1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance event support for the System z CPU-measurement Sampling Facility
4 *
5 * Copyright IBM Corp. 2013, 2018
6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
7 */
8 #define KMSG_COMPONENT "cpum_sf"
9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/pid.h>
16 #include <linux/notifier.h>
17 #include <linux/export.h>
18 #include <linux/slab.h>
19 #include <linux/mm.h>
20 #include <linux/moduleparam.h>
21 #include <asm/cpu_mf.h>
22 #include <asm/irq.h>
23 #include <asm/debug.h>
24 #include <asm/timex.h>
25 #include <linux/io.h>
26
27 /* Perf PMU definitions for the sampling facility */
28 #define PERF_CPUM_SF_MAX_CTR 2
29 #define PERF_EVENT_CPUM_SF 0xB0000UL /* Event: Basic-sampling */
30 #define PERF_EVENT_CPUM_SF_DIAG 0xBD000UL /* Event: Combined-sampling */
31 #define PERF_CPUM_SF_BASIC_MODE 0x0001 /* Basic-sampling flag */
32 #define PERF_CPUM_SF_DIAG_MODE 0x0002 /* Diagnostic-sampling flag */
33 #define PERF_CPUM_SF_FREQ_MODE 0x0008 /* Sampling with frequency */
34
35 #define OVERFLOW_REG(hwc) ((hwc)->extra_reg.config)
36 #define SFB_ALLOC_REG(hwc) ((hwc)->extra_reg.alloc)
37 #define TEAR_REG(hwc) ((hwc)->last_tag)
38 #define SAMPL_RATE(hwc) ((hwc)->event_base)
39 #define SAMPL_FLAGS(hwc) ((hwc)->config_base)
40 #define SAMPL_DIAG_MODE(hwc) (SAMPL_FLAGS(hwc) & PERF_CPUM_SF_DIAG_MODE)
41 #define SAMPL_FREQ_MODE(hwc) (SAMPL_FLAGS(hwc) & PERF_CPUM_SF_FREQ_MODE)
42
43 /* Minimum number of sample-data-block-tables:
44 * At least one table is required for the sampling buffer structure.
45 * A single table contains up to 511 pointers to sample-data-blocks.
46 */
47 #define CPUM_SF_MIN_SDBT 1
48
49 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
50 * A table contains SDB pointers (8 bytes) and one table-link entry
51 * that points to the origin of the next SDBT.
52 */
53 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
54
55 /* Maximum page offset for an SDBT table-link entry:
56 * If this page offset is reached, a table-link entry to the next SDBT
57 * must be added.
58 */
59 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
require_table_link(const void * sdbt)60 static inline int require_table_link(const void *sdbt)
61 {
62 return ((unsigned long)sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
63 }
64
65 /* Minimum and maximum sampling buffer sizes:
66 *
67 * This number represents the maximum size of the sampling buffer taking
68 * the number of sample-data-block-tables into account. Note that these
69 * numbers apply to the basic-sampling function only.
70 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
71 * the diagnostic-sampling function is active.
72 *
73 * Sampling buffer size Buffer characteristics
74 * ---------------------------------------------------
75 * 64KB == 16 pages (4KB per page)
76 * 1 page for SDB-tables
77 * 15 pages for SDBs
78 *
79 * 32MB == 8192 pages (4KB per page)
80 * 16 pages for SDB-tables
81 * 8176 pages for SDBs
82 */
83 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
84 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
85 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
86
87 struct sf_buffer {
88 unsigned long *sdbt; /* Sample-data-block-table origin */
89 /* buffer characteristics (required for buffer increments) */
90 unsigned long num_sdb; /* Number of sample-data-blocks */
91 unsigned long num_sdbt; /* Number of sample-data-block-tables */
92 unsigned long *tail; /* last sample-data-block-table */
93 };
94
95 struct aux_buffer {
96 struct sf_buffer sfb;
97 unsigned long head; /* index of SDB of buffer head */
98 unsigned long alert_mark; /* index of SDB of alert request position */
99 unsigned long empty_mark; /* mark of SDB not marked full */
100 unsigned long *sdb_index; /* SDB address for fast lookup */
101 unsigned long *sdbt_index; /* SDBT address for fast lookup */
102 };
103
104 struct cpu_hw_sf {
105 /* CPU-measurement sampling information block */
106 struct hws_qsi_info_block qsi;
107 /* CPU-measurement sampling control block */
108 struct hws_lsctl_request_block lsctl;
109 struct sf_buffer sfb; /* Sampling buffer */
110 unsigned int flags; /* Status flags */
111 struct perf_event *event; /* Scheduled perf event */
112 struct perf_output_handle handle; /* AUX buffer output handle */
113 };
114 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
115
116 /* Debug feature */
117 static debug_info_t *sfdbg;
118
119 /* Sampling control helper functions */
freq_to_sample_rate(struct hws_qsi_info_block * qsi,unsigned long freq)120 static inline unsigned long freq_to_sample_rate(struct hws_qsi_info_block *qsi,
121 unsigned long freq)
122 {
123 return (USEC_PER_SEC / freq) * qsi->cpu_speed;
124 }
125
sample_rate_to_freq(struct hws_qsi_info_block * qsi,unsigned long rate)126 static inline unsigned long sample_rate_to_freq(struct hws_qsi_info_block *qsi,
127 unsigned long rate)
128 {
129 return USEC_PER_SEC * qsi->cpu_speed / rate;
130 }
131
132 /* Return pointer to trailer entry of an sample data block */
trailer_entry_ptr(unsigned long v)133 static inline struct hws_trailer_entry *trailer_entry_ptr(unsigned long v)
134 {
135 void *ret;
136
137 ret = (void *)v;
138 ret += PAGE_SIZE;
139 ret -= sizeof(struct hws_trailer_entry);
140
141 return ret;
142 }
143
144 /*
145 * Return true if the entry in the sample data block table (sdbt)
146 * is a link to the next sdbt
147 */
is_link_entry(unsigned long * s)148 static inline int is_link_entry(unsigned long *s)
149 {
150 return *s & 0x1UL ? 1 : 0;
151 }
152
153 /* Return pointer to the linked sdbt */
get_next_sdbt(unsigned long * s)154 static inline unsigned long *get_next_sdbt(unsigned long *s)
155 {
156 return phys_to_virt(*s & ~0x1UL);
157 }
158
159 /*
160 * sf_disable() - Switch off sampling facility
161 */
sf_disable(void)162 static void sf_disable(void)
163 {
164 struct hws_lsctl_request_block sreq;
165
166 memset(&sreq, 0, sizeof(sreq));
167 lsctl(&sreq);
168 }
169
170 /*
171 * sf_buffer_available() - Check for an allocated sampling buffer
172 */
sf_buffer_available(struct cpu_hw_sf * cpuhw)173 static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
174 {
175 return !!cpuhw->sfb.sdbt;
176 }
177
178 /*
179 * deallocate sampling facility buffer
180 */
free_sampling_buffer(struct sf_buffer * sfb)181 static void free_sampling_buffer(struct sf_buffer *sfb)
182 {
183 unsigned long *sdbt, *curr;
184
185 if (!sfb->sdbt)
186 return;
187
188 sdbt = sfb->sdbt;
189 curr = sdbt;
190
191 /* Free the SDBT after all SDBs are processed... */
192 while (1) {
193 if (!*curr || !sdbt)
194 break;
195
196 /* Process table-link entries */
197 if (is_link_entry(curr)) {
198 curr = get_next_sdbt(curr);
199 if (sdbt)
200 free_page((unsigned long)sdbt);
201
202 /* If the origin is reached, sampling buffer is freed */
203 if (curr == sfb->sdbt)
204 break;
205 else
206 sdbt = curr;
207 } else {
208 /* Process SDB pointer */
209 if (*curr) {
210 free_page((unsigned long)phys_to_virt(*curr));
211 curr++;
212 }
213 }
214 }
215
216 memset(sfb, 0, sizeof(*sfb));
217 }
218
alloc_sample_data_block(unsigned long * sdbt,gfp_t gfp_flags)219 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
220 {
221 struct hws_trailer_entry *te;
222 unsigned long sdb;
223
224 /* Allocate and initialize sample-data-block */
225 sdb = get_zeroed_page(gfp_flags);
226 if (!sdb)
227 return -ENOMEM;
228 te = trailer_entry_ptr(sdb);
229 te->header.a = 1;
230
231 /* Link SDB into the sample-data-block-table */
232 *sdbt = virt_to_phys((void *)sdb);
233
234 return 0;
235 }
236
237 /*
238 * realloc_sampling_buffer() - extend sampler memory
239 *
240 * Allocates new sample-data-blocks and adds them to the specified sampling
241 * buffer memory.
242 *
243 * Important: This modifies the sampling buffer and must be called when the
244 * sampling facility is disabled.
245 *
246 * Returns zero on success, non-zero otherwise.
247 */
realloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb,gfp_t gfp_flags)248 static int realloc_sampling_buffer(struct sf_buffer *sfb,
249 unsigned long num_sdb, gfp_t gfp_flags)
250 {
251 int i, rc;
252 unsigned long *new, *tail, *tail_prev = NULL;
253
254 if (!sfb->sdbt || !sfb->tail)
255 return -EINVAL;
256
257 if (!is_link_entry(sfb->tail))
258 return -EINVAL;
259
260 /* Append to the existing sampling buffer, overwriting the table-link
261 * register.
