 	uart_port_lock_irqsave(port, &flags);
1243 
1244 	uart_xmit_advance(port, s->tx_dma_len);
1245 
1246 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
1247 		uart_write_wakeup(port);
1248 
1249 	s->tx_occurred = true;
1250 
1251 	if (!kfifo_is_empty(&tport->xmit_fifo)) {
1252 		s->cookie_tx = 0;
1253 		schedule_work(&s->work_tx);
1254 	} else {
1255 		s->cookie_tx = -EINVAL;
1256 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1257 		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1258 			u16 ctrl = sci_serial_in(port, SCSCR);
1259 			sci_serial_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1260 			if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1261 				/* Switch irq from DMA to SCIF */
1262 				dmaengine_pause(s->chan_tx_saved);
1263 				enable_irq(s->irqs[SCIx_TXI_IRQ]);
1264 			}
1265 		}
1266 	}
1267 
1268 	uart_port_unlock_irqrestore(port, flags);
1269 }
1270 
1271 /* Locking: called with port lock held */
sci_dma_rx_push(struct sci_port * s,void * buf,size_t count)1272 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1273 {
1274 	struct uart_port *port = &s->port;
1275 	struct tty_port *tport = &port->state->port;
1276 	int copied;
1277 
1278 	copied = tty_insert_flip_string(tport, buf, count);
1279 	if (copied < count)
1280 		port->icount.buf_overrun++;
1281 
1282 	port->icount.rx += copied;
1283 
1284 	return copied;
1285 }
1286 
sci_dma_rx_find_active(struct sci_port * s)1287 static int sci_dma_rx_find_active(struct sci_port *s)
1288 {
1289 	unsigned int i;
1290 
1291 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1292 		if (s->active_rx == s->cookie_rx[i])
1293 			return i;
1294 
1295 	return -1;
1296 }
1297 
1298 /* Must only be called with uart_port_lock taken */
sci_dma_rx_chan_invalidate(struct sci_port * s)1299 static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1300 {
1301 	unsigned int i;
1302 
1303 	s->chan_rx = NULL;
1304 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1305 		s->cookie_rx[i] = -EINVAL;
1306 	s->active_rx = 0;
1307 }
1308 
sci_dma_rx_release(struct sci_port * s)1309 static void sci_dma_rx_release(struct sci_port *s)
1310 {
1311 	struct dma_chan *chan = s->chan_rx_saved;
1312 	struct uart_port *port = &s->port;
1313 	unsigned long flags;
1314 
1315 	uart_port_lock_irqsave(port, &flags);
1316 	s->chan_rx_saved = NULL;
1317 	sci_dma_rx_chan_invalidate(s);
1318 	uart_port_unlock_irqrestore(port, flags);
1319 
1320 	dmaengine_terminate_sync(chan);
1321 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1322 			  sg_dma_address(&s->sg_rx[0]));
1323 	dma_release_channel(chan);
1324 }
1325 
start_hrtimer_us(struct hrtimer * hrt,unsigned long usec)1326 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1327 {
1328 	long sec = usec / 1000000;
1329 	long nsec = (usec % 1000000) * 1000;
1330 	ktime_t t = ktime_set(sec, nsec);
1331 
1332 	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1333 }
1334 
sci_dma_rx_reenable_irq(struct sci_port * s)1335 static void sci_dma_rx_reenable_irq(struct sci_port *s)
1336 {
1337 	struct uart_port *port = &s->port;
1338 	u16 scr;
1339 
1340 	/* Direct new serial port interrupts back to CPU */
1341 	scr = sci_serial_in(port, SCSCR);
1342 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1343 	    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1344 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1345 		if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1346 			scif_set_rtrg(port, s->rx_trigger);
1347 		else
1348 			scr &= ~SCSCR_RDRQE;
1349 	}
1350 	sci_serial_out(port, SCSCR, scr | SCSCR_RIE);
1351 }
1352 
sci_dma_rx_complete(void * arg)1353 static void sci_dma_rx_complete(void *arg)
1354 {
1355 	struct sci_port *s = arg;
1356 	struct dma_chan *chan = s->chan_rx;
1357 	struct uart_port *port = &s->port;
1358 	struct dma_async_tx_descriptor *desc;
1359 	unsigned long flags;
1360 	int active, count = 0;
1361 
1362 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1363 		s->active_rx);
1364 
1365 	hrtimer_cancel(&s->rx_timer);
1366 
1367 	uart_port_lock_irqsave(port, &flags);
1368 
1369 	active = sci_dma_rx_find_active(s);
1370 	if (active >= 0)
1371 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1372 
1373 	if (count)
1374 		tty_flip_buffer_push(&port->state->port);
1375 
1376 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1377 				       DMA_DEV_TO_MEM,
1378 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1379 	if (!desc)
1380 		goto fail;
1381 
1382 	desc->callback = sci_dma_rx_complete;
1383 	desc->callback_param = s;
1384 	s->cookie_rx[active] = dmaengine_submit(desc);
1385 	if (dma_submit_error(s->cookie_rx[active]))
1386 		goto fail;
1387 
1388 	s->active_rx = s->cookie_rx[!active];
1389 
1390 	dma_async_issue_pending(chan);
1391 
1392 	uart_port_unlock_irqrestore(port, flags);
1393 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1394 		__func__, s->cookie_rx[active], active, s->active_rx);
1395 
1396 	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1397 
1398 	return;
1399 
1400 fail:
1401 	/* Switch to PIO */
1402 	dmaengine_terminate_async(chan);
1403 	sci_dma_rx_chan_invalidate(s);
1404 	sci_dma_rx_reenable_irq(s);
1405 	uart_port_unlock_irqrestore(port, flags);
1406 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1407 }
1408 
sci_dma_tx_release(struct sci_port * s)1409 static void sci_dma_tx_release(struct sci_port *s)
1410 {
1411 	struct dma_chan *chan = s->chan_tx_saved;
1412 
1413 	cancel_work_sync(&s->work_tx);
1414 	s->chan_tx_saved = s->chan_tx = NULL;
1415 	s->cookie_tx = -EINVAL;
1416 	dmaengine_terminate_sync(chan);
1417 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1418 			 DMA_TO_DEVICE);
1419 	dma_release_channel(chan);
1420 }
1421 
sci_dma_rx_submit(struct sci_port * s,bool port_lock_held)1422 static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1423 {
1424 	struct dma_chan *chan = s->chan_rx;
1425 	struct uart_port *port = &s->port;
1426 	unsigned long flags;
1427 	int i;
1428 
1429 	for (i = 0; i < 2; i++) {
1430 		struct scatterlist *sg = &s->sg_rx[i];
1431 		struct dma_async_tx_descriptor *desc;
1432 
1433 		desc = dmaengine_prep_slave_sg(chan,
1434 			sg, 1, DMA_DEV_TO_MEM,
1435 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1436 		if (!desc)
1437 			goto fail;
1438 
1439 		desc->callback = sci_dma_rx_complete;
1440 		desc->callback_param = s;
1441 		s->cookie_rx[i] = dmaengine_submit(desc);
1442 		if (dma_submit_error(s->cookie_rx[i]))
1443 			goto fail;
1444 
1445 	}
1446 
1447 	s->active_rx = s->cookie_rx[0];
1448 
1449 	dma_async_issue_pending(chan);
1450 	return 0;
1451 
1452 fail:
1453 	/* Switch to PIO */
1454 	if (!port_lock_held)
1455 		uart_port_lock_irqsave(port, &flags);
1456 	if (i)
1457 		dmaengine_terminate_async(chan);
1458 	sci_dma_rx_chan_invalidate(s);
1459 	sci_start_rx(port);
1460 	if (!port_lock_held)
1461 		uart_port_unlock_irqrestore(port, flags);
1462 	return -EAGAIN;
1463 }
1464 
sci_dma_tx_work_fn(struct work_struct * work)1465 static void sci_dma_tx_work_fn(struct work_struct *work)
1466 {
1467 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1468 	struct dma_async_tx_descriptor *desc;
1469 	struct dma_chan *chan = s->chan_tx;
1470 	struct uart_port *port = &s->port;
1471 	struct tty_port *tport = &port->state->port;
1472 	unsigned long flags;
1473 	unsigned int tail;
1474 	dma_addr_t buf;
1475 
1476 	/*
1477 	 * DMA is idle now.
1478 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1479 	 * offsets and lengths. Since it is a circular buffer, we have to
1480 	 * transmit till the end, and then the rest. Take the port lock to get a
1481 	 * consistent xmit buffer state.
