1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_si.c
4 *
5 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6 * BT).
7 *
8 * Author: MontaVista Software, Inc.
9 * Corey Minyard <minyard@mvista.com>
10 * source@mvista.com
11 *
12 * Copyright 2002 MontaVista Software Inc.
13 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 */
15
16 /*
17 * This file holds the "policy" for the interface to the SMI state
18 * machine. It does the configuration, handles timers and interrupts,
19 * and drives the real SMI state machine.
20 */
21
22 #define pr_fmt(fmt) "ipmi_si: " fmt
23
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/timer.h>
29 #include <linux/errno.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/list.h>
34 #include <linux/notifier.h>
35 #include <linux/mutex.h>
36 #include <linux/kthread.h>
37 #include <asm/irq.h>
38 #include <linux/interrupt.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ipmi.h>
41 #include <linux/ipmi_smi.h>
42 #include "ipmi_si.h"
43 #include "ipmi_si_sm.h"
44 #include <linux/string.h>
45 #include <linux/ctype.h>
46
47 /* Measure times between events in the driver. */
48 #undef DEBUG_TIMING
49
50 /* Call every 10 ms. */
51 #define SI_TIMEOUT_TIME_USEC 10000
52 #define SI_USEC_PER_JIFFY (1000000/HZ)
53 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
54 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
55 short timeout */
56 #define SI_TIMEOUT_HOSED (HZ) /* 1 second when in hosed state. */
57
58 enum si_intf_state {
59 SI_NORMAL,
60 SI_GETTING_FLAGS,
61 SI_GETTING_EVENTS,
62 SI_CLEARING_FLAGS,
63 SI_GETTING_MESSAGES,
64 SI_CHECKING_ENABLES,
65 SI_SETTING_ENABLES,
66 SI_HOSED
67 /* FIXME - add watchdog stuff. */
68 };
69
70 /* Some BT-specific defines we need here. */
71 #define IPMI_BT_INTMASK_REG 2
72 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
73 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
74
75 /* 'invalid' to allow a firmware-specified interface to be disabled */
76 const char *const si_to_str[] = { "invalid", "kcs", "smic", "bt", NULL };
77
78 const struct ipmi_match_info ipmi_kcs_si_info = { .type = SI_KCS };
79 const struct ipmi_match_info ipmi_smic_si_info = { .type = SI_SMIC };
80 const struct ipmi_match_info ipmi_bt_si_info = { .type = SI_BT };
81
82 static bool initialized;
83
84 /*
85 * Indexes into stats[] in smi_info below.
86 */
87 enum si_stat_indexes {
88 /*
89 * Number of times the driver requested a timer while an operation
90 * was in progress.
91 */
92 SI_STAT_short_timeouts = 0,
93
94 /*
95 * Number of times the driver requested a timer while nothing was in
96 * progress.
97 */
98 SI_STAT_long_timeouts,
99
100 /* Number of times the interface was idle while being polled. */
101 SI_STAT_idles,
102
103 /* Number of interrupts the driver handled. */
104 SI_STAT_interrupts,
105
106 /* Number of time the driver got an ATTN from the hardware. */
107 SI_STAT_attentions,
108
109 /* Number of times the driver requested flags from the hardware. */
110 SI_STAT_flag_fetches,
111
112 /* Number of times the hardware didn't follow the state machine. */
113 SI_STAT_hosed_count,
114
115 /* Number of completed messages. */
116 SI_STAT_complete_transactions,
117
118 /* Number of IPMI events received from the hardware. */
119 SI_STAT_events,
120
121 /* Number of watchdog pretimeouts. */
122 SI_STAT_watchdog_pretimeouts,
123
124 /* Number of asynchronous messages received. */
125 SI_STAT_incoming_messages,
126
127
128 /* This *must* remain last, add new values above this. */
129 SI_NUM_STATS
130 };
131
132 struct smi_info {
133 int si_num;
134 struct ipmi_smi *intf;
135 struct si_sm_data *si_sm;
136 const struct si_sm_handlers *handlers;
137 spinlock_t si_lock;
138 struct ipmi_smi_msg *waiting_msg;
139 struct ipmi_smi_msg *curr_msg;
140 enum si_intf_state si_state;
141
142 /*
143 * Used to handle the various types of I/O that can occur with
144 * IPMI
145 */
146 struct si_sm_io io;
147
148 /*
149 * Per-OEM handler, called from handle_flags(). Returns 1
150 * when handle_flags() needs to be re-run or 0 indicating it
151 * set si_state itself.
152 */
153 int (*oem_data_avail_handler)(struct smi_info *smi_info);
154
155 /*
156 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
157 * is set to hold the flags until we are done handling everything
158 * from the flags.
159 */
160 #define RECEIVE_MSG_AVAIL 0x01
161 #define EVENT_MSG_BUFFER_FULL 0x02
162 #define WDT_PRE_TIMEOUT_INT 0x08
163 #define OEM0_DATA_AVAIL 0x20
164 #define OEM1_DATA_AVAIL 0x40
165 #define OEM2_DATA_AVAIL 0x80
166 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
167 OEM1_DATA_AVAIL | \
168 OEM2_DATA_AVAIL)
169 unsigned char msg_flags;
170
171 /* Does the BMC have an event buffer? */
172 bool has_event_buffer;
173
174 /*
175 * If set to true, this will request events the next time the
176 * state machine is idle.
177 */
178 atomic_t req_events;
179
180 /*
181 * If true, run the state machine to completion on every send
182 * call. Generally used after a panic to make sure stuff goes
183 * out.
184 */
185 bool run_to_completion;
186
187 /* The timer for this si. */
188 struct timer_list si_timer;
189
190 /* This flag is set, if the timer can be set */
191 bool timer_can_start;
192
193 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
194 bool timer_running;
195
196 /* The time (in jiffies) the last timeout occurred at. */
197 unsigned long last_timeout_jiffies;
198
199 /* Are we waiting for the events, pretimeouts, received msgs? */
200 atomic_t need_watch;
201
202 /*
203 * The driver will disable interrupts when it gets into a
204 * situation where it cannot handle messages due to lack of
205 * memory. Once that situation clears up, it will re-enable
206 * interrupts.
207 */
208 bool interrupt_disabled;
209
210 /*
211 * Does the BMC support events?
212 */
213 bool supports_event_msg_buff;
214
215 /*
216 * Can we disable interrupts the global enables receive irq
217 * bit? There are currently two forms of brokenness, some
218 * systems cannot disable the bit (which is technically within
219 * the spec but a bad idea) and some systems have the bit
220 * forced to zero even though interrupts work (which is
221 * clearly outside the spec). The next bool tells which form
222 * of brokenness is present.
223 */
224 bool cannot_disable_irq;
225
226 /*
227 * Some systems are broken and cannot set the irq enable
228 * bit, even if they support interrupts.
229 */
230 bool irq_enable_broken;
231
232 /* Is the driver in maintenance mode? */
233 bool in_maintenance_mode;
234
235 /*
236 * Did we get an attention that we did not handle?
237 */
238 bool got_attn;
239
240 /* From the get device id response... */
241 struct ipmi_device_id device_id;
242
243 /* Have we added the device group to the device? */
244 bool dev_group_added;
245
246 /* Counters and things for the proc filesystem. */
247 atomic_t stats[SI_NUM_STATS];
248
249 struct task_struct *thread;
250
251 struct list_head link;
252 };
253
254 #define smi_inc_stat(smi, stat) \
255 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
256 #define smi_get_stat(smi, stat) \
257 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
258
259 #define IPMI_MAX_INTFS 4
260 static int force_kipmid[IPMI_MAX_INTFS];
261 static int num_force_kipmid;
262
263 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
264 static int num_max_busy_us;
265
266 static bool unload_when_empty = true;
267
268 static int try_smi_init(struct smi_info *smi);
269 static void cleanup_one_si(struct smi_info *smi_info);
270 static void cleanup_ipmi_si(void);
271
272 #ifdef DEBUG_TIMING
debug_timestamp(struct smi_info * smi_info,char * msg)273 void debug_timestamp(struct smi_info *smi_info, char *msg)
274 {
275 struct timespec64 t;
276
277 ktime_get_ts64(&t);
278 dev_dbg(smi_info->io.dev, "**%s: %ptSp\n", msg, &t);
279 }
280 #else
281 #define debug_timestamp(smi_info, x)
282 #endif
283
284 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
register_xaction_notifier(struct notifier_block * nb)285 static int register_xaction_notifier(struct notifier_block *nb)
286 {
287 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
288 }
289
deliver_recv_msg(struct smi_info * smi_info,struct ipmi_smi_msg * msg)290 static void deliver_recv_msg(struct smi_info *smi_info,
291 struct ipmi_smi_msg *msg)
292 {
293 /* Deliver the message to the upper layer. */
294 ipmi_smi_msg_received(smi_info->intf, msg);
295 }
296
return_hosed_msg(struct smi_info * smi_info,int cCode)297 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
298 {
299 struct ipmi_smi_msg *msg = smi_info->curr_msg;
300
301 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
302 cCode = IPMI_ERR_UNSPECIFIED;
303 /* else use it as is */
304
305 /* Make it a response */
306 msg->rsp[0] = msg->data[0] | 4;
307 msg->rsp[1] = msg->data[1];
308 msg->rsp[2] = cCode;
309 msg->rsp_size = 3;
310
311 smi_info->curr_msg = NULL;
312 deliver_recv_msg(smi_info, msg);
313 }
314
start_next_msg(struct smi_info * smi_info)315 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
316 {
317 int rv;
318
319 if (!smi_info->waiting_msg) {
320 smi_info->curr_msg = NULL;
321 rv = SI_SM_IDLE;
322 } else {
323 int err;
324
325 smi_info->curr_msg = smi_info->waiting_msg;
326 smi_info->waiting_msg = NULL;
327 debug_timestamp(smi_info, "Start2");
328 err = atomic_notifier_call_chain(&xaction_notifier_list,
329 0, smi_info);
330 if (err & NOTIFY_STOP_MASK) {
331 rv = SI_SM_CALL_WITHOUT_DELAY;
332 goto out;
333 }
334 err = smi_info->handlers->start_transaction(
335 smi_info->si_sm,
336 smi_info->curr_msg->data,
337 smi_info->curr_msg->data_size);
338 if (err)
339 return_hosed_msg(smi_info, err);
340
341 rv = SI_SM_CALL_WITHOUT_DELAY;
342 }
343 out:
344 return rv;
345 }
346
smi_mod_timer(struct smi_info * smi_info,unsigned long new_val)347 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
348 {
349 if (!smi_info->timer_can_start)
350 return;
351 smi_info->last_timeout_jiffies = jiffies;
352 mod_timer(&smi_info->si_timer, new_val);
353 smi_info->timer_running = true;
354 }
355
356 /*
357 * Start a new message and (re)start the timer and thread.