262 * The tail variables always points to the "tail" (last and table-link)
263 * entry in an SDB-table.
264 */
265 tail = sfb->tail;
266
267 /* Do a sanity check whether the table-link entry points to
268 * the sampling buffer origin.
269 */
270 if (sfb->sdbt != get_next_sdbt(tail)) {
271 debug_sprintf_event(sfdbg, 3, "%s buffer not linked origin %#lx tail %#lx\n",
272 __func__, (unsigned long)sfb->sdbt,
273 (unsigned long)tail);
274 return -EINVAL;
275 }
276
277 /* Allocate remaining SDBs */
278 rc = 0;
279 for (i = 0; i < num_sdb; i++) {
280 /* Allocate a new SDB-table if it is full. */
281 if (require_table_link(tail)) {
282 new = (unsigned long *)get_zeroed_page(gfp_flags);
283 if (!new) {
284 rc = -ENOMEM;
285 break;
286 }
287 sfb->num_sdbt++;
288 /* Link current page to tail of chain */
289 *tail = virt_to_phys((void *)new) + 1;
290 tail_prev = tail;
291 tail = new;
292 }
293
294 /* Allocate a new sample-data-block.
295 * If there is not enough memory, stop the realloc process
296 * and simply use what was allocated. If this is a temporary
297 * issue, a new realloc call (if required) might succeed.
298 */
299 rc = alloc_sample_data_block(tail, gfp_flags);
300 if (rc) {
301 /* Undo last SDBT. An SDBT with no SDB at its first
302 * entry but with an SDBT entry instead can not be
303 * handled by the interrupt handler code.
304 * Avoid this situation.
305 */
306 if (tail_prev) {
307 sfb->num_sdbt--;
308 free_page((unsigned long)new);
309 tail = tail_prev;
310 }
311 break;
312 }
313 sfb->num_sdb++;
314 tail++;
315 tail_prev = new = NULL; /* Allocated at least one SBD */
316 }
317
318 /* Link sampling buffer to its origin */
319 *tail = virt_to_phys(sfb->sdbt) + 1;
320 sfb->tail = tail;
321
322 return rc;
323 }
324
325 /*
326 * allocate_sampling_buffer() - allocate sampler memory
327 *
328 * Allocates and initializes a sampling buffer structure using the
329 * specified number of sample-data-blocks (SDB). For each allocation,
330 * a 4K page is used. The number of sample-data-block-tables (SDBT)
331 * are calculated from SDBs.
332 * Also set the ALERT_REQ mask in each SDBs trailer.
333 *
334 * Returns zero on success, non-zero otherwise.
335 */
alloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb)336 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
337 {
338 int rc;
339
340 if (sfb->sdbt)
341 return -EINVAL;
342
343 /* Allocate the sample-data-block-table origin */
344 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
345 if (!sfb->sdbt)
346 return -ENOMEM;
347 sfb->num_sdb = 0;
348 sfb->num_sdbt = 1;
349
350 /* Link the table origin to point to itself to prepare for
351 * realloc_sampling_buffer() invocation.
352 */
353 sfb->tail = sfb->sdbt;
354 *sfb->tail = virt_to_phys((void *)sfb->sdbt) + 1;
355
356 /* Allocate requested number of sample-data-blocks */
357 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
358 if (rc)
359 free_sampling_buffer(sfb);
360 return rc;
361 }
362
sfb_set_limits(unsigned long min,unsigned long max)363 static void sfb_set_limits(unsigned long min, unsigned long max)
364 {
365 struct hws_qsi_info_block si;
366
367 CPUM_SF_MIN_SDB = min;
368 CPUM_SF_MAX_SDB = max;
369
370 memset(&si, 0, sizeof(si));
371 qsi(&si);
372 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
373 }
374
sfb_max_limit(struct hw_perf_event * hwc)375 static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
376 {
377 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
378 : CPUM_SF_MAX_SDB;
379 }
380
sfb_pending_allocs(struct sf_buffer * sfb,struct hw_perf_event * hwc)381 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
382 struct hw_perf_event *hwc)
383 {
384 if (!sfb->sdbt)
385 return SFB_ALLOC_REG(hwc);
386 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
387 return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
388 return 0;
389 }
390
sfb_account_allocs(unsigned long num,struct hw_perf_event * hwc)391 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
392 {
393 /* Limit the number of SDBs to not exceed the maximum */
394 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
395 if (num)
396 SFB_ALLOC_REG(hwc) += num;
397 }
398
sfb_init_allocs(unsigned long num,struct hw_perf_event * hwc)399 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
400 {
401 SFB_ALLOC_REG(hwc) = 0;
402 sfb_account_allocs(num, hwc);
403 }
404
deallocate_buffers(struct cpu_hw_sf * cpuhw)405 static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
406 {
407 if (cpuhw->sfb.sdbt)
408 free_sampling_buffer(&cpuhw->sfb);
409 }
410
allocate_buffers(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)411 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
412 {
413 unsigned long n_sdb, freq;
414
415 /* Calculate sampling buffers using 4K pages
416 *
417 * 1. The sampling size is 32 bytes for basic sampling. This size
418 * is the same for all machine types. Diagnostic
419 * sampling uses auxlilary data buffer setup which provides the
420 * memory for SDBs using linux common code auxiliary trace
421 * setup.
422 *
423 * 2. Function alloc_sampling_buffer() sets the Alert Request
424 * Control indicator to trigger a measurement-alert to harvest
425 * sample-data-blocks (SDB). This is done per SDB. This
426 * measurement alert interrupt fires quick enough to handle
427 * one SDB, on very high frequency and work loads there might
428 * be 2 to 3 SBDs available for sample processing.
429 * Currently there is no need for setup alert request on every
430 * n-th page. This is counterproductive as one IRQ triggers
431 * a very high number of samples to be processed at one IRQ.
432 *
433 * 3. Use the sampling frequency as input.
434 * Compute the number of SDBs and ensure a minimum
435 * of CPUM_SF_MIN_SDB. Depending on frequency add some more
436 * SDBs to handle a higher sampling rate.
437 * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
438 * (one SDB) for every 10000 HZ frequency increment.
439 *
440 * 4. Compute the number of sample-data-block-tables (SDBT) and
441 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
442 * to 511 SDBs).
443 */
444 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
445 n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
446
447 /* If there is already a sampling buffer allocated, it is very likely
448 * that the sampling facility is enabled too. If the event to be
449 * initialized requires a greater sampling buffer, the allocation must
450 * be postponed. Changing the sampling buffer requires the sampling
451 * facility to be in the disabled state. So, account the number of
452 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
453 * before the event is started.
454 */
455 sfb_init_allocs(n_sdb, hwc);
456 if (sf_buffer_available(cpuhw))
457 return 0;
458
459 return alloc_sampling_buffer(&cpuhw->sfb,
460 sfb_pending_allocs(&cpuhw->sfb, hwc));
461 }
462
min_percent(unsigned int percent,unsigned long base,unsigned long min)463 static unsigned long min_percent(unsigned int percent, unsigned long base,
464 unsigned long min)
465 {
466 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
467 }
468
compute_sfb_extent(unsigned long ratio,unsigned long base)469 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
470 {
471 /* Use a percentage-based approach to extend the sampling facility
472 * buffer. Accept up to 5% sample data loss.
473 * Vary the extents between 1% to 5% of the current number of
474 * sample-data-blocks.
475 */
476 if (ratio <= 5)
477 return 0;
478 if (ratio <= 25)
479 return min_percent(1, base, 1);
480 if (ratio <= 50)
481 return min_percent(1, base, 1);
482 if (ratio <= 75)
483 return min_percent(2, base, 2);
484 if (ratio <= 100)
485 return min_percent(3, base, 3);
486 if (ratio <= 250)
487 return min_percent(4, base, 4);
488
489 return min_percent(5, base, 8);
490 }
491
sfb_account_overflows(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)492 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
493 struct hw_perf_event *hwc)
494 {
495 unsigned long ratio, num;
496
497 if (!OVERFLOW_REG(hwc))
498 return;
499
500 /* The sample_overflow contains the average number of sample data
501 * that has been lost because sample-data-blocks were full.
502 *
503 * Calculate the total number of sample data entries that has been
504 * discarded. Then calculate the ratio of lost samples to total samples
505 * per second in percent.
506 */
507 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
508 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
509
510 /* Compute number of sample-data-blocks */
511 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
512 if (num)
513 sfb_account_allocs(num, hwc);
514
515 OVERFLOW_REG(hwc) = 0;
516 }
517
518 /* extend_sampling_buffer() - Extend sampling buffer
519 * @sfb: Sampling buffer structure (for local CPU)
520 * @hwc: Perf event hardware structure
521 *
522 * Use this function to extend the sampling buffer based on the overflow counter
523 * and postponed allocation extents stored in the specified Perf event hardware.
524 *
525 * Important: This function disables the sampling facility in order to safely
526 * change the sampling buffer structure. Do not call this function
527 * when the PMU is active.
528 */
extend_sampling_buffer(struct sf_buffer * sfb,struct hw_perf_event * hwc)529 static void extend_sampling_buffer(struct sf_buffer *sfb,
530 struct hw_perf_event *hwc)
531 {
532 unsigned long num;
533
534 num = sfb_pending_allocs(sfb, hwc);
535 if (!num)
536 return;
537
538 /* Disable the sampling facility to reset any states and also
539 * clear pending measurement alerts.
