1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright 2020 Joyent, Inc.
27 * Copyright (c) 2015 by Delphix. All rights reserved.
28 * Copyright (c) 2020 Carlos Neira <cneirabustos@gmail.com>
29 * Copyright 2025 Oxide Computer Company
30 */
31 /*
32 * Copyright (c) 2010, Intel Corporation.
33 * All rights reserved.
34 */
35
36 #include <sys/types.h>
37 #include <sys/t_lock.h>
38 #include <sys/param.h>
39 #include <sys/sysmacros.h>
40 #include <sys/signal.h>
41 #include <sys/systm.h>
42 #include <sys/user.h>
43 #include <sys/mman.h>
44 #include <sys/vm.h>
45 #include <sys/conf.h>
46 #include <sys/avintr.h>
47 #include <sys/autoconf.h>
48 #include <sys/disp.h>
49 #include <sys/class.h>
50 #include <sys/bitmap.h>
51
52 #include <sys/privregs.h>
53
54 #include <sys/proc.h>
55 #include <sys/buf.h>
56 #include <sys/kmem.h>
57 #include <sys/mem.h>
58 #include <sys/kstat.h>
59
60 #include <sys/reboot.h>
61
62 #include <sys/cred.h>
63 #include <sys/vnode.h>
64 #include <sys/file.h>
65
66 #include <sys/procfs.h>
67
68 #include <sys/vfs.h>
69 #include <sys/cmn_err.h>
70 #include <sys/utsname.h>
71 #include <sys/debug.h>
72 #include <sys/kdi.h>
73
74 #include <sys/dumphdr.h>
75 #include <sys/bootconf.h>
76 #include <sys/memlist_plat.h>
77 #include <sys/varargs.h>
78 #include <sys/promif.h>
79 #include <sys/prom_debug.h>
80 #include <sys/modctl.h>
81
82 #include <sys/sunddi.h>
83 #include <sys/sunndi.h>
84 #include <sys/ndi_impldefs.h>
85 #include <sys/ddidmareq.h>
86 #include <sys/psw.h>
87 #include <sys/regset.h>
88 #include <sys/clock.h>
89 #include <sys/pte.h>
90 #include <sys/tss.h>
91 #include <sys/stack.h>
92 #include <sys/trap.h>
93 #include <sys/fp.h>
94 #include <vm/kboot_mmu.h>
95 #include <vm/anon.h>
96 #include <vm/as.h>
97 #include <vm/page.h>
98 #include <vm/seg.h>
99 #include <vm/seg_dev.h>
100 #include <vm/seg_kmem.h>
101 #include <vm/seg_kpm.h>
102 #include <vm/seg_map.h>
103 #include <vm/seg_vn.h>
104 #include <vm/seg_kp.h>
105 #include <sys/memnode.h>
106 #include <vm/vm_dep.h>
107 #include <sys/thread.h>
108 #include <sys/sysconf.h>
109 #include <sys/vm_machparam.h>
110 #include <sys/archsystm.h>
111 #include <sys/machsystm.h>
112 #include <vm/hat.h>
113 #include <vm/hat_i86.h>
114 #include <sys/pmem.h>
115 #include <sys/smp_impldefs.h>
116 #include <sys/x86_archext.h>
117 #include <sys/cpuvar.h>
118 #include <sys/segments.h>
119 #include <sys/clconf.h>
120 #include <sys/kobj.h>
121 #include <sys/kobj_lex.h>
122 #include <sys/cpc_impl.h>
123 #include <sys/cpu_module.h>
124 #include <sys/smbios.h>
125 #include <sys/debug_info.h>
126 #include <sys/bootinfo.h>
127 #include <sys/ddi_periodic.h>
128 #include <sys/systeminfo.h>
129 #include <sys/multiboot.h>
130 #include <sys/ramdisk.h>
131 #include <sys/tsc.h>
132 #include <sys/clock.h>
133
134 #ifdef __xpv
135
136 #include <sys/hypervisor.h>
137 #include <sys/xen_mmu.h>
138 #include <sys/evtchn_impl.h>
139 #include <sys/gnttab.h>
140 #include <sys/xpv_panic.h>
141 #include <xen/sys/xenbus_comms.h>
142 #include <xen/public/physdev.h>
143
144 extern void xen_late_startup(void);
145
146 struct xen_evt_data cpu0_evt_data;
147
148 #else /* __xpv */
149 #include <sys/memlist_impl.h>
150
151 extern void mem_config_init(void);
152 #endif /* __xpv */
153
154 extern void progressbar_init(void);
155 extern void brand_init(void);
156 extern void pcf_init(void);
157 extern void pg_init(void);
158 extern void ssp_init(void);
159
160 extern int size_pse_array(pgcnt_t, int);
161
162 #if defined(_SOFT_HOSTID)
163
164 static int32_t set_soft_hostid(void);
165 static char hostid_file[] = "/etc/hostid";
166
167 #endif
168
169 void *gfx_devinfo_list;
170
171 #if !defined(__xpv)
172 extern void immu_startup(void);
173 #endif
174
175 /*
176 * XXX make declaration below "static" when drivers no longer use this
177 * interface.
178 */
179 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */
180
181 /*
182 * segkp
183 */
184 extern int segkp_fromheap;
185
186 static void kvm_init(void);
187 static void startup_init(void);
188 static void startup_memlist(void);
189 static void startup_kmem(void);
190 static void startup_modules(void);
191 static void startup_vm(void);
192 #ifndef __xpv
193 static void startup_tsc(void);
194 #endif
195 static void startup_end(void);
196 static void layout_kernel_va(void);
197
198 /*
199 * Declare these as initialized data so we can patch them.
200 */
201
202 /*
203 * For now we can handle memory with physical addresses up to about
204 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
205 * half the VA space for seg_kpm. When systems get bigger than 64TB this
206 * code will need revisiting. There is an implicit assumption that there
207 * are no *huge* holes in the physical address space too.
208 */
209 #define TERABYTE (1ul << 40)
210 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE)
211 #define PHYSMEM PHYSMEM_MAX64
212 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul
213
214
215 pgcnt_t physmem = PHYSMEM;
216 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */
217
218 extern char *kobj_file_buf;
219 extern int kobj_file_bufsize; /* set in /etc/system */
220
221 /* Global variables for MP support. Used in mp_startup */
222 caddr_t rm_platter_va = 0;
223 uint32_t rm_platter_pa;
224
225 int auto_lpg_disable = 1;
226
227 /*
228 * Some CPUs have holes in the middle of the 64-bit virtual address range.
229 */
230 uintptr_t hole_start, hole_end;
231
232 /*
233 * kpm mapping window
234 */
235 caddr_t kpm_vbase;
236 size_t kpm_size;
237 static int kpm_desired;
238 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
239
240 /*
241 * Configuration parameters set at boot time.
242 */
243
244 caddr_t econtig; /* end of first block of contiguous kernel */
245
246 struct bootops *bootops = 0; /* passed in from boot */
247 struct bootops **bootopsp;
248 struct boot_syscalls *sysp; /* passed in from boot */
249
250 char bootblock_fstype[16];
251
252 char kern_bootargs[OBP_MAXPATHLEN];
253 char kern_bootfile[OBP_MAXPATHLEN];
254
255 /*
256 * ZFS zio segment. This allows us to exclude large portions of ZFS data that
257 * gets cached in kmem caches on the heap. If this is set to zero, we allocate
258 * zio buffers from their own segment, otherwise they are allocated from the
259 * heap. The optimization of allocating zio buffers from their own segment is
260 * only valid on 64-bit kernels.
261 */
262 int segzio_fromheap = 0;
263
264 /*
265 * Give folks an escape hatch for disabling SMAP via kmdb. Doesn't work
266 * post-boot.
267 */
268 int disable_smap = 0;
269
270 /*
271 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
272 * depends on number of BOP_ALLOC calls made and requested size, memory size
273 * combination and whether boot.bin memory needs to be freed.
274 */
275 #define POSS_NEW_FRAGMENTS 12
276
277 /*
278 * VM data structures
279 */
280 long page_hashsz; /* Size of page hash table (power of two) */
281 unsigned int page_hashsz_shift; /* log2(page_hashsz) */
282 struct page *pp_base; /* Base of initial system page struct array */
283 struct page **page_hash; /* Page hash table */
284 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */
285 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */
286 int pse_shift; /* log2(pse_table_size) */
287 struct seg ktextseg; /* Segment used for kernel executable image */
288 struct seg kvalloc; /* Segment used for "valloc" mapping */
289 struct seg kpseg; /* Segment used for pageable kernel virt mem */
290 struct seg kmapseg; /* Segment used for generic kernel mappings */
291 struct seg kdebugseg; /* Segment used for the kernel debugger */
292
293 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */
294 static struct seg *segmap = &kmapseg; /* easier to use name for in here */
295
296 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
297
298 extern struct seg kvseg_core; /* Segment used for the core heap */
299 struct seg kpmseg; /* Segment used for physical mapping */
300 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */
301
302 caddr_t segkp_base; /* Base address of segkp */
303 caddr_t segzio_base; /* Base address of segzio */
304 pgcnt_t segkpsize; /* size of segkp segment in pages */
305 caddr_t segkvmm_base;
306 pgcnt_t segkvmmsize;
307 pgcnt_t segziosize;
308
309 /*
310 * A static DR page_t VA map is reserved that can map the page structures
311 * for a domain's entire RA space. The pages that back this space are
312 * dynamically allocated and need not be physically contiguous. The DR
313 * map size is derived from KPM size.
314 * This mechanism isn't used by x86 yet, so just stubs here.
315 */
316 int ppvm_enable = 0; /* Static virtual map for page structs */
317 page_t *ppvm_base = NULL; /* Base of page struct map */
318 pgcnt_t ppvm_size = 0; /* Size of page struct map */
319
320 /*
321 * VA range available to the debugger
322 */
323 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
324 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
325
326 struct memseg *memseg_base;
327 struct vnode unused_pages_vp;
328
329 #define FOURGB 0x100000000LL
330
331 struct memlist *memlist;
332
333 caddr_t s_text; /* start of kernel text segment */
334 caddr_t e_text; /* end of kernel text segment */
335 caddr_t s_data; /* start of kernel data segment */
336 caddr_t e_data; /* end of kernel data segment */
337 caddr_t modtext; /* start of loadable module text reserved */
338 caddr_t e_modtext; /* end of loadable module text reserved */
339 caddr_t moddata; /* start of loadable module data reserved */
340 caddr_t e_moddata; /* end of loadable module data reserved */
341
342 struct memlist *phys_install; /* Total installed physical memory */
343 struct memlist *phys_avail; /* Total available physical memory */
344 struct memlist *bios_rsvd; /* Bios reserved memory */
345
346 /*
347 * kphysm_init returns the number of pages that were processed
348 */
349 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
350
351 #define IO_PROP_SIZE 64 /* device property size */
352
353 /*
354 * a couple useful roundup macros
355 */
356 #define ROUND_UP_PAGE(x) \
357 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
358 #define ROUND_UP_LPAGE(x) \
359 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
360 #define ROUND_UP_4MEG(x) \
361 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
362 #define ROUND_UP_TOPLEVEL(x) \
363 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
364
365 /*
366 * 32-bit Kernel's Virtual memory layout.