358 */
start_new_msg(struct smi_info * smi_info,unsigned char * msg,unsigned int size)359 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
360 unsigned int size)
361 {
362 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
363
364 if (smi_info->thread)
365 wake_up_process(smi_info->thread);
366
367 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
368 }
369
start_check_enables(struct smi_info * smi_info)370 static void start_check_enables(struct smi_info *smi_info)
371 {
372 unsigned char msg[2];
373
374 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
375 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
376
377 start_new_msg(smi_info, msg, 2);
378 smi_info->si_state = SI_CHECKING_ENABLES;
379 }
380
start_clear_flags(struct smi_info * smi_info)381 static void start_clear_flags(struct smi_info *smi_info)
382 {
383 unsigned char msg[3];
384
385 /* Make sure the watchdog pre-timeout flag is not set at startup. */
386 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
387 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
388 msg[2] = WDT_PRE_TIMEOUT_INT;
389
390 start_new_msg(smi_info, msg, 3);
391 smi_info->si_state = SI_CLEARING_FLAGS;
392 }
393
start_get_flags(struct smi_info * smi_info)394 static void start_get_flags(struct smi_info *smi_info)
395 {
396 unsigned char msg[2];
397
398 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
399 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
400
401 start_new_msg(smi_info, msg, 2);
402 smi_info->si_state = SI_GETTING_FLAGS;
403 }
404
start_getting_msg_queue(struct smi_info * smi_info)405 static void start_getting_msg_queue(struct smi_info *smi_info)
406 {
407 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
408 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
409 smi_info->curr_msg->data_size = 2;
410
411 start_new_msg(smi_info, smi_info->curr_msg->data,
412 smi_info->curr_msg->data_size);
413 smi_info->si_state = SI_GETTING_MESSAGES;
414 }
415
start_getting_events(struct smi_info * smi_info)416 static void start_getting_events(struct smi_info *smi_info)
417 {
418 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
419 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
420 smi_info->curr_msg->data_size = 2;
421
422 start_new_msg(smi_info, smi_info->curr_msg->data,
423 smi_info->curr_msg->data_size);
424 smi_info->si_state = SI_GETTING_EVENTS;
425 }
426
427 /*
428 * When we have a situtaion where we run out of memory and cannot
429 * allocate messages, we just leave them in the BMC and run the system
430 * polled until we can allocate some memory. Once we have some
431 * memory, we will re-enable the interrupt.
432 *
433 * Note that we cannot just use disable_irq(), since the interrupt may
434 * be shared.
435 */
disable_si_irq(struct smi_info * smi_info)436 static inline bool disable_si_irq(struct smi_info *smi_info)
437 {
438 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
439 smi_info->interrupt_disabled = true;
440 start_check_enables(smi_info);
441 return true;
442 }
443 return false;
444 }
445
enable_si_irq(struct smi_info * smi_info)446 static inline bool enable_si_irq(struct smi_info *smi_info)
447 {
448 if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
449 smi_info->interrupt_disabled = false;
450 start_check_enables(smi_info);
451 return true;
452 }
453 return false;
454 }
455
456 /*
457 * Allocate a message. If unable to allocate, start the interrupt
458 * disable process and return NULL. If able to allocate but
459 * interrupts are disabled, free the message and return NULL after
460 * starting the interrupt enable process.
461 */
alloc_msg_handle_irq(struct smi_info * smi_info)462 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
463 {
464 struct ipmi_smi_msg *msg;
465
466 msg = ipmi_alloc_smi_msg();
467 if (!msg) {
468 if (!disable_si_irq(smi_info))
469 smi_info->si_state = SI_NORMAL;
470 } else if (enable_si_irq(smi_info)) {
471 ipmi_free_smi_msg(msg);
472 msg = NULL;
473 }
474 return msg;
475 }
476
handle_flags(struct smi_info * smi_info)477 static void handle_flags(struct smi_info *smi_info)
478 {
479 retry:
480 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
481 /* Watchdog pre-timeout */
482 smi_inc_stat(smi_info, watchdog_pretimeouts);
483
484 start_clear_flags(smi_info);
485 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
486 ipmi_smi_watchdog_pretimeout(smi_info->intf);
487 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
488 /* Messages available. */
489 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
490 if (!smi_info->curr_msg)
491 return;
492
493 start_getting_msg_queue(smi_info);
494 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
495 /* Events available. */
496 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
497 if (!smi_info->curr_msg)
498 return;
499
500 start_getting_events(smi_info);
501 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
502 smi_info->oem_data_avail_handler) {
503 if (smi_info->oem_data_avail_handler(smi_info))
504 goto retry;
505 } else
506 smi_info->si_state = SI_NORMAL;
507 }
508
509 /*
510 * Global enables we care about.
511 */
512 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
513 IPMI_BMC_EVT_MSG_INTR)
514
current_global_enables(struct smi_info * smi_info,u8 base,bool * irq_on)515 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
516 bool *irq_on)
517 {
518 u8 enables = 0;
519
520 if (smi_info->supports_event_msg_buff)
521 enables |= IPMI_BMC_EVT_MSG_BUFF;
522
523 if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
524 smi_info->cannot_disable_irq) &&
525 !smi_info->irq_enable_broken)
526 enables |= IPMI_BMC_RCV_MSG_INTR;
527
528 if (smi_info->supports_event_msg_buff &&
529 smi_info->io.irq && !smi_info->interrupt_disabled &&
530 !smi_info->irq_enable_broken)
531 enables |= IPMI_BMC_EVT_MSG_INTR;
532
533 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
534
535 return enables;
536 }
537
check_bt_irq(struct smi_info * smi_info,bool irq_on)538 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
539 {
540 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
541
542 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
543
544 if ((bool)irqstate == irq_on)
545 return;
546
547 if (irq_on)
548 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
549 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
550 else
551 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
552 }
553
handle_transaction_done(struct smi_info * smi_info)554 static void handle_transaction_done(struct smi_info *smi_info)
555 {
556 struct ipmi_smi_msg *msg;
557
558 debug_timestamp(smi_info, "Done");
559 switch (smi_info->si_state) {
560 case SI_NORMAL:
561 if (!smi_info->curr_msg)
562 break;
563
564 smi_info->curr_msg->rsp_size
565 = smi_info->handlers->get_result(
566 smi_info->si_sm,
567 smi_info->curr_msg->rsp,
568 IPMI_MAX_MSG_LENGTH);
569
570 /*
571 * Do this here becase deliver_recv_msg() releases the
572 * lock, and a new message can be put in during the
573 * time the lock is released.
574 */
575 msg = smi_info->curr_msg;
576 smi_info->curr_msg = NULL;
577 deliver_recv_msg(smi_info, msg);
578 break;
579
580 case SI_GETTING_FLAGS:
581 {
582 unsigned char msg[4];
583 unsigned int len;
584
585 /* We got the flags from the SMI, now handle them. */
586 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
587 if (msg[2] != 0) {
588 /* Error fetching flags, just give up for now. */
589 smi_info->si_state = SI_NORMAL;
590 } else if (len < 4) {
591 /*
592 * Hmm, no flags. That's technically illegal, but
593 * don't use uninitialized data.
594 */
595 smi_info->si_state = SI_NORMAL;
596 } else {
597 smi_info->msg_flags = msg[3];
598 handle_flags(smi_info);
599 }
600 break;
601 }
602
603 case SI_CLEARING_FLAGS:
604 {
605 unsigned char msg[3];
606
607 /* We cleared the flags. */
608 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
609 if (msg[2] != 0) {
610 /* Error clearing flags */
611 dev_warn_ratelimited(smi_info->io.dev,
612 "Error clearing flags: %2.2x\n", msg[2]);
613 }
614 smi_info->si_state = SI_NORMAL;
615 break;
616 }
617
618 case SI_GETTING_EVENTS:
619 {
620 smi_info->curr_msg->rsp_size
621 = smi_info->handlers->get_result(
622 smi_info->si_sm,
623 smi_info->curr_msg->rsp,
624 IPMI_MAX_MSG_LENGTH);
625
626 /*
627 * Do this here becase deliver_recv_msg() releases the
628 * lock, and a new message can be put in during the
629 * time the lock is released.
