1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM support 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Yaniv Kamay <yaniv@qumranet.com> 12 * Avi Kivity <avi@qumranet.com> 13 */ 14 15 #ifndef __SVM_SVM_H 16 #define __SVM_SVM_H 17 18 #include <linux/kvm_types.h> 19 #include <linux/kvm_host.h> 20 #include <linux/bits.h> 21 22 #include <asm/svm.h> 23 #include <asm/sev-common.h> 24 25 #include "cpuid.h" 26 #include "kvm_cache_regs.h" 27 28 /* 29 * Helpers to convert to/from physical addresses for pages whose address is 30 * consumed directly by hardware. Even though it's a physical address, SVM 31 * often restricts the address to the natural width, hence 'unsigned long' 32 * instead of 'hpa_t'. 33 */ 34 static inline unsigned long __sme_page_pa(struct page *page) 35 { 36 return __sme_set(page_to_pfn(page) << PAGE_SHIFT); 37 } 38 39 static inline struct page *__sme_pa_to_page(unsigned long pa) 40 { 41 return pfn_to_page(__sme_clr(pa) >> PAGE_SHIFT); 42 } 43 44 #define IOPM_SIZE PAGE_SIZE * 3 45 #define MSRPM_SIZE PAGE_SIZE * 2 46 47 extern bool npt_enabled; 48 extern int nrips; 49 extern int vgif; 50 extern bool intercept_smi; 51 extern bool vnmi; 52 extern int lbrv; 53 54 extern int tsc_aux_uret_slot __ro_after_init; 55 56 extern struct kvm_x86_ops svm_x86_ops __initdata; 57 58 /* 59 * Clean bits in VMCB. 60 * VMCB_ALL_CLEAN_MASK might also need to 61 * be updated if this enum is modified. 62 */ 63 enum { 64 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset, 65 pause filter count */ 66 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */ 67 VMCB_ASID, /* ASID */ 68 VMCB_INTR, /* int_ctl, int_vector */ 69 VMCB_NPT, /* npt_en, nCR3, gPAT */ 70 VMCB_CR, /* CR0, CR3, CR4, EFER */ 71 VMCB_DR, /* DR6, DR7 */ 72 VMCB_DT, /* GDT, IDT */ 73 VMCB_SEG, /* CS, DS, SS, ES, CPL */ 74 VMCB_CR2, /* CR2 only */ 75 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */ 76 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE, 77 * AVIC PHYSICAL_TABLE pointer, 78 * AVIC LOGICAL_TABLE pointer 79 */ 80 VMCB_CET, /* S_CET, SSP, ISST_ADDR */ 81 VMCB_SW = 31, /* Reserved for hypervisor/software use */ 82 }; 83 84 #define VMCB_ALL_CLEAN_MASK ( \ 85 (1U << VMCB_INTERCEPTS) | (1U << VMCB_PERM_MAP) | \ 86 (1U << VMCB_ASID) | (1U << VMCB_INTR) | \ 87 (1U << VMCB_NPT) | (1U << VMCB_CR) | (1U << VMCB_DR) | \ 88 (1U << VMCB_DT) | (1U << VMCB_SEG) | (1U << VMCB_CR2) | \ 89 (1U << VMCB_LBR) | (1U << VMCB_AVIC) | (1U << VMCB_CET) | \ 90 (1U << VMCB_SW)) 91 92 /* TPR and CR2 are always written before VMRUN */ 93 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2)) 94 95 struct kvm_sev_info { 96 bool active; /* SEV enabled guest */ 97 bool es_active; /* SEV-ES enabled guest */ 98 bool need_init; /* waiting for SEV_INIT2 */ 99 unsigned int asid; /* ASID used for this guest */ 100 unsigned int handle; /* SEV firmware handle */ 101 int fd; /* SEV device fd */ 102 unsigned long policy; 103 unsigned long pages_locked; /* Number of pages locked */ 104 struct list_head regions_list; /* List of registered regions */ 105 u64 ap_jump_table; /* SEV-ES AP Jump Table address */ 106 u64 vmsa_features; 107 u16 ghcb_version; /* Highest guest GHCB protocol version allowed */ 108 struct kvm *enc_context_owner; /* Owner of copied encryption context */ 109 struct list_head mirror_vms; /* List of VMs mirroring */ 110 struct list_head mirror_entry; /* Use as a list entry of mirrors */ 111 struct misc_cg *misc_cg; /* For misc cgroup accounting */ 112 atomic_t migration_in_progress; 113 void *snp_context; /* SNP guest context page */ 114 void *guest_req_buf; /* Bounce buffer for SNP Guest Request input */ 115 void *guest_resp_buf; /* Bounce buffer for SNP Guest Request output */ 116 struct mutex guest_req_mutex; /* Must acquire before using bounce buffers */ 117 cpumask_var_t have_run_cpus; /* CPUs that have done VMRUN for this VM. */ 118 bool