1482 	 */
1483 	uart_port_lock_irq(port);
1484 	s->tx_dma_len = kfifo_out_linear(&tport->xmit_fifo, &tail,
1485 			UART_XMIT_SIZE);
1486 	buf = s->tx_dma_addr + tail;
1487 	if (!s->tx_dma_len) {
1488 		/* Transmit buffer has been flushed */
1489 		uart_port_unlock_irq(port);
1490 		return;
1491 	}
1492 
1493 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1494 					   DMA_MEM_TO_DEV,
1495 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1496 	if (!desc) {
1497 		uart_port_unlock_irq(port);
1498 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1499 		goto switch_to_pio;
1500 	}
1501 
1502 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1503 				   DMA_TO_DEVICE);
1504 
1505 	desc->callback = sci_dma_tx_complete;
1506 	desc->callback_param = s;
1507 	s->cookie_tx = dmaengine_submit(desc);
1508 	if (dma_submit_error(s->cookie_tx)) {
1509 		uart_port_unlock_irq(port);
1510 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1511 		goto switch_to_pio;
1512 	}
1513 
1514 	uart_port_unlock_irq(port);
1515 	dev_dbg(port->dev, "%s: %p: %u, cookie %d\n",
1516 		__func__, tport->xmit_buf, tail, s->cookie_tx);
1517 
1518 	dma_async_issue_pending(chan);
1519 	return;
1520 
1521 switch_to_pio:
1522 	uart_port_lock_irqsave(port, &flags);
1523 	s->chan_tx = NULL;
1524 	sci_start_tx(port);
1525 	uart_port_unlock_irqrestore(port, flags);
1526 	return;
1527 }
1528 
sci_dma_rx_timer_fn(struct hrtimer * t)1529 static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1530 {
1531 	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1532 	struct dma_chan *chan = s->chan_rx;
1533 	struct uart_port *port = &s->port;
1534 	struct dma_tx_state state;
1535 	enum dma_status status;
1536 	unsigned long flags;
1537 	unsigned int read;
1538 	int active, count;
1539 
1540 	dev_dbg(port->dev, "DMA Rx timed out\n");
1541 
1542 	uart_port_lock_irqsave(port, &flags);
1543 
1544 	active = sci_dma_rx_find_active(s);
1545 	if (active < 0) {
1546 		uart_port_unlock_irqrestore(port, flags);
1547 		return HRTIMER_NORESTART;
1548 	}
1549 
1550 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1551 	if (status == DMA_COMPLETE) {
1552 		uart_port_unlock_irqrestore(port, flags);
1553 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1554 			s->active_rx, active);
1555 
1556 		/* Let packet complete handler take care of the packet */
1557 		return HRTIMER_NORESTART;
1558 	}
1559 
1560 	dmaengine_pause(chan);
1561 
1562 	/*
1563 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1564 	 * data keeps on coming until transaction is complete so check
1565 	 * for DMA_COMPLETE again
1566 	 * Let packet complete handler take care of the packet
1567 	 */
1568 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1569 	if (status == DMA_COMPLETE) {
1570 		uart_port_unlock_irqrestore(port, flags);
1571 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1572 		return HRTIMER_NORESTART;
1573 	}
1574 
1575 	/* Handle incomplete DMA receive */
1576 	dmaengine_terminate_async(s->chan_rx);
1577 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1578 
1579 	if (read) {
1580 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1581 		if (count)
1582 			tty_flip_buffer_push(&port->state->port);
1583 	}
1584 
1585 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1586 	    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1587 		sci_dma_rx_submit(s, true);
1588 
1589 	sci_dma_rx_reenable_irq(s);
1590 
1591 	uart_port_unlock_irqrestore(port, flags);
1592 
1593 	return HRTIMER_NORESTART;
1594 }
1595 
sci_request_dma_chan(struct uart_port * port,enum dma_transfer_direction dir)1596 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1597 					     enum dma_transfer_direction dir)
1598 {
1599 	struct dma_chan *chan;
1600 	struct dma_slave_config cfg;
1601 	int ret;
1602 
1603 	chan = dma_request_chan(port->dev, dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1604 	if (IS_ERR(chan)) {
1605 		dev_dbg(port->dev, "dma_request_chan failed\n");
1606 		return NULL;
1607 	}
1608 
1609 	memset(&cfg, 0, sizeof(cfg));
1610 	cfg.direction = dir;
1611 	cfg.dst_addr = port->mapbase +
1612 		(sci_getreg(port, SCxTDR)->offset << port->regshift);
1613 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1614 	cfg.src_addr = port->mapbase +
1615 		(sci_getreg(port, SCxRDR)->offset << port->regshift);
1616 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1617 
1618 	ret = dmaengine_slave_config(chan, &cfg);
1619 	if (ret) {
1620 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1621 		dma_release_channel(chan);
1622 		return NULL;
1623 	}
1624 
1625 	return chan;
1626 }
1627 
sci_request_dma(struct uart_port * port)1628 static void sci_request_dma(struct uart_port *port)
1629 {
1630 	struct sci_port *s = to_sci_port(port);
1631 	struct tty_port *tport = &port->state->port;
1632 	struct dma_chan *chan;
1633 
1634 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1635 
1636 	/*
1637 	 * DMA on console may interfere with Kernel log messages which use
1638 	 * plain putchar(). So, simply don't use it with a console.
1639 	 */
1640 	if (uart_console(port))
1641 		return;
1642 
1643 	if (!port->dev->of_node)
1644 		return;
1645 
1646 	s->cookie_tx = -EINVAL;
1647 
1648 	/*
1649 	 * Don't request a dma channel if no channel was specified
1650 	 * in the device tree.
1651 	 */
1652 	if (!of_property_present(port->dev->of_node, "dmas"))
1653 		return;
1654 
1655 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1656 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1657 	if (chan) {
1658 		/* UART circular tx buffer is an aligned page. */
1659 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1660 						tport->xmit_buf,
1661 						UART_XMIT_SIZE,
1662 						DMA_TO_DEVICE);
1663 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1664 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1665 			dma_release_channel(chan);
1666 		} else {
1667 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1668 				__func__, UART_XMIT_SIZE,
1669 				tport->xmit_buf, &s->tx_dma_addr);
1670 
1671 			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1672 			s->chan_tx_saved = s->chan_tx = chan;
1673 		}
1674 	}
1675 
1676 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1677 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1678 	if (chan) {
1679 		unsigned int i;
1680 		dma_addr_t dma;
1681 		void *buf;
1682 
1683 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1684 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1685 					 &dma, GFP_KERNEL);
1686 		if (!buf) {
1687 			dev_warn(port->dev,
1688 				 "Failed to allocate Rx dma buffer, using PIO\n");
1689 			dma_release_channel(chan);
1690 			return;
1691 		}
1692 
1693 		for (i = 0; i < 2; i++) {
1694 			struct scatterlist *sg = &s->sg_rx[i];
1695 
1696 			sg_init_table(sg, 1);
1697 			s->rx_buf[i] = buf;
1698 			sg_dma_address(sg) = dma;
1699 			sg_dma_len(sg) = s->buf_len_rx;
1700 
1701 			buf += s->buf_len_rx;
1702 			dma += s->buf_len_rx;
1703 		}
1704 
1705 		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1706 		s->rx_timer.function = sci_dma_rx_timer_fn;
1707 
1708 		s->chan_rx_saved = s->chan_rx = chan;
1709 
1710 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1711 		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1712 			sci_dma_rx_submit(s, false);
1713 	}
1714 }
1715 
sci_free_dma(struct uart_port * port)1716 static void sci_free_dma(struct uart_port *port)
1717 {
1718 	struct sci_port *s = to_sci_port(port);
1719 
1720 	if (s->chan_tx_saved)
1721 		sci_dma_tx_release(s);
1722 	if (s->chan_rx_saved)
1723 		sci_dma_rx_release(s);
1724 }
1725 
sci_flush_buffer(struct uart_port * port)1726 static void sci_flush_buffer(struct uart_port *port)
1727 {
1728 	struct sci_port *s = to_sci_port(port);
1729 
1730 	/*
1731 	 * In uart_flush_buffer(), the xmit circular buffer has just been
1732 	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1733 	 * pending transfers
1734 	 */
1735 	s->tx_dma_len = 0;
1736 	if (s->chan_tx) {
1737 		dmaengine_terminate_async(s->chan_tx);
1738 		s->cookie_tx = -EINVAL;
1739 	}
1740 }
1741 
sci_dma_check_tx_occurred(struct sci_port * s)1742 static void sci_dma_check_tx_occurred(struct sci_port *s)
1743 {
1744 	struct dma_tx_state state;
1745 	enum dma_status status;
1746 
1747 	if (!s->chan_tx)
1748 		return;
1749 
1750 	status = dmaengine_tx_status(s->chan_tx, s->cookie_tx, &state);
1751 	if (status == DMA_COMPLETE || status == DMA_IN_PROGRESS)
1752 		s->tx_occurred = true;
1753 }
1754 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
sci_request_dma(struct uart_port * port)1755 static inline void sci_request_dma(struct uart_port *port)
1756 {
1757 }
1758 
sci_free_dma(struct uart_port * port)1759 static inline void sci_free_dma(struct uart_port *port)
1760 {
1761 }
1762 
sci_dma_check_tx_occurred(struct sci_port * s)1763 static void sci_dma_check_tx_occurred(struct sci_port *s)
1764 {
1765 }
1766 
1767 #define sci_flush_buffer	NULL
1768 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1769 
sci_rx_interrupt(int irq,void * ptr)1770 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1771 {
1772 	struct uart_port *port = ptr;
1773 	struct sci_port *s = to_sci_port(port);
1774 
1775 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1776 	if (s->chan_rx) {
1777 		u16 scr = sci_serial_in(port, SCSCR);
1778 		u16 ssr = sci_serial_in(port, SCxSR);
1779 
1780 		/* Disable future Rx interrupts */
1781 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1782 		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1783 			disable_irq_nosync(s->irqs[SCIx_RXI_IRQ]);
1784 			if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1785 				scif_set_rtrg(port, 1);
1786 				scr |= SCSCR_RIE;
1787 			} else {
1788 				scr |= SCSCR_RDRQE;
1789 			}
1790 		} else {
1791 			if (sci_dma_rx_submit(s, false) < 0)
1792 				goto handle_pio;
1793 
1794 			scr &= ~SCSCR_RIE;
1795 		}
1796 		sci_serial_out(port, SCSCR, scr);
1797 		/* Clear current interrupt */
1798 		sci_serial_out(port, SCxSR,
1799 			       ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1800 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1801 			jiffies, s->rx_timeout);
1802 		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1803 
1804 		return IRQ_HANDLED;
1805 	}
1806 
1807 handle_pio:
1808 #endif
1809 
1810 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1811 		if (!scif_rtrg_enabled(port))
1812 			scif_set_rtrg(port, s->rx_trigger);
1813 
1814 		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1815 			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1816 	}
1817 
1818 	/* I think sci_receive_chars has to be called irrespective
1819 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1820 	 * to be disabled?