630 */
631 msg = smi_info->curr_msg;
632 smi_info->curr_msg = NULL;
633 if (msg->rsp[2] != 0) {
634 /* Error getting event, probably done. */
635 msg->done(msg);
636
637 /* Take off the event flag. */
638 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
639 handle_flags(smi_info);
640 } else {
641 smi_inc_stat(smi_info, events);
642
643 /*
644 * Do this before we deliver the message
645 * because delivering the message releases the
646 * lock and something else can mess with the
647 * state.
648 */
649 handle_flags(smi_info);
650
651 deliver_recv_msg(smi_info, msg);
652 }
653 break;
654 }
655
656 case SI_GETTING_MESSAGES:
657 {
658 smi_info->curr_msg->rsp_size
659 = smi_info->handlers->get_result(
660 smi_info->si_sm,
661 smi_info->curr_msg->rsp,
662 IPMI_MAX_MSG_LENGTH);
663
664 /*
665 * Do this here becase deliver_recv_msg() releases the
666 * lock, and a new message can be put in during the
667 * time the lock is released.
668 */
669 msg = smi_info->curr_msg;
670 smi_info->curr_msg = NULL;
671 if (msg->rsp[2] != 0) {
672 /* Error getting event, probably done. */
673 msg->done(msg);
674
675 /* Take off the msg flag. */
676 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
677 handle_flags(smi_info);
678 } else {
679 smi_inc_stat(smi_info, incoming_messages);
680
681 /*
682 * Do this before we deliver the message
683 * because delivering the message releases the
684 * lock and something else can mess with the
685 * state.
686 */
687 handle_flags(smi_info);
688
689 deliver_recv_msg(smi_info, msg);
690 }
691 break;
692 }
693
694 case SI_CHECKING_ENABLES:
695 {
696 unsigned char msg[4];
697 u8 enables;
698 bool irq_on;
699
700 /* We got the flags from the SMI, now handle them. */
701 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
702 if (msg[2] != 0) {
703 dev_warn_ratelimited(smi_info->io.dev,
704 "Couldn't get irq info: %x,\n"
705 "Maybe ok, but ipmi might run very slowly.\n",
706 msg[2]);
707 smi_info->si_state = SI_NORMAL;
708 break;
709 }
710 enables = current_global_enables(smi_info, 0, &irq_on);
711 if (smi_info->io.si_info->type == SI_BT)
712 /* BT has its own interrupt enable bit. */
713 check_bt_irq(smi_info, irq_on);
714 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
715 /* Enables are not correct, fix them. */
716 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
717 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
718 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
719 smi_info->handlers->start_transaction(
720 smi_info->si_sm, msg, 3);
721 smi_info->si_state = SI_SETTING_ENABLES;
722 } else if (smi_info->supports_event_msg_buff) {
723 smi_info->curr_msg = ipmi_alloc_smi_msg();
724 if (!smi_info->curr_msg) {
725 smi_info->si_state = SI_NORMAL;
726 break;
727 }
728 start_getting_events(smi_info);
729 } else {
730 smi_info->si_state = SI_NORMAL;
731 }
732 break;
733 }
734
735 case SI_SETTING_ENABLES:
736 {
737 unsigned char msg[4];
738
739 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
740 if (msg[2] != 0)
741 dev_warn_ratelimited(smi_info->io.dev,
742 "Could not set the global enables: 0x%x.\n",
743 msg[2]);
744
745 if (smi_info->supports_event_msg_buff) {
746 smi_info->curr_msg = ipmi_alloc_smi_msg();
747 if (!smi_info->curr_msg) {
748 smi_info->si_state = SI_NORMAL;
749 break;
750 }
751 start_getting_events(smi_info);
752 } else {
753 smi_info->si_state = SI_NORMAL;
754 }
755 break;
756 }
757 case SI_HOSED: /* Shouldn't happen. */
758 break;
759 }
760 }
761
762 /*
763 * Called on timeouts and events. Timeouts should pass the elapsed
764 * time, interrupts should pass in zero. Must be called with
765 * si_lock held and interrupts disabled.
766 */
smi_event_handler(struct smi_info * smi_info,int time)767 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
768 int time)
769 {
770 enum si_sm_result si_sm_result;
771
772 restart:
773 if (smi_info->si_state == SI_HOSED)
774 /* Just in case, hosed state is only left from the timeout. */
775 return SI_SM_HOSED;
776
777 /*
778 * There used to be a loop here that waited a little while
779 * (around 25us) before giving up. That turned out to be
780 * pointless, the minimum delays I was seeing were in the 300us
781 * range, which is far too long to wait in an interrupt. So
782 * we just run until the state machine tells us something
783 * happened or it needs a delay.
784 */
785 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
786 time = 0;
787 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
788 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
789
790 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
791 smi_inc_stat(smi_info, complete_transactions);
792
793 handle_transaction_done(smi_info);
794 goto restart;
795 } else if (si_sm_result == SI_SM_HOSED) {
796 smi_inc_stat(smi_info, hosed_count);
797
798 /*
799 * Do the before return_hosed_msg, because that
800 * releases the lock. We just disable operations for
801 * a while and retry in hosed state.
802 */
803 smi_info->si_state = SI_HOSED;
804 if (smi_info->curr_msg != NULL) {
805 /*
806 * If we were handling a user message, format
807 * a response to send to the upper layer to
808 * tell it about the error.
809 */
810 return_hosed_msg(smi_info, IPMI_BUS_ERR);
811 }
812 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_HOSED);
813 goto out;
814 }
815
816 /*
817 * We prefer handling attn over new messages. But don't do
818 * this if there is not yet an upper layer to handle anything.
819 */
820 if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
821 if (smi_info->si_state != SI_NORMAL) {
822 /*
823 * We got an ATTN, but we are doing something else.
824 * Handle the ATTN later.
825 */
826 smi_info->got_attn = true;
827 } else {
828 smi_info->got_attn = false;
829 smi_inc_stat(smi_info, attentions);
830
831 /*
832 * Got a attn, send down a get message flags to see
833 * what's causing it. It would be better to handle
834 * this in the upper layer, but due to the way
835 * interrupts work with the SMI, that's not really
836 * possible.
837 */
838 start_get_flags(smi_info);
839 goto restart;
840 }
841 }
842
843 /* If we are currently idle, try to start the next message. */
844 if (si_sm_result == SI_SM_IDLE) {
845 smi_inc_stat(smi_info, idles);
846
847 si_sm_result = start_next_msg(smi_info);
848 if (si_sm_result != SI_SM_IDLE)
849 goto restart;
850 }
851
852 if ((si_sm_result == SI_SM_IDLE)
853 && (atomic_read(&smi_info->req_events))) {
854 /*
855 * We are idle and the upper layer requested that I fetch
856 * events, so do so.
857 */
858 atomic_set(&smi_info->req_events, 0);
859
860 /*
861 * Take this opportunity to check the interrupt and
862 * message enable state for the BMC. The BMC can be
863 * asynchronously reset, and may thus get interrupts
864 * disable and messages disabled.
865 */
866 if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
867 start_check_enables(smi_info);
868 } else {
869 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
870 if (!smi_info->curr_msg)
871 goto out;
872
873 start_getting_events(smi_info);
874 }
875 goto restart;
876 }
877
878 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
879 /* Ok it if fails, the timer will just go off. */
880 if (timer_delete(&smi_info->si_timer))
881 smi_info->timer_running = false;
882 }
883
884 out:
885 return si_sm_result;
886 }
887
check_start_timer_thread(struct smi_info * smi_info)888 static void check_start_timer_thread(struct smi_info *smi_info)
889 {
890 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
891 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
892
893 if (smi_info->thread)
894 wake_up_process(smi_info->thread);
895
896 start_next_msg(smi_info);
897 smi_event_handler(smi_info, 0);
898 }
899 }
900
flush_messages(void * send_info)901 static void flush_messages(void *send_info)
902 {
903 struct smi_info *smi_info = send_info;
904 enum si_sm_result result;
905
906 /*
907 * Currently, this function is called only in run-to-completion
908 * mode. This means we are single-threaded, no need for locks.
909 */
910 result = smi_event_handler(smi_info, 0);
911 while (result != SI_SM_IDLE && result != SI_SM_HOSED) {
912 udelay(SI_SHORT_TIMEOUT_USEC);
913 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
914 }
915 }
916
sender(void * send_info,struct ipmi_smi_msg * msg)917 static int sender(void *send_info, struct ipmi_smi_msg *msg)
918 {
919 struct smi_info *smi_info = send_info;
920 unsigned long flags;
921
922 debug_timestamp(smi_info, "Enqueue");
923
924 if (smi_info->si_state == SI_HOSED)
925 return IPMI_BUS_ERR;
926
927 if (smi_info->run_to_completion) {
928 /*
929 * If we are running to completion, start it. Upper
930 * layer will call flush_messages to clear it out.
931 */
932 smi_info->waiting_msg = msg;
933 return IPMI_CC_NO_ERROR;
934 }
935
936 spin_lock_irqsave(&smi_info->si_lock, flags);
937 /*
938 * The following two lines don't need to be under the lock for
939 * the lock's sake, but they do need SMP memory barriers to
940 * avoid getting things out of order. We are already claiming
941 * the lock, anyway, so just do it under the lock to avoid the
942 * ordering problem.
