xref: /linux/kernel/sched/core.c (revision 88221ac0d560700b50493aedc768f728aa585141)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 
70 #ifdef CONFIG_PREEMPT_DYNAMIC
71 # ifdef CONFIG_GENERIC_ENTRY
72 #  include <linux/entry-common.h>
73 # endif
74 #endif
75 
76 #include <uapi/linux/sched/types.h>
77 
78 #include <asm/irq_regs.h>
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 
82 #define CREATE_TRACE_POINTS
83 #include <linux/sched/rseq_api.h>
84 #include <trace/events/sched.h>
85 #include <trace/events/ipi.h>
86 #undef CREATE_TRACE_POINTS
87 
88 #include "sched.h"
89 #include "stats.h"
90 
91 #include "autogroup.h"
92 #include "pelt.h"
93 #include "smp.h"
94 
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98 
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101 
102 /*
103  * Export tracepoints that act as a bare tracehook (ie: have no trace event
104  * associated with them) to allow external modules to probe them.
105  */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
118 
119 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
120 
121 /*
122  * Debugging: various feature bits
123  *
124  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125  * sysctl_sched_features, defined in sched.h, to allow constants propagation
126  * at compile time and compiler optimization based on features default.
127  */
128 #define SCHED_FEAT(name, enabled)	\
129 	(1UL << __SCHED_FEAT_##name) * enabled |
130 __read_mostly unsigned int sysctl_sched_features =
131 #include "features.h"
132 	0;
133 #undef SCHED_FEAT
134 
135 /*
136  * Print a warning if need_resched is set for the given duration (if
137  * LATENCY_WARN is enabled).
138  *
139  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140  * per boot.
141  */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 
145 /*
146  * Number of tasks to iterate in a single balance run.
147  * Limited because this is done with IRQs disabled.
148  */
149 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
150 
151 __read_mostly int scheduler_running;
152 
153 #ifdef CONFIG_SCHED_CORE
154 
155 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
156 
157 /* kernel prio, less is more */
__task_prio(const struct task_struct * p)158 static inline int __task_prio(const struct task_struct *p)
159 {
160 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
161 		return -2;
162 
163 	if (p->dl_server)
164 		return -1; /* deadline */
165 
166 	if (rt_or_dl_prio(p->prio))
167 		return p->prio; /* [-1, 99] */
168 
169 	if (p->sched_class == &idle_sched_class)
170 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
171 
172 	if (task_on_scx(p))
173 		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
174 
175 	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
176 }
177 
178 /*
179  * l(a,b)
180  * le(a,b) := !l(b,a)
181  * g(a,b)  := l(b,a)
182  * ge(a,b) := !l(a,b)
183  */
184 
185 /* real prio, less is less */
prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)186 static inline bool prio_less(const struct task_struct *a,
187 			     const struct task_struct *b, bool in_fi)
188 {
189 
190 	int pa = __task_prio(a), pb = __task_prio(b);
191 
192 	if (-pa < -pb)
193 		return true;
194 
195 	if (-pb < -pa)
196 		return false;
197 
198 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
199 		const struct sched_dl_entity *a_dl, *b_dl;
200 
201 		a_dl = &a->dl;
202 		/*
203 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
204 		 * __task_prio() can return -1 (for DL) even for those. In that
205 		 * case, get to the dl_server's DL entity.
206 		 */
207 		if (a->dl_server)
208 			a_dl = a->dl_server;
209 
210 		b_dl = &b->dl;
211 		if (b->dl_server)
212 			b_dl = b->dl_server;
213 
214 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
215 	}
216 
217 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
218 		return cfs_prio_less(a, b, in_fi);
219 
220 #ifdef CONFIG_SCHED_CLASS_EXT
221 	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
222 		return scx_prio_less(a, b, in_fi);
223 #endif
224 
225 	return false;
226 }
227 
__sched_core_less(const struct task_struct * a,const struct task_struct * b)228 static inline bool __sched_core_less(const struct task_struct *a,
229 				     const struct task_struct *b)
230 {
231 	if (a->core_cookie < b->core_cookie)
232 		return true;
233 
234 	if (a->core_cookie > b->core_cookie)
235 		return false;
236 
237 	/* flip prio, so high prio is leftmost */
238 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
239 		return true;
240 
241 	return false;
242 }
243 
244 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
245 
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)246 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
247 {
248 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
249 }
250 
rb_sched_core_cmp(const void * key,const struct rb_node * node)251 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
252 {
253 	const struct task_struct *p = __node_2_sc(node);
254 	unsigned long cookie = (unsigned long)key;
255 
256 	if (cookie < p->core_cookie)
257 		return -1;
258 
259 	if (cookie > p->core_cookie)
260 		return 1;
261 
262 	return 0;
263 }
264 
sched_core_enqueue(struct rq * rq,struct task_struct * p)265 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
266 {
267 	if (p->se.sched_delayed)
268 		return;
269 
270 	rq->core->core_task_seq++;
271 
272 	if (!p->core_cookie)
273 		return;
274 
275 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
276 }
277 
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)278 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
279 {
280 	if (p->se.sched_delayed)
281 		return;
282 
283 	rq->core->core_task_seq++;
284 
285 	if (sched_core_enqueued(p)) {
286 		rb_erase(&p->core_node, &rq->core_tree);
287 		RB_CLEAR_NODE(&p->core_node);
288 	}
289 
290 	/*
291 	 * Migrating the last task off the cpu, with the cpu in forced idle
292 	 * state. Reschedule to create an accounting edge for forced idle,
293 	 * and re-examine whether the core is still in forced idle state.
294 	 */
295 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
296 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
297 		resched_curr(rq);
298 }
299 
sched_task_is_throttled(struct task_struct * p,int cpu)300 static int sched_task_is_throttled(struct task_struct *p, int cpu)
301 {
302 	if (p->sched_class->task_is_throttled)
303 		return p->sched_class->task_is_throttled(p, cpu);
304 
305 	return 0;
306 }
307 
sched_core_next(struct task_struct * p,unsigned long cookie)308 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
309 {
310 	struct rb_node *node = &p->core_node;
311 	int cpu = task_cpu(p);
312 
313 	do {
314 		node = rb_next(node);
315 		if (!node)
316 			return NULL;
317 
318 		p = __node_2_sc(node);
319 		if (p->core_cookie != cookie)
320 			return NULL;
321 
322 	} while (sched_task_is_throttled(p, cpu));
323 
324 	return p;
325 }
326 
327 /*
328  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
329  * If no suitable task is found, NULL will be returned.
330  */
sched_core_find(struct rq * rq,unsigned long cookie)331 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
332 {
333 	struct task_struct *p;
334 	struct rb_node *node;
335 
336 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
337 	if (!node)
338 		return NULL;
339 
340 	p = __node_2_sc(node);
341 	if (!sched_task_is_throttled(p, rq->cpu))
342 		return p;
343 
344 	return sched_core_next(p, cookie);
345 }
346 
347 /*
348  * Magic required such that:
349  *
350  *	raw_spin_rq_lock(rq);
351  *	...
352  *	raw_spin_rq_unlock(rq);
353  *
354  * ends up locking and unlocking the _same_ lock, and all CPUs
355  * always agree on what rq has what lock.
356  *
357  * XXX entirely possible to selectively enable cores, don't bother for now.
358  */
359 
360 static DEFINE_MUTEX(sched_core_mutex);
361 static atomic_t sched_core_count;
362 static struct cpumask sched_core_mask;
363 
sched_core_lock(int cpu,unsigned long * flags)364 static void sched_core_lock(int cpu, unsigned long *flags)
365 {
366 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
367 	int t, i = 0;
368 
369 	local_irq_save(*flags);
370 	for_each_cpu(t, smt_mask)
371 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
372 }
373 
sched_core_unlock(int cpu,unsigned long * flags)374 static void sched_core_unlock(int cpu, unsigned long *flags)
375 {
376 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
377 	int t;
378 
379 	for_each_cpu(t, smt_mask)
380 		raw_spin_unlock(&cpu_rq(t)->__lock);
381 	local_irq_restore(*flags);
382 }
383 
__sched_core_flip(bool enabled)384 static void __sched_core_flip(bool enabled)
385 {
386 	unsigned long flags;
387 	int cpu, t;
388 
389 	cpus_read_lock();
390 
391 	/*
392 	 * Toggle the online cores, one by one.
393 	 */
394 	cpumask_copy(&sched_core_mask, cpu_online_mask);
395 	for_each_cpu(cpu, &sched_core_mask) {
396 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
397 
398 		sched_core_lock(cpu, &flags);
399 
400 		for_each_cpu(t, smt_mask)
401 			cpu_rq(t)->core_enabled = enabled;
402 
403 		cpu_rq(cpu)->core->core_forceidle_start = 0;
404 
405 		sched_core_unlock(cpu, &flags);
406 
407 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
408 	}
409 
410 	/*
411 	 * Toggle the offline CPUs.
412 	 */
413 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
414 		cpu_rq(cpu)->core_enabled = enabled;
415 
416 	cpus_read_unlock();
417 }
418 
sched_core_assert_empty(void)419 static void sched_core_assert_empty(void)
420 {
421 	int cpu;
422 
423 	for_each_possible_cpu(cpu)
424 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
425 }
426 
__sched_core_enable(void)427 static void __sched_core_enable(void)
428 {
429 	static_branch_enable(&__sched_core_enabled);
430 	/*
431 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
432 	 * and future ones will observe !sched_core_disabled().
433 	 */
434 	synchronize_rcu();
435 	__sched_core_flip(true);
436 	sched_core_assert_empty();
437 }
438 
__sched_core_disable(void)439 static void __sched_core_disable(void)
440 {
441 	sched_core_assert_empty();
442 	__sched_core_flip(false);
443 	static_branch_disable(&__sched_core_enabled);
444 }
445 
sched_core_get(void)446 void sched_core_get(void)
447 {
448 	if (atomic_inc_not_zero(&sched_core_count))
449 		return;
450 
451 	mutex_lock(&sched_core_mutex);
452 	if (!atomic_read(&sched_core_count))
453 		__sched_core_enable();
454 
455 	smp_mb__before_atomic();
456 	atomic_inc(&sched_core_count);
457 	mutex_unlock(&sched_core_mutex);
458 }
459 
__sched_core_put(struct work_struct * work)460 static void __sched_core_put(struct work_struct *work)
461 {
462 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
463 		__sched_core_disable();
464 		mutex_unlock(&sched_core_mutex);
465 	}
466 }
467 
sched_core_put(void)468 void sched_core_put(void)
469 {
470 	static DECLARE_WORK(_work, __sched_core_put);
471 
472 	/*
473 	 * "There can be only one"
474 	 *
475 	 * Either this is the last one, or we don't actually need to do any
476 	 * 'work'. If it is the last *again*, we rely on
477 	 * WORK_STRUCT_PENDING_BIT.
478 	 */
479 	if (!atomic_add_unless(&sched_core_count, -1, 1))
480 		schedule_work(&_work);
481 }
482 
483 #else /* !CONFIG_SCHED_CORE */
484 
sched_core_enqueue(struct rq * rq,struct task_struct * p)485 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
486 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)487 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
488 
489 #endif /* CONFIG_SCHED_CORE */
490 
491 /* need a wrapper since we may need to trace from modules */
492 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp);
493 
494 /* Call via the helper macro trace_set_current_state. */
__trace_set_current_state(int state_value)495 void __trace_set_current_state(int state_value)
496 {
497 	trace_sched_set_state_tp(current, state_value);
498 }
499 EXPORT_SYMBOL(__trace_set_current_state);
500 
501 /*
502  * Serialization rules:
503  *
504  * Lock order:
505  *
506  *   p->pi_lock
507  *     rq->lock
508  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
509  *
510  *  rq1->lock
511  *    rq2->lock  where: rq1 < rq2
512  *
513  * Regular state:
514  *
515  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
516  * local CPU's rq->lock, it optionally removes the task from the runqueue and
517  * always looks at the local rq data structures to find the most eligible task
518  * to run next.
519  *
520  * Task enqueue is also under rq->lock, possibly taken from another CPU.
521  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
522  * the local CPU to avoid bouncing the runqueue state around [ see
523  * ttwu_queue_wakelist() ]
524  *
525  * Task wakeup, specifically wakeups that involve migration, are horribly
526  * complicated to avoid having to take two rq->locks.
527  *
528  * Special state:
529  *
530  * System-calls and anything external will use task_rq_lock() which acquires
531  * both p->pi_lock and rq->lock. As a consequence the state they change is
532  * stable while holding either lock:
533  *
534  *  - sched_setaffinity()/
535  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
536  *  - set_user_nice():		p->se.load, p->*prio
537  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
538  *				p->se.load, p->rt_priority,
539  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
540  *  - sched_setnuma():		p->numa_preferred_nid
541  *  - sched_move_task():	p->sched_task_group
542  *  - uclamp_update_active()	p->uclamp*
543  *
544  * p->state <- TASK_*:
545  *
546  *   is changed locklessly using set_current_state(), __set_current_state() or
547  *   set_special_state(), see their respective comments, or by
548  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
549  *   concurrent self.
550  *
551  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
552  *
553  *   is set by activate_task() and cleared by deactivate_task(), under
554  *   rq->lock. Non-zero indicates the task is runnable, the special
555  *   ON_RQ_MIGRATING state is used for migration without holding both
556  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
557  *
558  *   Additionally it is possible to be ->on_rq but still be considered not
559  *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
560  *   but will be dequeued as soon as they get picked again. See the
561  *   task_is_runnable() helper.
562  *
563  * p->on_cpu <- { 0, 1 }:
564  *
565  *   is set by prepare_task() and cleared by finish_task() such that it will be
566  *   set before p is scheduled-in and cleared after p is scheduled-out, both
567  *   under rq->lock. Non-zero indicates the task is running on its CPU.
568  *
569  *   [ The astute reader will observe that it is possible for two tasks on one
570  *     CPU to have ->on_cpu = 1 at the same time. ]
571  *
572  * task_cpu(p): is changed by set_task_cpu(), the rules are:
573  *
574  *  - Don't call set_task_cpu() on a blocked task:
575  *
576  *    We don't care what CPU we're not running on, this simplifies hotplug,
577  *    the CPU assignment of blocked tasks isn't required to be valid.
578  *
579  *  - for try_to_wake_up(), called under p->pi_lock:
580  *
581  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
582  *
583  *  - for migration called under rq->lock:
584  *    [ see task_on_rq_migrating() in task_rq_lock() ]
585  *
586  *    o move_queued_task()
587  *    o detach_task()
588  *
589  *  - for migration called under double_rq_lock():
590  *
591  *    o __migrate_swap_task()
592  *    o push_rt_task() / pull_rt_task()
593  *    o push_dl_task() / pull_dl_task()
594  *    o dl_task_offline_migration()
595  *
596  */
597 
raw_spin_rq_lock_nested(struct rq * rq,int subclass)598 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
599 {
600 	raw_spinlock_t *lock;
601 
602 	/* Matches synchronize_rcu() in __sched_core_enable() */
603 	preempt_disable();
604 	if (sched_core_disabled()) {
605 		raw_spin_lock_nested(&rq->__lock, subclass);
606 		/* preempt_count *MUST* be > 1 */
607 		preempt_enable_no_resched();
608 		return;
609 	}
610 
611 	for (;;) {
612 		lock = __rq_lockp(rq);
613 		raw_spin_lock_nested(lock, subclass);
614 		if (likely(lock == __rq_lockp(rq))) {
615 			/* preempt_count *MUST* be > 1 */
616 			preempt_enable_no_resched();
617 			return;
618 		}
619 		raw_spin_unlock(lock);
620 	}
621 }
622 
raw_spin_rq_trylock(struct rq * rq)623 bool raw_spin_rq_trylock(struct rq *rq)
624 {
625 	raw_spinlock_t *lock;
626 	bool ret;
627 
628 	/* Matches synchronize_rcu() in __sched_core_enable() */
629 	preempt_disable();
630 	if (sched_core_disabled()) {
631 		ret = raw_spin_trylock(&rq->__lock);
632 		preempt_enable();
633 		return ret;
634 	}
635 
636 	for (;;) {
637 		lock = __rq_lockp(rq);
638 		ret = raw_spin_trylock(lock);
639 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
640 			preempt_enable();
641 			return ret;
642 		}
643 		raw_spin_unlock(lock);
644 	}
645 }
646 
raw_spin_rq_unlock(struct rq * rq)647 void raw_spin_rq_unlock(struct rq *rq)
648 {
649 	raw_spin_unlock(rq_lockp(rq));
650 }
651 
652 #ifdef CONFIG_SMP
653 /*
654  * double_rq_lock - safely lock two runqueues
655  */
double_rq_lock(struct rq * rq1,struct rq * rq2)656 void double_rq_lock(struct rq *rq1, struct rq *rq2)
657 {
658 	lockdep_assert_irqs_disabled();
659 
660 	if (rq_order_less(rq2, rq1))
661 		swap(rq1, rq2);
662 
663 	raw_spin_rq_lock(rq1);
664 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
665 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
666 
667 	double_rq_clock_clear_update(rq1, rq2);
668 }
669 #endif
670 
671 /*
672  * __task_rq_lock - lock the rq @p resides on.
673  */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)674 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
675 	__acquires(rq->lock)
676 {
677 	struct rq *rq;
678 
679 	lockdep_assert_held(&p->pi_lock);
680 
681 	for (;;) {
682 		rq = task_rq(p);
683 		raw_spin_rq_lock(rq);
684 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
685 			rq_pin_lock(rq, rf);
686 			return rq;
687 		}
688 		raw_spin_rq_unlock(rq);
689 
690 		while (unlikely(task_on_rq_migrating(p)))
691 			cpu_relax();
692 	}
693 }
694 
695 /*
696  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
697  */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)698 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
699 	__acquires(p->pi_lock)
700 	__acquires(rq->lock)
701 {
702 	struct rq *rq;
703 
704 	for (;;) {
705 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
706 		rq = task_rq(p);
707 		raw_spin_rq_lock(rq);
708 		/*
709 		 *	move_queued_task()		task_rq_lock()
710 		 *
711 		 *	ACQUIRE (rq->lock)
712 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
713 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
714 		 *	[S] ->cpu = new_cpu		[L] task_rq()
715 		 *					[L] ->on_rq
716 		 *	RELEASE (rq->lock)
717 		 *
718 		 * If we observe the old CPU in task_rq_lock(), the acquire of
719 		 * the old rq->lock will fully serialize against the stores.
720 		 *
721 		 * If we observe the new CPU in task_rq_lock(), the address
722 		 * dependency headed by '[L] rq = task_rq()' and the acquire
723 		 * will pair with the WMB to ensure we then also see migrating.
724 		 */
725 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
726 			rq_pin_lock(rq, rf);
727 			return rq;
728 		}
729 		raw_spin_rq_unlock(rq);
730 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
731 
732 		while (unlikely(task_on_rq_migrating(p)))
733 			cpu_relax();
734 	}
735 }
736 
737 /*
738  * RQ-clock updating methods:
739  */
740 
update_rq_clock_task(struct rq * rq,s64 delta)741 static void update_rq_clock_task(struct rq *rq, s64 delta)
742 {
743 /*
744  * In theory, the compile should just see 0 here, and optimize out the call
745  * to sched_rt_avg_update. But I don't trust it...
746  */
747 	s64 __maybe_unused steal = 0, irq_delta = 0;
748 
749 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
750 	if (irqtime_enabled()) {
751 		irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
752 
753 		/*
754 		 * Since irq_time is only updated on {soft,}irq_exit, we might run into
755 		 * this case when a previous update_rq_clock() happened inside a
756 		 * {soft,}IRQ region.
757 		 *
758 		 * When this happens, we stop ->clock_task and only update the
759 		 * prev_irq_time stamp to account for the part that fit, so that a next
760 		 * update will consume the rest. This ensures ->clock_task is
761 		 * monotonic.
762 		 *
763 		 * It does however cause some slight miss-attribution of {soft,}IRQ
764 		 * time, a more accurate solution would be to update the irq_time using
765 		 * the current rq->clock timestamp, except that would require using
766 		 * atomic ops.
767 		 */
768 		if (irq_delta > delta)
769 			irq_delta = delta;
770 
771 		rq->prev_irq_time += irq_delta;
772 		delta -= irq_delta;
773 		delayacct_irq(rq->curr, irq_delta);
774 	}
775 #endif
776 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
777 	if (static_key_false((&paravirt_steal_rq_enabled))) {
778 		u64 prev_steal;
779 
780 		steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
781 		steal -= rq->prev_steal_time_rq;
782 
783 		if (unlikely(steal > delta))
784 			steal = delta;
785 
786 		rq->prev_steal_time_rq = prev_steal;
787 		delta -= steal;
788 	}
789 #endif
790 
791 	rq->clock_task += delta;
792 
793 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
794 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
795 		update_irq_load_avg(rq, irq_delta + steal);
796 #endif
797 	update_rq_clock_pelt(rq, delta);
798 }
799 
update_rq_clock(struct rq * rq)800 void update_rq_clock(struct rq *rq)
801 {
802 	s64 delta;
803 	u64 clock;
804 
805 	lockdep_assert_rq_held(rq);
806 
807 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
808 		return;
809 
810 	if (sched_feat(WARN_DOUBLE_CLOCK))
811 		WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED);
812 	rq->clock_update_flags |= RQCF_UPDATED;
813 
814 	clock = sched_clock_cpu(cpu_of(rq));
815 	scx_rq_clock_update(rq, clock);
816 
817 	delta = clock - rq->clock;
818 	if (delta < 0)
819 		return;
820 	rq->clock += delta;
821 
822 	update_rq_clock_task(rq, delta);
823 }
824 
825 #ifdef CONFIG_SCHED_HRTICK
826 /*
827  * Use HR-timers to deliver accurate preemption points.
828  */
829 
hrtick_clear(struct rq * rq)830 static void hrtick_clear(struct rq *rq)
831 {
832 	if (hrtimer_active(&rq->hrtick_timer))
833 		hrtimer_cancel(&rq->hrtick_timer);
834 }
835 
836 /*
837  * High-resolution timer tick.
838  * Runs from hardirq context with interrupts disabled.
839  */
hrtick(struct hrtimer * timer)840 static enum hrtimer_restart hrtick(struct hrtimer *timer)
841 {
842 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
843 	struct rq_flags rf;
844 
845 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
846 
847 	rq_lock(rq, &rf);
848 	update_rq_clock(rq);
849 	rq->donor->sched_class->task_tick(rq, rq->curr, 1);
850 	rq_unlock(rq, &rf);
851 
852 	return HRTIMER_NORESTART;
853 }
854 
855 #ifdef CONFIG_SMP
856 
__hrtick_restart(struct rq * rq)857 static void __hrtick_restart(struct rq *rq)
858 {
859 	struct hrtimer *timer = &rq->hrtick_timer;
860 	ktime_t time = rq->hrtick_time;
861 
862 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
863 }
864 
865 /*
866  * called from hardirq (IPI) context
867  */
__hrtick_start(void * arg)868 static void __hrtick_start(void *arg)
869 {
870 	struct rq *rq = arg;
871 	struct rq_flags rf;
872 
873 	rq_lock(rq, &rf);
874 	__hrtick_restart(rq);
875 	rq_unlock(rq, &rf);
876 }
877 
878 /*
879  * Called to set the hrtick timer state.
880  *
881  * called with rq->lock held and IRQs disabled
882  */
hrtick_start(struct rq * rq,u64 delay)883 void hrtick_start(struct rq *rq, u64 delay)
884 {
885 	struct hrtimer *timer = &rq->hrtick_timer;
886 	s64 delta;
887 
888 	/*
889 	 * Don't schedule slices shorter than 10000ns, that just
890 	 * doesn't make sense and can cause timer DoS.
891 	 */
892 	delta = max_t(s64, delay, 10000LL);
893 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
894 
895 	if (rq == this_rq())
896 		__hrtick_restart(rq);
897 	else
898 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
899 }
900 
901 #else
902 /*
903  * Called to set the hrtick timer state.
904  *
905  * called with rq->lock held and IRQs disabled
906  */
hrtick_start(struct rq * rq,u64 delay)907 void hrtick_start(struct rq *rq, u64 delay)
908 {
909 	/*
910 	 * Don't schedule slices shorter than 10000ns, that just
911 	 * doesn't make sense. Rely on vruntime for fairness.
912 	 */
913 	delay = max_t(u64, delay, 10000LL);
914 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
915 		      HRTIMER_MODE_REL_PINNED_HARD);
916 }
917 
918 #endif /* CONFIG_SMP */
919 
hrtick_rq_init(struct rq * rq)920 static void hrtick_rq_init(struct rq *rq)
921 {
922 #ifdef CONFIG_SMP
923 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
924 #endif
925 	hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
926 }
927 #else	/* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)928 static inline void hrtick_clear(struct rq *rq)
929 {
930 }
931 
hrtick_rq_init(struct rq * rq)932 static inline void hrtick_rq_init(struct rq *rq)
933 {
934 }
935 #endif	/* CONFIG_SCHED_HRTICK */
936 
937 /*
938  * try_cmpxchg based fetch_or() macro so it works for different integer types:
939  */
940 #define fetch_or(ptr, mask)						\
941 	({								\
942 		typeof(ptr) _ptr = (ptr);				\
943 		typeof(mask) _mask = (mask);				\
944 		typeof(*_ptr) _val = *_ptr;				\
945 									\
946 		do {							\
947 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
948 	_val;								\
949 })
950 
951 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
952 /*
953  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
954  * this avoids any races wrt polling state changes and thereby avoids
955  * spurious IPIs.
956  */
set_nr_and_not_polling(struct thread_info * ti,int tif)957 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
958 {
959 	return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
960 }
961 
962 /*
963  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
964  *
965  * If this returns true, then the idle task promises to call
966  * sched_ttwu_pending() and reschedule soon.
967  */
set_nr_if_polling(struct task_struct * p)968 static bool set_nr_if_polling(struct task_struct *p)
969 {
970 	struct thread_info *ti = task_thread_info(p);
971 	typeof(ti->flags) val = READ_ONCE(ti->flags);
972 
973 	do {
974 		if (!(val & _TIF_POLLING_NRFLAG))
975 			return false;
976 		if (val & _TIF_NEED_RESCHED)
977 			return true;
978 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
979 
980 	return true;
981 }
982 
983 #else
set_nr_and_not_polling(struct thread_info * ti,int tif)984 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
985 {
986 	set_ti_thread_flag(ti, tif);
987 	return true;
988 }
989 
990 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)991 static inline bool set_nr_if_polling(struct task_struct *p)
992 {
993 	return false;
994 }
995 #endif
996 #endif
997 
__wake_q_add(struct wake_q_head * head,struct task_struct * task)998 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
999 {
1000 	struct wake_q_node *node = &task->wake_q;
1001 
1002 	/*
1003 	 * Atomically grab the task, if ->wake_q is !nil already it means
1004 	 * it's already queued (either by us or someone else) and will get the
1005 	 * wakeup due to that.
1006 	 *
1007 	 * In order to ensure that a pending wakeup will observe our pending
1008 	 * state, even in the failed case, an explicit smp_mb() must be used.
1009 	 */
1010 	smp_mb__before_atomic();
1011 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1012 		return false;
1013 
1014 	/*
1015 	 * The head is context local, there can be no concurrency.
1016 	 */
1017 	*head->lastp = node;
1018 	head->lastp = &node->next;
1019 	return true;
1020 }
1021 
1022 /**
1023  * wake_q_add() - queue a wakeup for 'later' waking.
1024  * @head: the wake_q_head to add @task to
1025  * @task: the task to queue for 'later' wakeup
1026  *
1027  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1028  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1029  * instantly.
1030  *
1031  * This function must be used as-if it were wake_up_process(); IOW the task
1032  * must be ready to be woken at this location.
1033  */
wake_q_add(struct wake_q_head * head,struct task_struct * task)1034 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1035 {
1036 	if (__wake_q_add(head, task))
1037 		get_task_struct(task);
1038 }
1039 
1040 /**
1041  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1042  * @head: the wake_q_head to add @task to
1043  * @task: the task to queue for 'later' wakeup
1044  *
1045  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1046  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1047  * instantly.
1048  *
1049  * This function must be used as-if it were wake_up_process(); IOW the task
1050  * must be ready to be woken at this location.
1051  *
1052  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1053  * that already hold reference to @task can call the 'safe' version and trust
1054  * wake_q to do the right thing depending whether or not the @task is already
1055  * queued for wakeup.
1056  */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1057 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1058 {
1059 	if (!__wake_q_add(head, task))
1060 		put_task_struct(task);
1061 }
1062 
wake_up_q(struct wake_q_head * head)1063 void wake_up_q(struct wake_q_head *head)
1064 {
1065 	struct wake_q_node *node = head->first;
1066 
1067 	while (node != WAKE_Q_TAIL) {
1068 		struct task_struct *task;
1069 
1070 		task = container_of(node, struct task_struct, wake_q);
1071 		node = node->next;
1072 		/* pairs with cmpxchg_relaxed() in __wake_q_add() */
1073 		WRITE_ONCE(task->wake_q.next, NULL);
1074 		/* Task can safely be re-inserted now. */
1075 
1076 		/*
1077 		 * wake_up_process() executes a full barrier, which pairs with
1078 		 * the queueing in wake_q_add() so as not to miss wakeups.
1079 		 */
1080 		wake_up_process(task);
1081 		put_task_struct(task);
1082 	}
1083 }
1084 
1085 /*
1086  * resched_curr - mark rq's current task 'to be rescheduled now'.
1087  *
1088  * On UP this means the setting of the need_resched flag, on SMP it
1089  * might also involve a cross-CPU call to trigger the scheduler on
1090  * the target CPU.
1091  */
__resched_curr(struct rq * rq,int tif)1092 static void __resched_curr(struct rq *rq, int tif)
1093 {
1094 	struct task_struct *curr = rq->curr;
1095 	struct thread_info *cti = task_thread_info(curr);
1096 	int cpu;
1097 
1098 	lockdep_assert_rq_held(rq);
1099 
1100 	/*
1101 	 * Always immediately preempt the idle task; no point in delaying doing
1102 	 * actual work.
1103 	 */
1104 	if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1105 		tif = TIF_NEED_RESCHED;
1106 
1107 	if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1108 		return;
1109 
1110 	cpu = cpu_of(rq);
1111 
1112 	if (cpu == smp_processor_id()) {
1113 		set_ti_thread_flag(cti, tif);
1114 		if (tif == TIF_NEED_RESCHED)
1115 			set_preempt_need_resched();
1116 		return;
1117 	}
1118 
1119 	if (set_nr_and_not_polling(cti, tif)) {
1120 		if (tif == TIF_NEED_RESCHED)
1121 			smp_send_reschedule(cpu);
1122 	} else {
1123 		trace_sched_wake_idle_without_ipi(cpu);
1124 	}
1125 }
1126 
resched_curr(struct rq * rq)1127 void resched_curr(struct rq *rq)
1128 {
1129 	__resched_curr(rq, TIF_NEED_RESCHED);
1130 }
1131 
1132 #ifdef CONFIG_PREEMPT_DYNAMIC
1133 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
dynamic_preempt_lazy(void)1134 static __always_inline bool dynamic_preempt_lazy(void)
1135 {
1136 	return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1137 }
1138 #else
dynamic_preempt_lazy(void)1139 static __always_inline bool dynamic_preempt_lazy(void)
1140 {
1141 	return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1142 }
1143 #endif
1144 
get_lazy_tif_bit(void)1145 static __always_inline int get_lazy_tif_bit(void)
1146 {
1147 	if (dynamic_preempt_lazy())
1148 		return TIF_NEED_RESCHED_LAZY;
1149 
1150 	return TIF_NEED_RESCHED;
1151 }
1152 
resched_curr_lazy(struct rq * rq)1153 void resched_curr_lazy(struct rq *rq)
1154 {
1155 	__resched_curr(rq, get_lazy_tif_bit());
1156 }
1157 
resched_cpu(int cpu)1158 void resched_cpu(int cpu)
1159 {
1160 	struct rq *rq = cpu_rq(cpu);
1161 	unsigned long flags;
1162 
1163 	raw_spin_rq_lock_irqsave(rq, flags);
1164 	if (cpu_online(cpu) || cpu == smp_processor_id())
1165 		resched_curr(rq);
1166 	raw_spin_rq_unlock_irqrestore(rq, flags);
1167 }
1168 
1169 #ifdef CONFIG_SMP
1170 #ifdef CONFIG_NO_HZ_COMMON
1171 /*
1172  * In the semi idle case, use the nearest busy CPU for migrating timers
1173  * from an idle CPU.  This is good for power-savings.
1174  *
1175  * We don't do similar optimization for completely idle system, as
1176  * selecting an idle CPU will add more delays to the timers than intended
1177  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1178  */
get_nohz_timer_target(void)1179 int get_nohz_timer_target(void)
1180 {
1181 	int i, cpu = smp_processor_id(), default_cpu = -1;
1182 	struct sched_domain *sd;
1183 	const struct cpumask *hk_mask;
1184 
1185 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) {
1186 		if (!idle_cpu(cpu))
1187 			return cpu;
1188 		default_cpu = cpu;
1189 	}
1190 
1191 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
1192 
1193 	guard(rcu)();
1194 
1195 	for_each_domain(cpu, sd) {
1196 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1197 			if (cpu == i)
1198 				continue;
1199 
1200 			if (!idle_cpu(i))
1201 				return i;
1202 		}
1203 	}
1204 
1205 	if (default_cpu == -1)
1206 		default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
1207 
1208 	return default_cpu;
1209 }
1210 
1211 /*
1212  * When add_timer_on() enqueues a timer into the timer wheel of an
1213  * idle CPU then this timer might expire before the next timer event
1214  * which is scheduled to wake up that CPU. In case of a completely
1215  * idle system the next event might even be infinite time into the
1216  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217  * leaves the inner idle loop so the newly added timer is taken into
1218  * account when the CPU goes back to idle and evaluates the timer
1219  * wheel for the next timer event.
1220  */
wake_up_idle_cpu(int cpu)1221 static void wake_up_idle_cpu(int cpu)
1222 {
1223 	struct rq *rq = cpu_rq(cpu);
1224 
1225 	if (cpu == smp_processor_id())
1226 		return;
1227 
1228 	/*
1229 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1230 	 * part of the idle loop. This forces an exit from the idle loop
1231 	 * and a round trip to schedule(). Now this could be optimized
1232 	 * because a simple new idle loop iteration is enough to
1233 	 * re-evaluate the next tick. Provided some re-ordering of tick
1234 	 * nohz functions that would need to follow TIF_NR_POLLING
1235 	 * clearing:
1236 	 *
1237 	 * - On most architectures, a simple fetch_or on ti::flags with a
1238 	 *   "0" value would be enough to know if an IPI needs to be sent.
1239 	 *
1240 	 * - x86 needs to perform a last need_resched() check between
1241 	 *   monitor and mwait which doesn't take timers into account.
1242 	 *   There a dedicated TIF_TIMER flag would be required to
1243 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1244 	 *   before mwait().
1245 	 *
1246 	 * However, remote timer enqueue is not such a frequent event
1247 	 * and testing of the above solutions didn't appear to report
1248 	 * much benefits.
1249 	 */
1250 	if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1251 		smp_send_reschedule(cpu);
1252 	else
1253 		trace_sched_wake_idle_without_ipi(cpu);
1254 }
1255 
wake_up_full_nohz_cpu(int cpu)1256 static bool wake_up_full_nohz_cpu(int cpu)
1257 {
1258 	/*
1259 	 * We just need the target to call irq_exit() and re-evaluate
1260 	 * the next tick. The nohz full kick at least implies that.
1261 	 * If needed we can still optimize that later with an
1262 	 * empty IRQ.
1263 	 */
1264 	if (cpu_is_offline(cpu))
1265 		return true;  /* Don't try to wake offline CPUs. */
1266 	if (tick_nohz_full_cpu(cpu)) {
1267 		if (cpu != smp_processor_id() ||
1268 		    tick_nohz_tick_stopped())
1269 			tick_nohz_full_kick_cpu(cpu);
1270 		return true;
1271 	}
1272 
1273 	return false;
1274 }
1275 
1276 /*
1277  * Wake up the specified CPU.  If the CPU is going offline, it is the
1278  * caller's responsibility to deal with the lost wakeup, for example,
1279  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1280  */
wake_up_nohz_cpu(int cpu)1281 void wake_up_nohz_cpu(int cpu)
1282 {
1283 	if (!wake_up_full_nohz_cpu(cpu))
1284 		wake_up_idle_cpu(cpu);
1285 }
1286 
nohz_csd_func(void * info)1287 static void nohz_csd_func(void *info)
1288 {
1289 	struct rq *rq = info;
1290 	int cpu = cpu_of(rq);
1291 	unsigned int flags;
1292 
1293 	/*
1294 	 * Release the rq::nohz_csd.
1295 	 */
1296 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1297 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1298 
1299 	rq->idle_balance = idle_cpu(cpu);
1300 	if (rq->idle_balance) {
1301 		rq->nohz_idle_balance = flags;
1302 		__raise_softirq_irqoff(SCHED_SOFTIRQ);
1303 	}
1304 }
1305 
1306 #endif /* CONFIG_NO_HZ_COMMON */
1307 
1308 #ifdef CONFIG_NO_HZ_FULL
__need_bw_check(struct rq * rq,struct task_struct * p)1309 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1310 {
1311 	if (rq->nr_running != 1)
1312 		return false;
1313 
1314 	if (p->sched_class != &fair_sched_class)
1315 		return false;
1316 
1317 	if (!task_on_rq_queued(p))
1318 		return false;
1319 
1320 	return true;
1321 }
1322 
sched_can_stop_tick(struct rq * rq)1323 bool sched_can_stop_tick(struct rq *rq)
1324 {
1325 	int fifo_nr_running;
1326 
1327 	/* Deadline tasks, even if single, need the tick */
1328 	if (rq->dl.dl_nr_running)
1329 		return false;
1330 
1331 	/*
1332 	 * If there are more than one RR tasks, we need the tick to affect the
1333 	 * actual RR behaviour.
1334 	 */
1335 	if (rq->rt.rr_nr_running) {
1336 		if (rq->rt.rr_nr_running == 1)
1337 			return true;
1338 		else
1339 			return false;
1340 	}
1341 
1342 	/*
1343 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1344 	 * forced preemption between FIFO tasks.
1345 	 */
1346 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1347 	if (fifo_nr_running)
1348 		return true;
1349 
1350 	/*
1351 	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1352 	 * left. For CFS, if there's more than one we need the tick for
1353 	 * involuntary preemption. For SCX, ask.
1354 	 */
1355 	if (scx_enabled() && !scx_can_stop_tick(rq))
1356 		return false;
1357 
1358 	if (rq->cfs.h_nr_queued > 1)
1359 		return false;
1360 
1361 	/*
1362 	 * If there is one task and it has CFS runtime bandwidth constraints
1363 	 * and it's on the cpu now we don't want to stop the tick.
1364 	 * This check prevents clearing the bit if a newly enqueued task here is
1365 	 * dequeued by migrating while the constrained task continues to run.
1366 	 * E.g. going from 2->1 without going through pick_next_task().
1367 	 */
1368 	if (__need_bw_check(rq, rq->curr)) {
1369 		if (cfs_task_bw_constrained(rq->curr))
1370 			return false;
1371 	}
1372 
1373 	return true;
1374 }
1375 #endif /* CONFIG_NO_HZ_FULL */
1376 #endif /* CONFIG_SMP */
1377 
1378 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1379 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1380 /*
1381  * Iterate task_group tree rooted at *from, calling @down when first entering a
1382  * node and @up when leaving it for the final time.
1383  *
1384  * Caller must hold rcu_lock or sufficient equivalent.
1385  */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1386 int walk_tg_tree_from(struct task_group *from,
1387 			     tg_visitor down, tg_visitor up, void *data)
1388 {
1389 	struct task_group *parent, *child;
1390 	int ret;
1391 
1392 	parent = from;
1393 
1394 down:
1395 	ret = (*down)(parent, data);
1396 	if (ret)
1397 		goto out;
1398 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1399 		parent = child;
1400 		goto down;
1401 
1402 up:
1403 		continue;
1404 	}
1405 	ret = (*up)(parent, data);
1406 	if (ret || parent == from)
1407 		goto out;
1408 
1409 	child = parent;
1410 	parent = parent->parent;
1411 	if (parent)
1412 		goto up;
1413 out:
1414 	return ret;
1415 }
1416 
tg_nop(struct task_group * tg,void * data)1417 int tg_nop(struct task_group *tg, void *data)
1418 {
1419 	return 0;
1420 }
1421 #endif
1422 
set_load_weight(struct task_struct * p,bool update_load)1423 void set_load_weight(struct task_struct *p, bool update_load)
1424 {
1425 	int prio = p->static_prio - MAX_RT_PRIO;
1426 	struct load_weight lw;
1427 
1428 	if (task_has_idle_policy(p)) {
1429 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1430 		lw.inv_weight = WMULT_IDLEPRIO;
1431 	} else {
1432 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1433 		lw.inv_weight = sched_prio_to_wmult[prio];
1434 	}
1435 
1436 	/*
1437 	 * SCHED_OTHER tasks have to update their load when changing their
1438 	 * weight
1439 	 */
1440 	if (update_load && p->sched_class->reweight_task)
1441 		p->sched_class->reweight_task(task_rq(p), p, &lw);
1442 	else
1443 		p->se.load = lw;
1444 }
1445 
1446 #ifdef CONFIG_UCLAMP_TASK
1447 /*
1448  * Serializes updates of utilization clamp values
1449  *
1450  * The (slow-path) user-space triggers utilization clamp value updates which
1451  * can require updates on (fast-path) scheduler's data structures used to
1452  * support enqueue/dequeue operations.
1453  * While the per-CPU rq lock protects fast-path update operations, user-space
1454  * requests are serialized using a mutex to reduce the risk of conflicting
1455  * updates or API abuses.
1456  */
1457 static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1458 
1459 /* Max allowed minimum utilization */
1460 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1461 
1462 /* Max allowed maximum utilization */
1463 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1464 
1465 /*
1466  * By default RT tasks run at the maximum performance point/capacity of the
1467  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1468  * SCHED_CAPACITY_SCALE.
1469  *
1470  * This knob allows admins to change the default behavior when uclamp is being
1471  * used. In battery powered devices, particularly, running at the maximum
1472  * capacity and frequency will increase energy consumption and shorten the
1473  * battery life.
