xref: /linux/lib/scatterlist.c (revision fc8d5bba61ad8087af9a56337a7a297af6b46129)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
4  *
5  * Scatterlist handling helpers.
6  */
7 #include <linux/export.h>
8 #include <linux/slab.h>
9 #include <linux/scatterlist.h>
10 #include <linux/highmem.h>
11 #include <linux/kmemleak.h>
12 #include <linux/bvec.h>
13 #include <linux/uio.h>
14 #include <linux/folio_queue.h>
15 
16 /**
17  * sg_next - return the next scatterlist entry in a list
18  * @sg:		The current sg entry
19  *
20  * Description:
21  *   Usually the next entry will be @sg@ + 1, but if this sg element is part
22  *   of a chained scatterlist, it could jump to the start of a new
23  *   scatterlist array.
24  *
25  **/
26 struct scatterlist *sg_next(struct scatterlist *sg)
27 {
28 	if (sg_is_last(sg))
29 		return NULL;
30 
31 	sg++;
32 	if (unlikely(sg_is_chain(sg)))
33 		sg = sg_chain_ptr(sg);
34 
35 	return sg;
36 }
37 EXPORT_SYMBOL(sg_next);
38 
39 /**
40  * sg_nents - return total count of entries in scatterlist
41  * @sg:		The scatterlist
42  *
43  * Description:
44  * Allows to know how many entries are in sg, taking into account
45  * chaining as well
46  *
47  **/
48 int sg_nents(struct scatterlist *sg)
49 {
50 	int nents;
51 	for (nents = 0; sg; sg = sg_next(sg))
52 		nents++;
53 	return nents;
54 }
55 EXPORT_SYMBOL(sg_nents);
56 
57 /**
58  * sg_nents_for_len - return total count of entries in scatterlist
59  *                    needed to satisfy the supplied length
60  * @sg:		The scatterlist
61  * @len:	The total required length
62  *
63  * Description:
64  * Determines the number of entries in sg that are required to meet
65  * the supplied length, taking into account chaining as well
66  *
67  * Returns:
68  *   the number of sg entries needed, negative error on failure
69  *
70  **/
71 int sg_nents_for_len(struct scatterlist *sg, u64 len)
72 {
73 	int nents;
74 	u64 total;
75 
76 	if (!len)
77 		return 0;
78 
79 	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
80 		nents++;
81 		total += sg->length;
82 		if (total >= len)
83 			return nents;
84 	}
85 
86 	return -EINVAL;
87 }
88 EXPORT_SYMBOL(sg_nents_for_len);
89 
90 /**
91  * sg_last - return the last scatterlist entry in a list
92  * @sgl:	First entry in the scatterlist
93  * @nents:	Number of entries in the scatterlist
94  *
95  * Description:
96  *   Should only be used casually, it (currently) scans the entire list
97  *   to get the last entry.
98  *
99  *   Note that the @sgl@ pointer passed in need not be the first one,
100  *   the important bit is that @nents@ denotes the number of entries that
101  *   exist from @sgl@.
102  *
103  **/
104 struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
105 {
106 	struct scatterlist *sg, *ret = NULL;
107 	unsigned int i;
108 
109 	for_each_sg(sgl, sg, nents, i)
110 		ret = sg;
111 
112 	BUG_ON(!sg_is_last(ret));
113 	return ret;
114 }
115 EXPORT_SYMBOL(sg_last);
116 
117 /**
118  * sg_init_table - Initialize SG table
119  * @sgl:	   The SG table
120  * @nents:	   Number of entries in table
121  *
122  * Notes:
123  *   If this is part of a chained sg table, sg_mark_end() should be
124  *   used only on the last table part.
125  *
126  **/
127 void sg_init_table(struct scatterlist *sgl, unsigned int nents)
128 {
129 	memset(sgl, 0, sizeof(*sgl) * nents);
130 	sg_init_marker(sgl, nents);
131 }
132 EXPORT_SYMBOL(sg_init_table);
133 
134 /**
135  * sg_init_one - Initialize a single entry sg list
136  * @sg:		 SG entry
137  * @buf:	 Virtual address for IO
138  * @buflen:	 IO length
139  *
140  **/
141 void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
142 {
143 	sg_init_table(sg, 1);
144 	sg_set_buf(sg, buf, buflen);
145 }
146 EXPORT_SYMBOL(sg_init_one);
147 
148 /*
149  * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
150  * helpers.
151  */
152 static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
153 {
154 	if (nents == SG_MAX_SINGLE_ALLOC) {
155 		/*
156 		 * Kmemleak doesn't track page allocations as they are not
157 		 * commonly used (in a raw form) for kernel data structures.
158 		 * As we chain together a list of pages and then a normal
159 		 * kmalloc (tracked by kmemleak), in order to for that last
160 		 * allocation not to become decoupled (and thus a
161 		 * false-positive) we need to inform kmemleak of all the
162 		 * intermediate allocations.
163 		 */
164 		void *ptr = (void *) __get_free_page(gfp_mask);
165 		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
166 		return ptr;
167 	} else
168 		return kmalloc_array(nents, sizeof(struct scatterlist),
169 				     gfp_mask);
170 }
171 
172 static void sg_kfree(struct scatterlist *sg, unsigned int nents)
173 {
174 	if (nents == SG_MAX_SINGLE_ALLOC) {
175 		kmemleak_free(sg);
176 		free_page((unsigned long) sg);
177 	} else
178 		kfree(sg);
179 }
180 
181 /**
182  * __sg_free_table - Free a previously mapped sg table
183  * @table:	The sg table header to use
184  * @max_ents:	The maximum number of entries per single scatterlist
185  * @nents_first_chunk: Number of entries int the (preallocated) first
186  * 	scatterlist chunk, 0 means no such preallocated first chunk
187  * @free_fn:	Free function
188  * @num_ents:	Number of entries in the table
189  *
190  *  Description:
191  *    Free an sg table previously allocated and setup with
192  *    __sg_alloc_table().  The @max_ents value must be identical to
193  *    that previously used with __sg_alloc_table().