540 */
541 sf_disable();
542
543 /* Extend the sampling buffer.
544 * This memory allocation typically happens in an atomic context when
545 * called by perf. Because this is a reallocation, it is fine if the
546 * new SDB-request cannot be satisfied immediately.
547 */
548 realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
549 }
550
551 /* Number of perf events counting hardware events */
552 static refcount_t num_events;
553 /* Used to avoid races in calling reserve/release_cpumf_hardware */
554 static DEFINE_MUTEX(pmc_reserve_mutex);
555
556 #define PMC_INIT 0
557 #define PMC_RELEASE 1
setup_pmc_cpu(void * flags)558 static void setup_pmc_cpu(void *flags)
559 {
560 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
561
562 switch (*((int *)flags)) {
563 case PMC_INIT:
564 memset(cpuhw, 0, sizeof(*cpuhw));
565 qsi(&cpuhw->qsi);
566 cpuhw->flags |= PMU_F_RESERVED;
567 sf_disable();
568 break;
569 case PMC_RELEASE:
570 cpuhw->flags &= ~PMU_F_RESERVED;
571 sf_disable();
572 deallocate_buffers(cpuhw);
573 break;
574 }
575 }
576
release_pmc_hardware(void)577 static void release_pmc_hardware(void)
578 {
579 int flags = PMC_RELEASE;
580
581 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
582 on_each_cpu(setup_pmc_cpu, &flags, 1);
583 }
584
reserve_pmc_hardware(void)585 static void reserve_pmc_hardware(void)
586 {
587 int flags = PMC_INIT;
588
589 on_each_cpu(setup_pmc_cpu, &flags, 1);
590 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
591 }
592
hw_perf_event_destroy(struct perf_event * event)593 static void hw_perf_event_destroy(struct perf_event *event)
594 {
595 /* Release PMC if this is the last perf event */
596 if (refcount_dec_and_mutex_lock(&num_events, &pmc_reserve_mutex)) {
597 release_pmc_hardware();
598 mutex_unlock(&pmc_reserve_mutex);
599 }
600 }
601
hw_init_period(struct hw_perf_event * hwc,u64 period)602 static void hw_init_period(struct hw_perf_event *hwc, u64 period)
603 {
604 hwc->sample_period = period;
605 hwc->last_period = hwc->sample_period;
606 local64_set(&hwc->period_left, hwc->sample_period);
607 }
608
hw_limit_rate(const struct hws_qsi_info_block * si,unsigned long rate)609 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
610 unsigned long rate)
611 {
612 return clamp_t(unsigned long, rate,
613 si->min_sampl_rate, si->max_sampl_rate);
614 }
615
cpumsf_pid_type(struct perf_event * event,u32 pid,enum pid_type type)616 static u32 cpumsf_pid_type(struct perf_event *event,
617 u32 pid, enum pid_type type)
618 {
619 struct task_struct *tsk;
620
621 /* Idle process */
622 if (!pid)
623 goto out;
624
625 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
626 pid = -1;
627 if (tsk) {
628 /*
629 * Only top level events contain the pid namespace in which
630 * they are created.
631 */
632 if (event->parent)
633 event = event->parent;
634 pid = __task_pid_nr_ns(tsk, type, event->ns);
635 /*
636 * See also 1d953111b648
637 * "perf/core: Don't report zero PIDs for exiting tasks".
638 */
639 if (!pid && !pid_alive(tsk))
640 pid = -1;
641 }
642 out:
643 return pid;
644 }
645
cpumsf_output_event_pid(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)646 static void cpumsf_output_event_pid(struct perf_event *event,
647 struct perf_sample_data *data,
648 struct pt_regs *regs)
649 {
650 u32 pid;
651 struct perf_event_header header;
652 struct perf_output_handle handle;
653
654 /*
655 * Obtain the PID from the basic-sampling data entry and
656 * correct the data->tid_entry.pid value.
657 */
658 pid = data->tid_entry.pid;
659
660 /* Protect callchain buffers, tasks */
661 rcu_read_lock();
662
663 perf_prepare_sample(data, event, regs);
664 perf_prepare_header(&header, data, event, regs);
665 if (perf_output_begin(&handle, data, event, header.size))
666 goto out;
667
668 /* Update the process ID (see also kernel/events/core.c) */
669 data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
670 data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
671
672 perf_output_sample(&handle, &header, data, event);
673 perf_output_end(&handle);
674 out:
675 rcu_read_unlock();
676 }
677
getrate(bool freq,unsigned long sample,struct hws_qsi_info_block * si)678 static unsigned long getrate(bool freq, unsigned long sample,
679 struct hws_qsi_info_block *si)
680 {
681 unsigned long rate;
682
683 if (freq) {
684 rate = freq_to_sample_rate(si, sample);
685 rate = hw_limit_rate(si, rate);
686 } else {
687 /* The min/max sampling rates specifies the valid range
688 * of sample periods. If the specified sample period is
689 * out of range, limit the period to the range boundary.
690 */
691 rate = hw_limit_rate(si, sample);
692
693 /* The perf core maintains a maximum sample rate that is
694 * configurable through the sysctl interface. Ensure the
695 * sampling rate does not exceed this value. This also helps
696 * to avoid throttling when pushing samples with
697 * perf_event_overflow().
698 */
699 if (sample_rate_to_freq(si, rate) >
700 sysctl_perf_event_sample_rate) {
701 rate = 0;
702 }
703 }
704 return rate;
705 }
706
707 /* The sampling information (si) contains information about the
708 * min/max sampling intervals and the CPU speed. So calculate the
709 * correct sampling interval and avoid the whole period adjust
710 * feedback loop.
711 *
712 * Since the CPU Measurement sampling facility can not handle frequency
713 * calculate the sampling interval when frequency is specified using
714 * this formula:
715 * interval := cpu_speed * 1000000 / sample_freq
716 *
717 * Returns errno on bad input and zero on success with parameter interval
718 * set to the correct sampling rate.
719 *
720 * Note: This function turns off freq bit to avoid calling function
721 * perf_adjust_period(). This causes frequency adjustment in the common
722 * code part which causes tremendous variations in the counter values.
723 */
__hw_perf_event_init_rate(struct perf_event * event,struct hws_qsi_info_block * si)724 static int __hw_perf_event_init_rate(struct perf_event *event,
725 struct hws_qsi_info_block *si)
726 {
727 struct perf_event_attr *attr = &event->attr;
728 struct hw_perf_event *hwc = &event->hw;
729 unsigned long rate;
730
731 if (attr->freq) {
732 if (!attr->sample_freq)
733 return -EINVAL;
734 rate = getrate(attr->freq, attr->sample_freq, si);
735 attr->freq = 0; /* Don't call perf_adjust_period() */
736 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
737 } else {
738 rate = getrate(attr->freq, attr->sample_period, si);
739 if (!rate)
740 return -EINVAL;
741 }
742 attr->sample_period = rate;
743 SAMPL_RATE(hwc) = rate;
744 hw_init_period(hwc, SAMPL_RATE(hwc));
745 return 0;
746 }
747
__hw_perf_event_init(struct perf_event * event)748 static int __hw_perf_event_init(struct perf_event *event)
749 {
750 struct cpu_hw_sf *cpuhw;
751 struct hws_qsi_info_block si;
752 struct perf_event_attr *attr = &event->attr;
753 struct hw_perf_event *hwc = &event->hw;
754 int cpu, err = 0;
755
756 /* Reserve CPU-measurement sampling facility */
757 mutex_lock(&pmc_reserve_mutex);
758 if (!refcount_inc_not_zero(&num_events)) {
759 reserve_pmc_hardware();
760 refcount_set(&num_events, 1);
761 }
762 mutex_unlock(&pmc_reserve_mutex);
763 event->destroy = hw_perf_event_destroy;
764
765 /* Access per-CPU sampling information (query sampling info) */
766 /*
767 * The event->cpu value can be -1 to count on every CPU, for example,
768 * when attaching to a task. If this is specified, use the query
769 * sampling info from the current CPU, otherwise use event->cpu to
770 * retrieve the per-CPU information.
771 * Later, cpuhw indicates whether to allocate sampling buffers for a
772 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
773 */
774 memset(&si, 0, sizeof(si));
775 cpuhw = NULL;
776 if (event->cpu == -1) {
777 qsi(&si);
778 } else {
779 /* Event is pinned to a particular CPU, retrieve the per-CPU
780 * sampling structure for accessing the CPU-specific QSI.
781 */
782 cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
783 si = cpuhw->qsi;
784 }
785
786 /* Check sampling facility authorization and, if not authorized,
787 * fall back to other PMUs. It is safe to check any CPU because
788 * the authorization is identical for all configured CPUs.
789 */
790 if (!si.as) {
791 err = -ENOENT;
792 goto out;
793 }
794
795 if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
796 pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
797 err = -EBUSY;
798 goto out;
799 }
800
801 /* Always enable basic sampling */
802 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
803
804 /* Check if diagnostic sampling is requested. Deny if the required
805 * sampling authorization is missing.
806 */
807 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
808 if (!si.ad) {
809 err = -EPERM;
810 goto out;
811 }
812 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
813 }
814
815 err = __hw_perf_event_init_rate(event, &si);
816 if (err)
817 goto out;
818
819 /* Use AUX buffer. No need to allocate it by ourself */
820 if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
821 return 0;
822
823 /* Allocate the per-CPU sampling buffer using the CPU information
824 * from the event. If the event is not pinned to a particular
825 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
826 * buffers for each online CPU.