1474  *
1475  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1476  *
1477  * This knob will not override the system default sched_util_clamp_min defined
1478  * above.
1479  */
1480 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1481 
1482 /* All clamps are required to be less or equal than these values */
1483 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1484 
1485 /*
1486  * This static key is used to reduce the uclamp overhead in the fast path. It
1487  * primarily disables the call to uclamp_rq_{inc, dec}() in
1488  * enqueue/dequeue_task().
1489  *
1490  * This allows users to continue to enable uclamp in their kernel config with
1491  * minimum uclamp overhead in the fast path.
1492  *
1493  * As soon as userspace modifies any of the uclamp knobs, the static key is
1494  * enabled, since we have an actual users that make use of uclamp
1495  * functionality.
1496  *
1497  * The knobs that would enable this static key are:
1498  *
1499  *   * A task modifying its uclamp value with sched_setattr().
1500  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1501  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1502  */
1503 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1504 
1505 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1506 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1507 		  unsigned int clamp_value)
1508 {
1509 	/*
1510 	 * Avoid blocked utilization pushing up the frequency when we go
1511 	 * idle (which drops the max-clamp) by retaining the last known
1512 	 * max-clamp.
1513 	 */
1514 	if (clamp_id == UCLAMP_MAX) {
1515 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1516 		return clamp_value;
1517 	}
1518 
1519 	return uclamp_none(UCLAMP_MIN);
1520 }
1521 
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1522 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1523 				     unsigned int clamp_value)
1524 {
1525 	/* Reset max-clamp retention only on idle exit */
1526 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1527 		return;
1528 
1529 	uclamp_rq_set(rq, clamp_id, clamp_value);
1530 }
1531 
1532 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1533 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1534 				   unsigned int clamp_value)
1535 {
1536 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1537 	int bucket_id = UCLAMP_BUCKETS - 1;
1538 
1539 	/*
1540 	 * Since both min and max clamps are max aggregated, find the
1541 	 * top most bucket with tasks in.
1542 	 */
1543 	for ( ; bucket_id >= 0; bucket_id--) {
1544 		if (!bucket[bucket_id].tasks)
1545 			continue;
1546 		return bucket[bucket_id].value;
1547 	}
1548 
1549 	/* No tasks -- default clamp values */
1550 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1551 }
1552 
__uclamp_update_util_min_rt_default(struct task_struct * p)1553 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1554 {
1555 	unsigned int default_util_min;
1556 	struct uclamp_se *uc_se;
1557 
1558 	lockdep_assert_held(&p->pi_lock);
1559 
1560 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1561 
1562 	/* Only sync if user didn't override the default */
1563 	if (uc_se->user_defined)
1564 		return;
1565 
1566 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1567 	uclamp_se_set(uc_se, default_util_min, false);
1568 }
1569 
uclamp_update_util_min_rt_default(struct task_struct * p)1570 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1571 {
1572 	if (!rt_task(p))
1573 		return;
1574 
1575 	/* Protect updates to p->uclamp_* */
1576 	guard(task_rq_lock)(p);
1577 	__uclamp_update_util_min_rt_default(p);
1578 }
1579 
1580 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1581 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1582 {
1583 	/* Copy by value as we could modify it */
1584 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1585 #ifdef CONFIG_UCLAMP_TASK_GROUP
1586 	unsigned int tg_min, tg_max, value;
1587 
1588 	/*
1589 	 * Tasks in autogroups or root task group will be
1590 	 * restricted by system defaults.
1591 	 */
1592 	if (task_group_is_autogroup(task_group(p)))
1593 		return uc_req;
1594 	if (task_group(p) == &root_task_group)
1595 		return uc_req;
1596 
1597 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1598 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1599 	value = uc_req.value;
1600 	value = clamp(value, tg_min, tg_max);
1601 	uclamp_se_set(&uc_req, value, false);
1602 #endif
1603 
1604 	return uc_req;
1605 }
1606 
1607 /*
1608  * The effective clamp bucket index of a task depends on, by increasing
1609  * priority:
1610  * - the task specific clamp value, when explicitly requested from userspace
1611  * - the task group effective clamp value, for tasks not either in the root
1612  *   group or in an autogroup
1613  * - the system default clamp value, defined by the sysadmin
1614  */
1615 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1616 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1617 {
1618 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1619 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1620 
1621 	/* System default restrictions always apply */
1622 	if (unlikely(uc_req.value > uc_max.value))
1623 		return uc_max;
1624 
1625 	return uc_req;
1626 }
1627 
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1628 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1629 {
1630 	struct uclamp_se uc_eff;
1631 
1632 	/* Task currently refcounted: use back-annotated (effective) value */
1633 	if (p->uclamp[clamp_id].active)
1634 		return (unsigned long)p->uclamp[clamp_id].value;
1635 
1636 	uc_eff = uclamp_eff_get(p, clamp_id);
1637 
1638 	return (unsigned long)uc_eff.value;
1639 }
1640 
1641 /*
1642  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1643  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1644  * updates the rq's clamp value if required.
1645  *
1646  * Tasks can have a task-specific value requested from user-space, track
1647  * within each bucket the maximum value for tasks refcounted in it.
1648  * This "local max aggregation" allows to track the exact "requested" value
1649  * for each bucket when all its RUNNABLE tasks require the same clamp.
1650  */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1651 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1652 				    enum uclamp_id clamp_id)
1653 {
1654 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1655 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1656 	struct uclamp_bucket *bucket;
1657 
1658 	lockdep_assert_rq_held(rq);
1659 
1660 	/* Update task effective clamp */
1661 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1662 
1663 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1664 	bucket->tasks++;
1665 	uc_se->active = true;
1666 
1667 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1668 
1669 	/*
1670 	 * Local max aggregation: rq buckets always track the max
1671 	 * "requested" clamp value of its RUNNABLE tasks.
1672 	 */
1673 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1674 		bucket->value = uc_se->value;
1675 
1676 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1677 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1678 }
1679 
1680 /*
1681  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1682  * is released. If this is the last task reference counting the rq's max
1683  * active clamp value, then the rq's clamp value is updated.
1684  *
1685  * Both refcounted tasks and rq's cached clamp values are expected to be
1686  * always valid. If it's detected they are not, as defensive programming,
1687  * enforce the expected state and warn.
1688  */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1689 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1690 				    enum uclamp_id clamp_id)
1691 {
1692 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1693 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1694 	struct uclamp_bucket *bucket;
1695 	unsigned int bkt_clamp;
1696 	unsigned int rq_clamp;
1697 
1698 	lockdep_assert_rq_held(rq);
1699 
1700 	/*
1701 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1702 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1703 	 *
1704 	 * In this case the uc_se->active flag should be false since no uclamp
1705 	 * accounting was performed at enqueue time and we can just return
1706 	 * here.
1707 	 *
1708 	 * Need to be careful of the following enqueue/dequeue ordering
1709 	 * problem too
1710 	 *
1711 	 *	enqueue(taskA)
1712 	 *	// sched_uclamp_used gets enabled
1713 	 *	enqueue(taskB)
1714 	 *	dequeue(taskA)
1715 	 *	// Must not decrement bucket->tasks here
1716 	 *	dequeue(taskB)
1717 	 *
1718 	 * where we could end up with stale data in uc_se and
1719 	 * bucket[uc_se->bucket_id].
1720 	 *
1721 	 * The following check here eliminates the possibility of such race.
1722 	 */
1723 	if (unlikely(!uc_se->active))
1724 		return;
1725 
1726 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1727 
1728 	WARN_ON_ONCE(!bucket->tasks);
1729 	if (likely(bucket->tasks))
1730 		bucket->tasks--;
1731 
1732 	uc_se->active = false;
1733 
1734 	/*
1735 	 * Keep "local max aggregation" simple and accept to (possibly)
1736 	 * overboost some RUNNABLE tasks in the same bucket.
1737 	 * The rq clamp bucket value is reset to its base value whenever
1738 	 * there are no more RUNNABLE tasks refcounting it.
1739 	 */
1740 	if (likely(bucket->tasks))
1741 		return;
1742 
1743 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1744 	/*
1745 	 * Defensive programming: this should never happen. If it happens,
1746 	 * e.g. due to future modification, warn and fix up the expected value.
1747 	 */
1748 	WARN_ON_ONCE(bucket->value > rq_clamp);
1749 	if (bucket->value >= rq_clamp) {
1750 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1751 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1752 	}
1753 }
1754 
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1755 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1756 {
1757 	enum uclamp_id clamp_id;
1758 
1759 	/*
1760 	 * Avoid any overhead until uclamp is actually used by the userspace.
1761 	 *
1762 	 * The condition is constructed such that a NOP is generated when
1763 	 * sched_uclamp_used is disabled.
1764 	 */
1765 	if (!uclamp_is_used())
1766 		return;
1767 
1768 	if (unlikely(!p->sched_class->uclamp_enabled))
1769 		return;
1770 
1771 	if (p->se.sched_delayed)
1772 		return;
1773 
1774 	for_each_clamp_id(clamp_id)
1775 		uclamp_rq_inc_id(rq, p, clamp_id);
1776 
1777 	/* Reset clamp idle holding when there is one RUNNABLE task */
1778 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1779 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1780 }
1781 
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1782 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1783 {
1784 	enum uclamp_id clamp_id;
1785 
1786 	/*
1787 	 * Avoid any overhead until uclamp is actually used by the userspace.
1788 	 *
1789 	 * The condition is constructed such that a NOP is generated when
1790 	 * sched_uclamp_used is disabled.
1791 	 */
1792 	if (!uclamp_is_used())
1793 		return;
1794 
1795 	if (unlikely(!p->sched_class->uclamp_enabled))
1796 		return;
1797 
1798 	if (p->se.sched_delayed)
1799 		return;
1800 
1801 	for_each_clamp_id(clamp_id)
1802 		uclamp_rq_dec_id(rq, p, clamp_id);
1803 }
1804 
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1805 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1806 				      enum uclamp_id clamp_id)
1807 {
1808 	if (!p->uclamp[clamp_id].active)
1809 		return;
1810 
1811 	uclamp_rq_dec_id(rq, p, clamp_id);
1812 	uclamp_rq_inc_id(rq, p, clamp_id);
1813 
1814 	/*
1815 	 * Make sure to clear the idle flag if we've transiently reached 0
1816 	 * active tasks on rq.
1817 	 */
1818 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1819 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1820 }
1821 
1822 static inline void
uclamp_update_active(struct task_struct * p)1823 uclamp_update_active(struct task_struct *p)
1824 {
1825 	enum uclamp_id clamp_id;
1826 	struct rq_flags rf;
1827 	struct rq *rq;
1828 
1829 	/*
1830 	 * Lock the task and the rq where the task is (or was) queued.
1831 	 *
1832 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1833 	 * price to pay to safely serialize util_{min,max} updates with
1834 	 * enqueues, dequeues and migration operations.
1835 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1836 	 */
1837 	rq = task_rq_lock(p, &rf);
1838 
1839 	/*
1840 	 * Setting the clamp bucket is serialized by task_rq_lock().
1841 	 * If the task is not yet RUNNABLE and its task_struct is not
1842 	 * affecting a valid clamp bucket, the next time it's enqueued,
1843 	 * it will already see the updated clamp bucket value.
1844 	 */
1845 	for_each_clamp_id(clamp_id)
1846 		uclamp_rq_reinc_id(rq, p, clamp_id);
1847 
1848 	task_rq_unlock(rq, p, &rf);
1849 }
1850 
1851 #ifdef CONFIG_UCLAMP_TASK_GROUP
1852 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1853 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1854 {
1855 	struct css_task_iter it;
1856 	struct task_struct *p;
1857 
1858 	css_task_iter_start(css, 0, &it);
1859 	while ((p = css_task_iter_next(&it)))
1860 		uclamp_update_active(p);
1861 	css_task_iter_end(&it);
1862 }
1863 
1864 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1865 #endif
1866 
1867 #ifdef CONFIG_SYSCTL
1868 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1869 static void uclamp_update_root_tg(void)
1870 {
1871 	struct task_group *tg = &root_task_group;
1872 
1873 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1874 		      sysctl_sched_uclamp_util_min, false);
1875 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1876 		      sysctl_sched_uclamp_util_max, false);
1877 
1878 	guard(rcu)();
1879 	cpu_util_update_eff(&root_task_group.css);
1880 }
1881 #else
uclamp_update_root_tg(void)1882 static void uclamp_update_root_tg(void) { }
1883 #endif
1884 
uclamp_sync_util_min_rt_default(void)1885 static void uclamp_sync_util_min_rt_default(void)
1886 {
1887 	struct task_struct *g, *p;
1888 
1889 	/*
1890 	 * copy_process()			sysctl_uclamp
1891 	 *					  uclamp_min_rt = X;
1892 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1893 	 *   // link thread			  smp_mb__after_spinlock()
1894 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1895 	 *   sched_post_fork()			  for_each_process_thread()
1896 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1897 	 *
1898 	 * Ensures that either sched_post_fork() will observe the new
1899 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1900 	 * task.
1901 	 */
1902 	read_lock(&tasklist_lock);
1903 	smp_mb__after_spinlock();
1904 	read_unlock(&tasklist_lock);
1905 
1906 	guard(rcu)();
1907 	for_each_process_thread(g, p)
1908 		uclamp_update_util_min_rt_default(p);
1909 }
1910 
sysctl_sched_uclamp_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1911 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1912 				void *buffer, size_t *lenp, loff_t *ppos)
1913 {
1914 	bool update_root_tg = false;
1915 	int old_min, old_max, old_min_rt;
1916 	int result;
1917 
1918 	guard(mutex)(&uclamp_mutex);
1919 
1920 	old_min = sysctl_sched_uclamp_util_min;
1921 	old_max = sysctl_sched_uclamp_util_max;
1922 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1923 
1924 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1925 	if (result)
1926 		goto undo;
1927 	if (!write)
1928 		return 0;
1929 
1930 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1931 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1932 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1933 
1934 		result = -EINVAL;
1935 		goto undo;
1936 	}
1937 
1938 	if (old_min != sysctl_sched_uclamp_util_min) {
1939 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1940 			      sysctl_sched_uclamp_util_min, false);
1941 		update_root_tg = true;
1942 	}
1943 	if (old_max != sysctl_sched_uclamp_util_max) {
1944 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1945 			      sysctl_sched_uclamp_util_max, false);
1946 		update_root_tg = true;
1947 	}
1948 
1949 	if (update_root_tg) {
1950 		sched_uclamp_enable();
1951 		uclamp_update_root_tg();
1952 	}
1953 
1954 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1955 		sched_uclamp_enable();
1956 		uclamp_sync_util_min_rt_default();
1957 	}
1958 
1959 	/*
1960 	 * We update all RUNNABLE tasks only when task groups are in use.
1961 	 * Otherwise, keep it simple and do just a lazy update at each next
1962 	 * task enqueue time.
1963 	 */
1964 	return 0;
1965 
1966 undo:
1967 	sysctl_sched_uclamp_util_min = old_min;
1968 	sysctl_sched_uclamp_util_max = old_max;
1969 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1970 	return result;
1971 }
1972 #endif
1973 
uclamp_fork(struct task_struct * p)1974 static void uclamp_fork(struct task_struct *p)
1975 {
1976 	enum uclamp_id clamp_id;
1977 
1978 	/*
1979 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1980 	 * as the task is still at its early fork stages.
1981 	 */
1982 	for_each_clamp_id(clamp_id)
1983 		p->uclamp[clamp_id].active = false;
1984 
1985 	if (likely(!p->sched_reset_on_fork))
1986 		return;
1987 
1988 	for_each_clamp_id(clamp_id) {
1989 		uclamp_se_set(&p->uclamp_req[clamp_id],
1990 			      uclamp_none(clamp_id), false);
1991 	}
1992 }
1993 
uclamp_post_fork(struct task_struct * p)1994 static void uclamp_post_fork(struct task_struct *p)
1995 {
1996 	uclamp_update_util_min_rt_default(p);
1997 }
1998 
init_uclamp_rq(struct rq * rq)1999 static void __init init_uclamp_rq(struct rq *rq)
2000 {
2001 	enum uclamp_id clamp_id;
2002 	struct uclamp_rq *uc_rq = rq->uclamp;
2003 
2004 	for_each_clamp_id(clamp_id) {
2005 		uc_rq[clamp_id] = (struct uclamp_rq) {
2006 			.value = uclamp_none(clamp_id)
2007 		};
2008 	}
2009 
2010 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2011 }
2012 
init_uclamp(void)2013 static void __init init_uclamp(void)
2014 {
2015 	struct uclamp_se uc_max = {};
2016 	enum uclamp_id clamp_id;
2017 	int cpu;
2018 
2019 	for_each_possible_cpu(cpu)
2020 		init_uclamp_rq(cpu_rq(cpu));
2021 
2022 	for_each_clamp_id(clamp_id) {
2023 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2024 			      uclamp_none(clamp_id), false);
2025 	}
2026 
2027 	/* System defaults allow max clamp values for both indexes */
2028 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2029 	for_each_clamp_id(clamp_id) {
2030 		uclamp_default[clamp_id] = uc_max;
2031 #ifdef CONFIG_UCLAMP_TASK_GROUP
2032 		root_task_group.uclamp_req[clamp_id] = uc_max;
2033 		root_task_group.uclamp[clamp_id] = uc_max;
2034 #endif
2035 	}
2036 }
2037 
2038 #else /* !CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)2039 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2040 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_fork(struct task_struct * p)2041 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2042 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2043 static inline void init_uclamp(void) { }
2044 #endif /* CONFIG_UCLAMP_TASK */
2045 
sched_task_on_rq(struct task_struct * p)2046 bool sched_task_on_rq(struct task_struct *p)
2047 {
2048 	return task_on_rq_queued(p);
2049 }
2050 
get_wchan(struct task_struct * p)2051 unsigned long get_wchan(struct task_struct *p)
2052 {
2053 	unsigned long ip = 0;
2054 	unsigned int state;
2055 
2056 	if (!p || p == current)
2057 		return 0;
2058 
2059 	/* Only get wchan if task is blocked and we can keep it that way. */
2060 	raw_spin_lock_irq(&p->pi_lock);
2061 	state = READ_ONCE(p->__state);
2062 	smp_rmb(); /* see try_to_wake_up() */
2063 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2064 		ip = __get_wchan(p);
2065 	raw_spin_unlock_irq(&p->pi_lock);
2066 
2067 	return ip;
2068 }
2069 
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2070 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2071 {
2072 	if (!(flags & ENQUEUE_NOCLOCK))
2073 		update_rq_clock(rq);
2074 
2075 	p->sched_class->enqueue_task(rq, p, flags);
2076 	/*
2077 	 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
2078 	 * ->sched_delayed.
2079 	 */
2080 	uclamp_rq_inc(rq, p);
2081 
2082 	psi_enqueue(p, flags);
2083 
2084 	if (!(flags & ENQUEUE_RESTORE))
2085 		sched_info_enqueue(rq, p);
2086 
2087 	if (sched_core_enabled(rq))
2088 		sched_core_enqueue(rq, p);
2089 }
2090 
2091 /*
2092  * Must only return false when DEQUEUE_SLEEP.
2093  */
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2094 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2095 {
2096 	if (sched_core_enabled(rq))
2097 		sched_core_dequeue(rq, p, flags);
2098 
2099 	if (!(flags & DEQUEUE_NOCLOCK))
2100 		update_rq_clock(rq);
2101 
2102 	if (!(flags & DEQUEUE_SAVE))
2103 		sched_info_dequeue(rq, p);
2104 
2105 	psi_dequeue(p, flags);
2106 
2107 	/*
2108 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2109 	 * and mark the task ->sched_delayed.
2110 	 */
2111 	uclamp_rq_dec(rq, p);
2112 	return p->sched_class->dequeue_task(rq, p, flags);
2113 }
2114 
activate_task(struct rq * rq,struct task_struct * p,int flags)2115 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2116 {
2117 	if (task_on_rq_migrating(p))
2118 		flags |= ENQUEUE_MIGRATED;
2119 	if (flags & ENQUEUE_MIGRATED)
2120 		sched_mm_cid_migrate_to(rq, p);
2121 
2122 	enqueue_task(rq, p, flags);
2123 
2124 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2125 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2126 }
2127 
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2128 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2129 {
2130 	WARN_ON_ONCE(flags & DEQUEUE_SLEEP);
2131 
2132 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2133 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2134 
2135 	/*
2136 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2137 	 * dequeue_task() and cleared *after* enqueue_task().
2138 	 */
2139 
2140 	dequeue_task(rq, p, flags);
2141 }
2142 
block_task(struct rq * rq,struct task_struct * p,int flags)2143 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2144 {
2145 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2146 		__block_task(rq, p);
2147 }
2148 
2149 /**
2150  * task_curr - is this task currently executing on a CPU?
2151  * @p: the task in question.
2152  *
2153  * Return: 1 if the task is currently executing. 0 otherwise.
2154  */
task_curr(const struct task_struct * p)2155 inline int task_curr(const struct task_struct *p)
2156 {
2157 	return cpu_curr(task_cpu(p)) == p;
2158 }
2159 
2160 /*
2161  * ->switching_to() is called with the pi_lock and rq_lock held and must not
2162  * mess with locking.
2163  */
check_class_changing(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class)2164 void check_class_changing(struct rq *rq, struct task_struct *p,
2165 			  const struct sched_class *prev_class)
2166 {
2167 	if (prev_class != p->sched_class && p->sched_class->switching_to)
2168 		p->sched_class->switching_to(rq, p);
2169 }
2170 
2171 /*
2172  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2173  * use the balance_callback list if you want balancing.
2174  *
2175  * this means any call to check_class_changed() must be followed by a call to
2176  * balance_callback().
2177  */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2178 void check_class_changed(struct rq *rq, struct task_struct *p,
2179 			 const struct sched_class *prev_class,
2180 			 int oldprio)
2181 {
2182 	if (prev_class != p->sched_class) {
2183 		if (prev_class->switched_from)
2184 			prev_class->switched_from(rq, p);
2185 
2186 		p->sched_class->switched_to(rq, p);
2187 	} else if (oldprio != p->prio || dl_task(p))
2188 		p->sched_class->prio_changed(rq, p, oldprio);
2189 }
2190 
wakeup_preempt(struct rq * rq,struct task_struct * p,int flags)2191 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2192 {
2193 	struct task_struct *donor = rq->donor;
2194 
2195 	if (p->sched_class == donor->sched_class)
2196 		donor->sched_class->wakeup_preempt(rq, p, flags);
2197 	else if (sched_class_above(p->sched_class, donor->sched_class))
2198 		resched_curr(rq);
2199 
2200 	/*
2201 	 * A queue event has occurred, and we're going to schedule.  In
2202 	 * this case, we can save a useless back to back clock update.
2203 	 */
2204 	if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2205 		rq_clock_skip_update(rq);
2206 }
2207 
2208 static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2209 int __task_state_match(struct task_struct *p, unsigned int state)
2210 {
2211 	if (READ_ONCE(p->__state) & state)
2212 		return 1;
2213 
2214 	if (READ_ONCE(p->saved_state) & state)
2215 		return -1;
2216 
2217 	return 0;
2218 }
2219 
2220 static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2221 int task_state_match(struct task_struct *p, unsigned int state)
2222 {
2223 	/*
2224 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2225 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2226 	 */
2227 	guard(raw_spinlock_irq)(&p->pi_lock);
2228 	return __task_state_match(p, state);
2229 }
2230 
2231 /*
2232  * wait_task_inactive - wait for a thread to unschedule.
2233  *
2234  * Wait for the thread to block in any of the states set in @match_state.
2235  * If it changes, i.e. @p might have woken up, then return zero.  When we
2236  * succeed in waiting for @p to be off its CPU, we return a positive number
2237  * (its total switch count).  If a second call a short while later returns the
2238  * same number, the caller can be sure that @p has remained unscheduled the
2239  * whole time.
2240  *
2241  * The caller must ensure that the task *will* unschedule sometime soon,
2242  * else this function might spin for a *long* time. This function can't
2243  * be called with interrupts off, or it may introduce deadlock with
2244  * smp_call_function() if an IPI is sent by the same process we are
2245  * waiting to become inactive.
2246  */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2247 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2248 {
2249 	int running, queued, match;
2250 	struct rq_flags rf;
2251 	unsigned long ncsw;
2252 	struct rq *rq;
2253 
2254 	for (;;) {
2255 		/*
2256 		 * We do the initial early heuristics without holding
2257 		 * any task-queue locks at all. We'll only try to get
2258 		 * the runqueue lock when things look like they will
2259 		 * work out!
2260 		 */
2261 		rq = task_rq(p);
2262 
2263 		/*
2264 		 * If the task is actively running on another CPU
2265 		 * still, just relax and busy-wait without holding
2266 		 * any locks.
2267 		 *
2268 		 * NOTE! Since we don't hold any locks, it's not
2269 		 * even sure that "rq" stays as the right runqueue!
2270 		 * But we don't care, since "task_on_cpu()" will
2271 		 * return false if the runqueue has changed and p
2272 		 * is actually now running somewhere else!
2273 		 */
2274 		while (task_on_cpu(rq, p)) {
2275 			if (!task_state_match(p, match_state))
2276 				return 0;
2277 			cpu_relax();
2278 		}
2279 
2280 		/*
2281 		 * Ok, time to look more closely! We need the rq
2282 		 * lock now, to be *sure*. If we're wrong, we'll
2283 		 * just go back and repeat.
2284 		 */
2285 		rq = task_rq_lock(p, &rf);
2286 		trace_sched_wait_task(p);
2287 		running = task_on_cpu(rq, p);
2288 		queued = task_on_rq_queued(p);
2289 		ncsw = 0;
2290 		if ((match = __task_state_match(p, match_state))) {
2291 			/*
2292 			 * When matching on p->saved_state, consider this task
2293 			 * still queued so it will wait.
2294 			 */
2295 			if (match < 0)
2296 				queued = 1;
2297 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2298 		}
2299 		task_rq_unlock(rq, p, &rf);
2300 
2301 		/*
2302 		 * If it changed from the expected state, bail out now.
2303 		 */
2304 		if (unlikely(!ncsw))
2305 			break;
2306 
2307 		/*
2308 		 * Was it really running after all now that we
2309 		 * checked with the proper locks actually held?
2310 		 *
2311 		 * Oops. Go back and try again..
2312 		 */
2313 		if (unlikely(running)) {
2314 			cpu_relax();
2315 			continue;
2316 		}
2317 
2318 		/*
2319 		 * It's not enough that it's not actively running,
2320 		 * it must be off the runqueue _entirely_, and not
2321 		 * preempted!
2322 		 *
2323 		 * So if it was still runnable (but just not actively
2324 		 * running right now), it's preempted, and we should
2325 		 * yield - it could be a while.
2326 		 */
2327 		if (unlikely(queued)) {
2328 			ktime_t to = NSEC_PER_SEC / HZ;
2329 
2330 			set_current_state(TASK_UNINTERRUPTIBLE);
2331 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2332 			continue;
2333 		}
2334 
2335 		/*
2336 		 * Ahh, all good. It wasn't running, and it wasn't
2337 		 * runnable, which means that it will never become
2338 		 * running in the future either. We're all done!
2339 		 */
2340 		break;
2341 	}
2342 
2343 	return ncsw;
2344 }
2345 
2346 #ifdef CONFIG_SMP
2347 
2348 static void
2349 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2350 
migrate_disable_switch(struct rq * rq,struct task_struct * p)2351 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2352 {
2353 	struct affinity_context ac = {
2354 		.new_mask  = cpumask_of(rq->cpu),
2355 		.flags     = SCA_MIGRATE_DISABLE,
2356 	};
2357 
2358 	if (likely(!p->migration_disabled))
2359 		return;
2360 
2361 	if (p->cpus_ptr != &p->cpus_mask)
2362 		return;
2363 
2364 	/*
2365 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2366 	 */
2367 	__do_set_cpus_allowed(p, &ac);
2368 }
2369 
migrate_disable(void)2370 void migrate_disable(void)
2371 {
2372 	struct task_struct *p = current;
2373 
2374 	if (p->migration_disabled) {
2375 #ifdef CONFIG_DEBUG_PREEMPT
2376 		/*
2377 		 *Warn about overflow half-way through the range.
2378 		 */
2379 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2380 #endif
2381 		p->migration_disabled++;
2382 		return;
2383 	}
2384 
2385 	guard(preempt)();
2386 	this_rq()->nr_pinned++;
2387 	p->migration_disabled = 1;
2388 }
2389 EXPORT_SYMBOL_GPL(migrate_disable);
2390 
migrate_enable(void)2391 void migrate_enable(void)
2392 {
2393 	struct task_struct *p = current;
2394 	struct affinity_context ac = {
2395 		.new_mask  = &p->cpus_mask,
2396 		.flags     = SCA_MIGRATE_ENABLE,
2397 	};
2398 
2399 #ifdef CONFIG_DEBUG_PREEMPT
2400 	/*
2401 	 * Check both overflow from migrate_disable() and superfluous
2402 	 * migrate_enable().
2403 	 */
2404 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2405 		return;
2406 #endif
2407 
2408 	if (p->migration_disabled > 1) {
2409 		p->migration_disabled--;
2410 		return;
2411 	}
2412 
2413 	/*
2414 	 * Ensure stop_task runs either before or after this, and that
2415 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2416 	 */
2417 	guard(preempt)();
2418 	if (p->cpus_ptr != &p->cpus_mask)
2419 		__set_cpus_allowed_ptr(p, &ac);
2420 	/*
2421 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2422 	 * regular cpus_mask, otherwise things that race (eg.
2423 	 * select_fallback_rq) get confused.
2424 	 */
2425 	barrier();
2426 	p->migration_disabled = 0;
2427 	this_rq()->nr_pinned--;
2428 }
2429 EXPORT_SYMBOL_GPL(migrate_enable);
2430 
rq_has_pinned_tasks(struct rq * rq)2431 static inline bool rq_has_pinned_tasks(struct rq *rq)
2432 {
2433 	return rq->nr_pinned;
2434 }
2435 
2436 /*
2437  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2438  * __set_cpus_allowed_ptr() and select_fallback_rq().
2439  */
is_cpu_allowed(struct task_struct * p,int cpu)2440 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2441 {
2442 	/* When not in the task's cpumask, no point in looking further. */
2443 	if (!task_allowed_on_cpu(p, cpu))
2444 		return false;
2445 
2446 	/* migrate_disabled() must be allowed to finish. */
2447 	if (is_migration_disabled(p))
2448 		return cpu_online(cpu);
2449 
2450 	/* Non kernel threads are not allowed during either online or offline. */
2451 	if (!(p->flags & PF_KTHREAD))
2452 		return cpu_active(cpu);
2453 
2454 	/* KTHREAD_IS_PER_CPU is always allowed. */
2455 	if (kthread_is_per_cpu(p))
2456 		return cpu_online(cpu);
2457 
2458 	/* Regular kernel threads don't get to stay during offline. */
2459 	if (cpu_dying(cpu))
2460 		return false;
2461 
2462 	/* But are allowed during online. */
2463 	return cpu_online(cpu);
2464 }
2465 
2466 /*
2467  * This is how migration works:
2468  *
2469  * 1) we invoke migration_cpu_stop() on the target CPU using
2470  *    stop_one_cpu().
2471  * 2) stopper starts to run (implicitly forcing the migrated thread
2472  *    off the CPU)
2473  * 3) it checks whether the migrated task is still in the wrong runqueue.
2474  * 4) if it's in the wrong runqueue then the migration thread removes
2475  *    it and puts it into the right queue.
2476  * 5) stopper completes and stop_one_cpu() returns and the migration
2477  *    is done.
2478  */
2479 
2480 /*
2481  * move_queued_task - move a queued task to new rq.
2482  *
2483  * Returns (locked) new rq. Old rq's lock is released.
2484  */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2485 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2486 				   struct task_struct *p, int new_cpu)
2487 {
2488 	lockdep_assert_rq_held(rq);
2489 
2490 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2491 	set_task_cpu(p, new_cpu);
2492 	rq_unlock(rq, rf);
2493 
2494 	rq = cpu_rq(new_cpu);
2495 
2496 	rq_lock(rq, rf);
2497 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2498 	activate_task(rq, p, 0);
2499 	wakeup_preempt(rq, p, 0);
2500 
2501 	return rq;
2502 }
2503 
2504 struct migration_arg {
2505 	struct task_struct		*task;
2506 	int				dest_cpu;
2507 	struct set_affinity_pending	*pending;
2508 };
2509 
2510 /*
2511  * @refs: number of wait_for_completion()
2512  * @stop_pending: is @stop_work in use
2513  */
2514 struct set_affinity_pending {
2515 	refcount_t		refs;
2516 	unsigned int		stop_pending;
2517 	struct completion	done;
2518 	struct cpu_stop_work	stop_work;
2519 	struct migration_arg	arg;
2520 };
2521 
2522 /*
2523  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2524  * this because either it can't run here any more (set_cpus_allowed()
2525  * away from this CPU, or CPU going down), or because we're
2526  * attempting to rebalance this task on exec (sched_exec).
2527  *
2528  * So we race with normal scheduler movements, but that's OK, as long
2529  * as the task is no longer on this CPU.
2530  */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2531 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2532 				 struct task_struct *p, int dest_cpu)
2533 {
2534 	/* Affinity changed (again). */
2535 	if (!is_cpu_allowed(p, dest_cpu))
2536 		return rq;
2537 
2538 	rq = move_queued_task(rq, rf, p, dest_cpu);
2539 
2540 	return rq;
2541 }
2542 
2543 /*
2544  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2545  * and performs thread migration by bumping thread off CPU then
2546  * 'pushing' onto another runqueue.
2547  */
migration_cpu_stop(void * data)2548 static int migration_cpu_stop(void *data)
2549 {
2550 	struct migration_arg *arg = data;
2551 	struct set_affinity_pending *pending = arg->pending;
2552 	struct task_struct *p = arg->task;
2553 	struct rq *rq = this_rq();
2554 	bool complete = false;
2555 	struct rq_flags rf;
2556 
2557 	/*
2558 	 * The original target CPU might have gone down and we might
2559 	 * be on another CPU but it doesn't matter.
2560 	 */
2561 	local_irq_save(rf.flags);
2562 	/*
2563 	 * We need to explicitly wake pending tasks before running
2564 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2565 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2566 	 */
2567 	flush_smp_call_function_queue();
2568 
2569 	raw_spin_lock(&p->pi_lock);
2570 	rq_lock(rq, &rf);
2571 
2572 	/*
2573 	 * If we were passed a pending, then ->stop_pending was set, thus
2574 	 * p->migration_pending must have remained stable.
2575 	 */
2576 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2577 
2578 	/*
2579 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2580 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2581 	 * we're holding p->pi_lock.
2582 	 */
2583 	if (task_rq(p) == rq) {
2584 		if (is_migration_disabled(p))
2585 			goto out;
2586 
2587 		if (pending) {
2588 			p->migration_pending = NULL;
2589 			complete = true;
2590 
2591 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2592 				goto out;
2593 		}
2594 
2595 		if (task_on_rq_queued(p)) {
2596 			update_rq_clock(rq);
2597 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2598 		} else {
2599 			p->wake_cpu = arg->dest_cpu;
2600 		}
2601 
2602 		/*
2603 		 * XXX __migrate_task() can fail, at which point we might end
2604 		 * up running on a dodgy CPU, AFAICT this can only happen
2605 		 * during CPU hotplug, at which point we'll get pushed out
2606 		 * anyway, so it's probably not a big deal.
2607 		 */
2608 
2609 	} else if (pending) {
2610 		/*
2611 		 * This happens when we get migrated between migrate_enable()'s
2612 		 * preempt_enable() and scheduling the stopper task. At that
2613 		 * point we're a regular task again and not current anymore.
2614 		 *
2615 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2616 		 * more likely.
2617 		 */
2618 
2619 		/*
2620 		 * The task moved before the stopper got to run. We're holding
2621 		 * ->pi_lock, so the allowed mask is stable - if it got
2622 		 * somewhere allowed, we're done.
2623 		 */
2624 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2625 			p->migration_pending = NULL;
2626 			complete = true;
2627 			goto out;
2628 		}
2629 
2630 		/*
2631 		 * When migrate_enable() hits a rq mis-match we can't reliably
2632 		 * determine is_migration_disabled() and so have to chase after
2633 		 * it.
2634 		 */
2635 		WARN_ON_ONCE(!pending->stop_pending);
2636 		preempt_disable();
2637 		task_rq_unlock(rq, p, &rf);
2638 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2639 				    &pending->arg, &pending->stop_work);
2640 		preempt_enable();
2641 		return 0;
2642 	}
2643 out:
2644 	if (pending)
2645 		pending->stop_pending = false;
2646 	task_rq_unlock(rq, p, &rf);
2647 
2648 	if (complete)
2649 		complete_all(&pending->done);
2650 
2651 	return 0;
2652 }
2653 
push_cpu_stop(void * arg)2654 int push_cpu_stop(void *arg)
2655 {
2656 	struct rq *lowest_rq = NULL, *rq = this_rq();
2657 	struct task_struct *p = arg;
2658 
2659 	raw_spin_lock_irq(&p->pi_lock);
2660 	raw_spin_rq_lock(rq);
2661 
2662 	if (task_rq(p) != rq)
2663 		goto out_unlock;
2664 
2665 	if (is_migration_disabled(p)) {
2666 		p->migration_flags |= MDF_PUSH;
2667 		goto out_unlock;
2668 	}
2669 
2670 	p->migration_flags &= ~MDF_PUSH;
2671 
2672 	if (p->sched_class->find_lock_rq)
2673 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2674 
2675 	if (!lowest_rq)
2676 		goto out_unlock;
2677 
2678 	// XXX validate p is still the highest prio task
2679 	if (task_rq(p) == rq) {
2680 		move_queued_task_locked(rq, lowest_rq, p);
2681 		resched_curr(lowest_rq);
2682 	}
2683 
2684 	double_unlock_balance(rq, lowest_rq);
2685 
2686 out_unlock:
2687 	rq->push_busy = false;
2688 	raw_spin_rq_unlock(rq);
2689 	raw_spin_unlock_irq(&p->pi_lock);
2690 
2691 	put_task_struct(p);
2692 	return 0;
2693 }
2694 
2695 /*
2696  * sched_class::set_cpus_allowed must do the below, but is not required to
2697  * actually call this function.
2698  */
set_cpus_allowed_common(struct task_struct * p,struct affinity_context * ctx)2699 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2700 {
2701 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2702 		p->cpus_ptr = ctx->new_mask;
2703 		return;
2704 	}
2705 
2706 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2707 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2708 
2709 	/*
2710 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2711 	 */
2712 	if (ctx->flags & SCA_USER)
2713 		swap(p->user_cpus_ptr, ctx->user_mask);
2714 }
2715 
2716 static void
__do_set_cpus_allowed(struct task_struct * p,struct affinity_context * ctx)2717 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2718 {
2719 	struct rq *rq = task_rq(p);
2720 	bool queued, running;
2721 
2722 	/*
2723 	 * This here violates the locking rules for affinity, since we're only
2724 	 * supposed to change these variables while holding both rq->lock and
2725 	 * p->pi_lock.
2726 	 *
2727 	 * HOWEVER, it magically works, because ttwu() is the only code that
2728 	 * accesses these variables under p->pi_lock and only does so after
2729 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2730 	 * before finish_task().
2731 	 *
2732 	 * XXX do further audits, this smells like something putrid.
2733 	 */
2734 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2735 		WARN_ON_ONCE(!p->on_cpu);
2736 	else
2737 		lockdep_assert_held(&p->pi_lock);
2738 
2739 	queued = task_on_rq_queued(p);
2740 	running = task_current_donor(rq, p);
2741 
2742 	if (queued) {
2743 		/*
2744 		 * Because __kthread_bind() calls this on blocked tasks without
2745 		 * holding rq->lock.
2746 		 */
2747 		lockdep_assert_rq_held(rq);
2748 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2749 	}
2750 	if (running)
2751 		put_prev_task(rq, p);
2752 
2753 	p->sched_class->set_cpus_allowed(p, ctx);
2754 	mm_set_cpus_allowed(p->mm, ctx->new_mask);
2755 
2756 	if (queued)
2757 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2758 	if (running)
2759 		set_next_task(rq, p);
2760 }
2761 
2762 /*
2763  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2764  * affinity (if any) should be destroyed too.
2765  */
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2766 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2767 {
2768 	struct affinity_context ac = {
2769 		.new_mask  = new_mask,
2770 		.user_mask = NULL,
2771 		.flags     = SCA_USER,	/* clear the user requested mask */
2772 	};
2773 	union cpumask_rcuhead {
2774 		cpumask_t cpumask;
2775 		struct rcu_head rcu;
2776 	};
2777 
2778 	__do_set_cpus_allowed(p, &ac);
2779 
2780 	/*
2781 	 * Because this is called with p->pi_lock held, it is not possible
2782 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2783 	 * kfree_rcu().
2784 	 */
2785 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2786 }
2787 
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2788 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2789 		      int node)
2790 {
2791 	cpumask_t *user_mask;
2792 	unsigned long flags;
2793 
2794 	/*
2795 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2796 	 * may differ by now due to racing.
2797 	 */
2798 	dst->user_cpus_ptr = NULL;
2799 
2800 	/*
2801 	 * This check is racy and losing the race is a valid situation.
2802 	 * It is not worth the extra overhead of taking the pi_lock on
2803 	 * every fork/clone.
2804 	 */
2805 	if (data_race(!src->user_cpus_ptr))
2806 		return 0;
2807 
2808 	user_mask = alloc_user_cpus_ptr(node);
2809 	if (!user_mask)
2810 		return -ENOMEM;
2811 
2812 	/*
2813 	 * Use pi_lock to protect content of user_cpus_ptr
2814 	 *
2815 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2816 	 * do_set_cpus_allowed().
2817 	 */
2818 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2819 	if (src->user_cpus_ptr) {
2820 		swap(dst->user_cpus_ptr, user_mask);
2821 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2822 	}
2823 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2824 
2825 	if (unlikely(user_mask))
2826 		kfree(user_mask);
2827 
2828 	return 0;
2829 }
2830 
clear_user_cpus_ptr(struct task_struct * p)2831 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2832 {
2833 	struct cpumask *user_mask = NULL;
2834 
2835 	swap(p->user_cpus_ptr, user_mask);
2836 
2837 	return user_mask;
2838 }
2839 
release_user_cpus_ptr(struct task_struct * p)2840 void release_user_cpus_ptr(struct task_struct *p)
2841 {
2842 	kfree(clear_user_cpus_ptr(p));
2843 }
2844 
2845 /*
2846  * This function is wildly self concurrent; here be dragons.