194  *
195  **/
196 void __sg_free_table(struct sg_table *table, unsigned int max_ents,
197 		     unsigned int nents_first_chunk, sg_free_fn *free_fn,
198 		     unsigned int num_ents)
199 {
200 	struct scatterlist *sgl, *next;
201 	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
202 
203 	if (unlikely(!table->sgl))
204 		return;
205 
206 	sgl = table->sgl;
207 	while (num_ents) {
208 		unsigned int alloc_size = num_ents;
209 		unsigned int sg_size;
210 
211 		/*
212 		 * If we have more than max_ents segments left,
213 		 * then assign 'next' to the sg table after the current one.
214 		 * sg_size is then one less than alloc size, since the last
215 		 * element is the chain pointer.
216 		 */
217 		if (alloc_size > curr_max_ents) {
218 			next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
219 			alloc_size = curr_max_ents;
220 			sg_size = alloc_size - 1;
221 		} else {
222 			sg_size = alloc_size;
223 			next = NULL;
224 		}
225 
226 		num_ents -= sg_size;
227 		if (nents_first_chunk)
228 			nents_first_chunk = 0;
229 		else
230 			free_fn(sgl, alloc_size);
231 		sgl = next;
232 		curr_max_ents = max_ents;
233 	}
234 
235 	table->sgl = NULL;
236 }
237 EXPORT_SYMBOL(__sg_free_table);
238 
239 /**
240  * sg_free_append_table - Free a previously allocated append sg table.
241  * @table:	 The mapped sg append table header
242  *
243  **/
244 void sg_free_append_table(struct sg_append_table *table)
245 {
246 	__sg_free_table(&table->sgt, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
247 			table->total_nents);
248 }
249 EXPORT_SYMBOL(sg_free_append_table);
250 
251 
252 /**
253  * sg_free_table - Free a previously allocated sg table
254  * @table:	The mapped sg table header
255  *
256  **/
257 void sg_free_table(struct sg_table *table)
258 {
259 	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
260 			table->orig_nents);
261 }
262 EXPORT_SYMBOL(sg_free_table);
263 
264 /**
265  * __sg_alloc_table - Allocate and initialize an sg table with given allocator
266  * @table:	The sg table header to use
267  * @nents:	Number of entries in sg list
268  * @max_ents:	The maximum number of entries the allocator returns per call
269  * @first_chunk: first SGL if preallocated (may be %NULL)
270  * @nents_first_chunk: Number of entries in the (preallocated) first
271  * 	scatterlist chunk, 0 means no such preallocated chunk provided by user
272  * @gfp_mask:	GFP allocation mask
273  * @alloc_fn:	Allocator to use
274  *
275  * Description:
276  *   This function returns a @table @nents long. The allocator is
277  *   defined to return scatterlist chunks of maximum size @max_ents.
278  *   Thus if @nents is bigger than @max_ents, the scatterlists will be
279  *   chained in units of @max_ents.
280  *
281  * Notes:
282  *   If this function returns non-0 (eg failure), the caller must call
283  *   __sg_free_table() to cleanup any leftover allocations.
284  *
285  **/
286 int __sg_alloc_table(struct sg_table *table, unsigned int nents,
287 		     unsigned int max_ents, struct scatterlist *first_chunk,
288 		     unsigned int nents_first_chunk, gfp_t gfp_mask,
289 		     sg_alloc_fn *alloc_fn)
290 {
291 	struct scatterlist *sg, *prv;
292 	unsigned int left;
293 	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
294 	unsigned prv_max_ents;
295 
296 	memset(table, 0, sizeof(*table));
297 
298 	if (nents == 0)
299 		return -EINVAL;
300 #ifdef CONFIG_ARCH_NO_SG_CHAIN
301 	if (WARN_ON_ONCE(nents > max_ents))
302 		return -EINVAL;
303 #endif
304 
305 	left = nents;
306 	prv = NULL;
307 	do {
308 		unsigned int sg_size, alloc_size = left;
309 
310 		if (alloc_size > curr_max_ents) {
311 			alloc_size = curr_max_ents;
312 			sg_size = alloc_size - 1;
313 		} else
314 			sg_size = alloc_size;
315 
316 		left -= sg_size;
317 
318 		if (first_chunk) {
319 			sg = first_chunk;
320 			first_chunk = NULL;
321 		} else {
322 			sg = alloc_fn(alloc_size, gfp_mask);
323 		}
324 		if (unlikely(!sg)) {
325 			/*
326 			 * Adjust entry count to reflect that the last
327 			 * entry of the previous table won't be used for
328 			 * linkage.  Without this, sg_kfree() may get
329 			 * confused.
330 			 */
331 			if (prv)
332 				table->nents = ++table->orig_nents;
333 
334 			return -ENOMEM;
335 		}
336 
337 		sg_init_table(sg, alloc_size);
338 		table->nents = table->orig_nents += sg_size;
339 
340 		/*
341 		 * If this is the first mapping, assign the sg table header.
342 		 * If this is not the first mapping, chain previous part.