827 */
828 if (cpuhw)
829 /* Event is pinned to a particular CPU */
830 err = allocate_buffers(cpuhw, hwc);
831 else {
832 /* Event is not pinned, allocate sampling buffer on
833 * each online CPU
834 */
835 for_each_online_cpu(cpu) {
836 cpuhw = &per_cpu(cpu_hw_sf, cpu);
837 err = allocate_buffers(cpuhw, hwc);
838 if (err)
839 break;
840 }
841 }
842
843 /* If PID/TID sampling is active, replace the default overflow
844 * handler to extract and resolve the PIDs from the basic-sampling
845 * data entries.
846 */
847 if (event->attr.sample_type & PERF_SAMPLE_TID)
848 if (is_default_overflow_handler(event))
849 event->overflow_handler = cpumsf_output_event_pid;
850 out:
851 return err;
852 }
853
is_callchain_event(struct perf_event * event)854 static bool is_callchain_event(struct perf_event *event)
855 {
856 u64 sample_type = event->attr.sample_type;
857
858 return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER |
859 PERF_SAMPLE_STACK_USER);
860 }
861
cpumsf_pmu_event_init(struct perf_event * event)862 static int cpumsf_pmu_event_init(struct perf_event *event)
863 {
864 int err;
865
866 /* No support for taken branch sampling */
867 /* No support for callchain, stacks and registers */
868 if (has_branch_stack(event) || is_callchain_event(event))
869 return -EOPNOTSUPP;
870
871 switch (event->attr.type) {
872 case PERF_TYPE_RAW:
873 if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
874 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
875 return -ENOENT;
876 break;
877 case PERF_TYPE_HARDWARE:
878 /* Support sampling of CPU cycles in addition to the
879 * counter facility. However, the counter facility
880 * is more precise and, hence, restrict this PMU to
881 * sampling events only.
882 */
883 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
884 return -ENOENT;
885 if (!is_sampling_event(event))
886 return -ENOENT;
887 break;
888 default:
889 return -ENOENT;
890 }
891
892 /* Force reset of idle/hv excludes regardless of what the
893 * user requested.
894 */
895 if (event->attr.exclude_hv)
896 event->attr.exclude_hv = 0;
897 if (event->attr.exclude_idle)
898 event->attr.exclude_idle = 0;
899
900 err = __hw_perf_event_init(event);
901 if (unlikely(err))
902 if (event->destroy)
903 event->destroy(event);
904 return err;
905 }
906
cpumsf_pmu_enable(struct pmu * pmu)907 static void cpumsf_pmu_enable(struct pmu *pmu)
908 {
909 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
910 struct hw_perf_event *hwc;
911 int err;
912
913 if (cpuhw->flags & PMU_F_ENABLED)
914 return;
915
916 if (cpuhw->flags & PMU_F_ERR_MASK)
917 return;
918
919 /* Check whether to extent the sampling buffer.
920 *
921 * Two conditions trigger an increase of the sampling buffer for a
922 * perf event:
923 * 1. Postponed buffer allocations from the event initialization.
924 * 2. Sampling overflows that contribute to pending allocations.
925 *
926 * Note that the extend_sampling_buffer() function disables the sampling
927 * facility, but it can be fully re-enabled using sampling controls that
928 * have been saved in cpumsf_pmu_disable().
929 */
930 if (cpuhw->event) {
931 hwc = &cpuhw->event->hw;
932 if (!(SAMPL_DIAG_MODE(hwc))) {
933 /*
934 * Account number of overflow-designated
935 * buffer extents
936 */
937 sfb_account_overflows(cpuhw, hwc);
938 extend_sampling_buffer(&cpuhw->sfb, hwc);
939 }
940 /* Rate may be adjusted with ioctl() */
941 cpuhw->lsctl.interval = SAMPL_RATE(hwc);
942 }
943
944 /* (Re)enable the PMU and sampling facility */
945 cpuhw->flags |= PMU_F_ENABLED;
946 barrier();
947
948 err = lsctl(&cpuhw->lsctl);
949 if (err) {
950 cpuhw->flags &= ~PMU_F_ENABLED;
951 pr_err("Loading sampling controls failed: op 1 err %i\n", err);
952 return;
953 }
954
955 /* Load current program parameter */
956 lpp(&get_lowcore()->lpp);
957 }
958
cpumsf_pmu_disable(struct pmu * pmu)959 static void cpumsf_pmu_disable(struct pmu *pmu)
960 {
961 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
962 struct hws_lsctl_request_block inactive;
963 struct hws_qsi_info_block si;
964 int err;
965
966 if (!(cpuhw->flags & PMU_F_ENABLED))
967 return;
968
969 if (cpuhw->flags & PMU_F_ERR_MASK)
970 return;
971
972 /* Switch off sampling activation control */
973 inactive = cpuhw->lsctl;
974 inactive.cs = 0;
975 inactive.cd = 0;
976
977 err = lsctl(&inactive);
978 if (err) {
979 pr_err("Loading sampling controls failed: op 2 err %i\n", err);
980 return;
981 }
982
983 /*
984 * Save state of TEAR and DEAR register contents.
985 * TEAR/DEAR values are valid only if the sampling facility is
986 * enabled. Note that cpumsf_pmu_disable() might be called even
987 * for a disabled sampling facility because cpumsf_pmu_enable()
988 * controls the enable/disable state.
989 */
990 qsi(&si);
991 if (si.es) {
992 cpuhw->lsctl.tear = si.tear;
993 cpuhw->lsctl.dear = si.dear;
994 }
995
996 cpuhw->flags &= ~PMU_F_ENABLED;
997 }
998
999 /* perf_exclude_event() - Filter event
1000 * @event: The perf event
1001 * @regs: pt_regs structure
1002 * @sde_regs: Sample-data-entry (sde) regs structure
1003 *
1004 * Filter perf events according to their exclude specification.
1005 *
1006 * Return non-zero if the event shall be excluded.
1007 */
perf_exclude_event(struct perf_event * event,struct pt_regs * regs,struct perf_sf_sde_regs * sde_regs)1008 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
1009 struct perf_sf_sde_regs *sde_regs)
1010 {
1011 if (event->attr.exclude_user && user_mode(regs))
1012 return 1;
1013 if (event->attr.exclude_kernel && !user_mode(regs))
1014 return 1;
1015 if (event->attr.exclude_guest && sde_regs->in_guest)
1016 return 1;
1017 if (event->attr.exclude_host && !sde_regs->in_guest)
1018 return 1;
1019 return 0;
1020 }
1021
1022 /* perf_push_sample() - Push samples to perf
1023 * @event: The perf event
1024 * @sample: Hardware sample data
1025 *
1026 * Use the hardware sample data to create perf event sample. The sample
1027 * is the pushed to the event subsystem and the function checks for
1028 * possible event overflows. If an event overflow occurs, the PMU is
1029 * stopped.
1030 *
1031 * Return non-zero if an event overflow occurred.
1032 */
perf_push_sample(struct perf_event * event,struct hws_basic_entry * basic)1033 static int perf_push_sample(struct perf_event *event,
1034 struct hws_basic_entry *basic)
1035 {
1036 int overflow;
1037 struct pt_regs regs;
1038 struct perf_sf_sde_regs *sde_regs;
1039 struct perf_sample_data data;
1040
1041 /* Setup perf sample */
1042 perf_sample_data_init(&data, 0, event->hw.last_period);
1043
1044 /* Setup pt_regs to look like an CPU-measurement external interrupt
1045 * using the Program Request Alert code. The regs.int_parm_long
1046 * field which is unused contains additional sample-data-entry related
1047 * indicators.
1048 */
1049 memset(®s, 0, sizeof(regs));
1050 regs.int_code = 0x1407;
1051 regs.int_parm = CPU_MF_INT_SF_PRA;
1052 sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long;
1053
1054 psw_bits(regs.psw).ia = basic->ia;
1055 psw_bits(regs.psw).dat = basic->T;
1056 psw_bits(regs.psw).wait = basic->W;
1057 psw_bits(regs.psw).pstate = basic->P;
1058 psw_bits(regs.psw).as = basic->AS;
1059
1060 /*
1061 * Use the hardware provided configuration level to decide if the
1062 * sample belongs to a guest or host. If that is not available,
1063 * fall back to the following heuristics:
1064 * A non-zero guest program parameter always indicates a guest
1065 * sample. Some early samples or samples from guests without
1066 * lpp usage would be misaccounted to the host. We use the asn
1067 * value as an addon heuristic to detect most of these guest samples.
1068 * If the value differs from 0xffff (the host value), we assume to
1069 * be a KVM guest.
1070 */
1071 switch (basic->CL) {
1072 case 1: /* logical partition */
1073 sde_regs->in_guest = 0;
1074 break;
1075 case 2: /* virtual machine */
1076 sde_regs->in_guest = 1;
1077 break;
1078 default: /* old machine, use heuristics */
1079 if (basic->gpp || basic->prim_asn != 0xffff)
1080 sde_regs->in_guest = 1;
1081 break;
1082 }
1083
1084 /*
1085 * Store the PID value from the sample-data-entry to be
1086 * processed and resolved by cpumsf_output_event_pid().