943 */
944 BUG_ON(smi_info->waiting_msg);
945 smi_info->waiting_msg = msg;
946 check_start_timer_thread(smi_info);
947 spin_unlock_irqrestore(&smi_info->si_lock, flags);
948 return IPMI_CC_NO_ERROR;
949 }
950
set_run_to_completion(void * send_info,bool i_run_to_completion)951 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
952 {
953 struct smi_info *smi_info = send_info;
954
955 smi_info->run_to_completion = i_run_to_completion;
956 if (i_run_to_completion)
957 flush_messages(smi_info);
958 }
959
960 /*
961 * Use -1 as a special constant to tell that we are spinning in kipmid
962 * looking for something and not delaying between checks
963 */
964 #define IPMI_TIME_NOT_BUSY ns_to_ktime(-1ull)
ipmi_thread_busy_wait(enum si_sm_result smi_result,const struct smi_info * smi_info,ktime_t * busy_until)965 static inline bool ipmi_thread_busy_wait(enum si_sm_result smi_result,
966 const struct smi_info *smi_info,
967 ktime_t *busy_until)
968 {
969 unsigned int max_busy_us = 0;
970
971 if (smi_info->si_num < num_max_busy_us)
972 max_busy_us = kipmid_max_busy_us[smi_info->si_num];
973 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
974 *busy_until = IPMI_TIME_NOT_BUSY;
975 else if (*busy_until == IPMI_TIME_NOT_BUSY) {
976 *busy_until = ktime_get() + max_busy_us * NSEC_PER_USEC;
977 } else {
978 if (unlikely(ktime_get() > *busy_until)) {
979 *busy_until = IPMI_TIME_NOT_BUSY;
980 return false;
981 }
982 }
983 return true;
984 }
985
986
987 /*
988 * A busy-waiting loop for speeding up IPMI operation.
989 *
990 * Lousy hardware makes this hard. This is only enabled for systems
991 * that are not BT and do not have interrupts. It starts spinning
992 * when an operation is complete or until max_busy tells it to stop
993 * (if that is enabled). See the paragraph on kimid_max_busy_us in
994 * Documentation/driver-api/ipmi.rst for details.
995 */
ipmi_thread(void * data)996 static int ipmi_thread(void *data)
997 {
998 struct smi_info *smi_info = data;
999 unsigned long flags;
1000 enum si_sm_result smi_result;
1001 ktime_t busy_until = IPMI_TIME_NOT_BUSY;
1002
1003 set_user_nice(current, MAX_NICE);
1004 while (!kthread_should_stop()) {
1005 int busy_wait;
1006
1007 spin_lock_irqsave(&(smi_info->si_lock), flags);
1008 smi_result = smi_event_handler(smi_info, 0);
1009
1010 /*
1011 * If the driver is doing something, there is a possible
1012 * race with the timer. If the timer handler see idle,
1013 * and the thread here sees something else, the timer
1014 * handler won't restart the timer even though it is
1015 * required. So start it here if necessary.
1016 */
1017 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1018 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1019
1020 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1021 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1022 &busy_until);
1023 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1024 ; /* do nothing */
1025 } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1026 /*
1027 * In maintenance mode we run as fast as
1028 * possible to allow firmware updates to
1029 * complete as fast as possible, but normally
1030 * don't bang on the scheduler.
1031 */
1032 if (smi_info->in_maintenance_mode)
1033 schedule();
1034 else
1035 usleep_range(100, 200);
1036 } else if (smi_result == SI_SM_IDLE) {
1037 if (atomic_read(&smi_info->need_watch)) {
1038 schedule_timeout_interruptible(100);
1039 } else {
1040 /* Wait to be woken up when we are needed. */
1041 __set_current_state(TASK_INTERRUPTIBLE);
1042 schedule();
1043 }
1044 } else {
1045 schedule_timeout_interruptible(1);
1046 }
1047 }
1048 return 0;
1049 }
1050
1051
poll(void * send_info)1052 static void poll(void *send_info)
1053 {
1054 struct smi_info *smi_info = send_info;
1055 unsigned long flags = 0;
1056 bool run_to_completion = smi_info->run_to_completion;
1057
1058 /*
1059 * Make sure there is some delay in the poll loop so we can
1060 * drive time forward and timeout things.
1061 */
1062 udelay(10);
1063 if (!run_to_completion)
1064 spin_lock_irqsave(&smi_info->si_lock, flags);
1065 smi_event_handler(smi_info, 10);
1066 if (!run_to_completion)
1067 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1068 }
1069
request_events(void * send_info)1070 static void request_events(void *send_info)
1071 {
1072 struct smi_info *smi_info = send_info;
1073
1074 if (!smi_info->has_event_buffer)
1075 return;
1076
1077 atomic_set(&smi_info->req_events, 1);
1078 }
1079
set_need_watch(void * send_info,unsigned int watch_mask)1080 static void set_need_watch(void *send_info, unsigned int watch_mask)
1081 {
1082 struct smi_info *smi_info = send_info;
1083 unsigned long flags;
1084 int enable;
1085
1086 enable = !!watch_mask;
1087
1088 atomic_set(&smi_info->need_watch, enable);
1089 spin_lock_irqsave(&smi_info->si_lock, flags);
1090 check_start_timer_thread(smi_info);
1091 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1092 }
1093
smi_timeout(struct timer_list * t)1094 static void smi_timeout(struct timer_list *t)
1095 {
1096 struct smi_info *smi_info = timer_container_of(smi_info, t,
1097 si_timer);
1098 enum si_sm_result smi_result;
1099 unsigned long flags;
1100 unsigned long jiffies_now;
1101 long time_diff;
1102 long timeout;
1103
1104 spin_lock_irqsave(&(smi_info->si_lock), flags);
1105 debug_timestamp(smi_info, "Timer");
1106
1107 if (smi_info->si_state == SI_HOSED)
1108 /* Try something to see if the BMC is now operational. */
1109 start_get_flags(smi_info);
1110
1111 jiffies_now = jiffies;
1112 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1113 * SI_USEC_PER_JIFFY);
1114 smi_result = smi_event_handler(smi_info, time_diff);
1115
1116 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1117 /* Running with interrupts, only do long timeouts. */
1118 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1119 smi_inc_stat(smi_info, long_timeouts);
1120 } else if (smi_result == SI_SM_CALL_WITH_DELAY) {
1121 /*
1122 * If the state machine asks for a short delay, then shorten
1123 * the timer timeout.
1124 */
1125 smi_inc_stat(smi_info, short_timeouts);
1126 timeout = jiffies + 1;
1127 } else {
1128 smi_inc_stat(smi_info, long_timeouts);
1129 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1130 }
1131
1132 if (smi_result != SI_SM_IDLE)
1133 smi_mod_timer(smi_info, timeout);
1134 else
1135 smi_info->timer_running = false;
1136 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1137 }
1138
ipmi_si_irq_handler(int irq,void * data)1139 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1140 {
1141 struct smi_info *smi_info = data;
1142 unsigned long flags;
1143
1144 if (smi_info->io.si_info->type == SI_BT)
1145 /* We need to clear the IRQ flag for the BT interface. */
1146 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1147 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1148 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1149
1150 spin_lock_irqsave(&(smi_info->si_lock), flags);
1151
1152 smi_inc_stat(smi_info, interrupts);
1153
1154 debug_timestamp(smi_info, "Interrupt");
1155
1156 smi_event_handler(smi_info, 0);
1157 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1158 return IRQ_HANDLED;
1159 }
1160
smi_start_processing(void * send_info,struct ipmi_smi * intf)1161 static int smi_start_processing(void *send_info,
1162 struct ipmi_smi *intf)
1163 {
1164 struct smi_info *new_smi = send_info;
1165 int enable = 0;
1166
1167 new_smi->intf = intf;
1168
1169 /* Set up the timer that drives the interface. */
1170 timer_setup(&new_smi->si_timer, smi_timeout, 0);
1171 new_smi->timer_can_start = true;
1172 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1173
1174 /* Try to claim any interrupts. */
1175 if (new_smi->io.irq_setup) {
1176 new_smi->io.irq_handler_data = new_smi;
1177 new_smi->io.irq_setup(&new_smi->io);
1178 }
1179
1180 /*
1181 * Check if the user forcefully enabled the daemon.
1182 */
1183 if (new_smi->si_num < num_force_kipmid)
1184 enable = force_kipmid[new_smi->si_num];
1185 /*
1186 * The BT interface is efficient enough to not need a thread,
1187 * and there is no need for a thread if we have interrupts.