343 		 */
344 		if (prv)
345 			sg_chain(prv, prv_max_ents, sg);
346 		else
347 			table->sgl = sg;
348 
349 		/*
350 		 * If no more entries after this one, mark the end
351 		 */
352 		if (!left)
353 			sg_mark_end(&sg[sg_size - 1]);
354 
355 		prv = sg;
356 		prv_max_ents = curr_max_ents;
357 		curr_max_ents = max_ents;
358 	} while (left);
359 
360 	return 0;
361 }
362 EXPORT_SYMBOL(__sg_alloc_table);
363 
364 /**
365  * sg_alloc_table - Allocate and initialize an sg table
366  * @table:	The sg table header to use
367  * @nents:	Number of entries in sg list
368  * @gfp_mask:	GFP allocation mask
369  *
370  *  Description:
371  *    Allocate and initialize an sg table. If @nents@ is larger than
372  *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
373  *
374  **/
375 int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
376 {
377 	int ret;
378 
379 	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
380 			       NULL, 0, gfp_mask, sg_kmalloc);
381 	if (unlikely(ret))
382 		sg_free_table(table);
383 	return ret;
384 }
385 EXPORT_SYMBOL(sg_alloc_table);
386 
387 static struct scatterlist *get_next_sg(struct sg_append_table *table,
388 				       struct scatterlist *cur,
389 				       unsigned long needed_sges,
390 				       gfp_t gfp_mask)
391 {
392 	struct scatterlist *new_sg, *next_sg;
393 	unsigned int alloc_size;
394 
395 	if (cur) {
396 		next_sg = sg_next(cur);
397 		/* Check if last entry should be keeped for chainning */
398 		if (!sg_is_last(next_sg) || needed_sges == 1)
399 			return next_sg;
400 	}
401 
402 	alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
403 	new_sg = sg_kmalloc(alloc_size, gfp_mask);
404 	if (!new_sg)
405 		return ERR_PTR(-ENOMEM);
406 	sg_init_table(new_sg, alloc_size);
407 	if (cur) {
408 		table->total_nents += alloc_size - 1;
409 		__sg_chain(next_sg, new_sg);
410 	} else {
411 		table->sgt.sgl = new_sg;
412 		table->total_nents = alloc_size;
413 	}
414 	return new_sg;
415 }
416 
417 static bool pages_are_mergeable(struct page *a, struct page *b)
418 {
419 	if (page_to_pfn(a) != page_to_pfn(b) + 1)
420 		return false;
421 	if (!zone_device_pages_have_same_pgmap(a, b))
422 		return false;
423 	return true;
424 }
425 
426 /**
427  * sg_alloc_append_table_from_pages - Allocate and initialize an append sg
428  *                                    table from an array of pages
429  * @sgt_append:  The sg append table to use
430  * @pages:       Pointer to an array of page pointers
431  * @n_pages:     Number of pages in the pages array
432  * @offset:      Offset from start of the first page to the start of a buffer
433  * @size:        Number of valid bytes in the buffer (after offset)
434  * @max_segment: Maximum size of a scatterlist element in bytes
435  * @left_pages:  Left pages caller have to set after this call
436  * @gfp_mask:	 GFP allocation mask
437  *
438  * Description:
439  *    In the first call it allocate and initialize an sg table from a list of
440  *    pages, else reuse the scatterlist from sgt_append. Contiguous ranges of
441  *    the pages are squashed into a single scatterlist entry up to the maximum
442  *    size specified in @max_segment.  A user may provide an offset at a start
443  *    and a size of valid data in a buffer specified by the page array. The
444  *    returned sg table is released by sg_free_append_table
445  *
446  * Returns:
447  *   0 on success, negative error on failure
448  *
449  * Notes:
450  *   If this function returns non-0 (eg failure), the caller must call
451  *   sg_free_append_table() to cleanup any leftover allocations.
452  *
453  *   In the fist call, sgt_append must by initialized.
454  */
455 int sg_alloc_append_table_from_pages(struct sg_append_table *sgt_append,
456 		struct page **pages, unsigned int n_pages, unsigned int offset,
457 		unsigned long size, unsigned int max_segment,
458 		unsigned int left_pages, gfp_t gfp_mask)
459 {
460 	unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
461 	unsigned int added_nents = 0;
462 	struct scatterlist *s = sgt_append->prv;
463 	struct page *last_pg;
464 
465 	/*
466 	 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
467 	 * otherwise it can overshoot.
468 	 */
469 	max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
470 	if (WARN_ON(max_segment < PAGE_SIZE))
471 		return -EINVAL;
472 
473 	if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && sgt_append->prv)
474 		return -EOPNOTSUPP;
475 
476 	if (sgt_append->prv) {
477 		unsigned long next_pfn;
478 
479 		if (WARN_ON(offset))
480 			return -EINVAL;
481 
482 		/* Merge contiguous pages into the last SG */
483 		prv_len = sgt_append->prv->length;
484 		next_pfn = (sg_phys(sgt_append->prv) + prv_len) / PAGE_SIZE;
485 		if (page_to_pfn(pages[0]) == next_pfn) {
486 			last_pg = pfn_to_page(next_pfn - 1);
487 			while (n_pages && pages_are_mergeable(pages[0], last_pg)) {
488 				if (sgt_append->prv->length + PAGE_SIZE > max_segment)
489 					break;
490 				sgt_append->prv->length += PAGE_SIZE;
491 				last_pg = pages[0];
492 				pages++;
493 				n_pages--;
494 			}
495 			if (!n_pages)
496 				goto out;
497 		}
498 	}
499 
500 	/* compute number of contiguous chunks */
501 	chunks = 1;
502 	seg_len = 0;
503 	for (i = 1; i < n_pages; i++) {
504 		seg_len += PAGE_SIZE;
505 		if (seg_len >= max_segment ||
506 		    !pages_are_mergeable(pages[i], pages[i - 1])) {
507 			chunks++;
508 			seg_len = 0;
509 		}
510 	}
511 
512 	/* merging chunks and putting them into the scatterlist */
513 	cur_page = 0;
514 	for (i = 0; i < chunks; i++) {
515 		unsigned int j, chunk_size;
516 
517 		/* look for the end of the current chunk */
518 		seg_len = 0;
519 		for (j = cur_page + 1; j < n_pages; j++) {
520 			seg_len += PAGE_SIZE;
521 			if (seg_len >= max_segment ||
522 			    !pages_are_mergeable(pages[j], pages[j - 1]))
523 				break;
524 		}
525 
526 		/* Pass how many chunks might be left */
527 		s = get_next_sg(sgt_append, s, chunks - i + left_pages,
528 				gfp_mask);
529 		if (IS_ERR(s)) {
530 			/*
531 			 * Adjust entry length to be as before function was
532 			 * called.
533 			 */
534 			if (sgt_append->prv)
535 				sgt_append->prv->length = prv_len;
536 			return PTR_ERR(s);
537 		}
538 		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
539 		sg_set_page(s, pages[cur_page],
540 			    min_t(unsigned long, size, chunk_size), offset);
541 		added_nents++;
542 		size -= chunk_size;
543 		offset = 0;
544 		cur_page = j;
545 	}
546 	sgt_append->sgt.nents += added_nents;
547 	sgt_append->sgt.orig_nents = sgt_append->sgt.nents;
548 	sgt_append->prv = s;
549 out:
550 	if (!left_pages)
551 		sg_mark_end(s);
552 	return 0;
553 }
554 EXPORT_SYMBOL(sg_alloc_append_table_from_pages);
555 
556 /**
557  * sg_alloc_table_from_pages_segment - Allocate and initialize an sg table from
558  *                                     an array of pages and given maximum
559  *                                     segment.