1087 */
1088 data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1089
1090 overflow = 0;
1091 if (perf_exclude_event(event, ®s, sde_regs))
1092 goto out;
1093 if (perf_event_overflow(event, &data, ®s)) {
1094 overflow = 1;
1095 event->pmu->stop(event, 0);
1096 }
1097 perf_event_update_userpage(event);
1098 out:
1099 return overflow;
1100 }
1101
perf_event_count_update(struct perf_event * event,u64 count)1102 static void perf_event_count_update(struct perf_event *event, u64 count)
1103 {
1104 local64_add(count, &event->count);
1105 }
1106
1107 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1108 * @event: The perf event
1109 * @sdbt: Sample-data-block table
1110 * @overflow: Event overflow counter
1111 *
1112 * Walks through a sample-data-block and collects sampling data entries that are
1113 * then pushed to the perf event subsystem. Depending on the sampling function,
1114 * there can be either basic-sampling or combined-sampling data entries. A
1115 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1116 * data entry. The sampling function is determined by the flags in the perf
1117 * event hardware structure. The function always works with a combined-sampling
1118 * data entry but ignores the the diagnostic portion if it is not available.
1119 *
1120 * Note that the implementation focuses on basic-sampling data entries and, if
1121 * such an entry is not valid, the entire combined-sampling data entry is
1122 * ignored.
1123 *
1124 * The overflow variables counts the number of samples that has been discarded
1125 * due to a perf event overflow.
1126 */
hw_collect_samples(struct perf_event * event,unsigned long * sdbt,unsigned long long * overflow)1127 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1128 unsigned long long *overflow)
1129 {
1130 struct hws_trailer_entry *te;
1131 struct hws_basic_entry *sample;
1132
1133 te = trailer_entry_ptr((unsigned long)sdbt);
1134 sample = (struct hws_basic_entry *)sdbt;
1135 while ((unsigned long *)sample < (unsigned long *)te) {
1136 /* Check for an empty sample */
1137 if (!sample->def || sample->LS)
1138 break;
1139
1140 /* Update perf event period */
1141 perf_event_count_update(event, SAMPL_RATE(&event->hw));
1142
1143 /* Check whether sample is valid */
1144 if (sample->def == 0x0001) {
1145 /* If an event overflow occurred, the PMU is stopped to
1146 * throttle event delivery. Remaining sample data is
1147 * discarded.
1148 */
1149 if (!*overflow) {
1150 /* Check whether sample is consistent */
1151 if (sample->I == 0 && sample->W == 0) {
1152 /* Deliver sample data to perf */
1153 *overflow = perf_push_sample(event,
1154 sample);
1155 }
1156 } else
1157 /* Count discarded samples */
1158 *overflow += 1;
1159 } else {
1160 /* Sample slot is not yet written or other record.
1161 *
1162 * This condition can occur if the buffer was reused
1163 * from a combined basic- and diagnostic-sampling.
1164 * If only basic-sampling is then active, entries are
1165 * written into the larger diagnostic entries.
1166 * This is typically the case for sample-data-blocks
1167 * that are not full. Stop processing if the first
1168 * invalid format was detected.
1169 */
1170 if (!te->header.f)
1171 break;
1172 }
1173
1174 /* Reset sample slot and advance to next sample */
1175 sample->def = 0;
1176 sample++;
1177 }
1178 }
1179
1180 /* hw_perf_event_update() - Process sampling buffer
1181 * @event: The perf event
1182 * @flush_all: Flag to also flush partially filled sample-data-blocks
1183 *
1184 * Processes the sampling buffer and create perf event samples.
1185 * The sampling buffer position are retrieved and saved in the TEAR_REG
1186 * register of the specified perf event.
1187 *
1188 * Only full sample-data-blocks are processed. Specify the flush_all flag
1189 * to also walk through partially filled sample-data-blocks.
1190 */
hw_perf_event_update(struct perf_event * event,int flush_all)1191 static void hw_perf_event_update(struct perf_event *event, int flush_all)
1192 {
1193 unsigned long long event_overflow, sampl_overflow, num_sdb;
1194 union hws_trailer_header old, prev, new;
1195 struct hw_perf_event *hwc = &event->hw;
1196 struct hws_trailer_entry *te;
1197 unsigned long *sdbt, sdb;
1198 int done;
1199
1200 /*
1201 * AUX buffer is used when in diagnostic sampling mode.
1202 * No perf events/samples are created.
1203 */
1204 if (SAMPL_DIAG_MODE(hwc))
1205 return;
1206
1207 sdbt = (unsigned long *)TEAR_REG(hwc);
1208 done = event_overflow = sampl_overflow = num_sdb = 0;
1209 while (!done) {
1210 /* Get the trailer entry of the sample-data-block */
1211 sdb = (unsigned long)phys_to_virt(*sdbt);
1212 te = trailer_entry_ptr(sdb);
1213
1214 /* Leave loop if no more work to do (block full indicator) */
1215 if (!te->header.f) {
1216 done = 1;
1217 if (!flush_all)
1218 break;
1219 }
1220
1221 /* Check the sample overflow count */
1222 if (te->header.overflow)
1223 /* Account sample overflows and, if a particular limit
1224 * is reached, extend the sampling buffer.
1225 * For details, see sfb_account_overflows().
1226 */
1227 sampl_overflow += te->header.overflow;
1228
1229 /* Collect all samples from a single sample-data-block and
1230 * flag if an (perf) event overflow happened. If so, the PMU
1231 * is stopped and remaining samples will be discarded.
1232 */
1233 hw_collect_samples(event, (unsigned long *)sdb, &event_overflow);
1234 num_sdb++;
1235
1236 /* Reset trailer (using compare-double-and-swap) */
1237 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1238 do {
1239 old.val = prev.val;
1240 new.val = prev.val;
1241 new.f = 0;
1242 new.a = 1;
1243 new.overflow = 0;
1244 prev.val = cmpxchg128(&te->header.val, old.val, new.val);
1245 } while (prev.val != old.val);
1246
1247 /* Advance to next sample-data-block */
1248 sdbt++;
1249 if (is_link_entry(sdbt))
1250 sdbt = get_next_sdbt(sdbt);
1251
1252 /* Update event hardware registers */
1253 TEAR_REG(hwc) = (unsigned long)sdbt;
1254
1255 /* Stop processing sample-data if all samples of the current
1256 * sample-data-block were flushed even if it was not full.
1257 */
1258 if (flush_all && done)
1259 break;
1260 }
1261
1262 /* Account sample overflows in the event hardware structure */
1263 if (sampl_overflow)
1264 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1265 sampl_overflow, 1 + num_sdb);
1266
1267 /* Perf_event_overflow() and perf_event_account_interrupt() limit
1268 * the interrupt rate to an upper limit. Roughly 1000 samples per
1269 * task tick.
1270 * Hitting this limit results in a large number
1271 * of throttled REF_REPORT_THROTTLE entries and the samples
1272 * are dropped.
1273 * Slightly increase the interval to avoid hitting this limit.
1274 */
1275 if (event_overflow)
1276 SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
1277 }
1278
aux_sdb_index(struct aux_buffer * aux,unsigned long i)1279 static inline unsigned long aux_sdb_index(struct aux_buffer *aux,
1280 unsigned long i)
1281 {
1282 return i % aux->sfb.num_sdb;
1283 }
1284
aux_sdb_num(unsigned long start,unsigned long end)1285 static inline unsigned long aux_sdb_num(unsigned long start, unsigned long end)
1286 {
1287 return end >= start ? end - start + 1 : 0;
1288 }
1289
aux_sdb_num_alert(struct aux_buffer * aux)1290 static inline unsigned long aux_sdb_num_alert(struct aux_buffer *aux)
1291 {
1292 return aux_sdb_num(aux->head, aux->alert_mark);
1293 }
1294
aux_sdb_num_empty(struct aux_buffer * aux)1295 static inline unsigned long aux_sdb_num_empty(struct aux_buffer *aux)
1296 {
1297 return aux_sdb_num(aux->head, aux->empty_mark);
1298 }
1299
1300 /*
1301 * Get trailer entry by index of SDB.
1302 */
aux_sdb_trailer(struct aux_buffer * aux,unsigned long index)1303 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1304 unsigned long index)
1305 {
1306 unsigned long sdb;
1307
1308 index = aux_sdb_index(aux, index);
1309 sdb = aux->sdb_index[index];
1310 return trailer_entry_ptr(sdb);
1311 }
1312
1313 /*
1314 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1315 * disabled. Collect the full SDBs in AUX buffer which have not reached
1316 * the point of alert indicator. And ignore the SDBs which are not
1317 * full.
1318 *
1319 * 1. Scan SDBs to see how much data is there and consume them.
1320 * 2. Remove alert indicator in the buffer.
1321 */
aux_output_end(struct perf_output_handle * handle)1322 static void aux_output_end(struct perf_output_handle *handle)
1323 {
1324 unsigned long i, range_scan, idx;
1325 struct aux_buffer *aux;
1326 struct hws_trailer_entry *te;
1327
1328 aux = perf_get_aux(handle);
1329 if (!aux)
1330 return;
1331
1332 range_scan = aux_sdb_num_alert(aux);
1333 for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1334 te = aux_sdb_trailer(aux, idx);
1335 if (!te->header.f)
1336 break;
1337 }
1338 /* i is num of SDBs which are full */
1339 perf_aux_output_end(handle, i << PAGE_SHIFT);
1340
1341 /* Remove alert indicators in the buffer */
1342 te = aux_sdb_trailer(aux, aux->alert_mark);
1343 te->header.a = 0;
1344 }
1345
1346 /*
1347 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1348 * is first added to the CPU or rescheduled again to the CPU. It is called
1349 * with pmu disabled.