367 * +-----------------------+
368 * | |
369 * 0xFFC00000 -|-----------------------|- ARGSBASE
370 * | debugger |
371 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE
372 * | Kernel Data |
373 * 0xFEC00000 -|-----------------------|
374 * | Kernel Text |
375 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
376 * |--- GDT ---|- GDT page (GDT_VA)
377 * |--- debug info ---|- debug info (DEBUG_INFO_VA)
378 * | |
379 * | page_t structures |
380 * | memsegs, memlists, |
381 * | page hash, etc. |
382 * --- -|-----------------------|- ekernelheap, valloc_base (floating)
383 * | | (segkp is just an arena in the heap)
384 * | |
385 * | kvseg |
386 * | |
387 * | |
388 * --- -|-----------------------|- kernelheap (floating)
389 * | Segkmap |
390 * 0xC3002000 -|-----------------------|- segmap_start (floating)
391 * | Red Zone |
392 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating)
393 * | | ||
394 * | Shared objects | \/
395 * | |
396 * : :
397 * | user data |
398 * |-----------------------|
399 * | user text |
400 * 0x08048000 -|-----------------------|
401 * | user stack |
402 * : :
403 * | invalid |
404 * 0x00000000 +-----------------------+
405 *
406 *
407 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
408 * +-----------------------+
409 * | |
410 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE
411 * | debugger (?) |
412 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE
413 * | unused |
414 * +-----------------------+
415 * | Kernel Data |
416 * 0xFFFFFFFF.FBC00000 |-----------------------|
417 * | Kernel Text |
418 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT
419 * |--- debug info ---|- debug info (DEBUG_INFO_VA)
420 * |--- GDT ---|- GDT page (GDT_VA)
421 * |--- IDT ---|- IDT page (IDT_VA)
422 * |--- LDT ---|- LDT pages (LDT_VA)
423 * | |
424 * | Core heap | (used for loadable modules)
425 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap
426 * | Kernel |
427 * | heap |
428 * | |
429 * | |
430 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating)
431 * | segmap |
432 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating)
433 * | device mappings |
434 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating)
435 * | segzio |
436 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating)
437 * | segkvmm |
438 * | |
439 * | |
440 * | |
441 * 0xFFFFFXXX.XXX00000 |-----------------------|- segkvmm_base (floating)
442 * | segkp |
443 * |-----------------------|- segkp_base (floating)
444 * | page_t structures | valloc_base + valloc_sz
445 * | memsegs, memlists, |
446 * | page hash, etc. |
447 * 0xFFFFFE00.00000000 |-----------------------|- valloc_base (lower if >256GB)
448 * | segkpm |
449 * | |
450 * 0xFFFFFD00.00000000 |-----------------------|- SEGKPM_BASE (lower if >256GB)
451 * | Red Zone |
452 * 0xFFFFFC80.00000000 |-----------------------|- KERNELBASE (lower if >256GB)
453 * 0xFFFFFC7F.FFE00000 |-----------------------|- USERLIMIT (lower if >256GB)
454 * | User stack |- User space memory
455 * | |
456 * | shared objects, etc | (grows downwards)
457 * : :
458 * | |
459 * 0xFFFF8000.00000000 |-----------------------|
460 * | |
461 * | VA Hole / unused |
462 * | |
463 * 0x00008000.00000000 |-----------------------|
464 * | |
465 * | |
466 * : :
467 * | user heap | (grows upwards)
468 * | |
469 * | user data |
470 * |-----------------------|
471 * | user text |
472 * 0x00000000.04000000 |-----------------------|
473 * | invalid |
474 * 0x00000000.00000000 +-----------------------+
475 *
476 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
477 * kernel, except that userlimit is raised to 0xfe000000
478 *
479 * Floating values:
480 *
481 * valloc_base: start of the kernel's memory management/tracking data
482 * structures. This region contains page_t structures for
483 * physical memory, memsegs, memlists, and the page hash.
484 *
485 * core_base: start of the kernel's "core" heap area on 64-bit systems.
486 * This area is intended to be used for global data as well as for module
487 * text/data that does not fit into the nucleus pages. The core heap is
488 * restricted to a 2GB range, allowing every address within it to be
489 * accessed using rip-relative addressing
490 *
491 * ekernelheap: end of kernelheap and start of segmap.
492 *
493 * kernelheap: start of kernel heap. On 32-bit systems, this starts right
494 * above a red zone that separates the user's address space from the
495 * kernel's. On 64-bit systems, it sits above segkp and segkpm.
496 *
497 * segmap_start: start of segmap. The length of segmap can be modified
498 * through eeprom. The default length is 16MB on 32-bit systems and 64MB
499 * on 64-bit systems.
500 *
501 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
502 * decreased by 2X the size required for page_t. This allows the kernel
503 * heap to grow in size with physical memory. With sizeof(page_t) == 80
504 * bytes, the following shows the values of kernelbase and kernel heap
505 * sizes for different memory configurations (assuming default segmap and
506 * segkp sizes).
507 *
508 * mem size for kernelbase kernel heap
509 * size page_t's size
510 * ---- --------- ---------- -----------
511 * 1gb 0x01400000 0xd1800000 684MB
512 * 2gb 0x02800000 0xcf000000 704MB
513 * 4gb 0x05000000 0xca000000 744MB
514 * 6gb 0x07800000 0xc5000000 784MB
515 * 8gb 0x0a000000 0xc0000000 824MB
516 * 16gb 0x14000000 0xac000000 984MB
517 * 32gb 0x28000000 0x84000000 1304MB
518 * 64gb 0x50000000 0x34000000 1944MB (*)
519 *
520 * kernelbase is less than the abi minimum of 0xc0000000 for memory
521 * configurations above 8gb.
522 *
523 * (*) support for memory configurations above 32gb will require manual tuning
524 * of kernelbase to balance out the need of user applications.
525 */
526
527 /* real-time-clock initialization parameters */
528 extern time_t process_rtc_config_file(void);
529
530 uintptr_t kernelbase;
531 uintptr_t postbootkernelbase; /* not set till boot loader is gone */
532 uintptr_t eprom_kernelbase;
533 size_t segmapsize;
534 uintptr_t segmap_start;
535 int segmapfreelists;
536 pgcnt_t npages;
537 pgcnt_t orig_npages;
538 size_t core_size; /* size of "core" heap */
539 uintptr_t core_base; /* base address of "core" heap */
540
541 /*
542 * List of bootstrap pages. We mark these as allocated in startup.
543 * release_bootstrap() will free them when we're completely done with
544 * the bootstrap.
545 */
546 static page_t *bootpages;
547
548 /*
549 * boot time pages that have a vnode from the ramdisk will keep that forever.
550 */
551 static page_t *rd_pages;
552
553 /*
554 * Lower 64K
555 */
556 static page_t *lower_pages = NULL;
557 static int lower_pages_count = 0;
558
559 struct system_hardware system_hardware;
560
561 /*
562 * Enable some debugging messages concerning memory usage...
563 */
564 static void
print_memlist(char * title,struct memlist * mp)565 print_memlist(char *title, struct memlist *mp)
566 {
567 prom_printf("MEMLIST: %s:\n", title);
568 while (mp != NULL) {
569 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
570 mp->ml_address, mp->ml_size);
571 mp = mp->ml_next;
572 }
573 }
574
575 /*
576 * XX64 need a comment here.. are these just default values, surely
577 * we read the "cpuid" type information to figure this out.
578 */
579 int l2cache_sz = 0x80000;
580 int l2cache_linesz = 0x40;
581 int l2cache_assoc = 1;
582
583 static size_t textrepl_min_gb = 10;
584
585 /*
586 * on 64 bit we use a predifined VA range for mapping devices in the kernel
587 * on 32 bit the mappings are intermixed in the heap, so we use a bit map
588 */
589
590 vmem_t *device_arena;
591 uintptr_t toxic_addr = (uintptr_t)NULL;
592 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
593
594
595 int prom_debug;
596
597 /*
598 * This structure is used to keep track of the intial allocations
599 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
600 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
601 */
602 #define NUM_ALLOCATIONS 8
603 int num_allocations = 0;
604 struct {
605 void **al_ptr;
606 size_t al_size;
607 } allocations[NUM_ALLOCATIONS];
608 size_t valloc_sz = 0;
609 uintptr_t valloc_base;
610
611 #define ADD_TO_ALLOCATIONS(ptr, size) { \
612 size = ROUND_UP_PAGE(size); \
613 if (num_allocations == NUM_ALLOCATIONS) \
614 panic("too many ADD_TO_ALLOCATIONS()"); \
615 allocations[num_allocations].al_ptr = (void**)&ptr; \
616 allocations[num_allocations].al_size = size; \
617 valloc_sz += size; \
618 ++num_allocations; \
619 }
620
621 /*
622 * Allocate all the initial memory needed by the page allocator.
623 */
624 static void
perform_allocations(void)625 perform_allocations(void)
626 {
627 caddr_t mem;
628 int i;
629 int valloc_align;
630
631 PRM_DEBUG(valloc_base);
632 PRM_DEBUG(valloc_sz);
633 valloc_align = mmu.level_size[mmu.max_page_level > 0];
634 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
635 if (mem != (caddr_t)valloc_base)
636 panic("BOP_ALLOC() failed");
637 bzero(mem, valloc_sz);
638 for (i = 0; i < num_allocations; ++i) {
639 *allocations[i].al_ptr = (void *)mem;
640 mem += allocations[i].al_size;
641 }
642 }
643
644 /*
645 * Set up and enable SMAP now before we start other CPUs, but after the kernel's
646 * VM has been set up so we can use hot_patch_kernel_text().
647 *
648 * We can only patch 1, 2, or 4 bytes, but not three bytes. So instead, we
649 * replace the four byte word at the patch point. See uts/intel/ml/copy.s
650 * for more information on what's going on here.
651 */
652 static void
startup_smap(void)653 startup_smap(void)
654 {
655 int i;
656 uint32_t inst;
657 uint8_t *instp;
658 char sym[128];
659 struct modctl *modp;
660
661 extern int _smap_enable_patch_count;
662 extern int _smap_disable_patch_count;
663
664 if (disable_smap != 0)
665 remove_x86_feature(x86_featureset, X86FSET_SMAP);
666
667 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE)
668 return;
669
670 for (i = 0; i < _smap_enable_patch_count; i++) {
671 int sizep;
672
673 VERIFY3U(i, <, _smap_enable_patch_count);
674 VERIFY(snprintf(sym, sizeof (sym), "_smap_enable_patch_%d", i) <
675 sizeof (sym));
676 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep);
677 VERIFY(instp != 0);
678 inst = (instp[3] << 24) | (SMAP_CLAC_INSTR & 0x00ffffff);
679 hot_patch_kernel_text((caddr_t)instp, inst, 4);
680 }
681
682 for (i = 0; i < _smap_disable_patch_count; i++) {
683 int sizep;
684
685 VERIFY(snprintf(sym, sizeof (sym), "_smap_disable_patch_%d",
686 i) < sizeof (sym));
687 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep);
688 VERIFY(instp != 0);
689 inst = (instp[3] << 24) | (SMAP_STAC_INSTR & 0x00ffffff);
690 hot_patch_kernel_text((caddr_t)instp, inst, 4);
691 }
692
693 /*
694 * Hotinline calls to smap_enable and smap_disable within
695 * unix module. Hotinlines in other modules are done on
696 * mod_load().
697 */
698 modp = mod_hold_by_name("unix");
699 do_hotinlines(modp->mod_mp);
700 mod_release_mod(modp);
701
702 setcr4(getcr4() | CR4_SMAP);
703 smap_enable();
704 }
705
706 /*
707 * Our world looks like this at startup time.
708 *
709 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
710 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at
711 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those
712 * addresses are fixed in the binary at link time.
713 *
714 * On the text page:
715 * unix/genunix/krtld/module text loads.
716 *
717 * On the data page:
718 * unix/genunix/krtld/module data loads.
719 *
720 * Machine-dependent startup code
721 */
722 void
startup(void)723 startup(void)
724 {
725 #if !defined(__xpv)
726 extern void startup_pci_bios(void);
727 #endif
728 extern cpuset_t cpu_ready_set;
729
730 /*
731 * Make sure that nobody tries to use sekpm until we have
732 * initialized it properly.
733 */
734 kpm_desired = 1;
735 kpm_enable = 0;
736 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */
737
738 #if defined(__xpv) /* XXPV fix me! */
739 {
740 extern int segvn_use_regions;
741 segvn_use_regions = 0;
742 }
743 #endif
744 ssp_init();
745 progressbar_init();
746 startup_init();
747 #if defined(__xpv)
748 startup_xen_version();
749 #endif
750 startup_memlist();
751 startup_kmem();
752 startup_vm();
753 #if !defined(__xpv)
754 /*
755 * Up until this point, we cannot use any time delay functions
756 * (e.g. tenmicrosec()). Once the TSC is setup, we can. This is
757 * purposely done after the VM system as been setup to allow
758 * calibration sources which might require mapping for access
759 * (e.g. the HPET), but still early enough to allow the rest of
760 * the startup code to make use of the TSC (via tenmicrosec() or
761 * the default TSC-based gethrtime()) as required.
762 */
763 startup_tsc();
764
765 /*
766 * Note we need to do this even on fast reboot in order to access
767 * the irq routing table (used for pci labels).
768 */
769 startup_pci_bios();
770 startup_smap();
771 #endif
772 #if defined(__xpv)
773 startup_xen_mca();
774 #endif
775 startup_modules();
776
777 startup_end();
778 }
779
780 static void
startup_init()781 startup_init()
782 {
783 PRM_POINT("startup_init() starting...");
784
785 /*
786 * Complete the extraction of cpuid data
787 */
788 cpuid_execpass(CPU, CPUID_PASS_EXTENDED, NULL);
789
790 (void) check_boot_version(BOP_GETVERSION(bootops));
791
792 /*
793 * Check for prom_debug in boot environment
794 */
795 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
796 ++prom_debug;
797 PRM_POINT("prom_debug found in boot enviroment");
798 }
799
800 /*
801 * Collect node, cpu and memory configuration information.
