1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance event support for the System z CPU-measurement Sampling Facility
4 *
5 * Copyright IBM Corp. 2013, 2018
6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
7 */
8 #define KMSG_COMPONENT "cpum_sf"
9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/pid.h>
16 #include <linux/notifier.h>
17 #include <linux/export.h>
18 #include <linux/slab.h>
19 #include <linux/mm.h>
20 #include <linux/moduleparam.h>
21 #include <asm/cpu_mf.h>
22 #include <asm/irq.h>
23 #include <asm/debug.h>
24 #include <asm/timex.h>
25 #include <linux/io.h>
26
27 /* Perf PMU definitions for the sampling facility */
28 #define PERF_CPUM_SF_MAX_CTR 2
29 #define PERF_EVENT_CPUM_SF 0xB0000UL /* Event: Basic-sampling */
30 #define PERF_EVENT_CPUM_SF_DIAG 0xBD000UL /* Event: Combined-sampling */
31 #define PERF_CPUM_SF_BASIC_MODE 0x0001 /* Basic-sampling flag */
32 #define PERF_CPUM_SF_DIAG_MODE 0x0002 /* Diagnostic-sampling flag */
33 #define PERF_CPUM_SF_FREQ_MODE 0x0008 /* Sampling with frequency */
34
35 #define OVERFLOW_REG(hwc) ((hwc)->extra_reg.config)
36 #define SFB_ALLOC_REG(hwc) ((hwc)->extra_reg.alloc)
37 #define TEAR_REG(hwc) ((hwc)->last_tag)
38 #define SAMPL_RATE(hwc) ((hwc)->event_base)
39 #define SAMPL_FLAGS(hwc) ((hwc)->config_base)
40 #define SAMPL_DIAG_MODE(hwc) (SAMPL_FLAGS(hwc) & PERF_CPUM_SF_DIAG_MODE)
41 #define SAMPL_FREQ_MODE(hwc) (SAMPL_FLAGS(hwc) & PERF_CPUM_SF_FREQ_MODE)
42
43 /* Minimum number of sample-data-block-tables:
44 * At least one table is required for the sampling buffer structure.
45 * A single table contains up to 511 pointers to sample-data-blocks.
46 */
47 #define CPUM_SF_MIN_SDBT 1
48
49 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
50 * A table contains SDB pointers (8 bytes) and one table-link entry
51 * that points to the origin of the next SDBT.
52 */
53 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
54
55 /* Maximum page offset for an SDBT table-link entry:
56 * If this page offset is reached, a table-link entry to the next SDBT
57 * must be added.
58 */
59 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
require_table_link(const void * sdbt)60 static inline int require_table_link(const void *sdbt)
61 {
62 return ((unsigned long)sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
63 }
64
65 /* Minimum and maximum sampling buffer sizes:
66 *
67 * This number represents the maximum size of the sampling buffer taking
68 * the number of sample-data-block-tables into account. Note that these
69 * numbers apply to the basic-sampling function only.
70 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
71 * the diagnostic-sampling function is active.
72 *
73 * Sampling buffer size Buffer characteristics
74 * ---------------------------------------------------
75 * 64KB == 16 pages (4KB per page)
76 * 1 page for SDB-tables
77 * 15 pages for SDBs
78 *
79 * 32MB == 8192 pages (4KB per page)
80 * 16 pages for SDB-tables
81 * 8176 pages for SDBs
82 */
83 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
84 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
85 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
86
87 struct sf_buffer {
88 unsigned long *sdbt; /* Sample-data-block-table origin */
89 /* buffer characteristics (required for buffer increments) */
90 unsigned long num_sdb; /* Number of sample-data-blocks */
91 unsigned long num_sdbt; /* Number of sample-data-block-tables */
92 unsigned long *tail; /* last sample-data-block-table */
93 };
94
95 struct aux_buffer {
96 struct sf_buffer sfb;
97 unsigned long head; /* index of SDB of buffer head */
98 unsigned long alert_mark; /* index of SDB of alert request position */
99 unsigned long empty_mark; /* mark of SDB not marked full */
100 unsigned long *sdb_index; /* SDB address for fast lookup */
101 unsigned long *sdbt_index; /* SDBT address for fast lookup */
102 };
103
104 struct cpu_hw_sf {
105 /* CPU-measurement sampling information block */
106 struct hws_qsi_info_block qsi;
107 /* CPU-measurement sampling control block */
108 struct hws_lsctl_request_block lsctl;
109 struct sf_buffer sfb; /* Sampling buffer */
110 unsigned int flags; /* Status flags */
111 struct perf_event *event; /* Scheduled perf event */
112 struct perf_output_handle handle; /* AUX buffer output handle */
113 };
114 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
115
116 /* Debug feature */
117 static debug_info_t *sfdbg;
118
119 /* Sampling control helper functions */
freq_to_sample_rate(struct hws_qsi_info_block * qsi,unsigned long freq)120 static inline unsigned long freq_to_sample_rate(struct hws_qsi_info_block *qsi,
121 unsigned long freq)
122 {
123 return (USEC_PER_SEC / freq) * qsi->cpu_speed;
124 }
125
sample_rate_to_freq(struct hws_qsi_info_block * qsi,unsigned long rate)126 static inline unsigned long sample_rate_to_freq(struct hws_qsi_info_block *qsi,
127 unsigned long rate)
128 {
129 return USEC_PER_SEC * qsi->cpu_speed / rate;
130 }
131
132 /* Return pointer to trailer entry of an sample data block */
trailer_entry_ptr(unsigned long v)133 static inline struct hws_trailer_entry *trailer_entry_ptr(unsigned long v)
134 {
135 void *ret;
136
137 ret = (void *)v;
138 ret += PAGE_SIZE;
139 ret -= sizeof(struct hws_trailer_entry);
140
141 return ret;
142 }
143
144 /*
145 * Return true if the entry in the sample data block table (sdbt)
146 * is a link to the next sdbt
147 */
is_link_entry(unsigned long * s)148 static inline int is_link_entry(unsigned long *s)
149 {
150 return *s & 0x1UL ? 1 : 0;
151 }
152
153 /* Return pointer to the linked sdbt */
get_next_sdbt(unsigned long * s)154 static inline unsigned long *get_next_sdbt(unsigned long *s)
155 {
156 return phys_to_virt(*s & ~0x1UL);
157 }
158
159 /*
160 * sf_disable() - Switch off sampling facility
161 */
sf_disable(void)162 static void sf_disable(void)
163 {
164 struct hws_lsctl_request_block sreq;
165
166 memset(&sreq, 0, sizeof(sreq));
167 lsctl(&sreq);
168 }
169
170 /*
171 * sf_buffer_available() - Check for an allocated sampling buffer
172 */
sf_buffer_available(struct cpu_hw_sf * cpuhw)173 static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
174 {
175 return !!cpuhw->sfb.sdbt;
176 }
177
178 /*
179 * deallocate sampling facility buffer
180 */
free_sampling_buffer(struct sf_buffer * sfb)181 static void free_sampling_buffer(struct sf_buffer *sfb)
182 {
183 unsigned long *sdbt, *curr, *head;
184
185 sdbt = sfb->sdbt;
186 if (!sdbt)
187 return;
188 sfb->sdbt = NULL;
189 /* Free the SDBT after all SDBs are processed... */
190 head = sdbt;
191 curr = sdbt;
192 do {
193 if (is_link_entry(curr)) {
194 /* Process table-link entries */
195 curr = get_next_sdbt(curr);
196 free_page((unsigned long)sdbt);
197 sdbt = curr;
198 } else {
199 /* Process SDB pointer */
200 free_page((unsigned long)phys_to_virt(*curr));
201 curr++;
202 }
203 } while (curr != head);
204 memset(sfb, 0, sizeof(*sfb));
205 }
206
alloc_sample_data_block(unsigned long * sdbt,gfp_t gfp_flags)207 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
208 {
209 struct hws_trailer_entry *te;
210 unsigned long sdb;
211
212 /* Allocate and initialize sample-data-block */
213 sdb = get_zeroed_page(gfp_flags);
214 if (!sdb)
215 return -ENOMEM;
216 te = trailer_entry_ptr(sdb);
217 te->header.a = 1;
218
219 /* Link SDB into the sample-data-block-table */
220 *sdbt = virt_to_phys((void *)sdb);
221
222 return 0;
223 }
224
225 /*
226 * realloc_sampling_buffer() - extend sampler memory
227 *
228 * Allocates new sample-data-blocks and adds them to the specified sampling
229 * buffer memory.
230 *
231 * Important: This modifies the sampling buffer and must be called when the
232 * sampling facility is disabled.
233 *
234 * Returns zero on success, non-zero otherwise.
235 */
realloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb,gfp_t gfp_flags)236 static int realloc_sampling_buffer(struct sf_buffer *sfb,
237 unsigned long num_sdb, gfp_t gfp_flags)
238 {
239 int i, rc;
240 unsigned long *new, *tail, *tail_prev = NULL;
241
242 if (!sfb->sdbt || !sfb->tail)
243 return -EINVAL;
244
245 if (!is_link_entry(sfb->tail))
246 return -EINVAL;
247
248 /* Append to the existing sampling buffer, overwriting the table-link
249 * register.
250 * The tail variables always points to the "tail" (last and table-link)
251 * entry in an SDB-table.