1821 	 */
1822 	sci_receive_chars(port);
1823 
1824 	return IRQ_HANDLED;
1825 }
1826 
sci_tx_interrupt(int irq,void * ptr)1827 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1828 {
1829 	struct uart_port *port = ptr;
1830 	unsigned long flags;
1831 
1832 	uart_port_lock_irqsave(port, &flags);
1833 	sci_transmit_chars(port);
1834 	uart_port_unlock_irqrestore(port, flags);
1835 
1836 	return IRQ_HANDLED;
1837 }
1838 
sci_tx_end_interrupt(int irq,void * ptr)1839 static irqreturn_t sci_tx_end_interrupt(int irq, void *ptr)
1840 {
1841 	struct uart_port *port = ptr;
1842 	unsigned long flags;
1843 	unsigned short ctrl;
1844 
1845 	if (port->type != PORT_SCI)
1846 		return sci_tx_interrupt(irq, ptr);
1847 
1848 	uart_port_lock_irqsave(port, &flags);
1849 	ctrl = sci_serial_in(port, SCSCR);
1850 	ctrl &= ~(SCSCR_TE | SCSCR_TEIE);
1851 	sci_serial_out(port, SCSCR, ctrl);
1852 	uart_port_unlock_irqrestore(port, flags);
1853 
1854 	return IRQ_HANDLED;
1855 }
1856 
sci_br_interrupt(int irq,void * ptr)1857 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1858 {
1859 	struct uart_port *port = ptr;
1860 
1861 	/* Handle BREAKs */
1862 	sci_handle_breaks(port);
1863 
1864 	/* drop invalid character received before break was detected */
1865 	sci_serial_in(port, SCxRDR);
1866 
1867 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1868 
1869 	return IRQ_HANDLED;
1870 }
1871 
sci_er_interrupt(int irq,void * ptr)1872 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1873 {
1874 	struct uart_port *port = ptr;
1875 	struct sci_port *s = to_sci_port(port);
1876 
1877 	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1878 		/* Break and Error interrupts are muxed */
1879 		unsigned short ssr_status = sci_serial_in(port, SCxSR);
1880 
1881 		/* Break Interrupt */
1882 		if (ssr_status & SCxSR_BRK(port))
1883 			sci_br_interrupt(irq, ptr);
1884 
1885 		/* Break only? */
1886 		if (!(ssr_status & SCxSR_ERRORS(port)))
1887 			return IRQ_HANDLED;
1888 	}
1889 
1890 	/* Handle errors */
1891 	if (port->type == PORT_SCI) {
1892 		if (sci_handle_errors(port)) {
1893 			/* discard character in rx buffer */
1894 			sci_serial_in(port, SCxSR);
1895 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1896 		}
1897 	} else {
1898 		sci_handle_fifo_overrun(port);
1899 		if (!s->chan_rx)
1900 			sci_receive_chars(port);
1901 	}
1902 
1903 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1904 
1905 	/* Kick the transmission */
1906 	if (!s->chan_tx)
1907 		sci_tx_interrupt(irq, ptr);
1908 
1909 	return IRQ_HANDLED;
1910 }
1911 
sci_mpxed_interrupt(int irq,void * ptr)1912 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1913 {
1914 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1915 	struct uart_port *port = ptr;
1916 	struct sci_port *s = to_sci_port(port);
1917 	irqreturn_t ret = IRQ_NONE;
1918 
1919 	ssr_status = sci_serial_in(port, SCxSR);
1920 	scr_status = sci_serial_in(port, SCSCR);
1921 	if (s->params->overrun_reg == SCxSR)
1922 		orer_status = ssr_status;
1923 	else if (sci_getreg(port, s->params->overrun_reg)->size)
1924 		orer_status = sci_serial_in(port, s->params->overrun_reg);
1925 
1926 	err_enabled = scr_status & port_rx_irq_mask(port);
1927 
1928 	/* Tx Interrupt */
1929 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1930 	    !s->chan_tx)
1931 		ret = sci_tx_interrupt(irq, ptr);
1932 
1933 	/*
1934 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1935 	 * DR flags
1936 	 */
1937 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1938 	    (scr_status & SCSCR_RIE))
1939 		ret = sci_rx_interrupt(irq, ptr);
1940 
1941 	/* Error Interrupt */
1942 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1943 		ret = sci_er_interrupt(irq, ptr);
1944 
1945 	/* Break Interrupt */
1946 	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1947 	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
1948 		ret = sci_br_interrupt(irq, ptr);
1949 
1950 	/* Overrun Interrupt */
1951 	if (orer_status & s->params->overrun_mask) {
1952 		sci_handle_fifo_overrun(port);
1953 		ret = IRQ_HANDLED;
1954 	}
1955 
1956 	return ret;
1957 }
1958 
1959 static const struct sci_irq_desc {
1960 	const char	*desc;
1961 	irq_handler_t	handler;
1962 } sci_irq_desc[] = {
1963 	/*
1964 	 * Split out handlers, the default case.
1965 	 */
1966 	[SCIx_ERI_IRQ] = {
1967 		.desc = "rx err",
1968 		.handler = sci_er_interrupt,
1969 	},
1970 
1971 	[SCIx_RXI_IRQ] = {
1972 		.desc = "rx full",
1973 		.handler = sci_rx_interrupt,
1974 	},
1975 
1976 	[SCIx_TXI_IRQ] = {
1977 		.desc = "tx empty",
1978 		.handler = sci_tx_interrupt,
1979 	},
1980 
1981 	[SCIx_BRI_IRQ] = {
1982 		.desc = "break",
1983 		.handler = sci_br_interrupt,
1984 	},
1985 
1986 	[SCIx_DRI_IRQ] = {
1987 		.desc = "rx ready",
1988 		.handler = sci_rx_interrupt,
1989 	},
1990 
1991 	[SCIx_TEI_IRQ] = {
1992 		.desc = "tx end",
1993 		.handler = sci_tx_end_interrupt,
1994 	},
1995 
1996 	/*
1997 	 * Special muxed handler.
1998 	 */
1999 	[SCIx_MUX_IRQ] = {
2000 		.desc = "mux",
2001 		.handler = sci_mpxed_interrupt,
2002 	},
2003 };
2004 
sci_request_irq(struct sci_port * port)2005 static int sci_request_irq(struct sci_port *port)
2006 {
2007 	struct uart_port *up = &port->port;
2008 	int i, j, w, ret = 0;
2009 
2010 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
2011 		const struct sci_irq_desc *desc;
2012 		int irq;
2013 
2014 		/* Check if already registered (muxed) */
2015 		for (w = 0; w < i; w++)
2016 			if (port->irqs[w] == port->irqs[i])
2017 				w = i + 1;
2018 		if (w > i)
2019 			continue;
2020 
2021 		if (SCIx_IRQ_IS_MUXED(port)) {
2022 			i = SCIx_MUX_IRQ;
2023 			irq = up->irq;
2024 		} else {
2025 			irq = port->irqs[i];
2026 
2027 			/*
2028 			 * Certain port types won't support all of the
2029 			 * available interrupt sources.
2030 			 */
2031 			if (unlikely(irq < 0))
2032 				continue;
2033 		}
2034 
2035 		desc = sci_irq_desc + i;
2036 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
2037 					    dev_name(up->dev), desc->desc);
2038 		if (!port->irqstr[j]) {
2039 			ret = -ENOMEM;
2040 			goto out_nomem;
2041 		}
2042 
2043 		ret = request_irq(irq, desc->handler, up->irqflags,
2044 				  port->irqstr[j], port);
2045 		if (unlikely(ret)) {
2046 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
2047 			goto out_noirq;
2048 		}
2049 	}
2050 
2051 	return 0;
2052 
2053 out_noirq:
2054 	while (--i >= 0)
2055 		free_irq(port->irqs[i], port);
2056 
2057 out_nomem:
2058 	while (--j >= 0)
2059 		kfree(port->irqstr[j]);
2060 
2061 	return ret;
2062 }
2063 
sci_free_irq(struct sci_port * port)2064 static void sci_free_irq(struct sci_port *port)
2065 {
2066 	int i, j;
2067 
2068 	/*
2069 	 * Intentionally in reverse order so we iterate over the muxed
2070 	 * IRQ first.
2071 	 */
2072 	for (i = 0; i < SCIx_NR_IRQS; i++) {
2073 		int irq = port->irqs[i];
2074 
2075 		/*
2076 		 * Certain port types won't support all of the available
2077 		 * interrupt sources.
2078 		 */
2079 		if (unlikely(irq < 0))
2080 			continue;
2081 
2082 		/* Check if already freed (irq was muxed) */
2083 		for (j = 0; j < i; j++)
2084 			if (port->irqs[j] == irq)
2085 				j = i + 1;
2086 		if (j > i)
2087 			continue;
2088 
2089 		free_irq(port->irqs[i], port);
2090 		kfree(port->irqstr[i]);
2091 
2092 		if (SCIx_IRQ_IS_MUXED(port)) {
2093 			/* If there's only one IRQ, we're done. */
2094 			return;
2095 		}
2096 	}
2097 }
2098 
sci_tx_empty(struct uart_port * port)2099 static unsigned int sci_tx_empty(struct uart_port *port)
2100 {
2101 	unsigned short status = sci_serial_in(port, SCxSR);
2102 	unsigned short in_tx_fifo = sci_txfill(port);
2103 	struct sci_port *s = to_sci_port(port);
2104 
2105 	sci_dma_check_tx_occurred(s);
2106 
2107 	if (!s->tx_occurred)
2108 		return TIOCSER_TEMT;
2109 
2110 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2111 }
2112 
sci_set_rts(struct uart_port * port,bool state)2113 static void sci_set_rts(struct uart_port *port, bool state)
2114 {
2115 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2116 		u16 data = sci_serial_in(port, SCPDR);
2117 
2118 		/* Active low */
2119 		if (state)
2120 			data &= ~SCPDR_RTSD;
2121 		else
2122 			data |= SCPDR_RTSD;
2123 		sci_serial_out(port, SCPDR, data);
2124 
2125 		/* RTS# is output */
2126 		sci_serial_out(port, SCPCR,
2127 			       sci_serial_in(port, SCPCR) | SCPCR_RTSC);
2128 	} else if (sci_getreg(port, SCSPTR)->size) {
2129 		u16 ctrl = sci_serial_in(port, SCSPTR);
2130 
2131 		/* Active low */
2132 		if (state)
2133 			ctrl &= ~SCSPTR_RTSDT;
2134 		else
2135 			ctrl |= SCSPTR_RTSDT;
2136 		sci_serial_out(port, SCSPTR, ctrl);
2137 	}
2138 }
2139 
sci_get_cts(struct uart_port * port)2140 static bool sci_get_cts(struct uart_port *port)
2141 {
2142 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2143 		/* Active low */
2144 		return !(sci_serial_in(port, SCPDR) & SCPDR_CTSD);
2145 	} else if (sci_getreg(port, SCSPTR)->size) {
2146 		/* Active low */
2147 		return !(sci_serial_in(port, SCSPTR) & SCSPTR_CTSDT);
2148 	}
2149 
2150 	return true;
2151 }
2152 
2153 /*
2154  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2155  * CTS/RTS is supported in hardware by at least one port and controlled
2156  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2157  * handled via the ->init_pins() op, which is a bit of a one-way street,
2158  * lacking any ability to defer pin control -- this will later be
2159  * converted over to the GPIO framework).
2160  *
2161  * Other modes (such as loopback) are supported generically on certain
2162  * port types, but not others. For these it's sufficient to test for the
2163  * existence of the support register and simply ignore the port type.
2164  */
sci_set_mctrl(struct uart_port * port,unsigned int mctrl)2165 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2166 {
2167 	struct sci_port *s = to_sci_port(port);
2168 
2169 	if (mctrl & TIOCM_LOOP) {
2170 		const struct plat_sci_reg *reg;
2171 
2172 		/*
2173 		 * Standard loopback mode for SCFCR ports.