802 */
803 get_system_configuration();
804
805 /*
806 * Halt if this is an unsupported processor.
807 */
808 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
809 printf("\n486 processor (\"%s\") detected.\n",
810 CPU->cpu_brandstr);
811 halt("This processor is not supported by this release "
812 "of Solaris.");
813 }
814
815 PRM_POINT("startup_init() done");
816 }
817
818 /*
819 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
820 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
821 * also filters out physical page zero. There is some reliance on the
822 * boot loader allocating only a few contiguous physical memory chunks.
823 */
824 static void
avail_filter(uint64_t * addr,uint64_t * size)825 avail_filter(uint64_t *addr, uint64_t *size)
826 {
827 uintptr_t va;
828 uintptr_t next_va;
829 pfn_t pfn;
830 uint64_t pfn_addr;
831 uint64_t pfn_eaddr;
832 uint_t prot;
833 size_t len;
834 uint_t change;
835
836 if (prom_debug)
837 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
838 *addr, *size);
839
840 /*
841 * page zero is required for BIOS.. never make it available
842 */
843 if (*addr == 0) {
844 *addr += MMU_PAGESIZE;
845 *size -= MMU_PAGESIZE;
846 }
847
848 /*
849 * First we trim from the front of the range. Since kbm_probe()
850 * walks ranges in virtual order, but addr/size are physical, we need
851 * to the list until no changes are seen. This deals with the case
852 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
853 * but w < v.
854 */
855 do {
856 change = 0;
857 for (va = KERNEL_TEXT;
858 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
859 va = next_va) {
860
861 next_va = va + len;
862 pfn_addr = pfn_to_pa(pfn);
863 pfn_eaddr = pfn_addr + len;
864
865 if (pfn_addr <= *addr && pfn_eaddr > *addr) {
866 change = 1;
867 while (*size > 0 && len > 0) {
868 *addr += MMU_PAGESIZE;
869 *size -= MMU_PAGESIZE;
870 len -= MMU_PAGESIZE;
871 }
872 }
873 }
874 if (change && prom_debug)
875 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
876 *addr, *size);
877 } while (change);
878
879 /*
880 * Trim pages from the end of the range.
881 */
882 for (va = KERNEL_TEXT;
883 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
884 va = next_va) {
885
886 next_va = va + len;
887 pfn_addr = pfn_to_pa(pfn);
888
889 if (pfn_addr >= *addr && pfn_addr < *addr + *size)
890 *size = pfn_addr - *addr;
891 }
892
893 if (prom_debug)
894 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
895 *addr, *size);
896 }
897
898 static void
kpm_init()899 kpm_init()
900 {
901 struct segkpm_crargs b;
902
903 /*
904 * These variables were all designed for sfmmu in which segkpm is
905 * mapped using a single pagesize - either 8KB or 4MB. On x86, we
906 * might use 2+ page sizes on a single machine, so none of these
907 * variables have a single correct value. They are set up as if we
908 * always use a 4KB pagesize, which should do no harm. In the long
909 * run, we should get rid of KPM's assumption that only a single
910 * pagesize is used.
911 */
912 kpm_pgshft = MMU_PAGESHIFT;
913 kpm_pgsz = MMU_PAGESIZE;
914 kpm_pgoff = MMU_PAGEOFFSET;
915 kpmp2pshft = 0;
916 kpmpnpgs = 1;
917 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
918
919 PRM_POINT("about to create segkpm");
920 rw_enter(&kas.a_lock, RW_WRITER);
921
922 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
923 panic("cannot attach segkpm");
924
925 b.prot = PROT_READ | PROT_WRITE;
926 b.nvcolors = 1;
927
928 if (segkpm_create(segkpm, (caddr_t)&b) != 0)
929 panic("segkpm_create segkpm");
930
931 rw_exit(&kas.a_lock);
932
933 kpm_enable = 1;
934
935 /*
936 * As the KPM was disabled while setting up the system, go back and fix
937 * CPU zero's access to its user page table. This is a bit gross, but
938 * we have a chicken and egg problem otherwise.
939 */
940 ASSERT(CPU->cpu_hat_info->hci_user_l3ptes == NULL);
941 CPU->cpu_hat_info->hci_user_l3ptes =
942 (x86pte_t *)hat_kpm_mapin_pfn(CPU->cpu_hat_info->hci_user_l3pfn);
943 }
944
945 /*
946 * The debug info page provides enough information to allow external
947 * inspectors (e.g. when running under a hypervisor) to bootstrap
948 * themselves into allowing full-blown kernel debugging.
949 */
950 static void
init_debug_info(void)951 init_debug_info(void)
952 {
953 caddr_t mem;
954 debug_info_t *di;
955
956 #ifndef __lint
957 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
958 #endif
959
960 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
961 MMU_PAGESIZE);
962
963 if (mem != (caddr_t)DEBUG_INFO_VA)
964 panic("BOP_ALLOC() failed");
965 bzero(mem, MMU_PAGESIZE);
966
967 di = (debug_info_t *)mem;
968
969 di->di_magic = DEBUG_INFO_MAGIC;
970 di->di_version = DEBUG_INFO_VERSION;
971 di->di_modules = (uintptr_t)&modules;
972 di->di_s_text = (uintptr_t)s_text;
973 di->di_e_text = (uintptr_t)e_text;
974 di->di_s_data = (uintptr_t)s_data;
975 di->di_e_data = (uintptr_t)e_data;
976 di->di_hat_htable_off = offsetof(hat_t, hat_htable);
977 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
978 }
979
980 /*
981 * Build the memlists and other kernel essential memory system data structures.
982 * This is everything at valloc_base.
983 */
984 static void
startup_memlist(void)985 startup_memlist(void)
986 {
987 size_t memlist_sz;
988 size_t memseg_sz;
989 size_t pagehash_sz;
990 size_t pp_sz;
991 uintptr_t va;
992 size_t len;
993 uint_t prot;
994 pfn_t pfn;
995 int memblocks;
996 pfn_t rsvd_high_pfn;
997 pgcnt_t rsvd_pgcnt;
998 size_t rsvdmemlist_sz;
999 int rsvdmemblocks;
1000 caddr_t pagecolor_mem;
1001 size_t pagecolor_memsz;
1002 caddr_t page_ctrs_mem;
1003 size_t page_ctrs_size;
1004 size_t pse_table_alloc_size;
1005 struct memlist *current;
1006 extern void startup_build_mem_nodes(struct memlist *);
1007
1008 /* XX64 fix these - they should be in include files */
1009 extern size_t page_coloring_init(uint_t, int, int);
1010 extern void page_coloring_setup(caddr_t);
1011
1012 PRM_POINT("startup_memlist() starting...");
1013
1014 /*
1015 * Use leftover large page nucleus text/data space for loadable modules.
1016 * Use at most MODTEXT/MODDATA.
1017 */
1018 len = kbm_nucleus_size;
1019 ASSERT(len > MMU_PAGESIZE);
1020
1021 moddata = (caddr_t)ROUND_UP_PAGE(e_data);
1022 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
1023 if (e_moddata - moddata > MODDATA)
1024 e_moddata = moddata + MODDATA;
1025
1026 modtext = (caddr_t)ROUND_UP_PAGE(e_text);
1027 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
1028 if (e_modtext - modtext > MODTEXT)
1029 e_modtext = modtext + MODTEXT;
1030
1031 econtig = e_moddata;
1032
1033 PRM_DEBUG(modtext);
1034 PRM_DEBUG(e_modtext);
1035 PRM_DEBUG(moddata);
1036 PRM_DEBUG(e_moddata);
1037 PRM_DEBUG(econtig);
1038
1039 /*
1040 * Examine the boot loader physical memory map to find out:
1041 * - total memory in system - physinstalled
1042 * - the max physical address - physmax
1043 * - the number of discontiguous segments of memory.
1044 */
1045 if (prom_debug)
1046 print_memlist("boot physinstalled",
1047 bootops->boot_mem->physinstalled);
1048 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax,
1049 &physinstalled, &memblocks);
1050 PRM_DEBUG(physmax);
1051 PRM_DEBUG(physinstalled);
1052 PRM_DEBUG(memblocks);
1053
1054 /*
1055 * We no longer support any form of memory DR.
1056 */
1057 plat_dr_physmax = 0;
1058
1059 /*
1060 * Examine the bios reserved memory to find out:
1061 * - the number of discontiguous segments of memory.
1062 */
1063 if (prom_debug)
1064 print_memlist("boot reserved mem",
1065 bootops->boot_mem->rsvdmem);
1066 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn,
1067 &rsvd_pgcnt, &rsvdmemblocks);
1068 PRM_DEBUG(rsvd_high_pfn);
1069 PRM_DEBUG(rsvd_pgcnt);
1070 PRM_DEBUG(rsvdmemblocks);
1071
1072 /*
1073 * Initialize hat's mmu parameters.
1074 * Check for enforce-prot-exec in boot environment. It's used to
1075 * enable/disable support for the page table entry NX bit.
1076 * The default is to enforce PROT_EXEC on processors that support NX.
1077 * Boot seems to round up the "len", but 8 seems to be big enough.
1078 */
1079 mmu_init();
1080
1081
1082 startup_build_mem_nodes(bootops->boot_mem->physinstalled);
1083
1084 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
1085 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
1086 char value[8];
1087
1088 if (len < 8)
1089 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
1090 else
1091 (void) strcpy(value, "");
1092 if (strcmp(value, "off") == 0)
1093 mmu.pt_nx = 0;
1094 }
1095 PRM_DEBUG(mmu.pt_nx);
1096
1097 /*
1098 * We will need page_t's for every page in the system, except for
1099 * memory mapped at or above above the start of the kernel text segment.
1100 *
1101 * pages above e_modtext are attributed to kernel debugger (obp_pages)
1102 */
1103 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
1104 obp_pages = 0;
1105 va = KERNEL_TEXT;
1106 while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
1107 npages -= len >> MMU_PAGESHIFT;
1108 if (va >= (uintptr_t)e_moddata)
1109 obp_pages += len >> MMU_PAGESHIFT;
1110 va += len;
1111 }
1112 PRM_DEBUG(npages);
1113 PRM_DEBUG(obp_pages);
1114
1115 /*
1116 * If physmem is patched to be non-zero, use it instead of the computed
1117 * value unless it is larger than the actual amount of memory on hand.
1118 */
1119 if (physmem == 0 || physmem > npages) {
1120 physmem = npages;
1121 } else if (physmem < npages) {
1122 orig_npages = npages;
1123 npages = physmem;
1124 }
1125 PRM_DEBUG(physmem);
1126
1127 /*
1128 * We now compute the sizes of all the initial allocations for
1129 * structures the kernel needs in order do kmem_alloc(). These
1130 * include:
1131 * memsegs
1132 * memlists
1133 * page hash table
1134 * page_t's
1135 * page coloring data structs
1136 */
1137 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1138 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1139 PRM_DEBUG(memseg_sz);
1140
1141 /*
1142 * Reserve space for memlists. There's no real good way to know exactly
1143 * how much room we'll need, but this should be a good upper bound.
1144 */
1145 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1146 (memblocks + POSS_NEW_FRAGMENTS));
1147 ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1148 PRM_DEBUG(memlist_sz);
1149
1150 /*
1151 * Reserve space for bios reserved memlists.
1152 */
1153 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1154 (rsvdmemblocks + POSS_NEW_FRAGMENTS));
1155 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz);
1156 PRM_DEBUG(rsvdmemlist_sz);
1157
1158 /* LINTED */
1159 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page)));
1160 /*
1161 * The page structure hash table size is a power of 2
1162 * such that the average hash chain length is PAGE_HASHAVELEN.
1163 */
1164 page_hashsz = npages / PAGE_HASHAVELEN;
1165 page_hashsz_shift = highbit(page_hashsz);
1166 page_hashsz = 1 << page_hashsz_shift;
1167 pagehash_sz = sizeof (struct page *) * page_hashsz;
1168 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1169 PRM_DEBUG(pagehash_sz);
1170
1171 /*
1172 * Set aside room for the page structures themselves.
1173 */
1174 PRM_DEBUG(npages);
1175 pp_sz = sizeof (struct page) * npages;
1176 ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1177 PRM_DEBUG(pp_sz);
1178
1179 /*
1180 * determine l2 cache info and memory size for page coloring
1181 */
1182 (void) getl2cacheinfo(CPU,
1183 &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1184 pagecolor_memsz =
1185 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1186 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1187 PRM_DEBUG(pagecolor_memsz);
1188
1189 page_ctrs_size = page_ctrs_sz();
1190 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1191 PRM_DEBUG(page_ctrs_size);
1192
1193 /*
1194 * Allocate the array that protects pp->p_selock.