560  * @sgt:	 The sg table header to use
561  * @pages:	 Pointer to an array of page pointers
562  * @n_pages:	 Number of pages in the pages array
563  * @offset:      Offset from start of the first page to the start of a buffer
564  * @size:        Number of valid bytes in the buffer (after offset)
565  * @max_segment: Maximum size of a scatterlist element in bytes
566  * @gfp_mask:	 GFP allocation mask
567  *
568  *  Description:
569  *    Allocate and initialize an sg table from a list of pages. Contiguous
570  *    ranges of the pages are squashed into a single scatterlist node up to the
571  *    maximum size specified in @max_segment. A user may provide an offset at a
572  *    start and a size of valid data in a buffer specified by the page array.
573  *
574  *    The returned sg table is released by sg_free_table.
575  *
576  *  Returns:
577  *   0 on success, negative error on failure
578  */
579 int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages,
580 				unsigned int n_pages, unsigned int offset,
581 				unsigned long size, unsigned int max_segment,
582 				gfp_t gfp_mask)
583 {
584 	struct sg_append_table append = {};
585 	int err;
586 
587 	err = sg_alloc_append_table_from_pages(&append, pages, n_pages, offset,
588 					       size, max_segment, 0, gfp_mask);
589 	if (err) {
590 		sg_free_append_table(&append);
591 		return err;
592 	}
593 	memcpy(sgt, &append.sgt, sizeof(*sgt));
594 	WARN_ON(append.total_nents != sgt->orig_nents);
595 	return 0;
596 }
597 EXPORT_SYMBOL(sg_alloc_table_from_pages_segment);
598 
599 #ifdef CONFIG_SGL_ALLOC
600 
601 /**
602  * sgl_alloc_order - allocate a scatterlist and its pages
603  * @length: Length in bytes of the scatterlist. Must be at least one
604  * @order: Second argument for alloc_pages()
605  * @chainable: Whether or not to allocate an extra element in the scatterlist
606  *	for scatterlist chaining purposes
607  * @gfp: Memory allocation flags
608  * @nent_p: [out] Number of entries in the scatterlist that have pages
609  *
610  * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
611  */
612 struct scatterlist *sgl_alloc_order(unsigned long long length,
613 				    unsigned int order, bool chainable,
614 				    gfp_t gfp, unsigned int *nent_p)
615 {
616 	struct scatterlist *sgl, *sg;
617 	struct page *page;
618 	unsigned int nent, nalloc;
619 	u32 elem_len;
620 
621 	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
622 	/* Check for integer overflow */
623 	if (length > (nent << (PAGE_SHIFT + order)))
624 		return NULL;
625 	nalloc = nent;
626 	if (chainable) {
627 		/* Check for integer overflow */
628 		if (nalloc + 1 < nalloc)
629 			return NULL;
630 		nalloc++;
631 	}
632 	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
633 			    gfp & ~GFP_DMA);
634 	if (!sgl)
635 		return NULL;
636 
637 	sg_init_table(sgl, nalloc);
638 	sg = sgl;
639 	while (length) {
640 		elem_len = min_t(u64, length, PAGE_SIZE << order);
641 		page = alloc_pages(gfp, order);
642 		if (!page) {
643 			sgl_free_order(sgl, order);
644 			return NULL;
645 		}
646 
647 		sg_set_page(sg, page, elem_len, 0);
648 		length -= elem_len;
649 		sg = sg_next(sg);
650 	}
651 	WARN_ONCE(length, "length = %lld\n", length);
652 	if (nent_p)
653 		*nent_p = nent;
654 	return sgl;
655 }
656 EXPORT_SYMBOL(sgl_alloc_order);
657 
658 /**
659  * sgl_alloc - allocate a scatterlist and its pages
660  * @length: Length in bytes of the scatterlist
661  * @gfp: Memory allocation flags
662  * @nent_p: [out] Number of entries in the scatterlist
663  *
664  * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
665  */
666 struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
667 			      unsigned int *nent_p)
668 {
669 	return sgl_alloc_order(length, 0, false, gfp, nent_p);
670 }
671 EXPORT_SYMBOL(sgl_alloc);
672 
673 /**
674  * sgl_free_n_order - free a scatterlist and its pages
675  * @sgl: Scatterlist with one or more elements
676  * @nents: Maximum number of elements to free
677  * @order: Second argument for __free_pages()
678  *
679  * Notes:
680  * - If several scatterlists have been chained and each chain element is
681  *   freed separately then it's essential to set nents correctly to avoid that a
682  *   page would get freed twice.
683  * - All pages in a chained scatterlist can be freed at once by setting @nents
684  *   to a high number.