252 */
253 tail = sfb->tail;
254
255 /* Do a sanity check whether the table-link entry points to
256 * the sampling buffer origin.
257 */
258 if (sfb->sdbt != get_next_sdbt(tail)) {
259 debug_sprintf_event(sfdbg, 3, "%s buffer not linked origin %#lx tail %#lx\n",
260 __func__, (unsigned long)sfb->sdbt,
261 (unsigned long)tail);
262 return -EINVAL;
263 }
264
265 /* Allocate remaining SDBs */
266 rc = 0;
267 for (i = 0; i < num_sdb; i++) {
268 /* Allocate a new SDB-table if it is full. */
269 if (require_table_link(tail)) {
270 new = (unsigned long *)get_zeroed_page(gfp_flags);
271 if (!new) {
272 rc = -ENOMEM;
273 break;
274 }
275 sfb->num_sdbt++;
276 /* Link current page to tail of chain */
277 *tail = virt_to_phys((void *)new) + 1;
278 tail_prev = tail;
279 tail = new;
280 }
281
282 /* Allocate a new sample-data-block.
283 * If there is not enough memory, stop the realloc process
284 * and simply use what was allocated. If this is a temporary
285 * issue, a new realloc call (if required) might succeed.
286 */
287 rc = alloc_sample_data_block(tail, gfp_flags);
288 if (rc) {
289 /* Undo last SDBT. An SDBT with no SDB at its first
290 * entry but with an SDBT entry instead can not be
291 * handled by the interrupt handler code.
292 * Avoid this situation.
293 */
294 if (tail_prev) {
295 sfb->num_sdbt--;
296 free_page((unsigned long)new);
297 tail = tail_prev;
298 }
299 break;
300 }
301 sfb->num_sdb++;
302 tail++;
303 tail_prev = new = NULL; /* Allocated at least one SBD */
304 }
305
306 /* Link sampling buffer to its origin */
307 *tail = virt_to_phys(sfb->sdbt) + 1;
308 sfb->tail = tail;
309
310 return rc;
311 }
312
313 /*
314 * allocate_sampling_buffer() - allocate sampler memory
315 *
316 * Allocates and initializes a sampling buffer structure using the
317 * specified number of sample-data-blocks (SDB). For each allocation,
318 * a 4K page is used. The number of sample-data-block-tables (SDBT)
319 * are calculated from SDBs.
320 * Also set the ALERT_REQ mask in each SDBs trailer.
321 *
322 * Returns zero on success, non-zero otherwise.
323 */
alloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb)324 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
325 {
326 int rc;
327
328 if (sfb->sdbt)
329 return -EINVAL;
330
331 /* Allocate the sample-data-block-table origin */
332 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
333 if (!sfb->sdbt)
334 return -ENOMEM;
335 sfb->num_sdb = 0;
336 sfb->num_sdbt = 1;
337
338 /* Link the table origin to point to itself to prepare for
339 * realloc_sampling_buffer() invocation.
340 */
341 sfb->tail = sfb->sdbt;
342 *sfb->tail = virt_to_phys((void *)sfb->sdbt) + 1;
343
344 /* Allocate requested number of sample-data-blocks */
345 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
346 if (rc)
347 free_sampling_buffer(sfb);
348 return rc;
349 }
350
sfb_set_limits(unsigned long min,unsigned long max)351 static void sfb_set_limits(unsigned long min, unsigned long max)
352 {
353 struct hws_qsi_info_block si;
354
355 CPUM_SF_MIN_SDB = min;
356 CPUM_SF_MAX_SDB = max;
357
358 memset(&si, 0, sizeof(si));
359 qsi(&si);
360 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
361 }
362
sfb_max_limit(struct hw_perf_event * hwc)363 static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
364 {
365 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
366 : CPUM_SF_MAX_SDB;
367 }
368
sfb_pending_allocs(struct sf_buffer * sfb,struct hw_perf_event * hwc)369 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
370 struct hw_perf_event *hwc)
371 {
372 if (!sfb->sdbt)
373 return SFB_ALLOC_REG(hwc);
374 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
375 return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
376 return 0;
377 }
378
sfb_account_allocs(unsigned long num,struct hw_perf_event * hwc)379 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
380 {
381 /* Limit the number of SDBs to not exceed the maximum */
382 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
383 if (num)
384 SFB_ALLOC_REG(hwc) += num;
385 }
386
sfb_init_allocs(unsigned long num,struct hw_perf_event * hwc)387 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
388 {
389 SFB_ALLOC_REG(hwc) = 0;
390 sfb_account_allocs(num, hwc);
391 }
392
deallocate_buffers(struct cpu_hw_sf * cpuhw)393 static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
394 {
395 if (sf_buffer_available(cpuhw))
396 free_sampling_buffer(&cpuhw->sfb);
397 }
398
allocate_buffers(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)399 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
400 {
401 unsigned long n_sdb, freq;
402
403 /* Calculate sampling buffers using 4K pages
404 *
405 * 1. The sampling size is 32 bytes for basic sampling. This size
406 * is the same for all machine types. Diagnostic
407 * sampling uses auxlilary data buffer setup which provides the
408 * memory for SDBs using linux common code auxiliary trace
409 * setup.
410 *
411 * 2. Function alloc_sampling_buffer() sets the Alert Request
412 * Control indicator to trigger a measurement-alert to harvest
413 * sample-data-blocks (SDB). This is done per SDB. This
414 * measurement alert interrupt fires quick enough to handle
415 * one SDB, on very high frequency and work loads there might
416 * be 2 to 3 SBDs available for sample processing.
417 * Currently there is no need for setup alert request on every
418 * n-th page. This is counterproductive as one IRQ triggers
419 * a very high number of samples to be processed at one IRQ.
420 *
421 * 3. Use the sampling frequency as input.
422 * Compute the number of SDBs and ensure a minimum
423 * of CPUM_SF_MIN_SDB. Depending on frequency add some more
424 * SDBs to handle a higher sampling rate.
425 * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
426 * (one SDB) for every 10000 HZ frequency increment.
427 *
428 * 4. Compute the number of sample-data-block-tables (SDBT) and
429 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
430 * to 511 SDBs).
431 */
432 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
433 n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
434
435 /* If there is already a sampling buffer allocated, it is very likely
436 * that the sampling facility is enabled too. If the event to be
437 * initialized requires a greater sampling buffer, the allocation must
438 * be postponed. Changing the sampling buffer requires the sampling
439 * facility to be in the disabled state. So, account the number of
440 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
441 * before the event is started.
442 */
443 sfb_init_allocs(n_sdb, hwc);
444 if (sf_buffer_available(cpuhw))
445 return 0;
446
447 return alloc_sampling_buffer(&cpuhw->sfb,
448 sfb_pending_allocs(&cpuhw->sfb, hwc));
449 }
450
min_percent(unsigned int percent,unsigned long base,unsigned long min)451 static unsigned long min_percent(unsigned int percent, unsigned long base,
452 unsigned long min)
453 {
454 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
455 }
456
compute_sfb_extent(unsigned long ratio,unsigned long base)457 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
458 {
459 /* Use a percentage-based approach to extend the sampling facility
460 * buffer. Accept up to 5% sample data loss.
461 * Vary the extents between 1% to 5% of the current number of
462 * sample-data-blocks.
463 */
464 if (ratio <= 5)
465 return 0;
466 if (ratio <= 25)
467 return min_percent(1, base, 1);
468 if (ratio <= 50)
469 return min_percent(1, base, 1);
470 if (ratio <= 75)
471 return min_percent(2, base, 2);
472 if (ratio <= 100)
473 return min_percent(3, base, 3);
474 if (ratio <= 250)
475 return min_percent(4, base, 4);
476
477 return min_percent(5, base, 8);
478 }
479
sfb_account_overflows(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)480 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
481 struct hw_perf_event *hwc)
482 {
483 unsigned long ratio, num;
484
485 if (!OVERFLOW_REG(hwc))
486 return;
487
488 /* The sample_overflow contains the average number of sample data
489 * that has been lost because sample-data-blocks were full.
490 *
491 * Calculate the total number of sample data entries that has been
492 * discarded. Then calculate the ratio of lost samples to total samples
493 * per second in percent.
494 */
495 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
496 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
497
498 /* Compute number of sample-data-blocks */
499 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
500 if (num)
501 sfb_account_allocs(num, hwc);
502
503 OVERFLOW_REG(hwc) = 0;
504 }
505
506 /* extend_sampling_buffer() - Extend sampling buffer
507 * @sfb: Sampling buffer structure (for local CPU)
508 * @hwc: Perf event hardware structure
509 *
510 * Use this function to extend the sampling buffer based on the overflow counter
511 * and postponed allocation extents stored in the specified Perf event hardware.
512 *
513 * Important: This function disables the sampling facility in order to safely
514 * change the sampling buffer structure. Do not call this function
515 * when the PMU is active.
516 */
extend_sampling_buffer(struct sf_buffer * sfb,struct hw_perf_event * hwc)517 static void extend_sampling_buffer(struct sf_buffer *sfb,
518 struct hw_perf_event *hwc)
519 {
520 unsigned long num;
521
522 num = sfb_pending_allocs(sfb, hwc);
523 if (!num)
524 return;
525
526 /* Disable the sampling facility to reset any states and also
527 * clear pending measurement alerts.
528 */
529 sf_disable();
530
531 /* Extend the sampling buffer.