1195 */
1196 pse_shift = size_pse_array(physmem, max_ncpus);
1197 pse_table_size = 1 << pse_shift;
1198 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1199 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1200
1201 valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1202 valloc_base = VALLOC_BASE;
1203
1204 /*
1205 * The signicant memory-sized regions are roughly sized as follows in
1206 * the default layout with max physmem:
1207 * segkpm: 1x physmem allocated (but 1Tb room, below VALLOC_BASE)
1208 * segzio: 1.5x physmem
1209 * segkvmm: 4x physmem
1210 * heap: whatever's left up to COREHEAP_BASE, at least 1.5x physmem
1211 *
1212 * The idea is that we leave enough room to avoid fragmentation issues,
1213 * so we would like the VA arenas to have some extra.
1214 *
1215 * Ignoring the loose change of segkp, valloc, and such, this means that
1216 * as COREHEAP_BASE-VALLOC_BASE=2Tb, we can accommodate a physmem up to
1217 * about (2Tb / 7.0), rounded down to 256Gb in the check below.
1218 *
1219 * Note that KPM lives below VALLOC_BASE, but we want to include it in
1220 * adjustments, hence the 8 below.
1221 *
1222 * Beyond 256Gb, we push segkpm_base (and hence kernelbase and
1223 * _userlimit) down to accommodate the VA requirements above.
1224 */
1225 if (physmax + 1 > mmu_btop(TERABYTE / 4)) {
1226 uint64_t physmem_bytes = mmu_ptob(physmax + 1);
1227 uint64_t adjustment = 8 * (physmem_bytes - (TERABYTE / 4));
1228
1229 PRM_DEBUG(adjustment);
1230
1231 /*
1232 * segkpm_base is always aligned on a L3 PTE boundary.
1233 */
1234 segkpm_base -= P2ROUNDUP(adjustment, KERNEL_REDZONE_SIZE);
1235
1236 /*
1237 * But make sure we leave some space for user apps above hole.
1238 */
1239 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1240
1241 ASSERT(segkpm_base <= SEGKPM_BASE);
1242
1243 valloc_base = segkpm_base + P2ROUNDUP(physmem_bytes, ONE_GIG);
1244 if (valloc_base < segkpm_base)
1245 panic("not enough kernel VA to support memory size");
1246 }
1247
1248 PRM_DEBUG(segkpm_base);
1249 PRM_DEBUG(valloc_base);
1250
1251 /*
1252 * do all the initial allocations
1253 */
1254 perform_allocations();
1255
1256 /*
1257 * Build phys_install and phys_avail in kernel memspace.
1258 * - phys_install should be all memory in the system.
1259 * - phys_avail is phys_install minus any memory mapped before this
1260 * point above KERNEL_TEXT.
1261 */
1262 current = phys_install = memlist;
1263 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL);
1264 if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1265 panic("physinstalled was too big!");
1266 if (prom_debug)
1267 print_memlist("phys_install", phys_install);
1268
1269 phys_avail = current;
1270 PRM_POINT("Building phys_avail:\n");
1271 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t,
1272 avail_filter);
1273 if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1274 panic("physavail was too big!");
1275 if (prom_debug)
1276 print_memlist("phys_avail", phys_avail);
1277 #ifndef __xpv
1278 /*
1279 * Free unused memlist items, which may be used by memory DR driver
1280 * at runtime.
1281 */
1282 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) {
1283 memlist_free_block((caddr_t)current,
1284 (caddr_t)memlist + memlist_sz - (caddr_t)current);
1285 }
1286 #endif
1287
1288 /*
1289 * Build bios reserved memspace
1290 */
1291 current = bios_rsvd;
1292 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL);
1293 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz)
1294 panic("bios_rsvd was too big!");
1295 if (prom_debug)
1296 print_memlist("bios_rsvd", bios_rsvd);
1297 #ifndef __xpv
1298 /*
1299 * Free unused memlist items, which may be used by memory DR driver
1300 * at runtime.
1301 */
1302 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) {
1303 memlist_free_block((caddr_t)current,
1304 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current);
1305 }
1306 #endif
1307
1308 /*
1309 * setup page coloring
1310 */
1311 page_coloring_setup(pagecolor_mem);
1312 page_lock_init(); /* currently a no-op */
1313
1314 /*
1315 * free page list counters
1316 */
1317 (void) page_ctrs_alloc(page_ctrs_mem);
1318
1319 /*
1320 * Size the pcf array based on the number of cpus in the box at
1321 * boot time.
1322 */
1323
1324 pcf_init();
1325
1326 /*
1327 * Initialize the page structures from the memory lists.
1328 */
1329 availrmem_initial = availrmem = freemem = 0;
1330 PRM_POINT("Calling kphysm_init()...");
1331 npages = kphysm_init(pp_base, npages);
1332 PRM_POINT("kphysm_init() done");
1333 PRM_DEBUG(npages);
1334
1335 init_debug_info();
1336
1337 /*
1338 * Now that page_t's have been initialized, remove all the
1339 * initial allocation pages from the kernel free page lists.
1340 */
1341 boot_mapin((caddr_t)valloc_base, valloc_sz);
1342 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
1343 PRM_POINT("startup_memlist() done");
1344
1345 PRM_DEBUG(valloc_sz);
1346
1347 if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1348 textrepl_min_gb && l2cache_sz <= 2 << 20) {
1349 extern size_t textrepl_size_thresh;
1350 textrepl_size_thresh = (16 << 20) - 1;
1351 }
1352 }
1353
1354 /*
1355 * Layout the kernel's part of address space and initialize kmem allocator.
1356 */
1357 static void
startup_kmem(void)1358 startup_kmem(void)
1359 {
1360 extern void page_set_colorequiv_arr(void);
1361 #if !defined(__xpv)
1362 extern uint64_t kpti_kbase;
1363 #endif
1364
1365 PRM_POINT("startup_kmem() starting...");
1366
1367 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1368 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1369 "systems.");
1370 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1371 core_base = (uintptr_t)COREHEAP_BASE;
1372 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1373
1374 PRM_DEBUG(core_base);
1375 PRM_DEBUG(core_size);
1376 PRM_DEBUG(kernelbase);
1377
1378 ekernelheap = (char *)core_base;
1379 PRM_DEBUG(ekernelheap);
1380
1381 /*
1382 * Now that we know the real value of kernelbase,
1383 * update variables that were initialized with a value of
1384 * KERNELBASE (in common/conf/param.c).
1385 *
1386 * XXX The problem with this sort of hackery is that the
1387 * compiler just may feel like putting the const declarations
1388 * (in param.c) into the .text section. Perhaps they should
1389 * just be declared as variables there?
1390 */
1391
1392 *(uintptr_t *)&_kernelbase = kernelbase;
1393 *(uintptr_t *)&_userlimit = kernelbase;
1394 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1395 #if !defined(__xpv)
1396 kpti_kbase = kernelbase;
1397 #endif
1398 PRM_DEBUG(_kernelbase);
1399 PRM_DEBUG(_userlimit);
1400 PRM_DEBUG(_userlimit32);
1401
1402 /* We have to re-do this now that we've modified _userlimit. */
1403 mmu_calc_user_slots();
1404
1405 layout_kernel_va();
1406
1407 /*
1408 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1409 */
1410 kernelheap_init(kernelheap, ekernelheap,
1411 kernelheap + MMU_PAGESIZE,
1412 (void *)core_base, (void *)(core_base + core_size));
1413
1414 #if defined(__xpv)
1415 /*
1416 * Link pending events struct into cpu struct
1417 */
1418 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1419 #endif
1420 /*
1421 * Initialize kernel memory allocator.
1422 */
1423 kmem_init();
1424
1425 /*
1426 * Factor in colorequiv to check additional 'equivalent' bins
1427 */
1428 page_set_colorequiv_arr();
1429
1430 /*
1431 * print this out early so that we know what's going on
1432 */
1433 print_x86_featureset(x86_featureset);
1434
1435 /*
1436 * Initialize bp_mapin().
1437 */
1438 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1439
1440 /*
1441 * orig_npages is non-zero if physmem has been configured for less
1442 * than the available memory.
1443 */
1444 if (orig_npages) {
1445 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1446 (npages == PHYSMEM ? "Due to virtual address space " : ""),
1447 npages, orig_npages);
1448 }
1449
1450 #ifdef KERNELBASE_ABI_MIN
1451 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1452 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1453 "i386 ABI compliant.", (uintptr_t)kernelbase);
1454 }
1455 #endif
1456
1457 #ifndef __xpv
1458 if (plat_dr_support_memory()) {
1459 mem_config_init();
1460 }
1461 #else /* __xpv */
1462 /*
1463 * Some of the xen start information has to be relocated up
1464 * into the kernel's permanent address space.
1465 */
1466 PRM_POINT("calling xen_relocate_start_info()");
1467 xen_relocate_start_info();
1468 PRM_POINT("xen_relocate_start_info() done");
1469
1470 /*
1471 * (Update the vcpu pointer in our cpu structure to point into
1472 * the relocated shared info.)
1473 */
1474 CPU->cpu_m.mcpu_vcpu_info =
1475 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1476 #endif /* __xpv */
1477
1478 PRM_POINT("startup_kmem() done");
1479 }
1480
1481 #ifndef __xpv
1482 /*
1483 * If we have detected that we are running in an HVM environment, we need
1484 * to prepend the PV driver directory to the module search path.
1485 */
1486 #define HVM_MOD_DIR "/platform/i86hvm/kernel"
1487 static void
update_default_path()1488 update_default_path()
1489 {
1490 char *current, *newpath;
1491 int newlen;
1492
1493 /*
1494 * We are about to resync with krtld. krtld will reset its
1495 * internal module search path iff Solaris has set default_path.
1496 * We want to be sure we're prepending this new directory to the
1497 * right search path.
1498 */
1499 current = (default_path == NULL) ? kobj_module_path : default_path;
1500
1501 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2;
1502 newpath = kmem_alloc(newlen, KM_SLEEP);
1503 (void) strcpy(newpath, HVM_MOD_DIR);
1504 (void) strcat(newpath, " ");
1505 (void) strcat(newpath, current);
1506
1507 default_path = newpath;
1508 }
1509 #endif
1510
1511 static void
startup_modules(void)1512 startup_modules(void)
1513 {
1514 int cnt;
1515 extern void prom_setup(void);
1516 int32_t v, h;
1517 char d[11];
1518 char *cp;
1519 cmi_hdl_t hdl;
1520
1521 PRM_POINT("startup_modules() starting...");
1522
1523 #ifndef __xpv
1524 if ((get_hwenv() & HW_XEN_HVM) != 0)
1525 update_default_path();
1526 #endif
1527
1528 /*
1529 * Read the GMT lag from /etc/rtc_config.
1530 */
1531 sgmtl(process_rtc_config_file());
1532
1533 /*
1534 * Calculate default settings of system parameters based upon
1535 * maxusers, yet allow to be overridden via the /etc/system file.
1536 */
1537 param_calc(0);
1538
1539 mod_setup();
1540
1541 /*
1542 * Initialize system parameters.
1543 */
1544 param_init();
1545
1546 /*
1547 * Initialize the default brands
1548 */
1549 brand_init();
1550
1551 /*
1552 * maxmem is the amount of physical memory we're playing with.
1553 */
1554 maxmem = physmem;
1555
1556 /*
1557 * Initialize segment management stuff.
1558 */
1559 seg_init();
1560
1561 if (modload("fs", "specfs") == -1)
1562 halt("Can't load specfs");
1563
1564 if (modload("fs", "devfs") == -1)
1565 halt("Can't load devfs");
1566
1567 if (modload("fs", "dev") == -1)
1568 halt("Can't load dev");
1569
1570 if (modload("fs", "procfs") == -1)
1571 halt("Can't load procfs");
1572
1573 (void) modloadonly("sys", "lbl_edition");
1574
1575 dispinit();
1576
1577 /* Read cluster configuration data. */
1578 clconf_init();
1579
1580 #if defined(__xpv)
1581 (void) ec_init();
1582 gnttab_init();
1583 (void) xs_early_init();
1584 #endif /* __xpv */
1585
1586 /*
1587 * Create a kernel device tree. First, create rootnex and
1588 * then invoke bus specific code to probe devices.
1589 */
1590 setup_ddi();
1591
1592 #ifdef __xpv
1593 if (DOMAIN_IS_INITDOMAIN(xen_info))
1594 #endif
1595 {
1596 id_t smid;
1597 smbios_system_t smsys;
1598 smbios_info_t sminfo;
1599 char *mfg;
1600 /*
1601 * Load the System Management BIOS into the global ksmbios
1602 * handle, if an SMBIOS is present on this system.
1603 * Also set "si-hw-provider" property, if not already set.