2847  *
2848  *
2849  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2850  * designated task is enqueued on an allowed CPU. If that task is currently
2851  * running, we have to kick it out using the CPU stopper.
2852  *
2853  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2854  * Consider:
2855  *
2856  *     Initial conditions: P0->cpus_mask = [0, 1]
2857  *
2858  *     P0@CPU0                  P1
2859  *
2860  *     migrate_disable();
2861  *     <preempted>
2862  *                              set_cpus_allowed_ptr(P0, [1]);
2863  *
2864  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2865  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2866  * This means we need the following scheme:
2867  *
2868  *     P0@CPU0                  P1
2869  *
2870  *     migrate_disable();
2871  *     <preempted>
2872  *                              set_cpus_allowed_ptr(P0, [1]);
2873  *                                <blocks>
2874  *     <resumes>
2875  *     migrate_enable();
2876  *       __set_cpus_allowed_ptr();
2877  *       <wakes local stopper>
2878  *                         `--> <woken on migration completion>
2879  *
2880  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2881  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2882  * task p are serialized by p->pi_lock, which we can leverage: the one that
2883  * should come into effect at the end of the Migrate-Disable region is the last
2884  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2885  * but we still need to properly signal those waiting tasks at the appropriate
2886  * moment.
2887  *
2888  * This is implemented using struct set_affinity_pending. The first
2889  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2890  * setup an instance of that struct and install it on the targeted task_struct.
2891  * Any and all further callers will reuse that instance. Those then wait for
2892  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2893  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2894  *
2895  *
2896  * (1) In the cases covered above. There is one more where the completion is
2897  * signaled within affine_move_task() itself: when a subsequent affinity request
2898  * occurs after the stopper bailed out due to the targeted task still being
2899  * Migrate-Disable. Consider:
2900  *
2901  *     Initial conditions: P0->cpus_mask = [0, 1]
2902  *
2903  *     CPU0		  P1				P2
2904  *     <P0>
2905  *       migrate_disable();
2906  *       <preempted>
2907  *                        set_cpus_allowed_ptr(P0, [1]);
2908  *                          <blocks>
2909  *     <migration/0>
2910  *       migration_cpu_stop()
2911  *         is_migration_disabled()
2912  *           <bails>
2913  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2914  *                                                         <signal completion>
2915  *                          <awakes>
2916  *
2917  * Note that the above is safe vs a concurrent migrate_enable(), as any
2918  * pending affinity completion is preceded by an uninstallation of
2919  * p->migration_pending done with p->pi_lock held.
2920  */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)2921 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2922 			    int dest_cpu, unsigned int flags)
2923 	__releases(rq->lock)
2924 	__releases(p->pi_lock)
2925 {
2926 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2927 	bool stop_pending, complete = false;
2928 
2929 	/* Can the task run on the task's current CPU? If so, we're done */
2930 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2931 		struct task_struct *push_task = NULL;
2932 
2933 		if ((flags & SCA_MIGRATE_ENABLE) &&
2934 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2935 			rq->push_busy = true;
2936 			push_task = get_task_struct(p);
2937 		}
2938 
2939 		/*
2940 		 * If there are pending waiters, but no pending stop_work,
2941 		 * then complete now.
2942 		 */
2943 		pending = p->migration_pending;
2944 		if (pending && !pending->stop_pending) {
2945 			p->migration_pending = NULL;
2946 			complete = true;
2947 		}
2948 
2949 		preempt_disable();
2950 		task_rq_unlock(rq, p, rf);
2951 		if (push_task) {
2952 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2953 					    p, &rq->push_work);
2954 		}
2955 		preempt_enable();
2956 
2957 		if (complete)
2958 			complete_all(&pending->done);
2959 
2960 		return 0;
2961 	}
2962 
2963 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2964 		/* serialized by p->pi_lock */
2965 		if (!p->migration_pending) {
2966 			/* Install the request */
2967 			refcount_set(&my_pending.refs, 1);
2968 			init_completion(&my_pending.done);
2969 			my_pending.arg = (struct migration_arg) {
2970 				.task = p,
2971 				.dest_cpu = dest_cpu,
2972 				.pending = &my_pending,
2973 			};
2974 
2975 			p->migration_pending = &my_pending;
2976 		} else {
2977 			pending = p->migration_pending;
2978 			refcount_inc(&pending->refs);
2979 			/*
2980 			 * Affinity has changed, but we've already installed a
2981 			 * pending. migration_cpu_stop() *must* see this, else
2982 			 * we risk a completion of the pending despite having a
2983 			 * task on a disallowed CPU.
2984 			 *
2985 			 * Serialized by p->pi_lock, so this is safe.
2986 			 */
2987 			pending->arg.dest_cpu = dest_cpu;
2988 		}
2989 	}
2990 	pending = p->migration_pending;
2991 	/*
2992 	 * - !MIGRATE_ENABLE:
2993 	 *   we'll have installed a pending if there wasn't one already.
2994 	 *
2995 	 * - MIGRATE_ENABLE:
2996 	 *   we're here because the current CPU isn't matching anymore,
2997 	 *   the only way that can happen is because of a concurrent
2998 	 *   set_cpus_allowed_ptr() call, which should then still be
2999 	 *   pending completion.
3000 	 *
3001 	 * Either way, we really should have a @pending here.
3002 	 */
3003 	if (WARN_ON_ONCE(!pending)) {
3004 		task_rq_unlock(rq, p, rf);
3005 		return -EINVAL;
3006 	}
3007 
3008 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3009 		/*
3010 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3011 		 * anything else we cannot do is_migration_disabled(), punt
3012 		 * and have the stopper function handle it all race-free.
3013 		 */
3014 		stop_pending = pending->stop_pending;
3015 		if (!stop_pending)
3016 			pending->stop_pending = true;
3017 
3018 		if (flags & SCA_MIGRATE_ENABLE)
3019 			p->migration_flags &= ~MDF_PUSH;
3020 
3021 		preempt_disable();
3022 		task_rq_unlock(rq, p, rf);
3023 		if (!stop_pending) {
3024 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3025 					    &pending->arg, &pending->stop_work);
3026 		}
3027 		preempt_enable();
3028 
3029 		if (flags & SCA_MIGRATE_ENABLE)
3030 			return 0;
3031 	} else {
3032 
3033 		if (!is_migration_disabled(p)) {
3034 			if (task_on_rq_queued(p))
3035 				rq = move_queued_task(rq, rf, p, dest_cpu);
3036 
3037 			if (!pending->stop_pending) {
3038 				p->migration_pending = NULL;
3039 				complete = true;
3040 			}
3041 		}
3042 		task_rq_unlock(rq, p, rf);
3043 
3044 		if (complete)
3045 			complete_all(&pending->done);
3046 	}
3047 
3048 	wait_for_completion(&pending->done);
3049 
3050 	if (refcount_dec_and_test(&pending->refs))
3051 		wake_up_var(&pending->refs); /* No UaF, just an address */
3052 
3053 	/*
3054 	 * Block the original owner of &pending until all subsequent callers
3055 	 * have seen the completion and decremented the refcount
3056 	 */
3057 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3058 
3059 	/* ARGH */
3060 	WARN_ON_ONCE(my_pending.stop_pending);
3061 
3062 	return 0;
3063 }
3064 
3065 /*
3066  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3067  */
__set_cpus_allowed_ptr_locked(struct task_struct * p,struct affinity_context * ctx,struct rq * rq,struct rq_flags * rf)3068 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3069 					 struct affinity_context *ctx,
3070 					 struct rq *rq,
3071 					 struct rq_flags *rf)
3072 	__releases(rq->lock)
3073 	__releases(p->pi_lock)
3074 {
3075 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3076 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3077 	bool kthread = p->flags & PF_KTHREAD;
3078 	unsigned int dest_cpu;
3079 	int ret = 0;
3080 
3081 	update_rq_clock(rq);
3082 
3083 	if (kthread || is_migration_disabled(p)) {
3084 		/*
3085 		 * Kernel threads are allowed on online && !active CPUs,
3086 		 * however, during cpu-hot-unplug, even these might get pushed
3087 		 * away if not KTHREAD_IS_PER_CPU.
3088 		 *
3089 		 * Specifically, migration_disabled() tasks must not fail the
3090 		 * cpumask_any_and_distribute() pick below, esp. so on
3091 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3092 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3093 		 */
3094 		cpu_valid_mask = cpu_online_mask;
3095 	}
3096 
3097 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3098 		ret = -EINVAL;
3099 		goto out;
3100 	}
3101 
3102 	/*
3103 	 * Must re-check here, to close a race against __kthread_bind(),
3104 	 * sched_setaffinity() is not guaranteed to observe the flag.
3105 	 */
3106 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3107 		ret = -EINVAL;
3108 		goto out;
3109 	}
3110 
3111 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3112 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3113 			if (ctx->flags & SCA_USER)
3114 				swap(p->user_cpus_ptr, ctx->user_mask);
3115 			goto out;
3116 		}
3117 
3118 		if (WARN_ON_ONCE(p == current &&
3119 				 is_migration_disabled(p) &&
3120 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3121 			ret = -EBUSY;
3122 			goto out;
3123 		}
3124 	}
3125 
3126 	/*
3127 	 * Picking a ~random cpu helps in cases where we are changing affinity
3128 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3129 	 * immediately required to distribute the tasks within their new mask.
3130 	 */
3131 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3132 	if (dest_cpu >= nr_cpu_ids) {
3133 		ret = -EINVAL;
3134 		goto out;
3135 	}
3136 
3137 	__do_set_cpus_allowed(p, ctx);
3138 
3139 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3140 
3141 out:
3142 	task_rq_unlock(rq, p, rf);
3143 
3144 	return ret;
3145 }
3146 
3147 /*
3148  * Change a given task's CPU affinity. Migrate the thread to a
3149  * proper CPU and schedule it away if the CPU it's executing on
3150  * is removed from the allowed bitmask.
3151  *
3152  * NOTE: the caller must have a valid reference to the task, the
3153  * task must not exit() & deallocate itself prematurely. The
3154  * call is not atomic; no spinlocks may be held.
3155  */
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3156 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3157 {
3158 	struct rq_flags rf;
3159 	struct rq *rq;
3160 
3161 	rq = task_rq_lock(p, &rf);
3162 	/*
3163 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3164 	 * flags are set.
3165 	 */
3166 	if (p->user_cpus_ptr &&
3167 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3168 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3169 		ctx->new_mask = rq->scratch_mask;
3170 
3171 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3172 }
3173 
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3174 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3175 {
3176 	struct affinity_context ac = {
3177 		.new_mask  = new_mask,
3178 		.flags     = 0,
3179 	};
3180 
3181 	return __set_cpus_allowed_ptr(p, &ac);
3182 }
3183 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3184 
3185 /*
3186  * Change a given task's CPU affinity to the intersection of its current
3187  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3188  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3189  * affinity or use cpu_online_mask instead.
3190  *
3191  * If the resulting mask is empty, leave the affinity unchanged and return
3192  * -EINVAL.
3193  */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3194 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3195 				     struct cpumask *new_mask,
3196 				     const struct cpumask *subset_mask)
3197 {
3198 	struct affinity_context ac = {
3199 		.new_mask  = new_mask,
3200 		.flags     = 0,
3201 	};
3202 	struct rq_flags rf;
3203 	struct rq *rq;
3204 	int err;
3205 
3206 	rq = task_rq_lock(p, &rf);
3207 
3208 	/*
3209 	 * Forcefully restricting the affinity of a deadline task is
3210 	 * likely to cause problems, so fail and noisily override the
3211 	 * mask entirely.
3212 	 */
3213 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3214 		err = -EPERM;
3215 		goto err_unlock;
3216 	}
3217 
3218 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3219 		err = -EINVAL;
3220 		goto err_unlock;
3221 	}
3222 
3223 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3224 
3225 err_unlock:
3226 	task_rq_unlock(rq, p, &rf);
3227 	return err;
3228 }
3229 
3230 /*
3231  * Restrict the CPU affinity of task @p so that it is a subset of
3232  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3233  * old affinity mask. If the resulting mask is empty, we warn and walk
3234  * up the cpuset hierarchy until we find a suitable mask.
3235  */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3236 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3237 {
3238 	cpumask_var_t new_mask;
3239 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3240 
3241 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3242 
3243 	/*
3244 	 * __migrate_task() can fail silently in the face of concurrent
3245 	 * offlining of the chosen destination CPU, so take the hotplug
3246 	 * lock to ensure that the migration succeeds.
3247 	 */
3248 	cpus_read_lock();
3249 	if (!cpumask_available(new_mask))
3250 		goto out_set_mask;
3251 
3252 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3253 		goto out_free_mask;
3254 
3255 	/*
3256 	 * We failed to find a valid subset of the affinity mask for the
3257 	 * task, so override it based on its cpuset hierarchy.
3258 	 */
3259 	cpuset_cpus_allowed(p, new_mask);
3260 	override_mask = new_mask;
3261 
3262 out_set_mask:
3263 	if (printk_ratelimit()) {
3264 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3265 				task_pid_nr(p), p->comm,
3266 				cpumask_pr_args(override_mask));
3267 	}
3268 
3269 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3270 out_free_mask:
3271 	cpus_read_unlock();
3272 	free_cpumask_var(new_mask);
3273 }
3274 
3275 /*
3276  * Restore the affinity of a task @p which was previously restricted by a
3277  * call to force_compatible_cpus_allowed_ptr().
3278  *
3279  * It is the caller's responsibility to serialise this with any calls to
3280  * force_compatible_cpus_allowed_ptr(@p).
3281  */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3282 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3283 {
3284 	struct affinity_context ac = {
3285 		.new_mask  = task_user_cpus(p),
3286 		.flags     = 0,
3287 	};
3288 	int ret;
3289 
3290 	/*
3291 	 * Try to restore the old affinity mask with __sched_setaffinity().
3292 	 * Cpuset masking will be done there too.
3293 	 */
3294 	ret = __sched_setaffinity(p, &ac);
3295 	WARN_ON_ONCE(ret);
3296 }
3297 
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3298 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3299 {
3300 	unsigned int state = READ_ONCE(p->__state);
3301 
3302 	/*
3303 	 * We should never call set_task_cpu() on a blocked task,
3304 	 * ttwu() will sort out the placement.
3305 	 */
3306 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3307 
3308 	/*
3309 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3310 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3311 	 * time relying on p->on_rq.
3312 	 */
3313 	WARN_ON_ONCE(state == TASK_RUNNING &&
3314 		     p->sched_class == &fair_sched_class &&
3315 		     (p->on_rq && !task_on_rq_migrating(p)));
3316 
3317 #ifdef CONFIG_LOCKDEP
3318 	/*
3319 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3320 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3321 	 *
3322 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3323 	 * see task_group().
3324 	 *
3325 	 * Furthermore, all task_rq users should acquire both locks, see
3326 	 * task_rq_lock().
3327 	 */
3328 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3329 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3330 #endif
3331 	/*
3332 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3333 	 */
3334 	WARN_ON_ONCE(!cpu_online(new_cpu));
3335 
3336 	WARN_ON_ONCE(is_migration_disabled(p));
3337 
3338 	trace_sched_migrate_task(p, new_cpu);
3339 
3340 	if (task_cpu(p) != new_cpu) {
3341 		if (p->sched_class->migrate_task_rq)
3342 			p->sched_class->migrate_task_rq(p, new_cpu);
3343 		p->se.nr_migrations++;
3344 		rseq_migrate(p);
3345 		sched_mm_cid_migrate_from(p);
3346 		perf_event_task_migrate(p);
3347 	}
3348 
3349 	__set_task_cpu(p, new_cpu);
3350 }
3351 
3352 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3353 static void __migrate_swap_task(struct task_struct *p, int cpu)
3354 {
3355 	if (task_on_rq_queued(p)) {
3356 		struct rq *src_rq, *dst_rq;
3357 		struct rq_flags srf, drf;
3358 
3359 		src_rq = task_rq(p);
3360 		dst_rq = cpu_rq(cpu);
3361 
3362 		rq_pin_lock(src_rq, &srf);
3363 		rq_pin_lock(dst_rq, &drf);
3364 
3365 		move_queued_task_locked(src_rq, dst_rq, p);
3366 		wakeup_preempt(dst_rq, p, 0);
3367 
3368 		rq_unpin_lock(dst_rq, &drf);
3369 		rq_unpin_lock(src_rq, &srf);
3370 
3371 	} else {
3372 		/*
3373 		 * Task isn't running anymore; make it appear like we migrated
3374 		 * it before it went to sleep. This means on wakeup we make the
3375 		 * previous CPU our target instead of where it really is.
3376 		 */
3377 		p->wake_cpu = cpu;
3378 	}
3379 }
3380 
3381 struct migration_swap_arg {
3382 	struct task_struct *src_task, *dst_task;
3383 	int src_cpu, dst_cpu;
3384 };
3385 
migrate_swap_stop(void * data)3386 static int migrate_swap_stop(void *data)
3387 {
3388 	struct migration_swap_arg *arg = data;
3389 	struct rq *src_rq, *dst_rq;
3390 
3391 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3392 		return -EAGAIN;
3393 
3394 	src_rq = cpu_rq(arg->src_cpu);
3395 	dst_rq = cpu_rq(arg->dst_cpu);
3396 
3397 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3398 	guard(double_rq_lock)(src_rq, dst_rq);
3399 
3400 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3401 		return -EAGAIN;
3402 
3403 	if (task_cpu(arg->src_task) != arg->src_cpu)
3404 		return -EAGAIN;
3405 
3406 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3407 		return -EAGAIN;
3408 
3409 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3410 		return -EAGAIN;
3411 
3412 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3413 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3414 
3415 	return 0;
3416 }
3417 
3418 /*
3419  * Cross migrate two tasks
3420  */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3421 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3422 		int target_cpu, int curr_cpu)
3423 {
3424 	struct migration_swap_arg arg;
3425 	int ret = -EINVAL;
3426 
3427 	arg = (struct migration_swap_arg){
3428 		.src_task = cur,
3429 		.src_cpu = curr_cpu,
3430 		.dst_task = p,
3431 		.dst_cpu = target_cpu,
3432 	};
3433 
3434 	if (arg.src_cpu == arg.dst_cpu)
3435 		goto out;
3436 
3437 	/*
3438 	 * These three tests are all lockless; this is OK since all of them
3439 	 * will be re-checked with proper locks held further down the line.
3440 	 */
3441 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3442 		goto out;
3443 
3444 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3445 		goto out;
3446 
3447 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3448 		goto out;
3449 
3450 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3451 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3452 
3453 out:
3454 	return ret;
3455 }
3456 #endif /* CONFIG_NUMA_BALANCING */
3457 
3458 /***
3459  * kick_process - kick a running thread to enter/exit the kernel
3460  * @p: the to-be-kicked thread
3461  *
3462  * Cause a process which is running on another CPU to enter
3463  * kernel-mode, without any delay. (to get signals handled.)
3464  *
3465  * NOTE: this function doesn't have to take the runqueue lock,
3466  * because all it wants to ensure is that the remote task enters
3467  * the kernel. If the IPI races and the task has been migrated
3468  * to another CPU then no harm is done and the purpose has been
3469  * achieved as well.
3470  */
kick_process(struct task_struct * p)3471 void kick_process(struct task_struct *p)
3472 {
3473 	guard(preempt)();
3474 	int cpu = task_cpu(p);
3475 
3476 	if ((cpu != smp_processor_id()) && task_curr(p))
3477 		smp_send_reschedule(cpu);
3478 }
3479 EXPORT_SYMBOL_GPL(kick_process);
3480 
3481 /*
3482  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3483  *
3484  * A few notes on cpu_active vs cpu_online:
3485  *
3486  *  - cpu_active must be a subset of cpu_online
3487  *
3488  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3489  *    see __set_cpus_allowed_ptr(). At this point the newly online
3490  *    CPU isn't yet part of the sched domains, and balancing will not
3491  *    see it.
3492  *
3493  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3494  *    avoid the load balancer to place new tasks on the to be removed
3495  *    CPU. Existing tasks will remain running there and will be taken
3496  *    off.
3497  *
3498  * This means that fallback selection must not select !active CPUs.
3499  * And can assume that any active CPU must be online. Conversely
3500  * select_task_rq() below may allow selection of !active CPUs in order
3501  * to satisfy the above rules.
3502  */
select_fallback_rq(int cpu,struct task_struct * p)3503 static int select_fallback_rq(int cpu, struct task_struct *p)
3504 {
3505 	int nid = cpu_to_node(cpu);
3506 	const struct cpumask *nodemask = NULL;
3507 	enum { cpuset, possible, fail } state = cpuset;
3508 	int dest_cpu;
3509 
3510 	/*
3511 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3512 	 * will return -1. There is no CPU on the node, and we should
3513 	 * select the CPU on the other node.
3514 	 */
3515 	if (nid != -1) {
3516 		nodemask = cpumask_of_node(nid);
3517 
3518 		/* Look for allowed, online CPU in same node. */
3519 		for_each_cpu(dest_cpu, nodemask) {
3520 			if (is_cpu_allowed(p, dest_cpu))
3521 				return dest_cpu;
3522 		}
3523 	}
3524 
3525 	for (;;) {
3526 		/* Any allowed, online CPU? */
3527 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3528 			if (!is_cpu_allowed(p, dest_cpu))
3529 				continue;
3530 
3531 			goto out;
3532 		}
3533 
3534 		/* No more Mr. Nice Guy. */
3535 		switch (state) {
3536 		case cpuset:
3537 			if (cpuset_cpus_allowed_fallback(p)) {
3538 				state = possible;
3539 				break;
3540 			}
3541 			fallthrough;
3542 		case possible:
3543 			/*
3544 			 * XXX When called from select_task_rq() we only
3545 			 * hold p->pi_lock and again violate locking order.
3546 			 *
3547 			 * More yuck to audit.
3548 			 */
3549 			do_set_cpus_allowed(p, task_cpu_fallback_mask(p));
3550 			state = fail;
3551 			break;
3552 		case fail:
3553 			BUG();
3554 			break;
3555 		}
3556 	}
3557 
3558 out:
3559 	if (state != cpuset) {
3560 		/*
3561 		 * Don't tell them about moving exiting tasks or
3562 		 * kernel threads (both mm NULL), since they never
3563 		 * leave kernel.
3564 		 */
3565 		if (p->mm && printk_ratelimit()) {
3566 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3567 					task_pid_nr(p), p->comm, cpu);
3568 		}
3569 	}
3570 
3571 	return dest_cpu;
3572 }
3573 
3574 /*
3575  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3576  */
3577 static inline
select_task_rq(struct task_struct * p,int cpu,int * wake_flags)3578 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3579 {
3580 	lockdep_assert_held(&p->pi_lock);
3581 
3582 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3583 		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3584 		*wake_flags |= WF_RQ_SELECTED;
3585 	} else {
3586 		cpu = cpumask_any(p->cpus_ptr);
3587 	}
3588 
3589 	/*
3590 	 * In order not to call set_task_cpu() on a blocking task we need
3591 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3592 	 * CPU.
3593 	 *
3594 	 * Since this is common to all placement strategies, this lives here.
3595 	 *
3596 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3597 	 *   not worry about this generic constraint ]
3598 	 */
3599 	if (unlikely(!is_cpu_allowed(p, cpu)))
3600 		cpu = select_fallback_rq(task_cpu(p), p);
3601 
3602 	return cpu;
3603 }
3604 
sched_set_stop_task(int cpu,struct task_struct * stop)3605 void sched_set_stop_task(int cpu, struct task_struct *stop)
3606 {
3607 	static struct lock_class_key stop_pi_lock;
3608 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3609 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3610 
3611 	if (stop) {
3612 		/*
3613 		 * Make it appear like a SCHED_FIFO task, its something
3614 		 * userspace knows about and won't get confused about.
3615 		 *
3616 		 * Also, it will make PI more or less work without too
3617 		 * much confusion -- but then, stop work should not
3618 		 * rely on PI working anyway.
3619 		 */
3620 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3621 
3622 		stop->sched_class = &stop_sched_class;
3623 
3624 		/*
3625 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3626 		 * adjust the effective priority of a task. As a result,
3627 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3628 		 * which can then trigger wakeups of the stop thread to push
3629 		 * around the current task.
3630 		 *
3631 		 * The stop task itself will never be part of the PI-chain, it
3632 		 * never blocks, therefore that ->pi_lock recursion is safe.
3633 		 * Tell lockdep about this by placing the stop->pi_lock in its
3634 		 * own class.
3635 		 */
3636 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3637 	}
3638 
3639 	cpu_rq(cpu)->stop = stop;
3640 
3641 	if (old_stop) {
3642 		/*
3643 		 * Reset it back to a normal scheduling class so that
3644 		 * it can die in pieces.
3645 		 */
3646 		old_stop->sched_class = &rt_sched_class;
3647 	}
3648 }
3649 
3650 #else /* CONFIG_SMP */
3651 
migrate_disable_switch(struct rq * rq,struct task_struct * p)3652 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3653 
rq_has_pinned_tasks(struct rq * rq)3654 static inline bool rq_has_pinned_tasks(struct rq *rq)
3655 {
3656 	return false;
3657 }
3658 
3659 #endif /* !CONFIG_SMP */
3660 
3661 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3662 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3663 {
3664 	struct rq *rq;
3665 
3666 	if (!schedstat_enabled())
3667 		return;
3668 
3669 	rq = this_rq();
3670 
3671 #ifdef CONFIG_SMP
3672 	if (cpu == rq->cpu) {
3673 		__schedstat_inc(rq->ttwu_local);
3674 		__schedstat_inc(p->stats.nr_wakeups_local);
3675 	} else {
3676 		struct sched_domain *sd;
3677 
3678 		__schedstat_inc(p->stats.nr_wakeups_remote);
3679 
3680 		guard(rcu)();
3681 		for_each_domain(rq->cpu, sd) {
3682 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3683 				__schedstat_inc(sd->ttwu_wake_remote);
3684 				break;
3685 			}
3686 		}
3687 	}
3688 
3689 	if (wake_flags & WF_MIGRATED)
3690 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3691 #endif /* CONFIG_SMP */
3692 
3693 	__schedstat_inc(rq->ttwu_count);
3694 	__schedstat_inc(p->stats.nr_wakeups);
3695 
3696 	if (wake_flags & WF_SYNC)
3697 		__schedstat_inc(p->stats.nr_wakeups_sync);
3698 }
3699 
3700 /*
3701  * Mark the task runnable.
3702  */
ttwu_do_wakeup(struct task_struct * p)3703 static inline void ttwu_do_wakeup(struct task_struct *p)
3704 {
3705 	WRITE_ONCE(p->__state, TASK_RUNNING);
3706 	trace_sched_wakeup(p);
3707 }
3708 
3709 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3710 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3711 		 struct rq_flags *rf)
3712 {
3713 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3714 
3715 	lockdep_assert_rq_held(rq);
3716 
3717 	if (p->sched_contributes_to_load)
3718 		rq->nr_uninterruptible--;
3719 
3720 #ifdef CONFIG_SMP
3721 	if (wake_flags & WF_RQ_SELECTED)
3722 		en_flags |= ENQUEUE_RQ_SELECTED;
3723 	if (wake_flags & WF_MIGRATED)
3724 		en_flags |= ENQUEUE_MIGRATED;
3725 	else
3726 #endif
3727 	if (p->in_iowait) {
3728 		delayacct_blkio_end(p);
3729 		atomic_dec(&task_rq(p)->nr_iowait);
3730 	}
3731 
3732 	activate_task(rq, p, en_flags);
3733 	wakeup_preempt(rq, p, wake_flags);
3734 
3735 	ttwu_do_wakeup(p);
3736 
3737 #ifdef CONFIG_SMP
3738 	if (p->sched_class->task_woken) {
3739 		/*
3740 		 * Our task @p is fully woken up and running; so it's safe to
3741 		 * drop the rq->lock, hereafter rq is only used for statistics.
3742 		 */
3743 		rq_unpin_lock(rq, rf);
3744 		p->sched_class->task_woken(rq, p);
3745 		rq_repin_lock(rq, rf);
3746 	}
3747 
3748 	if (rq->idle_stamp) {
3749 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3750 		u64 max = 2*rq->max_idle_balance_cost;
3751 
3752 		update_avg(&rq->avg_idle, delta);
3753 
3754 		if (rq->avg_idle > max)
3755 			rq->avg_idle = max;
3756 
3757 		rq->idle_stamp = 0;
3758 	}
3759 #endif
3760 }
3761 
3762 /*
3763  * Consider @p being inside a wait loop:
3764  *
3765  *   for (;;) {
3766  *      set_current_state(TASK_UNINTERRUPTIBLE);
3767  *
3768  *      if (CONDITION)
3769  *         break;
3770  *
3771  *      schedule();
3772  *   }
3773  *   __set_current_state(TASK_RUNNING);
3774  *
3775  * between set_current_state() and schedule(). In this case @p is still
3776  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3777  * an atomic manner.
3778  *
3779  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3780  * then schedule() must still happen and p->state can be changed to
3781  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3782  * need to do a full wakeup with enqueue.
3783  *
3784  * Returns: %true when the wakeup is done,
3785  *          %false otherwise.
3786  */
ttwu_runnable(struct task_struct * p,int wake_flags)3787 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3788 {
3789 	struct rq_flags rf;
3790 	struct rq *rq;
3791 	int ret = 0;
3792 
3793 	rq = __task_rq_lock(p, &rf);
3794 	if (task_on_rq_queued(p)) {
3795 		update_rq_clock(rq);
3796 		if (p->se.sched_delayed)
3797 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3798 		if (!task_on_cpu(rq, p)) {
3799 			/*
3800 			 * When on_rq && !on_cpu the task is preempted, see if
3801 			 * it should preempt the task that is current now.
3802 			 */
3803 			wakeup_preempt(rq, p, wake_flags);
3804 		}
3805 		ttwu_do_wakeup(p);
3806 		ret = 1;
3807 	}
3808 	__task_rq_unlock(rq, &rf);
3809 
3810 	return ret;
3811 }
3812 
3813 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3814 void sched_ttwu_pending(void *arg)
3815 {
3816 	struct llist_node *llist = arg;
3817 	struct rq *rq = this_rq();
3818 	struct task_struct *p, *t;
3819 	struct rq_flags rf;
3820 
3821 	if (!llist)
3822 		return;
3823 
3824 	rq_lock_irqsave(rq, &rf);
3825 	update_rq_clock(rq);
3826 
3827 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3828 		if (WARN_ON_ONCE(p->on_cpu))
3829 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3830 
3831 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3832 			set_task_cpu(p, cpu_of(rq));
3833 
3834 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3835 	}
3836 
3837 	/*
3838 	 * Must be after enqueueing at least once task such that
3839 	 * idle_cpu() does not observe a false-negative -- if it does,
3840 	 * it is possible for select_idle_siblings() to stack a number
3841 	 * of tasks on this CPU during that window.
3842 	 *
3843 	 * It is OK to clear ttwu_pending when another task pending.
3844 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3845 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3846 	 */
3847 	WRITE_ONCE(rq->ttwu_pending, 0);
3848 	rq_unlock_irqrestore(rq, &rf);
3849 }
3850 
3851 /*
3852  * Prepare the scene for sending an IPI for a remote smp_call
3853  *
3854  * Returns true if the caller can proceed with sending the IPI.
3855  * Returns false otherwise.
3856  */
call_function_single_prep_ipi(int cpu)3857 bool call_function_single_prep_ipi(int cpu)
3858 {
3859 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3860 		trace_sched_wake_idle_without_ipi(cpu);
3861 		return false;
3862 	}
3863 
3864 	return true;
3865 }
3866 
3867 /*
3868  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3869  * necessary. The wakee CPU on receipt of the IPI will queue the task
3870  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3871  * of the wakeup instead of the waker.
3872  */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3873 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3874 {
3875 	struct rq *rq = cpu_rq(cpu);
3876 
3877 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3878 
3879 	WRITE_ONCE(rq->ttwu_pending, 1);
3880 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3881 }
3882 
wake_up_if_idle(int cpu)3883 void wake_up_if_idle(int cpu)
3884 {
3885 	struct rq *rq = cpu_rq(cpu);
3886 
3887 	guard(rcu)();
3888 	if (is_idle_task(rcu_dereference(rq->curr))) {
3889 		guard(rq_lock_irqsave)(rq);
3890 		if (is_idle_task(rq->curr))
3891 			resched_curr(rq);
3892 	}
3893 }
3894 
cpus_equal_capacity(int this_cpu,int that_cpu)3895 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3896 {
3897 	if (!sched_asym_cpucap_active())
3898 		return true;
3899 
3900 	if (this_cpu == that_cpu)
3901 		return true;
3902 
3903 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3904 }
3905 
cpus_share_cache(int this_cpu,int that_cpu)3906 bool cpus_share_cache(int this_cpu, int that_cpu)
3907 {
3908 	if (this_cpu == that_cpu)
3909 		return true;
3910 
3911 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3912 }
3913 
3914 /*
3915  * Whether CPUs are share cache resources, which means LLC on non-cluster
3916  * machines and LLC tag or L2 on machines with clusters.
3917  */
cpus_share_resources(int this_cpu,int that_cpu)3918 bool cpus_share_resources(int this_cpu, int that_cpu)
3919 {
3920 	if (this_cpu == that_cpu)
3921 		return true;
3922 
3923 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3924 }
3925 
ttwu_queue_cond(struct task_struct * p,int cpu)3926 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3927 {
3928 	/* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */
3929 	if (!scx_allow_ttwu_queue(p))
3930 		return false;
3931 
3932 	/*
3933 	 * Do not complicate things with the async wake_list while the CPU is
3934 	 * in hotplug state.
3935 	 */
3936 	if (!cpu_active(cpu))
3937 		return false;
3938 
3939 	/* Ensure the task will still be allowed to run on the CPU. */
3940 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3941 		return false;
3942 
3943 	/*
3944 	 * If the CPU does not share cache, then queue the task on the
3945 	 * remote rqs wakelist to avoid accessing remote data.
3946 	 */
3947 	if (!cpus_share_cache(smp_processor_id(), cpu))
3948 		return true;
3949 
3950 	if (cpu == smp_processor_id())
3951 		return false;
3952 
3953 	/*
3954 	 * If the wakee cpu is idle, or the task is descheduling and the
3955 	 * only running task on the CPU, then use the wakelist to offload
3956 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3957 	 * the current CPU is likely busy. nr_running is checked to
3958 	 * avoid unnecessary task stacking.
3959 	 *
3960 	 * Note that we can only get here with (wakee) p->on_rq=0,
3961 	 * p->on_cpu can be whatever, we've done the dequeue, so
3962 	 * the wakee has been accounted out of ->nr_running.
3963 	 */
3964 	if (!cpu_rq(cpu)->nr_running)
3965 		return true;
3966 
3967 	return false;
3968 }
3969 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3970 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3971 {
3972 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3973 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3974 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3975 		return true;
3976 	}
3977 
3978 	return false;
3979 }
3980 
3981 #else /* !CONFIG_SMP */
3982 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3983 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3984 {
3985 	return false;
3986 }
3987 
3988 #endif /* CONFIG_SMP */
3989 
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)3990 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3991 {
3992 	struct rq *rq = cpu_rq(cpu);
3993 	struct rq_flags rf;
3994 
3995 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3996 		return;
3997 
3998 	rq_lock(rq, &rf);
3999 	update_rq_clock(rq);
4000 	ttwu_do_activate(rq, p, wake_flags, &rf);
4001 	rq_unlock(rq, &rf);
4002 }
4003 
4004 /*
4005  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4006  *
4007  * The caller holds p::pi_lock if p != current or has preemption
4008  * disabled when p == current.
4009  *
4010  * The rules of saved_state:
4011  *
4012  *   The related locking code always holds p::pi_lock when updating
4013  *   p::saved_state, which means the code is fully serialized in both cases.
4014  *
4015  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4016  *   No other bits set. This allows to distinguish all wakeup scenarios.
4017  *
4018  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4019  *   allows us to prevent early wakeup of tasks before they can be run on
4020  *   asymmetric ISA architectures (eg ARMv9).
4021  */
4022 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)4023 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4024 {
4025 	int match;
4026 
4027 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4028 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4029 			     state != TASK_RTLOCK_WAIT);
4030 	}
4031 
4032 	*success = !!(match = __task_state_match(p, state));
4033 
4034 	/*
4035 	 * Saved state preserves the task state across blocking on
4036 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4037 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4038 	 * because it waits for a lock wakeup or __thaw_task(). Also
4039 	 * indicate success because from the regular waker's point of
4040 	 * view this has succeeded.
4041 	 *
4042 	 * After acquiring the lock the task will restore p::__state
4043 	 * from p::saved_state which ensures that the regular
4044 	 * wakeup is not lost. The restore will also set
4045 	 * p::saved_state to TASK_RUNNING so any further tests will
4046 	 * not result in false positives vs. @success
4047 	 */
4048 	if (match < 0)
4049 		p->saved_state = TASK_RUNNING;
4050 
4051 	return match > 0;
4052 }
4053 
4054 /*
4055  * Notes on Program-Order guarantees on SMP systems.
4056  *
4057  *  MIGRATION
4058  *
4059  * The basic program-order guarantee on SMP systems is that when a task [t]
4060  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4061  * execution on its new CPU [c1].
4062  *
4063  * For migration (of runnable tasks) this is provided by the following means:
4064  *
4065  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4066  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4067  *     rq(c1)->lock (if not at the same time, then in that order).
4068  *  C) LOCK of the rq(c1)->lock scheduling in task
4069  *
4070  * Release/acquire chaining guarantees that B happens after A and C after B.
4071  * Note: the CPU doing B need not be c0 or c1
4072  *
4073  * Example:
4074  *
4075  *   CPU0            CPU1            CPU2
4076  *
4077  *   LOCK rq(0)->lock
4078  *   sched-out X
4079  *   sched-in Y
4080  *   UNLOCK rq(0)->lock
4081  *
4082  *                                   LOCK rq(0)->lock // orders against CPU0
4083  *                                   dequeue X
4084  *                                   UNLOCK rq(0)->lock
4085  *
4086  *                                   LOCK rq(1)->lock
4087  *                                   enqueue X
4088  *                                   UNLOCK rq(1)->lock
4089  *
4090  *                   LOCK rq(1)->lock // orders against CPU2
4091  *                   sched-out Z
4092  *                   sched-in X
4093  *                   UNLOCK rq(1)->lock
4094  *
4095  *
4096  *  BLOCKING -- aka. SLEEP + WAKEUP
4097  *
4098  * For blocking we (obviously) need to provide the same guarantee as for
4099  * migration. However the means are completely different as there is no lock
4100  * chain to provide order. Instead we do:
4101  *
4102  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4103  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4104  *
4105  * Example:
4106  *
4107  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4108  *
4109  *   LOCK rq(0)->lock LOCK X->pi_lock
4110  *   dequeue X
4111  *   sched-out X
4112  *   smp_store_release(X->on_cpu, 0);
4113  *
4114  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4115  *                    X->state = WAKING
4116  *                    set_task_cpu(X,2)
4117  *
4118  *                    LOCK rq(2)->lock
4119  *                    enqueue X
4120  *                    X->state = RUNNING
4121  *                    UNLOCK rq(2)->lock
4122  *
4123  *                                          LOCK rq(2)->lock // orders against CPU1
4124  *                                          sched-out Z
4125  *                                          sched-in X
4126  *                                          UNLOCK rq(2)->lock
4127  *
4128  *                    UNLOCK X->pi_lock
4129  *   UNLOCK rq(0)->lock
4130  *
4131  *
4132  * However, for wakeups there is a second guarantee we must provide, namely we
4133  * must ensure that CONDITION=1 done by the caller can not be reordered with
4134  * accesses to the task state; see try_to_wake_up() and set_current_state().
4135  */
4136 
4137 /**
4138  * try_to_wake_up - wake up a thread
4139  * @p: the thread to be awakened
4140  * @state: the mask of task states that can be woken
4141  * @wake_flags: wake modifier flags (WF_*)
4142  *
4143  * Conceptually does:
4144  *
4145  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4146  *
4147  * If the task was not queued/runnable, also place it back on a runqueue.
4148  *
4149  * This function is atomic against schedule() which would dequeue the task.
4150  *
4151  * It issues a full memory barrier before accessing @p->state, see the comment
4152  * with set_current_state().
4153  *
4154  * Uses p->pi_lock to serialize against concurrent wake-ups.
4155  *
4156  * Relies on p->pi_lock stabilizing:
4157  *  - p->sched_class
4158  *  - p->cpus_ptr
4159  *  - p->sched_task_group
4160  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4161  *
4162  * Tries really hard to only take one task_rq(p)->lock for performance.
4163  * Takes rq->lock in:
4164  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4165  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4166  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4167  *
4168  * As a consequence we race really badly with just about everything. See the
4169  * many memory barriers and their comments for details.
4170  *
4171  * Return: %true if @p->state changes (an actual wakeup was done),
4172  *	   %false otherwise.
4173  */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4174 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4175 {
4176 	guard(preempt)();
4177 	int cpu, success = 0;
4178 
4179 	wake_flags |= WF_TTWU;
4180 
4181 	if (p == current) {
4182 		/*
4183 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4184 		 * == smp_processor_id()'. Together this means we can special
4185 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4186 		 * without taking any locks.
4187 		 *
4188 		 * Specifically, given current runs ttwu() we must be before
4189 		 * schedule()'s block_task(), as such this must not observe
4190 		 * sched_delayed.
4191 		 *
4192 		 * In particular:
4193 		 *  - we rely on Program-Order guarantees for all the ordering,
4194 		 *  - we're serialized against set_special_state() by virtue of
4195 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4196 		 */
4197 		WARN_ON_ONCE(p->se.sched_delayed);
4198 		if (!ttwu_state_match(p, state, &success))
4199 			goto out;
4200 
4201 		trace_sched_waking(p);
4202 		ttwu_do_wakeup(p);
4203 		goto out;
4204 	}
4205 
4206 	/*
4207 	 * If we are going to wake up a thread waiting for CONDITION we
4208 	 * need to ensure that CONDITION=1 done by the caller can not be
4209 	 * reordered with p->state check below. This pairs with smp_store_mb()
4210 	 * in set_current_state() that the waiting thread does.