snp_certs_enabled; /* SNP certificate-fetching support. */ 119 }; 120 121 struct kvm_svm { 122 struct kvm kvm; 123 124 /* Struct members for AVIC */ 125 u32 avic_vm_id; 126 u32 *avic_logical_id_table; 127 u64 *avic_physical_id_table; 128 struct hlist_node hnode; 129 130 struct kvm_sev_info sev_info; 131 }; 132 133 struct kvm_vcpu; 134 135 struct kvm_vmcb_info { 136 struct vmcb *ptr; 137 unsigned long pa; 138 int cpu; 139 uint64_t asid_generation; 140 }; 141 142 struct vmcb_save_area_cached { 143 u64 efer; 144 u64 cr4; 145 u64 cr3; 146 u64 cr0; 147 u64 dr7; 148 u64 dr6; 149 }; 150 151 struct vmcb_ctrl_area_cached { 152 u32 intercepts[MAX_INTERCEPT]; 153 u16 pause_filter_thresh; 154 u16 pause_filter_count; 155 u64 iopm_base_pa; 156 u64 msrpm_base_pa; 157 u64 tsc_offset; 158 u32 asid; 159 u8 tlb_ctl; 160 u8 erap_ctl; 161 u32 int_ctl; 162 u32 int_vector; 163 u32 int_state; 164 u64 exit_code; 165 u64 exit_info_1; 166 u64 exit_info_2; 167 u32 exit_int_info; 168 u32 exit_int_info_err; 169 u64 nested_ctl; 170 u32 event_inj; 171 u32 event_inj_err; 172 u64 next_rip; 173 u64 nested_cr3; 174 u64 virt_ext; 175 u32 clean; 176 u64 bus_lock_rip; 177 union { 178 #if IS_ENABLED(CONFIG_HYPERV) || IS_ENABLED(CONFIG_KVM_HYPERV) 179 struct hv_vmcb_enlightenments hv_enlightenments; 180 #endif 181 u8 reserved_sw[32]; 182 }; 183 }; 184 185 struct svm_nested_state { 186 struct kvm_vmcb_info vmcb02; 187 u64 hsave_msr; 188 u64 vm_cr_msr; 189 u64 vmcb12_gpa; 190 u64 last_vmcb12_gpa; 191 192 /* 193 * The MSR permissions map used for vmcb02, which is the merge result 194 * of vmcb01 and vmcb12 195 */ 196 void *msrpm; 197 198 /* A VMRUN has started but has not yet been performed, so 199 * we cannot inject a nested vmexit yet. */ 200 bool nested_run_pending; 201 202 /* cache for control fields of the guest */ 203 struct vmcb_ctrl_area_cached ctl; 204 205 /* 206 * Note: this struct is not kept up-to-date while L2 runs; it is only 207 * valid within nested_svm_vmrun. 208 */ 209 struct vmcb_save_area_cached save; 210 211 bool initialized; 212 213 /* 214 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to 215 * changes in MSR bitmap for L1 or switching to a different L2. Note, 216 * this flag can only be used reliably in conjunction with a paravirt L1 217 * which informs L0 whether any changes to MSR bitmap for L2 were done 218 * on its side. 219 */ 220 bool force_msr_bitmap_recalc; 221 }; 222 223 struct vcpu_sev_es_state { 224 /* SEV-ES support */ 225 struct sev_es_save_area *vmsa; 226 struct ghcb *ghcb; 227 u8 valid_bitmap[16]; 228 struct kvm_host_map ghcb_map; 229 bool received_first_sipi; 230 unsigned int ap_reset_hold_type; 231 232 /* SEV-ES scratch area support */ 233 u64 sw_scratch; 234 void *ghcb_sa; 235 u32 ghcb_sa_len; 236 bool ghcb_sa_sync; 237 bool ghcb_sa_free; 238 239 /* SNP Page-State-Change buffer entries currently being processed */ 240 u16 psc_idx; 241 u16 psc_inflight; 242 bool psc_2m; 243 244 u64 ghcb_registered_gpa; 245 246 struct mutex snp_vmsa_mutex; /* Used to handle concurrent updates of VMSA. */ 247 gpa_t snp_vmsa_gpa; 248 bool snp_ap_waiting_for_reset; 249 bool snp_has_guest_vmsa; 250 }; 251 252 struct vcpu_svm { 253 struct kvm_vcpu vcpu; 254 /* vmcb always points at current_vmcb->ptr, it's purely a shorthand. */ 255 struct vmcb *vmcb; 256 struct kvm_vmcb_info vmcb01; 257 struct kvm_vmcb_info *current_vmcb; 258 u32 asid; 259 u32 sysenter_esp_hi; 260 u32 sysenter_eip_hi; 261 uint64_t tsc_aux; 262 263 u64 msr_decfg; 264 265 u64 next_rip; 266 267 u64 spec_ctrl; 268 269 u64 tsc_ratio_msr; 270 /* 271 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be 272 * translated into the appropriate L2_CFG bits on the host to 273 * perform speculative control. 