532 * This memory allocation typically happens in an atomic context when
533 * called by perf. Because this is a reallocation, it is fine if the
534 * new SDB-request cannot be satisfied immediately.
535 */
536 realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
537 }
538
539 /* Number of perf events counting hardware events */
540 static refcount_t num_events;
541 /* Used to avoid races in calling reserve/release_cpumf_hardware */
542 static DEFINE_MUTEX(pmc_reserve_mutex);
543
544 #define PMC_INIT 0
545 #define PMC_RELEASE 1
setup_pmc_cpu(void * flags)546 static void setup_pmc_cpu(void *flags)
547 {
548 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
549
550 sf_disable();
551 switch (*((int *)flags)) {
552 case PMC_INIT:
553 memset(cpuhw, 0, sizeof(*cpuhw));
554 qsi(&cpuhw->qsi);
555 cpuhw->flags |= PMU_F_RESERVED;
556 break;
557 case PMC_RELEASE:
558 cpuhw->flags &= ~PMU_F_RESERVED;
559 deallocate_buffers(cpuhw);
560 break;
561 }
562 }
563
release_pmc_hardware(void)564 static void release_pmc_hardware(void)
565 {
566 int flags = PMC_RELEASE;
567
568 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
569 on_each_cpu(setup_pmc_cpu, &flags, 1);
570 }
571
reserve_pmc_hardware(void)572 static void reserve_pmc_hardware(void)
573 {
574 int flags = PMC_INIT;
575
576 on_each_cpu(setup_pmc_cpu, &flags, 1);
577 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
578 }
579
hw_perf_event_destroy(struct perf_event * event)580 static void hw_perf_event_destroy(struct perf_event *event)
581 {
582 /* Release PMC if this is the last perf event */
583 if (refcount_dec_and_mutex_lock(&num_events, &pmc_reserve_mutex)) {
584 release_pmc_hardware();
585 mutex_unlock(&pmc_reserve_mutex);
586 }
587 }
588
hw_init_period(struct hw_perf_event * hwc,u64 period)589 static void hw_init_period(struct hw_perf_event *hwc, u64 period)
590 {
591 hwc->sample_period = period;
592 hwc->last_period = hwc->sample_period;
593 local64_set(&hwc->period_left, hwc->sample_period);
594 }
595
hw_limit_rate(const struct hws_qsi_info_block * si,unsigned long rate)596 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
597 unsigned long rate)
598 {
599 return clamp_t(unsigned long, rate,
600 si->min_sampl_rate, si->max_sampl_rate);
601 }
602
cpumsf_pid_type(struct perf_event * event,u32 pid,enum pid_type type)603 static u32 cpumsf_pid_type(struct perf_event *event,
604 u32 pid, enum pid_type type)
605 {
606 struct task_struct *tsk;
607
608 /* Idle process */
609 if (!pid)
610 goto out;
611
612 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
613 pid = -1;
614 if (tsk) {
615 /*
616 * Only top level events contain the pid namespace in which
617 * they are created.
618 */
619 if (event->parent)
620 event = event->parent;
621 pid = __task_pid_nr_ns(tsk, type, event->ns);
622 /*
623 * See also 1d953111b648
624 * "perf/core: Don't report zero PIDs for exiting tasks".
625 */
626 if (!pid && !pid_alive(tsk))
627 pid = -1;
628 }
629 out:
630 return pid;
631 }
632
cpumsf_output_event_pid(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)633 static void cpumsf_output_event_pid(struct perf_event *event,
634 struct perf_sample_data *data,
635 struct pt_regs *regs)
636 {
637 u32 pid;
638 struct perf_event_header header;
639 struct perf_output_handle handle;
640
641 /*
642 * Obtain the PID from the basic-sampling data entry and
643 * correct the data->tid_entry.pid value.
644 */
645 pid = data->tid_entry.pid;
646
647 /* Protect callchain buffers, tasks */
648 rcu_read_lock();
649
650 perf_prepare_sample(data, event, regs);
651 perf_prepare_header(&header, data, event, regs);
652 if (perf_output_begin(&handle, data, event, header.size))
653 goto out;
654
655 /* Update the process ID (see also kernel/events/core.c) */
656 data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
657 data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
658
659 perf_output_sample(&handle, &header, data, event);
660 perf_output_end(&handle);
661 out:
662 rcu_read_unlock();
663 }
664
getrate(bool freq,unsigned long sample,struct hws_qsi_info_block * si)665 static unsigned long getrate(bool freq, unsigned long sample,
666 struct hws_qsi_info_block *si)
667 {
668 unsigned long rate;
669
670 if (freq) {
671 rate = freq_to_sample_rate(si, sample);
672 rate = hw_limit_rate(si, rate);
673 } else {
674 /* The min/max sampling rates specifies the valid range
675 * of sample periods. If the specified sample period is
676 * out of range, limit the period to the range boundary.
677 */
678 rate = hw_limit_rate(si, sample);
679
680 /* The perf core maintains a maximum sample rate that is
681 * configurable through the sysctl interface. Ensure the
682 * sampling rate does not exceed this value. This also helps
683 * to avoid throttling when pushing samples with
684 * perf_event_overflow().
685 */
686 if (sample_rate_to_freq(si, rate) >
687 sysctl_perf_event_sample_rate) {
688 rate = 0;
689 }
690 }
691 return rate;
692 }
693
694 /* The sampling information (si) contains information about the
695 * min/max sampling intervals and the CPU speed. So calculate the
696 * correct sampling interval and avoid the whole period adjust
697 * feedback loop.
698 *
699 * Since the CPU Measurement sampling facility can not handle frequency
700 * calculate the sampling interval when frequency is specified using
701 * this formula:
702 * interval := cpu_speed * 1000000 / sample_freq
703 *
704 * Returns errno on bad input and zero on success with parameter interval
705 * set to the correct sampling rate.
706 *
707 * Note: This function turns off freq bit to avoid calling function
708 * perf_adjust_period(). This causes frequency adjustment in the common
709 * code part which causes tremendous variations in the counter values.
710 */
__hw_perf_event_init_rate(struct perf_event * event,struct hws_qsi_info_block * si)711 static int __hw_perf_event_init_rate(struct perf_event *event,
712 struct hws_qsi_info_block *si)
713 {
714 struct perf_event_attr *attr = &event->attr;
715 struct hw_perf_event *hwc = &event->hw;
716 unsigned long rate;
717
718 if (attr->freq) {
719 if (!attr->sample_freq)
720 return -EINVAL;
721 rate = getrate(attr->freq, attr->sample_freq, si);
722 attr->freq = 0; /* Don't call perf_adjust_period() */
723 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
724 } else {
725 rate = getrate(attr->freq, attr->sample_period, si);
726 if (!rate)
727 return -EINVAL;
728 }
729 attr->sample_period = rate;
730 SAMPL_RATE(hwc) = rate;
731 hw_init_period(hwc, SAMPL_RATE(hwc));
732 return 0;
733 }
734
__hw_perf_event_init(struct perf_event * event)735 static int __hw_perf_event_init(struct perf_event *event)
736 {
737 struct cpu_hw_sf *cpuhw;
738 struct hws_qsi_info_block si;
739 struct perf_event_attr *attr = &event->attr;
740 struct hw_perf_event *hwc = &event->hw;
741 int cpu, err = 0;
742
743 /* Reserve CPU-measurement sampling facility */
744 mutex_lock(&pmc_reserve_mutex);
745 if (!refcount_inc_not_zero(&num_events)) {
746 reserve_pmc_hardware();
747 refcount_set(&num_events, 1);
748 }
749 event->destroy = hw_perf_event_destroy;
750
751 /* Access per-CPU sampling information (query sampling info) */
752 /*
753 * The event->cpu value can be -1 to count on every CPU, for example,
754 * when attaching to a task. If this is specified, use the query
755 * sampling info from the current CPU, otherwise use event->cpu to
756 * retrieve the per-CPU information.
757 * Later, cpuhw indicates whether to allocate sampling buffers for a
758 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
759 */
760 memset(&si, 0, sizeof(si));
761 cpuhw = NULL;
762 if (event->cpu == -1) {
763 qsi(&si);
764 } else {
765 /* Event is pinned to a particular CPU, retrieve the per-CPU
766 * sampling structure for accessing the CPU-specific QSI.
767 */
768 cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
769 si = cpuhw->qsi;
770 }
771
772 /* Check sampling facility authorization and, if not authorized,
773 * fall back to other PMUs. It is safe to check any CPU because
774 * the authorization is identical for all configured CPUs.
775 */
776 if (!si.as) {
777 err = -ENOENT;
778 goto out;
779 }
780
781 if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
782 pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
783 err = -EBUSY;
784 goto out;
785 }
786
787 /* Always enable basic sampling */
788 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
789
790 /* Check if diagnostic sampling is requested. Deny if the required
791 * sampling authorization is missing.
792 */
793 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
794 if (!si.ad) {
795 err = -EPERM;
796 goto out;
797 }
798 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
799 }
800
801 err = __hw_perf_event_init_rate(event, &si);
802 if (err)
803 goto out;
804
805 /* Use AUX buffer. No need to allocate it by ourself */
806 if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
807 goto out;
808
809 /* Allocate the per-CPU sampling buffer using the CPU information
810 * from the event. If the event is not pinned to a particular
811 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
812 * buffers for each online CPU.