685  */
686 void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
687 {
688 	struct scatterlist *sg;
689 	struct page *page;
690 	int i;
691 
692 	for_each_sg(sgl, sg, nents, i) {
693 		if (!sg)
694 			break;
695 		page = sg_page(sg);
696 		if (page)
697 			__free_pages(page, order);
698 	}
699 	kfree(sgl);
700 }
701 EXPORT_SYMBOL(sgl_free_n_order);
702 
703 /**
704  * sgl_free_order - free a scatterlist and its pages
705  * @sgl: Scatterlist with one or more elements
706  * @order: Second argument for __free_pages()
707  */
708 void sgl_free_order(struct scatterlist *sgl, int order)
709 {
710 	sgl_free_n_order(sgl, INT_MAX, order);
711 }
712 EXPORT_SYMBOL(sgl_free_order);
713 
714 /**
715  * sgl_free - free a scatterlist and its pages
716  * @sgl: Scatterlist with one or more elements
717  */
718 void sgl_free(struct scatterlist *sgl)
719 {
720 	sgl_free_order(sgl, 0);
721 }
722 EXPORT_SYMBOL(sgl_free);
723 
724 #endif /* CONFIG_SGL_ALLOC */
725 
726 void __sg_page_iter_start(struct sg_page_iter *piter,
727 			  struct scatterlist *sglist, unsigned int nents,
728 			  unsigned long pgoffset)
729 {
730 	piter->__pg_advance = 0;
731 	piter->__nents = nents;
732 
733 	piter->sg = sglist;
734 	piter->sg_pgoffset = pgoffset;
735 }
736 EXPORT_SYMBOL(__sg_page_iter_start);
737 
738 static int sg_page_count(struct scatterlist *sg)
739 {
740 	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
741 }
742 
743 bool __sg_page_iter_next(struct sg_page_iter *piter)
744 {
745 	if (!piter->__nents || !piter->sg)
746 		return false;
747 
748 	piter->sg_pgoffset += piter->__pg_advance;
749 	piter->__pg_advance = 1;
750 
751 	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
752 		piter->sg_pgoffset -= sg_page_count(piter->sg);
753 		piter->sg = sg_next(piter->sg);
754 		if (!--piter->__nents || !piter->sg)
755 			return false;
756 	}
757 
758 	return true;
759 }
760 EXPORT_SYMBOL(__sg_page_iter_next);
761 
762 static int sg_dma_page_count(struct scatterlist *sg)
763 {
764 	return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
765 }
766 
767 bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
768 {
769 	struct sg_page_iter *piter = &dma_iter->base;
770 
771 	if (!piter->__nents || !piter->sg)
772 		return false;
773 
774 	piter->sg_pgoffset += piter->__pg_advance;
775 	piter->__pg_advance = 1;
776 
777 	while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
778 		piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
779 		piter->sg = sg_next(piter->sg);
780 		if (!--piter->__nents || !piter->sg)
781 			return false;
782 	}
783 
784 	return true;
785 }
786 EXPORT_SYMBOL(__sg_page_iter_dma_next);
787 
788 /**
789  * sg_miter_start - start mapping iteration over a sg list
790  * @miter: sg mapping iter to be started
791  * @sgl: sg list to iterate over
792  * @nents: number of sg entries
793  * @flags: sg iterator flags
794  *
795  * Description:
796  *   Starts mapping iterator @miter.
797  *
798  * Context:
799  *   Don't care.
800  */
801 void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
802 		    unsigned int nents, unsigned int flags)
803 {
804 	memset(miter, 0, sizeof(struct sg_mapping_iter));
805 
806 	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
807 	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
808 	miter->__flags = flags;
809 }
810 EXPORT_SYMBOL(sg_miter_start);
811 
812 static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
813 {
814 	if (!miter->__remaining) {
815 		struct scatterlist *sg;
816 
817 		if (!__sg_page_iter_next(&miter->piter))
818 			return false;
819 
820 		sg = miter->piter.sg;
821 
822 		miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
823 		miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
824 		miter->__offset &= PAGE_SIZE - 1;
825 		miter->__remaining = sg->offset + sg->length -
826 				     (miter->piter.sg_pgoffset << PAGE_SHIFT) -
827 				     miter->__offset;
828 		miter->__remaining = min_t(unsigned long, miter->__remaining,
829 					   PAGE_SIZE - miter->__offset);
830 	}
831 
832 	return true;
833 }
834 
835 /**
836  * sg_miter_skip - reposition mapping iterator
837  * @miter: sg mapping iter to be skipped
838  * @offset: number of bytes to plus the current location
839  *
840  * Description:
841  *   Sets the offset of @miter to its current location plus @offset bytes.
842  *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
843  *   stops @miter.
844  *
845  * Context:
846  *   Don't care.
847  *
848  * Returns:
849  *   true if @miter contains the valid mapping.  false if end of sg
850  *   list is reached.
851  */
852 bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
853 {
854 	sg_miter_stop(miter);
855 
856 	while (offset) {
857 		off_t consumed;
858 
859 		if (!sg_miter_get_next_page(miter))
860 			return false;
861 
862 		consumed = min_t(off_t, offset, miter->__remaining);
863 		miter->__offset += consumed;
864 		miter->__remaining -= consumed;
865 		offset -= consumed;
866 	}
867 
868 	return true;
869 }
870 EXPORT_SYMBOL(sg_miter_skip);
871 
872 /**
873  * sg_miter_next - proceed mapping iterator to the next mapping
874  * @miter: sg mapping iter to proceed
875  *
876  * Description:
877  *   Proceeds @miter to the next mapping.  @miter should have been started
878  *   using sg_miter_start().  On successful return, @miter->page,
879  *   @miter->addr and @miter->length point to the current mapping.
880  *
881  * Context:
882  *   May sleep if !SG_MITER_ATOMIC && !SG_MITER_LOCAL.
883  *
884  * Returns:
885  *   true if @miter contains the next mapping.  false if end of sg
886  *   list is reached.
887  */
888 bool sg_miter_next(struct sg_mapping_iter *miter)
889 {
890 	sg_miter_stop(miter);
891 
892 	/*
893 	 * Get to the next page if necessary.
894 	 * __remaining, __offset is adjusted by sg_miter_stop
895 	 */
896 	if (!sg_miter_get_next_page(miter))
897 		return false;
898 
899 	miter->page = sg_page_iter_page(&miter->piter);
900 	miter->consumed = miter->length = miter->__remaining;
901 
902 	if (miter->__flags & SG_MITER_ATOMIC)
903 		miter->addr = kmap_atomic(miter->page) + miter->__offset;
904 	else if (miter->__flags & SG_MITER_LOCAL)
905 		miter->addr = kmap_local_page(miter->page) + miter->__offset;
906 	else
907 		miter->addr = kmap(miter->page) + miter->__offset;
908 
909 	return true;
910 }
911 EXPORT_SYMBOL(sg_miter_next);
912 
913 /**
914  * sg_miter_stop - stop mapping iteration
915  * @miter: sg mapping iter to be stopped
916  *
917  * Description:
918  *   Stops mapping iterator @miter.  @miter should have been started
919  *   using sg_miter_start().  A stopped iteration can be resumed by
920  *   calling sg_miter_next() on it.  This is useful when resources (kmap)
921  *   need to be released during iteration.
922  *
923  * Context:
924  *   Don't care otherwise.