1350 *
1351 * 1. Reset the trailer of SDBs to get ready for new data.
1352 * 2. Tell the hardware where to put the data by reset the SDBs buffer
1353 * head(tear/dear).
1354 */
aux_output_begin(struct perf_output_handle * handle,struct aux_buffer * aux,struct cpu_hw_sf * cpuhw)1355 static int aux_output_begin(struct perf_output_handle *handle,
1356 struct aux_buffer *aux,
1357 struct cpu_hw_sf *cpuhw)
1358 {
1359 unsigned long range, i, range_scan, idx, head, base, offset;
1360 struct hws_trailer_entry *te;
1361
1362 if (handle->head & ~PAGE_MASK)
1363 return -EINVAL;
1364
1365 aux->head = handle->head >> PAGE_SHIFT;
1366 range = (handle->size + 1) >> PAGE_SHIFT;
1367 if (range <= 1)
1368 return -ENOMEM;
1369
1370 /*
1371 * SDBs between aux->head and aux->empty_mark are already ready
1372 * for new data. range_scan is num of SDBs not within them.
1373 */
1374 if (range > aux_sdb_num_empty(aux)) {
1375 range_scan = range - aux_sdb_num_empty(aux);
1376 idx = aux->empty_mark + 1;
1377 for (i = 0; i < range_scan; i++, idx++) {
1378 te = aux_sdb_trailer(aux, idx);
1379 te->header.f = 0;
1380 te->header.a = 0;
1381 te->header.overflow = 0;
1382 }
1383 /* Save the position of empty SDBs */
1384 aux->empty_mark = aux->head + range - 1;
1385 }
1386
1387 /* Set alert indicator */
1388 aux->alert_mark = aux->head + range/2 - 1;
1389 te = aux_sdb_trailer(aux, aux->alert_mark);
1390 te->header.a = 1;
1391
1392 /* Reset hardware buffer head */
1393 head = aux_sdb_index(aux, aux->head);
1394 base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1395 offset = head % CPUM_SF_SDB_PER_TABLE;
1396 cpuhw->lsctl.tear = virt_to_phys((void *)base) + offset * sizeof(unsigned long);
1397 cpuhw->lsctl.dear = virt_to_phys((void *)aux->sdb_index[head]);
1398
1399 return 0;
1400 }
1401
1402 /*
1403 * Set alert indicator on SDB at index @alert_index while sampler is running.
1404 *
1405 * Return true if successfully.
1406 * Return false if full indicator is already set by hardware sampler.
1407 */
aux_set_alert(struct aux_buffer * aux,unsigned long alert_index,unsigned long long * overflow)1408 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1409 unsigned long long *overflow)
1410 {
1411 union hws_trailer_header old, prev, new;
1412 struct hws_trailer_entry *te;
1413
1414 te = aux_sdb_trailer(aux, alert_index);
1415 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1416 do {
1417 old.val = prev.val;
1418 new.val = prev.val;
1419 *overflow = old.overflow;
1420 if (old.f) {
1421 /*
1422 * SDB is already set by hardware.
1423 * Abort and try to set somewhere
1424 * behind.
1425 */
1426 return false;
1427 }
1428 new.a = 1;
1429 new.overflow = 0;
1430 prev.val = cmpxchg128(&te->header.val, old.val, new.val);
1431 } while (prev.val != old.val);
1432 return true;
1433 }
1434
1435 /*
1436 * aux_reset_buffer() - Scan and setup SDBs for new samples
1437 * @aux: The AUX buffer to set
1438 * @range: The range of SDBs to scan started from aux->head
1439 * @overflow: Set to overflow count
1440 *
1441 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1442 * marked as empty, check if it is already set full by the hardware sampler.
1443 * If yes, that means new data is already there before we can set an alert
1444 * indicator. Caller should try to set alert indicator to some position behind.
1445 *
1446 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1447 * previously and have already been consumed by user space. Reset these SDBs
1448 * (clear full indicator and alert indicator) for new data.
1449 * If aux->alert_mark fall in this area, just set it. Overflow count is
1450 * recorded while scanning.
1451 *
1452 * SDBs between aux->head and aux->empty_mark are already reset at last time.
1453 * and ready for new samples. So scanning on this area could be skipped.
1454 *
1455 * Return true if alert indicator is set successfully and false if not.
1456 */
aux_reset_buffer(struct aux_buffer * aux,unsigned long range,unsigned long long * overflow)1457 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1458 unsigned long long *overflow)
1459 {
1460 union hws_trailer_header old, prev, new;
1461 unsigned long i, range_scan, idx;
1462 unsigned long long orig_overflow;
1463 struct hws_trailer_entry *te;
1464
1465 if (range <= aux_sdb_num_empty(aux))
1466 /*
1467 * No need to scan. All SDBs in range are marked as empty.
1468 * Just set alert indicator. Should check race with hardware
1469 * sampler.
1470 */
1471 return aux_set_alert(aux, aux->alert_mark, overflow);
1472
1473 if (aux->alert_mark <= aux->empty_mark)
1474 /*
1475 * Set alert indicator on empty SDB. Should check race
1476 * with hardware sampler.
1477 */
1478 if (!aux_set_alert(aux, aux->alert_mark, overflow))
1479 return false;
1480
1481 /*
1482 * Scan the SDBs to clear full and alert indicator used previously.
1483 * Start scanning from one SDB behind empty_mark. If the new alert
1484 * indicator fall into this range, set it.
1485 */
1486 range_scan = range - aux_sdb_num_empty(aux);
1487 idx = aux->empty_mark + 1;
1488 for (i = 0; i < range_scan; i++, idx++) {
1489 te = aux_sdb_trailer(aux, idx);
1490 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1491 do {
1492 old.val = prev.val;
1493 new.val = prev.val;
1494 orig_overflow = old.overflow;
1495 new.f = 0;
1496 new.overflow = 0;
1497 if (idx == aux->alert_mark)
1498 new.a = 1;
1499 else
1500 new.a = 0;
1501 prev.val = cmpxchg128(&te->header.val, old.val, new.val);
1502 } while (prev.val != old.val);
1503 *overflow += orig_overflow;
1504 }
1505
1506 /* Update empty_mark to new position */
1507 aux->empty_mark = aux->head + range - 1;
1508
1509 return true;
1510 }
1511
1512 /*
1513 * Measurement alert handler for diagnostic mode sampling.
1514 */
hw_collect_aux(struct cpu_hw_sf * cpuhw)1515 static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1516 {
1517 struct aux_buffer *aux;
1518 int done = 0;
1519 unsigned long range = 0, size;
1520 unsigned long long overflow = 0;
1521 struct perf_output_handle *handle = &cpuhw->handle;
1522 unsigned long num_sdb;
1523
1524 aux = perf_get_aux(handle);
1525 if (!aux)
1526 return;
1527
1528 /* Inform user space new data arrived */
1529 size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
1530 debug_sprintf_event(sfdbg, 6, "%s #alert %ld\n", __func__,
1531 size >> PAGE_SHIFT);
1532 perf_aux_output_end(handle, size);
1533
1534 num_sdb = aux->sfb.num_sdb;
1535 while (!done) {
1536 /* Get an output handle */
1537 aux = perf_aux_output_begin(handle, cpuhw->event);
1538 if (handle->size == 0) {
1539 pr_err("The AUX buffer with %lu pages for the "
1540 "diagnostic-sampling mode is full\n",
1541 num_sdb);
1542 break;
1543 }
1544 if (!aux)
1545 return;
1546
1547 /* Update head and alert_mark to new position */
1548 aux->head = handle->head >> PAGE_SHIFT;
1549 range = (handle->size + 1) >> PAGE_SHIFT;
1550 if (range == 1)
1551 aux->alert_mark = aux->head;
1552 else
1553 aux->alert_mark = aux->head + range/2 - 1;
1554
1555 if (aux_reset_buffer(aux, range, &overflow)) {
1556 if (!overflow) {
1557 done = 1;
1558 break;
1559 }
1560 size = range << PAGE_SHIFT;
1561 perf_aux_output_end(&cpuhw->handle, size);
1562 pr_err("Sample data caused the AUX buffer with %lu "
1563 "pages to overflow\n", aux->sfb.num_sdb);
1564 } else {
1565 size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
1566 perf_aux_output_end(&cpuhw->handle, size);
1567 }
1568 }
1569 }
1570
1571 /*
1572 * Callback when freeing AUX buffers.