4211 	 */
4212 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4213 		smp_mb__after_spinlock();
4214 		if (!ttwu_state_match(p, state, &success))
4215 			break;
4216 
4217 		trace_sched_waking(p);
4218 
4219 		/*
4220 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4221 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4222 		 * in smp_cond_load_acquire() below.
4223 		 *
4224 		 * sched_ttwu_pending()			try_to_wake_up()
4225 		 *   STORE p->on_rq = 1			  LOAD p->state
4226 		 *   UNLOCK rq->lock
4227 		 *
4228 		 * __schedule() (switch to task 'p')
4229 		 *   LOCK rq->lock			  smp_rmb();
4230 		 *   smp_mb__after_spinlock();
4231 		 *   UNLOCK rq->lock
4232 		 *
4233 		 * [task p]
4234 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4235 		 *
4236 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4237 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4238 		 *
4239 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4240 		 */
4241 		smp_rmb();
4242 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4243 			break;
4244 
4245 #ifdef CONFIG_SMP
4246 		/*
4247 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4248 		 * possible to, falsely, observe p->on_cpu == 0.
4249 		 *
4250 		 * One must be running (->on_cpu == 1) in order to remove oneself
4251 		 * from the runqueue.
4252 		 *
4253 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4254 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4255 		 *   UNLOCK rq->lock
4256 		 *
4257 		 * __schedule() (put 'p' to sleep)
4258 		 *   LOCK rq->lock			  smp_rmb();
4259 		 *   smp_mb__after_spinlock();
4260 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4261 		 *
4262 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4263 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4264 		 *
4265 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4266 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4267 		 * care about it's own p->state. See the comment in __schedule().
4268 		 */
4269 		smp_acquire__after_ctrl_dep();
4270 
4271 		/*
4272 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4273 		 * == 0), which means we need to do an enqueue, change p->state to
4274 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4275 		 * enqueue, such as ttwu_queue_wakelist().
4276 		 */
4277 		WRITE_ONCE(p->__state, TASK_WAKING);
4278 
4279 		/*
4280 		 * If the owning (remote) CPU is still in the middle of schedule() with
4281 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4282 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4283 		 * let the waker make forward progress. This is safe because IRQs are
4284 		 * disabled and the IPI will deliver after on_cpu is cleared.
4285 		 *
4286 		 * Ensure we load task_cpu(p) after p->on_cpu:
4287 		 *
4288 		 * set_task_cpu(p, cpu);
4289 		 *   STORE p->cpu = @cpu
4290 		 * __schedule() (switch to task 'p')
4291 		 *   LOCK rq->lock
4292 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4293 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4294 		 *
4295 		 * to ensure we observe the correct CPU on which the task is currently
4296 		 * scheduling.
4297 		 */
4298 		if (smp_load_acquire(&p->on_cpu) &&
4299 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4300 			break;
4301 
4302 		/*
4303 		 * If the owning (remote) CPU is still in the middle of schedule() with
4304 		 * this task as prev, wait until it's done referencing the task.
4305 		 *
4306 		 * Pairs with the smp_store_release() in finish_task().
4307 		 *
4308 		 * This ensures that tasks getting woken will be fully ordered against
4309 		 * their previous state and preserve Program Order.
4310 		 */
4311 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4312 
4313 		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4314 		if (task_cpu(p) != cpu) {
4315 			if (p->in_iowait) {
4316 				delayacct_blkio_end(p);
4317 				atomic_dec(&task_rq(p)->nr_iowait);
4318 			}
4319 
4320 			wake_flags |= WF_MIGRATED;
4321 			psi_ttwu_dequeue(p);
4322 			set_task_cpu(p, cpu);
4323 		}
4324 #else
4325 		cpu = task_cpu(p);
4326 #endif /* CONFIG_SMP */
4327 
4328 		ttwu_queue(p, cpu, wake_flags);
4329 	}
4330 out:
4331 	if (success)
4332 		ttwu_stat(p, task_cpu(p), wake_flags);
4333 
4334 	return success;
4335 }
4336 
__task_needs_rq_lock(struct task_struct * p)4337 static bool __task_needs_rq_lock(struct task_struct *p)
4338 {
4339 	unsigned int state = READ_ONCE(p->__state);
4340 
4341 	/*
4342 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4343 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4344 	 * locks at the end, see ttwu_queue_wakelist().
4345 	 */
4346 	if (state == TASK_RUNNING || state == TASK_WAKING)
4347 		return true;
4348 
4349 	/*
4350 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4351 	 * possible to, falsely, observe p->on_rq == 0.
4352 	 *
4353 	 * See try_to_wake_up() for a longer comment.
4354 	 */
4355 	smp_rmb();
4356 	if (p->on_rq)
4357 		return true;
4358 
4359 #ifdef CONFIG_SMP
4360 	/*
4361 	 * Ensure the task has finished __schedule() and will not be referenced
4362 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4363 	 */
4364 	smp_rmb();
4365 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4366 #endif
4367 
4368 	return false;
4369 }
4370 
4371 /**
4372  * task_call_func - Invoke a function on task in fixed state
4373  * @p: Process for which the function is to be invoked, can be @current.
4374  * @func: Function to invoke.
4375  * @arg: Argument to function.
4376  *
4377  * Fix the task in it's current state by avoiding wakeups and or rq operations
4378  * and call @func(@arg) on it.  This function can use task_is_runnable() and
4379  * task_curr() to work out what the state is, if required.  Given that @func
4380  * can be invoked with a runqueue lock held, it had better be quite
4381  * lightweight.
4382  *
4383  * Returns:
4384  *   Whatever @func returns
4385  */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4386 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4387 {
4388 	struct rq *rq = NULL;
4389 	struct rq_flags rf;
4390 	int ret;
4391 
4392 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4393 
4394 	if (__task_needs_rq_lock(p))
4395 		rq = __task_rq_lock(p, &rf);
4396 
4397 	/*
4398 	 * At this point the task is pinned; either:
4399 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4400 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4401 	 *  - queued, and we're holding off schedule	 (rq->lock)
4402 	 *  - running, and we're holding off de-schedule (rq->lock)
4403 	 *
4404 	 * The called function (@func) can use: task_curr(), p->on_rq and
4405 	 * p->__state to differentiate between these states.
4406 	 */
4407 	ret = func(p, arg);
4408 
4409 	if (rq)
4410 		rq_unlock(rq, &rf);
4411 
4412 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4413 	return ret;
4414 }
4415 
4416 /**
4417  * cpu_curr_snapshot - Return a snapshot of the currently running task
4418  * @cpu: The CPU on which to snapshot the task.
4419  *
4420  * Returns the task_struct pointer of the task "currently" running on
4421  * the specified CPU.
4422  *
4423  * If the specified CPU was offline, the return value is whatever it
4424  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4425  * task, but there is no guarantee.  Callers wishing a useful return
4426  * value must take some action to ensure that the specified CPU remains
4427  * online throughout.
4428  *
4429  * This function executes full memory barriers before and after fetching
4430  * the pointer, which permits the caller to confine this function's fetch
4431  * with respect to the caller's accesses to other shared variables.
4432  */
cpu_curr_snapshot(int cpu)4433 struct task_struct *cpu_curr_snapshot(int cpu)
4434 {
4435 	struct rq *rq = cpu_rq(cpu);
4436 	struct task_struct *t;
4437 	struct rq_flags rf;
4438 
4439 	rq_lock_irqsave(rq, &rf);
4440 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4441 	t = rcu_dereference(cpu_curr(cpu));
4442 	rq_unlock_irqrestore(rq, &rf);
4443 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4444 
4445 	return t;
4446 }
4447 
4448 /**
4449  * wake_up_process - Wake up a specific process
4450  * @p: The process to be woken up.
4451  *
4452  * Attempt to wake up the nominated process and move it to the set of runnable
4453  * processes.
4454  *
4455  * Return: 1 if the process was woken up, 0 if it was already running.
4456  *
4457  * This function executes a full memory barrier before accessing the task state.
4458  */
wake_up_process(struct task_struct * p)4459 int wake_up_process(struct task_struct *p)
4460 {
4461 	return try_to_wake_up(p, TASK_NORMAL, 0);
4462 }
4463 EXPORT_SYMBOL(wake_up_process);
4464 
wake_up_state(struct task_struct * p,unsigned int state)4465 int wake_up_state(struct task_struct *p, unsigned int state)
4466 {
4467 	return try_to_wake_up(p, state, 0);
4468 }
4469 
4470 /*
4471  * Perform scheduler related setup for a newly forked process p.
4472  * p is forked by current.
4473  *
4474  * __sched_fork() is basic setup which is also used by sched_init() to
4475  * initialize the boot CPU's idle task.
4476  */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4477 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4478 {
4479 	p->on_rq			= 0;
4480 
4481 	p->se.on_rq			= 0;
4482 	p->se.exec_start		= 0;
4483 	p->se.sum_exec_runtime		= 0;
4484 	p->se.prev_sum_exec_runtime	= 0;
4485 	p->se.nr_migrations		= 0;
4486 	p->se.vruntime			= 0;
4487 	p->se.vlag			= 0;
4488 	INIT_LIST_HEAD(&p->se.group_node);
4489 
4490 	/* A delayed task cannot be in clone(). */
4491 	WARN_ON_ONCE(p->se.sched_delayed);
4492 
4493 #ifdef CONFIG_FAIR_GROUP_SCHED
4494 	p->se.cfs_rq			= NULL;
4495 #endif
4496 
4497 #ifdef CONFIG_SCHEDSTATS
4498 	/* Even if schedstat is disabled, there should not be garbage */
4499 	memset(&p->stats, 0, sizeof(p->stats));
4500 #endif
4501 
4502 	init_dl_entity(&p->dl);
4503 
4504 	INIT_LIST_HEAD(&p->rt.run_list);
4505 	p->rt.timeout		= 0;
4506 	p->rt.time_slice	= sched_rr_timeslice;
4507 	p->rt.on_rq		= 0;
4508 	p->rt.on_list		= 0;
4509 
4510 #ifdef CONFIG_SCHED_CLASS_EXT
4511 	init_scx_entity(&p->scx);
4512 #endif
4513 
4514 #ifdef CONFIG_PREEMPT_NOTIFIERS
4515 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4516 #endif
4517 
4518 #ifdef CONFIG_COMPACTION
4519 	p->capture_control = NULL;
4520 #endif
4521 	init_numa_balancing(clone_flags, p);
4522 #ifdef CONFIG_SMP
4523 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4524 	p->migration_pending = NULL;
4525 #endif
4526 	init_sched_mm_cid(p);
4527 }
4528 
4529 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4530 
4531 #ifdef CONFIG_NUMA_BALANCING
4532 
4533 int sysctl_numa_balancing_mode;
4534 
__set_numabalancing_state(bool enabled)4535 static void __set_numabalancing_state(bool enabled)
4536 {
4537 	if (enabled)
4538 		static_branch_enable(&sched_numa_balancing);
4539 	else
4540 		static_branch_disable(&sched_numa_balancing);
4541 }
4542 
set_numabalancing_state(bool enabled)4543 void set_numabalancing_state(bool enabled)
4544 {
4545 	if (enabled)
4546 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4547 	else
4548 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4549 	__set_numabalancing_state(enabled);
4550 }
4551 
4552 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4553 static void reset_memory_tiering(void)
4554 {
4555 	struct pglist_data *pgdat;
4556 
4557 	for_each_online_pgdat(pgdat) {
4558 		pgdat->nbp_threshold = 0;
4559 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4560 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4561 	}
4562 }
4563 
sysctl_numa_balancing(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4564 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4565 			  void *buffer, size_t *lenp, loff_t *ppos)
4566 {
4567 	struct ctl_table t;
4568 	int err;
4569 	int state = sysctl_numa_balancing_mode;
4570 
4571 	if (write && !capable(CAP_SYS_ADMIN))
4572 		return -EPERM;
4573 
4574 	t = *table;
4575 	t.data = &state;
4576 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4577 	if (err < 0)
4578 		return err;
4579 	if (write) {
4580 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4581 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4582 			reset_memory_tiering();
4583 		sysctl_numa_balancing_mode = state;
4584 		__set_numabalancing_state(state);
4585 	}
4586 	return err;
4587 }
4588 #endif
4589 #endif
4590 
4591 #ifdef CONFIG_SCHEDSTATS
4592 
4593 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4594 
set_schedstats(bool enabled)4595 static void set_schedstats(bool enabled)
4596 {
4597 	if (enabled)
4598 		static_branch_enable(&sched_schedstats);
4599 	else
4600 		static_branch_disable(&sched_schedstats);
4601 }
4602 
force_schedstat_enabled(void)4603 void force_schedstat_enabled(void)
4604 {
4605 	if (!schedstat_enabled()) {
4606 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4607 		static_branch_enable(&sched_schedstats);
4608 	}
4609 }
4610 
setup_schedstats(char * str)4611 static int __init setup_schedstats(char *str)
4612 {
4613 	int ret = 0;
4614 	if (!str)
4615 		goto out;
4616 
4617 	if (!strcmp(str, "enable")) {
4618 		set_schedstats(true);
4619 		ret = 1;
4620 	} else if (!strcmp(str, "disable")) {
4621 		set_schedstats(false);
4622 		ret = 1;
4623 	}
4624 out:
4625 	if (!ret)
4626 		pr_warn("Unable to parse schedstats=\n");
4627 
4628 	return ret;
4629 }
4630 __setup("schedstats=", setup_schedstats);
4631 
4632 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4633 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4634 		size_t *lenp, loff_t *ppos)
4635 {
4636 	struct ctl_table t;
4637 	int err;
4638 	int state = static_branch_likely(&sched_schedstats);
4639 
4640 	if (write && !capable(CAP_SYS_ADMIN))
4641 		return -EPERM;
4642 
4643 	t = *table;
4644 	t.data = &state;
4645 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4646 	if (err < 0)
4647 		return err;
4648 	if (write)
4649 		set_schedstats(state);
4650 	return err;
4651 }
4652 #endif /* CONFIG_PROC_SYSCTL */
4653 #endif /* CONFIG_SCHEDSTATS */
4654 
4655 #ifdef CONFIG_SYSCTL
4656 static const struct ctl_table sched_core_sysctls[] = {
4657 #ifdef CONFIG_SCHEDSTATS
4658 	{
4659 		.procname       = "sched_schedstats",
4660 		.data           = NULL,
4661 		.maxlen         = sizeof(unsigned int),
4662 		.mode           = 0644,
4663 		.proc_handler   = sysctl_schedstats,
4664 		.extra1         = SYSCTL_ZERO,
4665 		.extra2         = SYSCTL_ONE,
4666 	},
4667 #endif /* CONFIG_SCHEDSTATS */
4668 #ifdef CONFIG_UCLAMP_TASK
4669 	{
4670 		.procname       = "sched_util_clamp_min",
4671 		.data           = &sysctl_sched_uclamp_util_min,
4672 		.maxlen         = sizeof(unsigned int),
4673 		.mode           = 0644,
4674 		.proc_handler   = sysctl_sched_uclamp_handler,
4675 	},
4676 	{
4677 		.procname       = "sched_util_clamp_max",
4678 		.data           = &sysctl_sched_uclamp_util_max,
4679 		.maxlen         = sizeof(unsigned int),
4680 		.mode           = 0644,
4681 		.proc_handler   = sysctl_sched_uclamp_handler,
4682 	},
4683 	{
4684 		.procname       = "sched_util_clamp_min_rt_default",
4685 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4686 		.maxlen         = sizeof(unsigned int),
4687 		.mode           = 0644,
4688 		.proc_handler   = sysctl_sched_uclamp_handler,
4689 	},
4690 #endif /* CONFIG_UCLAMP_TASK */
4691 #ifdef CONFIG_NUMA_BALANCING
4692 	{
4693 		.procname	= "numa_balancing",
4694 		.data		= NULL, /* filled in by handler */
4695 		.maxlen		= sizeof(unsigned int),
4696 		.mode		= 0644,
4697 		.proc_handler	= sysctl_numa_balancing,
4698 		.extra1		= SYSCTL_ZERO,
4699 		.extra2		= SYSCTL_FOUR,
4700 	},
4701 #endif /* CONFIG_NUMA_BALANCING */
4702 };
sched_core_sysctl_init(void)4703 static int __init sched_core_sysctl_init(void)
4704 {
4705 	register_sysctl_init("kernel", sched_core_sysctls);
4706 	return 0;
4707 }
4708 late_initcall(sched_core_sysctl_init);
4709 #endif /* CONFIG_SYSCTL */
4710 
4711 /*
4712  * fork()/clone()-time setup:
4713  */
sched_fork(unsigned long clone_flags,struct task_struct * p)4714 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4715 {
4716 	__sched_fork(clone_flags, p);
4717 	/*
4718 	 * We mark the process as NEW here. This guarantees that
4719 	 * nobody will actually run it, and a signal or other external
4720 	 * event cannot wake it up and insert it on the runqueue either.
4721 	 */
4722 	p->__state = TASK_NEW;
4723 
4724 	/*
4725 	 * Make sure we do not leak PI boosting priority to the child.
4726 	 */
4727 	p->prio = current->normal_prio;
4728 
4729 	uclamp_fork(p);
4730 
4731 	/*
4732 	 * Revert to default priority/policy on fork if requested.
4733 	 */
4734 	if (unlikely(p->sched_reset_on_fork)) {
4735 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4736 			p->policy = SCHED_NORMAL;
4737 			p->static_prio = NICE_TO_PRIO(0);
4738 			p->rt_priority = 0;
4739 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4740 			p->static_prio = NICE_TO_PRIO(0);
4741 
4742 		p->prio = p->normal_prio = p->static_prio;
4743 		set_load_weight(p, false);
4744 		p->se.custom_slice = 0;
4745 		p->se.slice = sysctl_sched_base_slice;
4746 
4747 		/*
4748 		 * We don't need the reset flag anymore after the fork. It has
4749 		 * fulfilled its duty:
4750 		 */
4751 		p->sched_reset_on_fork = 0;
4752 	}
4753 
4754 	if (dl_prio(p->prio))
4755 		return -EAGAIN;
4756 
4757 	scx_pre_fork(p);
4758 
4759 	if (rt_prio(p->prio)) {
4760 		p->sched_class = &rt_sched_class;
4761 #ifdef CONFIG_SCHED_CLASS_EXT
4762 	} else if (task_should_scx(p->policy)) {
4763 		p->sched_class = &ext_sched_class;
4764 #endif
4765 	} else {
4766 		p->sched_class = &fair_sched_class;
4767 	}
4768 
4769 	init_entity_runnable_average(&p->se);
4770 
4771 
4772 #ifdef CONFIG_SCHED_INFO
4773 	if (likely(sched_info_on()))
4774 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4775 #endif
4776 #if defined(CONFIG_SMP)
4777 	p->on_cpu = 0;
4778 #endif
4779 	init_task_preempt_count(p);
4780 #ifdef CONFIG_SMP
4781 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4782 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4783 #endif
4784 	return 0;
4785 }
4786 
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4787 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4788 {
4789 	unsigned long flags;
4790 
4791 	/*
4792 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4793 	 * required yet, but lockdep gets upset if rules are violated.
4794 	 */
4795 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4796 #ifdef CONFIG_CGROUP_SCHED
4797 	if (1) {
4798 		struct task_group *tg;
4799 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4800 				  struct task_group, css);
4801 		tg = autogroup_task_group(p, tg);
4802 		p->sched_task_group = tg;
4803 	}
4804 #endif
4805 	rseq_migrate(p);
4806 	/*
4807 	 * We're setting the CPU for the first time, we don't migrate,
4808 	 * so use __set_task_cpu().
4809 	 */
4810 	__set_task_cpu(p, smp_processor_id());
4811 	if (p->sched_class->task_fork)
4812 		p->sched_class->task_fork(p);
4813 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4814 
4815 	return scx_fork(p);
4816 }
4817 
sched_cancel_fork(struct task_struct * p)4818 void sched_cancel_fork(struct task_struct *p)
4819 {
4820 	scx_cancel_fork(p);
4821 }
4822 
sched_post_fork(struct task_struct * p)4823 void sched_post_fork(struct task_struct *p)
4824 {
4825 	uclamp_post_fork(p);
4826 	scx_post_fork(p);
4827 }
4828 
to_ratio(u64 period,u64 runtime)4829 unsigned long to_ratio(u64 period, u64 runtime)
4830 {
4831 	if (runtime == RUNTIME_INF)
4832 		return BW_UNIT;
4833 
4834 	/*
4835 	 * Doing this here saves a lot of checks in all
4836 	 * the calling paths, and returning zero seems
4837 	 * safe for them anyway.
4838 	 */
4839 	if (period == 0)
4840 		return 0;
4841 
4842 	return div64_u64(runtime << BW_SHIFT, period);
4843 }
4844 
4845 /*
4846  * wake_up_new_task - wake up a newly created task for the first time.
4847  *
4848  * This function will do some initial scheduler statistics housekeeping
4849  * that must be done for every newly created context, then puts the task
4850  * on the runqueue and wakes it.
4851  */
wake_up_new_task(struct task_struct * p)4852 void wake_up_new_task(struct task_struct *p)
4853 {
4854 	struct rq_flags rf;
4855 	struct rq *rq;
4856 	int wake_flags = WF_FORK;
4857 
4858 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4859 	WRITE_ONCE(p->__state, TASK_RUNNING);
4860 #ifdef CONFIG_SMP
4861 	/*
4862 	 * Fork balancing, do it here and not earlier because:
4863 	 *  - cpus_ptr can change in the fork path
4864 	 *  - any previously selected CPU might disappear through hotplug
4865 	 *
4866 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4867 	 * as we're not fully set-up yet.
4868 	 */
4869 	p->recent_used_cpu = task_cpu(p);
4870 	rseq_migrate(p);
4871 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4872 #endif
4873 	rq = __task_rq_lock(p, &rf);
4874 	update_rq_clock(rq);
4875 	post_init_entity_util_avg(p);
4876 
4877 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4878 	trace_sched_wakeup_new(p);
4879 	wakeup_preempt(rq, p, wake_flags);
4880 #ifdef CONFIG_SMP
4881 	if (p->sched_class->task_woken) {
4882 		/*
4883 		 * Nothing relies on rq->lock after this, so it's fine to
4884 		 * drop it.
4885 		 */
4886 		rq_unpin_lock(rq, &rf);
4887 		p->sched_class->task_woken(rq, p);
4888 		rq_repin_lock(rq, &rf);
4889 	}
4890 #endif
4891 	task_rq_unlock(rq, p, &rf);
4892 }
4893 
4894 #ifdef CONFIG_PREEMPT_NOTIFIERS
4895 
4896 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4897 
preempt_notifier_inc(void)4898 void preempt_notifier_inc(void)
4899 {
4900 	static_branch_inc(&preempt_notifier_key);
4901 }
4902 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4903 
preempt_notifier_dec(void)4904 void preempt_notifier_dec(void)
4905 {
4906 	static_branch_dec(&preempt_notifier_key);
4907 }
4908 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4909 
4910 /**
4911  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4912  * @notifier: notifier struct to register
4913  */
preempt_notifier_register(struct preempt_notifier * notifier)4914 void preempt_notifier_register(struct preempt_notifier *notifier)
4915 {
4916 	if (!static_branch_unlikely(&preempt_notifier_key))
4917 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4918 
4919 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4920 }
4921 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4922 
4923 /**
4924  * preempt_notifier_unregister - no longer interested in preemption notifications
4925  * @notifier: notifier struct to unregister
4926  *
4927  * This is *not* safe to call from within a preemption notifier.
4928  */
preempt_notifier_unregister(struct preempt_notifier * notifier)4929 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4930 {
4931 	hlist_del(&notifier->link);
4932 }
4933 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4934 
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4935 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4936 {
4937 	struct preempt_notifier *notifier;
4938 
4939 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4940 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4941 }
4942 
fire_sched_in_preempt_notifiers(struct task_struct * curr)4943 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4944 {
4945 	if (static_branch_unlikely(&preempt_notifier_key))
4946 		__fire_sched_in_preempt_notifiers(curr);
4947 }
4948 
4949 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4950 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4951 				   struct task_struct *next)
4952 {
4953 	struct preempt_notifier *notifier;
4954 
4955 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4956 		notifier->ops->sched_out(notifier, next);
4957 }
4958 
4959 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4960 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4961 				 struct task_struct *next)
4962 {
4963 	if (static_branch_unlikely(&preempt_notifier_key))
4964 		__fire_sched_out_preempt_notifiers(curr, next);
4965 }
4966 
4967 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4968 
fire_sched_in_preempt_notifiers(struct task_struct * curr)4969 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4970 {
4971 }
4972 
4973 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4974 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4975 				 struct task_struct *next)
4976 {
4977 }
4978 
4979 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4980 
prepare_task(struct task_struct * next)4981 static inline void prepare_task(struct task_struct *next)
4982 {
4983 #ifdef CONFIG_SMP
4984 	/*
4985 	 * Claim the task as running, we do this before switching to it
4986 	 * such that any running task will have this set.
4987 	 *
4988 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4989 	 * its ordering comment.
4990 	 */
4991 	WRITE_ONCE(next->on_cpu, 1);
4992 #endif
4993 }
4994 
finish_task(struct task_struct * prev)4995 static inline void finish_task(struct task_struct *prev)
4996 {
4997 #ifdef CONFIG_SMP
4998 	/*
4999 	 * This must be the very last reference to @prev from this CPU. After
5000 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5001 	 * must ensure this doesn't happen until the switch is completely
5002 	 * finished.
5003 	 *
5004 	 * In particular, the load of prev->state in finish_task_switch() must
5005 	 * happen before this.
5006 	 *
5007 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5008 	 */
5009 	smp_store_release(&prev->on_cpu, 0);
5010 #endif
5011 }
5012 
5013 #ifdef CONFIG_SMP
5014 
do_balance_callbacks(struct rq * rq,struct balance_callback * head)5015 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5016 {
5017 	void (*func)(struct rq *rq);
5018 	struct balance_callback *next;
5019 
5020 	lockdep_assert_rq_held(rq);
5021 
5022 	while (head) {
5023 		func = (void (*)(struct rq *))head->func;
5024 		next = head->next;
5025 		head->next = NULL;
5026 		head = next;
5027 
5028 		func(rq);
5029 	}
5030 }
5031 
5032 static void balance_push(struct rq *rq);
5033 
5034 /*
5035  * balance_push_callback is a right abuse of the callback interface and plays
5036  * by significantly different rules.
5037  *
5038  * Where the normal balance_callback's purpose is to be ran in the same context
5039  * that queued it (only later, when it's safe to drop rq->lock again),
5040  * balance_push_callback is specifically targeted at __schedule().
5041  *
5042  * This abuse is tolerated because it places all the unlikely/odd cases behind
5043  * a single test, namely: rq->balance_callback == NULL.
5044  */
5045 struct balance_callback balance_push_callback = {
5046 	.next = NULL,
5047 	.func = balance_push,
5048 };
5049 
5050 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5051 __splice_balance_callbacks(struct rq *rq, bool split)
5052 {
5053 	struct balance_callback *head = rq->balance_callback;
5054 
5055 	if (likely(!head))
5056 		return NULL;
5057 
5058 	lockdep_assert_rq_held(rq);
5059 	/*
5060 	 * Must not take balance_push_callback off the list when
5061 	 * splice_balance_callbacks() and balance_callbacks() are not
5062 	 * in the same rq->lock section.
5063 	 *
5064 	 * In that case it would be possible for __schedule() to interleave
5065 	 * and observe the list empty.
5066 	 */
5067 	if (split && head == &balance_push_callback)
5068 		head = NULL;
5069 	else
5070 		rq->balance_callback = NULL;
5071 
5072 	return head;
5073 }
5074 
splice_balance_callbacks(struct rq * rq)5075 struct balance_callback *splice_balance_callbacks(struct rq *rq)
5076 {
5077 	return __splice_balance_callbacks(rq, true);
5078 }
5079 
__balance_callbacks(struct rq * rq)5080 static void __balance_callbacks(struct rq *rq)
5081 {
5082 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5083 }
5084 
balance_callbacks(struct rq * rq,struct balance_callback * head)5085 void balance_callbacks(struct rq *rq, struct balance_callback *head)
5086 {
5087 	unsigned long flags;
5088 
5089 	if (unlikely(head)) {
5090 		raw_spin_rq_lock_irqsave(rq, flags);
5091 		do_balance_callbacks(rq, head);
5092 		raw_spin_rq_unlock_irqrestore(rq, flags);
5093 	}
5094 }
5095 
5096 #else
5097 
__balance_callbacks(struct rq * rq)5098 static inline void __balance_callbacks(struct rq *rq)
5099 {
5100 }
5101 
5102 #endif
5103 
5104 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5105 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5106 {
5107 	/*
5108 	 * Since the runqueue lock will be released by the next
5109 	 * task (which is an invalid locking op but in the case
5110 	 * of the scheduler it's an obvious special-case), so we
5111 	 * do an early lockdep release here:
5112 	 */
5113 	rq_unpin_lock(rq, rf);
5114 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5115 #ifdef CONFIG_DEBUG_SPINLOCK
5116 	/* this is a valid case when another task releases the spinlock */
5117 	rq_lockp(rq)->owner = next;
5118 #endif
5119 }
5120 
finish_lock_switch(struct rq * rq)5121 static inline void finish_lock_switch(struct rq *rq)
5122 {
5123 	/*
5124 	 * If we are tracking spinlock dependencies then we have to
5125 	 * fix up the runqueue lock - which gets 'carried over' from
5126 	 * prev into current:
5127 	 */
5128 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5129 	__balance_callbacks(rq);
5130 	raw_spin_rq_unlock_irq(rq);
5131 }
5132 
5133 /*
5134  * NOP if the arch has not defined these:
5135  */
5136 
5137 #ifndef prepare_arch_switch
5138 # define prepare_arch_switch(next)	do { } while (0)
5139 #endif
5140 
5141 #ifndef finish_arch_post_lock_switch
5142 # define finish_arch_post_lock_switch()	do { } while (0)
5143 #endif
5144 
kmap_local_sched_out(void)5145 static inline void kmap_local_sched_out(void)
5146 {
5147 #ifdef CONFIG_KMAP_LOCAL
5148 	if (unlikely(current->kmap_ctrl.idx))
5149 		__kmap_local_sched_out();
5150 #endif
5151 }
5152 
kmap_local_sched_in(void)5153 static inline void kmap_local_sched_in(void)
5154 {
5155 #ifdef CONFIG_KMAP_LOCAL
5156 	if (unlikely(current->kmap_ctrl.idx))
5157 		__kmap_local_sched_in();
5158 #endif
5159 }
5160 
5161 /**
5162  * prepare_task_switch - prepare to switch tasks
5163  * @rq: the runqueue preparing to switch
5164  * @prev: the current task that is being switched out
5165  * @next: the task we are going to switch to.
5166  *
5167  * This is called with the rq lock held and interrupts off. It must
5168  * be paired with a subsequent finish_task_switch after the context
5169  * switch.
5170  *
5171  * prepare_task_switch sets up locking and calls architecture specific
5172  * hooks.
5173  */
5174 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5175 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5176 		    struct task_struct *next)
5177 {
5178 	kcov_prepare_switch(prev);
5179 	sched_info_switch(rq, prev, next);
5180 	perf_event_task_sched_out(prev, next);
5181 	rseq_preempt(prev);
5182 	fire_sched_out_preempt_notifiers(prev, next);
5183 	kmap_local_sched_out();
5184 	prepare_task(next);
5185 	prepare_arch_switch(next);
5186 }
5187 
5188 /**
5189  * finish_task_switch - clean up after a task-switch
5190  * @prev: the thread we just switched away from.
5191  *
5192  * finish_task_switch must be called after the context switch, paired
5193  * with a prepare_task_switch call before the context switch.
5194  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5195  * and do any other architecture-specific cleanup actions.
5196  *
5197  * Note that we may have delayed dropping an mm in context_switch(). If
5198  * so, we finish that here outside of the runqueue lock. (Doing it
5199  * with the lock held can cause deadlocks; see schedule() for
5200  * details.)
5201  *
5202  * The context switch have flipped the stack from under us and restored the
5203  * local variables which were saved when this task called schedule() in the
5204  * past. 'prev == current' is still correct but we need to recalculate this_rq
5205  * because prev may have moved to another CPU.
5206  */
finish_task_switch(struct task_struct * prev)5207 static struct rq *finish_task_switch(struct task_struct *prev)
5208 	__releases(rq->lock)
5209 {
5210 	struct rq *rq = this_rq();
5211 	struct mm_struct *mm = rq->prev_mm;
5212 	unsigned int prev_state;
5213 
5214 	/*
5215 	 * The previous task will have left us with a preempt_count of 2
5216 	 * because it left us after:
5217 	 *
5218 	 *	schedule()
5219 	 *	  preempt_disable();			// 1
5220 	 *	  __schedule()
5221 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5222 	 *
5223 	 * Also, see FORK_PREEMPT_COUNT.
5224 	 */
5225 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5226 		      "corrupted preempt_count: %s/%d/0x%x\n",
5227 		      current->comm, current->pid, preempt_count()))
5228 		preempt_count_set(FORK_PREEMPT_COUNT);
5229 
5230 	rq->prev_mm = NULL;
5231 
5232 	/*
5233 	 * A task struct has one reference for the use as "current".
5234 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5235 	 * schedule one last time. The schedule call will never return, and
5236 	 * the scheduled task must drop that reference.
5237 	 *
5238 	 * We must observe prev->state before clearing prev->on_cpu (in
5239 	 * finish_task), otherwise a concurrent wakeup can get prev
5240 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5241 	 * transition, resulting in a double drop.
5242 	 */
5243 	prev_state = READ_ONCE(prev->__state);
5244 	vtime_task_switch(prev);
5245 	perf_event_task_sched_in(prev, current);
5246 	finish_task(prev);
5247 	tick_nohz_task_switch();
5248 	finish_lock_switch(rq);
5249 	finish_arch_post_lock_switch();
5250 	kcov_finish_switch(current);
5251 	/*
5252 	 * kmap_local_sched_out() is invoked with rq::lock held and
5253 	 * interrupts disabled. There is no requirement for that, but the
5254 	 * sched out code does not have an interrupt enabled section.
5255 	 * Restoring the maps on sched in does not require interrupts being
5256 	 * disabled either.
5257 	 */
5258 	kmap_local_sched_in();
5259 
5260 	fire_sched_in_preempt_notifiers(current);
5261 	/*
5262 	 * When switching through a kernel thread, the loop in
5263 	 * membarrier_{private,global}_expedited() may have observed that
5264 	 * kernel thread and not issued an IPI. It is therefore possible to
5265 	 * schedule between user->kernel->user threads without passing though
5266 	 * switch_mm(). Membarrier requires a barrier after storing to
5267 	 * rq->curr, before returning to userspace, so provide them here:
5268 	 *
5269 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5270 	 *   provided by mmdrop_lazy_tlb(),
5271 	 * - a sync_core for SYNC_CORE.
5272 	 */
5273 	if (mm) {
5274 		membarrier_mm_sync_core_before_usermode(mm);
5275 		mmdrop_lazy_tlb_sched(mm);
5276 	}
5277 
5278 	if (unlikely(prev_state == TASK_DEAD)) {
5279 		if (prev->sched_class->task_dead)
5280 			prev->sched_class->task_dead(prev);
5281 
5282 		/* Task is done with its stack. */
5283 		put_task_stack(prev);
5284 
5285 		put_task_struct_rcu_user(prev);
5286 	}
5287 
5288 	return rq;
5289 }
5290 
5291 /**
5292  * schedule_tail - first thing a freshly forked thread must call.
5293  * @prev: the thread we just switched away from.
5294  */
schedule_tail(struct task_struct * prev)5295 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5296 	__releases(rq->lock)
5297 {
5298 	/*
5299 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5300 	 * finish_task_switch() for details.
5301 	 *
5302 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5303 	 * and the preempt_enable() will end up enabling preemption (on
5304 	 * PREEMPT_COUNT kernels).
5305 	 */
5306 
5307 	finish_task_switch(prev);
5308 	/*
5309 	 * This is a special case: the newly created task has just
5310 	 * switched the context for the first time. It is returning from
5311 	 * schedule for the first time in this path.
5312 	 */
5313 	trace_sched_exit_tp(true, CALLER_ADDR0);
5314 	preempt_enable();
5315 
5316 	if (current->set_child_tid)
5317 		put_user(task_pid_vnr(current), current->set_child_tid);
5318 
5319 	calculate_sigpending();
5320 }
5321 
5322 /*
5323  * context_switch - switch to the new MM and the new thread's register state.
5324  */
5325 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5326 context_switch(struct rq *rq, struct task_struct *prev,
5327 	       struct task_struct *next, struct rq_flags *rf)
5328 {
5329 	prepare_task_switch(rq, prev, next);
5330 
5331 	/*
5332 	 * For paravirt, this is coupled with an exit in switch_to to
5333 	 * combine the page table reload and the switch backend into
5334 	 * one hypercall.
5335 	 */
5336 	arch_start_context_switch(prev);
5337 
5338 	/*
5339 	 * kernel -> kernel   lazy + transfer active
5340 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5341 	 *
5342 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5343 	 *   user ->   user   switch
5344 	 *
5345 	 * switch_mm_cid() needs to be updated if the barriers provided
5346 	 * by context_switch() are modified.
5347 	 */
5348 	if (!next->mm) {                                // to kernel
5349 		enter_lazy_tlb(prev->active_mm, next);
5350 
5351 		next->active_mm = prev->active_mm;
5352 		if (prev->mm)                           // from user
5353 			mmgrab_lazy_tlb(prev->active_mm);
5354 		else
5355 			prev->active_mm = NULL;
5356 	} else {                                        // to user
5357 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5358 		/*
5359 		 * sys_membarrier() requires an smp_mb() between setting
5360 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5361 		 *
5362 		 * The below provides this either through switch_mm(), or in
5363 		 * case 'prev->active_mm == next->mm' through
5364 		 * finish_task_switch()'s mmdrop().
5365 		 */
5366 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5367 		lru_gen_use_mm(next->mm);
5368 
5369 		if (!prev->mm) {                        // from kernel
5370 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5371 			rq->prev_mm = prev->active_mm;
5372 			prev->active_mm = NULL;
5373 		}
5374 	}
5375 
5376 	/* switch_mm_cid() requires the memory barriers above. */
5377 	switch_mm_cid(rq, prev, next);
5378 
5379 	prepare_lock_switch(rq, next, rf);
5380 
5381 	/* Here we just switch the register state and the stack. */
5382 	switch_to(prev, next, prev);
5383 	barrier();
5384 
5385 	return finish_task_switch(prev);
5386 }
5387 
5388 /*
5389  * nr_running and nr_context_switches:
5390  *
5391  * externally visible scheduler statistics: current number of runnable
5392  * threads, total number of context switches performed since bootup.
5393  */
nr_running(void)5394 unsigned int nr_running(void)
5395 {
5396 	unsigned int i, sum = 0;
5397 
5398 	for_each_online_cpu(i)
5399 		sum += cpu_rq(i)->nr_running;
5400 
5401 	return sum;
5402 }
5403 
5404 /*
5405  * Check if only the current task is running on the CPU.
5406  *
5407  * Caution: this function does not check that the caller has disabled
5408  * preemption, thus the result might have a time-of-check-to-time-of-use
5409  * race.  The caller is responsible to use it correctly, for example:
5410  *
5411  * - from a non-preemptible section (of course)
5412  *
5413  * - from a thread that is bound to a single CPU
5414  *
5415  * - in a loop with very short iterations (e.g. a polling loop)
5416  */
single_task_running(void)5417 bool single_task_running(void)
5418 {
5419 	return raw_rq()->nr_running == 1;
5420 }
5421 EXPORT_SYMBOL(single_task_running);
5422 
nr_context_switches_cpu(int cpu)5423 unsigned long long nr_context_switches_cpu(int cpu)
5424 {
5425 	return cpu_rq(cpu)->nr_switches;
5426 }
5427 
nr_context_switches(void)5428 unsigned long long nr_context_switches(void)
5429 {
5430 	int i;
5431 	unsigned long long sum = 0;
5432 
5433 	for_each_possible_cpu(i)
5434 		sum += cpu_rq(i)->nr_switches;
5435 
5436 	return sum;
5437 }
5438 
5439 /*
5440  * Consumers of these two interfaces, like for example the cpuidle menu
5441  * governor, are using nonsensical data. Preferring shallow idle state selection
5442  * for a CPU that has IO-wait which might not even end up running the task when
5443  * it does become runnable.
5444  */
5445 
nr_iowait_cpu(int cpu)5446 unsigned int nr_iowait_cpu(int cpu)
5447 {
5448 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5449 }
5450 
5451 /*
5452  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5453  *
5454  * The idea behind IO-wait account is to account the idle time that we could
5455  * have spend running if it were not for IO. That is, if we were to improve the
5456  * storage performance, we'd have a proportional reduction in IO-wait time.
5457  *
5458  * This all works nicely on UP, where, when a task blocks on IO, we account
5459  * idle time as IO-wait, because if the storage were faster, it could've been
5460  * running and we'd not be idle.
5461  *
5462  * This has been extended to SMP, by doing the same for each CPU. This however
5463  * is broken.
5464  *
5465  * Imagine for instance the case where two tasks block on one CPU, only the one
5466  * CPU will have IO-wait accounted, while the other has regular idle. Even
5467  * though, if the storage were faster, both could've ran at the same time,
5468  * utilising both CPUs.
5469  *
5470  * This means, that when looking globally, the current IO-wait accounting on
5471  * SMP is a lower bound, by reason of under accounting.
5472  *
5473  * Worse, since the numbers are provided per CPU, they are sometimes
5474  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5475  * associated with any one particular CPU, it can wake to another CPU than it
5476  * blocked on. This means the per CPU IO-wait number is meaningless.
5477  *
5478  * Task CPU affinities can make all that even more 'interesting'.
5479  */
5480 
nr_iowait(void)5481 unsigned int nr_iowait(void)
5482 {
5483 	unsigned int i, sum = 0;
5484 
5485 	for_each_possible_cpu(i)
5486 		sum += nr_iowait_cpu(i);
5487 
5488 	return sum;
5489 }
5490 
5491 #ifdef CONFIG_SMP
5492 
5493 /*
5494  * sched_exec - execve() is a valuable balancing opportunity, because at
5495  * this point the task has the smallest effective memory and cache footprint.