2174 		 */
2175 		reg = sci_getreg(port, SCFCR);
2176 		if (reg->size)
2177 			sci_serial_out(port, SCFCR,
2178 				       sci_serial_in(port, SCFCR) | SCFCR_LOOP);
2179 	}
2180 
2181 	mctrl_gpio_set(s->gpios, mctrl);
2182 
2183 	if (!s->has_rtscts)
2184 		return;
2185 
2186 	if (!(mctrl & TIOCM_RTS)) {
2187 		/* Disable Auto RTS */
2188 		if (s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE)
2189 			sci_serial_out(port, SCFCR,
2190 				       sci_serial_in(port, SCFCR) & ~SCFCR_MCE);
2191 
2192 		/* Clear RTS */
2193 		sci_set_rts(port, 0);
2194 	} else if (s->autorts) {
2195 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2196 			/* Enable RTS# pin function */
2197 			sci_serial_out(port, SCPCR,
2198 				sci_serial_in(port, SCPCR) & ~SCPCR_RTSC);
2199 		}
2200 
2201 		/* Enable Auto RTS */
2202 		if (s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE)
2203 			sci_serial_out(port, SCFCR,
2204 				       sci_serial_in(port, SCFCR) | SCFCR_MCE);
2205 	} else {
2206 		/* Set RTS */
2207 		sci_set_rts(port, 1);
2208 	}
2209 }
2210 
sci_get_mctrl(struct uart_port * port)2211 static unsigned int sci_get_mctrl(struct uart_port *port)
2212 {
2213 	struct sci_port *s = to_sci_port(port);
2214 	struct mctrl_gpios *gpios = s->gpios;
2215 	unsigned int mctrl = 0;
2216 
2217 	mctrl_gpio_get(gpios, &mctrl);
2218 
2219 	/*
2220 	 * CTS/RTS is handled in hardware when supported, while nothing
2221 	 * else is wired up.
2222 	 */
2223 	if (s->autorts) {
2224 		if (sci_get_cts(port))
2225 			mctrl |= TIOCM_CTS;
2226 	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2227 		mctrl |= TIOCM_CTS;
2228 	}
2229 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2230 		mctrl |= TIOCM_DSR;
2231 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2232 		mctrl |= TIOCM_CAR;
2233 
2234 	return mctrl;
2235 }
2236 
sci_enable_ms(struct uart_port * port)2237 static void sci_enable_ms(struct uart_port *port)
2238 {
2239 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2240 }
2241 
sci_break_ctl(struct uart_port * port,int break_state)2242 static void sci_break_ctl(struct uart_port *port, int break_state)
2243 {
2244 	unsigned short scscr, scsptr;
2245 	unsigned long flags;
2246 
2247 	/* check whether the port has SCSPTR */
2248 	if (!sci_getreg(port, SCSPTR)->size) {
2249 		/*
2250 		 * Not supported by hardware. Most parts couple break and rx
2251 		 * interrupts together, with break detection always enabled.
2252 		 */
2253 		return;
2254 	}
2255 
2256 	uart_port_lock_irqsave(port, &flags);
2257 	scsptr = sci_serial_in(port, SCSPTR);
2258 	scscr = sci_serial_in(port, SCSCR);
2259 
2260 	if (break_state == -1) {
2261 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2262 		scscr &= ~SCSCR_TE;
2263 	} else {
2264 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2265 		scscr |= SCSCR_TE;
2266 	}
2267 
2268 	sci_serial_out(port, SCSPTR, scsptr);
2269 	sci_serial_out(port, SCSCR, scscr);
2270 	uart_port_unlock_irqrestore(port, flags);
2271 }
2272 
sci_startup(struct uart_port * port)2273 static int sci_startup(struct uart_port *port)
2274 {
2275 	struct sci_port *s = to_sci_port(port);
2276 	int ret;
2277 
2278 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2279 
2280 	s->tx_occurred = false;
2281 	sci_request_dma(port);
2282 
2283 	ret = sci_request_irq(s);
2284 	if (unlikely(ret < 0)) {
2285 		sci_free_dma(port);
2286 		return ret;
2287 	}
2288 
2289 	return 0;
2290 }
2291 
sci_shutdown(struct uart_port * port)2292 static void sci_shutdown(struct uart_port *port)
2293 {
2294 	struct sci_port *s = to_sci_port(port);
2295 	unsigned long flags;
2296 	u16 scr;
2297 
2298 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2299 
2300 	s->autorts = false;
2301 	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2302 
2303 	uart_port_lock_irqsave(port, &flags);
2304 	sci_stop_rx(port);
2305 	sci_stop_tx(port);
2306 	/*
2307 	 * Stop RX and TX, disable related interrupts, keep clock source
2308 	 * and HSCIF TOT bits
2309 	 */
2310 	scr = sci_serial_in(port, SCSCR);
2311 	sci_serial_out(port, SCSCR,
2312 		       scr & (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2313 	uart_port_unlock_irqrestore(port, flags);
2314 
2315 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2316 	if (s->chan_rx_saved) {
2317 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2318 			port->line);
2319 		hrtimer_cancel(&s->rx_timer);
2320 	}
2321 #endif
2322 
2323 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2324 		del_timer_sync(&s->rx_fifo_timer);
2325 	sci_free_irq(s);
2326 	sci_free_dma(port);
2327 }
2328 
sci_sck_calc(struct sci_port * s,unsigned int bps,unsigned int * srr)2329 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2330 			unsigned int *srr)
2331 {
2332 	unsigned long freq = s->clk_rates[SCI_SCK];
2333 	int err, min_err = INT_MAX;
2334 	unsigned int sr;
2335 
2336 	if (s->port.type != PORT_HSCIF)
2337 		freq *= 2;
2338 
2339 	for_each_sr(sr, s) {
2340 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2341 		if (abs(err) >= abs(min_err))
2342 			continue;
2343 
2344 		min_err = err;
2345 		*srr = sr - 1;
2346 
2347 		if (!err)
2348 			break;
2349 	}
2350 
2351 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2352 		*srr + 1);
2353 	return min_err;
2354 }
2355 
sci_brg_calc(struct sci_port * s,unsigned int bps,unsigned long freq,unsigned int * dlr,unsigned int * srr)2356 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2357 			unsigned long freq, unsigned int *dlr,
2358 			unsigned int *srr)
2359 {
2360 	int err, min_err = INT_MAX;
2361 	unsigned int sr, dl;
2362 
2363 	if (s->port.type != PORT_HSCIF)
2364 		freq *= 2;
2365 
2366 	for_each_sr(sr, s) {
2367 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2368 		dl = clamp(dl, 1U, 65535U);
2369 
2370 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2371 		if (abs(err) >= abs(min_err))
2372 			continue;
2373 
2374 		min_err = err;
2375 		*dlr = dl;
2376 		*srr = sr - 1;
2377 
2378 		if (!err)
2379 			break;
2380 	}
2381 
2382 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2383 		min_err, *dlr, *srr + 1);
2384 	return min_err;
2385 }
2386 
2387 /* calculate sample rate, BRR, and clock select */
sci_scbrr_calc(struct sci_port * s,unsigned int bps,unsigned int * brr,unsigned int * srr,unsigned int * cks)2388 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2389 			  unsigned int *brr, unsigned int *srr,
2390 			  unsigned int *cks)
2391 {
2392 	unsigned long freq = s->clk_rates[SCI_FCK];
2393 	unsigned int sr, br, prediv, scrate, c;
2394 	int err, min_err = INT_MAX;
2395 
2396 	if (s->port.type != PORT_HSCIF)
2397 		freq *= 2;
2398 
2399 	/*
2400 	 * Find the combination of sample rate and clock select with the
2401 	 * smallest deviation from the desired baud rate.
2402 	 * Prefer high sample rates to maximise the receive margin.
2403 	 *
2404 	 * M: Receive margin (%)
2405 	 * N: Ratio of bit rate to clock (N = sampling rate)
2406 	 * D: Clock duty (D = 0 to 1.0)
2407 	 * L: Frame length (L = 9 to 12)
2408 	 * F: Absolute value of clock frequency deviation
2409 	 *
2410 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2411 	 *      (|D - 0.5| / N * (1 + F))|
2412 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2413 	 */
2414 	for_each_sr(sr, s) {
2415 		for (c = 0; c <= 3; c++) {
2416 			/* integerized formulas from HSCIF documentation */
2417 			prediv = sr << (2 * c + 1);
2418 
2419 			/*
2420 			 * We need to calculate:
2421 			 *
2422 			 *     br = freq / (prediv * bps) clamped to [1..256]
2423 			 *     err = freq / (br * prediv) - bps
2424 			 *
2425 			 * Watch out for overflow when calculating the desired
2426 			 * sampling clock rate!
2427 			 */
2428 			if (bps > UINT_MAX / prediv)
2429 				break;
2430 
2431 			scrate = prediv * bps;
2432 			br = DIV_ROUND_CLOSEST(freq, scrate);
2433 			br = clamp(br, 1U, 256U);
2434 
2435 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2436 			if (abs(err) >= abs(min_err))
2437 				continue;
2438 
2439 			min_err = err;
2440 			*brr = br - 1;
2441 			*srr = sr - 1;
2442 			*cks = c;
2443 
2444 			if (!err)
2445 				goto found;
2446 		}
2447 	}
2448 
2449 found:
2450 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2451 		min_err, *brr, *srr + 1, *cks);
2452 	return min_err;
2453 }
2454 
sci_reset(struct uart_port * port)2455 static void sci_reset(struct uart_port *port)
2456 {
2457 	const struct plat_sci_reg *reg;
2458 	unsigned int status;
2459 	struct sci_port *s = to_sci_port(port);
2460 
2461 	sci_serial_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2462 
2463 	reg = sci_getreg(port, SCFCR);
2464 	if (reg->size)
2465 		sci_serial_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2466 
2467 	sci_clear_SCxSR(port,
2468 			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2469 			SCxSR_BREAK_CLEAR(port));
2470 	if (sci_getreg(port, SCLSR)->size) {
2471 		status = sci_serial_in(port, SCLSR);
2472 		status &= ~(SCLSR_TO | SCLSR_ORER);
2473 		sci_serial_out(port, SCLSR, status);
2474 	}
2475 
2476 	if (s->rx_trigger > 1) {
2477 		if (s->rx_fifo_timeout) {
2478 			scif_set_rtrg(port, 1);
2479 			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2480 		} else {
2481 			if (port->type == PORT_SCIFA ||
2482 			    port->type == PORT_SCIFB)
2483 				scif_set_rtrg(port, 1);
2484 			else
2485 				scif_set_rtrg(port, s->rx_trigger);
2486 		}
2487 	}
2488 }
2489 
sci_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)2490 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2491 		            const struct ktermios *old)
2492 {
2493 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2494 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2495 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2496 	struct sci_port *s = to_sci_port(port);
2497 	const struct plat_sci_reg *reg;
2498 	int min_err = INT_MAX, err;
2499 	unsigned long max_freq = 0;
2500 	int best_clk = -1;
2501 	unsigned long flags;
2502 
2503 	if ((termios->c_cflag & CSIZE) == CS7) {
2504 		smr_val |= SCSMR_CHR;
2505 	} else {
2506 		termios->c_cflag &= ~CSIZE;
2507 		termios->c_cflag |= CS8;
2508 	}
2509 	if (termios->c_cflag & PARENB)
2510 		smr_val |= SCSMR_PE;
2511 	if (termios->c_cflag & PARODD)
2512 		smr_val |= SCSMR_PE | SCSMR_ODD;
2513 	if (termios->c_cflag & CSTOPB)
2514 		smr_val |= SCSMR_STOP;
2515 
2516 	/*
2517 	 * earlyprintk comes here early on with port->uartclk set to zero.