274 */ 275 u64 virt_spec_ctrl; 276 277 void *msrpm; 278 279 ulong nmi_iret_rip; 280 281 struct svm_nested_state nested; 282 283 /* NMI mask value, used when vNMI is not enabled */ 284 bool nmi_masked; 285 286 /* 287 * True when NMIs are still masked but guest IRET was just intercepted 288 * and KVM is waiting for RIP to change, which will signal that the 289 * intercepted IRET was retired and thus NMI can be unmasked. 290 */ 291 bool awaiting_iret_completion; 292 293 /* 294 * Set when KVM is awaiting IRET completion and needs to inject NMIs as 295 * soon as the IRET completes (e.g. NMI is pending injection). KVM 296 * temporarily steals RFLAGS.TF to single-step the guest in this case 297 * in order to regain control as soon as the NMI-blocking condition 298 * goes away. 299 */ 300 bool nmi_singlestep; 301 u64 nmi_singlestep_guest_rflags; 302 303 bool nmi_l1_to_l2; 304 305 unsigned long soft_int_csbase; 306 unsigned long soft_int_old_rip; 307 unsigned long soft_int_next_rip; 308 bool soft_int_injected; 309 310 u32 ldr_reg; 311 u32 dfr_reg; 312 313 /* This is essentially a shadow of the vCPU's actual entry in the 314 * Physical ID table that is programmed into the VMCB, i.e. that is 315 * seen by the CPU. If IPI virtualization is disabled, IsRunning is 316 * only ever set in the shadow, i.e. is never propagated to the "real" 317 * table, so that hardware never sees IsRunning=1. 318 */ 319 u64 avic_physical_id_entry; 320 321 /* 322 * Per-vCPU list of irqfds that are eligible to post IRQs directly to 323 * the vCPU (a.k.a. device posted IRQs, a.k.a. IRQ bypass). The list 324 * is used to reconfigure IRTEs when the vCPU is loaded/put (to set the 325 * target pCPU), when AVIC is toggled on/off (to (de)activate bypass), 326 * and if the irqfd becomes ineligible for posting (to put the IRTE 327 * back into remapped mode). 328 */ 329 struct list_head ir_list; 330 raw_spinlock_t ir_list_lock; 331 332 struct vcpu_sev_es_state sev_es; 333 334 bool guest_state_loaded; 335 336 bool x2avic_msrs_intercepted; 337 bool lbr_msrs_intercepted; 338 339 /* Guest GIF value, used when vGIF is not enabled */ 340 bool guest_gif; 341 }; 342 343 struct svm_cpu_data { 344 u64 asid_generation; 345 u32 max_asid; 346 u32 next_asid; 347 u32 min_asid; 348 349 bool bp_spec_reduce_set; 350 351 struct vmcb *save_area; 352 unsigned long save_area_pa; 353 354 /* index = sev_asid, value = vmcb pointer */ 355 struct vmcb **sev_vmcbs; 356 }; 357 358 DECLARE_PER_CPU(struct svm_cpu_data, svm_data); 359 360 void recalc_intercepts(struct vcpu_svm *svm); 361 362 static __always_inline struct kvm_svm *to_kvm_svm(struct kvm *kvm) 363 { 364 return container_of(kvm, struct kvm_svm, kvm); 365 } 366 367 static __always_inline struct kvm_sev_info *to_kvm_sev_info(struct kvm *kvm) 368 { 369 return &to_kvm_svm(kvm)->sev_info; 370 } 371 372 #ifdef CONFIG_KVM_AMD_SEV 373 static __always_inline bool sev_guest(struct kvm *kvm) 374 { 375 return to_kvm_sev_info(kvm)->active; 376 } 377 static __always_inline bool sev_es_guest(struct kvm *kvm) 378 { 379 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 380 381 return sev->es_active && !WARN_ON_ONCE(!sev->active); 382 } 383 384 static __always_inline bool sev_snp_guest(struct kvm *kvm) 385 { 386 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 387 388 return (sev->vmsa_features & SVM_SEV_FEAT_SNP_ACTIVE) && 389 !WARN_ON_ONCE(!sev_es_guest(kvm)); 390 } 391 #else 392 #define sev_guest(kvm) false 393 #define sev_es_guest(kvm) false 394 #define sev_snp_guest(kvm) false 395 #endif 396 397 static inline bool ghcb_gpa_is_registered(struct vcpu_svm *svm, u64 val) 398 { 399 return svm->sev_es.ghcb_registered_gpa == val; 400 } 401 402 static inline void vmcb_mark_all_dirty(struct vmcb *vmcb) 403 { 404 vmcb->control.clean = 0; 405 } 406 407 static inline void vmcb_mark_all_clean(struct vmcb *vmcb) 408 { 409 vmcb->control.clean = VMCB_ALL_CLEAN_MASK 410 & ~VMCB_ALWAYS_DIRTY_MASK; 411 } 412 413 static inline void vmcb_mark_dirty(struct vmcb *vmcb, int bit) 414 { 415 vmcb->control.clean &= ~(1 << bit); 416 } 417 418 static