925  */
926 void sg_miter_stop(struct sg_mapping_iter *miter)
927 {
928 	WARN_ON(miter->consumed > miter->length);
929 
930 	/* drop resources from the last iteration */
931 	if (miter->addr) {
932 		miter->__offset += miter->consumed;
933 		miter->__remaining -= miter->consumed;
934 
935 		if (miter->__flags & SG_MITER_TO_SG)
936 			flush_dcache_page(miter->page);
937 
938 		if (miter->__flags & SG_MITER_ATOMIC) {
939 			WARN_ON_ONCE(!pagefault_disabled());
940 			kunmap_atomic(miter->addr);
941 		} else if (miter->__flags & SG_MITER_LOCAL)
942 			kunmap_local(miter->addr);
943 		else
944 			kunmap(miter->page);
945 
946 		miter->page = NULL;
947 		miter->addr = NULL;
948 		miter->length = 0;
949 		miter->consumed = 0;
950 	}
951 }
952 EXPORT_SYMBOL(sg_miter_stop);
953 
954 /**
955  * sg_copy_buffer - Copy data between a linear buffer and an SG list
956  * @sgl:		 The SG list
957  * @nents:		 Number of SG entries
958  * @buf:		 Where to copy from
959  * @buflen:		 The number of bytes to copy
960  * @skip:		 Number of bytes to skip before copying
961  * @to_buffer:		 transfer direction (true == from an sg list to a
962  *			 buffer, false == from a buffer to an sg list)
963  *
964  * Returns the number of copied bytes.
965  *
966  **/
967 size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
968 		      size_t buflen, off_t skip, bool to_buffer)
969 {
970 	unsigned int offset = 0;
971 	struct sg_mapping_iter miter;
972 	unsigned int sg_flags = SG_MITER_LOCAL;
973 
974 	if (to_buffer)
975 		sg_flags |= SG_MITER_FROM_SG;
976 	else
977 		sg_flags |= SG_MITER_TO_SG;
978 
979 	sg_miter_start(&miter, sgl, nents, sg_flags);
980 
981 	if (!sg_miter_skip(&miter, skip))
982 		return 0;
983 
984 	while ((offset < buflen) && sg_miter_next(&miter)) {
985 		unsigned int len;
986 
987 		len = min(miter.length, buflen - offset);
988 
989 		if (to_buffer)
990 			memcpy(buf + offset, miter.addr, len);
991 		else
992 			memcpy(miter.addr, buf + offset, len);
993 
994 		offset += len;
995 	}
996 
997 	sg_miter_stop(&miter);
998 
999 	return offset;
1000 }
1001 EXPORT_SYMBOL(sg_copy_buffer);
1002 
1003 /**
1004  * sg_copy_from_buffer - Copy from a linear buffer to an SG list
1005  * @sgl:		 The SG list
1006  * @nents:		 Number of SG entries
1007  * @buf:		 Where to copy from
1008  * @buflen:		 The number of bytes to copy
1009  *
1010  * Returns the number of copied bytes.
1011  *
1012  **/
1013 size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1014 			   const void *buf, size_t buflen)
1015 {
1016 	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
1017 }
1018 EXPORT_SYMBOL(sg_copy_from_buffer);
1019 
1020 /**
1021  * sg_copy_to_buffer - Copy from an SG list to a linear buffer
1022  * @sgl:		 The SG list
1023  * @nents:		 Number of SG entries
1024  * @buf:		 Where to copy to
1025  * @buflen:		 The number of bytes to copy
1026  *
1027  * Returns the number of copied bytes.
1028  *
1029  **/
1030 size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1031 			 void *buf, size_t buflen)
1032 {
1033 	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
1034 }
1035 EXPORT_SYMBOL(sg_copy_to_buffer);
1036 
1037 /**
1038  * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
1039  * @sgl:		 The SG list
1040  * @nents:		 Number of SG entries
1041  * @buf:		 Where to copy from
1042  * @buflen:		 The number of bytes to copy
1043  * @skip:		 Number of bytes to skip before copying
1044  *
1045  * Returns the number of copied bytes.
1046  *
1047  **/
1048 size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1049 			    const void *buf, size_t buflen, off_t skip)
1050 {
1051 	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1052 }
1053 EXPORT_SYMBOL(sg_pcopy_from_buffer);
1054 
1055 /**
1056  * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1057  * @sgl:		 The SG list
1058  * @nents:		 Number of SG entries
1059  * @buf:		 Where to copy to
1060  * @buflen:		 The number of bytes to copy
1061  * @skip:		 Number of bytes to skip before copying
1062  *
1063  * Returns the number of copied bytes.
1064  *
1065  **/
1066 size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1067 			  void *buf, size_t buflen, off_t skip)
1068 {
1069 	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1070 }
1071 EXPORT_SYMBOL(sg_pcopy_to_buffer);
1072 
1073 /**
1074  * sg_zero_buffer - Zero-out a part of a SG list
1075  * @sgl:		 The SG list
1076  * @nents:		 Number of SG entries
1077  * @buflen:		 The number of bytes to zero out
1078  * @skip:		 Number of bytes to skip before zeroing
1079  *
1080  * Returns the number of bytes zeroed.
1081  **/
1082 size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1083 		       size_t buflen, off_t skip)
1084 {
1085 	unsigned int offset = 0;
1086 	struct sg_mapping_iter miter;
1087 	unsigned int sg_flags = SG_MITER_LOCAL | SG_MITER_TO_SG;
1088 
1089 	sg_miter_start(&miter, sgl, nents, sg_flags);
1090 
1091 	if (!sg_miter_skip(&miter, skip))
1092 		return false;
1093 
1094 	while (offset < buflen && sg_miter_next(&miter)) {
1095 		unsigned int len;
1096 
1097 		len = min(miter.length, buflen - offset);
1098 		memset(miter.addr, 0, len);
1099 
1100 		offset += len;
1101 	}
1102 
1103 	sg_miter_stop(&miter);
1104 	return offset;
1105 }
1106 EXPORT_SYMBOL(sg_zero_buffer);
1107 
1108 /*
1109  * Extract and pin a list of up to sg_max pages from UBUF- or IOVEC-class
1110  * iterators, and add them to the scatterlist.