813 */
814 if (cpuhw)
815 /* Event is pinned to a particular CPU */
816 err = allocate_buffers(cpuhw, hwc);
817 else {
818 /* Event is not pinned, allocate sampling buffer on
819 * each online CPU
820 */
821 for_each_online_cpu(cpu) {
822 cpuhw = &per_cpu(cpu_hw_sf, cpu);
823 err = allocate_buffers(cpuhw, hwc);
824 if (err)
825 break;
826 }
827 }
828
829 /* If PID/TID sampling is active, replace the default overflow
830 * handler to extract and resolve the PIDs from the basic-sampling
831 * data entries.
832 */
833 if (event->attr.sample_type & PERF_SAMPLE_TID)
834 if (is_default_overflow_handler(event))
835 event->overflow_handler = cpumsf_output_event_pid;
836 out:
837 mutex_unlock(&pmc_reserve_mutex);
838 return err;
839 }
840
is_callchain_event(struct perf_event * event)841 static bool is_callchain_event(struct perf_event *event)
842 {
843 u64 sample_type = event->attr.sample_type;
844
845 return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER |
846 PERF_SAMPLE_STACK_USER);
847 }
848
cpumsf_pmu_event_init(struct perf_event * event)849 static int cpumsf_pmu_event_init(struct perf_event *event)
850 {
851 int err;
852
853 /* No support for taken branch sampling */
854 /* No support for callchain, stacks and registers */
855 if (has_branch_stack(event) || is_callchain_event(event))
856 return -EOPNOTSUPP;
857
858 switch (event->attr.type) {
859 case PERF_TYPE_RAW:
860 if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
861 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
862 return -ENOENT;
863 break;
864 case PERF_TYPE_HARDWARE:
865 /* Support sampling of CPU cycles in addition to the
866 * counter facility. However, the counter facility
867 * is more precise and, hence, restrict this PMU to
868 * sampling events only.
869 */
870 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
871 return -ENOENT;
872 if (!is_sampling_event(event))
873 return -ENOENT;
874 break;
875 default:
876 return -ENOENT;
877 }
878
879 /* Force reset of idle/hv excludes regardless of what the
880 * user requested.
881 */
882 if (event->attr.exclude_hv)
883 event->attr.exclude_hv = 0;
884 if (event->attr.exclude_idle)
885 event->attr.exclude_idle = 0;
886
887 err = __hw_perf_event_init(event);
888 return err;
889 }
890
cpumsf_pmu_enable(struct pmu * pmu)891 static void cpumsf_pmu_enable(struct pmu *pmu)
892 {
893 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
894 struct hw_perf_event *hwc;
895 int err;
896
897 /*
898 * Event must be
899 * - added/started on this CPU (PMU_F_IN_USE set)
900 * - and CPU must be available (PMU_F_RESERVED set)
901 * - and not already enabled (PMU_F_ENABLED not set)
902 * - and not in error condition (PMU_F_ERR_MASK not set)
903 */
904 if (cpuhw->flags != (PMU_F_IN_USE | PMU_F_RESERVED))
905 return;
906
907 /* Check whether to extent the sampling buffer.
908 *
909 * Two conditions trigger an increase of the sampling buffer for a
910 * perf event:
911 * 1. Postponed buffer allocations from the event initialization.
912 * 2. Sampling overflows that contribute to pending allocations.
913 *
914 * Note that the extend_sampling_buffer() function disables the sampling
915 * facility, but it can be fully re-enabled using sampling controls that
916 * have been saved in cpumsf_pmu_disable().
917 */
918 hwc = &cpuhw->event->hw;
919 if (!(SAMPL_DIAG_MODE(hwc))) {
920 /*
921 * Account number of overflow-designated buffer extents
922 */
923 sfb_account_overflows(cpuhw, hwc);
924 extend_sampling_buffer(&cpuhw->sfb, hwc);
925 }
926 /* Rate may be adjusted with ioctl() */
927 cpuhw->lsctl.interval = SAMPL_RATE(hwc);
928
929 /* (Re)enable the PMU and sampling facility */
930 err = lsctl(&cpuhw->lsctl);
931 if (err) {
932 pr_err("Loading sampling controls failed: op 1 err %i\n", err);
933 return;
934 }
935
936 /* Load current program parameter */
937 lpp(&get_lowcore()->lpp);
938 cpuhw->flags |= PMU_F_ENABLED;
939 }
940
cpumsf_pmu_disable(struct pmu * pmu)941 static void cpumsf_pmu_disable(struct pmu *pmu)
942 {
943 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
944 struct hws_lsctl_request_block inactive;
945 struct hws_qsi_info_block si;
946 int err;
947
948 if (!(cpuhw->flags & PMU_F_ENABLED))
949 return;
950
951 if (cpuhw->flags & PMU_F_ERR_MASK)
952 return;
953
954 /* Switch off sampling activation control */
955 inactive = cpuhw->lsctl;
956 inactive.cs = 0;
957 inactive.cd = 0;
958
959 err = lsctl(&inactive);
960 if (err) {
961 pr_err("Loading sampling controls failed: op 2 err %i\n", err);
962 return;
963 }
964
965 /*
966 * Save state of TEAR and DEAR register contents.
967 * TEAR/DEAR values are valid only if the sampling facility is
968 * enabled. Note that cpumsf_pmu_disable() might be called even
969 * for a disabled sampling facility because cpumsf_pmu_enable()
970 * controls the enable/disable state.
971 */
972 qsi(&si);
973 if (si.es) {
974 cpuhw->lsctl.tear = si.tear;
975 cpuhw->lsctl.dear = si.dear;
976 }
977
978 cpuhw->flags &= ~PMU_F_ENABLED;
979 }
980
981 /* perf_event_exclude() - Filter event
982 * @event: The perf event
983 * @regs: pt_regs structure
984 * @sde_regs: Sample-data-entry (sde) regs structure
985 *
986 * Filter perf events according to their exclude specification.
987 *
988 * Return non-zero if the event shall be excluded.
989 */
perf_event_exclude(struct perf_event * event,struct pt_regs * regs,struct perf_sf_sde_regs * sde_regs)990 static int perf_event_exclude(struct perf_event *event, struct pt_regs *regs,
991 struct perf_sf_sde_regs *sde_regs)
992 {
993 if (event->attr.exclude_user && user_mode(regs))
994 return 1;
995 if (event->attr.exclude_kernel && !user_mode(regs))
996 return 1;
997 if (event->attr.exclude_guest && sde_regs->in_guest)
998 return 1;
999 if (event->attr.exclude_host && !sde_regs->in_guest)
1000 return 1;
1001 return 0;
1002 }
1003
1004 /* perf_push_sample() - Push samples to perf
1005 * @event: The perf event
1006 * @sample: Hardware sample data
1007 *
1008 * Use the hardware sample data to create perf event sample. The sample
1009 * is the pushed to the event subsystem and the function checks for
1010 * possible event overflows. If an event overflow occurs, the PMU is
1011 * stopped.
1012 *
1013 * Return non-zero if an event overflow occurred.
1014 */
perf_push_sample(struct perf_event * event,struct hws_basic_entry * basic)1015 static int perf_push_sample(struct perf_event *event,
1016 struct hws_basic_entry *basic)
1017 {
1018 int overflow;
1019 struct pt_regs regs;
1020 struct perf_sf_sde_regs *sde_regs;
1021 struct perf_sample_data data;
1022
1023 /* Setup perf sample */
1024 perf_sample_data_init(&data, 0, event->hw.last_period);
1025
1026 /* Setup pt_regs to look like an CPU-measurement external interrupt
1027 * using the Program Request Alert code. The regs.int_parm_long
1028 * field which is unused contains additional sample-data-entry related
1029 * indicators.
1030 */
1031 memset(®s, 0, sizeof(regs));
1032 regs.int_code = 0x1407;
1033 regs.int_parm = CPU_MF_INT_SF_PRA;
1034 sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long;
1035
1036 psw_bits(regs.psw).ia = basic->ia;
1037 psw_bits(regs.psw).dat = basic->T;
1038 psw_bits(regs.psw).wait = basic->W;
1039 psw_bits(regs.psw).pstate = basic->P;
1040 psw_bits(regs.psw).as = basic->AS;
1041
1042 /*
1043 * Use the hardware provided configuration level to decide if the
1044 * sample belongs to a guest or host. If that is not available,
1045 * fall back to the following heuristics:
1046 * A non-zero guest program parameter always indicates a guest
1047 * sample. Some early samples or samples from guests without
1048 * lpp usage would be misaccounted to the host. We use the asn
1049 * value as an addon heuristic to detect most of these guest samples.
1050 * If the value differs from 0xffff (the host value), we assume to
1051 * be a KVM guest.
1052 */
1053 switch (basic->CL) {
1054 case 1: /* logical partition */
1055 sde_regs->in_guest = 0;
1056 break;
1057 case 2: /* virtual machine */
1058 sde_regs->in_guest = 1;
1059 break;
1060 default: /* old machine, use heuristics */
1061 if (basic->gpp || basic->prim_asn != 0xffff)
1062 sde_regs->in_guest = 1;
1063 break;
1064 }
1065
1066 /*
1067 * Store the PID value from the sample-data-entry to be
1068 * processed and resolved by cpumsf_output_event_pid().