5496  */
sched_exec(void)5497 void sched_exec(void)
5498 {
5499 	struct task_struct *p = current;
5500 	struct migration_arg arg;
5501 	int dest_cpu;
5502 
5503 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5504 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5505 		if (dest_cpu == smp_processor_id())
5506 			return;
5507 
5508 		if (unlikely(!cpu_active(dest_cpu)))
5509 			return;
5510 
5511 		arg = (struct migration_arg){ p, dest_cpu };
5512 	}
5513 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5514 }
5515 
5516 #endif
5517 
5518 DEFINE_PER_CPU(struct kernel_stat, kstat);
5519 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5520 
5521 EXPORT_PER_CPU_SYMBOL(kstat);
5522 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5523 
5524 /*
5525  * The function fair_sched_class.update_curr accesses the struct curr
5526  * and its field curr->exec_start; when called from task_sched_runtime(),
5527  * we observe a high rate of cache misses in practice.
5528  * Prefetching this data results in improved performance.
5529  */
prefetch_curr_exec_start(struct task_struct * p)5530 static inline void prefetch_curr_exec_start(struct task_struct *p)
5531 {
5532 #ifdef CONFIG_FAIR_GROUP_SCHED
5533 	struct sched_entity *curr = p->se.cfs_rq->curr;
5534 #else
5535 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5536 #endif
5537 	prefetch(curr);
5538 	prefetch(&curr->exec_start);
5539 }
5540 
5541 /*
5542  * Return accounted runtime for the task.
5543  * In case the task is currently running, return the runtime plus current's
5544  * pending runtime that have not been accounted yet.
5545  */
task_sched_runtime(struct task_struct * p)5546 unsigned long long task_sched_runtime(struct task_struct *p)
5547 {
5548 	struct rq_flags rf;
5549 	struct rq *rq;
5550 	u64 ns;
5551 
5552 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5553 	/*
5554 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5555 	 * So we have a optimization chance when the task's delta_exec is 0.
5556 	 * Reading ->on_cpu is racy, but this is OK.
5557 	 *
5558 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5559 	 * If we race with it entering CPU, unaccounted time is 0. This is
5560 	 * indistinguishable from the read occurring a few cycles earlier.
5561 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5562 	 * been accounted, so we're correct here as well.
5563 	 */
5564 	if (!p->on_cpu || !task_on_rq_queued(p))
5565 		return p->se.sum_exec_runtime;
5566 #endif
5567 
5568 	rq = task_rq_lock(p, &rf);
5569 	/*
5570 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5571 	 * project cycles that may never be accounted to this
5572 	 * thread, breaking clock_gettime().
5573 	 */
5574 	if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5575 		prefetch_curr_exec_start(p);
5576 		update_rq_clock(rq);
5577 		p->sched_class->update_curr(rq);
5578 	}
5579 	ns = p->se.sum_exec_runtime;
5580 	task_rq_unlock(rq, p, &rf);
5581 
5582 	return ns;
5583 }
5584 
cpu_resched_latency(struct rq * rq)5585 static u64 cpu_resched_latency(struct rq *rq)
5586 {
5587 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5588 	u64 resched_latency, now = rq_clock(rq);
5589 	static bool warned_once;
5590 
5591 	if (sysctl_resched_latency_warn_once && warned_once)
5592 		return 0;
5593 
5594 	if (!need_resched() || !latency_warn_ms)
5595 		return 0;
5596 
5597 	if (system_state == SYSTEM_BOOTING)
5598 		return 0;
5599 
5600 	if (!rq->last_seen_need_resched_ns) {
5601 		rq->last_seen_need_resched_ns = now;
5602 		rq->ticks_without_resched = 0;
5603 		return 0;
5604 	}
5605 
5606 	rq->ticks_without_resched++;
5607 	resched_latency = now - rq->last_seen_need_resched_ns;
5608 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5609 		return 0;
5610 
5611 	warned_once = true;
5612 
5613 	return resched_latency;
5614 }
5615 
setup_resched_latency_warn_ms(char * str)5616 static int __init setup_resched_latency_warn_ms(char *str)
5617 {
5618 	long val;
5619 
5620 	if ((kstrtol(str, 0, &val))) {
5621 		pr_warn("Unable to set resched_latency_warn_ms\n");
5622 		return 1;
5623 	}
5624 
5625 	sysctl_resched_latency_warn_ms = val;
5626 	return 1;
5627 }
5628 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5629 
5630 /*
5631  * This function gets called by the timer code, with HZ frequency.
5632  * We call it with interrupts disabled.
5633  */
sched_tick(void)5634 void sched_tick(void)
5635 {
5636 	int cpu = smp_processor_id();
5637 	struct rq *rq = cpu_rq(cpu);
5638 	/* accounting goes to the donor task */
5639 	struct task_struct *donor;
5640 	struct rq_flags rf;
5641 	unsigned long hw_pressure;
5642 	u64 resched_latency;
5643 
5644 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5645 		arch_scale_freq_tick();
5646 
5647 	sched_clock_tick();
5648 
5649 	rq_lock(rq, &rf);
5650 	donor = rq->donor;
5651 
5652 	psi_account_irqtime(rq, donor, NULL);
5653 
5654 	update_rq_clock(rq);
5655 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5656 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5657 
5658 	if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5659 		resched_curr(rq);
5660 
5661 	donor->sched_class->task_tick(rq, donor, 0);
5662 	if (sched_feat(LATENCY_WARN))
5663 		resched_latency = cpu_resched_latency(rq);
5664 	calc_global_load_tick(rq);
5665 	sched_core_tick(rq);
5666 	task_tick_mm_cid(rq, donor);
5667 	scx_tick(rq);
5668 
5669 	rq_unlock(rq, &rf);
5670 
5671 	if (sched_feat(LATENCY_WARN) && resched_latency)
5672 		resched_latency_warn(cpu, resched_latency);
5673 
5674 	perf_event_task_tick();
5675 
5676 	if (donor->flags & PF_WQ_WORKER)
5677 		wq_worker_tick(donor);
5678 
5679 #ifdef CONFIG_SMP
5680 	if (!scx_switched_all()) {
5681 		rq->idle_balance = idle_cpu(cpu);
5682 		sched_balance_trigger(rq);
5683 	}
5684 #endif
5685 }
5686 
5687 #ifdef CONFIG_NO_HZ_FULL
5688 
5689 struct tick_work {
5690 	int			cpu;
5691 	atomic_t		state;
5692 	struct delayed_work	work;
5693 };
5694 /* Values for ->state, see diagram below. */
5695 #define TICK_SCHED_REMOTE_OFFLINE	0
5696 #define TICK_SCHED_REMOTE_OFFLINING	1
5697 #define TICK_SCHED_REMOTE_RUNNING	2
5698 
5699 /*
5700  * State diagram for ->state:
5701  *
5702  *
5703  *          TICK_SCHED_REMOTE_OFFLINE
5704  *                    |   ^
5705  *                    |   |
5706  *                    |   | sched_tick_remote()
5707  *                    |   |
5708  *                    |   |
5709  *                    +--TICK_SCHED_REMOTE_OFFLINING
5710  *                    |   ^
5711  *                    |   |
5712  * sched_tick_start() |   | sched_tick_stop()
5713  *                    |   |
5714  *                    V   |
5715  *          TICK_SCHED_REMOTE_RUNNING
5716  *
5717  *
5718  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5719  * and sched_tick_start() are happy to leave the state in RUNNING.
5720  */
5721 
5722 static struct tick_work __percpu *tick_work_cpu;
5723 
sched_tick_remote(struct work_struct * work)5724 static void sched_tick_remote(struct work_struct *work)
5725 {
5726 	struct delayed_work *dwork = to_delayed_work(work);
5727 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5728 	int cpu = twork->cpu;
5729 	struct rq *rq = cpu_rq(cpu);
5730 	int os;
5731 
5732 	/*
5733 	 * Handle the tick only if it appears the remote CPU is running in full
5734 	 * dynticks mode. The check is racy by nature, but missing a tick or
5735 	 * having one too much is no big deal because the scheduler tick updates
5736 	 * statistics and checks timeslices in a time-independent way, regardless
5737 	 * of when exactly it is running.
5738 	 */
5739 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5740 		guard(rq_lock_irq)(rq);
5741 		struct task_struct *curr = rq->curr;
5742 
5743 		if (cpu_online(cpu)) {
5744 			/*
5745 			 * Since this is a remote tick for full dynticks mode,
5746 			 * we are always sure that there is no proxy (only a
5747 			 * single task is running).
5748 			 */
5749 			WARN_ON_ONCE(rq->curr != rq->donor);
5750 			update_rq_clock(rq);
5751 
5752 			if (!is_idle_task(curr)) {
5753 				/*
5754 				 * Make sure the next tick runs within a
5755 				 * reasonable amount of time.
5756 				 */
5757 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5758 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5759 			}
5760 			curr->sched_class->task_tick(rq, curr, 0);
5761 
5762 			calc_load_nohz_remote(rq);
5763 		}
5764 	}
5765 
5766 	/*
5767 	 * Run the remote tick once per second (1Hz). This arbitrary
5768 	 * frequency is large enough to avoid overload but short enough
5769 	 * to keep scheduler internal stats reasonably up to date.  But
5770 	 * first update state to reflect hotplug activity if required.
5771 	 */
5772 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5773 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5774 	if (os == TICK_SCHED_REMOTE_RUNNING)
5775 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5776 }
5777 
sched_tick_start(int cpu)5778 static void sched_tick_start(int cpu)
5779 {
5780 	int os;
5781 	struct tick_work *twork;
5782 
5783 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5784 		return;
5785 
5786 	WARN_ON_ONCE(!tick_work_cpu);
5787 
5788 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5789 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5790 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5791 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5792 		twork->cpu = cpu;
5793 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5794 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5795 	}
5796 }
5797 
5798 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5799 static void sched_tick_stop(int cpu)
5800 {
5801 	struct tick_work *twork;
5802 	int os;
5803 
5804 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5805 		return;
5806 
5807 	WARN_ON_ONCE(!tick_work_cpu);
5808 
5809 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5810 	/* There cannot be competing actions, but don't rely on stop-machine. */
5811 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5812 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5813 	/* Don't cancel, as this would mess up the state machine. */
5814 }
5815 #endif /* CONFIG_HOTPLUG_CPU */
5816 
sched_tick_offload_init(void)5817 int __init sched_tick_offload_init(void)
5818 {
5819 	tick_work_cpu = alloc_percpu(struct tick_work);
5820 	BUG_ON(!tick_work_cpu);
5821 	return 0;
5822 }
5823 
5824 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5825 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5826 static inline void sched_tick_stop(int cpu) { }
5827 #endif
5828 
5829 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5830 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5831 /*
5832  * If the value passed in is equal to the current preempt count
5833  * then we just disabled preemption. Start timing the latency.
5834  */
preempt_latency_start(int val)5835 static inline void preempt_latency_start(int val)
5836 {
5837 	if (preempt_count() == val) {
5838 		unsigned long ip = get_lock_parent_ip();
5839 #ifdef CONFIG_DEBUG_PREEMPT
5840 		current->preempt_disable_ip = ip;
5841 #endif
5842 		trace_preempt_off(CALLER_ADDR0, ip);
5843 	}
5844 }
5845 
preempt_count_add(int val)5846 void preempt_count_add(int val)
5847 {
5848 #ifdef CONFIG_DEBUG_PREEMPT
5849 	/*
5850 	 * Underflow?
5851 	 */
5852 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5853 		return;
5854 #endif
5855 	__preempt_count_add(val);
5856 #ifdef CONFIG_DEBUG_PREEMPT
5857 	/*
5858 	 * Spinlock count overflowing soon?
5859 	 */
5860 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5861 				PREEMPT_MASK - 10);
5862 #endif
5863 	preempt_latency_start(val);
5864 }
5865 EXPORT_SYMBOL(preempt_count_add);
5866 NOKPROBE_SYMBOL(preempt_count_add);
5867 
5868 /*
5869  * If the value passed in equals to the current preempt count
5870  * then we just enabled preemption. Stop timing the latency.
5871  */
preempt_latency_stop(int val)5872 static inline void preempt_latency_stop(int val)
5873 {
5874 	if (preempt_count() == val)
5875 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5876 }
5877 
preempt_count_sub(int val)5878 void preempt_count_sub(int val)
5879 {
5880 #ifdef CONFIG_DEBUG_PREEMPT
5881 	/*
5882 	 * Underflow?
5883 	 */
5884 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5885 		return;
5886 	/*
5887 	 * Is the spinlock portion underflowing?
5888 	 */
5889 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5890 			!(preempt_count() & PREEMPT_MASK)))
5891 		return;
5892 #endif
5893 
5894 	preempt_latency_stop(val);
5895 	__preempt_count_sub(val);
5896 }
5897 EXPORT_SYMBOL(preempt_count_sub);
5898 NOKPROBE_SYMBOL(preempt_count_sub);
5899 
5900 #else
preempt_latency_start(int val)5901 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5902 static inline void preempt_latency_stop(int val) { }
5903 #endif
5904 
get_preempt_disable_ip(struct task_struct * p)5905 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5906 {
5907 #ifdef CONFIG_DEBUG_PREEMPT
5908 	return p->preempt_disable_ip;
5909 #else
5910 	return 0;
5911 #endif
5912 }
5913 
5914 /*
5915  * Print scheduling while atomic bug:
5916  */
__schedule_bug(struct task_struct * prev)5917 static noinline void __schedule_bug(struct task_struct *prev)
5918 {
5919 	/* Save this before calling printk(), since that will clobber it */
5920 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5921 
5922 	if (oops_in_progress)
5923 		return;
5924 
5925 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5926 		prev->comm, prev->pid, preempt_count());
5927 
5928 	debug_show_held_locks(prev);
5929 	print_modules();
5930 	if (irqs_disabled())
5931 		print_irqtrace_events(prev);
5932 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5933 		pr_err("Preemption disabled at:");
5934 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5935 	}
5936 	check_panic_on_warn("scheduling while atomic");
5937 
5938 	dump_stack();
5939 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5940 }
5941 
5942 /*
5943  * Various schedule()-time debugging checks and statistics:
5944  */
schedule_debug(struct task_struct * prev,bool preempt)5945 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5946 {
5947 #ifdef CONFIG_SCHED_STACK_END_CHECK
5948 	if (task_stack_end_corrupted(prev))
5949 		panic("corrupted stack end detected inside scheduler\n");
5950 
5951 	if (task_scs_end_corrupted(prev))
5952 		panic("corrupted shadow stack detected inside scheduler\n");
5953 #endif
5954 
5955 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5956 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5957 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5958 			prev->comm, prev->pid, prev->non_block_count);
5959 		dump_stack();
5960 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5961 	}
5962 #endif
5963 
5964 	if (unlikely(in_atomic_preempt_off())) {
5965 		__schedule_bug(prev);
5966 		preempt_count_set(PREEMPT_DISABLED);
5967 	}
5968 	rcu_sleep_check();
5969 	WARN_ON_ONCE(ct_state() == CT_STATE_USER);
5970 
5971 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5972 
5973 	schedstat_inc(this_rq()->sched_count);
5974 }
5975 
prev_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5976 static void prev_balance(struct rq *rq, struct task_struct *prev,
5977 			 struct rq_flags *rf)
5978 {
5979 	const struct sched_class *start_class = prev->sched_class;
5980 	const struct sched_class *class;
5981 
5982 #ifdef CONFIG_SCHED_CLASS_EXT
5983 	/*
5984 	 * SCX requires a balance() call before every pick_task() including when
5985 	 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
5986 	 * SCX instead. Also, set a flag to detect missing balance() call.
5987 	 */
5988 	if (scx_enabled()) {
5989 		rq->scx.flags |= SCX_RQ_BAL_PENDING;
5990 		if (sched_class_above(&ext_sched_class, start_class))
5991 			start_class = &ext_sched_class;
5992 	}
5993 #endif
5994 
5995 	/*
5996 	 * We must do the balancing pass before put_prev_task(), such
5997 	 * that when we release the rq->lock the task is in the same
5998 	 * state as before we took rq->lock.
5999 	 *
6000 	 * We can terminate the balance pass as soon as we know there is
6001 	 * a runnable task of @class priority or higher.
6002 	 */
6003 	for_active_class_range(class, start_class, &idle_sched_class) {
6004 		if (class->balance && class->balance(rq, prev, rf))
6005 			break;
6006 	}
6007 }
6008 
6009 /*
6010  * Pick up the highest-prio task:
6011  */
6012 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6013 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6014 {
6015 	const struct sched_class *class;
6016 	struct task_struct *p;
6017 
6018 	rq->dl_server = NULL;
6019 
6020 	if (scx_enabled())
6021 		goto restart;
6022 
6023 	/*
6024 	 * Optimization: we know that if all tasks are in the fair class we can
6025 	 * call that function directly, but only if the @prev task wasn't of a
6026 	 * higher scheduling class, because otherwise those lose the
6027 	 * opportunity to pull in more work from other CPUs.
6028 	 */
6029 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6030 		   rq->nr_running == rq->cfs.h_nr_queued)) {
6031 
6032 		p = pick_next_task_fair(rq, prev, rf);
6033 		if (unlikely(p == RETRY_TASK))
6034 			goto restart;
6035 
6036 		/* Assume the next prioritized class is idle_sched_class */
6037 		if (!p) {
6038 			p = pick_task_idle(rq);
6039 			put_prev_set_next_task(rq, prev, p);
6040 		}
6041 
6042 		return p;
6043 	}
6044 
6045 restart:
6046 	prev_balance(rq, prev, rf);
6047 
6048 	for_each_active_class(class) {
6049 		if (class->pick_next_task) {
6050 			p = class->pick_next_task(rq, prev);
6051 			if (p)
6052 				return p;
6053 		} else {
6054 			p = class->pick_task(rq);
6055 			if (p) {
6056 				put_prev_set_next_task(rq, prev, p);
6057 				return p;
6058 			}
6059 		}
6060 	}
6061 
6062 	BUG(); /* The idle class should always have a runnable task. */
6063 }
6064 
6065 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6066 static inline bool is_task_rq_idle(struct task_struct *t)
6067 {
6068 	return (task_rq(t)->idle == t);
6069 }
6070 
cookie_equals(struct task_struct * a,unsigned long cookie)6071 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6072 {
6073 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6074 }
6075 
cookie_match(struct task_struct * a,struct task_struct * b)6076 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6077 {
6078 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6079 		return true;
6080 
6081 	return a->core_cookie == b->core_cookie;
6082 }
6083 
pick_task(struct rq * rq)6084 static inline struct task_struct *pick_task(struct rq *rq)
6085 {
6086 	const struct sched_class *class;
6087 	struct task_struct *p;
6088 
6089 	rq->dl_server = NULL;
6090 
6091 	for_each_active_class(class) {
6092 		p = class->pick_task(rq);
6093 		if (p)
6094 			return p;
6095 	}
6096 
6097 	BUG(); /* The idle class should always have a runnable task. */
6098 }
6099 
6100 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6101 
6102 static void queue_core_balance(struct rq *rq);
6103 
6104 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6105 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6106 {
6107 	struct task_struct *next, *p, *max = NULL;
6108 	const struct cpumask *smt_mask;
6109 	bool fi_before = false;
6110 	bool core_clock_updated = (rq == rq->core);
6111 	unsigned long cookie;
6112 	int i, cpu, occ = 0;
6113 	struct rq *rq_i;
6114 	bool need_sync;
6115 
6116 	if (!sched_core_enabled(rq))
6117 		return __pick_next_task(rq, prev, rf);
6118 
6119 	cpu = cpu_of(rq);
6120 
6121 	/* Stopper task is switching into idle, no need core-wide selection. */
6122 	if (cpu_is_offline(cpu)) {
6123 		/*
6124 		 * Reset core_pick so that we don't enter the fastpath when
6125 		 * coming online. core_pick would already be migrated to
6126 		 * another cpu during offline.
6127 		 */
6128 		rq->core_pick = NULL;
6129 		rq->core_dl_server = NULL;
6130 		return __pick_next_task(rq, prev, rf);
6131 	}
6132 
6133 	/*
6134 	 * If there were no {en,de}queues since we picked (IOW, the task
6135 	 * pointers are all still valid), and we haven't scheduled the last
6136 	 * pick yet, do so now.
6137 	 *
6138 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6139 	 * it was either offline or went offline during a sibling's core-wide
6140 	 * selection. In this case, do a core-wide selection.
6141 	 */
6142 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6143 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6144 	    rq->core_pick) {
6145 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6146 
6147 		next = rq->core_pick;
6148 		rq->dl_server = rq->core_dl_server;
6149 		rq->core_pick = NULL;
6150 		rq->core_dl_server = NULL;
6151 		goto out_set_next;
6152 	}
6153 
6154 	prev_balance(rq, prev, rf);
6155 
6156 	smt_mask = cpu_smt_mask(cpu);
6157 	need_sync = !!rq->core->core_cookie;
6158 
6159 	/* reset state */
6160 	rq->core->core_cookie = 0UL;
6161 	if (rq->core->core_forceidle_count) {
6162 		if (!core_clock_updated) {
6163 			update_rq_clock(rq->core);
6164 			core_clock_updated = true;
6165 		}
6166 		sched_core_account_forceidle(rq);
6167 		/* reset after accounting force idle */
6168 		rq->core->core_forceidle_start = 0;
6169 		rq->core->core_forceidle_count = 0;
6170 		rq->core->core_forceidle_occupation = 0;
6171 		need_sync = true;
6172 		fi_before = true;
6173 	}
6174 
6175 	/*
6176 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6177 	 *
6178 	 * @task_seq guards the task state ({en,de}queues)
6179 	 * @pick_seq is the @task_seq we did a selection on
6180 	 * @sched_seq is the @pick_seq we scheduled
6181 	 *
6182 	 * However, preemptions can cause multiple picks on the same task set.
6183 	 * 'Fix' this by also increasing @task_seq for every pick.
6184 	 */
6185 	rq->core->core_task_seq++;
6186 
6187 	/*
6188 	 * Optimize for common case where this CPU has no cookies
6189 	 * and there are no cookied tasks running on siblings.
6190 	 */
6191 	if (!need_sync) {
6192 		next = pick_task(rq);
6193 		if (!next->core_cookie) {
6194 			rq->core_pick = NULL;
6195 			rq->core_dl_server = NULL;
6196 			/*
6197 			 * For robustness, update the min_vruntime_fi for
6198 			 * unconstrained picks as well.
6199 			 */
6200 			WARN_ON_ONCE(fi_before);
6201 			task_vruntime_update(rq, next, false);
6202 			goto out_set_next;
6203 		}
6204 	}
6205 
6206 	/*
6207 	 * For each thread: do the regular task pick and find the max prio task
6208 	 * amongst them.
6209 	 *
6210 	 * Tie-break prio towards the current CPU
6211 	 */
6212 	for_each_cpu_wrap(i, smt_mask, cpu) {
6213 		rq_i = cpu_rq(i);
6214 
6215 		/*
6216 		 * Current cpu always has its clock updated on entrance to
6217 		 * pick_next_task(). If the current cpu is not the core,
6218 		 * the core may also have been updated above.
6219 		 */
6220 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6221 			update_rq_clock(rq_i);
6222 
6223 		rq_i->core_pick = p = pick_task(rq_i);
6224 		rq_i->core_dl_server = rq_i->dl_server;
6225 
6226 		if (!max || prio_less(max, p, fi_before))
6227 			max = p;
6228 	}
6229 
6230 	cookie = rq->core->core_cookie = max->core_cookie;
6231 
6232 	/*
6233 	 * For each thread: try and find a runnable task that matches @max or
6234 	 * force idle.
6235 	 */
6236 	for_each_cpu(i, smt_mask) {
6237 		rq_i = cpu_rq(i);
6238 		p = rq_i->core_pick;
6239 
6240 		if (!cookie_equals(p, cookie)) {
6241 			p = NULL;
6242 			if (cookie)
6243 				p = sched_core_find(rq_i, cookie);
6244 			if (!p)
6245 				p = idle_sched_class.pick_task(rq_i);
6246 		}
6247 
6248 		rq_i->core_pick = p;
6249 		rq_i->core_dl_server = NULL;
6250 
6251 		if (p == rq_i->idle) {
6252 			if (rq_i->nr_running) {
6253 				rq->core->core_forceidle_count++;
6254 				if (!fi_before)
6255 					rq->core->core_forceidle_seq++;
6256 			}
6257 		} else {
6258 			occ++;
6259 		}
6260 	}
6261 
6262 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6263 		rq->core->core_forceidle_start = rq_clock(rq->core);
6264 		rq->core->core_forceidle_occupation = occ;
6265 	}
6266 
6267 	rq->core->core_pick_seq = rq->core->core_task_seq;
6268 	next = rq->core_pick;
6269 	rq->core_sched_seq = rq->core->core_pick_seq;
6270 
6271 	/* Something should have been selected for current CPU */
6272 	WARN_ON_ONCE(!next);
6273 
6274 	/*
6275 	 * Reschedule siblings
6276 	 *
6277 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6278 	 * sending an IPI (below) ensures the sibling will no longer be running
6279 	 * their task. This ensures there is no inter-sibling overlap between
6280 	 * non-matching user state.
6281 	 */
6282 	for_each_cpu(i, smt_mask) {
6283 		rq_i = cpu_rq(i);
6284 
6285 		/*
6286 		 * An online sibling might have gone offline before a task
6287 		 * could be picked for it, or it might be offline but later
6288 		 * happen to come online, but its too late and nothing was
6289 		 * picked for it.  That's Ok - it will pick tasks for itself,
6290 		 * so ignore it.
6291 		 */
6292 		if (!rq_i->core_pick)
6293 			continue;
6294 
6295 		/*
6296 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6297 		 * fi_before     fi      update?
6298 		 *  0            0       1
6299 		 *  0            1       1
6300 		 *  1            0       1
6301 		 *  1            1       0
6302 		 */
6303 		if (!(fi_before && rq->core->core_forceidle_count))
6304 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6305 
6306 		rq_i->core_pick->core_occupation = occ;
6307 
6308 		if (i == cpu) {
6309 			rq_i->core_pick = NULL;
6310 			rq_i->core_dl_server = NULL;
6311 			continue;
6312 		}
6313 
6314 		/* Did we break L1TF mitigation requirements? */
6315 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6316 
6317 		if (rq_i->curr == rq_i->core_pick) {
6318 			rq_i->core_pick = NULL;
6319 			rq_i->core_dl_server = NULL;
6320 			continue;
6321 		}
6322 
6323 		resched_curr(rq_i);
6324 	}
6325 
6326 out_set_next:
6327 	put_prev_set_next_task(rq, prev, next);
6328 	if (rq->core->core_forceidle_count && next == rq->idle)
6329 		queue_core_balance(rq);
6330 
6331 	return next;
6332 }
6333 
try_steal_cookie(int this,int that)6334 static bool try_steal_cookie(int this, int that)
6335 {
6336 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6337 	struct task_struct *p;
6338 	unsigned long cookie;
6339 	bool success = false;
6340 
6341 	guard(irq)();
6342 	guard(double_rq_lock)(dst, src);
6343 
6344 	cookie = dst->core->core_cookie;
6345 	if (!cookie)
6346 		return false;
6347 
6348 	if (dst->curr != dst->idle)
6349 		return false;
6350 
6351 	p = sched_core_find(src, cookie);
6352 	if (!p)
6353 		return false;
6354 
6355 	do {
6356 		if (p == src->core_pick || p == src->curr)
6357 			goto next;
6358 
6359 		if (!is_cpu_allowed(p, this))
6360 			goto next;
6361 
6362 		if (p->core_occupation > dst->idle->core_occupation)
6363 			goto next;
6364 		/*
6365 		 * sched_core_find() and sched_core_next() will ensure
6366 		 * that task @p is not throttled now, we also need to
6367 		 * check whether the runqueue of the destination CPU is
6368 		 * being throttled.
6369 		 */
6370 		if (sched_task_is_throttled(p, this))
6371 			goto next;
6372 
6373 		move_queued_task_locked(src, dst, p);
6374 		resched_curr(dst);
6375 
6376 		success = true;
6377 		break;
6378 
6379 next:
6380 		p = sched_core_next(p, cookie);
6381 	} while (p);
6382 
6383 	return success;
6384 }
6385 
steal_cookie_task(int cpu,struct sched_domain * sd)6386 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6387 {
6388 	int i;
6389 
6390 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6391 		if (i == cpu)
6392 			continue;
6393 
6394 		if (need_resched())
6395 			break;
6396 
6397 		if (try_steal_cookie(cpu, i))
6398 			return true;
6399 	}
6400 
6401 	return false;
6402 }
6403 
sched_core_balance(struct rq * rq)6404 static void sched_core_balance(struct rq *rq)
6405 {
6406 	struct sched_domain *sd;
6407 	int cpu = cpu_of(rq);
6408 
6409 	guard(preempt)();
6410 	guard(rcu)();
6411 
6412 	raw_spin_rq_unlock_irq(rq);
6413 	for_each_domain(cpu, sd) {
6414 		if (need_resched())
6415 			break;
6416 
6417 		if (steal_cookie_task(cpu, sd))
6418 			break;
6419 	}
6420 	raw_spin_rq_lock_irq(rq);
6421 }
6422 
6423 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6424 
queue_core_balance(struct rq * rq)6425 static void queue_core_balance(struct rq *rq)
6426 {
6427 	if (!sched_core_enabled(rq))
6428 		return;
6429 
6430 	if (!rq->core->core_cookie)
6431 		return;
6432 
6433 	if (!rq->nr_running) /* not forced idle */
6434 		return;
6435 
6436 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6437 }
6438 
6439 DEFINE_LOCK_GUARD_1(core_lock, int,
6440 		    sched_core_lock(*_T->lock, &_T->flags),
6441 		    sched_core_unlock(*_T->lock, &_T->flags),
6442 		    unsigned long flags)
6443 
sched_core_cpu_starting(unsigned int cpu)6444 static void sched_core_cpu_starting(unsigned int cpu)
6445 {
6446 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6447 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6448 	int t;
6449 
6450 	guard(core_lock)(&cpu);
6451 
6452 	WARN_ON_ONCE(rq->core != rq);
6453 
6454 	/* if we're the first, we'll be our own leader */
6455 	if (cpumask_weight(smt_mask) == 1)
6456 		return;
6457 
6458 	/* find the leader */
6459 	for_each_cpu(t, smt_mask) {
6460 		if (t == cpu)
6461 			continue;
6462 		rq = cpu_rq(t);
6463 		if (rq->core == rq) {
6464 			core_rq = rq;
6465 			break;
6466 		}
6467 	}
6468 
6469 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6470 		return;
6471 
6472 	/* install and validate core_rq */
6473 	for_each_cpu(t, smt_mask) {
6474 		rq = cpu_rq(t);
6475 
6476 		if (t == cpu)
6477 			rq->core = core_rq;
6478 
6479 		WARN_ON_ONCE(rq->core != core_rq);
6480 	}
6481 }
6482 
sched_core_cpu_deactivate(unsigned int cpu)6483 static void sched_core_cpu_deactivate(unsigned int cpu)
6484 {
6485 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6486 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6487 	int t;
6488 
6489 	guard(core_lock)(&cpu);
6490 
6491 	/* if we're the last man standing, nothing to do */
6492 	if (cpumask_weight(smt_mask) == 1) {
6493 		WARN_ON_ONCE(rq->core != rq);
6494 		return;
6495 	}
6496 
6497 	/* if we're not the leader, nothing to do */
6498 	if (rq->core != rq)
6499 		return;
6500 
6501 	/* find a new leader */
6502 	for_each_cpu(t, smt_mask) {
6503 		if (t == cpu)
6504 			continue;
6505 		core_rq = cpu_rq(t);
6506 		break;
6507 	}
6508 
6509 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6510 		return;
6511 
6512 	/* copy the shared state to the new leader */
6513 	core_rq->core_task_seq             = rq->core_task_seq;
6514 	core_rq->core_pick_seq             = rq->core_pick_seq;
6515 	core_rq->core_cookie               = rq->core_cookie;
6516 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6517 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6518 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6519 
6520 	/*
6521 	 * Accounting edge for forced idle is handled in pick_next_task().
6522 	 * Don't need another one here, since the hotplug thread shouldn't
6523 	 * have a cookie.
6524 	 */
6525 	core_rq->core_forceidle_start = 0;
6526 
6527 	/* install new leader */
6528 	for_each_cpu(t, smt_mask) {
6529 		rq = cpu_rq(t);
6530 		rq->core = core_rq;
6531 	}
6532 }
6533 
sched_core_cpu_dying(unsigned int cpu)6534 static inline void sched_core_cpu_dying(unsigned int cpu)
6535 {
6536 	struct rq *rq = cpu_rq(cpu);
6537 
6538 	if (rq->core != rq)
6539 		rq->core = rq;
6540 }
6541 
6542 #else /* !CONFIG_SCHED_CORE */
6543 
sched_core_cpu_starting(unsigned int cpu)6544 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6545 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6546 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6547 
6548 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6549 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6550 {
6551 	return __pick_next_task(rq, prev, rf);
6552 }
6553 
6554 #endif /* CONFIG_SCHED_CORE */
6555 
6556 /*
6557  * Constants for the sched_mode argument of __schedule().
6558  *
6559  * The mode argument allows RT enabled kernels to differentiate a
6560  * preemption from blocking on an 'sleeping' spin/rwlock.
6561  */
6562 #define SM_IDLE			(-1)
6563 #define SM_NONE			0
6564 #define SM_PREEMPT		1
6565 #define SM_RTLOCK_WAIT		2
6566 
6567 /*
6568  * Helper function for __schedule()
6569  *
6570  * If a task does not have signals pending, deactivate it
6571  * Otherwise marks the task's __state as RUNNING
6572  */
try_to_block_task(struct rq * rq,struct task_struct * p,unsigned long task_state)6573 static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6574 			      unsigned long task_state)
6575 {
6576 	int flags = DEQUEUE_NOCLOCK;
6577 
6578 	if (signal_pending_state(task_state, p)) {
6579 		WRITE_ONCE(p->__state, TASK_RUNNING);
6580 		return false;
6581 	}
6582 
6583 	p->sched_contributes_to_load =
6584 		(task_state & TASK_UNINTERRUPTIBLE) &&
6585 		!(task_state & TASK_NOLOAD) &&
6586 		!(task_state & TASK_FROZEN);
6587 
6588 	if (unlikely(is_special_task_state(task_state)))
6589 		flags |= DEQUEUE_SPECIAL;
6590 
6591 	/*
6592 	 * __schedule()			ttwu()
6593 	 *   prev_state = prev->state;    if (p->on_rq && ...)
6594 	 *   if (prev_state)		    goto out;
6595 	 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6596 	 *				  p->state = TASK_WAKING
6597 	 *
6598 	 * Where __schedule() and ttwu() have matching control dependencies.
6599 	 *
6600 	 * After this, schedule() must not care about p->state any more.
6601 	 */
6602 	block_task(rq, p, flags);
6603 	return true;
6604 }
6605 
6606 /*
6607  * __schedule() is the main scheduler function.
6608  *
6609  * The main means of driving the scheduler and thus entering this function are:
6610  *
6611  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6612  *
6613  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6614  *      paths. For example, see arch/x86/entry_64.S.
6615  *
6616  *      To drive preemption between tasks, the scheduler sets the flag in timer
6617  *      interrupt handler sched_tick().
6618  *
6619  *   3. Wakeups don't really cause entry into schedule(). They add a
6620  *      task to the run-queue and that's it.
6621  *
6622  *      Now, if the new task added to the run-queue preempts the current
6623  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6624  *      called on the nearest possible occasion:
6625  *
6626  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6627  *
6628  *         - in syscall or exception context, at the next outmost
6629  *           preempt_enable(). (this might be as soon as the wake_up()'s
6630  *           spin_unlock()!)
6631  *
6632  *         - in IRQ context, return from interrupt-handler to
6633  *           preemptible context
6634  *
6635  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6636  *         then at the next:
6637  *
6638  *          - cond_resched() call
6639  *          - explicit schedule() call
6640  *          - return from syscall or exception to user-space
6641  *          - return from interrupt-handler to user-space
6642  *
6643  * WARNING: must be called with preemption disabled!
6644  */
__schedule(int sched_mode)6645 static void __sched notrace __schedule(int sched_mode)
6646 {
6647 	struct task_struct *prev, *next;
6648 	/*
6649 	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6650 	 * as a preemption by schedule_debug() and RCU.
6651 	 */
6652 	bool preempt = sched_mode > SM_NONE;
6653 	bool is_switch = false;
6654 	unsigned long *switch_count;
6655 	unsigned long prev_state;
6656 	struct rq_flags rf;
6657 	struct rq *rq;
6658 	int cpu;
6659 
6660 	trace_sched_entry_tp(preempt, CALLER_ADDR0);
6661 
6662 	cpu = smp_processor_id();
6663 	rq = cpu_rq(cpu);
6664 	prev = rq->curr;
6665 
6666 	schedule_debug(prev, preempt);
6667 
6668 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6669 		hrtick_clear(rq);
6670 
6671 	local_irq_disable();
6672 	rcu_note_context_switch(preempt);
6673 
6674 	/*
6675 	 * Make sure that signal_pending_state()->signal_pending() below
6676 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6677 	 * done by the caller to avoid the race with signal_wake_up():
6678 	 *
6679 	 * __set_current_state(@state)		signal_wake_up()
6680 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6681 	 *					  wake_up_state(p, state)
6682 	 *   LOCK rq->lock			    LOCK p->pi_state
6683 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6684 	 *     if (signal_pending_state())	    if (p->state & @state)
6685 	 *
6686 	 * Also, the membarrier system call requires a full memory barrier
6687 	 * after coming from user-space, before storing to rq->curr; this
6688 	 * barrier matches a full barrier in the proximity of the membarrier
6689 	 * system call exit.
6690 	 */
6691 	rq_lock(rq, &rf);
6692 	smp_mb__after_spinlock();
6693 
6694 	/* Promote REQ to ACT */
6695 	rq->clock_update_flags <<= 1;
6696 	update_rq_clock(rq);
6697 	rq->clock_update_flags = RQCF_UPDATED;
6698 
6699 	switch_count = &prev->nivcsw;
6700 
6701 	/* Task state changes only considers SM_PREEMPT as preemption */
6702 	preempt = sched_mode == SM_PREEMPT;
6703 
6704 	/*
6705 	 * We must load prev->state once (task_struct::state is volatile), such
6706 	 * that we form a control dependency vs deactivate_task() below.
6707 	 */
6708 	prev_state = READ_ONCE(prev->__state);
6709 	if (sched_mode == SM_IDLE) {
6710 		/* SCX must consult the BPF scheduler to tell if rq is empty */
6711 		if (!rq->nr_running && !scx_enabled()) {
6712 			next = prev;
6713 			goto picked;
6714 		}
6715 	} else if (!preempt && prev_state) {
6716 		try_to_block_task(rq, prev, prev_state);
6717 		switch_count = &prev->nvcsw;
6718 	}
6719 
6720 	next = pick_next_task(rq, prev, &rf);
6721 	rq_set_donor(rq, next);
6722 picked:
6723 	clear_tsk_need_resched(prev);
6724 	clear_preempt_need_resched();
6725 	rq->last_seen_need_resched_ns = 0;
6726 
6727 	is_switch = prev != next;
6728 	if (likely(is_switch)) {
6729 		rq->nr_switches++;
6730 		/*
6731 		 * RCU users of rcu_dereference(rq->curr) may not see
6732 		 * changes to task_struct made by pick_next_task().
6733 		 */
6734 		RCU_INIT_POINTER(rq->curr, next);
6735 		/*
6736 		 * The membarrier system call requires each architecture
6737 		 * to have a full memory barrier after updating
6738 		 * rq->curr, before returning to user-space.
6739 		 *
6740 		 * Here are the schemes providing that barrier on the
6741 		 * various architectures:
6742 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6743 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6744 		 *   on PowerPC and on RISC-V.
6745 		 * - finish_lock_switch() for weakly-ordered
6746 		 *   architectures where spin_unlock is a full barrier,
6747 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6748 		 *   is a RELEASE barrier),
6749 		 *
6750 		 * The barrier matches a full barrier in the proximity of
6751 		 * the membarrier system call entry.
6752 		 *
6753 		 * On RISC-V, this barrier pairing is also needed for the
6754 		 * SYNC_CORE command when switching between processes, cf.
6755 		 * the inline comments in membarrier_arch_switch_mm().
6756 		 */
6757 		++*switch_count;
6758 
6759 		migrate_disable_switch(rq, prev);
6760 		psi_account_irqtime(rq, prev, next);
6761 		psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
6762 					     prev->se.sched_delayed);
6763 
6764 		trace_sched_switch(preempt, prev, next, prev_state);
6765 
6766 		/* Also unlocks the rq: */
6767 		rq = context_switch(rq, prev, next, &rf);
6768 	} else {
6769 		rq_unpin_lock(rq, &rf);
6770 		__balance_callbacks(rq);
6771 		raw_spin_rq_unlock_irq(rq);
6772 	}
6773 	trace_sched_exit_tp(is_switch, CALLER_ADDR0);
6774 }
6775 
do_task_dead(void)6776 void __noreturn do_task_dead(void)
6777 {
6778 	/* Causes final put_task_struct in finish_task_switch(): */
6779 	set_special_state(TASK_DEAD);
6780 
6781 	/* Tell freezer to ignore us: */
6782 	current->flags |= PF_NOFREEZE;
6783 
6784 	__schedule(SM_NONE);
6785 	BUG();
6786 
6787 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6788 	for (;;)
6789 		cpu_relax();
6790 }
6791 
sched_submit_work(struct task_struct * tsk)6792 static inline void sched_submit_work(struct task_struct *tsk)
6793 {
6794 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6795 	unsigned int task_flags;
6796 
6797 	/*
6798 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6799 	 * will use a blocking primitive -- which would lead to recursion.
6800 	 */
6801 	lock_map_acquire_try(&sched_map);
6802 
6803 	task_flags = tsk->flags;
6804 	/*
6805 	 * If a worker goes to sleep, notify and ask workqueue whether it
6806 	 * wants to wake up a task to maintain concurrency.
6807 	 */
6808 	if (task_flags & PF_WQ_WORKER)
6809 		wq_worker_sleeping(tsk);
6810 	else if (task_flags & PF_IO_WORKER)
6811 		io_wq_worker_sleeping(tsk);
6812 
6813 	/*
6814 	 * spinlock and rwlock must not flush block requests.  This will
6815 	 * deadlock if the callback attempts to acquire a lock which is
6816 	 * already acquired.