1111  */
1112 static ssize_t extract_user_to_sg(struct iov_iter *iter,
1113 				  ssize_t maxsize,
1114 				  struct sg_table *sgtable,
1115 				  unsigned int sg_max,
1116 				  iov_iter_extraction_t extraction_flags)
1117 {
1118 	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1119 	struct page **pages;
1120 	unsigned int npages;
1121 	ssize_t ret = 0, res;
1122 	size_t len, off;
1123 
1124 	/* We decant the page list into the tail of the scatterlist */
1125 	pages = (void *)sgtable->sgl +
1126 		array_size(sg_max, sizeof(struct scatterlist));
1127 	pages -= sg_max;
1128 
1129 	do {
1130 		res = iov_iter_extract_pages(iter, &pages, maxsize, sg_max,
1131 					     extraction_flags, &off);
1132 		if (res <= 0)
1133 			goto failed;
1134 
1135 		len = res;
1136 		maxsize -= len;
1137 		ret += len;
1138 		npages = DIV_ROUND_UP(off + len, PAGE_SIZE);
1139 		sg_max -= npages;
1140 
1141 		for (; npages > 0; npages--) {
1142 			struct page *page = *pages;
1143 			size_t seg = min_t(size_t, PAGE_SIZE - off, len);
1144 
1145 			*pages++ = NULL;
1146 			sg_set_page(sg, page, seg, off);
1147 			sgtable->nents++;
1148 			sg++;
1149 			len -= seg;
1150 			off = 0;
1151 		}
1152 	} while (maxsize > 0 && sg_max > 0);
1153 
1154 	return ret;
1155 
1156 failed:
1157 	while (sgtable->nents > sgtable->orig_nents)
1158 		unpin_user_page(sg_page(&sgtable->sgl[--sgtable->nents]));
1159 	return res;
1160 }
1161 
1162 /*
1163  * Extract up to sg_max pages from a BVEC-type iterator and add them to the
1164  * scatterlist.  The pages are not pinned.
1165  */
1166 static ssize_t extract_bvec_to_sg(struct iov_iter *iter,
1167 				  ssize_t maxsize,
1168 				  struct sg_table *sgtable,
1169 				  unsigned int sg_max,
1170 				  iov_iter_extraction_t extraction_flags)
1171 {
1172 	const struct bio_vec *bv = iter->bvec;
1173 	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1174 	unsigned long start = iter->iov_offset;
1175 	unsigned int i;
1176 	ssize_t ret = 0;
1177 
1178 	for (i = 0; i < iter->nr_segs; i++) {
1179 		size_t off, len;
1180 
1181 		len = bv[i].bv_len;
1182 		if (start >= len) {
1183 			start -= len;
1184 			continue;
1185 		}
1186 
1187 		len = min_t(size_t, maxsize, len - start);
1188 		off = bv[i].bv_offset + start;
1189 
1190 		sg_set_page(sg, bv[i].bv_page, len, off);
1191 		sgtable->nents++;
1192 		sg++;
1193 		sg_max--;
1194 
1195 		ret += len;
1196 		maxsize -= len;
1197 		if (maxsize <= 0 || sg_max == 0)
1198 			break;
1199 		start = 0;
1200 	}
1201 
1202 	if (ret > 0)
1203 		iov_iter_advance(iter, ret);
1204 	return ret;
1205 }
1206 
1207 /*
1208  * Extract up to sg_max pages from a KVEC-type iterator and add them to the
1209  * scatterlist.  This can deal with vmalloc'd buffers as well as kmalloc'd or
1210  * static buffers.  The pages are not pinned.
1211  */
1212 static ssize_t extract_kvec_to_sg(struct iov_iter *iter,
1213 				  ssize_t maxsize,
1214 				  struct sg_table *sgtable,
1215 				  unsigned int sg_max,
1216 				  iov_iter_extraction_t extraction_flags)
1217 {
1218 	const struct kvec *kv = iter->kvec;
1219 	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1220 	unsigned long start = iter->iov_offset;
1221 	unsigned int i;
1222 	ssize_t ret = 0;
1223 
1224 	for (i = 0; i < iter->nr_segs; i++) {
1225 		struct page *page;
1226 		unsigned long kaddr;
1227 		size_t off, len, seg;
1228 
1229 		len = kv[i].iov_len;
1230 		if (start >= len) {
1231 			start -= len;
1232 			continue;
1233 		}
1234 
1235 		kaddr = (unsigned long)kv[i].iov_base + start;
1236 		off = kaddr & ~PAGE_MASK;
1237 		len = min_t(size_t, maxsize, len - start);
1238 		kaddr &= PAGE_MASK;
1239 
1240 		maxsize -= len;
1241 		ret += len;
1242 		do {
1243 			seg = min_t(size_t, len, PAGE_SIZE - off);
1244 			if (is_vmalloc_or_module_addr((void *)kaddr))
1245 				page = vmalloc_to_page((void *)kaddr);
1246 			else
1247 				page = virt_to_page((void *)kaddr);
1248 
1249 			sg_set_page(sg, page, len, off);
1250 			sgtable->nents++;
1251 			sg++;
1252 			sg_max--;
1253 
1254 			len -= seg;
1255 			kaddr += PAGE_SIZE;
1256 			off = 0;
1257 		} while (len > 0 && sg_max > 0);
1258 
1259 		if (maxsize <= 0 || sg_max == 0)
1260 			break;
1261 		start = 0;
1262 	}
1263 
1264 	if (ret > 0)
1265 		iov_iter_advance(iter, ret);
1266 	return ret;
1267 }
1268 
1269 /*
1270  * Extract up to sg_max folios from an FOLIOQ-type iterator and add them to
1271  * the scatterlist.  The pages are not pinned.