1604 */
1605 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
1606 if (ksmbios != NULL &&
1607 ((smid = smbios_info_system(ksmbios, &smsys)) != SMB_ERR) &&
1608 (smbios_info_common(ksmbios, smid, &sminfo)) != SMB_ERR) {
1609 mfg = (char *)sminfo.smbi_manufacturer;
1610 if (BOP_GETPROPLEN(bootops, "si-hw-provider") < 0) {
1611 extern char hw_provider[];
1612 int i;
1613 for (i = 0; i < SYS_NMLN; i++) {
1614 if (isprint(mfg[i]))
1615 hw_provider[i] = mfg[i];
1616 else {
1617 hw_provider[i] = '\0';
1618 break;
1619 }
1620 }
1621 hw_provider[SYS_NMLN - 1] = '\0';
1622 }
1623 }
1624 }
1625
1626
1627 /*
1628 * Originally clconf_init() apparently needed the hostid. But
1629 * this no longer appears to be true - it uses its own nodeid.
1630 * By placing the hostid logic here, we are able to make use of
1631 * the SMBIOS UUID.
1632 */
1633 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) {
1634 cmn_err(CE_WARN, "Unable to set hostid");
1635 } else {
1636 for (v = h, cnt = 0; cnt < 10; cnt++) {
1637 d[cnt] = (char)(v % 10);
1638 v /= 10;
1639 if (v == 0)
1640 break;
1641 }
1642 for (cp = hw_serial; cnt >= 0; cnt--)
1643 *cp++ = d[cnt] + '0';
1644 *cp = 0;
1645 }
1646
1647 /*
1648 * Set up the CPU module subsystem for the boot cpu in the native
1649 * case, and all physical cpu resource in the xpv dom0 case.
1650 * Modifies the device tree, so this must be done after
1651 * setup_ddi().
1652 */
1653 #ifdef __xpv
1654 /*
1655 * If paravirtualized and on dom0 then we initialize all physical
1656 * cpu handles now; if paravirtualized on a domU then do not
1657 * initialize.
1658 */
1659 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1660 xen_mc_lcpu_cookie_t cpi;
1661
1662 for (cpi = xen_physcpu_next(NULL); cpi != NULL;
1663 cpi = xen_physcpu_next(cpi)) {
1664 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA,
1665 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi),
1666 xen_physcpu_strandid(cpi))) != NULL &&
1667 is_x86_feature(x86_featureset, X86FSET_MCA))
1668 cmi_mca_init(hdl);
1669 }
1670 }
1671 #else
1672 /*
1673 * Initialize a handle for the boot cpu - others will initialize
1674 * as they startup.
1675 */
1676 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1677 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
1678 if (is_x86_feature(x86_featureset, X86FSET_MCA))
1679 cmi_mca_init(hdl);
1680 CPU->cpu_m.mcpu_cmi_hdl = hdl;
1681 }
1682 #endif /* __xpv */
1683
1684 /*
1685 * Fake a prom tree such that /dev/openprom continues to work
1686 */
1687 PRM_POINT("startup_modules: calling prom_setup...");
1688 prom_setup();
1689 PRM_POINT("startup_modules: done");
1690
1691 /*
1692 * Load all platform specific modules
1693 */
1694 PRM_POINT("startup_modules: calling psm_modload...");
1695 psm_modload();
1696
1697 PRM_POINT("startup_modules() done");
1698 }
1699
1700 /*
1701 * claim a "setaside" boot page for use in the kernel
1702 */
1703 page_t *
boot_claim_page(pfn_t pfn)1704 boot_claim_page(pfn_t pfn)
1705 {
1706 page_t *pp;
1707
1708 pp = page_numtopp_nolock(pfn);
1709 ASSERT(pp != NULL);
1710
1711 if (PP_ISBOOTPAGES(pp)) {
1712 if (pp->p_next != NULL)
1713 pp->p_next->p_prev = pp->p_prev;
1714 if (pp->p_prev == NULL)
1715 bootpages = pp->p_next;
1716 else
1717 pp->p_prev->p_next = pp->p_next;
1718 } else {
1719 /*
1720 * htable_attach() expects a base pagesize page
1721 */
1722 if (pp->p_szc != 0)
1723 page_boot_demote(pp);
1724 pp = page_numtopp(pfn, SE_EXCL);
1725 }
1726 return (pp);
1727 }
1728
1729 /*
1730 * Walk through the pagetables looking for pages mapped in by boot. If the
1731 * setaside flag is set the pages are expected to be returned to the
1732 * kernel later in boot, so we add them to the bootpages list.
1733 */
1734 static void
protect_boot_range(uintptr_t low,uintptr_t high,int setaside)1735 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1736 {
1737 uintptr_t va = low;
1738 size_t len;
1739 uint_t prot;
1740 pfn_t pfn;
1741 page_t *pp;
1742 pgcnt_t boot_protect_cnt = 0;
1743
1744 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1745 if (va + len >= high)
1746 panic("0x%lx byte mapping at 0x%p exceeds boot's "
1747 "legal range.", len, (void *)va);
1748
1749 while (len > 0) {
1750 pp = page_numtopp_alloc(pfn);
1751 if (pp != NULL) {
1752 if (setaside == 0)
1753 panic("Unexpected mapping by boot. "
1754 "addr=%p pfn=%lx\n",
1755 (void *)va, pfn);
1756
1757 pp->p_next = bootpages;
1758 pp->p_prev = NULL;
1759 PP_SETBOOTPAGES(pp);
1760 if (bootpages != NULL) {
1761 bootpages->p_prev = pp;
1762 }
1763 bootpages = pp;
1764 ++boot_protect_cnt;
1765 }
1766
1767 ++pfn;
1768 len -= MMU_PAGESIZE;
1769 va += MMU_PAGESIZE;
1770 }
1771 }
1772 PRM_DEBUG(boot_protect_cnt);
1773 }
1774
1775 /*
1776 * Establish the final size of the kernel's heap, size of segmap, segkp, etc.
1777 */
1778 static void
layout_kernel_va(void)1779 layout_kernel_va(void)
1780 {
1781 const size_t physmem_size = mmu_ptob(physmem);
1782 size_t size;
1783
1784 PRM_POINT("layout_kernel_va() starting...");
1785
1786 kpm_vbase = (caddr_t)segkpm_base;
1787 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1788 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1789 panic("not enough room for kpm!");
1790 PRM_DEBUG(kpm_size);
1791 PRM_DEBUG(kpm_vbase);
1792
1793 segkp_base = (caddr_t)valloc_base + valloc_sz;
1794 if (!segkp_fromheap) {
1795 size = mmu_ptob(segkpsize);
1796 /*
1797 * Determine size of segkp
1798 * Users can change segkpsize through eeprom.
1799 */
1800 if (size < SEGKPMINSIZE || size > SEGKPMAXSIZE) {
1801 size = SEGKPDEFSIZE;
1802 cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1803 "segkpsize has been reset to %ld pages",
1804 mmu_btop(size));
1805 }
1806 size = MIN(size, MAX(SEGKPMINSIZE, physmem_size));
1807 segkpsize = mmu_btop(ROUND_UP_LPAGE(size));
1808 }
1809 PRM_DEBUG(segkp_base);
1810 PRM_DEBUG(segkpsize);
1811
1812 /*
1813 * segkvmm: backing for vmm guest memory. Like segzio, we have a
1814 * separate segment for two reasons: it makes it easy to skip our pages
1815 * on kernel crash dumps, and it helps avoid fragmentation. With this
1816 * segment, we're expecting significantly-sized allocations only; we'll
1817 * default to 4x the size of physmem.
1818 */
1819 segkvmm_base = segkp_base + mmu_ptob(segkpsize);
1820 size = segkvmmsize != 0 ? mmu_ptob(segkvmmsize) : (physmem_size * 4);
1821
1822 size = MAX(size, SEGVMMMINSIZE);
1823 segkvmmsize = mmu_btop(ROUND_UP_LPAGE(size));
1824
1825 PRM_DEBUG(segkvmmsize);
1826 PRM_DEBUG(segkvmm_base);
1827
1828 /*
1829 * segzio is used for ZFS cached data. For segzio, we use 1.5x physmem.
1830 */
1831 segzio_base = segkvmm_base + mmu_ptob(segkvmmsize);
1832 if (segzio_fromheap) {
1833 segziosize = 0;
1834 } else {
1835 size = (segziosize != 0) ? mmu_ptob(segziosize) :
1836 (physmem_size * 3) / 2;
1837
1838 size = MAX(size, SEGZIOMINSIZE);
1839 segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1840 }
1841 PRM_DEBUG(segziosize);
1842 PRM_DEBUG(segzio_base);
1843
1844 /*
1845 * Put the range of VA for device mappings next, kmdb knows to not
1846 * grep in this range of addresses.
1847 */
1848 toxic_addr =
1849 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1850 PRM_DEBUG(toxic_addr);
1851 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1852
1853 /*
1854 * Users can change segmapsize through eeprom. If the variable
1855 * is tuned through eeprom, there is no upper bound on the
1856 * size of segmap.
1857 */
1858 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1859
1860 PRM_DEBUG(segmap_start);
1861 PRM_DEBUG(segmapsize);
1862 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1863 PRM_DEBUG(kernelheap);
1864 PRM_POINT("layout_kernel_va() done...");
1865 }
1866
1867 /*
1868 * Finish initializing the VM system, now that we are no longer
1869 * relying on the boot time memory allocators.
1870 */
1871 static void
startup_vm(void)1872 startup_vm(void)
1873 {
1874 struct segmap_crargs a;
1875
1876 extern int use_brk_lpg, use_stk_lpg;
1877
1878 PRM_POINT("startup_vm() starting...");
1879
1880 /*
1881 * Initialize the hat layer.
1882 */
1883 hat_init();
1884
1885 /*
1886 * Do final allocations of HAT data structures that need to
1887 * be allocated before quiescing the boot loader.
1888 */
1889 PRM_POINT("Calling hat_kern_alloc()...");
1890 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
1891 PRM_POINT("hat_kern_alloc() done");
1892
1893 #ifndef __xpv
1894 /*
1895 * Setup Page Attribute Table
1896 */
1897 pat_sync();
1898 #endif
1899
1900 /*
1901 * The next two loops are done in distinct steps in order
1902 * to be sure that any page that is doubly mapped (both above
1903 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
1904 * Note this may never happen, but it might someday.
1905 */
1906 bootpages = NULL;
1907 PRM_POINT("Protecting boot pages");
1908
1909 /*
1910 * Protect any pages mapped above KERNEL_TEXT that somehow have
1911 * page_t's. This can only happen if something weird allocated
1912 * in this range (like kadb/kmdb).
1913 */
1914 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
1915
1916 /*
1917 * Before we can take over memory allocation/mapping from the boot
1918 * loader we must remove from our free page lists any boot allocated
1919 * pages that stay mapped until release_bootstrap().
1920 */
1921 protect_boot_range(0, kernelbase, 1);
1922
1923
1924 /*
1925 * Switch to running on regular HAT (not boot_mmu)
1926 */
1927 PRM_POINT("Calling hat_kern_setup()...");
1928 hat_kern_setup();
1929
1930 /*
1931 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
1932 */
1933 bop_no_more_mem();
1934
1935 PRM_POINT("hat_kern_setup() done");
1936
1937 hat_cpu_online(CPU);
1938
1939 /*
1940 * Initialize VM system
1941 */
1942 PRM_POINT("Calling kvm_init()...");
1943 kvm_init();
1944 PRM_POINT("kvm_init() done");
1945
1946 /*
1947 * Tell kmdb that the VM system is now working
1948 */
1949 if (boothowto & RB_DEBUG)
1950 kdi_dvec_vmready();
1951
1952 #if defined(__xpv)
1953 /*
1954 * Populate the I/O pool on domain 0
1955 */
1956 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1957 extern long populate_io_pool(void);
1958 long init_io_pool_cnt;
1959
1960 PRM_POINT("Populating reserve I/O page pool");
1961 init_io_pool_cnt = populate_io_pool();
1962 PRM_DEBUG(init_io_pool_cnt);
1963 }
1964 #endif
1965 /*
1966 * Mangle the brand string etc.
1967 */
1968 cpuid_execpass(CPU, CPUID_PASS_DYNAMIC, NULL);
1969
1970 /*
1971 * Create the device arena for toxic (to dtrace/kmdb) mappings.
1972 */
1973 device_arena = vmem_create("device", (void *)toxic_addr,
1974 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
1975
1976 /*
1977 * Now that we've got more VA, as well as the ability to allocate from
1978 * it, tell the debugger.