2518 	 * the clock framework is not up and running at this point so here
2519 	 * we assume that 115200 is the maximum baud rate. please note that
2520 	 * the baud rate is not programmed during earlyprintk - it is assumed
2521 	 * that the previous boot loader has enabled required clocks and
2522 	 * setup the baud rate generator hardware for us already.
2523 	 */
2524 	if (!port->uartclk) {
2525 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2526 		goto done;
2527 	}
2528 
2529 	for (i = 0; i < SCI_NUM_CLKS; i++)
2530 		max_freq = max(max_freq, s->clk_rates[i]);
2531 
2532 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2533 	if (!baud)
2534 		goto done;
2535 
2536 	/*
2537 	 * There can be multiple sources for the sampling clock.  Find the one
2538 	 * that gives us the smallest deviation from the desired baud rate.
2539 	 */
2540 
2541 	/* Optional Undivided External Clock */
2542 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2543 	    port->type != PORT_SCIFB) {
2544 		err = sci_sck_calc(s, baud, &srr1);
2545 		if (abs(err) < abs(min_err)) {
2546 			best_clk = SCI_SCK;
2547 			scr_val = SCSCR_CKE1;
2548 			sccks = SCCKS_CKS;
2549 			min_err = err;
2550 			srr = srr1;
2551 			if (!err)
2552 				goto done;
2553 		}
2554 	}
2555 
2556 	/* Optional BRG Frequency Divided External Clock */
2557 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2558 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2559 				   &srr1);
2560 		if (abs(err) < abs(min_err)) {
2561 			best_clk = SCI_SCIF_CLK;
2562 			scr_val = SCSCR_CKE1;
2563 			sccks = 0;
2564 			min_err = err;
2565 			dl = dl1;
2566 			srr = srr1;
2567 			if (!err)
2568 				goto done;
2569 		}
2570 	}
2571 
2572 	/* Optional BRG Frequency Divided Internal Clock */
2573 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2574 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2575 				   &srr1);
2576 		if (abs(err) < abs(min_err)) {
2577 			best_clk = SCI_BRG_INT;
2578 			scr_val = SCSCR_CKE1;
2579 			sccks = SCCKS_XIN;
2580 			min_err = err;
2581 			dl = dl1;
2582 			srr = srr1;
2583 			if (!min_err)
2584 				goto done;
2585 		}
2586 	}
2587 
2588 	/* Divided Functional Clock using standard Bit Rate Register */
2589 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2590 	if (abs(err) < abs(min_err)) {
2591 		best_clk = SCI_FCK;
2592 		scr_val = 0;
2593 		min_err = err;
2594 		brr = brr1;
2595 		srr = srr1;
2596 		cks = cks1;
2597 	}
2598 
2599 done:
2600 	if (best_clk >= 0)
2601 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2602 			s->clks[best_clk], baud, min_err);
2603 
2604 	sci_port_enable(s);
2605 
2606 	/*
2607 	 * Program the optional External Baud Rate Generator (BRG) first.
2608 	 * It controls the mux to select (H)SCK or frequency divided clock.
2609 	 */
2610 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2611 		sci_serial_out(port, SCDL, dl);
2612 		sci_serial_out(port, SCCKS, sccks);
2613 	}
2614 
2615 	uart_port_lock_irqsave(port, &flags);
2616 
2617 	sci_reset(port);
2618 
2619 	uart_update_timeout(port, termios->c_cflag, baud);
2620 
2621 	/* byte size and parity */
2622 	bits = tty_get_frame_size(termios->c_cflag);
2623 
2624 	if (sci_getreg(port, SEMR)->size)
2625 		sci_serial_out(port, SEMR, 0);
2626 
2627 	if (best_clk >= 0) {
2628 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2629 			switch (srr + 1) {
2630 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2631 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2632 			case 11: smr_val |= SCSMR_SRC_11; break;
2633 			case 13: smr_val |= SCSMR_SRC_13; break;
2634 			case 16: smr_val |= SCSMR_SRC_16; break;
2635 			case 17: smr_val |= SCSMR_SRC_17; break;
2636 			case 19: smr_val |= SCSMR_SRC_19; break;
2637 			case 27: smr_val |= SCSMR_SRC_27; break;
2638 			}
2639 		smr_val |= cks;
2640 		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2641 		sci_serial_out(port, SCSMR, smr_val);
2642 		sci_serial_out(port, SCBRR, brr);
2643 		if (sci_getreg(port, HSSRR)->size) {
2644 			unsigned int hssrr = srr | HSCIF_SRE;
2645 			/* Calculate deviation from intended rate at the
2646 			 * center of the last stop bit in sampling clocks.
2647 			 */
2648 			int last_stop = bits * 2 - 1;
2649 			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2650 							  (int)(srr + 1),
2651 							  2 * (int)baud);
2652 
2653 			if (abs(deviation) >= 2) {
2654 				/* At least two sampling clocks off at the
2655 				 * last stop bit; we can increase the error
2656 				 * margin by shifting the sampling point.
2657 				 */
2658 				int shift = clamp(deviation / 2, -8, 7);
2659 
2660 				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2661 					 HSCIF_SRHP_MASK;
2662 				hssrr |= HSCIF_SRDE;
2663 			}
2664 			sci_serial_out(port, HSSRR, hssrr);
2665 		}
2666 
2667 		/* Wait one bit interval */
2668 		udelay((1000000 + (baud - 1)) / baud);
2669 	} else {
2670 		/* Don't touch the bit rate configuration */
2671 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2672 		smr_val |= sci_serial_in(port, SCSMR) &
2673 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2674 		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2675 		sci_serial_out(port, SCSMR, smr_val);
2676 	}
2677 
2678 	sci_init_pins(port, termios->c_cflag);
2679 
2680 	port->status &= ~UPSTAT_AUTOCTS;
2681 	s->autorts = false;
2682 	reg = sci_getreg(port, SCFCR);
2683 	if (reg->size) {
2684 		unsigned short ctrl = sci_serial_in(port, SCFCR);
2685 
2686 		if ((port->flags & UPF_HARD_FLOW) &&
2687 		    (termios->c_cflag & CRTSCTS)) {
2688 			/* There is no CTS interrupt to restart the hardware */
2689 			port->status |= UPSTAT_AUTOCTS;
2690 			/* MCE is enabled when RTS is raised */
2691 			s->autorts = true;
2692 		}
2693 
2694 		/*
2695 		 * As we've done a sci_reset() above, ensure we don't
2696 		 * interfere with the FIFOs while toggling MCE. As the
2697 		 * reset values could still be set, simply mask them out.
2698 		 */
2699 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2700 
2701 		sci_serial_out(port, SCFCR, ctrl);
2702 	}
2703 	if (port->flags & UPF_HARD_FLOW) {
2704 		/* Refresh (Auto) RTS */
2705 		sci_set_mctrl(port, port->mctrl);
2706 	}
2707 
2708 	/*
2709 	 * For SCI, TE (transmit enable) must be set after setting TIE
2710 	 * (transmit interrupt enable) or in the same instruction to
2711 	 * start the transmitting process. So skip setting TE here for SCI.
2712 	 */
2713 	if (port->type != PORT_SCI)
2714 		scr_val |= SCSCR_TE;
2715 	scr_val |= SCSCR_RE | (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2716 	sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2717 	if ((srr + 1 == 5) &&
2718 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2719 		/*
2720 		 * In asynchronous mode, when the sampling rate is 1/5, first
2721 		 * received data may become invalid on some SCIFA and SCIFB.
2722 		 * To avoid this problem wait more than 1 serial data time (1
2723 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2724 		 */
2725 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2726 	}
2727 
2728 	/* Calculate delay for 2 DMA buffers (4 FIFO). */
2729 	s->rx_frame = (10000 * bits) / (baud / 100);
2730 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2731 	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2732 #endif
2733 
2734 	if ((termios->c_cflag & CREAD) != 0)
2735 		sci_start_rx(port);
2736 
2737 	uart_port_unlock_irqrestore(port, flags);
2738 
2739 	sci_port_disable(s);
2740 
2741 	if (UART_ENABLE_MS(port, termios->c_cflag))
2742 		sci_enable_ms(port);
2743 }
2744 
sci_pm(struct uart_port * port,unsigned int state,unsigned int oldstate)2745 static void sci_pm(struct uart_port *port, unsigned int state,
2746 		   unsigned int oldstate)
2747 {
2748 	struct sci_port *sci_port = to_sci_port(port);
2749 
2750 	switch (state) {
2751 	case UART_PM_STATE_OFF:
2752 		sci_port_disable(sci_port);
2753 		break;
2754 	default:
2755 		sci_port_enable(sci_port);
2756 		break;
2757 	}
2758 }
2759 
sci_type(struct uart_port * port)2760 static const char *sci_type(struct uart_port *port)
2761 {
2762 	switch (port->type) {
2763 	case PORT_IRDA:
2764 		return "irda";
2765 	case PORT_SCI:
2766 		return "sci";
2767 	case PORT_SCIF:
2768 		return "scif";
2769 	case PORT_SCIFA:
2770 		return "scifa";
2771 	case PORT_SCIFB:
2772 		return "scifb";
2773 	case PORT_HSCIF:
2774 		return "hscif";
2775 	}
2776 
2777 	return NULL;
2778 }
2779 
sci_remap_port(struct uart_port * port)2780 static int sci_remap_port(struct uart_port *port)
2781 {
2782 	struct sci_port *sport = to_sci_port(port);
2783 
2784 	/*
2785 	 * Nothing to do if there's already an established membase.