inline bool vmcb_is_dirty(struct vmcb *vmcb, int bit) 419 { 420 return !test_bit(bit, (unsigned long *)&vmcb->control.clean); 421 } 422 423 static __always_inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu) 424 { 425 return container_of(vcpu, struct vcpu_svm, vcpu); 426 } 427 428 static inline bool svm_is_vmrun_failure(u64 exit_code) 429 { 430 if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) 431 return (u32)exit_code == (u32)SVM_EXIT_ERR; 432 433 return exit_code == SVM_EXIT_ERR; 434 } 435 436 /* 437 * Only the PDPTRs are loaded on demand into the shadow MMU. All other 438 * fields are synchronized on VM-Exit, because accessing the VMCB is cheap. 439 * 440 * CR3 might be out of date in the VMCB but it is not marked dirty; instead, 441 * KVM_REQ_LOAD_MMU_PGD is always requested when the cached vcpu->arch.cr3 442 * is changed. svm_load_mmu_pgd() then syncs the new CR3 value into the VMCB. 443 */ 444 #define SVM_REGS_LAZY_LOAD_SET (1 << VCPU_EXREG_PDPTR) 445 446 static inline void __vmcb_set_intercept(unsigned long *intercepts, u32 bit) 447 { 448 WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT); 449 __set_bit(bit, intercepts); 450 } 451 452 static inline void __vmcb_clr_intercept(unsigned long *intercepts, u32 bit) 453 { 454 WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT); 455 __clear_bit(bit, intercepts); 456 } 457 458 static inline bool __vmcb_is_intercept(unsigned long *intercepts, u32 bit) 459 { 460 WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT); 461 return test_bit(bit, intercepts); 462 } 463 464 static inline void vmcb_set_intercept(struct vmcb_control_area *control, u32 bit) 465 { 466 __vmcb_set_intercept((unsigned long *)&control->intercepts, bit); 467 } 468 469 static inline void vmcb_clr_intercept(struct vmcb_control_area *control, u32 bit) 470 { 471 __vmcb_clr_intercept((unsigned long *)&control->intercepts, bit); 472 } 473 474 static inline bool vmcb_is_intercept(struct vmcb_control_area *control, u32 bit) 475 { 476 return __vmcb_is_intercept((unsigned long *)&control->intercepts, bit); 477 } 478 479 static inline void vmcb12_clr_intercept(struct vmcb_ctrl_area_cached *control, u32 bit) 480 { 481 __vmcb_clr_intercept((unsigned long *)&control->intercepts, bit); 482 } 483 484 static inline bool vmcb12_is_intercept(struct vmcb_ctrl_area_cached *control, u32 bit) 485 { 486 return __vmcb_is_intercept((unsigned long *)&control->intercepts, bit); 487 } 488 489 static inline void set_exception_intercept(struct vcpu_svm *svm, u32 bit) 490 { 491 struct vmcb *vmcb = svm->vmcb01.ptr; 492 493 WARN_ON_ONCE(bit >= 32); 494 vmcb_set_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit); 495 496 recalc_intercepts(svm); 497 } 498 499 static inline void clr_exception_intercept(struct vcpu_svm *svm, u32 bit) 500 { 501 struct vmcb *vmcb = svm->vmcb01.ptr; 502 503 WARN_ON_ONCE(bit >= 32); 504 vmcb_clr_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit); 505 506 recalc_intercepts(svm); 507 } 508 509 static inline void svm_set_intercept(struct vcpu_svm *svm, int bit) 510 { 511 struct vmcb *vmcb = svm->vmcb01.ptr; 512 513 vmcb_set_intercept(&vmcb->control, bit); 514 515 recalc_intercepts(svm); 516 } 517 518 static inline void svm_clr_intercept(struct vcpu_svm *svm, int bit) 519 { 520 struct vmcb *vmcb = svm->vmcb01.ptr; 521 522 vmcb_clr_intercept(&vmcb->control, bit); 523 524 recalc_intercepts(svm); 525 } 526 527 static inline bool svm_is_intercept(struct vcpu_svm *svm, int bit) 528 { 529 return vmcb_is_intercept(&svm->vmcb->control, bit); 530 } 531 532 static inline bool nested_vgif_enabled(struct vcpu_svm *svm) 533 { 534 return guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_VGIF) && 535 (svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK); 536 } 537 538 static inline struct vmcb *get_vgif_vmcb(struct vcpu_svm *svm) 539 { 540 if (!vgif) 541 return NULL; 542 543 if (is_guest_mode(&svm->vcpu) && !nested_vgif_enabled(svm)) 544 return svm->nested.vmcb02.ptr; 545 else 546 return svm->vmcb01.ptr; 547 } 548 549 static inline void enable_gif(struct vcpu_svm *svm) 550 { 551 struct vmcb *vmcb = get_vgif_vmcb(svm); 552 553 if (vmcb) 554 vmcb->control.int_ctl |= V_GIF_MASK; 555 else 556 svm->guest_gif = true; 557 } 558 559 static inline void disable_gif(struct vcpu_svm *svm) 560 { 561 struct vmcb *vmcb = get_vgif_vmcb(svm); 562 563 if (vmcb) 564 vmcb->control.int_ctl &= ~V_GIF_MASK; 565 else 566 svm->guest_gif = false; 567 } 568 569 static inline bool gif_set(struct vcpu_svm *svm) 570 { 571 struct vmcb *vmcb = get_vgif_vmcb(svm); 572 573 if (vmcb) 574 return !!(vmcb->control.int_ctl & V_GIF_MASK); 575 else 576 return svm->guest_gif; 577 } 578 579 static inline bool nested_npt_enabled(struct vcpu_svm *svm) 580 { 581 return svm->nested.ctl.nested_ctl & SVM_NESTED_CTL_NP_ENABLE; 582 } 583 584 static inline bool nested_vnmi_enabled(struct vcpu_svm *svm) 585 { 586 return guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_VNMI) && 587 (svm->nested.ctl.int_ctl & V_NMI_ENABLE_MASK); 588 } 589 590 static inline bool is_x2apic_msrpm_offset(u32 offset) 591 { 592 /* 4 msrs per u8, and 4 u8 in u32 */ 593 u32 msr = offset * 16; 594 595 return (msr >= APIC_BASE_MSR) && 596 (msr < (APIC_BASE_MSR + 0x100)); 597 } 598 599 static inline struct vmcb *get_vnmi_vmcb_l1(struct vcpu_svm *svm) 600 { 601 if (!vnmi) 602 return NULL; 603 604 if (is_guest_mode(&svm->vcpu)) 605 return NULL; 606 else 607 return svm->vmcb01.ptr; 608 } 609 610 static inline bool is_vnmi_enabled(struct vcpu_svm *svm) 611 { 612 struct vmcb *vmcb = get_vnmi_vmcb_l1(svm); 613 614 if (vmcb) 615 return !!(vmcb->control.int_ctl & V_NMI_ENABLE_MASK); 616 else 617 return false; 618 } 619 620 static inline void svm_vmgexit_set_return_code(struct vcpu_svm *svm, 621 u64 response, u64 data) 622 { 623 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, response); 624 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, data); 625 } 626 627 static inline void svm_vmgexit_inject_exception(struct vcpu_svm *svm, u8 vector) 628 { 629 u64 data = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT | vector; 630 631 svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_ISSUE_EXCEPTION, data); 632 } 633 634 static inline void svm_vmgexit_bad_input(struct vcpu_svm *svm, u64 suberror) 635 { 636 svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_MALFORMED_INPUT, suberror); 637 } 638 639 static inline void svm_vmgexit_success(struct vcpu_svm *svm, u64 data) 640 { 641 svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_NO_ACTION, data); 642 } 643 644 static inline void svm_vmgexit_no_action(struct vcpu_svm *svm, u64 data) 645 { 646 svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_NO_ACTION, data); 647 } 648 649 /* 650 * The MSRPM is 8KiB in size, divided into four 2KiB ranges (the fourth range 651 * is reserved). Each MSR within a range is covered by two bits, one each for 652 * read (bit 0) and write (bit 1), where a bit value of '1' means intercepted. 653 */ 654 #define SVM_MSRPM_BYTES_PER_RANGE 2048 655 #define SVM_BITS_PER_MSR 2 656 #define SVM_MSRS_PER_BYTE (BITS_PER_BYTE / SVM_BITS_PER_MSR) 657 #define SVM_MSRS_PER_RANGE (SVM_MSRPM_BYTES_PER_RANGE * SVM_MSRS_PER_BYTE) 658 static_assert(SVM_MSRS_PER_RANGE == 8192); 659 #define SVM_MSRPM_OFFSET_MASK (SVM_MSRS_PER_RANGE - 1) 660 661 static __always_inline int svm_msrpm_bit_nr(u32 msr) 662 { 663 int range_nr; 664 665 switch (msr & ~SVM_MSRPM_OFFSET_MASK) { 666 case 0: 667 range_nr = 0; 668 break; 669 case 0xc0000000: 670 range_nr = 1; 671 break; 672 case 0xc0010000: 673 range_nr = 2; 674 break; 675 default: 676 return -EINVAL; 677 } 678 679 return range_nr * SVM_MSRPM_BYTES_PER_RANGE * BITS_PER_BYTE + 680 (msr & SVM_MSRPM_OFFSET_MASK) * SVM_BITS_PER_MSR; 681 } 682 683 #define __BUILD_SVM_MSR_BITMAP_HELPER(rtype, action, bitop, access, bit_rw) \ 684 static inline rtype svm_##action##_msr_bitmap_##access(unsigned long *bitmap, \ 685 u32 msr) \ 686 { \ 687 int bit_nr; \ 688 \ 689 bit_nr = svm_msrpm_bit_nr(msr); \ 690 if (bit_nr < 0) \ 691 return (rtype)true; \ 692 \ 693 return bitop##_bit(bit_nr + bit_rw, bitmap); \ 694 } 695 696 #define BUILD_SVM_MSR_BITMAP_HELPERS(ret_type, action, bitop) \ 697 __BUILD_SVM_MSR_BITMAP_HELPER(ret_type, action, bitop, read, 0) \ 698 __BUILD_SVM_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 1) 699 700 BUILD_SVM_MSR_BITMAP_HELPERS(bool, test, test) 701 BUILD_SVM_MSR_BITMAP_HELPERS(void, clear, __clear) 702 BUILD_SVM_MSR_BITMAP_HELPERS(void, set, __set) 703 704 #define DEBUGCTL_RESERVED_BITS (~DEBUGCTLMSR_LBR) 705 706 /* svm.c */ 707 extern bool dump_invalid_vmcb; 708 709 void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask); 710 711 static inline void *svm_vcpu_alloc_msrpm(void) 712 { 713 return svm_alloc_permissions_map(MSRPM_SIZE, GFP_KERNEL_ACCOUNT); 714 } 715 716 void svm_vcpu_free_msrpm(void *msrpm); 717 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb); 718 void svm_enable_lbrv(struct kvm_vcpu *vcpu); 719 void svm_update_lbrv(struct kvm_vcpu *vcpu); 720 721 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer); 722 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 723 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 724 void disable_nmi_singlestep(struct vcpu_svm *svm); 725 bool svm_smi_blocked(struct kvm_vcpu *vcpu); 726 bool svm_nmi_blocked(struct kvm_vcpu *vcpu); 727 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu); 728 void svm_set_gif(struct vcpu_svm *svm, bool value); 729 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code); 730 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 731 int read, int write); 732 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 733 int trig_mode, int vec); 734 735 void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set); 736 737 static inline void svm_disable_intercept_for_msr(struct kvm_vcpu *vcpu, 738 u32 msr, int type) 739 { 740 svm_set_intercept_for_msr(vcpu, msr, type, false); 741 } 742 743 static inline void svm_enable_intercept_for_msr(struct kvm_vcpu *vcpu, 744 u32 msr, int type) 745 { 746 svm_set_intercept_for_msr(vcpu, msr, type, true); 747 } 748 749 /* nested.c */ 750 751 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */ 752 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */ 753 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */ 754 755 static inline bool nested_svm_virtualize_tpr(struct kvm_vcpu *vcpu) 756 { 757 struct vcpu_svm *svm = to_svm(vcpu); 758 759 return is_guest_mode(vcpu) && (svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK); 760 } 761 762 static inline bool nested_exit_on_smi(struct vcpu_svm *svm) 763 { 764 return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SMI); 765 } 766 767 static inline bool nested_exit_on_intr(struct vcpu_svm *svm) 768 { 769 return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_INTR); 770 } 771 772 static inline bool nested_exit_on_nmi(struct vcpu_svm *svm) 773 { 774 return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_NMI); 775 } 776 777 int __init nested_svm_init_msrpm_merge_offsets(void); 778 779 int enter_svm_guest_mode(struct kvm_vcpu *vcpu, 780 u64 vmcb_gpa, struct vmcb *vmcb12, bool from_vmrun); 781 void svm_leave_nested(struct kvm_vcpu *vcpu); 782 void svm_free_nested(struct vcpu_svm *svm); 783 int svm_allocate_nested(struct vcpu_svm *svm); 784 int nested_svm_vmrun(struct kvm_vcpu *vcpu); 785 void svm_copy_vmrun_state(struct vmcb_save_area *to_save, 786 struct vmcb_save_area *from_save); 787 void svm_copy_vmloadsave_state(struct vmcb *to_vmcb, struct vmcb *from_vmcb); 788 int nested_svm_vmexit(struct vcpu_svm *svm); 789 790 static inline int nested_svm_simple_vmexit(struct