1573 */
aux_buffer_free(void * data)1574 static void aux_buffer_free(void *data)
1575 {
1576 struct aux_buffer *aux = data;
1577 unsigned long i, num_sdbt;
1578
1579 if (!aux)
1580 return;
1581
1582 /* Free SDBT. SDB is freed by the caller */
1583 num_sdbt = aux->sfb.num_sdbt;
1584 for (i = 0; i < num_sdbt; i++)
1585 free_page(aux->sdbt_index[i]);
1586
1587 kfree(aux->sdbt_index);
1588 kfree(aux->sdb_index);
1589 kfree(aux);
1590 }
1591
aux_sdb_init(unsigned long sdb)1592 static void aux_sdb_init(unsigned long sdb)
1593 {
1594 struct hws_trailer_entry *te;
1595
1596 te = trailer_entry_ptr(sdb);
1597
1598 /* Save clock base */
1599 te->clock_base = 1;
1600 te->progusage2 = tod_clock_base.tod;
1601 }
1602
1603 /*
1604 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1605 * @event: Event the buffer is setup for, event->cpu == -1 means current
1606 * @pages: Array of pointers to buffer pages passed from perf core
1607 * @nr_pages: Total pages
1608 * @snapshot: Flag for snapshot mode
1609 *
1610 * This is the callback when setup an event using AUX buffer. Perf tool can
1611 * trigger this by an additional mmap() call on the event. Unlike the buffer
1612 * for basic samples, AUX buffer belongs to the event. It is scheduled with
1613 * the task among online cpus when it is a per-thread event.
1614 *
1615 * Return the private AUX buffer structure if success or NULL if fails.
1616 */
aux_buffer_setup(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)1617 static void *aux_buffer_setup(struct perf_event *event, void **pages,
1618 int nr_pages, bool snapshot)
1619 {
1620 struct sf_buffer *sfb;
1621 struct aux_buffer *aux;
1622 unsigned long *new, *tail;
1623 int i, n_sdbt;
1624
1625 if (!nr_pages || !pages)
1626 return NULL;
1627
1628 if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1629 pr_err("AUX buffer size (%i pages) is larger than the "
1630 "maximum sampling buffer limit\n",
1631 nr_pages);
1632 return NULL;
1633 } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1634 pr_err("AUX buffer size (%i pages) is less than the "
1635 "minimum sampling buffer limit\n",
1636 nr_pages);
1637 return NULL;
1638 }
1639
1640 /* Allocate aux_buffer struct for the event */
1641 aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
1642 if (!aux)
1643 goto no_aux;
1644 sfb = &aux->sfb;
1645
1646 /* Allocate sdbt_index for fast reference */
1647 n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
1648 aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
1649 if (!aux->sdbt_index)
1650 goto no_sdbt_index;
1651
1652 /* Allocate sdb_index for fast reference */
1653 aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
1654 if (!aux->sdb_index)
1655 goto no_sdb_index;
1656
1657 /* Allocate the first SDBT */
1658 sfb->num_sdbt = 0;
1659 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
1660 if (!sfb->sdbt)
1661 goto no_sdbt;
1662 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1663 tail = sfb->tail = sfb->sdbt;
1664
1665 /*
1666 * Link the provided pages of AUX buffer to SDBT.
1667 * Allocate SDBT if needed.
1668 */
1669 for (i = 0; i < nr_pages; i++, tail++) {
1670 if (require_table_link(tail)) {
1671 new = (unsigned long *)get_zeroed_page(GFP_KERNEL);
1672 if (!new)
1673 goto no_sdbt;
1674 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1675 /* Link current page to tail of chain */
1676 *tail = virt_to_phys(new) + 1;
1677 tail = new;
1678 }
1679 /* Tail is the entry in a SDBT */
1680 *tail = virt_to_phys(pages[i]);
1681 aux->sdb_index[i] = (unsigned long)pages[i];
1682 aux_sdb_init((unsigned long)pages[i]);
1683 }
1684 sfb->num_sdb = nr_pages;
1685
1686 /* Link the last entry in the SDBT to the first SDBT */
1687 *tail = virt_to_phys(sfb->sdbt) + 1;
1688 sfb->tail = tail;
1689
1690 /*
1691 * Initial all SDBs are zeroed. Mark it as empty.
1692 * So there is no need to clear the full indicator
1693 * when this event is first added.
1694 */
1695 aux->empty_mark = sfb->num_sdb - 1;
1696
1697 return aux;
1698
1699 no_sdbt:
1700 /* SDBs (AUX buffer pages) are freed by caller */
1701 for (i = 0; i < sfb->num_sdbt; i++)
1702 free_page(aux->sdbt_index[i]);
1703 kfree(aux->sdb_index);
1704 no_sdb_index:
1705 kfree(aux->sdbt_index);
1706 no_sdbt_index:
1707 kfree(aux);
1708 no_aux:
1709 return NULL;
1710 }
1711
cpumsf_pmu_read(struct perf_event * event)1712 static void cpumsf_pmu_read(struct perf_event *event)
1713 {
1714 /* Nothing to do ... updates are interrupt-driven */
1715 }
1716
1717 /* Check if the new sampling period/frequency is appropriate.
1718 *
1719 * Return non-zero on error and zero on passed checks.
1720 */
cpumsf_pmu_check_period(struct perf_event * event,u64 value)1721 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
1722 {
1723 struct hws_qsi_info_block si;
1724 unsigned long rate;
1725 bool do_freq;
1726
1727 memset(&si, 0, sizeof(si));
1728 if (event->cpu == -1) {
1729 qsi(&si);
1730 } else {
1731 /* Event is pinned to a particular CPU, retrieve the per-CPU
1732 * sampling structure for accessing the CPU-specific QSI.
1733 */
1734 struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
1735
1736 si = cpuhw->qsi;
1737 }
1738
1739 do_freq = !!SAMPL_FREQ_MODE(&event->hw);
1740 rate = getrate(do_freq, value, &si);
1741 if (!rate)
1742 return -EINVAL;
1743
1744 event->attr.sample_period = rate;
1745 SAMPL_RATE(&event->hw) = rate;
1746 hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
1747 return 0;
1748 }
1749
1750 /* Activate sampling control.
1751 * Next call of pmu_enable() starts sampling.
1752 */
cpumsf_pmu_start(struct perf_event * event,int flags)1753 static void cpumsf_pmu_start(struct perf_event *event, int flags)
1754 {
1755 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1756
1757 if (!(event->hw.state & PERF_HES_STOPPED))
1758 return;
1759 perf_pmu_disable(event->pmu);
1760 event->hw.state = 0;
1761 cpuhw->lsctl.cs = 1;
1762 if (SAMPL_DIAG_MODE(&event->hw))
1763 cpuhw->lsctl.cd = 1;
1764 perf_pmu_enable(event->pmu);
1765 }
1766
1767 /* Deactivate sampling control.
1768 * Next call of pmu_enable() stops sampling.
1769 */
cpumsf_pmu_stop(struct perf_event * event,int flags)1770 static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1771 {
1772 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1773
1774 if (event->hw.state & PERF_HES_STOPPED)
1775 return;
1776
1777 perf_pmu_disable(event->pmu);
1778 cpuhw->lsctl.cs = 0;
1779 cpuhw->lsctl.cd = 0;
1780 event->hw.state |= PERF_HES_STOPPED;
1781
1782 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1783 hw_perf_event_update(event, 1);
1784 event->hw.state |= PERF_HES_UPTODATE;
1785 }
1786 perf_pmu_enable(event->pmu);
1787 }
1788
cpumsf_pmu_add(struct perf_event * event,int flags)1789 static int cpumsf_pmu_add(struct perf_event *event, int flags)
1790 {
1791 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1792 struct aux_buffer *aux;
1793 int err = 0;
1794
1795 if (cpuhw->flags & PMU_F_IN_USE)
1796 return -EAGAIN;
1797
1798 if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt)
1799 return -EINVAL;
1800
1801 perf_pmu_disable(event->pmu);
1802
1803 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1804
1805 /* Set up sampling controls. Always program the sampling register
1806 * using the SDB-table start. Reset TEAR_REG event hardware register
1807 * that is used by hw_perf_event_update() to store the sampling buffer
1808 * position after samples have been flushed.
1809 */
1810 cpuhw->lsctl.s = 0;
1811 cpuhw->lsctl.h = 1;
1812 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1813 if (!SAMPL_DIAG_MODE(&event->hw)) {
1814 cpuhw->lsctl.tear = virt_to_phys(cpuhw->sfb.sdbt);
1815 cpuhw->lsctl.dear = *(unsigned long *)cpuhw->sfb.sdbt;
1816 TEAR_REG(&event->hw) = (unsigned long)cpuhw->sfb.sdbt;
1817 }
1818
1819 /* Ensure sampling functions are in the disabled state. If disabled,
1820 * switch on sampling enable control. */
1821 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1822 err = -EAGAIN;
1823 goto out;
1824 }
1825 if (SAMPL_DIAG_MODE(&event->hw)) {
1826 aux = perf_aux_output_begin(&cpuhw->handle, event);
1827 if (!aux) {
1828 err = -EINVAL;
1829 goto out;
1830 }
1831 err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
1832 if (err)
1833 goto out;
1834 cpuhw->lsctl.ed = 1;
1835 }
1836 cpuhw->lsctl.es = 1;
1837
1838 /* Set in_use flag and store event */
1839 cpuhw->event = event;
1840 cpuhw->flags |= PMU_F_IN_USE;
1841
1842 if (flags & PERF_EF_START)
1843 cpumsf_pmu_start(event, PERF_EF_RELOAD);
1844 out:
1845 perf_event_update_userpage(event);
1846 perf_pmu_enable(event->pmu);
1847 return err;
1848 }
1849
cpumsf_pmu_del(struct perf_event * event,int flags)1850 static void cpumsf_pmu_del(struct perf_event *event, int flags)
1851 {
1852 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1853
1854 perf_pmu_disable(event->pmu);
1855 cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1856
1857 cpuhw->lsctl.es = 0;
1858 cpuhw->lsctl.ed = 0;
1859 cpuhw->flags &= ~PMU_F_IN_USE;
1860 cpuhw->event = NULL;
1861
1862 if (SAMPL_DIAG_MODE(&event->hw))
1863 aux_output_end(&cpuhw->handle);
1864 perf_event_update_userpage(event);
1865 perf_pmu_enable(event->pmu);
1866 }
1867
1868 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1869 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1870
1871 /* Attribute list for CPU_SF.