1188 */
1189 else if (new_smi->io.si_info->type != SI_BT && !new_smi->io.irq)
1190 enable = 1;
1191
1192 if (enable) {
1193 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1194 "kipmi%d", new_smi->si_num);
1195 if (IS_ERR(new_smi->thread)) {
1196 dev_notice(new_smi->io.dev,
1197 "Could not start kernel thread due to error %ld, only using timers to drive the interface\n",
1198 PTR_ERR(new_smi->thread));
1199 new_smi->thread = NULL;
1200 }
1201 }
1202
1203 return 0;
1204 }
1205
get_smi_info(void * send_info,struct ipmi_smi_info * data)1206 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1207 {
1208 struct smi_info *smi = send_info;
1209
1210 data->addr_src = smi->io.addr_source;
1211 data->dev = smi->io.dev;
1212 data->addr_info = smi->io.addr_info;
1213 get_device(smi->io.dev);
1214
1215 return 0;
1216 }
1217
set_maintenance_mode(void * send_info,bool enable)1218 static void set_maintenance_mode(void *send_info, bool enable)
1219 {
1220 struct smi_info *smi_info = send_info;
1221
1222 if (!enable)
1223 atomic_set(&smi_info->req_events, 0);
1224 smi_info->in_maintenance_mode = enable;
1225 }
1226
1227 static void shutdown_smi(void *send_info);
1228 static const struct ipmi_smi_handlers handlers = {
1229 .owner = THIS_MODULE,
1230 .start_processing = smi_start_processing,
1231 .shutdown = shutdown_smi,
1232 .get_smi_info = get_smi_info,
1233 .sender = sender,
1234 .request_events = request_events,
1235 .set_need_watch = set_need_watch,
1236 .set_maintenance_mode = set_maintenance_mode,
1237 .set_run_to_completion = set_run_to_completion,
1238 .flush_messages = flush_messages,
1239 .poll = poll,
1240 };
1241
1242 static LIST_HEAD(smi_infos);
1243 static DEFINE_MUTEX(smi_infos_lock);
1244 static int smi_num; /* Used to sequence the SMIs */
1245
1246 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1247
1248 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1249 MODULE_PARM_DESC(force_kipmid,
1250 "Force the kipmi daemon to be enabled (1) or disabled(0). Normally the IPMI driver auto-detects this, but the value may be overridden by this parm.");
1251 module_param(unload_when_empty, bool, 0);
1252 MODULE_PARM_DESC(unload_when_empty,
1253 "Unload the module if no interfaces are specified or found, default is 1. Setting to 0 is useful for hot add of devices using hotmod.");
1254 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1255 MODULE_PARM_DESC(kipmid_max_busy_us,
1256 "Max time (in microseconds) to busy-wait for IPMI data before sleeping. 0 (default) means to wait forever. Set to 100-500 if kipmid is using up a lot of CPU time.");
1257
ipmi_irq_finish_setup(struct si_sm_io * io)1258 void ipmi_irq_finish_setup(struct si_sm_io *io)
1259 {
1260 if (io->si_info->type == SI_BT)
1261 /* Enable the interrupt in the BT interface. */
1262 io->outputb(io, IPMI_BT_INTMASK_REG,
1263 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1264 }
1265
ipmi_irq_start_cleanup(struct si_sm_io * io)1266 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1267 {
1268 if (io->si_info->type == SI_BT)
1269 /* Disable the interrupt in the BT interface. */
1270 io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1271 }
1272
std_irq_cleanup(struct si_sm_io * io)1273 static void std_irq_cleanup(struct si_sm_io *io)
1274 {
1275 ipmi_irq_start_cleanup(io);
1276 free_irq(io->irq, io->irq_handler_data);
1277 }
1278
ipmi_std_irq_setup(struct si_sm_io * io)1279 int ipmi_std_irq_setup(struct si_sm_io *io)
1280 {
1281 int rv;
1282
1283 if (!io->irq)
1284 return 0;
1285
1286 rv = request_irq(io->irq,
1287 ipmi_si_irq_handler,
1288 IRQF_SHARED,
1289 SI_DEVICE_NAME,
1290 io->irq_handler_data);
1291 if (rv) {
1292 dev_warn(io->dev, "%s unable to claim interrupt %d, running polled\n",
1293 SI_DEVICE_NAME, io->irq);
1294 io->irq = 0;
1295 } else {
1296 io->irq_cleanup = std_irq_cleanup;
1297 ipmi_irq_finish_setup(io);
1298 dev_info(io->dev, "Using irq %d\n", io->irq);
1299 }
1300
1301 return rv;
1302 }
1303
wait_for_msg_done(struct smi_info * smi_info)1304 static int wait_for_msg_done(struct smi_info *smi_info)
1305 {
1306 enum si_sm_result smi_result;
1307
1308 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1309 for (;;) {
1310 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1311 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1312 schedule_timeout_uninterruptible(1);
1313 smi_result = smi_info->handlers->event(
1314 smi_info->si_sm, jiffies_to_usecs(1));
1315 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1316 smi_result = smi_info->handlers->event(
1317 smi_info->si_sm, 0);
1318 } else
1319 break;
1320 }
1321 if (smi_result == SI_SM_HOSED)
1322 /*
1323 * We couldn't get the state machine to run, so whatever's at
1324 * the port is probably not an IPMI SMI interface.
1325 */
1326 return -ENODEV;
1327
1328 return 0;
1329 }
1330
try_get_dev_id(struct smi_info * smi_info)1331 static int try_get_dev_id(struct smi_info *smi_info)
1332 {
1333 unsigned char msg[2];
1334 unsigned char *resp;
1335 unsigned long resp_len;
1336 int rv = 0;
1337 unsigned int retry_count = 0;
1338
1339 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1340 if (!resp)
1341 return -ENOMEM;
1342
1343 /*
1344 * Do a Get Device ID command, since it comes back with some
1345 * useful info.
1346 */
1347 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1348 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1349
1350 retry:
1351 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1352
1353 rv = wait_for_msg_done(smi_info);
1354 if (rv)
1355 goto out;
1356
1357 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1358 resp, IPMI_MAX_MSG_LENGTH);
1359
1360 /* Check and record info from the get device id, in case we need it. */
1361 rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1362 resp + 2, resp_len - 2, &smi_info->device_id);
1363 if (rv) {
1364 /* record completion code */
1365 unsigned char cc = *(resp + 2);
1366
1367 if (cc != IPMI_CC_NO_ERROR &&
1368 ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
1369 dev_warn_ratelimited(smi_info->io.dev,
1370 "BMC returned 0x%2.2x, retry get bmc device id\n",
1371 cc);
1372 goto retry;
1373 }
1374 }
1375
1376 out:
1377 kfree(resp);
1378 return rv;
1379 }
1380
get_global_enables(struct smi_info * smi_info,u8 * enables)1381 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1382 {
1383 unsigned char msg[3];
1384 unsigned char *resp;
1385 unsigned long resp_len;
1386 int rv;
1387
1388 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1389 if (!resp)
1390 return -ENOMEM;
1391
1392 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1393 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1394 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1395
1396 rv = wait_for_msg_done(smi_info);
1397 if (rv) {
1398 dev_warn(smi_info->io.dev,
1399 "Error getting response from get global enables command: %d\n",
1400 rv);
1401 goto out;
1402 }
1403
1404 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1405 resp, IPMI_MAX_MSG_LENGTH);
1406
1407 if (resp_len < 4 ||
1408 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1409 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1410 resp[2] != 0) {
1411 dev_warn(smi_info->io.dev,
1412 "Invalid return from get global enables command: %ld %x %x %x\n",
1413 resp_len, resp[0], resp[1], resp[2]);
1414 rv = -EINVAL;
1415 goto out;
1416 } else {
1417 *enables = resp[3];
1418 }
1419
1420 out:
1421 kfree(resp);
1422 return rv;
1423 }
1424
1425 /*
1426 * Returns 1 if it gets an error from the command.
1427 */
set_global_enables(struct smi_info * smi_info,u8 enables)1428 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1429 {
1430 unsigned char msg[3];
1431 unsigned char *resp;
1432 unsigned long resp_len;
1433 int rv;
1434
1435 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1436 if (!resp)
1437 return -ENOMEM;
1438
1439 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1440 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1441 msg[2] = enables;
1442 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1443
1444 rv = wait_for_msg_done(smi_info);
1445 if (rv) {
1446 dev_warn(smi_info->io.dev,
1447 "Error getting response from set global enables command: %d\n",
1448 rv);
1449 goto out;
1450 }
1451
1452 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1453 resp, IPMI_MAX_MSG_LENGTH);
1454
1455 if (resp_len < 3 ||
1456 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1457 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1458 dev_warn(smi_info->io.dev,
1459 "Invalid return from set global enables command: %ld %x %x\n",
1460 resp_len, resp[0], resp[1]);
1461 rv = -EINVAL;
1462 goto out;
1463 }
1464
1465 if (resp[2] != 0)
1466 rv = 1;
1467
1468 out:
1469 kfree(resp);
1470 return rv;
1471 }
1472
1473 /*
1474 * Some BMCs do not support clearing the receive irq bit in the global
1475 * enables (even if they don't support interrupts on the BMC). Check
1476 * for this and handle it properly.
1477 */
check_clr_rcv_irq(struct smi_info * smi_info)1478 static void check_clr_rcv_irq(struct smi_info *smi_info)
1479 {
1480 u8 enables = 0;
1481 int rv;
1482
1483 rv = get_global_enables(smi_info, &enables);
1484 if (!rv) {
1485 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1486 /* Already clear, should work ok. */
1487 return;
1488
1489 enables &= ~IPMI_BMC_RCV_MSG_INTR;
1490 rv = set_global_enables(smi_info, enables);
1491 }
1492
1493 if (rv < 0) {
1494 dev_err(smi_info->io.dev,
1495 "Cannot check clearing the rcv irq: %d\n", rv);
1496 return;
1497 }
1498
1499 if (rv) {
1500 /*
1501 * An error when setting the event buffer bit means
1502 * clearing the bit is not supported.
1503 */
1504 dev_warn(smi_info->io.dev,
1505 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1506 smi_info->cannot_disable_irq = true;
1507 }
1508 }
1509
1510 /*
1511 * Some BMCs do not support setting the interrupt bits in the global
1512 * enables even if they support interrupts. Clearly bad, but we can
1513 * compensate.