1069 */
1070 data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1071
1072 overflow = 0;
1073 if (perf_event_exclude(event, ®s, sde_regs))
1074 goto out;
1075 overflow = perf_event_overflow(event, &data, ®s);
1076 perf_event_update_userpage(event);
1077 out:
1078 return overflow;
1079 }
1080
perf_event_count_update(struct perf_event * event,u64 count)1081 static void perf_event_count_update(struct perf_event *event, u64 count)
1082 {
1083 local64_add(count, &event->count);
1084 }
1085
1086 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1087 * @event: The perf event
1088 * @sdbt: Sample-data-block table
1089 * @overflow: Event overflow counter
1090 *
1091 * Walks through a sample-data-block and collects sampling data entries that are
1092 * then pushed to the perf event subsystem. Depending on the sampling function,
1093 * there can be either basic-sampling or combined-sampling data entries. A
1094 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1095 * data entry. The sampling function is determined by the flags in the perf
1096 * event hardware structure. The function always works with a combined-sampling
1097 * data entry but ignores the the diagnostic portion if it is not available.
1098 *
1099 * Note that the implementation focuses on basic-sampling data entries and, if
1100 * such an entry is not valid, the entire combined-sampling data entry is
1101 * ignored.
1102 *
1103 * The overflow variables counts the number of samples that has been discarded
1104 * due to a perf event overflow.
1105 */
hw_collect_samples(struct perf_event * event,unsigned long * sdbt,unsigned long long * overflow)1106 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1107 unsigned long long *overflow)
1108 {
1109 struct hws_trailer_entry *te;
1110 struct hws_basic_entry *sample;
1111
1112 te = trailer_entry_ptr((unsigned long)sdbt);
1113 sample = (struct hws_basic_entry *)sdbt;
1114 while ((unsigned long *)sample < (unsigned long *)te) {
1115 /* Check for an empty sample */
1116 if (!sample->def || sample->LS)
1117 break;
1118
1119 /* Update perf event period */
1120 perf_event_count_update(event, SAMPL_RATE(&event->hw));
1121
1122 /* Check whether sample is valid */
1123 if (sample->def == 0x0001) {
1124 /* If an event overflow occurred, the PMU is stopped to
1125 * throttle event delivery. Remaining sample data is
1126 * discarded.
1127 */
1128 if (!*overflow) {
1129 /* Check whether sample is consistent */
1130 if (sample->I == 0 && sample->W == 0) {
1131 /* Deliver sample data to perf */
1132 *overflow = perf_push_sample(event,
1133 sample);
1134 }
1135 } else
1136 /* Count discarded samples */
1137 *overflow += 1;
1138 } else {
1139 /* Sample slot is not yet written or other record.
1140 *
1141 * This condition can occur if the buffer was reused
1142 * from a combined basic- and diagnostic-sampling.
1143 * If only basic-sampling is then active, entries are
1144 * written into the larger diagnostic entries.
1145 * This is typically the case for sample-data-blocks
1146 * that are not full. Stop processing if the first
1147 * invalid format was detected.
1148 */
1149 if (!te->header.f)
1150 break;
1151 }
1152
1153 /* Reset sample slot and advance to next sample */
1154 sample->def = 0;
1155 sample++;
1156 }
1157 }
1158
1159 /* hw_perf_event_update() - Process sampling buffer
1160 * @event: The perf event
1161 * @flush_all: Flag to also flush partially filled sample-data-blocks
1162 *
1163 * Processes the sampling buffer and create perf event samples.
1164 * The sampling buffer position are retrieved and saved in the TEAR_REG
1165 * register of the specified perf event.
1166 *
1167 * Only full sample-data-blocks are processed. Specify the flush_all flag
1168 * to also walk through partially filled sample-data-blocks.
1169 */
hw_perf_event_update(struct perf_event * event,int flush_all)1170 static void hw_perf_event_update(struct perf_event *event, int flush_all)
1171 {
1172 unsigned long long event_overflow, sampl_overflow, num_sdb;
1173 struct hw_perf_event *hwc = &event->hw;
1174 union hws_trailer_header prev, new;
1175 struct hws_trailer_entry *te;
1176 unsigned long *sdbt, sdb;
1177 int done;
1178
1179 /*
1180 * AUX buffer is used when in diagnostic sampling mode.
1181 * No perf events/samples are created.
1182 */
1183 if (SAMPL_DIAG_MODE(hwc))
1184 return;
1185
1186 sdbt = (unsigned long *)TEAR_REG(hwc);
1187 done = event_overflow = sampl_overflow = num_sdb = 0;
1188 while (!done) {
1189 /* Get the trailer entry of the sample-data-block */
1190 sdb = (unsigned long)phys_to_virt(*sdbt);
1191 te = trailer_entry_ptr(sdb);
1192
1193 /* Leave loop if no more work to do (block full indicator) */
1194 if (!te->header.f) {
1195 done = 1;
1196 if (!flush_all)
1197 break;
1198 }
1199
1200 /* Check the sample overflow count */
1201 if (te->header.overflow)
1202 /* Account sample overflows and, if a particular limit
1203 * is reached, extend the sampling buffer.
1204 * For details, see sfb_account_overflows().
1205 */
1206 sampl_overflow += te->header.overflow;
1207
1208 /* Collect all samples from a single sample-data-block and
1209 * flag if an (perf) event overflow happened. If so, the PMU
1210 * is stopped and remaining samples will be discarded.
1211 */
1212 hw_collect_samples(event, (unsigned long *)sdb, &event_overflow);
1213 num_sdb++;
1214
1215 /* Reset trailer (using compare-double-and-swap) */
1216 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1217 do {
1218 new.val = prev.val;
1219 new.f = 0;
1220 new.a = 1;
1221 new.overflow = 0;
1222 } while (!try_cmpxchg128(&te->header.val, &prev.val, new.val));
1223
1224 /* Advance to next sample-data-block */
1225 sdbt++;
1226 if (is_link_entry(sdbt))
1227 sdbt = get_next_sdbt(sdbt);
1228
1229 /* Update event hardware registers */
1230 TEAR_REG(hwc) = (unsigned long)sdbt;
1231
1232 /* Stop processing sample-data if all samples of the current
1233 * sample-data-block were flushed even if it was not full.
1234 */
1235 if (flush_all && done)
1236 break;
1237 }
1238
1239 /* Account sample overflows in the event hardware structure */
1240 if (sampl_overflow)
1241 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1242 sampl_overflow, 1 + num_sdb);
1243
1244 /* Perf_event_overflow() and perf_event_account_interrupt() limit
1245 * the interrupt rate to an upper limit. Roughly 1000 samples per
1246 * task tick.
1247 * Hitting this limit results in a large number
1248 * of throttled REF_REPORT_THROTTLE entries and the samples
1249 * are dropped.
1250 * Slightly increase the interval to avoid hitting this limit.
1251 */
1252 if (event_overflow)
1253 SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
1254 }
1255
aux_sdb_index(struct aux_buffer * aux,unsigned long i)1256 static inline unsigned long aux_sdb_index(struct aux_buffer *aux,
1257 unsigned long i)
1258 {
1259 return i % aux->sfb.num_sdb;
1260 }
1261
aux_sdb_num(unsigned long start,unsigned long end)1262 static inline unsigned long aux_sdb_num(unsigned long start, unsigned long end)
1263 {
1264 return end >= start ? end - start + 1 : 0;
1265 }
1266
aux_sdb_num_alert(struct aux_buffer * aux)1267 static inline unsigned long aux_sdb_num_alert(struct aux_buffer *aux)
1268 {
1269 return aux_sdb_num(aux->head, aux->alert_mark);
1270 }
1271
aux_sdb_num_empty(struct aux_buffer * aux)1272 static inline unsigned long aux_sdb_num_empty(struct aux_buffer *aux)
1273 {
1274 return aux_sdb_num(aux->head, aux->empty_mark);
1275 }
1276
1277 /*
1278 * Get trailer entry by index of SDB.
1279 */
aux_sdb_trailer(struct aux_buffer * aux,unsigned long index)1280 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1281 unsigned long index)
1282 {
1283 unsigned long sdb;
1284
1285 index = aux_sdb_index(aux, index);
1286 sdb = aux->sdb_index[index];
1287 return trailer_entry_ptr(sdb);
1288 }
1289
1290 /*
1291 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1292 * disabled. Collect the full SDBs in AUX buffer which have not reached
1293 * the point of alert indicator. And ignore the SDBs which are not
1294 * full.
1295 *
1296 * 1. Scan SDBs to see how much data is there and consume them.
1297 * 2. Remove alert indicator in the buffer.
1298 */
aux_output_end(struct perf_output_handle * handle)1299 static void aux_output_end(struct perf_output_handle *handle)
1300 {
1301 unsigned long i, range_scan, idx;
1302 struct aux_buffer *aux;
1303 struct hws_trailer_entry *te;
1304
1305 aux = perf_get_aux(handle);
1306 if (!aux)
1307 return;
1308
1309 range_scan = aux_sdb_num_alert(aux);
1310 for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1311 te = aux_sdb_trailer(aux, idx);
1312 if (!te->header.f)
1313 break;
1314 }
1315 /* i is num of SDBs which are full */
1316 perf_aux_output_end(handle, i << PAGE_SHIFT);
1317
1318 /* Remove alert indicators in the buffer */
1319 te = aux_sdb_trailer(aux, aux->alert_mark);
1320 te->header.a = 0;
1321 }
1322
1323 /*
1324 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1325 * is first added to the CPU or rescheduled again to the CPU. It is called
1326 * with pmu disabled.