1979 */
1980 if (boothowto & RB_DEBUG)
1981 kdi_dvec_memavail();
1982
1983 #if !defined(__xpv)
1984 /*
1985 * Map page pfn=0 for drivers, such as kd, that need to pick up
1986 * parameters left there by controllers/BIOS.
1987 */
1988 PRM_POINT("setup up p0_va");
1989 p0_va = i86devmap(0, 1, PROT_READ);
1990 PRM_DEBUG(p0_va);
1991 #endif
1992
1993 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
1994 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
1995
1996 /*
1997 * disable automatic large pages for small memory systems or
1998 * when the disable flag is set.
1999 *
2000 * Do not yet consider page sizes larger than 2m/4m.
2001 */
2002 if (!auto_lpg_disable && mmu.max_page_level > 0) {
2003 max_uheap_lpsize = LEVEL_SIZE(1);
2004 max_ustack_lpsize = LEVEL_SIZE(1);
2005 max_privmap_lpsize = LEVEL_SIZE(1);
2006 max_uidata_lpsize = LEVEL_SIZE(1);
2007 max_utext_lpsize = LEVEL_SIZE(1);
2008 max_shm_lpsize = LEVEL_SIZE(1);
2009 }
2010 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
2011 auto_lpg_disable) {
2012 use_brk_lpg = 0;
2013 use_stk_lpg = 0;
2014 }
2015 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
2016
2017 PRM_POINT("Calling hat_init_finish()...");
2018 hat_init_finish();
2019 PRM_POINT("hat_init_finish() done");
2020
2021 /*
2022 * Initialize the segkp segment type.
2023 */
2024 rw_enter(&kas.a_lock, RW_WRITER);
2025 PRM_POINT("Attaching segkp");
2026 if (segkp_fromheap) {
2027 segkp->s_as = &kas;
2028 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
2029 segkp) < 0) {
2030 panic("startup: cannot attach segkp");
2031 /*NOTREACHED*/
2032 }
2033 PRM_POINT("Doing segkp_create()");
2034 if (segkp_create(segkp) != 0) {
2035 panic("startup: segkp_create failed");
2036 /*NOTREACHED*/
2037 }
2038 PRM_DEBUG(segkp);
2039 rw_exit(&kas.a_lock);
2040
2041 /*
2042 * kpm segment
2043 */
2044 segmap_kpm = 0;
2045 if (kpm_desired)
2046 kpm_init();
2047
2048 /*
2049 * Now create segmap segment.
2050 */
2051 rw_enter(&kas.a_lock, RW_WRITER);
2052 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
2053 panic("cannot attach segmap");
2054 /*NOTREACHED*/
2055 }
2056 PRM_DEBUG(segmap);
2057
2058 a.prot = PROT_READ | PROT_WRITE;
2059 a.shmsize = 0;
2060 a.nfreelist = segmapfreelists;
2061
2062 if (segmap_create(segmap, (caddr_t)&a) != 0)
2063 panic("segmap_create segmap");
2064 rw_exit(&kas.a_lock);
2065
2066 setup_vaddr_for_ppcopy(CPU);
2067
2068 segdev_init();
2069 #if defined(__xpv)
2070 if (DOMAIN_IS_INITDOMAIN(xen_info))
2071 #endif
2072 pmem_init();
2073
2074 PRM_POINT("startup_vm() done");
2075 }
2076
2077 /*
2078 * Load a tod module for the non-standard tod part found on this system.
2079 */
2080 static void
load_tod_module(char * todmod)2081 load_tod_module(char *todmod)
2082 {
2083 if (modload("tod", todmod) == -1)
2084 halt("Can't load TOD module");
2085 }
2086
2087 #ifndef __xpv
2088 static void
startup_tsc(void)2089 startup_tsc(void)
2090 {
2091 uint64_t tsc_freq;
2092
2093 PRM_POINT("startup_tsc() starting...");
2094
2095 tsc_freq = tsc_calibrate();
2096 PRM_DEBUG(tsc_freq);
2097
2098 tsc_hrtimeinit(tsc_freq);
2099 }
2100 #endif
2101
2102 static void
startup_end(void)2103 startup_end(void)
2104 {
2105 int i;
2106 extern void setx86isalist(void);
2107 extern void cpu_event_init(void);
2108
2109 PRM_POINT("startup_end() starting...");
2110
2111 /*
2112 * Perform tasks that get done after most of the VM
2113 * initialization has been done but before the clock
2114 * and other devices get started.
2115 */
2116 kern_setup1();
2117
2118 /*
2119 * Perform CPC initialization for this CPU.
2120 */
2121 kcpc_hw_init(CPU);
2122
2123 /*
2124 * Initialize cpu event framework.
2125 */
2126 cpu_event_init();
2127
2128 #if defined(OPTERON_ERRATUM_147)
2129 if (opteron_erratum_147)
2130 patch_erratum_147();
2131 #endif
2132 /*
2133 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
2134 * (For now, "needed" is defined as set tod_module_name in /etc/system)
2135 */
2136 if (tod_module_name != NULL) {
2137 PRM_POINT("load_tod_module()");
2138 load_tod_module(tod_module_name);
2139 }
2140
2141 #if defined(__xpv)
2142 /*
2143 * Forceload interposing TOD module for the hypervisor.
2144 */
2145 PRM_POINT("load_tod_module()");
2146 load_tod_module("xpvtod");
2147 #endif
2148
2149 /*
2150 * Configure the system.
2151 */
2152 PRM_POINT("Calling configure()...");
2153 configure(); /* set up devices */
2154 PRM_POINT("configure() done");
2155
2156 /*
2157 * configure() will have called fpu_probe() so we can now finish off
2158 * the last pieces.
2159 */
2160
2161 /*
2162 * Set up the FPU save area for LWP0.
2163 */
2164 lwp_fp_init(&lwp0);
2165
2166 /*
2167 * Set up for XSAVE.
2168 */
2169 if (fp_save_mech == FP_XSAVE) {
2170 PRM_POINT("xsave_setup_msr()");
2171 xsave_setup_msr(CPU);
2172 }
2173
2174 /*
2175 * Set the isa_list string to the defined instruction sets we
2176 * support.
2177 */
2178 setx86isalist();
2179 PRM_POINT("cpu_intr_alloc()");
2180 cpu_intr_alloc(CPU, NINTR_THREADS);
2181 PRM_POINT("psm_install()");
2182 psm_install();
2183
2184 /*
2185 * We're done with bootops. We don't unmap the bootstrap yet because
2186 * we're still using bootsvcs.
2187 */
2188 PRM_POINT("NULLing out bootops");
2189 *bootopsp = (struct bootops *)NULL;
2190 bootops = (struct bootops *)NULL;
2191
2192 #if defined(__xpv)
2193 ec_init_debug_irq();
2194 xs_domu_init();
2195 #endif
2196
2197 #if !defined(__xpv)
2198 /*
2199 * Intel IOMMU has been setup/initialized in ddi_impl.c
2200 * Start it up now.
2201 */
2202 immu_startup();
2203
2204 /*
2205 * Now that we're no longer going to drop into real mode for a BIOS call
2206 * via bootops, we can enable PCID (which requires CR0.PG).
2207 */
2208 enable_pcid();
2209 #endif
2210
2211 PRM_POINT("Enabling interrupts");
2212 (*picinitf)();
2213 sti();
2214 #if defined(__xpv)
2215 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
2216 xen_late_startup();
2217 #endif
2218
2219 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
2220 "softlevel1", NULL, NULL); /* XXX to be moved later */
2221
2222 /*
2223 * Register software interrupt handlers for ddi_periodic_add(9F).
2224 * Software interrupts up to the level 10 are supported.
2225 */
2226 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2227 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2228 (avfunc)(uintptr_t)ddi_periodic_softintr, "ddi_periodic",
2229 (caddr_t)(uintptr_t)i, NULL);
2230 }
2231
2232 #if !defined(__xpv)
2233 if (modload("drv", "amd_iommu") < 0) {
2234 PRM_POINT("No AMD IOMMU present\n");
2235 } else if (ddi_hold_installed_driver(ddi_name_to_major(
2236 "amd_iommu")) == NULL) {
2237 PRM_POINT("AMD IOMMU failed to attach\n");
2238 }
2239 #endif
2240 post_startup_cpu_fixups();
2241
2242 PRM_POINT("startup_end() done");
2243 }
2244
2245 /*
2246 * Don't remove the following 2 variables. They are necessary
2247 * for reading the hostid from the legacy file (/kernel/misc/sysinit).
2248 */
2249 char *_hs1107 = hw_serial;
2250 ulong_t _bdhs34;
2251
2252 void
post_startup(void)2253 post_startup(void)
2254 {
2255 extern void cpupm_init(cpu_t *);
2256 extern void cpu_event_init_cpu(cpu_t *);
2257
2258 /*
2259 * Set the system wide, processor-specific flags to be passed
2260 * to userland via the aux vector for performance hints and
2261 * instruction set extensions.
2262 */
2263 bind_hwcap();
2264
2265 #ifdef __xpv
2266 if (DOMAIN_IS_INITDOMAIN(xen_info))
2267 #endif
2268 {
2269 #if defined(__xpv)
2270 xpv_panic_init();
2271 #else
2272 /*
2273 * Startup the memory scrubber.
2274 * XXPV This should be running somewhere ..
2275 */
2276 if ((get_hwenv() & HW_VIRTUAL) == 0)
2277 memscrub_init();
2278 #endif
2279 }
2280
2281 /*
2282 * Complete CPU module initialization
2283 */
2284 cmi_post_startup();
2285
2286 /*
2287 * Perform forceloading tasks for /etc/system.
2288 */
2289 (void) mod_sysctl(SYS_FORCELOAD, NULL);
2290
2291 /*
2292 * ON4.0: Force /proc module in until clock interrupt handle fixed
2293 * ON4.0: This must be fixed or restated in /etc/systems.
2294 */
2295 (void) modload("fs", "procfs");
2296
2297 (void) i_ddi_attach_hw_nodes("pit_beep");
2298
2299 maxmem = freemem;
2300
2301 cpu_event_init_cpu(CPU);
2302 cpupm_init(CPU);
2303 (void) mach_cpu_create_device_node(CPU, NULL);
2304
2305 pg_init();
2306 }
2307
2308 static int
pp_in_range(page_t * pp,uint64_t low_addr,uint64_t high_addr)2309 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr)
2310 {
2311 return ((pp->p_pagenum >= btop(low_addr)) &&
2312 (pp->p_pagenum < btopr(high_addr)));
2313 }
2314
2315 static int
pp_in_module(page_t * pp,const rd_existing_t * modranges)2316 pp_in_module(page_t *pp, const rd_existing_t *modranges)
2317 {
2318 uint_t i;
2319
2320 for (i = 0; modranges[i].phys != 0; i++) {
2321 if (pp_in_range(pp, modranges[i].phys,
2322 modranges[i].phys + modranges[i].size))
2323 return (1);
2324 }
2325
2326 return (0);
2327 }
2328
2329 void
release_bootstrap(void)2330 release_bootstrap(void)
2331 {
2332 int root_is_ramdisk;
2333 page_t *pp;
2334 extern void kobj_boot_unmountroot(void);
2335 extern dev_t rootdev;
2336 uint_t i;
2337 char propname[32];
2338 rd_existing_t *modranges;
2339 #if !defined(__xpv)
2340 pfn_t pfn;
2341 #endif
2342
2343 /*
2344 * Save the bootfs module ranges so that we can reserve them below
2345 * for the real bootfs.
2346 */
2347 modranges = kmem_alloc(sizeof (rd_existing_t) * MAX_BOOT_MODULES,
2348 KM_SLEEP);
2349 for (i = 0; ; i++) {
2350 uint64_t start, size;
2351
2352 modranges[i].phys = 0;
2353
2354 (void) snprintf(propname, sizeof (propname),
2355 "module-addr-%u", i);
2356 if (do_bsys_getproplen(NULL, propname) <= 0)
2357 break;
2358 (void) do_bsys_getprop(NULL, propname, &start);
2359
2360 (void) snprintf(propname, sizeof (propname),
2361 "module-size-%u", i);
2362 if (do_bsys_getproplen(NULL, propname) <= 0)
2363 break;
2364 (void) do_bsys_getprop(NULL, propname, &size);
2365
2366 modranges[i].phys = start;
2367 modranges[i].size = size;
2368 }
2369
2370 /* unmount boot ramdisk and release kmem usage */
2371 kobj_boot_unmountroot();
2372
2373 /*
2374 * We're finished using the boot loader so free its pages.
2375 */
2376 PRM_POINT("Unmapping lower boot pages");
2377
2378 clear_boot_mappings(0, _userlimit);
2379
2380 postbootkernelbase = kernelbase;
2381
2382 /*
2383 * If root isn't on ramdisk, destroy the hardcoded
2384 * ramdisk node now and release the memory. Else,
2385 * ramdisk memory is kept in rd_pages.