6817 	 */
6818 	WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT);
6819 
6820 	/*
6821 	 * If we are going to sleep and we have plugged IO queued,
6822 	 * make sure to submit it to avoid deadlocks.
6823 	 */
6824 	blk_flush_plug(tsk->plug, true);
6825 
6826 	lock_map_release(&sched_map);
6827 }
6828 
sched_update_worker(struct task_struct * tsk)6829 static void sched_update_worker(struct task_struct *tsk)
6830 {
6831 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6832 		if (tsk->flags & PF_BLOCK_TS)
6833 			blk_plug_invalidate_ts(tsk);
6834 		if (tsk->flags & PF_WQ_WORKER)
6835 			wq_worker_running(tsk);
6836 		else if (tsk->flags & PF_IO_WORKER)
6837 			io_wq_worker_running(tsk);
6838 	}
6839 }
6840 
__schedule_loop(int sched_mode)6841 static __always_inline void __schedule_loop(int sched_mode)
6842 {
6843 	do {
6844 		preempt_disable();
6845 		__schedule(sched_mode);
6846 		sched_preempt_enable_no_resched();
6847 	} while (need_resched());
6848 }
6849 
schedule(void)6850 asmlinkage __visible void __sched schedule(void)
6851 {
6852 	struct task_struct *tsk = current;
6853 
6854 #ifdef CONFIG_RT_MUTEXES
6855 	lockdep_assert(!tsk->sched_rt_mutex);
6856 #endif
6857 
6858 	if (!task_is_running(tsk))
6859 		sched_submit_work(tsk);
6860 	__schedule_loop(SM_NONE);
6861 	sched_update_worker(tsk);
6862 }
6863 EXPORT_SYMBOL(schedule);
6864 
6865 /*
6866  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6867  * state (have scheduled out non-voluntarily) by making sure that all
6868  * tasks have either left the run queue or have gone into user space.
6869  * As idle tasks do not do either, they must not ever be preempted
6870  * (schedule out non-voluntarily).
6871  *
6872  * schedule_idle() is similar to schedule_preempt_disable() except that it
6873  * never enables preemption because it does not call sched_submit_work().
6874  */
schedule_idle(void)6875 void __sched schedule_idle(void)
6876 {
6877 	/*
6878 	 * As this skips calling sched_submit_work(), which the idle task does
6879 	 * regardless because that function is a NOP when the task is in a
6880 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6881 	 * current task can be in any other state. Note, idle is always in the
6882 	 * TASK_RUNNING state.
6883 	 */
6884 	WARN_ON_ONCE(current->__state);
6885 	do {
6886 		__schedule(SM_IDLE);
6887 	} while (need_resched());
6888 }
6889 
6890 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)6891 asmlinkage __visible void __sched schedule_user(void)
6892 {
6893 	/*
6894 	 * If we come here after a random call to set_need_resched(),
6895 	 * or we have been woken up remotely but the IPI has not yet arrived,
6896 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6897 	 * we find a better solution.
6898 	 *
6899 	 * NB: There are buggy callers of this function.  Ideally we
6900 	 * should warn if prev_state != CT_STATE_USER, but that will trigger
6901 	 * too frequently to make sense yet.
6902 	 */
6903 	enum ctx_state prev_state = exception_enter();
6904 	schedule();
6905 	exception_exit(prev_state);
6906 }
6907 #endif
6908 
6909 /**
6910  * schedule_preempt_disabled - called with preemption disabled
6911  *
6912  * Returns with preemption disabled. Note: preempt_count must be 1
6913  */
schedule_preempt_disabled(void)6914 void __sched schedule_preempt_disabled(void)
6915 {
6916 	sched_preempt_enable_no_resched();
6917 	schedule();
6918 	preempt_disable();
6919 }
6920 
6921 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6922 void __sched notrace schedule_rtlock(void)
6923 {
6924 	__schedule_loop(SM_RTLOCK_WAIT);
6925 }
6926 NOKPROBE_SYMBOL(schedule_rtlock);
6927 #endif
6928 
preempt_schedule_common(void)6929 static void __sched notrace preempt_schedule_common(void)
6930 {
6931 	do {
6932 		/*
6933 		 * Because the function tracer can trace preempt_count_sub()
6934 		 * and it also uses preempt_enable/disable_notrace(), if
6935 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6936 		 * by the function tracer will call this function again and
6937 		 * cause infinite recursion.
6938 		 *
6939 		 * Preemption must be disabled here before the function
6940 		 * tracer can trace. Break up preempt_disable() into two
6941 		 * calls. One to disable preemption without fear of being
6942 		 * traced. The other to still record the preemption latency,
6943 		 * which can also be traced by the function tracer.
6944 		 */
6945 		preempt_disable_notrace();
6946 		preempt_latency_start(1);
6947 		__schedule(SM_PREEMPT);
6948 		preempt_latency_stop(1);
6949 		preempt_enable_no_resched_notrace();
6950 
6951 		/*
6952 		 * Check again in case we missed a preemption opportunity
6953 		 * between schedule and now.
6954 		 */
6955 	} while (need_resched());
6956 }
6957 
6958 #ifdef CONFIG_PREEMPTION
6959 /*
6960  * This is the entry point to schedule() from in-kernel preemption
6961  * off of preempt_enable.
6962  */
preempt_schedule(void)6963 asmlinkage __visible void __sched notrace preempt_schedule(void)
6964 {
6965 	/*
6966 	 * If there is a non-zero preempt_count or interrupts are disabled,
6967 	 * we do not want to preempt the current task. Just return..
6968 	 */
6969 	if (likely(!preemptible()))
6970 		return;
6971 	preempt_schedule_common();
6972 }
6973 NOKPROBE_SYMBOL(preempt_schedule);
6974 EXPORT_SYMBOL(preempt_schedule);
6975 
6976 #ifdef CONFIG_PREEMPT_DYNAMIC
6977 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6978 #ifndef preempt_schedule_dynamic_enabled
6979 #define preempt_schedule_dynamic_enabled	preempt_schedule
6980 #define preempt_schedule_dynamic_disabled	NULL
6981 #endif
6982 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6983 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6984 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6985 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)6986 void __sched notrace dynamic_preempt_schedule(void)
6987 {
6988 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6989 		return;
6990 	preempt_schedule();
6991 }
6992 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6993 EXPORT_SYMBOL(dynamic_preempt_schedule);
6994 #endif
6995 #endif
6996 
6997 /**
6998  * preempt_schedule_notrace - preempt_schedule called by tracing
6999  *
7000  * The tracing infrastructure uses preempt_enable_notrace to prevent
7001  * recursion and tracing preempt enabling caused by the tracing
7002  * infrastructure itself. But as tracing can happen in areas coming
7003  * from userspace or just about to enter userspace, a preempt enable
7004  * can occur before user_exit() is called. This will cause the scheduler
7005  * to be called when the system is still in usermode.
7006  *
7007  * To prevent this, the preempt_enable_notrace will use this function
7008  * instead of preempt_schedule() to exit user context if needed before
7009  * calling the scheduler.
7010  */
preempt_schedule_notrace(void)7011 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7012 {
7013 	enum ctx_state prev_ctx;
7014 
7015 	if (likely(!preemptible()))
7016 		return;
7017 
7018 	do {
7019 		/*
7020 		 * Because the function tracer can trace preempt_count_sub()
7021 		 * and it also uses preempt_enable/disable_notrace(), if
7022 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7023 		 * by the function tracer will call this function again and
7024 		 * cause infinite recursion.
7025 		 *
7026 		 * Preemption must be disabled here before the function
7027 		 * tracer can trace. Break up preempt_disable() into two
7028 		 * calls. One to disable preemption without fear of being
7029 		 * traced. The other to still record the preemption latency,
7030 		 * which can also be traced by the function tracer.
7031 		 */
7032 		preempt_disable_notrace();
7033 		preempt_latency_start(1);
7034 		/*
7035 		 * Needs preempt disabled in case user_exit() is traced
7036 		 * and the tracer calls preempt_enable_notrace() causing
7037 		 * an infinite recursion.
7038 		 */
7039 		prev_ctx = exception_enter();
7040 		__schedule(SM_PREEMPT);
7041 		exception_exit(prev_ctx);
7042 
7043 		preempt_latency_stop(1);
7044 		preempt_enable_no_resched_notrace();
7045 	} while (need_resched());
7046 }
7047 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7048 
7049 #ifdef CONFIG_PREEMPT_DYNAMIC
7050 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7051 #ifndef preempt_schedule_notrace_dynamic_enabled
7052 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7053 #define preempt_schedule_notrace_dynamic_disabled	NULL
7054 #endif
7055 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7056 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7057 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7058 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)7059 void __sched notrace dynamic_preempt_schedule_notrace(void)
7060 {
7061 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7062 		return;
7063 	preempt_schedule_notrace();
7064 }
7065 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7066 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7067 #endif
7068 #endif
7069 
7070 #endif /* CONFIG_PREEMPTION */
7071 
7072 /*
7073  * This is the entry point to schedule() from kernel preemption
7074  * off of IRQ context.
7075  * Note, that this is called and return with IRQs disabled. This will
7076  * protect us against recursive calling from IRQ contexts.
7077  */
preempt_schedule_irq(void)7078 asmlinkage __visible void __sched preempt_schedule_irq(void)
7079 {
7080 	enum ctx_state prev_state;
7081 
7082 	/* Catch callers which need to be fixed */
7083 	BUG_ON(preempt_count() || !irqs_disabled());
7084 
7085 	prev_state = exception_enter();
7086 
7087 	do {
7088 		preempt_disable();
7089 		local_irq_enable();
7090 		__schedule(SM_PREEMPT);
7091 		local_irq_disable();
7092 		sched_preempt_enable_no_resched();
7093 	} while (need_resched());
7094 
7095 	exception_exit(prev_state);
7096 }
7097 
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)7098 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7099 			  void *key)
7100 {
7101 	WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7102 	return try_to_wake_up(curr->private, mode, wake_flags);
7103 }
7104 EXPORT_SYMBOL(default_wake_function);
7105 
__setscheduler_class(int policy,int prio)7106 const struct sched_class *__setscheduler_class(int policy, int prio)
7107 {
7108 	if (dl_prio(prio))
7109 		return &dl_sched_class;
7110 
7111 	if (rt_prio(prio))
7112 		return &rt_sched_class;
7113 
7114 #ifdef CONFIG_SCHED_CLASS_EXT
7115 	if (task_should_scx(policy))
7116 		return &ext_sched_class;
7117 #endif
7118 
7119 	return &fair_sched_class;
7120 }
7121 
7122 #ifdef CONFIG_RT_MUTEXES
7123 
7124 /*
7125  * Would be more useful with typeof()/auto_type but they don't mix with
7126  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7127  * name such that if someone were to implement this function we get to compare
7128  * notes.
7129  */
7130 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7131 
rt_mutex_pre_schedule(void)7132 void rt_mutex_pre_schedule(void)
7133 {
7134 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7135 	sched_submit_work(current);
7136 }
7137 
rt_mutex_schedule(void)7138 void rt_mutex_schedule(void)
7139 {
7140 	lockdep_assert(current->sched_rt_mutex);
7141 	__schedule_loop(SM_NONE);
7142 }
7143 
rt_mutex_post_schedule(void)7144 void rt_mutex_post_schedule(void)
7145 {
7146 	sched_update_worker(current);
7147 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7148 }
7149 
7150 /*
7151  * rt_mutex_setprio - set the current priority of a task
7152  * @p: task to boost
7153  * @pi_task: donor task
7154  *
7155  * This function changes the 'effective' priority of a task. It does
7156  * not touch ->normal_prio like __setscheduler().
7157  *
7158  * Used by the rt_mutex code to implement priority inheritance
7159  * logic. Call site only calls if the priority of the task changed.
7160  */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)7161 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7162 {
7163 	int prio, oldprio, queued, running, queue_flag =
7164 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7165 	const struct sched_class *prev_class, *next_class;
7166 	struct rq_flags rf;
7167 	struct rq *rq;
7168 
7169 	/* XXX used to be waiter->prio, not waiter->task->prio */
7170 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7171 
7172 	/*
7173 	 * If nothing changed; bail early.
7174 	 */
7175 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7176 		return;
7177 
7178 	rq = __task_rq_lock(p, &rf);
7179 	update_rq_clock(rq);
7180 	/*
7181 	 * Set under pi_lock && rq->lock, such that the value can be used under
7182 	 * either lock.
7183 	 *
7184 	 * Note that there is loads of tricky to make this pointer cache work
7185 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7186 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7187 	 * task is allowed to run again (and can exit). This ensures the pointer
7188 	 * points to a blocked task -- which guarantees the task is present.
7189 	 */
7190 	p->pi_top_task = pi_task;
7191 
7192 	/*
7193 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7194 	 */
7195 	if (prio == p->prio && !dl_prio(prio))
7196 		goto out_unlock;
7197 
7198 	/*
7199 	 * Idle task boosting is a no-no in general. There is one
7200 	 * exception, when PREEMPT_RT and NOHZ is active:
7201 	 *
7202 	 * The idle task calls get_next_timer_interrupt() and holds
7203 	 * the timer wheel base->lock on the CPU and another CPU wants
7204 	 * to access the timer (probably to cancel it). We can safely
7205 	 * ignore the boosting request, as the idle CPU runs this code
7206 	 * with interrupts disabled and will complete the lock
7207 	 * protected section without being interrupted. So there is no
7208 	 * real need to boost.
7209 	 */
7210 	if (unlikely(p == rq->idle)) {
7211 		WARN_ON(p != rq->curr);
7212 		WARN_ON(p->pi_blocked_on);
7213 		goto out_unlock;
7214 	}
7215 
7216 	trace_sched_pi_setprio(p, pi_task);
7217 	oldprio = p->prio;
7218 
7219 	if (oldprio == prio)
7220 		queue_flag &= ~DEQUEUE_MOVE;
7221 
7222 	prev_class = p->sched_class;
7223 	next_class = __setscheduler_class(p->policy, prio);
7224 
7225 	if (prev_class != next_class && p->se.sched_delayed)
7226 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
7227 
7228 	queued = task_on_rq_queued(p);
7229 	running = task_current_donor(rq, p);
7230 	if (queued)
7231 		dequeue_task(rq, p, queue_flag);
7232 	if (running)
7233 		put_prev_task(rq, p);
7234 
7235 	/*
7236 	 * Boosting condition are:
7237 	 * 1. -rt task is running and holds mutex A
7238 	 *      --> -dl task blocks on mutex A
7239 	 *
7240 	 * 2. -dl task is running and holds mutex A
7241 	 *      --> -dl task blocks on mutex A and could preempt the
7242 	 *          running task
7243 	 */
7244 	if (dl_prio(prio)) {
7245 		if (!dl_prio(p->normal_prio) ||
7246 		    (pi_task && dl_prio(pi_task->prio) &&
7247 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7248 			p->dl.pi_se = pi_task->dl.pi_se;
7249 			queue_flag |= ENQUEUE_REPLENISH;
7250 		} else {
7251 			p->dl.pi_se = &p->dl;
7252 		}
7253 	} else if (rt_prio(prio)) {
7254 		if (dl_prio(oldprio))
7255 			p->dl.pi_se = &p->dl;
7256 		if (oldprio < prio)
7257 			queue_flag |= ENQUEUE_HEAD;
7258 	} else {
7259 		if (dl_prio(oldprio))
7260 			p->dl.pi_se = &p->dl;
7261 		if (rt_prio(oldprio))
7262 			p->rt.timeout = 0;
7263 	}
7264 
7265 	p->sched_class = next_class;
7266 	p->prio = prio;
7267 
7268 	check_class_changing(rq, p, prev_class);
7269 
7270 	if (queued)
7271 		enqueue_task(rq, p, queue_flag);
7272 	if (running)
7273 		set_next_task(rq, p);
7274 
7275 	check_class_changed(rq, p, prev_class, oldprio);
7276 out_unlock:
7277 	/* Avoid rq from going away on us: */
7278 	preempt_disable();
7279 
7280 	rq_unpin_lock(rq, &rf);
7281 	__balance_callbacks(rq);
7282 	raw_spin_rq_unlock(rq);
7283 
7284 	preempt_enable();
7285 }
7286 #endif
7287 
7288 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)7289 int __sched __cond_resched(void)
7290 {
7291 	if (should_resched(0) && !irqs_disabled()) {
7292 		preempt_schedule_common();
7293 		return 1;
7294 	}
7295 	/*
7296 	 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick
7297 	 * whether the current CPU is in an RCU read-side critical section,
7298 	 * so the tick can report quiescent states even for CPUs looping
7299 	 * in kernel context.  In contrast, in non-preemptible kernels,
7300 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7301 	 * processes executing in kernel context might never report an
7302 	 * RCU quiescent state.  Therefore, the following code causes
7303 	 * cond_resched() to report a quiescent state, but only when RCU
7304 	 * is in urgent need of one.
7305 	 * A third case, preemptible, but non-PREEMPT_RCU provides for
7306 	 * urgently needed quiescent states via rcu_flavor_sched_clock_irq().
7307 	 */
7308 #ifndef CONFIG_PREEMPT_RCU
7309 	rcu_all_qs();
7310 #endif
7311 	return 0;
7312 }
7313 EXPORT_SYMBOL(__cond_resched);
7314 #endif
7315 
7316 #ifdef CONFIG_PREEMPT_DYNAMIC
7317 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7318 #define cond_resched_dynamic_enabled	__cond_resched
7319 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7320 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7321 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7322 
7323 #define might_resched_dynamic_enabled	__cond_resched
7324 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
7325 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7326 EXPORT_STATIC_CALL_TRAMP(might_resched);
7327 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7328 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)7329 int __sched dynamic_cond_resched(void)
7330 {
7331 	klp_sched_try_switch();
7332 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7333 		return 0;
7334 	return __cond_resched();
7335 }
7336 EXPORT_SYMBOL(dynamic_cond_resched);
7337 
7338 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)7339 int __sched dynamic_might_resched(void)
7340 {
7341 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7342 		return 0;
7343 	return __cond_resched();
7344 }
7345 EXPORT_SYMBOL(dynamic_might_resched);
7346 #endif
7347 #endif
7348 
7349 /*
7350  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7351  * call schedule, and on return reacquire the lock.
7352  *
7353  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7354  * operations here to prevent schedule() from being called twice (once via
7355  * spin_unlock(), once by hand).
7356  */
__cond_resched_lock(spinlock_t * lock)7357 int __cond_resched_lock(spinlock_t *lock)
7358 {
7359 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7360 	int ret = 0;
7361 
7362 	lockdep_assert_held(lock);
7363 
7364 	if (spin_needbreak(lock) || resched) {
7365 		spin_unlock(lock);
7366 		if (!_cond_resched())
7367 			cpu_relax();
7368 		ret = 1;
7369 		spin_lock(lock);
7370 	}
7371 	return ret;
7372 }
7373 EXPORT_SYMBOL(__cond_resched_lock);
7374 
__cond_resched_rwlock_read(rwlock_t * lock)7375 int __cond_resched_rwlock_read(rwlock_t *lock)
7376 {
7377 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7378 	int ret = 0;
7379 
7380 	lockdep_assert_held_read(lock);
7381 
7382 	if (rwlock_needbreak(lock) || resched) {
7383 		read_unlock(lock);
7384 		if (!_cond_resched())
7385 			cpu_relax();
7386 		ret = 1;
7387 		read_lock(lock);
7388 	}
7389 	return ret;
7390 }
7391 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7392 
__cond_resched_rwlock_write(rwlock_t * lock)7393 int __cond_resched_rwlock_write(rwlock_t *lock)
7394 {
7395 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7396 	int ret = 0;
7397 
7398 	lockdep_assert_held_write(lock);
7399 
7400 	if (rwlock_needbreak(lock) || resched) {
7401 		write_unlock(lock);
7402 		if (!_cond_resched())
7403 			cpu_relax();
7404 		ret = 1;
7405 		write_lock(lock);
7406 	}
7407 	return ret;
7408 }
7409 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7410 
7411 #ifdef CONFIG_PREEMPT_DYNAMIC
7412 
7413 #ifdef CONFIG_GENERIC_ENTRY
7414 #include <linux/entry-common.h>
7415 #endif
7416 
7417 /*
7418  * SC:cond_resched
7419  * SC:might_resched
7420  * SC:preempt_schedule
7421  * SC:preempt_schedule_notrace
7422  * SC:irqentry_exit_cond_resched
7423  *
7424  *
7425  * NONE:
7426  *   cond_resched               <- __cond_resched
7427  *   might_resched              <- RET0
7428  *   preempt_schedule           <- NOP
7429  *   preempt_schedule_notrace   <- NOP
7430  *   irqentry_exit_cond_resched <- NOP
7431  *   dynamic_preempt_lazy       <- false
7432  *
7433  * VOLUNTARY:
7434  *   cond_resched               <- __cond_resched
7435  *   might_resched              <- __cond_resched
7436  *   preempt_schedule           <- NOP
7437  *   preempt_schedule_notrace   <- NOP
7438  *   irqentry_exit_cond_resched <- NOP
7439  *   dynamic_preempt_lazy       <- false
7440  *
7441  * FULL:
7442  *   cond_resched               <- RET0
7443  *   might_resched              <- RET0
7444  *   preempt_schedule           <- preempt_schedule
7445  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7446  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7447  *   dynamic_preempt_lazy       <- false
7448  *
7449  * LAZY:
7450  *   cond_resched               <- RET0
7451  *   might_resched              <- RET0
7452  *   preempt_schedule           <- preempt_schedule
7453  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7454  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7455  *   dynamic_preempt_lazy       <- true
7456  */
7457 
7458 enum {
7459 	preempt_dynamic_undefined = -1,
7460 	preempt_dynamic_none,
7461 	preempt_dynamic_voluntary,
7462 	preempt_dynamic_full,
7463 	preempt_dynamic_lazy,
7464 };
7465 
7466 int preempt_dynamic_mode = preempt_dynamic_undefined;
7467 
sched_dynamic_mode(const char * str)7468 int sched_dynamic_mode(const char *str)
7469 {
7470 #ifndef CONFIG_PREEMPT_RT
7471 	if (!strcmp(str, "none"))
7472 		return preempt_dynamic_none;
7473 
7474 	if (!strcmp(str, "voluntary"))
7475 		return preempt_dynamic_voluntary;
7476 #endif
7477 
7478 	if (!strcmp(str, "full"))
7479 		return preempt_dynamic_full;
7480 
7481 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7482 	if (!strcmp(str, "lazy"))
7483 		return preempt_dynamic_lazy;
7484 #endif
7485 
7486 	return -EINVAL;
7487 }
7488 
7489 #define preempt_dynamic_key_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7490 #define preempt_dynamic_key_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7491 
7492 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7493 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7494 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7495 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7496 #define preempt_dynamic_enable(f)	preempt_dynamic_key_enable(f)
7497 #define preempt_dynamic_disable(f)	preempt_dynamic_key_disable(f)
7498 #else
7499 #error "Unsupported PREEMPT_DYNAMIC mechanism"
7500 #endif
7501 
7502 static DEFINE_MUTEX(sched_dynamic_mutex);
7503 static bool klp_override;
7504 
__sched_dynamic_update(int mode)7505 static void __sched_dynamic_update(int mode)
7506 {
7507 	/*
7508 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7509 	 * the ZERO state, which is invalid.
7510 	 */
7511 	if (!klp_override)
7512 		preempt_dynamic_enable(cond_resched);
7513 	preempt_dynamic_enable(might_resched);
7514 	preempt_dynamic_enable(preempt_schedule);
7515 	preempt_dynamic_enable(preempt_schedule_notrace);
7516 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7517 	preempt_dynamic_key_disable(preempt_lazy);
7518 
7519 	switch (mode) {
7520 	case preempt_dynamic_none:
7521 		if (!klp_override)
7522 			preempt_dynamic_enable(cond_resched);
7523 		preempt_dynamic_disable(might_resched);
7524 		preempt_dynamic_disable(preempt_schedule);
7525 		preempt_dynamic_disable(preempt_schedule_notrace);
7526 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7527 		preempt_dynamic_key_disable(preempt_lazy);
7528 		if (mode != preempt_dynamic_mode)
7529 			pr_info("Dynamic Preempt: none\n");
7530 		break;
7531 
7532 	case preempt_dynamic_voluntary:
7533 		if (!klp_override)
7534 			preempt_dynamic_enable(cond_resched);
7535 		preempt_dynamic_enable(might_resched);
7536 		preempt_dynamic_disable(preempt_schedule);
7537 		preempt_dynamic_disable(preempt_schedule_notrace);
7538 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7539 		preempt_dynamic_key_disable(preempt_lazy);
7540 		if (mode != preempt_dynamic_mode)
7541 			pr_info("Dynamic Preempt: voluntary\n");
7542 		break;
7543 
7544 	case preempt_dynamic_full:
7545 		if (!klp_override)
7546 			preempt_dynamic_disable(cond_resched);
7547 		preempt_dynamic_disable(might_resched);
7548 		preempt_dynamic_enable(preempt_schedule);
7549 		preempt_dynamic_enable(preempt_schedule_notrace);
7550 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7551 		preempt_dynamic_key_disable(preempt_lazy);
7552 		if (mode != preempt_dynamic_mode)
7553 			pr_info("Dynamic Preempt: full\n");
7554 		break;
7555 
7556 	case preempt_dynamic_lazy:
7557 		if (!klp_override)
7558 			preempt_dynamic_disable(cond_resched);
7559 		preempt_dynamic_disable(might_resched);
7560 		preempt_dynamic_enable(preempt_schedule);
7561 		preempt_dynamic_enable(preempt_schedule_notrace);
7562 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7563 		preempt_dynamic_key_enable(preempt_lazy);
7564 		if (mode != preempt_dynamic_mode)
7565 			pr_info("Dynamic Preempt: lazy\n");
7566 		break;
7567 	}
7568 
7569 	preempt_dynamic_mode = mode;
7570 }
7571 
sched_dynamic_update(int mode)7572 void sched_dynamic_update(int mode)
7573 {
7574 	mutex_lock(&sched_dynamic_mutex);
7575 	__sched_dynamic_update(mode);
7576 	mutex_unlock(&sched_dynamic_mutex);
7577 }
7578 
7579 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7580 
klp_cond_resched(void)7581 static int klp_cond_resched(void)
7582 {
7583 	__klp_sched_try_switch();
7584 	return __cond_resched();
7585 }
7586 
sched_dynamic_klp_enable(void)7587 void sched_dynamic_klp_enable(void)
7588 {
7589 	mutex_lock(&sched_dynamic_mutex);
7590 
7591 	klp_override = true;
7592 	static_call_update(cond_resched, klp_cond_resched);
7593 
7594 	mutex_unlock(&sched_dynamic_mutex);
7595 }
7596 
sched_dynamic_klp_disable(void)7597 void sched_dynamic_klp_disable(void)
7598 {
7599 	mutex_lock(&sched_dynamic_mutex);
7600 
7601 	klp_override = false;
7602 	__sched_dynamic_update(preempt_dynamic_mode);
7603 
7604 	mutex_unlock(&sched_dynamic_mutex);
7605 }
7606 
7607 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
7608 
setup_preempt_mode(char * str)7609 static int __init setup_preempt_mode(char *str)
7610 {
7611 	int mode = sched_dynamic_mode(str);
7612 	if (mode < 0) {
7613 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7614 		return 0;
7615 	}
7616 
7617 	sched_dynamic_update(mode);
7618 	return 1;
7619 }
7620 __setup("preempt=", setup_preempt_mode);
7621 
preempt_dynamic_init(void)7622 static void __init preempt_dynamic_init(void)
7623 {
7624 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7625 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7626 			sched_dynamic_update(preempt_dynamic_none);
7627 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7628 			sched_dynamic_update(preempt_dynamic_voluntary);
7629 		} else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7630 			sched_dynamic_update(preempt_dynamic_lazy);
7631 		} else {
7632 			/* Default static call setting, nothing to do */
7633 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7634 			preempt_dynamic_mode = preempt_dynamic_full;
7635 			pr_info("Dynamic Preempt: full\n");
7636 		}
7637 	}
7638 }
7639 
7640 #define PREEMPT_MODEL_ACCESSOR(mode) \
7641 	bool preempt_model_##mode(void)						 \
7642 	{									 \
7643 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7644 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7645 	}									 \
7646 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7647 
7648 PREEMPT_MODEL_ACCESSOR(none);
7649 PREEMPT_MODEL_ACCESSOR(voluntary);
7650 PREEMPT_MODEL_ACCESSOR(full);
7651 PREEMPT_MODEL_ACCESSOR(lazy);
7652 
7653 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7654 
7655 #define preempt_dynamic_mode -1
7656 
preempt_dynamic_init(void)7657 static inline void preempt_dynamic_init(void) { }
7658 
7659 #endif /* CONFIG_PREEMPT_DYNAMIC */
7660 
7661 const char *preempt_modes[] = {
7662 	"none", "voluntary", "full", "lazy", NULL,
7663 };
7664 
preempt_model_str(void)7665 const char *preempt_model_str(void)
7666 {
7667 	bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) &&
7668 		(IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) ||
7669 		 IS_ENABLED(CONFIG_PREEMPT_LAZY));
7670 	static char buf[128];
7671 
7672 	if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) {
7673 		struct seq_buf s;
7674 
7675 		seq_buf_init(&s, buf, sizeof(buf));
7676 		seq_buf_puts(&s, "PREEMPT");
7677 
7678 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
7679 			seq_buf_printf(&s, "%sRT%s",
7680 				       brace ? "_{" : "_",
7681 				       brace ? "," : "");
7682 
7683 		if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) {
7684 			seq_buf_printf(&s, "(%s)%s",
7685 				       preempt_dynamic_mode > 0 ?
7686 				       preempt_modes[preempt_dynamic_mode] : "undef",
7687 				       brace ? "}" : "");
7688 			return seq_buf_str(&s);
7689 		}
7690 
7691 		if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7692 			seq_buf_printf(&s, "LAZY%s",
7693 				       brace ? "}" : "");
7694 			return seq_buf_str(&s);
7695 		}
7696 
7697 		return seq_buf_str(&s);
7698 	}
7699 
7700 	if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD))
7701 		return "VOLUNTARY";
7702 
7703 	return "NONE";
7704 }
7705 
io_schedule_prepare(void)7706 int io_schedule_prepare(void)
7707 {
7708 	int old_iowait = current->in_iowait;
7709 
7710 	current->in_iowait = 1;
7711 	blk_flush_plug(current->plug, true);
7712 	return old_iowait;
7713 }
7714 
io_schedule_finish(int token)7715 void io_schedule_finish(int token)
7716 {
7717 	current->in_iowait = token;
7718 }
7719 
7720 /*
7721  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7722  * that process accounting knows that this is a task in IO wait state.
7723  */
io_schedule_timeout(long timeout)7724 long __sched io_schedule_timeout(long timeout)
7725 {
7726 	int token;
7727 	long ret;
7728 
7729 	token = io_schedule_prepare();
7730 	ret = schedule_timeout(timeout);
7731 	io_schedule_finish(token);
7732 
7733 	return ret;
7734 }
7735 EXPORT_SYMBOL(io_schedule_timeout);
7736 
io_schedule(void)7737 void __sched io_schedule(void)
7738 {
7739 	int token;
7740 
7741 	token = io_schedule_prepare();
7742 	schedule();
7743 	io_schedule_finish(token);
7744 }
7745 EXPORT_SYMBOL(io_schedule);
7746 
sched_show_task(struct task_struct * p)7747 void sched_show_task(struct task_struct *p)
7748 {
7749 	unsigned long free;
7750 	int ppid;
7751 
7752 	if (!try_get_task_stack(p))
7753 		return;
7754 
7755 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7756 
7757 	if (task_is_running(p))
7758 		pr_cont("  running task    ");
7759 	free = stack_not_used(p);
7760 	ppid = 0;
7761 	rcu_read_lock();
7762 	if (pid_alive(p))
7763 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7764 	rcu_read_unlock();
7765 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n",
7766 		free, task_pid_nr(p), task_tgid_nr(p),
7767 		ppid, p->flags, read_task_thread_flags(p));
7768 
7769 	print_worker_info(KERN_INFO, p);
7770 	print_stop_info(KERN_INFO, p);
7771 	print_scx_info(KERN_INFO, p);
7772 	show_stack(p, NULL, KERN_INFO);
7773 	put_task_stack(p);
7774 }
7775 EXPORT_SYMBOL_GPL(sched_show_task);
7776 
7777 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)7778 state_filter_match(unsigned long state_filter, struct task_struct *p)
7779 {
7780 	unsigned int state = READ_ONCE(p->__state);
7781 
7782 	/* no filter, everything matches */
7783 	if (!state_filter)
7784 		return true;
7785 
7786 	/* filter, but doesn't match */
7787 	if (!(state & state_filter))
7788 		return false;
7789 
7790 	/*
7791 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7792 	 * TASK_KILLABLE).
7793 	 */
7794 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7795 		return false;
7796 
7797 	return true;
7798 }
7799 
7800 
show_state_filter(unsigned int state_filter)7801 void show_state_filter(unsigned int state_filter)
7802 {
7803 	struct task_struct *g, *p;
7804 
7805 	rcu_read_lock();
7806 	for_each_process_thread(g, p) {
7807 		/*
7808 		 * reset the NMI-timeout, listing all files on a slow
7809 		 * console might take a lot of time:
7810 		 * Also, reset softlockup watchdogs on all CPUs, because
7811 		 * another CPU might be blocked waiting for us to process
7812 		 * an IPI.
7813 		 */
7814 		touch_nmi_watchdog();
7815 		touch_all_softlockup_watchdogs();
7816 		if (state_filter_match(state_filter, p))
7817 			sched_show_task(p);
7818 	}
7819 
7820 	if (!state_filter)
7821 		sysrq_sched_debug_show();
7822 
7823 	rcu_read_unlock();
7824 	/*
7825 	 * Only show locks if all tasks are dumped:
7826 	 */
7827 	if (!state_filter)
7828 		debug_show_all_locks();
7829 }
7830 
7831 /**
7832  * init_idle - set up an idle thread for a given CPU
7833  * @idle: task in question
7834  * @cpu: CPU the idle task belongs to
7835  *
7836  * NOTE: this function does not set the idle thread's NEED_RESCHED
7837  * flag, to make booting more robust.
7838  */
init_idle(struct task_struct * idle,int cpu)7839 void __init init_idle(struct task_struct *idle, int cpu)
7840 {
7841 #ifdef CONFIG_SMP
7842 	struct affinity_context ac = (struct affinity_context) {
7843 		.new_mask  = cpumask_of(cpu),
7844 		.flags     = 0,
7845 	};
7846 #endif
7847 	struct rq *rq = cpu_rq(cpu);
7848 	unsigned long flags;
7849 
7850 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7851 	raw_spin_rq_lock(rq);
7852 
7853 	idle->__state = TASK_RUNNING;
7854 	idle->se.exec_start = sched_clock();
7855 	/*
7856 	 * PF_KTHREAD should already be set at this point; regardless, make it
7857 	 * look like a proper per-CPU kthread.
7858 	 */
7859 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7860 	kthread_set_per_cpu(idle, cpu);
7861 
7862 #ifdef CONFIG_SMP
7863 	/*
7864 	 * No validation and serialization required at boot time and for
7865 	 * setting up the idle tasks of not yet online CPUs.
7866 	 */
7867 	set_cpus_allowed_common(idle, &ac);
7868 #endif
7869 	/*
7870 	 * We're having a chicken and egg problem, even though we are
7871 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7872 	 * lockdep check in task_group() will fail.
7873 	 *
7874 	 * Similar case to sched_fork(). / Alternatively we could
7875 	 * use task_rq_lock() here and obtain the other rq->lock.
7876 	 *
7877 	 * Silence PROVE_RCU
7878 	 */
7879 	rcu_read_lock();
7880 	__set_task_cpu(idle, cpu);
7881 	rcu_read_unlock();
7882 
7883 	rq->idle = idle;
7884 	rq_set_donor(rq, idle);
7885 	rcu_assign_pointer(rq->curr, idle);
7886 	idle->on_rq = TASK_ON_RQ_QUEUED;
7887 #ifdef CONFIG_SMP
7888 	idle->on_cpu = 1;
7889 #endif
7890 	raw_spin_rq_unlock(rq);
7891 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7892 
7893 	/* Set the preempt count _outside_ the spinlocks! */
7894 	init_idle_preempt_count(idle, cpu);
7895 
7896 	/*
7897 	 * The idle tasks have their own, simple scheduling class:
7898 	 */
7899 	idle->sched_class = &idle_sched_class;
7900 	ftrace_graph_init_idle_task(idle, cpu);
7901 	vtime_init_idle(idle, cpu);
7902 #ifdef CONFIG_SMP
7903 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7904 #endif
7905 }
7906 
7907 #ifdef CONFIG_SMP
7908 
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)7909 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7910 			      const struct cpumask *trial)
7911 {
7912 	int ret = 1;
7913 
7914 	if (cpumask_empty(cur))
7915 		return ret;
7916 
7917 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7918 
7919 	return ret;
7920 }
7921 
task_can_attach(struct task_struct * p)7922 int task_can_attach(struct task_struct *p)
7923 {
7924 	int ret = 0;
7925 
7926 	/*
7927 	 * Kthreads which disallow setaffinity shouldn't be moved
7928 	 * to a new cpuset; we don't want to change their CPU
7929 	 * affinity and isolating such threads by their set of
7930 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7931 	 * applicable for such threads.  This prevents checking for
7932 	 * success of set_cpus_allowed_ptr() on all attached tasks
7933 	 * before cpus_mask may be changed.
7934 	 */
7935 	if (p->flags & PF_NO_SETAFFINITY)
7936 		ret = -EINVAL;
7937 
7938 	return ret;
7939 }
7940 
7941 bool sched_smp_initialized __read_mostly;
7942 
7943 #ifdef CONFIG_NUMA_BALANCING
7944 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)7945 int migrate_task_to(struct task_struct *p, int target_cpu)
7946 {
7947 	struct migration_arg arg = { p, target_cpu };
7948 	int curr_cpu = task_cpu(p);
7949 
7950 	if (curr_cpu == target_cpu)
7951 		return 0;
7952 
7953 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7954 		return -EINVAL;
7955 
7956 	/* TODO: This is not properly updating schedstats */
7957 
7958 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7959 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7960 }
7961 
7962 /*
7963  * Requeue a task on a given node and accurately track the number of NUMA
7964  * tasks on the runqueues
7965  */
sched_setnuma(struct task_struct * p,int nid)7966 void sched_setnuma(struct task_struct *p, int nid)
7967 {
7968 	bool queued, running;
7969 	struct rq_flags rf;
7970 	struct rq *rq;
7971 
7972 	rq = task_rq_lock(p, &rf);
7973 	queued = task_on_rq_queued(p);
7974 	running = task_current_donor(rq, p);
7975 
7976 	if (queued)
7977 		dequeue_task(rq, p, DEQUEUE_SAVE);
7978 	if (running)
7979 		put_prev_task(rq, p);
7980 
7981 	p->numa_preferred_nid = nid;
7982 
7983 	if (queued)
7984 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7985 	if (running)
7986 		set_next_task(rq, p);
7987 	task_rq_unlock(rq, p, &rf);
7988 }
7989 #endif /* CONFIG_NUMA_BALANCING */
7990 
7991 #ifdef CONFIG_HOTPLUG_CPU
7992 /*
7993  * Invoked on the outgoing CPU in context of the CPU hotplug thread
7994  * after ensuring that there are no user space tasks left on the CPU.
7995  *
7996  * If there is a lazy mm in use on the hotplug thread, drop it and
7997  * switch to init_mm.
7998  *
7999  * The reference count on init_mm is dropped in finish_cpu().
8000  */
sched_force_init_mm(void)8001 static void sched_force_init_mm(void)
8002 {
8003 	struct mm_struct *mm = current->active_mm;
8004 
8005 	if (mm != &init_mm) {
8006 		mmgrab_lazy_tlb(&init_mm);
8007 		local_irq_disable();
8008 		current->active_mm = &init_mm;
8009 		switch_mm_irqs_off(mm, &init_mm, current);
8010 		local_irq_enable();
8011 		finish_arch_post_lock_switch();
8012 		mmdrop_lazy_tlb(mm);
8013 	}
8014 
8015 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8016 }
8017 
__balance_push_cpu_stop(void * arg)8018 static int __balance_push_cpu_stop(void *arg)
8019 {
8020 	struct task_struct *p = arg;
8021 	struct rq *rq = this_rq();
8022 	struct rq_flags rf;
8023 	int cpu;
8024 
8025 	raw_spin_lock_irq(&p->pi_lock);
8026 	rq_lock(rq, &rf);
8027 
8028 	update_rq_clock(rq);
8029 
8030 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8031 		cpu = select_fallback_rq(rq->cpu, p);
8032 		rq = __migrate_task(rq, &rf, p, cpu);
8033 	}
8034 
8035 	rq_unlock(rq, &rf);
8036 	raw_spin_unlock_irq(&p->pi_lock);
8037 
8038 	put_task_struct(p);
8039 
8040 	return 0;
8041 }
8042 
8043 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8044 
8045 /*
8046  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8047  *
8048  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8049  * effective when the hotplug motion is down.
8050  */
balance_push(struct rq * rq)8051 static void balance_push(struct rq *rq)
8052 {
8053 	struct task_struct *push_task = rq->curr;
8054 
8055 	lockdep_assert_rq_held(rq);
8056 
8057 	/*
8058 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8059 	 */
8060 	rq->balance_callback = &balance_push_callback;
8061 
8062 	/*
8063 	 * Only active while going offline and when invoked on the outgoing
8064 	 * CPU.
8065 	 */
8066 	if (!cpu_dying(rq->cpu) || rq != this_rq())
8067 		return;
8068 
8069 	/*
8070 	 * Both the cpu-hotplug and stop task are in this case and are
8071 	 * required to complete the hotplug process.
8072 	 */
8073 	if (kthread_is_per_cpu(push_task) ||
8074 	    is_migration_disabled(push_task)) {
8075 
8076 		/*
8077 		 * If this is the idle task on the outgoing CPU try to wake
8078 		 * up the hotplug control thread which might wait for the
8079 		 * last task to vanish. The rcuwait_active() check is
8080 		 * accurate here because the waiter is pinned on this CPU
8081 		 * and can't obviously be running in parallel.