1327 *
1328 * 1. Reset the trailer of SDBs to get ready for new data.
1329 * 2. Tell the hardware where to put the data by reset the SDBs buffer
1330 * head(tear/dear).
1331 */
aux_output_begin(struct perf_output_handle * handle,struct aux_buffer * aux,struct cpu_hw_sf * cpuhw)1332 static int aux_output_begin(struct perf_output_handle *handle,
1333 struct aux_buffer *aux,
1334 struct cpu_hw_sf *cpuhw)
1335 {
1336 unsigned long range, i, range_scan, idx, head, base, offset;
1337 struct hws_trailer_entry *te;
1338
1339 if (handle->head & ~PAGE_MASK)
1340 return -EINVAL;
1341
1342 aux->head = handle->head >> PAGE_SHIFT;
1343 range = (handle->size + 1) >> PAGE_SHIFT;
1344 if (range <= 1)
1345 return -ENOMEM;
1346
1347 /*
1348 * SDBs between aux->head and aux->empty_mark are already ready
1349 * for new data. range_scan is num of SDBs not within them.
1350 */
1351 if (range > aux_sdb_num_empty(aux)) {
1352 range_scan = range - aux_sdb_num_empty(aux);
1353 idx = aux->empty_mark + 1;
1354 for (i = 0; i < range_scan; i++, idx++) {
1355 te = aux_sdb_trailer(aux, idx);
1356 te->header.f = 0;
1357 te->header.a = 0;
1358 te->header.overflow = 0;
1359 }
1360 /* Save the position of empty SDBs */
1361 aux->empty_mark = aux->head + range - 1;
1362 }
1363
1364 /* Set alert indicator */
1365 aux->alert_mark = aux->head + range/2 - 1;
1366 te = aux_sdb_trailer(aux, aux->alert_mark);
1367 te->header.a = 1;
1368
1369 /* Reset hardware buffer head */
1370 head = aux_sdb_index(aux, aux->head);
1371 base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1372 offset = head % CPUM_SF_SDB_PER_TABLE;
1373 cpuhw->lsctl.tear = virt_to_phys((void *)base) + offset * sizeof(unsigned long);
1374 cpuhw->lsctl.dear = virt_to_phys((void *)aux->sdb_index[head]);
1375
1376 return 0;
1377 }
1378
1379 /*
1380 * Set alert indicator on SDB at index @alert_index while sampler is running.
1381 *
1382 * Return true if successfully.
1383 * Return false if full indicator is already set by hardware sampler.
1384 */
aux_set_alert(struct aux_buffer * aux,unsigned long alert_index,unsigned long long * overflow)1385 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1386 unsigned long long *overflow)
1387 {
1388 union hws_trailer_header prev, new;
1389 struct hws_trailer_entry *te;
1390
1391 te = aux_sdb_trailer(aux, alert_index);
1392 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1393 do {
1394 new.val = prev.val;
1395 *overflow = prev.overflow;
1396 if (prev.f) {
1397 /*
1398 * SDB is already set by hardware.
1399 * Abort and try to set somewhere
1400 * behind.
1401 */
1402 return false;
1403 }
1404 new.a = 1;
1405 new.overflow = 0;
1406 } while (!try_cmpxchg128(&te->header.val, &prev.val, new.val));
1407 return true;
1408 }
1409
1410 /*
1411 * aux_reset_buffer() - Scan and setup SDBs for new samples
1412 * @aux: The AUX buffer to set
1413 * @range: The range of SDBs to scan started from aux->head
1414 * @overflow: Set to overflow count
1415 *
1416 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1417 * marked as empty, check if it is already set full by the hardware sampler.
1418 * If yes, that means new data is already there before we can set an alert
1419 * indicator. Caller should try to set alert indicator to some position behind.
1420 *
1421 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1422 * previously and have already been consumed by user space. Reset these SDBs
1423 * (clear full indicator and alert indicator) for new data.
1424 * If aux->alert_mark fall in this area, just set it. Overflow count is
1425 * recorded while scanning.
1426 *
1427 * SDBs between aux->head and aux->empty_mark are already reset at last time.
1428 * and ready for new samples. So scanning on this area could be skipped.
1429 *
1430 * Return true if alert indicator is set successfully and false if not.
1431 */
aux_reset_buffer(struct aux_buffer * aux,unsigned long range,unsigned long long * overflow)1432 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1433 unsigned long long *overflow)
1434 {
1435 union hws_trailer_header prev, new;
1436 unsigned long i, range_scan, idx;
1437 unsigned long long orig_overflow;
1438 struct hws_trailer_entry *te;
1439
1440 if (range <= aux_sdb_num_empty(aux))
1441 /*
1442 * No need to scan. All SDBs in range are marked as empty.
1443 * Just set alert indicator. Should check race with hardware
1444 * sampler.
1445 */
1446 return aux_set_alert(aux, aux->alert_mark, overflow);
1447
1448 if (aux->alert_mark <= aux->empty_mark)
1449 /*
1450 * Set alert indicator on empty SDB. Should check race
1451 * with hardware sampler.
1452 */
1453 if (!aux_set_alert(aux, aux->alert_mark, overflow))
1454 return false;
1455
1456 /*
1457 * Scan the SDBs to clear full and alert indicator used previously.
1458 * Start scanning from one SDB behind empty_mark. If the new alert
1459 * indicator fall into this range, set it.
1460 */
1461 range_scan = range - aux_sdb_num_empty(aux);
1462 idx = aux->empty_mark + 1;
1463 for (i = 0; i < range_scan; i++, idx++) {
1464 te = aux_sdb_trailer(aux, idx);
1465 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1466 do {
1467 new.val = prev.val;
1468 orig_overflow = prev.overflow;
1469 new.f = 0;
1470 new.overflow = 0;
1471 if (idx == aux->alert_mark)
1472 new.a = 1;
1473 else
1474 new.a = 0;
1475 } while (!try_cmpxchg128(&te->header.val, &prev.val, new.val));
1476 *overflow += orig_overflow;
1477 }
1478
1479 /* Update empty_mark to new position */
1480 aux->empty_mark = aux->head + range - 1;
1481
1482 return true;
1483 }
1484
1485 /*
1486 * Measurement alert handler for diagnostic mode sampling.
1487 */
hw_collect_aux(struct cpu_hw_sf * cpuhw)1488 static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1489 {
1490 struct aux_buffer *aux;
1491 int done = 0;
1492 unsigned long range = 0, size;
1493 unsigned long long overflow = 0;
1494 struct perf_output_handle *handle = &cpuhw->handle;
1495 unsigned long num_sdb;
1496
1497 aux = perf_get_aux(handle);
1498 if (!aux)
1499 return;
1500
1501 /* Inform user space new data arrived */
1502 size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
1503 debug_sprintf_event(sfdbg, 6, "%s #alert %ld\n", __func__,
1504 size >> PAGE_SHIFT);
1505 perf_aux_output_end(handle, size);
1506
1507 num_sdb = aux->sfb.num_sdb;
1508 while (!done) {
1509 /* Get an output handle */
1510 aux = perf_aux_output_begin(handle, cpuhw->event);
1511 if (handle->size == 0) {
1512 pr_err("The AUX buffer with %lu pages for the "
1513 "diagnostic-sampling mode is full\n",
1514 num_sdb);
1515 break;
1516 }
1517 if (!aux)
1518 return;
1519
1520 /* Update head and alert_mark to new position */
1521 aux->head = handle->head >> PAGE_SHIFT;
1522 range = (handle->size + 1) >> PAGE_SHIFT;
1523 if (range == 1)
1524 aux->alert_mark = aux->head;
1525 else
1526 aux->alert_mark = aux->head + range/2 - 1;
1527
1528 if (aux_reset_buffer(aux, range, &overflow)) {
1529 if (!overflow) {
1530 done = 1;
1531 break;
1532 }
1533 size = range << PAGE_SHIFT;
1534 perf_aux_output_end(&cpuhw->handle, size);
1535 pr_err("Sample data caused the AUX buffer with %lu "
1536 "pages to overflow\n", aux->sfb.num_sdb);
1537 } else {
1538 size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
1539 perf_aux_output_end(&cpuhw->handle, size);
1540 }
1541 }
1542 }
1543
1544 /*
1545 * Callback when freeing AUX buffers.
1546 */
aux_buffer_free(void * data)1547 static void aux_buffer_free(void *data)
1548 {
1549 struct aux_buffer *aux = data;
1550 unsigned long i, num_sdbt;
1551
1552 if (!aux)
1553 return;
1554
1555 /* Free SDBT. SDB is freed by the caller */
1556 num_sdbt = aux->sfb.num_sdbt;
1557 for (i = 0; i < num_sdbt; i++)
1558 free_page(aux->sdbt_index[i]);
1559
1560 kfree(aux->sdbt_index);
1561 kfree(aux->sdb_index);
1562 kfree(aux);
1563 }
1564
aux_sdb_init(unsigned long sdb)1565 static void aux_sdb_init(unsigned long sdb)
1566 {
1567 struct hws_trailer_entry *te;
1568
1569 te = trailer_entry_ptr(sdb);
1570
1571 /* Save clock base */
1572 te->clock_base = 1;
1573 te->progusage2 = tod_clock_base.tod;
1574 }
1575
1576 /*
1577 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1578 * @event: Event the buffer is setup for, event->cpu == -1 means current
1579 * @pages: Array of pointers to buffer pages passed from perf core
1580 * @nr_pages: Total pages
1581 * @snapshot: Flag for snapshot mode
1582 *
1583 * This is the callback when setup an event using AUX buffer. Perf tool can
1584 * trigger this by an additional mmap() call on the event. Unlike the buffer
1585 * for basic samples, AUX buffer belongs to the event. It is scheduled with
1586 * the task among online cpus when it is a per-thread event.