1272  */
1273 static ssize_t extract_folioq_to_sg(struct iov_iter *iter,
1274 				   ssize_t maxsize,
1275 				   struct sg_table *sgtable,
1276 				   unsigned int sg_max,
1277 				   iov_iter_extraction_t extraction_flags)
1278 {
1279 	const struct folio_queue *folioq = iter->folioq;
1280 	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1281 	unsigned int slot = iter->folioq_slot;
1282 	ssize_t ret = 0;
1283 	size_t offset = iter->iov_offset;
1284 
1285 	BUG_ON(!folioq);
1286 
1287 	if (slot >= folioq_nr_slots(folioq)) {
1288 		folioq = folioq->next;
1289 		if (WARN_ON_ONCE(!folioq))
1290 			return 0;
1291 		slot = 0;
1292 	}
1293 
1294 	do {
1295 		struct folio *folio = folioq_folio(folioq, slot);
1296 		size_t fsize = folioq_folio_size(folioq, slot);
1297 
1298 		if (offset < fsize) {
1299 			size_t part = umin(maxsize - ret, fsize - offset);
1300 
1301 			sg_set_page(sg, folio_page(folio, 0), part, offset);
1302 			sgtable->nents++;
1303 			sg++;
1304 			sg_max--;
1305 			offset += part;
1306 			ret += part;
1307 		}
1308 
1309 		if (offset >= fsize) {
1310 			offset = 0;
1311 			slot++;
1312 			if (slot >= folioq_nr_slots(folioq)) {
1313 				if (!folioq->next) {
1314 					WARN_ON_ONCE(ret < iter->count);
1315 					break;
1316 				}
1317 				folioq = folioq->next;
1318 				slot = 0;
1319 			}
1320 		}
1321 	} while (sg_max > 0 && ret < maxsize);
1322 
1323 	iter->folioq = folioq;
1324 	iter->folioq_slot = slot;
1325 	iter->iov_offset = offset;
1326 	iter->count -= ret;
1327 	return ret;
1328 }
1329 
1330 /*
1331  * Extract up to sg_max folios from an XARRAY-type iterator and add them to
1332  * the scatterlist.  The pages are not pinned.
1333  */
1334 static ssize_t extract_xarray_to_sg(struct iov_iter *iter,
1335 				    ssize_t maxsize,
1336 				    struct sg_table *sgtable,
1337 				    unsigned int sg_max,
1338 				    iov_iter_extraction_t extraction_flags)
1339 {
1340 	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1341 	struct xarray *xa = iter->xarray;
1342 	struct folio *folio;
1343 	loff_t start = iter->xarray_start + iter->iov_offset;
1344 	pgoff_t index = start / PAGE_SIZE;
1345 	ssize_t ret = 0;
1346 	size_t offset, len;
1347 	XA_STATE(xas, xa, index);
1348 
1349 	rcu_read_lock();
1350 
1351 	xas_for_each(&xas, folio, ULONG_MAX) {
1352 		if (xas_retry(&xas, folio))
1353 			continue;
1354 		if (WARN_ON(xa_is_value(folio)))
1355 			break;
1356 		if (WARN_ON(folio_test_hugetlb(folio)))
1357 			break;
1358 
1359 		offset = offset_in_folio(folio, start);
1360 		len = min_t(size_t, maxsize, folio_size(folio) - offset);
1361 
1362 		sg_set_page(sg, folio_page(folio, 0), len, offset);
1363 		sgtable->nents++;
1364 		sg++;
1365 		sg_max--;
1366 
1367 		maxsize -= len;
1368 		ret += len;
1369 		if (maxsize <= 0 || sg_max == 0)
1370 			break;
1371 	}
1372 
1373 	rcu_read_unlock();
1374 	if (ret > 0)
1375 		iov_iter_advance(iter, ret);
1376 	return ret;
1377 }
1378 
1379 /**
1380  * extract_iter_to_sg - Extract pages from an iterator and add to an sglist
1381  * @iter: The iterator to extract from
1382  * @maxsize: The amount of iterator to copy
1383  * @sgtable: The scatterlist table to fill in
1384  * @sg_max: Maximum number of elements in @sgtable that may be filled
1385  * @extraction_flags: Flags to qualify the request
1386  *
1387  * Extract the page fragments from the given amount of the source iterator and
1388  * add them to a scatterlist that refers to all of those bits, to a maximum
1389  * addition of @sg_max elements.
1390  *
1391  * The pages referred to by UBUF- and IOVEC-type iterators are extracted and
1392  * pinned; BVEC-, KVEC-, FOLIOQ- and XARRAY-type are extracted but aren't
1393  * pinned; DISCARD-type is not supported.
1394  *
1395  * No end mark is placed on the scatterlist; that's left to the caller.
1396  *
1397  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1398  * be allowed on the pages extracted.
1399  *
1400  * If successful, @sgtable->nents is updated to include the number of elements
1401  * added and the number of bytes added is returned.  @sgtable->orig_nents is
1402  * left unaltered.
1403  *
1404  * The iov_iter_extract_mode() function should be used to query how cleanup
1405  * should be performed.
1406  */
1407 ssize_t extract_iter_to_sg(struct iov_iter *iter, size_t maxsize,
1408 			   struct sg_table *sgtable, unsigned int sg_max,
1409 			   iov_iter_extraction_t extraction_flags)
1410 {
1411 	if (maxsize == 0)
1412 		return 0;
1413 
1414 	switch (iov_iter_type(iter)) {
1415 	case ITER_UBUF:
1416 	case ITER_IOVEC:
1417 		return extract_user_to_sg(iter, maxsize, sgtable, sg_max,
1418 					  extraction_flags);
1419 	case ITER_BVEC:
1420 		return extract_bvec_to_sg(iter, maxsize, sgtable, sg_max,
1421 					  extraction_flags);
1422 	case ITER_KVEC:
1423 		return extract_kvec_to_sg(iter, maxsize, sgtable, sg_max,
1424 					  extraction_flags);
1425 	case ITER_FOLIOQ:
1426 		return extract_folioq_to_sg(iter, maxsize, sgtable, sg_max,
1427 					    extraction_flags);
1428 	case ITER_XARRAY:
1429 		return extract_xarray_to_sg(iter, maxsize, sgtable, sg_max,
1430 					    extraction_flags);
1431 	default:
1432 		pr_err("%s(%u) unsupported\n", __func__, iov_iter_type(iter));
1433 		WARN_ON_ONCE(1);
1434 		return -EIO;
1435 	}
1436 }
1437 EXPORT_SYMBOL_GPL(extract_iter_to_sg);
1438