vcpu_svm *svm, u32 exit_code) 791 { 792 svm->vmcb->control.exit_code = exit_code; 793 svm->vmcb->control.exit_info_1 = 0; 794 svm->vmcb->control.exit_info_2 = 0; 795 return nested_svm_vmexit(svm); 796 } 797 798 int nested_svm_exit_handled(struct vcpu_svm *svm); 799 int nested_svm_check_permissions(struct kvm_vcpu *vcpu); 800 int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, 801 bool has_error_code, u32 error_code); 802 int nested_svm_exit_special(struct vcpu_svm *svm); 803 void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu); 804 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu); 805 void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm, 806 struct vmcb_control_area *control); 807 void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm, 808 struct vmcb_save_area *save); 809 void nested_sync_control_from_vmcb02(struct vcpu_svm *svm); 810 void nested_vmcb02_compute_g_pat(struct vcpu_svm *svm); 811 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb); 812 813 extern struct kvm_x86_nested_ops svm_nested_ops; 814 815 /* avic.c */ 816 #define AVIC_REQUIRED_APICV_INHIBITS \ 817 ( \ 818 BIT(APICV_INHIBIT_REASON_DISABLED) | \ 819 BIT(APICV_INHIBIT_REASON_ABSENT) | \ 820 BIT(APICV_INHIBIT_REASON_HYPERV) | \ 821 BIT(APICV_INHIBIT_REASON_NESTED) | \ 822 BIT(APICV_INHIBIT_REASON_IRQWIN) | \ 823 BIT(APICV_INHIBIT_REASON_PIT_REINJ) | \ 824 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \ 825 BIT(APICV_INHIBIT_REASON_SEV) | \ 826 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \ 827 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \ 828 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) | \ 829 BIT(APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED) | \ 830 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_TOO_BIG) \ 831 ) 832 833 bool __init avic_hardware_setup(void); 834 void avic_hardware_unsetup(void); 835 int avic_alloc_physical_id_table(struct kvm *kvm); 836 void avic_vm_destroy(struct kvm *kvm); 837 int avic_vm_init(struct kvm *kvm); 838 void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb); 839 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu); 840 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu); 841 int avic_init_vcpu(struct vcpu_svm *svm); 842 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 843 void avic_vcpu_put(struct kvm_vcpu *vcpu); 844 void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu); 845 void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu); 846 int avic_pi_update_irte(struct kvm_kernel_irqfd *irqfd, struct kvm *kvm, 847 unsigned int host_irq, uint32_t guest_irq, 848 struct kvm_vcpu *vcpu, u32 vector); 849 void avic_vcpu_blocking(struct kvm_vcpu *vcpu); 850 void avic_vcpu_unblocking(struct kvm_vcpu *vcpu); 851 void avic_ring_doorbell(struct kvm_vcpu *vcpu); 852 unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu); 853 void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu); 854 855 856 /* sev.c */ 857 858 int pre_sev_run(struct vcpu_svm *svm, int cpu); 859 void sev_init_vmcb(struct vcpu_svm *svm, bool init_event); 860 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm); 861 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in); 862 void sev_es_recalc_msr_intercepts(struct kvm_vcpu *vcpu); 863 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 864 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa); 865 void sev_es_unmap_ghcb(struct vcpu_svm *svm); 866 867 #ifdef CONFIG_KVM_AMD_SEV 868 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp); 869 int sev_mem_enc_register_region(struct kvm *kvm, 870 struct kvm_enc_region *range); 871 int sev_mem_enc_unregister_region(struct kvm *kvm, 872 struct kvm_enc_region *range); 873 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd); 874 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd); 875 void sev_guest_memory_reclaimed(struct kvm *kvm); 876 int