1514 */
check_set_rcv_irq(struct smi_info * smi_info)1515 static void check_set_rcv_irq(struct smi_info *smi_info)
1516 {
1517 u8 enables = 0;
1518 int rv;
1519
1520 if (!smi_info->io.irq)
1521 return;
1522
1523 rv = get_global_enables(smi_info, &enables);
1524 if (!rv) {
1525 enables |= IPMI_BMC_RCV_MSG_INTR;
1526 rv = set_global_enables(smi_info, enables);
1527 }
1528
1529 if (rv < 0) {
1530 dev_err(smi_info->io.dev,
1531 "Cannot check setting the rcv irq: %d\n", rv);
1532 return;
1533 }
1534
1535 if (rv) {
1536 /*
1537 * An error when setting the event buffer bit means
1538 * setting the bit is not supported.
1539 */
1540 dev_warn(smi_info->io.dev,
1541 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1542 smi_info->cannot_disable_irq = true;
1543 smi_info->irq_enable_broken = true;
1544 }
1545 }
1546
try_enable_event_buffer(struct smi_info * smi_info)1547 static int try_enable_event_buffer(struct smi_info *smi_info)
1548 {
1549 unsigned char msg[3];
1550 unsigned char *resp;
1551 unsigned long resp_len;
1552 int rv = 0;
1553
1554 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1555 if (!resp)
1556 return -ENOMEM;
1557
1558 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1559 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1560 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1561
1562 rv = wait_for_msg_done(smi_info);
1563 if (rv) {
1564 pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1565 goto out;
1566 }
1567
1568 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1569 resp, IPMI_MAX_MSG_LENGTH);
1570
1571 if (resp_len < 4 ||
1572 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1573 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1574 resp[2] != 0) {
1575 pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1576 rv = -EINVAL;
1577 goto out;
1578 }
1579
1580 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1581 /* buffer is already enabled, nothing to do. */
1582 smi_info->supports_event_msg_buff = true;
1583 goto out;
1584 }
1585
1586 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1587 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1588 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1589 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1590
1591 rv = wait_for_msg_done(smi_info);
1592 if (rv) {
1593 pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1594 goto out;
1595 }
1596
1597 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1598 resp, IPMI_MAX_MSG_LENGTH);
1599
1600 if (resp_len < 3 ||
1601 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1602 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1603 pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1604 rv = -EINVAL;
1605 goto out;
1606 }
1607
1608 if (resp[2] != 0)
1609 /*
1610 * An error when setting the event buffer bit means
1611 * that the event buffer is not supported.
1612 */
1613 rv = -ENOENT;
1614 else
1615 smi_info->supports_event_msg_buff = true;
1616
1617 out:
1618 kfree(resp);
1619 return rv;
1620 }
1621
1622 #define IPMI_SI_ATTR(name) \
1623 static ssize_t name##_show(struct device *dev, \
1624 struct device_attribute *attr, \
1625 char *buf) \
1626 { \
1627 struct smi_info *smi_info = dev_get_drvdata(dev); \
1628 \
1629 return sysfs_emit(buf, "%u\n", smi_get_stat(smi_info, name)); \
1630 } \
1631 static DEVICE_ATTR_RO(name)
1632
type_show(struct device * dev,struct device_attribute * attr,char * buf)1633 static ssize_t type_show(struct device *dev,
1634 struct device_attribute *attr,
1635 char *buf)
1636 {
1637 struct smi_info *smi_info = dev_get_drvdata(dev);
1638
1639 return sysfs_emit(buf, "%s\n", si_to_str[smi_info->io.si_info->type]);
1640 }
1641 static DEVICE_ATTR_RO(type);
1642
interrupts_enabled_show(struct device * dev,struct device_attribute * attr,char * buf)1643 static ssize_t interrupts_enabled_show(struct device *dev,
1644 struct device_attribute *attr,
1645 char *buf)
1646 {
1647 struct smi_info *smi_info = dev_get_drvdata(dev);
1648 int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1649
1650 return sysfs_emit(buf, "%d\n", enabled);
1651 }
1652 static DEVICE_ATTR_RO(interrupts_enabled);
1653
1654 IPMI_SI_ATTR(short_timeouts);
1655 IPMI_SI_ATTR(long_timeouts);
1656 IPMI_SI_ATTR(idles);
1657 IPMI_SI_ATTR(interrupts);
1658 IPMI_SI_ATTR(attentions);
1659 IPMI_SI_ATTR(flag_fetches);
1660 IPMI_SI_ATTR(hosed_count);
1661 IPMI_SI_ATTR(complete_transactions);
1662 IPMI_SI_ATTR(events);
1663 IPMI_SI_ATTR(watchdog_pretimeouts);
1664 IPMI_SI_ATTR(incoming_messages);
1665
params_show(struct device * dev,struct device_attribute * attr,char * buf)1666 static ssize_t params_show(struct device *dev,
1667 struct device_attribute *attr,
1668 char *buf)
1669 {
1670 struct smi_info *smi_info = dev_get_drvdata(dev);
1671
1672 return sysfs_emit(buf,
1673 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1674 si_to_str[smi_info->io.si_info->type],
1675 addr_space_to_str[smi_info->io.addr_space],
1676 smi_info->io.addr_data,
1677 smi_info->io.regspacing,
1678 smi_info->io.regsize,
1679 smi_info->io.regshift,
1680 smi_info->io.irq,
1681 smi_info->io.slave_addr);
1682 }
1683 static DEVICE_ATTR_RO(params);
1684
1685 static struct attribute *ipmi_si_dev_attrs[] = {
1686 &dev_attr_type.attr,
1687 &dev_attr_interrupts_enabled.attr,
1688 &dev_attr_short_timeouts.attr,
1689 &dev_attr_long_timeouts.attr,
1690 &dev_attr_idles.attr,
1691 &dev_attr_interrupts.attr,
1692 &dev_attr_attentions.attr,
1693 &dev_attr_flag_fetches.attr,
1694 &dev_attr_hosed_count.attr,
1695 &dev_attr_complete_transactions.attr,
1696 &dev_attr_events.attr,
1697 &dev_attr_watchdog_pretimeouts.attr,
1698 &dev_attr_incoming_messages.attr,
1699 &dev_attr_params.attr,
1700 NULL
1701 };
1702
1703 static const struct attribute_group ipmi_si_dev_attr_group = {
1704 .attrs = ipmi_si_dev_attrs,
1705 };
1706
1707 /*
1708 * oem_data_avail_to_receive_msg_avail
1709 * @info - smi_info structure with msg_flags set
1710 *
1711 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1712 * Returns 1 indicating need to re-run handle_flags().
1713 */
oem_data_avail_to_receive_msg_avail(struct smi_info * smi_info)1714 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1715 {
1716 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1717 RECEIVE_MSG_AVAIL);
1718 return 1;
1719 }
1720
1721 /*
1722 * setup_dell_poweredge_oem_data_handler
1723 * @info - smi_info.device_id must be populated
1724 *
1725 * Systems that match, but have firmware version < 1.40 may assert
1726 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1727 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
1728 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1729 * as RECEIVE_MSG_AVAIL instead.
1730 *
1731 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1732 * assert the OEM[012] bits, and if it did, the driver would have to
1733 * change to handle that properly, we don't actually check for the
1734 * firmware version.
1735 * Device ID = 0x20 BMC on PowerEdge 8G servers
1736 * Device Revision = 0x80
1737 * Firmware Revision1 = 0x01 BMC version 1.40
1738 * Firmware Revision2 = 0x40 BCD encoded
1739 * IPMI Version = 0x51 IPMI 1.5
1740 * Manufacturer ID = A2 02 00 Dell IANA
1741 *
1742 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1743 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1744 *
1745 */
1746 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1747 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1748 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1749 #define DELL_IANA_MFR_ID 0x0002a2
setup_dell_poweredge_oem_data_handler(struct smi_info * smi_info)1750 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1751 {
1752 struct ipmi_device_id *id = &smi_info->device_id;
1753 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1754 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
1755 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1756 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1757 smi_info->oem_data_avail_handler =
1758 oem_data_avail_to_receive_msg_avail;
1759 } else if (ipmi_version_major(id) < 1 ||
1760 (ipmi_version_major(id) == 1 &&
1761 ipmi_version_minor(id) < 5)) {
1762 smi_info->oem_data_avail_handler =
1763 oem_data_avail_to_receive_msg_avail;
1764 }
1765 }
1766 }
1767
1768 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
return_hosed_msg_badsize(struct smi_info * smi_info)1769 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1770 {
1771 struct ipmi_smi_msg *msg = smi_info->curr_msg;
1772
1773 /* Make it a response */
1774 msg->rsp[0] = msg->data[0] | 4;
1775 msg->rsp[1] = msg->data[1];
1776 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1777 msg->rsp_size = 3;
1778 smi_info->curr_msg = NULL;
1779 deliver_recv_msg(smi_info, msg);
1780 }
1781
1782 /*
1783 * dell_poweredge_bt_xaction_handler
1784 * @info - smi_info.device_id must be populated
1785 *
1786 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1787 * not respond to a Get SDR command if the length of the data
1788 * requested is exactly 0x3A, which leads to command timeouts and no
1789 * data returned. This intercepts such commands, and causes userspace
1790 * callers to try again with a different-sized buffer, which succeeds.