1587 *
1588 * Return the private AUX buffer structure if success or NULL if fails.
1589 */
aux_buffer_setup(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)1590 static void *aux_buffer_setup(struct perf_event *event, void **pages,
1591 int nr_pages, bool snapshot)
1592 {
1593 struct sf_buffer *sfb;
1594 struct aux_buffer *aux;
1595 unsigned long *new, *tail;
1596 int i, n_sdbt;
1597
1598 if (!nr_pages || !pages)
1599 return NULL;
1600
1601 if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1602 pr_err("AUX buffer size (%i pages) is larger than the "
1603 "maximum sampling buffer limit\n",
1604 nr_pages);
1605 return NULL;
1606 } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1607 pr_err("AUX buffer size (%i pages) is less than the "
1608 "minimum sampling buffer limit\n",
1609 nr_pages);
1610 return NULL;
1611 }
1612
1613 /* Allocate aux_buffer struct for the event */
1614 aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
1615 if (!aux)
1616 goto no_aux;
1617 sfb = &aux->sfb;
1618
1619 /* Allocate sdbt_index for fast reference */
1620 n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
1621 aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
1622 if (!aux->sdbt_index)
1623 goto no_sdbt_index;
1624
1625 /* Allocate sdb_index for fast reference */
1626 aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
1627 if (!aux->sdb_index)
1628 goto no_sdb_index;
1629
1630 /* Allocate the first SDBT */
1631 sfb->num_sdbt = 0;
1632 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
1633 if (!sfb->sdbt)
1634 goto no_sdbt;
1635 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1636 tail = sfb->tail = sfb->sdbt;
1637
1638 /*
1639 * Link the provided pages of AUX buffer to SDBT.
1640 * Allocate SDBT if needed.
1641 */
1642 for (i = 0; i < nr_pages; i++, tail++) {
1643 if (require_table_link(tail)) {
1644 new = (unsigned long *)get_zeroed_page(GFP_KERNEL);
1645 if (!new)
1646 goto no_sdbt;
1647 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1648 /* Link current page to tail of chain */
1649 *tail = virt_to_phys(new) + 1;
1650 tail = new;
1651 }
1652 /* Tail is the entry in a SDBT */
1653 *tail = virt_to_phys(pages[i]);
1654 aux->sdb_index[i] = (unsigned long)pages[i];
1655 aux_sdb_init((unsigned long)pages[i]);
1656 }
1657 sfb->num_sdb = nr_pages;
1658
1659 /* Link the last entry in the SDBT to the first SDBT */
1660 *tail = virt_to_phys(sfb->sdbt) + 1;
1661 sfb->tail = tail;
1662
1663 /*
1664 * Initial all SDBs are zeroed. Mark it as empty.
1665 * So there is no need to clear the full indicator
1666 * when this event is first added.
1667 */
1668 aux->empty_mark = sfb->num_sdb - 1;
1669
1670 return aux;
1671
1672 no_sdbt:
1673 /* SDBs (AUX buffer pages) are freed by caller */
1674 for (i = 0; i < sfb->num_sdbt; i++)
1675 free_page(aux->sdbt_index[i]);
1676 kfree(aux->sdb_index);
1677 no_sdb_index:
1678 kfree(aux->sdbt_index);
1679 no_sdbt_index:
1680 kfree(aux);
1681 no_aux:
1682 return NULL;
1683 }
1684
cpumsf_pmu_read(struct perf_event * event)1685 static void cpumsf_pmu_read(struct perf_event *event)
1686 {
1687 /* Nothing to do ... updates are interrupt-driven */
1688 }
1689
1690 /* Check if the new sampling period/frequency is appropriate.
1691 *
1692 * Return non-zero on error and zero on passed checks.
1693 */
cpumsf_pmu_check_period(struct perf_event * event,u64 value)1694 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
1695 {
1696 struct hws_qsi_info_block si;
1697 unsigned long rate;
1698 bool do_freq;
1699
1700 memset(&si, 0, sizeof(si));
1701 if (event->cpu == -1) {
1702 qsi(&si);
1703 } else {
1704 /* Event is pinned to a particular CPU, retrieve the per-CPU
1705 * sampling structure for accessing the CPU-specific QSI.
1706 */
1707 struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
1708
1709 si = cpuhw->qsi;
1710 }
1711
1712 do_freq = !!SAMPL_FREQ_MODE(&event->hw);
1713 rate = getrate(do_freq, value, &si);
1714 if (!rate)
1715 return -EINVAL;
1716
1717 event->attr.sample_period = rate;
1718 SAMPL_RATE(&event->hw) = rate;
1719 hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
1720 return 0;
1721 }
1722
1723 /* Activate sampling control.
1724 * Next call of pmu_enable() starts sampling.
1725 */
cpumsf_pmu_start(struct perf_event * event,int flags)1726 static void cpumsf_pmu_start(struct perf_event *event, int flags)
1727 {
1728 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1729
1730 if (!(event->hw.state & PERF_HES_STOPPED))
1731 return;
1732 perf_pmu_disable(event->pmu);
1733 event->hw.state = 0;
1734 cpuhw->lsctl.cs = 1;
1735 if (SAMPL_DIAG_MODE(&event->hw))
1736 cpuhw->lsctl.cd = 1;
1737 perf_pmu_enable(event->pmu);
1738 }
1739
1740 /* Deactivate sampling control.
1741 * Next call of pmu_enable() stops sampling.
1742 */
cpumsf_pmu_stop(struct perf_event * event,int flags)1743 static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1744 {
1745 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1746
1747 if (event->hw.state & PERF_HES_STOPPED)
1748 return;
1749
1750 perf_pmu_disable(event->pmu);
1751 cpuhw->lsctl.cs = 0;
1752 cpuhw->lsctl.cd = 0;
1753 event->hw.state |= PERF_HES_STOPPED;
1754
1755 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1756 /* CPU hotplug off removes SDBs. No samples to extract. */
1757 if (cpuhw->flags & PMU_F_RESERVED)
1758 hw_perf_event_update(event, 1);
1759 event->hw.state |= PERF_HES_UPTODATE;
1760 }
1761 perf_pmu_enable(event->pmu);
1762 }
1763
cpumsf_pmu_add(struct perf_event * event,int flags)1764 static int cpumsf_pmu_add(struct perf_event *event, int flags)
1765 {
1766 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1767 struct aux_buffer *aux;
1768 int err = 0;
1769
1770 if (cpuhw->flags & PMU_F_IN_USE)
1771 return -EAGAIN;
1772
1773 if (!SAMPL_DIAG_MODE(&event->hw) && !sf_buffer_available(cpuhw))
1774 return -EINVAL;
1775
1776 perf_pmu_disable(event->pmu);
1777
1778 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1779
1780 /* Set up sampling controls. Always program the sampling register
1781 * using the SDB-table start. Reset TEAR_REG event hardware register
1782 * that is used by hw_perf_event_update() to store the sampling buffer
1783 * position after samples have been flushed.
1784 */
1785 cpuhw->lsctl.s = 0;
1786 cpuhw->lsctl.h = 1;
1787 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1788 if (!SAMPL_DIAG_MODE(&event->hw)) {
1789 cpuhw->lsctl.tear = virt_to_phys(cpuhw->sfb.sdbt);
1790 cpuhw->lsctl.dear = *(unsigned long *)cpuhw->sfb.sdbt;
1791 TEAR_REG(&event->hw) = (unsigned long)cpuhw->sfb.sdbt;
1792 }
1793
1794 /* Ensure sampling functions are in the disabled state. If disabled,
1795 * switch on sampling enable control. */
1796 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1797 err = -EAGAIN;
1798 goto out;
1799 }
1800 if (SAMPL_DIAG_MODE(&event->hw)) {
1801 aux = perf_aux_output_begin(&cpuhw->handle, event);
1802 if (!aux) {
1803 err = -EINVAL;
1804 goto out;
1805 }
1806 err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
1807 if (err)
1808 goto out;
1809 cpuhw->lsctl.ed = 1;
1810 }
1811 cpuhw->lsctl.es = 1;
1812
1813 /* Set in_use flag and store event */
1814 cpuhw->event = event;
1815 cpuhw->flags |= PMU_F_IN_USE;
1816
1817 if (flags & PERF_EF_START)
1818 cpumsf_pmu_start(event, PERF_EF_RELOAD);
1819 out:
1820 perf_event_update_userpage(event);
1821 perf_pmu_enable(event->pmu);
1822 return err;
1823 }
1824
cpumsf_pmu_del(struct perf_event * event,int flags)1825 static void cpumsf_pmu_del(struct perf_event *event, int flags)
1826 {
1827 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1828
1829 perf_pmu_disable(event->pmu);
1830 cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1831
1832 cpuhw->lsctl.es = 0;
1833 cpuhw->lsctl.ed = 0;
1834 cpuhw->flags &= ~PMU_F_IN_USE;
1835 cpuhw->event = NULL;
1836
1837 if (SAMPL_DIAG_MODE(&event->hw))
1838 aux_output_end(&cpuhw->handle);
1839 perf_event_update_userpage(event);
1840 perf_pmu_enable(event->pmu);
1841 }
1842
1843 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1844 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1845
1846 /* Attribute list for CPU_SF.