1872 *
1873 * The availablitiy depends on the CPU_MF sampling facility authorization
1874 * for basic + diagnositic samples. This is determined at initialization
1875 * time by the sampling facility device driver.
1876 * If the authorization for basic samples is turned off, it should be
1877 * also turned off for diagnostic sampling.
1878 *
1879 * During initialization of the device driver, check the authorization
1880 * level for diagnostic sampling and installs the attribute
1881 * file for diagnostic sampling if necessary.
1882 *
1883 * For now install a placeholder to reference all possible attributes:
1884 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
1885 * Add another entry for the final NULL pointer.
1886 */
1887 enum {
1888 SF_CYCLES_BASIC_ATTR_IDX = 0,
1889 SF_CYCLES_BASIC_DIAG_ATTR_IDX,
1890 SF_CYCLES_ATTR_MAX
1891 };
1892
1893 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
1894 [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
1895 };
1896
1897 PMU_FORMAT_ATTR(event, "config:0-63");
1898
1899 static struct attribute *cpumsf_pmu_format_attr[] = {
1900 &format_attr_event.attr,
1901 NULL,
1902 };
1903
1904 static struct attribute_group cpumsf_pmu_events_group = {
1905 .name = "events",
1906 .attrs = cpumsf_pmu_events_attr,
1907 };
1908
1909 static struct attribute_group cpumsf_pmu_format_group = {
1910 .name = "format",
1911 .attrs = cpumsf_pmu_format_attr,
1912 };
1913
1914 static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
1915 &cpumsf_pmu_events_group,
1916 &cpumsf_pmu_format_group,
1917 NULL,
1918 };
1919
1920 static struct pmu cpumf_sampling = {
1921 .pmu_enable = cpumsf_pmu_enable,
1922 .pmu_disable = cpumsf_pmu_disable,
1923
1924 .event_init = cpumsf_pmu_event_init,
1925 .add = cpumsf_pmu_add,
1926 .del = cpumsf_pmu_del,
1927
1928 .start = cpumsf_pmu_start,
1929 .stop = cpumsf_pmu_stop,
1930 .read = cpumsf_pmu_read,
1931
1932 .attr_groups = cpumsf_pmu_attr_groups,
1933
1934 .setup_aux = aux_buffer_setup,
1935 .free_aux = aux_buffer_free,
1936
1937 .check_period = cpumsf_pmu_check_period,
1938 };
1939
cpumf_measurement_alert(struct ext_code ext_code,unsigned int alert,unsigned long unused)1940 static void cpumf_measurement_alert(struct ext_code ext_code,
1941 unsigned int alert, unsigned long unused)
1942 {
1943 struct cpu_hw_sf *cpuhw;
1944
1945 if (!(alert & CPU_MF_INT_SF_MASK))
1946 return;
1947 inc_irq_stat(IRQEXT_CMS);
1948 cpuhw = this_cpu_ptr(&cpu_hw_sf);
1949
1950 /* Measurement alerts are shared and might happen when the PMU
1951 * is not reserved. Ignore these alerts in this case. */
1952 if (!(cpuhw->flags & PMU_F_RESERVED))
1953 return;
1954
1955 /* The processing below must take care of multiple alert events that
1956 * might be indicated concurrently. */
1957
1958 /* Program alert request */
1959 if (alert & CPU_MF_INT_SF_PRA) {
1960 if (cpuhw->flags & PMU_F_IN_USE)
1961 if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
1962 hw_collect_aux(cpuhw);
1963 else
1964 hw_perf_event_update(cpuhw->event, 0);
1965 else
1966 WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
1967 }
1968
1969 /* Report measurement alerts only for non-PRA codes */
1970 if (alert != CPU_MF_INT_SF_PRA)
1971 debug_sprintf_event(sfdbg, 6, "%s alert %#x\n", __func__,
1972 alert);
1973
1974 /* Sampling authorization change request */
1975 if (alert & CPU_MF_INT_SF_SACA)
1976 qsi(&cpuhw->qsi);
1977
1978 /* Loss of sample data due to high-priority machine activities */
1979 if (alert & CPU_MF_INT_SF_LSDA) {
1980 pr_err("Sample data was lost\n");
1981 cpuhw->flags |= PMU_F_ERR_LSDA;
1982 sf_disable();
1983 }
1984
1985 /* Invalid sampling buffer entry */
1986 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
1987 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
1988 alert);
1989 cpuhw->flags |= PMU_F_ERR_IBE;
1990 sf_disable();
1991 }
1992 }
1993
cpusf_pmu_setup(unsigned int cpu,int flags)1994 static int cpusf_pmu_setup(unsigned int cpu, int flags)
1995 {
1996 /* Ignore the notification if no events are scheduled on the PMU.
1997 * This might be racy...
1998 */
1999 if (!refcount_read(&num_events))
2000 return 0;
2001
2002 local_irq_disable();
2003 setup_pmc_cpu(&flags);
2004 local_irq_enable();
2005 return 0;
2006 }
2007
s390_pmu_sf_online_cpu(unsigned int cpu)2008 static int s390_pmu_sf_online_cpu(unsigned int cpu)
2009 {
2010 return cpusf_pmu_setup(cpu, PMC_INIT);
2011 }
2012
s390_pmu_sf_offline_cpu(unsigned int cpu)2013 static int s390_pmu_sf_offline_cpu(unsigned int cpu)
2014 {
2015 return cpusf_pmu_setup(cpu, PMC_RELEASE);
2016 }
2017
param_get_sfb_size(char * buffer,const struct kernel_param * kp)2018 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
2019 {
2020 if (!cpum_sf_avail())
2021 return -ENODEV;
2022 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2023 }
2024
param_set_sfb_size(const char * val,const struct kernel_param * kp)2025 static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
2026 {
2027 int rc;
2028 unsigned long min, max;
2029
2030 if (!cpum_sf_avail())
2031 return -ENODEV;
2032 if (!val || !strlen(val))
2033 return -EINVAL;
2034
2035 /* Valid parameter values: "min,max" or "max" */
2036 min = CPUM_SF_MIN_SDB;
2037 max = CPUM_SF_MAX_SDB;
2038 if (strchr(val, ','))
2039 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2040 else
2041 rc = kstrtoul(val, 10, &max);
2042
2043 if (min < 2 || min >= max || max > get_num_physpages())
2044 rc = -EINVAL;
2045 if (rc)
2046 return rc;
2047
2048 sfb_set_limits(min, max);
2049 pr_info("The sampling buffer limits have changed to: "
2050 "min %lu max %lu (diag %lu)\n",
2051 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2052 return 0;
2053 }
2054
2055 #define param_check_sfb_size(name, p) __param_check(name, p, void)
2056 static const struct kernel_param_ops param_ops_sfb_size = {
2057 .set = param_set_sfb_size,
2058 .get = param_get_sfb_size,
2059 };
2060
2061 enum {
2062 RS_INIT_FAILURE_BSDES = 2, /* Bad basic sampling size */
2063 RS_INIT_FAILURE_ALRT = 3, /* IRQ registration failure */
2064 RS_INIT_FAILURE_PERF = 4 /* PMU registration failure */
2065 };
2066
pr_cpumsf_err(unsigned int reason)2067 static void __init pr_cpumsf_err(unsigned int reason)
2068 {
2069 pr_err("Sampling facility support for perf is not available: "
2070 "reason %#x\n", reason);
2071 }
2072
init_cpum_sampling_pmu(void)2073 static int __init init_cpum_sampling_pmu(void)
2074 {
2075 struct hws_qsi_info_block si;
2076 int err;
2077
2078 if (!cpum_sf_avail())
2079 return -ENODEV;
2080
2081 memset(&si, 0, sizeof(si));
2082 qsi(&si);
2083 if (!si.as && !si.ad)
2084 return -ENODEV;
2085
2086 if (si.bsdes != sizeof(struct hws_basic_entry)) {
2087 pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2088 return -EINVAL;
2089 }
2090
2091 if (si.ad) {
2092 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2093 /* Sampling of diagnostic data authorized,
2094 * install event into attribute list of PMU device.
2095 */
2096 cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2097 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2098 }
2099
2100 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2101 if (!sfdbg) {
2102 pr_err("Registering for s390dbf failed\n");
2103 return -ENOMEM;
2104 }
2105 debug_register_view(sfdbg, &debug_sprintf_view);
2106
2107 err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2108 cpumf_measurement_alert);
2109 if (err) {
2110 pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2111 debug_unregister(sfdbg);
2112 goto out;
2113 }
2114
2115 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
2116 if (err) {
2117 pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2118 unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2119 cpumf_measurement_alert);
2120 debug_unregister(sfdbg);
2121 goto out;
2122 }
2123
2124 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
2125 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
2126 out:
2127 return err;
2128 }
2129
2130 arch_initcall(init_cpum_sampling_pmu);
2131 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644);
2132