1791 */
1792
1793 #define STORAGE_NETFN 0x0A
1794 #define STORAGE_CMD_GET_SDR 0x23
dell_poweredge_bt_xaction_handler(struct notifier_block * self,unsigned long unused,void * in)1795 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1796 unsigned long unused,
1797 void *in)
1798 {
1799 struct smi_info *smi_info = in;
1800 unsigned char *data = smi_info->curr_msg->data;
1801 unsigned int size = smi_info->curr_msg->data_size;
1802 if (size >= 8 &&
1803 (data[0]>>2) == STORAGE_NETFN &&
1804 data[1] == STORAGE_CMD_GET_SDR &&
1805 data[7] == 0x3A) {
1806 return_hosed_msg_badsize(smi_info);
1807 return NOTIFY_STOP;
1808 }
1809 return NOTIFY_DONE;
1810 }
1811
1812 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1813 .notifier_call = dell_poweredge_bt_xaction_handler,
1814 };
1815
1816 /*
1817 * setup_dell_poweredge_bt_xaction_handler
1818 * @info - smi_info.device_id must be filled in already
1819 *
1820 * Fills in smi_info.device_id.start_transaction_pre_hook
1821 * when we know what function to use there.
1822 */
1823 static void
setup_dell_poweredge_bt_xaction_handler(struct smi_info * smi_info)1824 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1825 {
1826 struct ipmi_device_id *id = &smi_info->device_id;
1827 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1828 smi_info->io.si_info->type == SI_BT)
1829 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1830 }
1831
1832 /*
1833 * setup_oem_data_handler
1834 * @info - smi_info.device_id must be filled in already
1835 *
1836 * Fills in smi_info.device_id.oem_data_available_handler
1837 * when we know what function to use there.
1838 */
1839
setup_oem_data_handler(struct smi_info * smi_info)1840 static void setup_oem_data_handler(struct smi_info *smi_info)
1841 {
1842 setup_dell_poweredge_oem_data_handler(smi_info);
1843 }
1844
setup_xaction_handlers(struct smi_info * smi_info)1845 static void setup_xaction_handlers(struct smi_info *smi_info)
1846 {
1847 setup_dell_poweredge_bt_xaction_handler(smi_info);
1848 }
1849
check_for_broken_irqs(struct smi_info * smi_info)1850 static void check_for_broken_irqs(struct smi_info *smi_info)
1851 {
1852 check_clr_rcv_irq(smi_info);
1853 check_set_rcv_irq(smi_info);
1854 }
1855
stop_timer_and_thread(struct smi_info * smi_info)1856 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1857 {
1858 if (smi_info->thread != NULL) {
1859 kthread_stop(smi_info->thread);
1860 smi_info->thread = NULL;
1861 }
1862
1863 smi_info->timer_can_start = false;
1864 timer_delete_sync(&smi_info->si_timer);
1865 }
1866
find_dup_si(struct smi_info * info)1867 static struct smi_info *find_dup_si(struct smi_info *info)
1868 {
1869 struct smi_info *e;
1870
1871 list_for_each_entry(e, &smi_infos, link) {
1872 if (e->io.addr_space != info->io.addr_space)
1873 continue;
1874 if (e->io.addr_data == info->io.addr_data) {
1875 /*
1876 * This is a cheap hack, ACPI doesn't have a defined
1877 * slave address but SMBIOS does. Pick it up from
1878 * any source that has it available.
1879 */
1880 if (info->io.slave_addr && !e->io.slave_addr)
1881 e->io.slave_addr = info->io.slave_addr;
1882 return e;
1883 }
1884 }
1885
1886 return NULL;
1887 }
1888
ipmi_si_add_smi(struct si_sm_io * io)1889 int ipmi_si_add_smi(struct si_sm_io *io)
1890 {
1891 int rv = 0;
1892 struct smi_info *new_smi, *dup;
1893
1894 /*
1895 * If the user gave us a hard-coded device at the same
1896 * address, they presumably want us to use it and not what is
1897 * in the firmware.
1898 */
1899 if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD &&
1900 ipmi_si_hardcode_match(io->addr_space, io->addr_data)) {
1901 dev_info(io->dev,
1902 "Hard-coded device at this address already exists");
1903 return -ENODEV;
1904 }
1905
1906 if (!io->io_setup) {
1907 if (IS_ENABLED(CONFIG_HAS_IOPORT) &&
1908 io->addr_space == IPMI_IO_ADDR_SPACE) {
1909 io->io_setup = ipmi_si_port_setup;
1910 } else if (io->addr_space == IPMI_MEM_ADDR_SPACE) {
1911 io->io_setup = ipmi_si_mem_setup;
1912 } else {
1913 return -EINVAL;
1914 }
1915 }
1916
1917 new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1918 if (!new_smi)
1919 return -ENOMEM;
1920 spin_lock_init(&new_smi->si_lock);
1921
1922 new_smi->io = *io;
1923
1924 mutex_lock(&smi_infos_lock);
1925 dup = find_dup_si(new_smi);
1926 if (dup) {
1927 if (new_smi->io.addr_source == SI_ACPI &&
1928 dup->io.addr_source == SI_SMBIOS) {
1929 /* We prefer ACPI over SMBIOS. */
1930 dev_info(dup->io.dev,
1931 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1932 si_to_str[new_smi->io.si_info->type]);
1933 cleanup_one_si(dup);
1934 } else {
1935 dev_info(new_smi->io.dev,
1936 "%s-specified %s state machine: duplicate\n",
1937 ipmi_addr_src_to_str(new_smi->io.addr_source),
1938 si_to_str[new_smi->io.si_info->type]);
1939 rv = -EBUSY;
1940 kfree(new_smi);
1941 goto out_err;
1942 }
1943 }
1944
1945 pr_info("Adding %s-specified %s state machine\n",
1946 ipmi_addr_src_to_str(new_smi->io.addr_source),
1947 si_to_str[new_smi->io.si_info->type]);
1948
1949 list_add_tail(&new_smi->link, &smi_infos);
1950
1951 if (initialized)
1952 rv = try_smi_init(new_smi);
1953 out_err:
1954 mutex_unlock(&smi_infos_lock);
1955 return rv;
1956 }
1957
1958 /*
1959 * Try to start up an interface. Must be called with smi_infos_lock
1960 * held, primarily to keep smi_num consistent, we only one to do these
1961 * one at a time.
1962 */
try_smi_init(struct smi_info * new_smi)1963 static int try_smi_init(struct smi_info *new_smi)
1964 {
1965 int rv = 0;
1966 int i;
1967
1968 pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1969 ipmi_addr_src_to_str(new_smi->io.addr_source),
1970 si_to_str[new_smi->io.si_info->type],
1971 addr_space_to_str[new_smi->io.addr_space],
1972 new_smi->io.addr_data,
1973 new_smi->io.slave_addr, new_smi->io.irq);
1974
1975 switch (new_smi->io.si_info->type) {
1976 case SI_KCS:
1977 new_smi->handlers = &kcs_smi_handlers;
1978 break;
1979
1980 case SI_SMIC:
1981 new_smi->handlers = &smic_smi_handlers;
1982 break;
1983
1984 case SI_BT:
1985 new_smi->handlers = &bt_smi_handlers;
1986 break;
1987
1988 default:
1989 /* No support for anything else yet. */
1990 rv = -EIO;
1991 goto out_err;
1992 }
1993
1994 new_smi->si_num = smi_num;
1995
1996 /* Do this early so it's available for logs. */
1997 if (!new_smi->io.dev) {
1998 pr_err("IPMI interface added with no device\n");
1999 rv = -EIO;
2000 goto out_err;
2001 }
2002
2003 /* Allocate the state machine's data and initialize it. */
2004 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2005 if (!new_smi->si_sm) {
2006 rv = -ENOMEM;
2007 goto out_err;
2008 }
2009 new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
2010 &new_smi->io);
2011
2012 /* Now that we know the I/O size, we can set up the I/O. */
2013 rv = new_smi->io.io_setup(&new_smi->io);
2014 if (rv) {
2015 dev_err(new_smi->io.dev, "Could not set up I/O space\n");
2016 goto out_err;
2017 }
2018
2019 /* Do low-level detection first. */
2020 if (new_smi->handlers->detect(new_smi->si_sm)) {
2021 if (new_smi->io.addr_source)
2022 dev_err(new_smi->io.dev,
2023 "Interface detection failed\n");
2024 rv = -ENODEV;
2025 goto out_err;
2026 }
2027
2028 /*
2029 * Attempt a get device id command. If it fails, we probably
2030 * don't have a BMC here.
2031 */
2032 rv = try_get_dev_id(new_smi);
2033 if (rv) {
2034 if (new_smi->io.addr_source)
2035 dev_err(new_smi->io.dev,
2036 "There appears to be no BMC at this location\n");
2037 goto out_err;
2038 }
2039
2040 setup_oem_data_handler(new_smi);
2041 setup_xaction_handlers(new_smi);
2042 check_for_broken_irqs(new_smi);
2043
2044 new_smi->waiting_msg = NULL;
2045 new_smi->curr_msg = NULL;
2046 atomic_set(&new_smi->req_events, 0);
2047 new_smi->run_to_completion = false;
2048 for (i = 0; i < SI_NUM_STATS; i++)
2049 atomic_set(&new_smi->stats[i], 0);
2050
2051 new_smi->interrupt_disabled = true;
2052 atomic_set(&new_smi->need_watch, 0);
2053
2054 rv = try_enable_event_buffer(new_smi);
2055 if (rv == 0)
2056 new_smi->has_event_buffer = true;
2057
2058 /*
2059 * Start clearing the flags before we enable interrupts or the
2060 * timer to avoid racing with the timer.
2061 */
2062 start_clear_flags(new_smi);
2063
2064 /*
2065 * IRQ is defined to be set when non-zero. req_events will
2066 * cause a global flags check that will enable interrupts.