2386 */
2387 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2388 if (!root_is_ramdisk) {
2389 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2390 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2391 ndi_rele_devi(dip); /* held from ddi_find_devinfo */
2392 (void) ddi_remove_child(dip, 0);
2393 }
2394
2395 PRM_POINT("Releasing boot pages");
2396 while (bootpages) {
2397 extern uint64_t ramdisk_start, ramdisk_end;
2398 pp = bootpages;
2399 bootpages = pp->p_next;
2400
2401
2402 /* Keep pages for the lower 64K */
2403 if (pp_in_range(pp, 0, 0x40000)) {
2404 pp->p_next = lower_pages;
2405 lower_pages = pp;
2406 lower_pages_count++;
2407 continue;
2408 }
2409
2410 if ((root_is_ramdisk && pp_in_range(pp, ramdisk_start,
2411 ramdisk_end)) || pp_in_module(pp, modranges)) {
2412 pp->p_next = rd_pages;
2413 rd_pages = pp;
2414 continue;
2415 }
2416 pp->p_next = (struct page *)0;
2417 pp->p_prev = (struct page *)0;
2418 PP_CLRBOOTPAGES(pp);
2419 page_free(pp, 1);
2420 }
2421 PRM_POINT("Boot pages released");
2422
2423 kmem_free(modranges, sizeof (rd_existing_t) * 99);
2424
2425 #if !defined(__xpv)
2426 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2427 /*
2428 * Find 1 page below 1 MB so that other processors can boot up or
2429 * so that any processor can resume.
2430 * Make sure it has a kernel VA as well as a 1:1 mapping.
2431 * We should have just free'd one up.
2432 */
2433
2434 /*
2435 * 0x10 pages is 64K. Leave the bottom 64K alone
2436 * for BIOS.
2437 */
2438 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) {
2439 if (page_numtopp_alloc(pfn) == NULL)
2440 continue;
2441 rm_platter_va = i86devmap(pfn, 1,
2442 PROT_READ | PROT_WRITE | PROT_EXEC);
2443 rm_platter_pa = ptob(pfn);
2444 break;
2445 }
2446 if (pfn == btop(1*1024*1024) && use_mp)
2447 panic("No page below 1M available for starting "
2448 "other processors or for resuming from system-suspend");
2449 #endif /* !__xpv */
2450 }
2451
2452 /*
2453 * Initialize the platform-specific parts of a page_t.
2454 */
2455 void
add_physmem_cb(page_t * pp,pfn_t pnum)2456 add_physmem_cb(page_t *pp, pfn_t pnum)
2457 {
2458 pp->p_pagenum = pnum;
2459 pp->p_mapping = NULL;
2460 pp->p_embed = 0;
2461 pp->p_share = 0;
2462 pp->p_mlentry = 0;
2463 }
2464
2465 /*
2466 * kphysm_init() initializes physical memory.
2467 */
2468 static pgcnt_t
kphysm_init(page_t * pp,pgcnt_t npages)2469 kphysm_init(page_t *pp, pgcnt_t npages)
2470 {
2471 struct memlist *pmem;
2472 struct memseg *cur_memseg;
2473 pfn_t base_pfn;
2474 pfn_t end_pfn;
2475 pgcnt_t num;
2476 pgcnt_t pages_done = 0;
2477 uint64_t addr;
2478 uint64_t size;
2479 extern pfn_t ddiphysmin;
2480 extern int mnode_xwa;
2481 int ms = 0, me = 0;
2482
2483 ASSERT(page_hash != NULL && page_hashsz != 0);
2484
2485 cur_memseg = memseg_base;
2486 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) {
2487 /*
2488 * In a 32 bit kernel can't use higher memory if we're
2489 * not booting in PAE mode. This check takes care of that.
2490 */
2491 addr = pmem->ml_address;
2492 size = pmem->ml_size;
2493 if (btop(addr) > physmax)
2494 continue;
2495
2496 /*
2497 * align addr and size - they may not be at page boundaries
2498 */
2499 if ((addr & MMU_PAGEOFFSET) != 0) {
2500 addr += MMU_PAGEOFFSET;
2501 addr &= ~(uint64_t)MMU_PAGEOFFSET;
2502 size -= addr - pmem->ml_address;
2503 }
2504
2505 /* only process pages below or equal to physmax */
2506 if ((btop(addr + size) - 1) > physmax)
2507 size = ptob(physmax - btop(addr) + 1);
2508
2509 num = btop(size);
2510 if (num == 0)
2511 continue;
2512
2513 if (num > npages)
2514 num = npages;
2515
2516 npages -= num;
2517 pages_done += num;
2518 base_pfn = btop(addr);
2519
2520 if (prom_debug)
2521 prom_printf("MEMSEG addr=0x%" PRIx64
2522 " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2523 addr, num, base_pfn, base_pfn + num);
2524
2525 /*
2526 * Ignore pages below ddiphysmin to simplify ddi memory
2527 * allocation with non-zero addr_lo requests.
2528 */
2529 if (base_pfn < ddiphysmin) {
2530 if (base_pfn + num <= ddiphysmin)
2531 continue;
2532 pp += (ddiphysmin - base_pfn);
2533 num -= (ddiphysmin - base_pfn);
2534 base_pfn = ddiphysmin;
2535 }
2536
2537 /*
2538 * mnode_xwa is greater than 1 when large pages regions can
2539 * cross memory node boundaries. To prevent the formation
2540 * of these large pages, configure the memsegs based on the
2541 * memory node ranges which had been made non-contiguous.
2542 */
2543 end_pfn = base_pfn + num - 1;
2544 if (mnode_xwa > 1) {
2545 ms = PFN_2_MEM_NODE(base_pfn);
2546 me = PFN_2_MEM_NODE(end_pfn);
2547
2548 if (ms != me) {
2549 /*
2550 * current range spans more than 1 memory node.
2551 * Set num to only the pfn range in the start
2552 * memory node.
2553 */
2554 num = mem_node_config[ms].physmax - base_pfn
2555 + 1;
2556 ASSERT(end_pfn > mem_node_config[ms].physmax);
2557 }
2558 }
2559
2560 for (;;) {
2561 /*
2562 * Build the memsegs entry
2563 */
2564 cur_memseg->pages = pp;
2565 cur_memseg->epages = pp + num;
2566 cur_memseg->pages_base = base_pfn;
2567 cur_memseg->pages_end = base_pfn + num;
2568
2569 /*
2570 * Insert into memseg list in decreasing pfn range
2571 * order. Low memory is typically more fragmented such
2572 * that this ordering keeps the larger ranges at the
2573 * front of the list for code that searches memseg.
2574 * This ASSERTS that the memsegs coming in from boot
2575 * are in increasing physical address order and not
2576 * contiguous.
2577 */
2578 if (memsegs != NULL) {
2579 ASSERT(cur_memseg->pages_base >=
2580 memsegs->pages_end);
2581 cur_memseg->next = memsegs;
2582 }
2583 memsegs = cur_memseg;
2584
2585 /*
2586 * add_physmem() initializes the PSM part of the page
2587 * struct by calling the PSM back with add_physmem_cb().
2588 * In addition it coalesces pages into larger pages as
2589 * it initializes them.
2590 */
2591 add_physmem(pp, num, base_pfn);
2592 cur_memseg++;
2593 availrmem_initial += num;
2594 availrmem += num;
2595
2596 pp += num;
2597 if (ms >= me)
2598 break;
2599
2600 /* process next memory node range */
2601 ms++;
2602 base_pfn = mem_node_config[ms].physbase;
2603
2604 if (mnode_xwa > 1) {
2605 num = MIN(mem_node_config[ms].physmax,
2606 end_pfn) - base_pfn + 1;
2607 } else {
2608 num = mem_node_config[ms].physmax -
2609 base_pfn + 1;
2610 }
2611 }
2612 }
2613
2614 PRM_DEBUG(availrmem_initial);
2615 PRM_DEBUG(availrmem);
2616 PRM_DEBUG(freemem);
2617 build_pfn_hash();
2618 return (pages_done);
2619 }
2620
2621 /*
2622 * Kernel VM initialization.
2623 */
2624 static void
kvm_init(void)2625 kvm_init(void)
2626 {
2627 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2628
2629 /*
2630 * Put the kernel segments in kernel address space.
2631 */
2632 rw_enter(&kas.a_lock, RW_WRITER);
2633 as_avlinit(&kas);
2634
2635 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2636 (void) segkmem_create(&ktextseg);
2637
2638 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2639 (void) segkmem_create(&kvalloc);
2640
2641 (void) seg_attach(&kas, kernelheap,
2642 ekernelheap - kernelheap, &kvseg);
2643 (void) segkmem_create(&kvseg);
2644
2645 if (core_size > 0) {
2646 PRM_POINT("attaching kvseg_core");
2647 (void) seg_attach(&kas, (caddr_t)core_base, core_size,
2648 &kvseg_core);
2649 (void) segkmem_create(&kvseg_core);
2650 }
2651
2652 PRM_POINT("attaching segkvmm");
2653 (void) seg_attach(&kas, segkvmm_base, mmu_ptob(segkvmmsize), &kvmmseg);
2654 (void) segkmem_create(&kvmmseg);
2655 segkmem_kvmm_init(segkvmm_base, mmu_ptob(segkvmmsize));
2656
2657 if (segziosize > 0) {
2658 PRM_POINT("attaching segzio");
2659 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2660 &kzioseg);
2661 (void) segkmem_create(&kzioseg);
2662
2663 /* create zio area covering new segment */
2664 segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2665 }
2666
2667 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2668 (void) segkmem_create(&kdebugseg);
2669
2670 rw_exit(&kas.a_lock);
2671
2672 /*
2673 * Ensure that the red zone at kernelbase is never accessible.
2674 */
2675 PRM_POINT("protecting redzone");
2676 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2677
2678 /*
2679 * Make the text writable so that it can be hot patched by DTrace.
2680 */
2681 (void) as_setprot(&kas, s_text, e_modtext - s_text,
2682 PROT_READ | PROT_WRITE | PROT_EXEC);
2683
2684 /*
2685 * Make data writable until end.
2686 */
2687 (void) as_setprot(&kas, s_data, e_moddata - s_data,
2688 PROT_READ | PROT_WRITE | PROT_EXEC);
2689 }
2690
2691 #ifndef __xpv
2692 /*
2693 * Solaris adds an entry for Write Combining caching to the PAT
2694 */
2695 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2696
2697 void
pat_sync(void)2698 pat_sync(void)
2699 {
2700 ulong_t cr0, cr0_orig, cr4;
2701
2702 if (!is_x86_feature(x86_featureset, X86FSET_PAT))
2703 return;
2704 cr0_orig = cr0 = getcr0();
2705 cr4 = getcr4();
2706
2707 /* disable caching and flush all caches and TLBs */
2708 cr0 |= CR0_CD;
2709 cr0 &= ~CR0_NW;
2710 setcr0(cr0);
2711 invalidate_cache();
2712 if (cr4 & CR4_PGE) {
2713 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2714 setcr4(cr4);
2715 } else {
2716 reload_cr3();
2717 }
2718
2719 /* add our entry to the PAT */
2720 wrmsr(REG_PAT, pat_attr_reg);
2721
2722 /* flush TLBs and cache again, then reenable cr0 caching */
2723 if (cr4 & CR4_PGE) {
2724 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2725 setcr4(cr4);
2726 } else {
2727 reload_cr3();
2728 }
2729 invalidate_cache();
2730 setcr0(cr0_orig);
2731 }
2732
2733 #endif /* !__xpv */
2734
2735 #if defined(_SOFT_HOSTID)
2736 /*
2737 * On platforms that do not have a hardware serial number, attempt
2738 * to set one based on the contents of /etc/hostid. If this file does
2739 * not exist, assume that we are to generate a new hostid and set
2740 * it in the kernel, for subsequent saving by a userland process
2741 * once the system is up and the root filesystem is mounted r/w.
2742 *
2743 * In order to gracefully support upgrade on OpenSolaris, if
2744 * /etc/hostid does not exist, we will attempt to get a serial number
2745 * using the legacy method (/kernel/misc/sysinit).
2746 *
2747 * If that isn't present, we attempt to use an SMBIOS UUID, which is
2748 * a hardware serial number. Note that we don't automatically trust
2749 * all SMBIOS UUIDs (some older platforms are defective and ship duplicate
2750 * UUIDs in violation of the standard), we check against a blacklist.
2751 *
2752 * In an attempt to make the hostid less prone to abuse
2753 * (for license circumvention, etc), we store it in /etc/hostid
2754 * in rot47 format.