2786 	 */
2787 	if (port->membase)
2788 		return 0;
2789 
2790 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2791 		port->membase = ioremap(port->mapbase, sport->reg_size);
2792 		if (unlikely(!port->membase)) {
2793 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2794 			return -ENXIO;
2795 		}
2796 	} else {
2797 		/*
2798 		 * For the simple (and majority of) cases where we don't
2799 		 * need to do any remapping, just cast the cookie
2800 		 * directly.
2801 		 */
2802 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2803 	}
2804 
2805 	return 0;
2806 }
2807 
sci_release_port(struct uart_port * port)2808 static void sci_release_port(struct uart_port *port)
2809 {
2810 	struct sci_port *sport = to_sci_port(port);
2811 
2812 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2813 		iounmap(port->membase);
2814 		port->membase = NULL;
2815 	}
2816 
2817 	release_mem_region(port->mapbase, sport->reg_size);
2818 }
2819 
sci_request_port(struct uart_port * port)2820 static int sci_request_port(struct uart_port *port)
2821 {
2822 	struct resource *res;
2823 	struct sci_port *sport = to_sci_port(port);
2824 	int ret;
2825 
2826 	res = request_mem_region(port->mapbase, sport->reg_size,
2827 				 dev_name(port->dev));
2828 	if (unlikely(res == NULL)) {
2829 		dev_err(port->dev, "request_mem_region failed.");
2830 		return -EBUSY;
2831 	}
2832 
2833 	ret = sci_remap_port(port);
2834 	if (unlikely(ret != 0)) {
2835 		release_resource(res);
2836 		return ret;
2837 	}
2838 
2839 	return 0;
2840 }
2841 
sci_config_port(struct uart_port * port,int flags)2842 static void sci_config_port(struct uart_port *port, int flags)
2843 {
2844 	if (flags & UART_CONFIG_TYPE) {
2845 		struct sci_port *sport = to_sci_port(port);
2846 
2847 		port->type = sport->cfg->type;
2848 		sci_request_port(port);
2849 	}
2850 }
2851 
sci_verify_port(struct uart_port * port,struct serial_struct * ser)2852 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2853 {
2854 	if (ser->baud_base < 2400)
2855 		/* No paper tape reader for Mitch.. */
2856 		return -EINVAL;
2857 
2858 	return 0;
2859 }
2860 
2861 static const struct uart_ops sci_uart_ops = {
2862 	.tx_empty	= sci_tx_empty,
2863 	.set_mctrl	= sci_set_mctrl,
2864 	.get_mctrl	= sci_get_mctrl,
2865 	.start_tx	= sci_start_tx,
2866 	.stop_tx	= sci_stop_tx,
2867 	.stop_rx	= sci_stop_rx,
2868 	.enable_ms	= sci_enable_ms,
2869 	.break_ctl	= sci_break_ctl,
2870 	.startup	= sci_startup,
2871 	.shutdown	= sci_shutdown,
2872 	.flush_buffer	= sci_flush_buffer,
2873 	.set_termios	= sci_set_termios,
2874 	.pm		= sci_pm,
2875 	.type		= sci_type,
2876 	.release_port	= sci_release_port,
2877 	.request_port	= sci_request_port,
2878 	.config_port	= sci_config_port,
2879 	.verify_port	= sci_verify_port,
2880 #ifdef CONFIG_CONSOLE_POLL
2881 	.poll_get_char	= sci_poll_get_char,
2882 	.poll_put_char	= sci_poll_put_char,
2883 #endif
2884 };
2885 
sci_init_clocks(struct sci_port * sci_port,struct device * dev)2886 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2887 {
2888 	const char *clk_names[] = {
2889 		[SCI_FCK] = "fck",
2890 		[SCI_SCK] = "sck",
2891 		[SCI_BRG_INT] = "brg_int",
2892 		[SCI_SCIF_CLK] = "scif_clk",
2893 	};
2894 	struct clk *clk;
2895 	unsigned int i;
2896 
2897 	if (sci_port->cfg->type == PORT_HSCIF)
2898 		clk_names[SCI_SCK] = "hsck";
2899 
2900 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2901 		clk = devm_clk_get_optional(dev, clk_names[i]);
2902 		if (IS_ERR(clk))
2903 			return PTR_ERR(clk);
2904 
2905 		if (!clk && i == SCI_FCK) {
2906 			/*
2907 			 * Not all SH platforms declare a clock lookup entry
2908 			 * for SCI devices, in which case we need to get the
2909 			 * global "peripheral_clk" clock.
2910 			 */
2911 			clk = devm_clk_get(dev, "peripheral_clk");
2912 			if (IS_ERR(clk))
2913 				return dev_err_probe(dev, PTR_ERR(clk),
2914 						     "failed to get %s\n",
2915 						     clk_names[i]);
2916 		}
2917 
2918 		if (!clk)
2919 			dev_dbg(dev, "failed to get %s\n", clk_names[i]);
2920 		else
2921 			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2922 				clk, clk_get_rate(clk));
2923 		sci_port->clks[i] = clk;
2924 	}
2925 	return 0;
2926 }
2927 
2928 static const struct sci_port_params *
sci_probe_regmap(const struct plat_sci_port * cfg)2929 sci_probe_regmap(const struct plat_sci_port *cfg)
2930 {
2931 	unsigned int regtype;
2932 
2933 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2934 		return &sci_port_params[cfg->regtype];
2935 
2936 	switch (cfg->type) {
2937 	case PORT_SCI:
2938 		regtype = SCIx_SCI_REGTYPE;
2939 		break;
2940 	case PORT_IRDA:
2941 		regtype = SCIx_IRDA_REGTYPE;
2942 		break;
2943 	case PORT_SCIFA:
2944 		regtype = SCIx_SCIFA_REGTYPE;
2945 		break;
2946 	case PORT_SCIFB:
2947 		regtype = SCIx_SCIFB_REGTYPE;
2948 		break;
2949 	case PORT_SCIF:
2950 		/*
2951 		 * The SH-4 is a bit of a misnomer here, although that's
2952 		 * where this particular port layout originated. This
2953 		 * configuration (or some slight variation thereof)
2954 		 * remains the dominant model for all SCIFs.
2955 		 */
2956 		regtype = SCIx_SH4_SCIF_REGTYPE;
2957 		break;
2958 	case PORT_HSCIF:
2959 		regtype = SCIx_HSCIF_REGTYPE;
2960 		break;
2961 	default:
2962 		pr_err("Can't probe register map for given port\n");
2963 		return NULL;
2964 	}
2965 
2966 	return &sci_port_params[regtype];
2967 }
2968 
sci_init_single(struct platform_device * dev,struct sci_port * sci_port,unsigned int index,const struct plat_sci_port * p,bool early)2969 static int sci_init_single(struct platform_device *dev,
2970 			   struct sci_port *sci_port, unsigned int index,
2971 			   const struct plat_sci_port *p, bool early)
2972 {
2973 	struct uart_port *port = &sci_port->port;
2974 	const struct resource *res;
2975 	unsigned int i;
2976 	int ret;
2977 
2978 	sci_port->cfg	= p;
2979 
2980 	port->ops	= &sci_uart_ops;
2981 	port->iotype	= UPIO_MEM;
2982 	port->line	= index;
2983 	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
2984 
2985 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2986 	if (res == NULL)
2987 		return -ENOMEM;
2988 
2989 	port->mapbase = res->start;
2990 	sci_port->reg_size = resource_size(res);
2991 
2992 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2993 		if (i)
2994 			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2995 		else
2996 			sci_port->irqs[i] = platform_get_irq(dev, i);
2997 	}
2998 
2999 	/*
3000 	 * The fourth interrupt on SCI port is transmit end interrupt, so
3001 	 * shuffle the interrupts.
3002 	 */
3003 	if (p->type == PORT_SCI)
3004 		swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
3005 
3006 	/* The SCI generates several interrupts. They can be muxed together or
3007 	 * connected to different interrupt lines. In the muxed case only one
3008 	 * interrupt resource is specified as there is only one interrupt ID.
3009 	 * In the non-muxed case, up to 6 interrupt signals might be generated
3010 	 * from the SCI, however those signals might have their own individual
3011 	 * interrupt ID numbers, or muxed together with another interrupt.
3012 	 */
3013 	if (sci_port->irqs[0] < 0)
3014 		return -ENXIO;
3015 
3016 	if (sci_port->irqs[1] < 0)
3017 		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
3018 			sci_port->irqs[i] = sci_port->irqs[0];
3019 
3020 	sci_port->params = sci_probe_regmap(p);
3021 	if (unlikely(sci_port->params == NULL))
3022 		return -EINVAL;
3023 
3024 	switch (p->type) {
3025 	case PORT_SCIFB:
3026 		sci_port->rx_trigger = 48;
3027 		break;
3028 	case PORT_HSCIF:
3029 		sci_port->rx_trigger = 64;
3030 		break;
3031 	case PORT_SCIFA:
3032 		sci_port->rx_trigger = 32;
3033 		break;
3034 	case PORT_SCIF:
3035 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
3036 			/* RX triggering not implemented for this IP */
3037 			sci_port->rx_trigger = 1;
3038 		else
3039 			sci_port->rx_trigger = 8;
3040 		break;
3041 	default:
3042 		sci_port->rx_trigger = 1;
3043 		break;
3044 	}
3045 
3046 	sci_port->rx_fifo_timeout = 0;
3047 	sci_port->hscif_tot = 0;
3048 
3049 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
3050 	 * match the SoC datasheet, this should be investigated. Let platform
3051 	 * data override the sampling rate for now.
3052 	 */
3053 	sci_port->sampling_rate_mask = p->sampling_rate
3054 				     ? SCI_SR(p->sampling_rate)
3055 				     : sci_port->params->sampling_rate_mask;
3056 
3057 	if (!early) {
3058 		ret = sci_init_clocks(sci_port, &dev->dev);
3059 		if (ret < 0)
3060 			return ret;
3061 	}
3062 
3063 	port->type		= p->type;
3064 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
3065 	port->fifosize		= sci_port->params->fifosize;
3066 
3067 	if (port->type == PORT_SCI && !dev->dev.of_node) {
3068 		if (sci_port->reg_size >= 0x20)
3069 			port->regshift = 2;
3070 		else
3071 			port->regshift = 1;
3072 	}
3073 
3074 	/*
3075 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
3076 	 * for the multi-IRQ ports, which is where we are primarily
3077 	 * concerned with the shutdown path synchronization.
3078 	 *
3079 	 * For the muxed case there's nothing more to do.