2067 */
2068 if (new_smi->io.irq) {
2069 new_smi->interrupt_disabled = false;
2070 atomic_set(&new_smi->req_events, 1);
2071 }
2072
2073 dev_set_drvdata(new_smi->io.dev, new_smi);
2074 rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2075 if (rv) {
2076 dev_err(new_smi->io.dev,
2077 "Unable to add device attributes: error %d\n",
2078 rv);
2079 goto out_err;
2080 }
2081 new_smi->dev_group_added = true;
2082
2083 rv = ipmi_register_smi(&handlers,
2084 new_smi,
2085 new_smi->io.dev,
2086 new_smi->io.slave_addr);
2087 if (rv) {
2088 dev_err(new_smi->io.dev,
2089 "Unable to register device: error %d\n",
2090 rv);
2091 goto out_err;
2092 }
2093
2094 /* Don't increment till we know we have succeeded. */
2095 smi_num++;
2096
2097 dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2098 si_to_str[new_smi->io.si_info->type]);
2099
2100 WARN_ON(new_smi->io.dev->init_name != NULL);
2101
2102 out_err:
2103 if (rv && new_smi->io.io_cleanup) {
2104 new_smi->io.io_cleanup(&new_smi->io);
2105 new_smi->io.io_cleanup = NULL;
2106 }
2107
2108 if (rv && new_smi->si_sm) {
2109 kfree(new_smi->si_sm);
2110 new_smi->si_sm = NULL;
2111 }
2112
2113 return rv;
2114 }
2115
2116 /*
2117 * Devices in the same address space at the same address are the same.
2118 */
ipmi_smi_info_same(struct smi_info * e1,struct smi_info * e2)2119 static bool __init ipmi_smi_info_same(struct smi_info *e1, struct smi_info *e2)
2120 {
2121 return (e1->io.addr_space == e2->io.addr_space &&
2122 e1->io.addr_data == e2->io.addr_data);
2123 }
2124
init_ipmi_si(void)2125 static int __init init_ipmi_si(void)
2126 {
2127 struct smi_info *e, *e2;
2128
2129 if (initialized)
2130 return 0;
2131
2132 ipmi_hardcode_init();
2133
2134 pr_info("IPMI System Interface driver\n");
2135
2136 ipmi_si_platform_init();
2137
2138 ipmi_si_pci_init();
2139
2140 ipmi_si_ls2k_init();
2141
2142 ipmi_si_parisc_init();
2143
2144 mutex_lock(&smi_infos_lock);
2145
2146 /*
2147 * Scan through all the devices. We prefer devices with
2148 * interrupts, so go through those first in case there are any
2149 * duplicates that don't have the interrupt set.
2150 */
2151 list_for_each_entry(e, &smi_infos, link) {
2152 bool dup = false;
2153
2154 /* Register ones with interrupts first. */
2155 if (!e->io.irq)
2156 continue;
2157
2158 /*
2159 * Go through the ones we have already seen to see if this
2160 * is a dup.
2161 */
2162 list_for_each_entry(e2, &smi_infos, link) {
2163 if (e2 == e)
2164 break;
2165 if (e2->io.irq && ipmi_smi_info_same(e, e2)) {
2166 dup = true;
2167 break;
2168 }
2169 }
2170 if (!dup)
2171 try_smi_init(e);
2172 }
2173
2174 /*
2175 * Now try devices without interrupts.
2176 */
2177 list_for_each_entry(e, &smi_infos, link) {
2178 bool dup = false;
2179
2180 if (e->io.irq)
2181 continue;
2182
2183 /*
2184 * Go through the ones we have already seen to see if
2185 * this is a dup. We have already looked at the ones
2186 * with interrupts.
2187 */
2188 list_for_each_entry(e2, &smi_infos, link) {
2189 if (!e2->io.irq)
2190 continue;
2191 if (ipmi_smi_info_same(e, e2)) {
2192 dup = true;
2193 break;
2194 }
2195 }
2196 list_for_each_entry(e2, &smi_infos, link) {
2197 if (e2 == e)
2198 break;
2199 if (ipmi_smi_info_same(e, e2)) {
2200 dup = true;
2201 break;
2202 }
2203 }
2204 if (!dup)
2205 try_smi_init(e);
2206 }
2207
2208 initialized = true;
2209 mutex_unlock(&smi_infos_lock);
2210
2211 mutex_lock(&smi_infos_lock);
2212 if (unload_when_empty && list_empty(&smi_infos)) {
2213 mutex_unlock(&smi_infos_lock);
2214 cleanup_ipmi_si();
2215 pr_warn("Unable to find any System Interface(s)\n");
2216 return -ENODEV;
2217 } else {
2218 mutex_unlock(&smi_infos_lock);
2219 return 0;
2220 }
2221 }
2222 module_init(init_ipmi_si);
2223
wait_msg_processed(struct smi_info * smi_info)2224 static void wait_msg_processed(struct smi_info *smi_info)
2225 {
2226 unsigned long jiffies_now;
2227 long time_diff;
2228
2229 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2230 jiffies_now = jiffies;
2231 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
2232 * SI_USEC_PER_JIFFY);
2233 smi_event_handler(smi_info, time_diff);
2234 schedule_timeout_uninterruptible(1);
2235 }
2236 }
2237
shutdown_smi(void * send_info)2238 static void shutdown_smi(void *send_info)
2239 {
2240 struct smi_info *smi_info = send_info;
2241
2242 if (smi_info->dev_group_added) {
2243 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2244 smi_info->dev_group_added = false;
2245 }
2246 if (smi_info->io.dev)
2247 dev_set_drvdata(smi_info->io.dev, NULL);
2248
2249 /*
2250 * Make sure that interrupts, the timer and the thread are
2251 * stopped and will not run again.
2252 */
2253 smi_info->interrupt_disabled = true;
2254 if (smi_info->io.irq_cleanup) {
2255 smi_info->io.irq_cleanup(&smi_info->io);
2256 smi_info->io.irq_cleanup = NULL;
2257 }
2258 stop_timer_and_thread(smi_info);
2259
2260 /*
2261 * Wait until we know that we are out of any interrupt
2262 * handlers might have been running before we freed the
2263 * interrupt.
2264 */
2265 synchronize_rcu();
2266
2267 /*
2268 * Timeouts are stopped, now make sure the interrupts are off
2269 * in the BMC. Note that timers and CPU interrupts are off,
2270 * so no need for locks.
2271 */
2272 wait_msg_processed(smi_info);
2273
2274 if (smi_info->handlers)
2275 disable_si_irq(smi_info);
2276
2277 wait_msg_processed(smi_info);
2278
2279 if (smi_info->handlers)
2280 smi_info->handlers->cleanup(smi_info->si_sm);
2281
2282 if (smi_info->io.io_cleanup) {
2283 smi_info->io.io_cleanup(&smi_info->io);
2284 smi_info->io.io_cleanup = NULL;
2285 }
2286
2287 kfree(smi_info->si_sm);
2288 smi_info->si_sm = NULL;
2289
2290 smi_info->intf = NULL;
2291 }
2292
2293 /*
2294 * Must be called with smi_infos_lock held, to serialize the
2295 * smi_info->intf check.
2296 */
cleanup_one_si(struct smi_info * smi_info)2297 static void cleanup_one_si(struct smi_info *smi_info)
2298 {
2299 if (!smi_info)
2300 return;
2301
2302 list_del(&smi_info->link);
2303 ipmi_unregister_smi(smi_info->intf);
2304 kfree(smi_info);
2305 }
2306
ipmi_si_remove_by_dev(struct device * dev)2307 void ipmi_si_remove_by_dev(struct device *dev)
2308 {
2309 struct smi_info *e;
2310
2311 mutex_lock(&smi_infos_lock);
2312 list_for_each_entry(e, &smi_infos, link) {
2313 if (e->io.dev == dev) {
2314 cleanup_one_si(e);
2315 break;
2316 }
2317 }
2318 mutex_unlock(&smi_infos_lock);
2319 }
2320
ipmi_si_remove_by_data(int addr_space,enum si_type si_type,unsigned long addr)2321 struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2322 unsigned long addr)
2323 {
2324 /* remove */
2325 struct smi_info *e, *tmp_e;
2326 struct device *dev = NULL;
2327
2328 mutex_lock(&smi_infos_lock);
2329 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2330 if (e->io.addr_space != addr_space)
2331 continue;
2332 if (e->io.si_info->type != si_type)
2333 continue;
2334 if (e->io.addr_data == addr) {
2335 dev = get_device(e->io.dev);
2336 cleanup_one_si(e);
2337 }
2338 }
2339 mutex_unlock(&smi_infos_lock);
2340
2341 return dev;
2342 }
2343
cleanup_ipmi_si(void)2344 static void cleanup_ipmi_si(void)
2345 {
2346 struct smi_info *e, *tmp_e;
2347
2348 if (!initialized)
2349 return;
2350
2351 ipmi_si_pci_shutdown();
2352
2353 ipmi_si_ls2k_shutdown();
2354
2355 ipmi_si_parisc_shutdown();
2356
2357 ipmi_si_platform_shutdown();
2358
2359 mutex_lock(&smi_infos_lock);
2360 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2361 cleanup_one_si(e);
2362 mutex_unlock(&smi_infos_lock);
2363
2364 ipmi_si_hardcode_exit();
2365 ipmi_si_hotmod_exit();
2366 }
2367 module_exit(cleanup_ipmi_si);
2368
2369 MODULE_ALIAS("platform:dmi-ipmi-si");
2370 MODULE_LICENSE("GPL");
2371 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2372 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");
2373