1847 *
1848 * The availablitiy depends on the CPU_MF sampling facility authorization
1849 * for basic + diagnositic samples. This is determined at initialization
1850 * time by the sampling facility device driver.
1851 * If the authorization for basic samples is turned off, it should be
1852 * also turned off for diagnostic sampling.
1853 *
1854 * During initialization of the device driver, check the authorization
1855 * level for diagnostic sampling and installs the attribute
1856 * file for diagnostic sampling if necessary.
1857 *
1858 * For now install a placeholder to reference all possible attributes:
1859 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
1860 * Add another entry for the final NULL pointer.
1861 */
1862 enum {
1863 SF_CYCLES_BASIC_ATTR_IDX = 0,
1864 SF_CYCLES_BASIC_DIAG_ATTR_IDX,
1865 SF_CYCLES_ATTR_MAX
1866 };
1867
1868 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
1869 [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
1870 };
1871
1872 PMU_FORMAT_ATTR(event, "config:0-63");
1873
1874 static struct attribute *cpumsf_pmu_format_attr[] = {
1875 &format_attr_event.attr,
1876 NULL,
1877 };
1878
1879 static struct attribute_group cpumsf_pmu_events_group = {
1880 .name = "events",
1881 .attrs = cpumsf_pmu_events_attr,
1882 };
1883
1884 static struct attribute_group cpumsf_pmu_format_group = {
1885 .name = "format",
1886 .attrs = cpumsf_pmu_format_attr,
1887 };
1888
1889 static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
1890 &cpumsf_pmu_events_group,
1891 &cpumsf_pmu_format_group,
1892 NULL,
1893 };
1894
1895 static struct pmu cpumf_sampling = {
1896 .pmu_enable = cpumsf_pmu_enable,
1897 .pmu_disable = cpumsf_pmu_disable,
1898
1899 .event_init = cpumsf_pmu_event_init,
1900 .add = cpumsf_pmu_add,
1901 .del = cpumsf_pmu_del,
1902
1903 .start = cpumsf_pmu_start,
1904 .stop = cpumsf_pmu_stop,
1905 .read = cpumsf_pmu_read,
1906
1907 .attr_groups = cpumsf_pmu_attr_groups,
1908
1909 .setup_aux = aux_buffer_setup,
1910 .free_aux = aux_buffer_free,
1911
1912 .check_period = cpumsf_pmu_check_period,
1913 };
1914
cpumf_measurement_alert(struct ext_code ext_code,unsigned int alert,unsigned long unused)1915 static void cpumf_measurement_alert(struct ext_code ext_code,
1916 unsigned int alert, unsigned long unused)
1917 {
1918 struct cpu_hw_sf *cpuhw;
1919
1920 if (!(alert & CPU_MF_INT_SF_MASK))
1921 return;
1922 inc_irq_stat(IRQEXT_CMS);
1923 cpuhw = this_cpu_ptr(&cpu_hw_sf);
1924
1925 /* Measurement alerts are shared and might happen when the PMU
1926 * is not reserved. Ignore these alerts in this case. */
1927 if (!(cpuhw->flags & PMU_F_RESERVED))
1928 return;
1929
1930 /* The processing below must take care of multiple alert events that
1931 * might be indicated concurrently. */
1932
1933 /* Program alert request */
1934 if (alert & CPU_MF_INT_SF_PRA) {
1935 if (cpuhw->flags & PMU_F_IN_USE) {
1936 if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
1937 hw_collect_aux(cpuhw);
1938 else
1939 hw_perf_event_update(cpuhw->event, 0);
1940 }
1941 }
1942
1943 /* Report measurement alerts only for non-PRA codes */
1944 if (alert != CPU_MF_INT_SF_PRA)
1945 debug_sprintf_event(sfdbg, 6, "%s alert %#x\n", __func__,
1946 alert);
1947
1948 /* Sampling authorization change request */
1949 if (alert & CPU_MF_INT_SF_SACA)
1950 qsi(&cpuhw->qsi);
1951
1952 /* Loss of sample data due to high-priority machine activities */
1953 if (alert & CPU_MF_INT_SF_LSDA) {
1954 pr_err("Sample data was lost\n");
1955 cpuhw->flags |= PMU_F_ERR_LSDA;
1956 sf_disable();
1957 }
1958
1959 /* Invalid sampling buffer entry */
1960 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
1961 pr_err("A sampling buffer entry is incorrect (alert=%#x)\n",
1962 alert);
1963 cpuhw->flags |= PMU_F_ERR_IBE;
1964 sf_disable();
1965 }
1966 }
1967
cpusf_pmu_setup(unsigned int cpu,int flags)1968 static int cpusf_pmu_setup(unsigned int cpu, int flags)
1969 {
1970 /* Ignore the notification if no events are scheduled on the PMU.
1971 * This might be racy...
1972 */
1973 if (!refcount_read(&num_events))
1974 return 0;
1975
1976 local_irq_disable();
1977 setup_pmc_cpu(&flags);
1978 local_irq_enable();
1979 return 0;
1980 }
1981
s390_pmu_sf_online_cpu(unsigned int cpu)1982 static int s390_pmu_sf_online_cpu(unsigned int cpu)
1983 {
1984 return cpusf_pmu_setup(cpu, PMC_INIT);
1985 }
1986
s390_pmu_sf_offline_cpu(unsigned int cpu)1987 static int s390_pmu_sf_offline_cpu(unsigned int cpu)
1988 {
1989 return cpusf_pmu_setup(cpu, PMC_RELEASE);
1990 }
1991
param_get_sfb_size(char * buffer,const struct kernel_param * kp)1992 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
1993 {
1994 if (!cpum_sf_avail())
1995 return -ENODEV;
1996 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
1997 }
1998
param_set_sfb_size(const char * val,const struct kernel_param * kp)1999 static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
2000 {
2001 int rc;
2002 unsigned long min, max;
2003
2004 if (!cpum_sf_avail())
2005 return -ENODEV;
2006 if (!val || !strlen(val))
2007 return -EINVAL;
2008
2009 /* Valid parameter values: "min,max" or "max" */
2010 min = CPUM_SF_MIN_SDB;
2011 max = CPUM_SF_MAX_SDB;
2012 if (strchr(val, ','))
2013 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2014 else
2015 rc = kstrtoul(val, 10, &max);
2016
2017 if (min < 2 || min >= max || max > get_num_physpages())
2018 rc = -EINVAL;
2019 if (rc)
2020 return rc;
2021
2022 sfb_set_limits(min, max);
2023 pr_info("The sampling buffer limits have changed to: "
2024 "min %lu max %lu (diag %lu)\n",
2025 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2026 return 0;
2027 }
2028
2029 #define param_check_sfb_size(name, p) __param_check(name, p, void)
2030 static const struct kernel_param_ops param_ops_sfb_size = {
2031 .set = param_set_sfb_size,
2032 .get = param_get_sfb_size,
2033 };
2034
2035 enum {
2036 RS_INIT_FAILURE_BSDES = 2, /* Bad basic sampling size */
2037 RS_INIT_FAILURE_ALRT = 3, /* IRQ registration failure */
2038 RS_INIT_FAILURE_PERF = 4 /* PMU registration failure */
2039 };
2040
pr_cpumsf_err(unsigned int reason)2041 static void __init pr_cpumsf_err(unsigned int reason)
2042 {
2043 pr_err("Sampling facility support for perf is not available: "
2044 "reason %#x\n", reason);
2045 }
2046
init_cpum_sampling_pmu(void)2047 static int __init init_cpum_sampling_pmu(void)
2048 {
2049 struct hws_qsi_info_block si;
2050 int err;
2051
2052 if (!cpum_sf_avail())
2053 return -ENODEV;
2054
2055 memset(&si, 0, sizeof(si));
2056 qsi(&si);
2057 if (!si.as && !si.ad)
2058 return -ENODEV;
2059
2060 if (si.bsdes != sizeof(struct hws_basic_entry)) {
2061 pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2062 return -EINVAL;
2063 }
2064
2065 if (si.ad) {
2066 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2067 /* Sampling of diagnostic data authorized,
2068 * install event into attribute list of PMU device.
2069 */
2070 cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2071 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2072 }
2073
2074 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2075 if (!sfdbg) {
2076 pr_err("Registering for s390dbf failed\n");
2077 return -ENOMEM;
2078 }
2079 debug_register_view(sfdbg, &debug_sprintf_view);
2080
2081 err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2082 cpumf_measurement_alert);
2083 if (err) {
2084 pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2085 debug_unregister(sfdbg);
2086 goto out;
2087 }
2088
2089 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
2090 if (err) {
2091 pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2092 unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2093 cpumf_measurement_alert);
2094 debug_unregister(sfdbg);
2095 goto out;
2096 }
2097
2098 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
2099 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
2100 out:
2101 return err;
2102 }
2103
2104 arch_initcall(init_cpum_sampling_pmu);
2105 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644);
2106