8082 		 *
8083 		 * On RT kernels this also has to check whether there are
8084 		 * pinned and scheduled out tasks on the runqueue. They
8085 		 * need to leave the migrate disabled section first.
8086 		 */
8087 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8088 		    rcuwait_active(&rq->hotplug_wait)) {
8089 			raw_spin_rq_unlock(rq);
8090 			rcuwait_wake_up(&rq->hotplug_wait);
8091 			raw_spin_rq_lock(rq);
8092 		}
8093 		return;
8094 	}
8095 
8096 	get_task_struct(push_task);
8097 	/*
8098 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8099 	 * Both preemption and IRQs are still disabled.
8100 	 */
8101 	preempt_disable();
8102 	raw_spin_rq_unlock(rq);
8103 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8104 			    this_cpu_ptr(&push_work));
8105 	preempt_enable();
8106 	/*
8107 	 * At this point need_resched() is true and we'll take the loop in
8108 	 * schedule(). The next pick is obviously going to be the stop task
8109 	 * which kthread_is_per_cpu() and will push this task away.
8110 	 */
8111 	raw_spin_rq_lock(rq);
8112 }
8113 
balance_push_set(int cpu,bool on)8114 static void balance_push_set(int cpu, bool on)
8115 {
8116 	struct rq *rq = cpu_rq(cpu);
8117 	struct rq_flags rf;
8118 
8119 	rq_lock_irqsave(rq, &rf);
8120 	if (on) {
8121 		WARN_ON_ONCE(rq->balance_callback);
8122 		rq->balance_callback = &balance_push_callback;
8123 	} else if (rq->balance_callback == &balance_push_callback) {
8124 		rq->balance_callback = NULL;
8125 	}
8126 	rq_unlock_irqrestore(rq, &rf);
8127 }
8128 
8129 /*
8130  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8131  * inactive. All tasks which are not per CPU kernel threads are either
8132  * pushed off this CPU now via balance_push() or placed on a different CPU
8133  * during wakeup. Wait until the CPU is quiescent.
8134  */
balance_hotplug_wait(void)8135 static void balance_hotplug_wait(void)
8136 {
8137 	struct rq *rq = this_rq();
8138 
8139 	rcuwait_wait_event(&rq->hotplug_wait,
8140 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8141 			   TASK_UNINTERRUPTIBLE);
8142 }
8143 
8144 #else
8145 
balance_push(struct rq * rq)8146 static inline void balance_push(struct rq *rq)
8147 {
8148 }
8149 
balance_push_set(int cpu,bool on)8150 static inline void balance_push_set(int cpu, bool on)
8151 {
8152 }
8153 
balance_hotplug_wait(void)8154 static inline void balance_hotplug_wait(void)
8155 {
8156 }
8157 
8158 #endif /* CONFIG_HOTPLUG_CPU */
8159 
set_rq_online(struct rq * rq)8160 void set_rq_online(struct rq *rq)
8161 {
8162 	if (!rq->online) {
8163 		const struct sched_class *class;
8164 
8165 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8166 		rq->online = 1;
8167 
8168 		for_each_class(class) {
8169 			if (class->rq_online)
8170 				class->rq_online(rq);
8171 		}
8172 	}
8173 }
8174 
set_rq_offline(struct rq * rq)8175 void set_rq_offline(struct rq *rq)
8176 {
8177 	if (rq->online) {
8178 		const struct sched_class *class;
8179 
8180 		update_rq_clock(rq);
8181 		for_each_class(class) {
8182 			if (class->rq_offline)
8183 				class->rq_offline(rq);
8184 		}
8185 
8186 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8187 		rq->online = 0;
8188 	}
8189 }
8190 
sched_set_rq_online(struct rq * rq,int cpu)8191 static inline void sched_set_rq_online(struct rq *rq, int cpu)
8192 {
8193 	struct rq_flags rf;
8194 
8195 	rq_lock_irqsave(rq, &rf);
8196 	if (rq->rd) {
8197 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8198 		set_rq_online(rq);
8199 	}
8200 	rq_unlock_irqrestore(rq, &rf);
8201 }
8202 
sched_set_rq_offline(struct rq * rq,int cpu)8203 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8204 {
8205 	struct rq_flags rf;
8206 
8207 	rq_lock_irqsave(rq, &rf);
8208 	if (rq->rd) {
8209 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8210 		set_rq_offline(rq);
8211 	}
8212 	rq_unlock_irqrestore(rq, &rf);
8213 }
8214 
8215 /*
8216  * used to mark begin/end of suspend/resume:
8217  */
8218 static int num_cpus_frozen;
8219 
8220 /*
8221  * Update cpusets according to cpu_active mask.  If cpusets are
8222  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8223  * around partition_sched_domains().
8224  *
8225  * If we come here as part of a suspend/resume, don't touch cpusets because we
8226  * want to restore it back to its original state upon resume anyway.
8227  */
cpuset_cpu_active(void)8228 static void cpuset_cpu_active(void)
8229 {
8230 	if (cpuhp_tasks_frozen) {
8231 		/*
8232 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8233 		 * resume sequence. As long as this is not the last online
8234 		 * operation in the resume sequence, just build a single sched
8235 		 * domain, ignoring cpusets.
8236 		 */
8237 		cpuset_reset_sched_domains();
8238 		if (--num_cpus_frozen)
8239 			return;
8240 		/*
8241 		 * This is the last CPU online operation. So fall through and
8242 		 * restore the original sched domains by considering the
8243 		 * cpuset configurations.
8244 		 */
8245 		cpuset_force_rebuild();
8246 	}
8247 	cpuset_update_active_cpus();
8248 }
8249 
cpuset_cpu_inactive(unsigned int cpu)8250 static void cpuset_cpu_inactive(unsigned int cpu)
8251 {
8252 	if (!cpuhp_tasks_frozen) {
8253 		cpuset_update_active_cpus();
8254 	} else {
8255 		num_cpus_frozen++;
8256 		cpuset_reset_sched_domains();
8257 	}
8258 }
8259 
sched_smt_present_inc(int cpu)8260 static inline void sched_smt_present_inc(int cpu)
8261 {
8262 #ifdef CONFIG_SCHED_SMT
8263 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8264 		static_branch_inc_cpuslocked(&sched_smt_present);
8265 #endif
8266 }
8267 
sched_smt_present_dec(int cpu)8268 static inline void sched_smt_present_dec(int cpu)
8269 {
8270 #ifdef CONFIG_SCHED_SMT
8271 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8272 		static_branch_dec_cpuslocked(&sched_smt_present);
8273 #endif
8274 }
8275 
sched_cpu_activate(unsigned int cpu)8276 int sched_cpu_activate(unsigned int cpu)
8277 {
8278 	struct rq *rq = cpu_rq(cpu);
8279 
8280 	/*
8281 	 * Clear the balance_push callback and prepare to schedule
8282 	 * regular tasks.
8283 	 */
8284 	balance_push_set(cpu, false);
8285 
8286 	/*
8287 	 * When going up, increment the number of cores with SMT present.
8288 	 */
8289 	sched_smt_present_inc(cpu);
8290 	set_cpu_active(cpu, true);
8291 
8292 	if (sched_smp_initialized) {
8293 		sched_update_numa(cpu, true);
8294 		sched_domains_numa_masks_set(cpu);
8295 		cpuset_cpu_active();
8296 	}
8297 
8298 	scx_rq_activate(rq);
8299 
8300 	/*
8301 	 * Put the rq online, if not already. This happens:
8302 	 *
8303 	 * 1) In the early boot process, because we build the real domains
8304 	 *    after all CPUs have been brought up.
8305 	 *
8306 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8307 	 *    domains.
8308 	 */
8309 	sched_set_rq_online(rq, cpu);
8310 
8311 	return 0;
8312 }
8313 
sched_cpu_deactivate(unsigned int cpu)8314 int sched_cpu_deactivate(unsigned int cpu)
8315 {
8316 	struct rq *rq = cpu_rq(cpu);
8317 	int ret;
8318 
8319 	ret = dl_bw_deactivate(cpu);
8320 
8321 	if (ret)
8322 		return ret;
8323 
8324 	/*
8325 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8326 	 * load balancing when not active
8327 	 */
8328 	nohz_balance_exit_idle(rq);
8329 
8330 	set_cpu_active(cpu, false);
8331 
8332 	/*
8333 	 * From this point forward, this CPU will refuse to run any task that
8334 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8335 	 * push those tasks away until this gets cleared, see
8336 	 * sched_cpu_dying().
8337 	 */
8338 	balance_push_set(cpu, true);
8339 
8340 	/*
8341 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8342 	 * preempt-disabled and RCU users of this state to go away such that
8343 	 * all new such users will observe it.
8344 	 *
8345 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8346 	 * ttwu_queue_cond() and is_cpu_allowed().
8347 	 *
8348 	 * Do sync before park smpboot threads to take care the RCU boost case.
8349 	 */
8350 	synchronize_rcu();
8351 
8352 	sched_set_rq_offline(rq, cpu);
8353 
8354 	scx_rq_deactivate(rq);
8355 
8356 	/*
8357 	 * When going down, decrement the number of cores with SMT present.
8358 	 */
8359 	sched_smt_present_dec(cpu);
8360 
8361 #ifdef CONFIG_SCHED_SMT
8362 	sched_core_cpu_deactivate(cpu);
8363 #endif
8364 
8365 	if (!sched_smp_initialized)
8366 		return 0;
8367 
8368 	sched_update_numa(cpu, false);
8369 	cpuset_cpu_inactive(cpu);
8370 	sched_domains_numa_masks_clear(cpu);
8371 	return 0;
8372 }
8373 
sched_rq_cpu_starting(unsigned int cpu)8374 static void sched_rq_cpu_starting(unsigned int cpu)
8375 {
8376 	struct rq *rq = cpu_rq(cpu);
8377 
8378 	rq->calc_load_update = calc_load_update;
8379 	update_max_interval();
8380 }
8381 
sched_cpu_starting(unsigned int cpu)8382 int sched_cpu_starting(unsigned int cpu)
8383 {
8384 	sched_core_cpu_starting(cpu);
8385 	sched_rq_cpu_starting(cpu);
8386 	sched_tick_start(cpu);
8387 	return 0;
8388 }
8389 
8390 #ifdef CONFIG_HOTPLUG_CPU
8391 
8392 /*
8393  * Invoked immediately before the stopper thread is invoked to bring the
8394  * CPU down completely. At this point all per CPU kthreads except the
8395  * hotplug thread (current) and the stopper thread (inactive) have been
8396  * either parked or have been unbound from the outgoing CPU. Ensure that
8397  * any of those which might be on the way out are gone.
8398  *
8399  * If after this point a bound task is being woken on this CPU then the
8400  * responsible hotplug callback has failed to do it's job.
8401  * sched_cpu_dying() will catch it with the appropriate fireworks.
8402  */
sched_cpu_wait_empty(unsigned int cpu)8403 int sched_cpu_wait_empty(unsigned int cpu)
8404 {
8405 	balance_hotplug_wait();
8406 	sched_force_init_mm();
8407 	return 0;
8408 }
8409 
8410 /*
8411  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8412  * might have. Called from the CPU stopper task after ensuring that the
8413  * stopper is the last running task on the CPU, so nr_active count is
8414  * stable. We need to take the tear-down thread which is calling this into
8415  * account, so we hand in adjust = 1 to the load calculation.
8416  *
8417  * Also see the comment "Global load-average calculations".
8418  */
calc_load_migrate(struct rq * rq)8419 static void calc_load_migrate(struct rq *rq)
8420 {
8421 	long delta = calc_load_fold_active(rq, 1);
8422 
8423 	if (delta)
8424 		atomic_long_add(delta, &calc_load_tasks);
8425 }
8426 
dump_rq_tasks(struct rq * rq,const char * loglvl)8427 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8428 {
8429 	struct task_struct *g, *p;
8430 	int cpu = cpu_of(rq);
8431 
8432 	lockdep_assert_rq_held(rq);
8433 
8434 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8435 	for_each_process_thread(g, p) {
8436 		if (task_cpu(p) != cpu)
8437 			continue;
8438 
8439 		if (!task_on_rq_queued(p))
8440 			continue;
8441 
8442 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8443 	}
8444 }
8445 
sched_cpu_dying(unsigned int cpu)8446 int sched_cpu_dying(unsigned int cpu)
8447 {
8448 	struct rq *rq = cpu_rq(cpu);
8449 	struct rq_flags rf;
8450 
8451 	/* Handle pending wakeups and then migrate everything off */
8452 	sched_tick_stop(cpu);
8453 
8454 	rq_lock_irqsave(rq, &rf);
8455 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8456 		WARN(true, "Dying CPU not properly vacated!");
8457 		dump_rq_tasks(rq, KERN_WARNING);
8458 	}
8459 	rq_unlock_irqrestore(rq, &rf);
8460 
8461 	calc_load_migrate(rq);
8462 	update_max_interval();
8463 	hrtick_clear(rq);
8464 	sched_core_cpu_dying(cpu);
8465 	return 0;
8466 }
8467 #endif
8468 
sched_init_smp(void)8469 void __init sched_init_smp(void)
8470 {
8471 	sched_init_numa(NUMA_NO_NODE);
8472 
8473 	/*
8474 	 * There's no userspace yet to cause hotplug operations; hence all the
8475 	 * CPU masks are stable and all blatant races in the below code cannot
8476 	 * happen.
8477 	 */
8478 	sched_domains_mutex_lock();
8479 	sched_init_domains(cpu_active_mask);
8480 	sched_domains_mutex_unlock();
8481 
8482 	/* Move init over to a non-isolated CPU */
8483 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8484 		BUG();
8485 	current->flags &= ~PF_NO_SETAFFINITY;
8486 	sched_init_granularity();
8487 
8488 	init_sched_rt_class();
8489 	init_sched_dl_class();
8490 
8491 	sched_smp_initialized = true;
8492 }
8493 
migration_init(void)8494 static int __init migration_init(void)
8495 {
8496 	sched_cpu_starting(smp_processor_id());
8497 	return 0;
8498 }
8499 early_initcall(migration_init);
8500 
8501 #else
sched_init_smp(void)8502 void __init sched_init_smp(void)
8503 {
8504 	sched_init_granularity();
8505 }
8506 #endif /* CONFIG_SMP */
8507 
in_sched_functions(unsigned long addr)8508 int in_sched_functions(unsigned long addr)
8509 {
8510 	return in_lock_functions(addr) ||
8511 		(addr >= (unsigned long)__sched_text_start
8512 		&& addr < (unsigned long)__sched_text_end);
8513 }
8514 
8515 #ifdef CONFIG_CGROUP_SCHED
8516 /*
8517  * Default task group.
8518  * Every task in system belongs to this group at bootup.
8519  */
8520 struct task_group root_task_group;
8521 LIST_HEAD(task_groups);
8522 
8523 /* Cacheline aligned slab cache for task_group */
8524 static struct kmem_cache *task_group_cache __ro_after_init;
8525 #endif
8526 
sched_init(void)8527 void __init sched_init(void)
8528 {
8529 	unsigned long ptr = 0;
8530 	int i;
8531 
8532 	/* Make sure the linker didn't screw up */
8533 #ifdef CONFIG_SMP
8534 	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8535 #endif
8536 	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8537 	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8538 	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8539 #ifdef CONFIG_SCHED_CLASS_EXT
8540 	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8541 	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8542 #endif
8543 
8544 	wait_bit_init();
8545 
8546 #ifdef CONFIG_FAIR_GROUP_SCHED
8547 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8548 #endif
8549 #ifdef CONFIG_RT_GROUP_SCHED
8550 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8551 #endif
8552 	if (ptr) {
8553 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8554 
8555 #ifdef CONFIG_FAIR_GROUP_SCHED
8556 		root_task_group.se = (struct sched_entity **)ptr;
8557 		ptr += nr_cpu_ids * sizeof(void **);
8558 
8559 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8560 		ptr += nr_cpu_ids * sizeof(void **);
8561 
8562 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8563 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8564 #endif /* CONFIG_FAIR_GROUP_SCHED */
8565 #ifdef CONFIG_EXT_GROUP_SCHED
8566 		root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
8567 #endif /* CONFIG_EXT_GROUP_SCHED */
8568 #ifdef CONFIG_RT_GROUP_SCHED
8569 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8570 		ptr += nr_cpu_ids * sizeof(void **);
8571 
8572 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8573 		ptr += nr_cpu_ids * sizeof(void **);
8574 
8575 #endif /* CONFIG_RT_GROUP_SCHED */
8576 	}
8577 
8578 #ifdef CONFIG_SMP
8579 	init_defrootdomain();
8580 #endif
8581 
8582 #ifdef CONFIG_RT_GROUP_SCHED
8583 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8584 			global_rt_period(), global_rt_runtime());
8585 #endif /* CONFIG_RT_GROUP_SCHED */
8586 
8587 #ifdef CONFIG_CGROUP_SCHED
8588 	task_group_cache = KMEM_CACHE(task_group, 0);
8589 
8590 	list_add(&root_task_group.list, &task_groups);
8591 	INIT_LIST_HEAD(&root_task_group.children);
8592 	INIT_LIST_HEAD(&root_task_group.siblings);
8593 	autogroup_init(&init_task);
8594 #endif /* CONFIG_CGROUP_SCHED */
8595 
8596 	for_each_possible_cpu(i) {
8597 		struct rq *rq;
8598 
8599 		rq = cpu_rq(i);
8600 		raw_spin_lock_init(&rq->__lock);
8601 		rq->nr_running = 0;
8602 		rq->calc_load_active = 0;
8603 		rq->calc_load_update = jiffies + LOAD_FREQ;
8604 		init_cfs_rq(&rq->cfs);
8605 		init_rt_rq(&rq->rt);
8606 		init_dl_rq(&rq->dl);
8607 #ifdef CONFIG_FAIR_GROUP_SCHED
8608 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8609 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8610 		/*
8611 		 * How much CPU bandwidth does root_task_group get?
8612 		 *
8613 		 * In case of task-groups formed through the cgroup filesystem, it
8614 		 * gets 100% of the CPU resources in the system. This overall
8615 		 * system CPU resource is divided among the tasks of
8616 		 * root_task_group and its child task-groups in a fair manner,
8617 		 * based on each entity's (task or task-group's) weight
8618 		 * (se->load.weight).
8619 		 *
8620 		 * In other words, if root_task_group has 10 tasks of weight
8621 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8622 		 * then A0's share of the CPU resource is:
8623 		 *
8624 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8625 		 *
8626 		 * We achieve this by letting root_task_group's tasks sit
8627 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8628 		 */
8629 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8630 #endif /* CONFIG_FAIR_GROUP_SCHED */
8631 
8632 #ifdef CONFIG_RT_GROUP_SCHED
8633 		/*
8634 		 * This is required for init cpu because rt.c:__enable_runtime()
8635 		 * starts working after scheduler_running, which is not the case
8636 		 * yet.
8637 		 */
8638 		rq->rt.rt_runtime = global_rt_runtime();
8639 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8640 #endif
8641 #ifdef CONFIG_SMP
8642 		rq->sd = NULL;
8643 		rq->rd = NULL;
8644 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8645 		rq->balance_callback = &balance_push_callback;
8646 		rq->active_balance = 0;
8647 		rq->next_balance = jiffies;
8648 		rq->push_cpu = 0;
8649 		rq->cpu = i;
8650 		rq->online = 0;
8651 		rq->idle_stamp = 0;
8652 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8653 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8654 
8655 		INIT_LIST_HEAD(&rq->cfs_tasks);
8656 
8657 		rq_attach_root(rq, &def_root_domain);
8658 #ifdef CONFIG_NO_HZ_COMMON
8659 		rq->last_blocked_load_update_tick = jiffies;
8660 		atomic_set(&rq->nohz_flags, 0);
8661 
8662 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8663 #endif
8664 #ifdef CONFIG_HOTPLUG_CPU
8665 		rcuwait_init(&rq->hotplug_wait);
8666 #endif
8667 #endif /* CONFIG_SMP */
8668 		hrtick_rq_init(rq);
8669 		atomic_set(&rq->nr_iowait, 0);
8670 		fair_server_init(rq);
8671 
8672 #ifdef CONFIG_SCHED_CORE
8673 		rq->core = rq;
8674 		rq->core_pick = NULL;
8675 		rq->core_dl_server = NULL;
8676 		rq->core_enabled = 0;
8677 		rq->core_tree = RB_ROOT;
8678 		rq->core_forceidle_count = 0;
8679 		rq->core_forceidle_occupation = 0;
8680 		rq->core_forceidle_start = 0;
8681 
8682 		rq->core_cookie = 0UL;
8683 #endif
8684 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8685 	}
8686 
8687 	set_load_weight(&init_task, false);
8688 	init_task.se.slice = sysctl_sched_base_slice,
8689 
8690 	/*
8691 	 * The boot idle thread does lazy MMU switching as well:
8692 	 */
8693 	mmgrab_lazy_tlb(&init_mm);
8694 	enter_lazy_tlb(&init_mm, current);
8695 
8696 	/*
8697 	 * The idle task doesn't need the kthread struct to function, but it
8698 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8699 	 * if we want to avoid special-casing it in code that deals with per-CPU
8700 	 * kthreads.
8701 	 */
8702 	WARN_ON(!set_kthread_struct(current));
8703 
8704 	/*
8705 	 * Make us the idle thread. Technically, schedule() should not be
8706 	 * called from this thread, however somewhere below it might be,
8707 	 * but because we are the idle thread, we just pick up running again
8708 	 * when this runqueue becomes "idle".
8709 	 */
8710 	__sched_fork(0, current);
8711 	init_idle(current, smp_processor_id());
8712 
8713 	calc_load_update = jiffies + LOAD_FREQ;
8714 
8715 #ifdef CONFIG_SMP
8716 	idle_thread_set_boot_cpu();
8717 	balance_push_set(smp_processor_id(), false);
8718 #endif
8719 	init_sched_fair_class();
8720 	init_sched_ext_class();
8721 
8722 	psi_init();
8723 
8724 	init_uclamp();
8725 
8726 	preempt_dynamic_init();
8727 
8728 	scheduler_running = 1;
8729 }
8730 
8731 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8732 
__might_sleep(const char * file,int line)8733 void __might_sleep(const char *file, int line)
8734 {
8735 	unsigned int state = get_current_state();
8736 	/*
8737 	 * Blocking primitives will set (and therefore destroy) current->state,
8738 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8739 	 * otherwise we will destroy state.
8740 	 */
8741 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8742 			"do not call blocking ops when !TASK_RUNNING; "
8743 			"state=%x set at [<%p>] %pS\n", state,
8744 			(void *)current->task_state_change,
8745 			(void *)current->task_state_change);
8746 
8747 	__might_resched(file, line, 0);
8748 }
8749 EXPORT_SYMBOL(__might_sleep);
8750 
print_preempt_disable_ip(int preempt_offset,unsigned long ip)8751 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8752 {
8753 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8754 		return;
8755 
8756 	if (preempt_count() == preempt_offset)
8757 		return;
8758 
8759 	pr_err("Preemption disabled at:");
8760 	print_ip_sym(KERN_ERR, ip);
8761 }
8762 
resched_offsets_ok(unsigned int offsets)8763 static inline bool resched_offsets_ok(unsigned int offsets)
8764 {
8765 	unsigned int nested = preempt_count();
8766 
8767 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8768 
8769 	return nested == offsets;
8770 }
8771 
__might_resched(const char * file,int line,unsigned int offsets)8772 void __might_resched(const char *file, int line, unsigned int offsets)
8773 {
8774 	/* Ratelimiting timestamp: */
8775 	static unsigned long prev_jiffy;
8776 
8777 	unsigned long preempt_disable_ip;
8778 
8779 	/* WARN_ON_ONCE() by default, no rate limit required: */
8780 	rcu_sleep_check();
8781 
8782 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8783 	     !is_idle_task(current) && !current->non_block_count) ||
8784 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8785 	    oops_in_progress)
8786 		return;
8787 
8788 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8789 		return;
8790 	prev_jiffy = jiffies;
8791 
8792 	/* Save this before calling printk(), since that will clobber it: */
8793 	preempt_disable_ip = get_preempt_disable_ip(current);
8794 
8795 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8796 	       file, line);
8797 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8798 	       in_atomic(), irqs_disabled(), current->non_block_count,
8799 	       current->pid, current->comm);
8800 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8801 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8802 
8803 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8804 		pr_err("RCU nest depth: %d, expected: %u\n",
8805 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8806 	}
8807 
8808 	if (task_stack_end_corrupted(current))
8809 		pr_emerg("Thread overran stack, or stack corrupted\n");
8810 
8811 	debug_show_held_locks(current);
8812 	if (irqs_disabled())
8813 		print_irqtrace_events(current);
8814 
8815 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8816 				 preempt_disable_ip);
8817 
8818 	dump_stack();
8819 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8820 }
8821 EXPORT_SYMBOL(__might_resched);
8822 
__cant_sleep(const char * file,int line,int preempt_offset)8823 void __cant_sleep(const char *file, int line, int preempt_offset)
8824 {
8825 	static unsigned long prev_jiffy;
8826 
8827 	if (irqs_disabled())
8828 		return;
8829 
8830 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8831 		return;
8832 
8833 	if (preempt_count() > preempt_offset)
8834 		return;
8835 
8836 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8837 		return;
8838 	prev_jiffy = jiffies;
8839 
8840 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8841 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8842 			in_atomic(), irqs_disabled(),
8843 			current->pid, current->comm);
8844 
8845 	debug_show_held_locks(current);
8846 	dump_stack();
8847 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8848 }
8849 EXPORT_SYMBOL_GPL(__cant_sleep);
8850 
8851 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)8852 void __cant_migrate(const char *file, int line)
8853 {
8854 	static unsigned long prev_jiffy;
8855 
8856 	if (irqs_disabled())
8857 		return;
8858 
8859 	if (is_migration_disabled(current))
8860 		return;
8861 
8862 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8863 		return;
8864 
8865 	if (preempt_count() > 0)
8866 		return;
8867 
8868 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8869 		return;
8870 	prev_jiffy = jiffies;
8871 
8872 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8873 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8874 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8875 	       current->pid, current->comm);
8876 
8877 	debug_show_held_locks(current);
8878 	dump_stack();
8879 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8880 }
8881 EXPORT_SYMBOL_GPL(__cant_migrate);
8882 #endif
8883 #endif
8884 
8885 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)8886 void normalize_rt_tasks(void)
8887 {
8888 	struct task_struct *g, *p;
8889 	struct sched_attr attr = {
8890 		.sched_policy = SCHED_NORMAL,
8891 	};
8892 
8893 	read_lock(&tasklist_lock);
8894 	for_each_process_thread(g, p) {
8895 		/*
8896 		 * Only normalize user tasks:
8897 		 */
8898 		if (p->flags & PF_KTHREAD)
8899 			continue;
8900 
8901 		p->se.exec_start = 0;
8902 		schedstat_set(p->stats.wait_start,  0);
8903 		schedstat_set(p->stats.sleep_start, 0);
8904 		schedstat_set(p->stats.block_start, 0);
8905 
8906 		if (!rt_or_dl_task(p)) {
8907 			/*
8908 			 * Renice negative nice level userspace
8909 			 * tasks back to 0:
8910 			 */
8911 			if (task_nice(p) < 0)
8912 				set_user_nice(p, 0);
8913 			continue;
8914 		}
8915 
8916 		__sched_setscheduler(p, &attr, false, false);
8917 	}
8918 	read_unlock(&tasklist_lock);
8919 }
8920 
8921 #endif /* CONFIG_MAGIC_SYSRQ */
8922 
8923 #if defined(CONFIG_KGDB_KDB)
8924 /*
8925  * These functions are only useful for KDB.
8926  *
8927  * They can only be called when the whole system has been
8928  * stopped - every CPU needs to be quiescent, and no scheduling
8929  * activity can take place. Using them for anything else would
8930  * be a serious bug, and as a result, they aren't even visible
8931  * under any other configuration.
8932  */
8933 
8934 /**
8935  * curr_task - return the current task for a given CPU.
8936  * @cpu: the processor in question.
8937  *
8938  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8939  *
8940  * Return: The current task for @cpu.
8941  */
curr_task(int cpu)8942 struct task_struct *curr_task(int cpu)
8943 {
8944 	return cpu_curr(cpu);
8945 }
8946 
8947 #endif /* defined(CONFIG_KGDB_KDB) */
8948 
8949 #ifdef CONFIG_CGROUP_SCHED
8950 /* task_group_lock serializes the addition/removal of task groups */
8951 static DEFINE_SPINLOCK(task_group_lock);
8952 
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)8953 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8954 					    struct task_group *parent)
8955 {
8956 #ifdef CONFIG_UCLAMP_TASK_GROUP
8957 	enum uclamp_id clamp_id;
8958 
8959 	for_each_clamp_id(clamp_id) {
8960 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8961 			      uclamp_none(clamp_id), false);
8962 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8963 	}
8964 #endif
8965 }
8966 
sched_free_group(struct task_group * tg)8967 static void sched_free_group(struct task_group *tg)
8968 {
8969 	free_fair_sched_group(tg);
8970 	free_rt_sched_group(tg);
8971 	autogroup_free(tg);
8972 	kmem_cache_free(task_group_cache, tg);
8973 }
8974 
sched_free_group_rcu(struct rcu_head * rcu)8975 static void sched_free_group_rcu(struct rcu_head *rcu)
8976 {
8977 	sched_free_group(container_of(rcu, struct task_group, rcu));
8978 }
8979 
sched_unregister_group(struct task_group * tg)8980 static void sched_unregister_group(struct task_group *tg)
8981 {
8982 	unregister_fair_sched_group(tg);
8983 	unregister_rt_sched_group(tg);
8984 	/*
8985 	 * We have to wait for yet another RCU grace period to expire, as
8986 	 * print_cfs_stats() might run concurrently.
8987 	 */
8988 	call_rcu(&tg->rcu, sched_free_group_rcu);
8989 }
8990 
8991 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)8992 struct task_group *sched_create_group(struct task_group *parent)
8993 {
8994 	struct task_group *tg;
8995 
8996 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8997 	if (!tg)
8998 		return ERR_PTR(-ENOMEM);
8999 
9000 	if (!alloc_fair_sched_group(tg, parent))
9001 		goto err;
9002 
9003 	if (!alloc_rt_sched_group(tg, parent))
9004 		goto err;
9005 
9006 	scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
9007 	alloc_uclamp_sched_group(tg, parent);
9008 
9009 	return tg;
9010 
9011 err:
9012 	sched_free_group(tg);
9013 	return ERR_PTR(-ENOMEM);
9014 }
9015 
sched_online_group(struct task_group * tg,struct task_group * parent)9016 void sched_online_group(struct task_group *tg, struct task_group *parent)
9017 {
9018 	unsigned long flags;
9019 
9020 	spin_lock_irqsave(&task_group_lock, flags);
9021 	list_add_rcu(&tg->list, &task_groups);
9022 
9023 	/* Root should already exist: */
9024 	WARN_ON(!parent);
9025 
9026 	tg->parent = parent;
9027 	INIT_LIST_HEAD(&tg->children);
9028 	list_add_rcu(&tg->siblings, &parent->children);
9029 	spin_unlock_irqrestore(&task_group_lock, flags);
9030 
9031 	online_fair_sched_group(tg);
9032 }
9033 
9034 /* RCU callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)9035 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9036 {
9037 	/* Now it should be safe to free those cfs_rqs: */
9038 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
9039 }
9040 
sched_destroy_group(struct task_group * tg)9041 void sched_destroy_group(struct task_group *tg)
9042 {
9043 	/* Wait for possible concurrent references to cfs_rqs complete: */
9044 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
9045 }
9046 
sched_release_group(struct task_group * tg)9047 void sched_release_group(struct task_group *tg)
9048 {
9049 	unsigned long flags;
9050 
9051 	/*
9052 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9053 	 * sched_cfs_period_timer()).
9054 	 *
9055 	 * For this to be effective, we have to wait for all pending users of
9056 	 * this task group to leave their RCU critical section to ensure no new
9057 	 * user will see our dying task group any more. Specifically ensure
9058 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9059 	 *
9060 	 * We therefore defer calling unregister_fair_sched_group() to
9061 	 * sched_unregister_group() which is guarantied to get called only after the
9062 	 * current RCU grace period has expired.
9063 	 */
9064 	spin_lock_irqsave(&task_group_lock, flags);
9065 	list_del_rcu(&tg->list);
9066 	list_del_rcu(&tg->siblings);
9067 	spin_unlock_irqrestore(&task_group_lock, flags);
9068 }
9069 
sched_change_group(struct task_struct * tsk)9070 static void sched_change_group(struct task_struct *tsk)
9071 {
9072 	struct task_group *tg;
9073 
9074 	/*
9075 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9076 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9077 	 * to prevent lockdep warnings.
9078 	 */
9079 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9080 			  struct task_group, css);
9081 	tg = autogroup_task_group(tsk, tg);
9082 	tsk->sched_task_group = tg;
9083 
9084 #ifdef CONFIG_FAIR_GROUP_SCHED
9085 	if (tsk->sched_class->task_change_group)
9086 		tsk->sched_class->task_change_group(tsk);
9087 	else
9088 #endif
9089 		set_task_rq(tsk, task_cpu(tsk));
9090 }
9091 
9092 /*
9093  * Change task's runqueue when it moves between groups.
9094  *
9095  * The caller of this function should have put the task in its new group by
9096  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9097  * its new group.
9098  */
sched_move_task(struct task_struct * tsk,bool for_autogroup)9099 void sched_move_task(struct task_struct *tsk, bool for_autogroup)
9100 {
9101 	int queued, running, queue_flags =
9102 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9103 	struct rq *rq;
9104 
9105 	CLASS(task_rq_lock, rq_guard)(tsk);
9106 	rq = rq_guard.rq;
9107 
9108 	update_rq_clock(rq);
9109 
9110 	running = task_current_donor(rq, tsk);
9111 	queued = task_on_rq_queued(tsk);
9112 
9113 	if (queued)
9114 		dequeue_task(rq, tsk, queue_flags);
9115 	if (running)
9116 		put_prev_task(rq, tsk);
9117 
9118 	sched_change_group(tsk);
9119 	if (!for_autogroup)
9120 		scx_cgroup_move_task(tsk);
9121 
9122 	if (queued)
9123 		enqueue_task(rq, tsk, queue_flags);
9124 	if (running) {
9125 		set_next_task(rq, tsk);
9126 		/*
9127 		 * After changing group, the running task may have joined a
9128 		 * throttled one but it's still the running task. Trigger a
9129 		 * resched to make sure that task can still run.
9130 		 */
9131 		resched_curr(rq);
9132 	}
9133 }
9134 
9135 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)9136 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9137 {
9138 	struct task_group *parent = css_tg(parent_css);
9139 	struct task_group *tg;
9140 
9141 	if (!parent) {
9142 		/* This is early initialization for the top cgroup */
9143 		return &root_task_group.css;
9144 	}
9145 
9146 	tg = sched_create_group(parent);
9147 	if (IS_ERR(tg))
9148 		return ERR_PTR(-ENOMEM);
9149 
9150 	return &tg->css;
9151 }
9152 
9153 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)9154 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9155 {
9156 	struct task_group *tg = css_tg(css);
9157 	struct task_group *parent = css_tg(css->parent);
9158 	int ret;
9159 
9160 	ret = scx_tg_online(tg);
9161 	if (ret)
9162 		return ret;
9163 
9164 	if (parent)
9165 		sched_online_group(tg, parent);
9166 
9167 #ifdef CONFIG_UCLAMP_TASK_GROUP
9168 	/* Propagate the effective uclamp value for the new group */
9169 	guard(mutex)(&uclamp_mutex);
9170 	guard(rcu)();
9171 	cpu_util_update_eff(css);
9172 #endif
9173 
9174 	return 0;
9175 }
9176 
cpu_cgroup_css_offline(struct cgroup_subsys_state * css)9177 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9178 {
9179 	struct task_group *tg = css_tg(css);
9180 
9181 	scx_tg_offline(tg);
9182 }
9183 
cpu_cgroup_css_released(struct cgroup_subsys_state * css)9184 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9185 {
9186 	struct task_group *tg = css_tg(css);
9187 
9188 	sched_release_group(tg);
9189 }
9190 
cpu_cgroup_css_free(struct cgroup_subsys_state * css)9191 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9192 {
9193 	struct task_group *tg = css_tg(css);
9194 
9195 	/*
9196 	 * Relies on the RCU grace period between css_released() and this.
9197 	 */
9198 	sched_unregister_group(tg);
9199 }
9200 
cpu_cgroup_can_attach(struct cgroup_taskset * tset)9201 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9202 {
9203 #ifdef CONFIG_RT_GROUP_SCHED
9204 	struct task_struct *task;
9205 	struct cgroup_subsys_state *css;
9206 
9207 	cgroup_taskset_for_each(task, css, tset) {
9208 		if (!sched_rt_can_attach(css_tg(css), task))
9209 			return -EINVAL;
9210 	}
9211 #endif
9212 	return scx_cgroup_can_attach(tset);
9213 }
9214 
cpu_cgroup_attach(struct cgroup_taskset * tset)9215 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9216 {
9217 	struct task_struct *task;
9218 	struct cgroup_subsys_state *css;
9219 
9220 	cgroup_taskset_for_each(task, css, tset)
9221 		sched_move_task(task, false);
9222 
9223 	scx_cgroup_finish_attach();
9224 }
9225 
cpu_cgroup_cancel_attach(struct cgroup_taskset * tset)9226 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9227 {
9228 	scx_cgroup_cancel_attach(tset);
9229 }
9230 
9231 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)9232 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9233 {
9234 	struct cgroup_subsys_state *top_css = css;
9235 	struct uclamp_se *uc_parent = NULL;
9236 	struct uclamp_se *uc_se = NULL;
9237 	unsigned int eff[UCLAMP_CNT];
9238 	enum uclamp_id clamp_id;
9239 	unsigned int clamps;
9240 
9241 	lockdep_assert_held(&uclamp_mutex);
9242 	WARN_ON_ONCE(!rcu_read_lock_held());
9243 
9244 	css_for_each_descendant_pre(css, top_css) {
9245 		uc_parent = css_tg(css)->parent
9246 			? css_tg(css)->parent->uclamp : NULL;
9247 
9248 		for_each_clamp_id(clamp_id) {
9249 			/* Assume effective clamps matches requested clamps */
9250 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9251 			/* Cap effective clamps with parent's effective clamps */
9252 			if (uc_parent &&
9253 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9254 				eff[clamp_id] = uc_parent[clamp_id].value;
9255 			}
9256 		}
9257 		/* Ensure protection is always capped by limit */
9258 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9259 
9260 		/* Propagate most restrictive effective clamps */
9261 		clamps = 0x0;
9262 		uc_se = css_tg(css)->uclamp;
9263 		for_each_clamp_id(clamp_id) {
9264 			if (eff[clamp_id] == uc_se[clamp_id].value)
9265 				continue;
9266 			uc_se[clamp_id].value = eff[clamp_id];
9267 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9268 			clamps |= (0x1 << clamp_id);
9269 		}
9270 		if (!clamps) {
9271 			css = css_rightmost_descendant(css);
9272 			continue;
9273 		}
9274 
9275 		/* Immediately update descendants RUNNABLE tasks */
9276 		uclamp_update_active_tasks(css);
9277 	}
9278 }
9279 
9280 /*
9281  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9282  * C expression. Since there is no way to convert a macro argument (N) into a
9283  * character constant, use two levels of macros.
9284  */
9285 #define _POW10(exp) ((unsigned int)1e##exp)
9286 #define POW10(exp) _POW10(exp)
9287 
9288 struct uclamp_request {
9289 #define UCLAMP_PERCENT_SHIFT	2
9290 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9291 	s64 percent;
9292 	u64 util;
9293 	int ret;
9294 };
9295 
9296 static inline struct uclamp_request
capacity_from_percent(char * buf)9297 capacity_from_percent(char *buf)
9298 {
9299 	struct uclamp_request req = {
9300 		.percent = UCLAMP_PERCENT_SCALE,
9301 		.util = SCHED_CAPACITY_SCALE,
9302 		.ret = 0,
9303 	};
9304 
9305 	buf = strim(buf);
9306 	if (strcmp(buf, "max")) {
9307 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9308 					     &req.percent);
9309 		if (req.ret)
9310 			return req;
9311 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9312 			req.ret = -ERANGE;
9313 			return req;
9314 		}
9315 
9316 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9317 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9318 	}
9319 
9320 	return req;
9321 }
9322 
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)9323 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9324 				size_t nbytes, loff_t off,
9325 				enum uclamp_id clamp_id)
9326 {
9327 	struct uclamp_request req;
9328 	struct task_group *tg;
9329 
9330 	req = capacity_from_percent(buf);
9331 	if (req.ret)
9332 		return req.ret;
9333 
9334 	sched_uclamp_enable();
9335 
9336 	guard(mutex)(&uclamp_mutex);
9337 	guard(rcu)();
9338 
9339 	tg = css_tg(of_css(of));
9340 	if (tg->uclamp_req[clamp_id].value != req.util)
9341 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9342 
9343 	/*
9344 	 * Because of not recoverable conversion rounding we keep track of the
9345 	 * exact requested value
9346 	 */
9347 	tg->uclamp_pct[clamp_id] = req.percent;
9348 
9349 	/* Update effective clamps to track the most restrictive value */
9350 	cpu_util_update_eff(of_css(of));
9351 
9352 	return nbytes;
9353 }
9354 
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)9355 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9356 				    char *buf, size_t nbytes,
9357 				    loff_t off)
9358 {
9359 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9360 }
9361 
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)9362 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9363 				    char *buf, size_t nbytes,
9364 				    loff_t off)
9365 {
9366 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9367 }
9368 
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)9369 static inline void cpu_uclamp_print(struct seq_file *sf,
9370 				    enum uclamp_id clamp_id)
9371 {
9372 	struct task_group *tg;
9373 	u64 util_clamp;
9374 	u64 percent;
9375 	u32 rem;
9376 
9377 	scoped_guard (rcu) {
9378 		tg = css_tg(seq_css(sf));
9379 		util_clamp = tg->uclamp_req[clamp_id].value;
9380 	}
9381 
9382 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9383 		seq_puts(sf, "max\n");
9384 		return;
9385 	}
9386 
9387 	percent = tg->uclamp_pct[clamp_id];
9388 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9389 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9390 }
9391 
cpu_uclamp_min_show(struct seq_file * sf,void * v)9392 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9393 {
9394 	cpu_uclamp_print(sf, UCLAMP_MIN);
9395 	return 0;
9396 }
9397 
cpu_uclamp_max_show(struct seq_file * sf,void * v)9398 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9399 {
9400 	cpu_uclamp_print(sf, UCLAMP_MAX);
9401 	return 0;
9402 }
9403 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9404 
9405 #ifdef CONFIG_GROUP_SCHED_WEIGHT
tg_weight(struct task_group * tg)9406 static unsigned long tg_weight(struct task_group *tg)
9407 {
9408 #ifdef CONFIG_FAIR_GROUP_SCHED
9409 	return scale_load_down(tg->shares);
9410 #else
9411 	return sched_weight_from_cgroup(tg->scx_weight);
9412 #endif
9413 }
9414 
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)9415 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9416 				struct cftype *cftype, u64 shareval)
9417 {
9418 	int ret;
9419 
9420 	if (shareval > scale_load_down(ULONG_MAX))
9421 		shareval = MAX_SHARES;
9422 	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9423 	if (!ret)
9424 		scx_group_set_weight(css_tg(css),
9425 				     sched_weight_to_cgroup(shareval));
9426 	return ret;
9427 }
9428 
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9429 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9430 			       struct cftype *cft)
9431 {
9432 	return tg_weight(css_tg(css));
9433 }
9434 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9435 
9436 #ifdef CONFIG_CFS_BANDWIDTH
9437 static DEFINE_MUTEX(cfs_constraints_mutex);
9438 
9439 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9440 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9441 /* More than 203 days if BW_SHIFT equals 20. */
9442 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9443 
9444 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9445 
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)9446 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9447 				u64 burst)
9448 {
9449 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9450 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9451 
9452 	if (tg == &root_task_group)
9453 		return -EINVAL;
9454 
9455 	/*
9456 	 * Ensure we have at some amount of bandwidth every period.  This is
9457 	 * to prevent reaching a state of large arrears when throttled via
9458 	 * entity_tick() resulting in prolonged exit starvation.