3080 	 */
3081 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
3082 	port->irqflags		= 0;
3083 
3084 	return 0;
3085 }
3086 
3087 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3088     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
serial_console_putchar(struct uart_port * port,unsigned char ch)3089 static void serial_console_putchar(struct uart_port *port, unsigned char ch)
3090 {
3091 	sci_poll_put_char(port, ch);
3092 }
3093 
3094 /*
3095  *	Print a string to the serial port trying not to disturb
3096  *	any possible real use of the port...
3097  */
serial_console_write(struct console * co,const char * s,unsigned count)3098 static void serial_console_write(struct console *co, const char *s,
3099 				 unsigned count)
3100 {
3101 	struct sci_port *sci_port = &sci_ports[co->index];
3102 	struct uart_port *port = &sci_port->port;
3103 	unsigned short bits, ctrl, ctrl_temp;
3104 	unsigned long flags;
3105 	int locked = 1;
3106 
3107 	if (port->sysrq)
3108 		locked = 0;
3109 	else if (oops_in_progress)
3110 		locked = uart_port_trylock_irqsave(port, &flags);
3111 	else
3112 		uart_port_lock_irqsave(port, &flags);
3113 
3114 	/* first save SCSCR then disable interrupts, keep clock source */
3115 	ctrl = sci_serial_in(port, SCSCR);
3116 	ctrl_temp = SCSCR_RE | SCSCR_TE |
3117 		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3118 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3119 	sci_serial_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3120 
3121 	uart_console_write(port, s, count, serial_console_putchar);
3122 
3123 	/* wait until fifo is empty and last bit has been transmitted */
3124 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3125 	while ((sci_serial_in(port, SCxSR) & bits) != bits)
3126 		cpu_relax();
3127 
3128 	/* restore the SCSCR */
3129 	sci_serial_out(port, SCSCR, ctrl);
3130 
3131 	if (locked)
3132 		uart_port_unlock_irqrestore(port, flags);
3133 }
3134 
serial_console_setup(struct console * co,char * options)3135 static int serial_console_setup(struct console *co, char *options)
3136 {
3137 	struct sci_port *sci_port;
3138 	struct uart_port *port;
3139 	int baud = 115200;
3140 	int bits = 8;
3141 	int parity = 'n';
3142 	int flow = 'n';
3143 	int ret;
3144 
3145 	/*
3146 	 * Refuse to handle any bogus ports.
3147 	 */
3148 	if (co->index < 0 || co->index >= SCI_NPORTS)
3149 		return -ENODEV;
3150 
3151 	sci_port = &sci_ports[co->index];
3152 	port = &sci_port->port;
3153 
3154 	/*
3155 	 * Refuse to handle uninitialized ports.
3156 	 */
3157 	if (!port->ops)
3158 		return -ENODEV;
3159 
3160 	ret = sci_remap_port(port);
3161 	if (unlikely(ret != 0))
3162 		return ret;
3163 
3164 	if (options)
3165 		uart_parse_options(options, &baud, &parity, &bits, &flow);
3166 
3167 	return uart_set_options(port, co, baud, parity, bits, flow);
3168 }
3169 
3170 static struct console serial_console = {
3171 	.name		= "ttySC",
3172 	.device		= uart_console_device,
3173 	.write		= serial_console_write,
3174 	.setup		= serial_console_setup,
3175 	.flags		= CON_PRINTBUFFER,
3176 	.index		= -1,
3177 	.data		= &sci_uart_driver,
3178 };
3179 
3180 #ifdef CONFIG_SUPERH
3181 static char early_serial_buf[32];
3182 
early_serial_console_setup(struct console * co,char * options)3183 static int early_serial_console_setup(struct console *co, char *options)
3184 {
3185 	/*
3186 	 * This early console is always registered using the earlyprintk=
3187 	 * parameter, which does not call add_preferred_console(). Thus
3188 	 * @options is always NULL and the options for this early console
3189 	 * are passed using a custom buffer.
3190 	 */
3191 	WARN_ON(options);
3192 
3193 	return serial_console_setup(co, early_serial_buf);
3194 }
3195 
3196 static struct console early_serial_console = {
3197 	.name           = "early_ttySC",
3198 	.write          = serial_console_write,
3199 	.setup		= early_serial_console_setup,
3200 	.flags          = CON_PRINTBUFFER,
3201 	.index		= -1,
3202 };
3203 
sci_probe_earlyprintk(struct platform_device * pdev)3204 static int sci_probe_earlyprintk(struct platform_device *pdev)
3205 {
3206 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3207 
3208 	if (early_serial_console.data)
3209 		return -EEXIST;
3210 
3211 	early_serial_console.index = pdev->id;
3212 
3213 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3214 
3215 	if (!strstr(early_serial_buf, "keep"))
3216 		early_serial_console.flags |= CON_BOOT;
3217 
3218 	register_console(&early_serial_console);
3219 	return 0;
3220 }
3221 #endif
3222 
3223 #define SCI_CONSOLE	(&serial_console)
3224 
3225 #else
sci_probe_earlyprintk(struct platform_device * pdev)3226 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3227 {
3228 	return -EINVAL;
3229 }
3230 
3231 #define SCI_CONSOLE	NULL
3232 
3233 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3234 
3235 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3236 
3237 static DEFINE_MUTEX(sci_uart_registration_lock);
3238 static struct uart_driver sci_uart_driver = {
3239 	.owner		= THIS_MODULE,
3240 	.driver_name	= "sci",
3241 	.dev_name	= "ttySC",
3242 	.major		= SCI_MAJOR,
3243 	.minor		= SCI_MINOR_START,
3244 	.nr		= SCI_NPORTS,
3245 	.cons		= SCI_CONSOLE,
3246 };
3247 
sci_remove(struct platform_device * dev)3248 static void sci_remove(struct platform_device *dev)
3249 {
3250 	struct sci_port *port = platform_get_drvdata(dev);
3251 	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3252 
3253 	sci_ports_in_use &= ~BIT(port->port.line);
3254 	uart_remove_one_port(&sci_uart_driver, &port->port);
3255 
3256 	if (port->port.fifosize > 1)
3257 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3258 	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3259 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3260 }
3261 
3262 
3263 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3264 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3265 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3266 
3267 static const struct of_device_id of_sci_match[] __maybe_unused = {
3268 	/* SoC-specific types */
3269 	{
3270 		.compatible = "renesas,scif-r7s72100",
3271 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3272 	},
3273 	{
3274 		.compatible = "renesas,scif-r7s9210",
3275 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3276 	},
3277 	{
3278 		.compatible = "renesas,scif-r9a07g044",
3279 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3280 	},
3281 	{
3282 		.compatible = "renesas,scif-r9a09g057",
3283 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZV2H_SCIF_REGTYPE),
3284 	},
3285 	/* Family-specific types */
3286 	{
3287 		.compatible = "renesas,rcar-gen1-scif",
3288 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3289 	}, {
3290 		.compatible = "renesas,rcar-gen2-scif",
3291 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3292 	}, {
3293 		.compatible = "renesas,rcar-gen3-scif",
3294 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3295 	}, {
3296 		.compatible = "renesas,rcar-gen4-scif",
3297 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3298 	},
3299 	/* Generic types */
3300 	{
3301 		.compatible = "renesas,scif",
3302 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3303 	}, {
3304 		.compatible = "renesas,scifa",
3305 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3306 	}, {
3307 		.compatible = "renesas,scifb",
3308 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3309 	}, {
3310 		.compatible = "renesas,hscif",
3311 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3312 	}, {
3313 		.compatible = "renesas,sci",
3314 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3315 	}, {
3316 		/* Terminator */
3317 	},
3318 };
3319 MODULE_DEVICE_TABLE(of, of_sci_match);
3320 
sci_reset_control_assert(void * data)3321 static void sci_reset_control_assert(void *data)
3322 {
3323 	reset_control_assert(data);
3324 }
3325 
sci_parse_dt(struct platform_device * pdev,unsigned int * dev_id)3326 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3327 					  unsigned int *dev_id)
3328 {
3329 	struct device_node *np = pdev->dev.of_node;
3330 	struct reset_control *rstc;
3331 	struct plat_sci_port *p;
3332 	struct sci_port *sp;
3333 	const void *data;
3334 	int id, ret;
3335 
3336 	if (!IS_ENABLED(CONFIG_OF) || !np)
3337 		return ERR_PTR(-EINVAL);
3338 
3339 	data = of_device_get_match_data(&pdev->dev);
3340 
3341 	rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
3342 	if (IS_ERR(rstc))
3343 		return ERR_PTR(dev_err_probe(&pdev->dev, PTR_ERR(rstc),
3344 					     "failed to get reset ctrl\n"));
3345 
3346 	ret = reset_control_deassert(rstc);
3347 	if (ret) {
3348 		dev_err(&pdev->dev, "failed to deassert reset %d\n", ret);
3349 		return ERR_PTR(ret);
3350 	}
3351 
3352 	ret = devm_add_action_or_reset(&pdev->dev, sci_reset_control_assert, rstc);
3353 	if (ret) {
3354 		dev_err(&pdev->dev, "failed to register assert devm action, %d\n",
3355 			ret);
3356 		return ERR_PTR(ret);
3357 	}
3358 
3359 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3360 	if (!p)
3361 		return ERR_PTR(-ENOMEM);
3362 
3363 	/* Get the line number from the aliases node. */
3364 	id = of_alias_get_id(np, "serial");
3365 	if (id < 0 && ~sci_ports_in_use)
3366 		id = ffz(sci_ports_in_use);
3367 	if (id < 0) {
3368 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3369 		return ERR_PTR(-EINVAL);
3370 	}
3371 	if (id >= ARRAY_SIZE(sci_ports)) {
3372 		dev_err(&pdev->dev, "serial%d out of range\n", id);
3373 		return ERR_PTR(-EINVAL);
3374 	}
3375 
3376 	sp = &sci_ports[id];
3377 	*dev_id = id;
3378 
3379 	p->type = SCI_OF_TYPE(data);
3380 	p->regtype = SCI_OF_REGTYPE(data);
3381 
3382 	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3383 
3384 	return p;
3385 }
3386 
sci_probe_single(struct platform_device * dev,unsigned int index,struct plat_sci_port * p,struct sci_port * sciport,struct resource * sci_res)3387 static int sci_probe_single(struct platform_device *dev,
3388 				      unsigned int index,
3389 				      struct plat_sci_port *p,
3390 				      struct sci_port *sciport,
3391 				      struct resource *sci_res)
3392 {
3393 	int ret;
3394 
3395 	/* Sanity check */
3396 	if (unlikely(index >= SCI_NPORTS)) {
3397 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3398 			   index+1, SCI_NPORTS);
3399 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3400 		return -EINVAL;
3401 	}
3402 	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3403 	if (sci_ports_in_use & BIT(index))
3404 		return -EBUSY;
3405 
3406 	mutex_lock(&sci_uart_registration_lock);
3407 	if (!sci_uart_driver.state) {
3408 		ret = uart_register_driver(&sci_uart_driver);
3409 		if (ret) {
3410 			mutex_unlock(&sci_uart_registration_lock);
3411 			return ret;
3412 		}
3413 	}
3414 	mutex_unlock(&sci_uart_registration_lock);
3415 
3416 	ret = sci_init_single(dev, sciport, index, p, false);
3417 	if (ret)
3418 		return ret;
3419 
3420 	sciport->port.dev = &dev->dev;
3421 	ret = devm_pm_runtime_enable(&dev->dev);
3422 	if (ret)
3423 		return ret;
3424 
3425 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3426 	if (IS_ERR(sciport->gpios))
3427 		return PTR_ERR(sciport->gpios);
3428 
3429 	if (sciport->has_rtscts) {
3430 		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3431 		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3432 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3433 			return -EINVAL;
3434 		}
3435 		sciport->port.flags |= UPF_HARD_FLOW;
3436 	}
3437 
3438 	if (sci_uart_earlycon && sci_ports[0].port.mapbase == sci_res->start) {
3439 		/*
3440 		 * In case:
3441 		 * - this is the earlycon port (mapped on index 0 in sci_ports[]) and
3442 		 * - it now maps to an alias other than zero and
3443 		 * - the earlycon is still alive (e.g., "earlycon keep_bootcon" is
3444 		 *   available in bootargs)
3445 		 *
3446 		 * we need to avoid disabling clocks and PM domains through the runtime
3447 		 * PM APIs called in __device_attach(). For this, increment the runtime
3448 		 * PM reference counter (the clocks and PM domains were already enabled
3449 		 * by the bootloader). Otherwise the earlycon may access the HW when it
3450 		 * has no clocks enabled leading to failures (infinite loop in
3451 		 * sci_poll_put_char()).