2755 */
2756 static int atoi(char *);
2757
2758 /*
2759 * Set this to non-zero in /etc/system if you think your SMBIOS returns a
2760 * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist
2761 * array can be updated.)
2762 */
2763 int smbios_broken_uuid = 0;
2764
2765 /*
2766 * List of known bad UUIDs. This is just the lower 32-bit values, since
2767 * that's what we use for the host id. If your hostid falls here, you need
2768 * to contact your hardware OEM for a fix for your BIOS.
2769 */
2770 static unsigned char
2771 smbios_uuid_blacklist[][16] = {
2772
2773 { /* Reported bad UUID (Google search) */
2774 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05,
2775 0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09,
2776 },
2777 { /* Known bad DELL UUID */
2778 0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10,
2779 0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20,
2780 },
2781 { /* Uninitialized flash */
2782 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
2783 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2784 },
2785 { /* All zeros */
2786 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2787 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
2788 },
2789 };
2790
2791 static int32_t
uuid_to_hostid(const uint8_t * uuid)2792 uuid_to_hostid(const uint8_t *uuid)
2793 {
2794 /*
2795 * Although the UUIDs are 128-bits, they may not distribute entropy
2796 * evenly. We would like to use SHA or MD5, but those are located
2797 * in loadable modules and not available this early in boot. As we
2798 * don't need the values to be cryptographically strong, we just
2799 * generate 32-bit vaue by xor'ing the various sequences together,
2800 * which ensures that the entire UUID contributes to the hostid.
2801 */
2802 uint32_t id = 0;
2803
2804 /* first check against the blacklist */
2805 for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) {
2806 if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) {
2807 cmn_err(CE_CONT, "?Broken SMBIOS UUID. "
2808 "Contact BIOS manufacturer for repair.\n");
2809 return ((int32_t)HW_INVALID_HOSTID);
2810 }
2811 }
2812
2813 for (int i = 0; i < 16; i++)
2814 id ^= ((uuid[i]) << (8 * (i % sizeof (id))));
2815
2816 /* Make sure return value is positive */
2817 return (id & 0x7fffffff);
2818 }
2819
2820 static int32_t
set_soft_hostid(void)2821 set_soft_hostid(void)
2822 {
2823 struct _buf *file;
2824 char tokbuf[MAXNAMELEN];
2825 token_t token;
2826 int done = 0;
2827 u_longlong_t tmp;
2828 int i;
2829 int32_t hostid = (int32_t)HW_INVALID_HOSTID;
2830 unsigned char *c;
2831 smbios_system_t smsys;
2832
2833 /*
2834 * If /etc/hostid file not found, we'd like to get a pseudo
2835 * random number to use at the hostid. A nice way to do this
2836 * is to read the real time clock. To remain xen-compatible,
2837 * we can't poke the real hardware, so we use tsc_read() to
2838 * read the real time clock.
2839 */
2840
2841 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) {
2842 /*
2843 * hostid file not found - try to load sysinit module
2844 * and see if it has a nonzero hostid value...use that
2845 * instead of generating a new hostid here if so.
2846 */
2847 if ((i = modload("misc", "sysinit")) != -1) {
2848 if (strlen(hw_serial) > 0)
2849 hostid = (int32_t)atoi(hw_serial);
2850 (void) modunload(i);
2851 }
2852
2853 /*
2854 * We try to use the SMBIOS UUID. But not if it is blacklisted
2855 * in /etc/system.
2856 */
2857 if ((hostid == HW_INVALID_HOSTID) &&
2858 (smbios_broken_uuid == 0) &&
2859 (ksmbios != NULL) &&
2860 (smbios_info_system(ksmbios, &smsys) != SMB_ERR) &&
2861 (smsys.smbs_uuidlen >= 16)) {
2862 hostid = uuid_to_hostid(smsys.smbs_uuid);
2863 }
2864
2865 /*
2866 * Generate a "random" hostid using the clock. These
2867 * hostids will change on each boot if the value is not
2868 * saved to a persistent /etc/hostid file.
2869 */
2870 if (hostid == HW_INVALID_HOSTID) {
2871 hostid = tsc_read() & 0x0CFFFFF;
2872 }
2873 } else {
2874 /* hostid file found */
2875 while (!done) {
2876 token = kobj_lex(file, tokbuf, sizeof (tokbuf));
2877
2878 switch (token) {
2879 case POUND:
2880 /*
2881 * skip comments
2882 */
2883 kobj_find_eol(file);
2884 break;
2885 case STRING:
2886 /*
2887 * un-rot47 - obviously this
2888 * nonsense is ascii-specific
2889 */
2890 for (c = (unsigned char *)tokbuf;
2891 *c != '\0'; c++) {
2892 *c += 47;
2893 if (*c > '~')
2894 *c -= 94;
2895 else if (*c < '!')
2896 *c += 94;
2897 }
2898 /*
2899 * now we should have a real number
2900 */
2901
2902 if (kobj_getvalue(tokbuf, &tmp) != 0)
2903 kobj_file_err(CE_WARN, file,
2904 "Bad value %s for hostid",
2905 tokbuf);
2906 else
2907 hostid = (int32_t)tmp;
2908
2909 break;
2910 case EOF:
2911 done = 1;
2912 /* FALLTHROUGH */
2913 case NEWLINE:
2914 kobj_newline(file);
2915 break;
2916 default:
2917 break;
2918
2919 }
2920 }
2921 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */
2922 kobj_file_err(CE_WARN, file,
2923 "hostid missing or corrupt");
2924
2925 kobj_close_file(file);
2926 }
2927 /*
2928 * hostid is now the value read from /etc/hostid, or the
2929 * new hostid we generated in this routine or HW_INVALID_HOSTID if not
2930 * set.
2931 */
2932 return (hostid);
2933 }
2934
2935 static int
atoi(char * p)2936 atoi(char *p)
2937 {
2938 int i = 0;
2939
2940 while (*p != '\0')
2941 i = 10 * i + (*p++ - '0');
2942
2943 return (i);
2944 }
2945
2946 #endif /* _SOFT_HOSTID */
2947
2948 void
get_system_configuration(void)2949 get_system_configuration(void)
2950 {
2951 char prop[32];
2952 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
2953
2954 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
2955 BOP_GETPROP(bootops, "nodes", prop) < 0 ||
2956 kobj_getvalue(prop, &nodes_ll) == -1 ||
2957 nodes_ll > MAXNODES ||
2958 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
2959 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
2960 kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
2961 system_hardware.hd_nodes = 1;
2962 system_hardware.hd_cpus_per_node = 0;
2963 } else {
2964 system_hardware.hd_nodes = (int)nodes_ll;
2965 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
2966 }
2967
2968 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
2969 BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
2970 kobj_getvalue(prop, &lvalue) == -1)
2971 eprom_kernelbase = 0;
2972 else
2973 eprom_kernelbase = (uintptr_t)lvalue;
2974
2975 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
2976 BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
2977 kobj_getvalue(prop, &lvalue) == -1)
2978 segmapsize = SEGMAPDEFAULT;
2979 else
2980 segmapsize = (uintptr_t)lvalue;
2981
2982 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
2983 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
2984 kobj_getvalue(prop, &lvalue) == -1)
2985 segmapfreelists = 0; /* use segmap driver default */
2986 else
2987 segmapfreelists = (int)lvalue;
2988
2989 if (BOP_GETPROPLEN(bootops, "segkpsize") > sizeof (prop) ||
2990 BOP_GETPROP(bootops, "segkpsize", prop) < 0 ||
2991 kobj_getvalue(prop, &lvalue) == -1)
2992 segkpsize = mmu_btop(SEGKPDEFSIZE);
2993 else
2994 segkpsize = mmu_btop((size_t)lvalue);
2995
2996 /* physmem used to be here, but moved much earlier to fakebop.c */
2997 }
2998
2999 /*
3000 * Add to a memory list.
3001 * start = start of new memory segment
3002 * len = length of new memory segment in bytes
3003 * new = pointer to a new struct memlist
3004 * memlistp = memory list to which to add segment.
3005 */
3006 void
memlist_add(uint64_t start,uint64_t len,struct memlist * new,struct memlist ** memlistp)3007 memlist_add(
3008 uint64_t start,
3009 uint64_t len,
3010 struct memlist *new,
3011 struct memlist **memlistp)
3012 {
3013 struct memlist *cur;
3014 uint64_t end = start + len;
3015
3016 new->ml_address = start;
3017 new->ml_size = len;
3018
3019 cur = *memlistp;
3020
3021 while (cur) {
3022 if (cur->ml_address >= end) {
3023 new->ml_next = cur;
3024 *memlistp = new;
3025 new->ml_prev = cur->ml_prev;
3026 cur->ml_prev = new;
3027 return;
3028 }
3029 ASSERT(cur->ml_address + cur->ml_size <= start);
3030 if (cur->ml_next == NULL) {
3031 cur->ml_next = new;
3032 new->ml_prev = cur;
3033 new->ml_next = NULL;
3034 return;
3035 }
3036 memlistp = &cur->ml_next;
3037 cur = cur->ml_next;
3038 }
3039 }
3040
3041 void
kobj_vmem_init(vmem_t ** text_arena,vmem_t ** data_arena)3042 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3043 {
3044 size_t tsize = e_modtext - modtext;
3045 size_t dsize = e_moddata - moddata;
3046
3047 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
3048 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
3049 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
3050 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3051 }
3052
3053 caddr_t
kobj_text_alloc(vmem_t * arena,size_t size)3054 kobj_text_alloc(vmem_t *arena, size_t size)
3055 {
3056 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
3057 }
3058
3059 /*ARGSUSED*/
3060 caddr_t
kobj_texthole_alloc(caddr_t addr,size_t size)3061 kobj_texthole_alloc(caddr_t addr, size_t size)
3062 {
3063 panic("unexpected call to kobj_texthole_alloc()");
3064 /*NOTREACHED*/
3065 return (0);
3066 }
3067
3068 /*ARGSUSED*/
3069 void
kobj_texthole_free(caddr_t addr,size_t size)3070 kobj_texthole_free(caddr_t addr, size_t size)
3071 {
3072 panic("unexpected call to kobj_texthole_free()");
3073 }
3074
3075 /*
3076 * This is called just after configure() in startup().
3077 *
3078 * The ISALIST concept is a bit hopeless on Intel, because
3079 * there's no guarantee of an ever-more-capable processor
3080 * given that various parts of the instruction set may appear
3081 * and disappear between different implementations.
3082 *
3083 * While it would be possible to correct it and even enhance
3084 * it somewhat, the explicit hardware capability bitmask allows
3085 * more flexibility.
3086 *
3087 * So, we just leave this alone.
3088 */
3089 void
setx86isalist(void)3090 setx86isalist(void)
3091 {
3092 char *tp;
3093 size_t len;
3094 extern char *isa_list;
3095
3096 #define TBUFSIZE 1024
3097
3098 tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
3099 *tp = '\0';
3100
3101 (void) strcpy(tp, "amd64 ");
3102
3103 switch (x86_vendor) {
3104 case X86_VENDOR_Intel:
3105 case X86_VENDOR_AMD:
3106 case X86_VENDOR_HYGON:
3107 case X86_VENDOR_TM:
3108 if (is_x86_feature(x86_featureset, X86FSET_CMOV)) {
3109 /*
3110 * Pentium Pro or later
3111 */
3112 (void) strcat(tp, "pentium_pro");
3113 (void) strcat(tp,
3114 is_x86_feature(x86_featureset, X86FSET_MMX) ?
3115 "+mmx pentium_pro " : " ");
3116 }
3117 /*FALLTHROUGH*/
3118 case X86_VENDOR_Cyrix:
3119 ASSERT(is_x86_feature(x86_featureset, X86FSET_CPUID));
3120 (void) strcat(tp, "pentium");
3121 (void) strcat(tp,
3122 is_x86_feature(x86_featureset, X86FSET_MMX) ?
3123 "+mmx pentium " : " ");
3124 break;
3125 default:
3126 break;
3127 }
3128 (void) strcat(tp, "i486 i386 i86");
3129 len = strlen(tp) + 1; /* account for NULL at end of string */
3130 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
3131 kmem_free(tp, TBUFSIZE);
3132
3133 #undef TBUFSIZE
3134 }
3135
3136 void *
device_arena_alloc(size_t size,int vm_flag)3137 device_arena_alloc(size_t size, int vm_flag)
3138 {
3139 return (vmem_alloc(device_arena, size, vm_flag));
3140 }
3141
3142 void
device_arena_free(void * vaddr,size_t size)3143 device_arena_free(void *vaddr, size_t size)
3144 {
3145 vmem_free(device_arena, vaddr, size);
3146 }
3147