9459 	 */
9460 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9461 		return -EINVAL;
9462 
9463 	/*
9464 	 * Likewise, bound things on the other side by preventing insane quota
9465 	 * periods.  This also allows us to normalize in computing quota
9466 	 * feasibility.
9467 	 */
9468 	if (period > max_cfs_quota_period)
9469 		return -EINVAL;
9470 
9471 	/*
9472 	 * Bound quota to defend quota against overflow during bandwidth shift.
9473 	 */
9474 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9475 		return -EINVAL;
9476 
9477 	if (quota != RUNTIME_INF && (burst > quota ||
9478 				     burst + quota > max_cfs_runtime))
9479 		return -EINVAL;
9480 
9481 	/*
9482 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9483 	 * unthrottle_offline_cfs_rqs().
9484 	 */
9485 	guard(cpus_read_lock)();
9486 	guard(mutex)(&cfs_constraints_mutex);
9487 
9488 	ret = __cfs_schedulable(tg, period, quota);
9489 	if (ret)
9490 		return ret;
9491 
9492 	runtime_enabled = quota != RUNTIME_INF;
9493 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9494 	/*
9495 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9496 	 * before making related changes, and on->off must occur afterwards
9497 	 */
9498 	if (runtime_enabled && !runtime_was_enabled)
9499 		cfs_bandwidth_usage_inc();
9500 
9501 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9502 		cfs_b->period = ns_to_ktime(period);
9503 		cfs_b->quota = quota;
9504 		cfs_b->burst = burst;
9505 
9506 		__refill_cfs_bandwidth_runtime(cfs_b);
9507 
9508 		/*
9509 		 * Restart the period timer (if active) to handle new
9510 		 * period expiry:
9511 		 */
9512 		if (runtime_enabled)
9513 			start_cfs_bandwidth(cfs_b);
9514 	}
9515 
9516 	for_each_online_cpu(i) {
9517 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9518 		struct rq *rq = cfs_rq->rq;
9519 
9520 		guard(rq_lock_irq)(rq);
9521 		cfs_rq->runtime_enabled = runtime_enabled;
9522 		cfs_rq->runtime_remaining = 0;
9523 
9524 		if (cfs_rq->throttled)
9525 			unthrottle_cfs_rq(cfs_rq);
9526 	}
9527 
9528 	if (runtime_was_enabled && !runtime_enabled)
9529 		cfs_bandwidth_usage_dec();
9530 
9531 	return 0;
9532 }
9533 
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)9534 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9535 {
9536 	u64 quota, period, burst;
9537 
9538 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9539 	burst = tg->cfs_bandwidth.burst;
9540 	if (cfs_quota_us < 0)
9541 		quota = RUNTIME_INF;
9542 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9543 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9544 	else
9545 		return -EINVAL;
9546 
9547 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9548 }
9549 
tg_get_cfs_quota(struct task_group * tg)9550 static long tg_get_cfs_quota(struct task_group *tg)
9551 {
9552 	u64 quota_us;
9553 
9554 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9555 		return -1;
9556 
9557 	quota_us = tg->cfs_bandwidth.quota;
9558 	do_div(quota_us, NSEC_PER_USEC);
9559 
9560 	return quota_us;
9561 }
9562 
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)9563 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9564 {
9565 	u64 quota, period, burst;
9566 
9567 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9568 		return -EINVAL;
9569 
9570 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9571 	quota = tg->cfs_bandwidth.quota;
9572 	burst = tg->cfs_bandwidth.burst;
9573 
9574 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9575 }
9576 
tg_get_cfs_period(struct task_group * tg)9577 static long tg_get_cfs_period(struct task_group *tg)
9578 {
9579 	u64 cfs_period_us;
9580 
9581 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9582 	do_div(cfs_period_us, NSEC_PER_USEC);
9583 
9584 	return cfs_period_us;
9585 }
9586 
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)9587 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9588 {
9589 	u64 quota, period, burst;
9590 
9591 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9592 		return -EINVAL;
9593 
9594 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9595 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9596 	quota = tg->cfs_bandwidth.quota;
9597 
9598 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9599 }
9600 
tg_get_cfs_burst(struct task_group * tg)9601 static long tg_get_cfs_burst(struct task_group *tg)
9602 {
9603 	u64 burst_us;
9604 
9605 	burst_us = tg->cfs_bandwidth.burst;
9606 	do_div(burst_us, NSEC_PER_USEC);
9607 
9608 	return burst_us;
9609 }
9610 
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)9611 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9612 				  struct cftype *cft)
9613 {
9614 	return tg_get_cfs_quota(css_tg(css));
9615 }
9616 
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)9617 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9618 				   struct cftype *cftype, s64 cfs_quota_us)
9619 {
9620 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9621 }
9622 
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9623 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9624 				   struct cftype *cft)
9625 {
9626 	return tg_get_cfs_period(css_tg(css));
9627 }
9628 
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)9629 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9630 				    struct cftype *cftype, u64 cfs_period_us)
9631 {
9632 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9633 }
9634 
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9635 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9636 				  struct cftype *cft)
9637 {
9638 	return tg_get_cfs_burst(css_tg(css));
9639 }
9640 
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)9641 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9642 				   struct cftype *cftype, u64 cfs_burst_us)
9643 {
9644 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9645 }
9646 
9647 struct cfs_schedulable_data {
9648 	struct task_group *tg;
9649 	u64 period, quota;
9650 };
9651 
9652 /*
9653  * normalize group quota/period to be quota/max_period
9654  * note: units are usecs
9655  */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)9656 static u64 normalize_cfs_quota(struct task_group *tg,
9657 			       struct cfs_schedulable_data *d)
9658 {
9659 	u64 quota, period;
9660 
9661 	if (tg == d->tg) {
9662 		period = d->period;
9663 		quota = d->quota;
9664 	} else {
9665 		period = tg_get_cfs_period(tg);
9666 		quota = tg_get_cfs_quota(tg);
9667 	}
9668 
9669 	/* note: these should typically be equivalent */
9670 	if (quota == RUNTIME_INF || quota == -1)
9671 		return RUNTIME_INF;
9672 
9673 	return to_ratio(period, quota);
9674 }
9675 
tg_cfs_schedulable_down(struct task_group * tg,void * data)9676 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9677 {
9678 	struct cfs_schedulable_data *d = data;
9679 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9680 	s64 quota = 0, parent_quota = -1;
9681 
9682 	if (!tg->parent) {
9683 		quota = RUNTIME_INF;
9684 	} else {
9685 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9686 
9687 		quota = normalize_cfs_quota(tg, d);
9688 		parent_quota = parent_b->hierarchical_quota;
9689 
9690 		/*
9691 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9692 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9693 		 * inherit when no limit is set. In both cases this is used
9694 		 * by the scheduler to determine if a given CFS task has a
9695 		 * bandwidth constraint at some higher level.
9696 		 */
9697 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9698 			if (quota == RUNTIME_INF)
9699 				quota = parent_quota;
9700 			else if (parent_quota != RUNTIME_INF)
9701 				quota = min(quota, parent_quota);
9702 		} else {
9703 			if (quota == RUNTIME_INF)
9704 				quota = parent_quota;
9705 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9706 				return -EINVAL;
9707 		}
9708 	}
9709 	cfs_b->hierarchical_quota = quota;
9710 
9711 	return 0;
9712 }
9713 
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)9714 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9715 {
9716 	struct cfs_schedulable_data data = {
9717 		.tg = tg,
9718 		.period = period,
9719 		.quota = quota,
9720 	};
9721 
9722 	if (quota != RUNTIME_INF) {
9723 		do_div(data.period, NSEC_PER_USEC);
9724 		do_div(data.quota, NSEC_PER_USEC);
9725 	}
9726 
9727 	guard(rcu)();
9728 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9729 }
9730 
cpu_cfs_stat_show(struct seq_file * sf,void * v)9731 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9732 {
9733 	struct task_group *tg = css_tg(seq_css(sf));
9734 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9735 
9736 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9737 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9738 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9739 
9740 	if (schedstat_enabled() && tg != &root_task_group) {
9741 		struct sched_statistics *stats;
9742 		u64 ws = 0;
9743 		int i;
9744 
9745 		for_each_possible_cpu(i) {
9746 			stats = __schedstats_from_se(tg->se[i]);
9747 			ws += schedstat_val(stats->wait_sum);
9748 		}
9749 
9750 		seq_printf(sf, "wait_sum %llu\n", ws);
9751 	}
9752 
9753 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9754 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9755 
9756 	return 0;
9757 }
9758 
throttled_time_self(struct task_group * tg)9759 static u64 throttled_time_self(struct task_group *tg)
9760 {
9761 	int i;
9762 	u64 total = 0;
9763 
9764 	for_each_possible_cpu(i) {
9765 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9766 	}
9767 
9768 	return total;
9769 }
9770 
cpu_cfs_local_stat_show(struct seq_file * sf,void * v)9771 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9772 {
9773 	struct task_group *tg = css_tg(seq_css(sf));
9774 
9775 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9776 
9777 	return 0;
9778 }
9779 #endif /* CONFIG_CFS_BANDWIDTH */
9780 
9781 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)9782 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9783 				struct cftype *cft, s64 val)
9784 {
9785 	return sched_group_set_rt_runtime(css_tg(css), val);
9786 }
9787 
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)9788 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9789 			       struct cftype *cft)
9790 {
9791 	return sched_group_rt_runtime(css_tg(css));
9792 }
9793 
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)9794 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9795 				    struct cftype *cftype, u64 rt_period_us)
9796 {
9797 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9798 }
9799 
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)9800 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9801 				   struct cftype *cft)
9802 {
9803 	return sched_group_rt_period(css_tg(css));
9804 }
9805 #endif /* CONFIG_RT_GROUP_SCHED */
9806 
9807 #ifdef CONFIG_GROUP_SCHED_WEIGHT
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)9808 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9809 			       struct cftype *cft)
9810 {
9811 	return css_tg(css)->idle;
9812 }
9813 
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)9814 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9815 				struct cftype *cft, s64 idle)
9816 {
9817 	int ret;
9818 
9819 	ret = sched_group_set_idle(css_tg(css), idle);
9820 	if (!ret)
9821 		scx_group_set_idle(css_tg(css), idle);
9822 	return ret;
9823 }
9824 #endif
9825 
9826 static struct cftype cpu_legacy_files[] = {
9827 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9828 	{
9829 		.name = "shares",
9830 		.read_u64 = cpu_shares_read_u64,
9831 		.write_u64 = cpu_shares_write_u64,
9832 	},
9833 	{
9834 		.name = "idle",
9835 		.read_s64 = cpu_idle_read_s64,
9836 		.write_s64 = cpu_idle_write_s64,
9837 	},
9838 #endif
9839 #ifdef CONFIG_CFS_BANDWIDTH
9840 	{
9841 		.name = "cfs_quota_us",
9842 		.read_s64 = cpu_cfs_quota_read_s64,
9843 		.write_s64 = cpu_cfs_quota_write_s64,
9844 	},
9845 	{
9846 		.name = "cfs_period_us",
9847 		.read_u64 = cpu_cfs_period_read_u64,
9848 		.write_u64 = cpu_cfs_period_write_u64,
9849 	},
9850 	{
9851 		.name = "cfs_burst_us",
9852 		.read_u64 = cpu_cfs_burst_read_u64,
9853 		.write_u64 = cpu_cfs_burst_write_u64,
9854 	},
9855 	{
9856 		.name = "stat",
9857 		.seq_show = cpu_cfs_stat_show,
9858 	},
9859 	{
9860 		.name = "stat.local",
9861 		.seq_show = cpu_cfs_local_stat_show,
9862 	},
9863 #endif
9864 #ifdef CONFIG_RT_GROUP_SCHED
9865 	{
9866 		.name = "rt_runtime_us",
9867 		.read_s64 = cpu_rt_runtime_read,
9868 		.write_s64 = cpu_rt_runtime_write,
9869 	},
9870 	{
9871 		.name = "rt_period_us",
9872 		.read_u64 = cpu_rt_period_read_uint,
9873 		.write_u64 = cpu_rt_period_write_uint,
9874 	},
9875 #endif
9876 #ifdef CONFIG_UCLAMP_TASK_GROUP
9877 	{
9878 		.name = "uclamp.min",
9879 		.flags = CFTYPE_NOT_ON_ROOT,
9880 		.seq_show = cpu_uclamp_min_show,
9881 		.write = cpu_uclamp_min_write,
9882 	},
9883 	{
9884 		.name = "uclamp.max",
9885 		.flags = CFTYPE_NOT_ON_ROOT,
9886 		.seq_show = cpu_uclamp_max_show,
9887 		.write = cpu_uclamp_max_write,
9888 	},
9889 #endif
9890 	{ }	/* Terminate */
9891 };
9892 
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)9893 static int cpu_extra_stat_show(struct seq_file *sf,
9894 			       struct cgroup_subsys_state *css)
9895 {
9896 #ifdef CONFIG_CFS_BANDWIDTH
9897 	{
9898 		struct task_group *tg = css_tg(css);
9899 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9900 		u64 throttled_usec, burst_usec;
9901 
9902 		throttled_usec = cfs_b->throttled_time;
9903 		do_div(throttled_usec, NSEC_PER_USEC);
9904 		burst_usec = cfs_b->burst_time;
9905 		do_div(burst_usec, NSEC_PER_USEC);
9906 
9907 		seq_printf(sf, "nr_periods %d\n"
9908 			   "nr_throttled %d\n"
9909 			   "throttled_usec %llu\n"
9910 			   "nr_bursts %d\n"
9911 			   "burst_usec %llu\n",
9912 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9913 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9914 	}
9915 #endif
9916 	return 0;
9917 }
9918 
cpu_local_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)9919 static int cpu_local_stat_show(struct seq_file *sf,
9920 			       struct cgroup_subsys_state *css)
9921 {
9922 #ifdef CONFIG_CFS_BANDWIDTH
9923 	{
9924 		struct task_group *tg = css_tg(css);
9925 		u64 throttled_self_usec;
9926 
9927 		throttled_self_usec = throttled_time_self(tg);
9928 		do_div(throttled_self_usec, NSEC_PER_USEC);
9929 
9930 		seq_printf(sf, "throttled_usec %llu\n",
9931 			   throttled_self_usec);
9932 	}
9933 #endif
9934 	return 0;
9935 }
9936 
9937 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9938 
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9939 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9940 			       struct cftype *cft)
9941 {
9942 	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
9943 }
9944 
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 cgrp_weight)9945 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9946 				struct cftype *cft, u64 cgrp_weight)
9947 {
9948 	unsigned long weight;
9949 	int ret;
9950 
9951 	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
9952 		return -ERANGE;
9953 
9954 	weight = sched_weight_from_cgroup(cgrp_weight);
9955 
9956 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9957 	if (!ret)
9958 		scx_group_set_weight(css_tg(css), cgrp_weight);
9959 	return ret;
9960 }
9961 
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)9962 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9963 				    struct cftype *cft)
9964 {
9965 	unsigned long weight = tg_weight(css_tg(css));
9966 	int last_delta = INT_MAX;
9967 	int prio, delta;
9968 
9969 	/* find the closest nice value to the current weight */
9970 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9971 		delta = abs(sched_prio_to_weight[prio] - weight);
9972 		if (delta >= last_delta)
9973 			break;
9974 		last_delta = delta;
9975 	}
9976 
9977 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9978 }
9979 
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)9980 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9981 				     struct cftype *cft, s64 nice)
9982 {
9983 	unsigned long weight;
9984 	int idx, ret;
9985 
9986 	if (nice < MIN_NICE || nice > MAX_NICE)
9987 		return -ERANGE;
9988 
9989 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9990 	idx = array_index_nospec(idx, 40);
9991 	weight = sched_prio_to_weight[idx];
9992 
9993 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9994 	if (!ret)
9995 		scx_group_set_weight(css_tg(css),
9996 				     sched_weight_to_cgroup(weight));
9997 	return ret;
9998 }
9999 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
10000 
cpu_period_quota_print(struct seq_file * sf,long period,long quota)10001 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10002 						  long period, long quota)
10003 {
10004 	if (quota < 0)
10005 		seq_puts(sf, "max");
10006 	else
10007 		seq_printf(sf, "%ld", quota);
10008 
10009 	seq_printf(sf, " %ld\n", period);
10010 }
10011 
10012 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)10013 static int __maybe_unused cpu_period_quota_parse(char *buf,
10014 						 u64 *periodp, u64 *quotap)
10015 {
10016 	char tok[21];	/* U64_MAX */
10017 
10018 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10019 		return -EINVAL;
10020 
10021 	*periodp *= NSEC_PER_USEC;
10022 
10023 	if (sscanf(tok, "%llu", quotap))
10024 		*quotap *= NSEC_PER_USEC;
10025 	else if (!strcmp(tok, "max"))
10026 		*quotap = RUNTIME_INF;
10027 	else
10028 		return -EINVAL;
10029 
10030 	return 0;
10031 }
10032 
10033 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)10034 static int cpu_max_show(struct seq_file *sf, void *v)
10035 {
10036 	struct task_group *tg = css_tg(seq_css(sf));
10037 
10038 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10039 	return 0;
10040 }
10041 
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10042 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10043 			     char *buf, size_t nbytes, loff_t off)
10044 {
10045 	struct task_group *tg = css_tg(of_css(of));
10046 	u64 period = tg_get_cfs_period(tg);
10047 	u64 burst = tg->cfs_bandwidth.burst;
10048 	u64 quota;
10049 	int ret;
10050 
10051 	ret = cpu_period_quota_parse(buf, &period, &quota);
10052 	if (!ret)
10053 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10054 	return ret ?: nbytes;
10055 }
10056 #endif
10057 
10058 static struct cftype cpu_files[] = {
10059 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10060 	{
10061 		.name = "weight",
10062 		.flags = CFTYPE_NOT_ON_ROOT,
10063 		.read_u64 = cpu_weight_read_u64,
10064 		.write_u64 = cpu_weight_write_u64,
10065 	},
10066 	{
10067 		.name = "weight.nice",
10068 		.flags = CFTYPE_NOT_ON_ROOT,
10069 		.read_s64 = cpu_weight_nice_read_s64,
10070 		.write_s64 = cpu_weight_nice_write_s64,
10071 	},
10072 	{
10073 		.name = "idle",
10074 		.flags = CFTYPE_NOT_ON_ROOT,
10075 		.read_s64 = cpu_idle_read_s64,
10076 		.write_s64 = cpu_idle_write_s64,
10077 	},
10078 #endif
10079 #ifdef CONFIG_CFS_BANDWIDTH
10080 	{
10081 		.name = "max",
10082 		.flags = CFTYPE_NOT_ON_ROOT,
10083 		.seq_show = cpu_max_show,
10084 		.write = cpu_max_write,
10085 	},
10086 	{
10087 		.name = "max.burst",
10088 		.flags = CFTYPE_NOT_ON_ROOT,
10089 		.read_u64 = cpu_cfs_burst_read_u64,
10090 		.write_u64 = cpu_cfs_burst_write_u64,
10091 	},
10092 #endif
10093 #ifdef CONFIG_UCLAMP_TASK_GROUP
10094 	{
10095 		.name = "uclamp.min",
10096 		.flags = CFTYPE_NOT_ON_ROOT,
10097 		.seq_show = cpu_uclamp_min_show,
10098 		.write = cpu_uclamp_min_write,
10099 	},
10100 	{
10101 		.name = "uclamp.max",
10102 		.flags = CFTYPE_NOT_ON_ROOT,
10103 		.seq_show = cpu_uclamp_max_show,
10104 		.write = cpu_uclamp_max_write,
10105 	},
10106 #endif
10107 	{ }	/* terminate */
10108 };
10109 
10110 struct cgroup_subsys cpu_cgrp_subsys = {
10111 	.css_alloc	= cpu_cgroup_css_alloc,
10112 	.css_online	= cpu_cgroup_css_online,
10113 	.css_offline	= cpu_cgroup_css_offline,
10114 	.css_released	= cpu_cgroup_css_released,
10115 	.css_free	= cpu_cgroup_css_free,
10116 	.css_extra_stat_show = cpu_extra_stat_show,
10117 	.css_local_stat_show = cpu_local_stat_show,
10118 	.can_attach	= cpu_cgroup_can_attach,
10119 	.attach		= cpu_cgroup_attach,
10120 	.cancel_attach	= cpu_cgroup_cancel_attach,
10121 	.legacy_cftypes	= cpu_legacy_files,
10122 	.dfl_cftypes	= cpu_files,
10123 	.early_init	= true,
10124 	.threaded	= true,
10125 };
10126 
10127 #endif	/* CONFIG_CGROUP_SCHED */
10128 
dump_cpu_task(int cpu)10129 void dump_cpu_task(int cpu)
10130 {
10131 	if (in_hardirq() && cpu == smp_processor_id()) {
10132 		struct pt_regs *regs;
10133 
10134 		regs = get_irq_regs();
10135 		if (regs) {
10136 			show_regs(regs);
10137 			return;
10138 		}
10139 	}
10140 
10141 	if (trigger_single_cpu_backtrace(cpu))
10142 		return;
10143 
10144 	pr_info("Task dump for CPU %d:\n", cpu);
10145 	sched_show_task(cpu_curr(cpu));
10146 }
10147 
10148 /*
10149  * Nice levels are multiplicative, with a gentle 10% change for every
10150  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10151  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10152  * that remained on nice 0.
10153  *
10154  * The "10% effect" is relative and cumulative: from _any_ nice level,
10155  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10156  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10157  * If a task goes up by ~10% and another task goes down by ~10% then
10158  * the relative distance between them is ~25%.)
10159  */
10160 const int sched_prio_to_weight[40] = {
10161  /* -20 */     88761,     71755,     56483,     46273,     36291,
10162  /* -15 */     29154,     23254,     18705,     14949,     11916,
10163  /* -10 */      9548,      7620,      6100,      4904,      3906,
10164  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10165  /*   0 */      1024,       820,       655,       526,       423,
10166  /*   5 */       335,       272,       215,       172,       137,
10167  /*  10 */       110,        87,        70,        56,        45,
10168  /*  15 */        36,        29,        23,        18,        15,
10169 };
10170 
10171 /*
10172  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10173  *
10174  * In cases where the weight does not change often, we can use the
10175  * pre-calculated inverse to speed up arithmetics by turning divisions
10176  * into multiplications:
10177  */
10178 const u32 sched_prio_to_wmult[40] = {
10179  /* -20 */     48388,     59856,     76040,     92818,    118348,
10180  /* -15 */    147320,    184698,    229616,    287308,    360437,
10181  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10182  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10183  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10184  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10185  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10186  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10187 };
10188 
call_trace_sched_update_nr_running(struct rq * rq,int count)10189 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10190 {
10191         trace_sched_update_nr_running_tp(rq, count);
10192 }
10193 
10194 #ifdef CONFIG_SCHED_MM_CID
10195 
10196 /*
10197  * @cid_lock: Guarantee forward-progress of cid allocation.
10198  *
10199  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10200  * is only used when contention is detected by the lock-free allocation so
10201  * forward progress can be guaranteed.
10202  */
10203 DEFINE_RAW_SPINLOCK(cid_lock);
10204 
10205 /*
10206  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10207  *
10208  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10209  * detected, it is set to 1 to ensure that all newly coming allocations are
10210  * serialized by @cid_lock until the allocation which detected contention
10211  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10212  * of a cid allocation.
10213  */
10214 int use_cid_lock;
10215 
10216 /*
10217  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10218  * concurrently with respect to the execution of the source runqueue context
10219  * switch.
10220  *
10221  * There is one basic properties we want to guarantee here:
10222  *
10223  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10224  * used by a task. That would lead to concurrent allocation of the cid and
10225  * userspace corruption.
10226  *
10227  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10228  * that a pair of loads observe at least one of a pair of stores, which can be
10229  * shown as:
10230  *
10231  *      X = Y = 0
10232  *
10233  *      w[X]=1          w[Y]=1
10234  *      MB              MB
10235  *      r[Y]=y          r[X]=x
10236  *
10237  * Which guarantees that x==0 && y==0 is impossible. But rather than using
10238  * values 0 and 1, this algorithm cares about specific state transitions of the
10239  * runqueue current task (as updated by the scheduler context switch), and the
10240  * per-mm/cpu cid value.
10241  *
10242  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10243  * task->mm != mm for the rest of the discussion. There are two scheduler state
10244  * transitions on context switch we care about:
10245  *
10246  * (TSA) Store to rq->curr with transition from (N) to (Y)
10247  *
10248  * (TSB) Store to rq->curr with transition from (Y) to (N)
10249  *
10250  * On the remote-clear side, there is one transition we care about:
10251  *
10252  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10253  *
10254  * There is also a transition to UNSET state which can be performed from all
10255  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10256  * guarantees that only a single thread will succeed:
10257  *
10258  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10259  *
10260  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10261  * when a thread is actively using the cid (property (1)).
10262  *
10263  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10264  *
10265  * Scenario A) (TSA)+(TMA) (from next task perspective)
10266  *
10267  * CPU0                                      CPU1
10268  *
10269  * Context switch CS-1                       Remote-clear
10270  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10271  *                                             (implied barrier after cmpxchg)
10272  *   - switch_mm_cid()
10273  *     - memory barrier (see switch_mm_cid()
10274  *       comment explaining how this barrier
10275  *       is combined with other scheduler
10276  *       barriers)
10277  *     - mm_cid_get (next)
10278  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10279  *
10280  * This Dekker ensures that either task (Y) is observed by the
10281  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10282  * observed.
10283  *
10284  * If task (Y) store is observed by rcu_dereference(), it means that there is
10285  * still an active task on the cpu. Remote-clear will therefore not transition
10286  * to UNSET, which fulfills property (1).
10287  *
10288  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10289  * it will move its state to UNSET, which clears the percpu cid perhaps
10290  * uselessly (which is not an issue for correctness). Because task (Y) is not
10291  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10292  * state to UNSET is done with a cmpxchg expecting that the old state has the
10293  * LAZY flag set, only one thread will successfully UNSET.
10294  *
10295  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10296  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10297  * CPU1 will observe task (Y) and do nothing more, which is fine.
10298  *
10299  * What we are effectively preventing with this Dekker is a scenario where
10300  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10301  * because this would UNSET a cid which is actively used.
10302  */
10303 
sched_mm_cid_migrate_from(struct task_struct * t)10304 void sched_mm_cid_migrate_from(struct task_struct *t)
10305 {
10306 	t->migrate_from_cpu = task_cpu(t);
10307 }
10308 
10309 static
__sched_mm_cid_migrate_from_fetch_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid)10310 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10311 					  struct task_struct *t,
10312 					  struct mm_cid *src_pcpu_cid)
10313 {
10314 	struct mm_struct *mm = t->mm;
10315 	struct task_struct *src_task;
10316 	int src_cid, last_mm_cid;
10317 
10318 	if (!mm)
10319 		return -1;
10320 
10321 	last_mm_cid = t->last_mm_cid;
10322 	/*
10323 	 * If the migrated task has no last cid, or if the current
10324 	 * task on src rq uses the cid, it means the source cid does not need
10325 	 * to be moved to the destination cpu.
10326 	 */
10327 	if (last_mm_cid == -1)
10328 		return -1;
10329 	src_cid = READ_ONCE(src_pcpu_cid->cid);
10330 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10331 		return -1;
10332 
10333 	/*
10334 	 * If we observe an active task using the mm on this rq, it means we
10335 	 * are not the last task to be migrated from this cpu for this mm, so
10336 	 * there is no need to move src_cid to the destination cpu.
10337 	 */
10338 	guard(rcu)();
10339 	src_task = rcu_dereference(src_rq->curr);
10340 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10341 		t->last_mm_cid = -1;
10342 		return -1;
10343 	}
10344 
10345 	return src_cid;
10346 }
10347 
10348 static
__sched_mm_cid_migrate_from_try_steal_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid,int src_cid)10349 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10350 					      struct task_struct *t,
10351 					      struct mm_cid *src_pcpu_cid,
10352 					      int src_cid)
10353 {
10354 	struct task_struct *src_task;
10355 	struct mm_struct *mm = t->mm;
10356 	int lazy_cid;
10357 
10358 	if (src_cid == -1)
10359 		return -1;
10360 
10361 	/*
10362 	 * Attempt to clear the source cpu cid to move it to the destination
10363 	 * cpu.
10364 	 */
10365 	lazy_cid = mm_cid_set_lazy_put(src_cid);
10366 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10367 		return -1;
10368 
10369 	/*
10370 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10371 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10372 	 * between store to rq->curr and load of prev and next task's
10373 	 * per-mm/cpu cid.
10374 	 *
10375 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10376 	 * rq->curr->mm_cid_active matches the barrier in
10377 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10378 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10379 	 * load of per-mm/cpu cid.
10380 	 */
10381 
10382 	/*
10383 	 * If we observe an active task using the mm on this rq after setting
10384 	 * the lazy-put flag, this task will be responsible for transitioning
10385 	 * from lazy-put flag set to MM_CID_UNSET.
10386 	 */
10387 	scoped_guard (rcu) {
10388 		src_task = rcu_dereference(src_rq->curr);
10389 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10390 			/*
10391 			 * We observed an active task for this mm, there is therefore
10392 			 * no point in moving this cid to the destination cpu.
10393 			 */
10394 			t->last_mm_cid = -1;
10395 			return -1;
10396 		}
10397 	}
10398 
10399 	/*
10400 	 * The src_cid is unused, so it can be unset.
10401 	 */
10402 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10403 		return -1;
10404 	WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10405 	return src_cid;
10406 }
10407 
10408 /*
10409  * Migration to dst cpu. Called with dst_rq lock held.
10410  * Interrupts are disabled, which keeps the window of cid ownership without the
10411  * source rq lock held small.
10412  */
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)10413 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10414 {
10415 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10416 	struct mm_struct *mm = t->mm;
10417 	int src_cid, src_cpu;
10418 	bool dst_cid_is_set;
10419 	struct rq *src_rq;
10420 
10421 	lockdep_assert_rq_held(dst_rq);
10422 
10423 	if (!mm)
10424 		return;
10425 	src_cpu = t->migrate_from_cpu;
10426 	if (src_cpu == -1) {
10427 		t->last_mm_cid = -1;
10428 		return;
10429 	}
10430 	/*
10431 	 * Move the src cid if the dst cid is unset. This keeps id
10432 	 * allocation closest to 0 in cases where few threads migrate around
10433 	 * many CPUs.
10434 	 *
10435 	 * If destination cid or recent cid is already set, we may have
10436 	 * to just clear the src cid to ensure compactness in frequent
10437 	 * migrations scenarios.
10438 	 *
10439 	 * It is not useful to clear the src cid when the number of threads is
10440 	 * greater or equal to the number of allowed CPUs, because user-space
10441 	 * can expect that the number of allowed cids can reach the number of
10442 	 * allowed CPUs.
10443 	 */
10444 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10445 	dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10446 			 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10447 	if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10448 		return;
10449 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10450 	src_rq = cpu_rq(src_cpu);
10451 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10452 	if (src_cid == -1)
10453 		return;
10454 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10455 							    src_cid);
10456 	if (src_cid == -1)
10457 		return;
10458 	if (dst_cid_is_set) {
10459 		__mm_cid_put(mm, src_cid);
10460 		return;
10461 	}
10462 	/* Move src_cid to dst cpu. */
10463 	mm_cid_snapshot_time(dst_rq, mm);
10464 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10465 	WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10466 }
10467 
sched_mm_cid_remote_clear(struct mm_struct * mm,struct mm_cid * pcpu_cid,int cpu)10468 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10469 				      int cpu)
10470 {
10471 	struct rq *rq = cpu_rq(cpu);
10472 	struct task_struct *t;
10473 	int cid, lazy_cid;
10474 
10475 	cid = READ_ONCE(pcpu_cid->cid);
10476 	if (!mm_cid_is_valid(cid))
10477 		return;
10478 
10479 	/*
10480 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10481 	 * there happens to be other tasks left on the source cpu using this
10482 	 * mm, the next task using this mm will reallocate its cid on context
10483 	 * switch.
10484 	 */
10485 	lazy_cid = mm_cid_set_lazy_put(cid);
10486 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10487 		return;
10488 
10489 	/*
10490 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10491 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10492 	 * between store to rq->curr and load of prev and next task's
10493 	 * per-mm/cpu cid.
10494 	 *
10495 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10496 	 * rq->curr->mm_cid_active matches the barrier in
10497 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10498 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10499 	 * load of per-mm/cpu cid.
10500 	 */
10501 
10502 	/*
10503 	 * If we observe an active task using the mm on this rq after setting
10504 	 * the lazy-put flag, that task will be responsible for transitioning
10505 	 * from lazy-put flag set to MM_CID_UNSET.
10506 	 */
10507 	scoped_guard (rcu) {
10508 		t = rcu_dereference(rq->curr);
10509 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10510 			return;
10511 	}
10512 
10513 	/*
10514 	 * The cid is unused, so it can be unset.
10515 	 * Disable interrupts to keep the window of cid ownership without rq
10516 	 * lock small.
10517 	 */
10518 	scoped_guard (irqsave) {
10519 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10520 			__mm_cid_put(mm, cid);
10521 	}
10522 }
10523 
sched_mm_cid_remote_clear_old(struct mm_struct * mm,int cpu)10524 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10525 {
10526 	struct rq *rq = cpu_rq(cpu);
10527 	struct mm_cid *pcpu_cid;
10528 	struct task_struct *curr;
10529 	u64 rq_clock;
10530 
10531 	/*
10532 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10533 	 * while is irrelevant.
10534 	 */
10535 	rq_clock = READ_ONCE(rq->clock);
10536 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10537 
10538 	/*
10539 	 * In order to take care of infrequently scheduled tasks, bump the time
10540 	 * snapshot associated with this cid if an active task using the mm is
10541 	 * observed on this rq.
10542 	 */
10543 	scoped_guard (rcu) {
10544 		curr = rcu_dereference(rq->curr);
10545 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10546 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10547 			return;
10548 		}
10549 	}
10550 
10551 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10552 		return;
10553 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10554 }
10555 
sched_mm_cid_remote_clear_weight(struct mm_struct * mm,int cpu,int weight)10556 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10557 					     int weight)
10558 {
10559 	struct mm_cid *pcpu_cid;
10560 	int cid;
10561 
10562 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10563 	cid = READ_ONCE(pcpu_cid->cid);
10564 	if (!mm_cid_is_valid(cid) || cid < weight)
10565 		return;
10566 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10567 }
10568 
task_mm_cid_work(struct callback_head * work)10569 static void task_mm_cid_work(struct callback_head *work)
10570 {
10571 	unsigned long now = jiffies, old_scan, next_scan;
10572 	struct task_struct *t = current;
10573 	struct cpumask *cidmask;
10574 	struct mm_struct *mm;
10575 	int weight, cpu;
10576 
10577 	WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work));
10578 
10579 	work->next = work;	/* Prevent double-add */
10580 	if (t->flags & PF_EXITING)
10581 		return;
10582 	mm = t->mm;
10583 	if (!mm)
10584 		return;
10585 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10586 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10587 	if (!old_scan) {
10588 		unsigned long res;
10589 
10590 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10591 		if (res != old_scan)
10592 			old_scan = res;
10593 		else
10594 			old_scan = next_scan;
10595 	}
10596 	if (time_before(now, old_scan))
10597 		return;
10598 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10599 		return;
10600 	cidmask = mm_cidmask(mm);
10601 	/* Clear cids that were not recently used. */
10602 	for_each_possible_cpu(cpu)
10603 		sched_mm_cid_remote_clear_old(mm, cpu);
10604 	weight = cpumask_weight(cidmask);
10605 	/*
10606 	 * Clear cids that are greater or equal to the cidmask weight to
10607 	 * recompact it.
10608 	 */
10609 	for_each_possible_cpu(cpu)
10610 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10611 }
10612 
init_sched_mm_cid(struct task_struct * t)10613 void init_sched_mm_cid(struct task_struct *t)
10614 {
10615 	struct mm_struct *mm = t->mm;
10616 	int mm_users = 0;
10617 
10618 	if (mm) {
10619 		mm_users = atomic_read(&mm->mm_users);
10620 		if (mm_users == 1)
10621 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10622 	}
10623 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10624 	init_task_work(&t->cid_work, task_mm_cid_work);
10625 }
10626 
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)10627 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10628 {
10629 	struct callback_head *work = &curr->cid_work;
10630 	unsigned long now = jiffies;
10631 
10632 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10633 	    work->next != work)
10634 		return;
10635 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10636 		return;
10637 
10638 	/* No page allocation under rq lock */
10639 	task_work_add(curr, work, TWA_RESUME);
10640 }
10641 
sched_mm_cid_exit_signals(struct task_struct * t)10642 void sched_mm_cid_exit_signals(struct task_struct *t)
10643 {
10644 	struct mm_struct *mm = t->mm;
10645 	struct rq *rq;
10646 
10647 	if (!mm)
10648 		return;
10649 
10650 	preempt_disable();
10651 	rq = this_rq();
10652 	guard(rq_lock_irqsave)(rq);
10653 	preempt_enable_no_resched();	/* holding spinlock */
10654 	WRITE_ONCE(t->mm_cid_active, 0);
10655 	/*
10656 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10657 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10658 	 */
10659 	smp_mb();
10660 	mm_cid_put(mm);
10661 	t->last_mm_cid = t->mm_cid = -1;
10662 }
10663 
sched_mm_cid_before_execve(struct task_struct * t)10664 void sched_mm_cid_before_execve(struct task_struct *t)
10665 {
10666 	struct mm_struct *mm = t->mm;
10667 	struct rq *rq;
10668 
10669 	if (!mm)
10670 		return;
10671 
10672 	preempt_disable();
10673 	rq = this_rq();
10674 	guard(rq_lock_irqsave)(rq);
10675 	preempt_enable_no_resched();	/* holding spinlock */
10676 	WRITE_ONCE(t->mm_cid_active, 0);
10677 	/*
10678 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10679 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10680 	 */
10681 	smp_mb();
10682 	mm_cid_put(mm);
10683 	t->last_mm_cid = t->mm_cid = -1;
10684 }
10685 
sched_mm_cid_after_execve(struct task_struct * t)10686 void sched_mm_cid_after_execve(struct task_struct *t)
10687 {
10688 	struct mm_struct *mm = t->mm;
10689 	struct rq *rq;
10690 
10691 	if (!mm)
10692 		return;
10693 
10694 	preempt_disable();
10695 	rq = this_rq();
10696 	scoped_guard (rq_lock_irqsave, rq) {
10697 		preempt_enable_no_resched();	/* holding spinlock */
10698 		WRITE_ONCE(t->mm_cid_active, 1);
10699 		/*
10700 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10701 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10702 		 */
10703 		smp_mb();
10704 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10705 	}
10706 	rseq_set_notify_resume(t);
10707 }
10708 
sched_mm_cid_fork(struct task_struct * t)10709 void sched_mm_cid_fork(struct task_struct *t)
10710 {
10711 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10712 	t->mm_cid_active = 1;
10713 }
10714 #endif
10715 
10716 #ifdef CONFIG_SCHED_CLASS_EXT
sched_deq_and_put_task(struct task_struct * p,int queue_flags,struct sched_enq_and_set_ctx * ctx)10717 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10718 			    struct sched_enq_and_set_ctx *ctx)
10719 {
10720 	struct rq *rq = task_rq(p);
10721 
10722 	lockdep_assert_rq_held(rq);
10723 
10724 	*ctx = (struct sched_enq_and_set_ctx){
10725 		.p = p,
10726 		.queue_flags = queue_flags,
10727 		.queued = task_on_rq_queued(p),
10728 		.running = task_current(rq, p),
10729 	};
10730 
10731 	update_rq_clock(rq);
10732 	if (ctx->queued)
10733 		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10734 	if (ctx->running)
10735 		put_prev_task(rq, p);
10736 }
10737 
sched_enq_and_set_task(struct sched_enq_and_set_ctx * ctx)10738 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10739 {
10740 	struct rq *rq = task_rq(ctx->p);
10741 
10742 	lockdep_assert_rq_held(rq);
10743 
10744 	if (ctx->queued)
10745 		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10746 	if (ctx->running)
10747 		set_next_task(rq, ctx->p);
10748 }
10749 #endif	/* CONFIG_SCHED_CLASS_EXT */
10750