3452 		 */
3453 		pm_runtime_get_noresume(&dev->dev);
3454 
3455 		/*
3456 		 * Skip cleanup the sci_port[0] in early_console_exit(), this
3457 		 * port is the same as the earlycon one.
3458 		 */
3459 		sci_uart_earlycon_dev_probing = true;
3460 	}
3461 
3462 	return uart_add_one_port(&sci_uart_driver, &sciport->port);
3463 }
3464 
sci_probe(struct platform_device * dev)3465 static int sci_probe(struct platform_device *dev)
3466 {
3467 	struct plat_sci_port *p;
3468 	struct resource *res;
3469 	struct sci_port *sp;
3470 	unsigned int dev_id;
3471 	int ret;
3472 
3473 	/*
3474 	 * If we've come here via earlyprintk initialization, head off to
3475 	 * the special early probe. We don't have sufficient device state
3476 	 * to make it beyond this yet.
3477 	 */
3478 #ifdef CONFIG_SUPERH
3479 	if (is_sh_early_platform_device(dev))
3480 		return sci_probe_earlyprintk(dev);
3481 #endif
3482 
3483 	if (dev->dev.of_node) {
3484 		p = sci_parse_dt(dev, &dev_id);
3485 		if (IS_ERR(p))
3486 			return PTR_ERR(p);
3487 	} else {
3488 		p = dev->dev.platform_data;
3489 		if (p == NULL) {
3490 			dev_err(&dev->dev, "no platform data supplied\n");
3491 			return -EINVAL;
3492 		}
3493 
3494 		dev_id = dev->id;
3495 	}
3496 
3497 	sp = &sci_ports[dev_id];
3498 
3499 	/*
3500 	 * In case:
3501 	 * - the probed port alias is zero (as the one used by earlycon), and
3502 	 * - the earlycon is still active (e.g., "earlycon keep_bootcon" in
3503 	 *   bootargs)
3504 	 *
3505 	 * defer the probe of this serial. This is a debug scenario and the user
3506 	 * must be aware of it.
3507 	 *
3508 	 * Except when the probed port is the same as the earlycon port.
3509 	 */
3510 
3511 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
3512 	if (!res)
3513 		return -ENODEV;
3514 
3515 	if (sci_uart_earlycon && sp == &sci_ports[0] && sp->port.mapbase != res->start)
3516 		return dev_err_probe(&dev->dev, -EBUSY, "sci_port[0] is used by earlycon!\n");
3517 
3518 	platform_set_drvdata(dev, sp);
3519 
3520 	ret = sci_probe_single(dev, dev_id, p, sp, res);
3521 	if (ret)
3522 		return ret;
3523 
3524 	if (sp->port.fifosize > 1) {
3525 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3526 		if (ret)
3527 			return ret;
3528 	}
3529 	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3530 	    sp->port.type == PORT_HSCIF) {
3531 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3532 		if (ret) {
3533 			if (sp->port.fifosize > 1) {
3534 				device_remove_file(&dev->dev,
3535 						   &dev_attr_rx_fifo_trigger);
3536 			}
3537 			return ret;
3538 		}
3539 	}
3540 
3541 #ifdef CONFIG_SH_STANDARD_BIOS
3542 	sh_bios_gdb_detach();
3543 #endif
3544 
3545 	sci_ports_in_use |= BIT(dev_id);
3546 	return 0;
3547 }
3548 
sci_suspend(struct device * dev)3549 static __maybe_unused int sci_suspend(struct device *dev)
3550 {
3551 	struct sci_port *sport = dev_get_drvdata(dev);
3552 
3553 	if (sport)
3554 		uart_suspend_port(&sci_uart_driver, &sport->port);
3555 
3556 	return 0;
3557 }
3558 
sci_resume(struct device * dev)3559 static __maybe_unused int sci_resume(struct device *dev)
3560 {
3561 	struct sci_port *sport = dev_get_drvdata(dev);
3562 
3563 	if (sport)
3564 		uart_resume_port(&sci_uart_driver, &sport->port);
3565 
3566 	return 0;
3567 }
3568 
3569 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3570 
3571 static struct platform_driver sci_driver = {
3572 	.probe		= sci_probe,
3573 	.remove		= sci_remove,
3574 	.driver		= {
3575 		.name	= "sh-sci",
3576 		.pm	= &sci_dev_pm_ops,
3577 		.of_match_table = of_match_ptr(of_sci_match),
3578 	},
3579 };
3580 
sci_init(void)3581 static int __init sci_init(void)
3582 {
3583 	pr_info("%s\n", banner);
3584 
3585 	return platform_driver_register(&sci_driver);
3586 }
3587 
sci_exit(void)3588 static void __exit sci_exit(void)
3589 {
3590 	platform_driver_unregister(&sci_driver);
3591 
3592 	if (sci_uart_driver.state)
3593 		uart_unregister_driver(&sci_uart_driver);
3594 }
3595 
3596 #if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3597 sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3598 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3599 #endif
3600 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3601 static struct plat_sci_port port_cfg;
3602 
early_console_exit(struct console * co)3603 static int early_console_exit(struct console *co)
3604 {
3605 	struct sci_port *sci_port = &sci_ports[0];
3606 
3607 	/*
3608 	 * Clean the slot used by earlycon. A new SCI device might
3609 	 * map to this slot.
3610 	 */
3611 	if (!sci_uart_earlycon_dev_probing) {
3612 		memset(sci_port, 0, sizeof(*sci_port));
3613 		sci_uart_earlycon = false;
3614 	}
3615 
3616 	return 0;
3617 }
3618 
early_console_setup(struct earlycon_device * device,int type)3619 static int __init early_console_setup(struct earlycon_device *device,
3620 				      int type)
3621 {
3622 	if (!device->port.membase)
3623 		return -ENODEV;
3624 
3625 	device->port.type = type;
3626 	sci_ports[0].port = device->port;
3627 	port_cfg.type = type;
3628 	sci_ports[0].cfg = &port_cfg;
3629 	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3630 	sci_uart_earlycon = true;
3631 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3632 	sci_serial_out(&sci_ports[0].port, SCSCR,
3633 		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3634 
3635 	device->con->write = serial_console_write;
3636 	device->con->exit = early_console_exit;
3637 
3638 	return 0;
3639 }
sci_early_console_setup(struct earlycon_device * device,const char * opt)3640 static int __init sci_early_console_setup(struct earlycon_device *device,
3641 					  const char *opt)
3642 {
3643 	return early_console_setup(device, PORT_SCI);
3644 }
scif_early_console_setup(struct earlycon_device * device,const char * opt)3645 static int __init scif_early_console_setup(struct earlycon_device *device,
3646 					  const char *opt)
3647 {
3648 	return early_console_setup(device, PORT_SCIF);
3649 }
rzscifa_early_console_setup(struct earlycon_device * device,const char * opt)3650 static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3651 					  const char *opt)
3652 {
3653 	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3654 	return early_console_setup(device, PORT_SCIF);
3655 }
3656 
rzv2hscif_early_console_setup(struct earlycon_device * device,const char * opt)3657 static int __init rzv2hscif_early_console_setup(struct earlycon_device *device,
3658 						const char *opt)
3659 {
3660 	port_cfg.regtype = SCIx_RZV2H_SCIF_REGTYPE;
3661 	return early_console_setup(device, PORT_SCIF);
3662 }
3663 
scifa_early_console_setup(struct earlycon_device * device,const char * opt)3664 static int __init scifa_early_console_setup(struct earlycon_device *device,
3665 					  const char *opt)
3666 {
3667 	return early_console_setup(device, PORT_SCIFA);
3668 }
scifb_early_console_setup(struct earlycon_device * device,const char * opt)3669 static int __init scifb_early_console_setup(struct earlycon_device *device,
3670 					  const char *opt)
3671 {
3672 	return early_console_setup(device, PORT_SCIFB);
3673 }
hscif_early_console_setup(struct earlycon_device * device,const char * opt)3674 static int __init hscif_early_console_setup(struct earlycon_device *device,
3675 					  const char *opt)
3676 {
3677 	return early_console_setup(device, PORT_HSCIF);
3678 }
3679 
3680 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3681 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3682 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3683 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
3684 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a09g057", rzv2hscif_early_console_setup);
3685 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3686 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3687 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3688 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3689 
3690 module_init(sci_init);
3691 module_exit(sci_exit);
3692 
3693 MODULE_LICENSE("GPL");
3694 MODULE_ALIAS("platform:sh-sci");
3695 MODULE_AUTHOR("Paul Mundt");
3696 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3697