sev_handle_vmgexit(struct kvm_vcpu *vcpu); 877 878 /* These symbols are used in common code and are stubbed below. */ 879 880 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp); 881 static inline struct page *snp_safe_alloc_page(void) 882 { 883 return snp_safe_alloc_page_node(numa_node_id(), GFP_KERNEL_ACCOUNT); 884 } 885 886 int sev_vcpu_create(struct kvm_vcpu *vcpu); 887 void sev_free_vcpu(struct kvm_vcpu *vcpu); 888 void sev_vm_destroy(struct kvm *kvm); 889 void __init sev_set_cpu_caps(void); 890 void __init sev_hardware_setup(void); 891 void sev_hardware_unsetup(void); 892 int sev_cpu_init(struct svm_cpu_data *sd); 893 int sev_dev_get_attr(u32 group, u64 attr, u64 *val); 894 extern unsigned int max_sev_asid; 895 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code); 896 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order); 897 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); 898 int sev_gmem_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, bool is_private); 899 struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu); 900 void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa); 901 #else 902 static inline struct page *snp_safe_alloc_page_node(int node, gfp_t gfp) 903 { 904 return alloc_pages_node(node, gfp | __GFP_ZERO, 0); 905 } 906 907 static inline struct page *snp_safe_alloc_page(void) 908 { 909 return snp_safe_alloc_page_node(numa_node_id(), GFP_KERNEL_ACCOUNT); 910 } 911 912 static inline int sev_vcpu_create(struct kvm_vcpu *vcpu) { return 0; } 913 static inline void sev_free_vcpu(struct kvm_vcpu *vcpu) {} 914 static inline void sev_vm_destroy(struct kvm *kvm) {} 915 static inline void __init sev_set_cpu_caps(void) {} 916 static inline void __init sev_hardware_setup(void) {} 917 static inline void sev_hardware_unsetup(void) {} 918 static inline int sev_cpu_init(struct svm_cpu_data *sd) { return 0; } 919 static inline int sev_dev_get_attr(u32 group, u64 attr, u64 *val) { return -ENXIO; } 920 #define max_sev_asid 0 921 static inline void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) {} 922 static inline int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order) 923 { 924 return 0; 925 } 926 static inline void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) {} 927 static inline int sev_gmem_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, bool is_private) 928 { 929 return 0; 930 } 931 932 static inline struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu) 933 { 934 return NULL; 935 } 936 static inline void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa) {} 937 #endif 938 939 /* vmenter.S */ 940 941 void __svm_sev_es_vcpu_run(struct vcpu_svm *svm, bool spec_ctrl_intercepted, 942 struct sev_es_save_area *hostsa); 943 void __svm_vcpu_run(struct vcpu_svm *svm, bool spec_ctrl_intercepted); 944 945 #define DEFINE_KVM_GHCB_ACCESSORS(field) \ 946 static __always_inline u64 kvm_ghcb_get_##field(struct vcpu_svm *svm) \ 947 { \ 948 return READ_ONCE(svm->sev_es.ghcb->save.field); \ 949 } \ 950 \ 951 static __always_inline bool kvm_ghcb_##field##_is_valid(const struct vcpu_svm *svm) \ 952 { \ 953 return test_bit(GHCB_BITMAP_IDX(field), \ 954 (unsigned long *)&svm->sev_es.valid_bitmap); \ 955 } \ 956 \ 957 static __always_inline u64 kvm_ghcb_get_##field##_if_valid(struct vcpu_svm *svm) \ 958 { \ 959 return kvm_ghcb_##field##_is_valid(svm) ? kvm_ghcb_get_##field(svm) : 0; \ 960 } 961 962 DEFINE_KVM_GHCB_ACCESSORS(cpl) 963 DEFINE_KVM_GHCB_ACCESSORS(rax) 964 DEFINE_KVM_GHCB_ACCESSORS(rcx) 965 DEFINE_KVM_GHCB_ACCESSORS(rdx) 966 DEFINE_KVM_GHCB_ACCESSORS(rbx) 967 DEFINE_KVM_GHCB_ACCESSORS(rsi) 968 DEFINE_KVM_GHCB_ACCESSORS(sw_exit_code) 969 DEFINE_KVM_GHCB_ACCESSORS(sw_exit_info_1) 970 DEFINE_KVM_GHCB_ACCESSORS(sw_exit_info_2) 971 DEFINE_KVM_GHCB_ACCESSORS(sw_scratch) 972 DEFINE_KVM_GHCB_ACCESSORS(xcr0) 973 DEFINE_KVM_GHCB_ACCESSORS(xss) 974 975 #endif 976