1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * PS3 Platform spu routines.
4 *
5 * Copyright (C) 2006 Sony Computer Entertainment Inc.
6 * Copyright 2006 Sony Corp.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/mmzone.h>
13 #include <linux/export.h>
14 #include <linux/io.h>
15 #include <linux/mm.h>
16
17 #include <asm/spu.h>
18 #include <asm/spu_priv1.h>
19 #include <asm/lv1call.h>
20 #include <asm/ps3.h>
21
22 #include "../cell/spufs/spufs.h"
23 #include "platform.h"
24
25 /* spu_management_ops */
26
27 /**
28 * enum spe_type - Type of spe to create.
29 * @spe_type_logical: Standard logical spe.
30 *
31 * For use with lv1_construct_logical_spe(). The current HV does not support
32 * any types other than those listed.
33 */
34
35 enum spe_type {
36 SPE_TYPE_LOGICAL = 0,
37 };
38
39 /**
40 * struct spe_shadow - logical spe shadow register area.
41 *
42 * Read-only shadow of spe registers.
43 */
44
45 struct spe_shadow {
46 u8 padding_0140[0x0140];
47 u64 int_status_class0_RW; /* 0x0140 */
48 u64 int_status_class1_RW; /* 0x0148 */
49 u64 int_status_class2_RW; /* 0x0150 */
50 u8 padding_0158[0x0610-0x0158];
51 u64 mfc_dsisr_RW; /* 0x0610 */
52 u8 padding_0618[0x0620-0x0618];
53 u64 mfc_dar_RW; /* 0x0620 */
54 u8 padding_0628[0x0800-0x0628];
55 u64 mfc_dsipr_R; /* 0x0800 */
56 u8 padding_0808[0x0810-0x0808];
57 u64 mfc_lscrr_R; /* 0x0810 */
58 u8 padding_0818[0x0c00-0x0818];
59 u64 mfc_cer_R; /* 0x0c00 */
60 u8 padding_0c08[0x0f00-0x0c08];
61 u64 spe_execution_status; /* 0x0f00 */
62 u8 padding_0f08[0x1000-0x0f08];
63 };
64
65 /**
66 * enum spe_ex_state - Logical spe execution state.
67 * @spe_ex_state_unexecutable: Uninitialized.
68 * @spe_ex_state_executable: Enabled, not ready.
69 * @spe_ex_state_executed: Ready for use.
70 *
71 * The execution state (status) of the logical spe as reported in
72 * struct spe_shadow:spe_execution_status.
73 */
74
75 enum spe_ex_state {
76 SPE_EX_STATE_UNEXECUTABLE = 0,
77 SPE_EX_STATE_EXECUTABLE = 2,
78 SPE_EX_STATE_EXECUTED = 3,
79 };
80
81 /**
82 * struct priv1_cache - Cached values of priv1 registers.
83 * @masks[]: Array of cached spe interrupt masks, indexed by class.
84 * @sr1: Cached mfc_sr1 register.
85 * @tclass_id: Cached mfc_tclass_id register.
86 */
87
88 struct priv1_cache {
89 u64 masks[3];
90 u64 sr1;
91 u64 tclass_id;
92 };
93
94 /**
95 * struct spu_pdata - Platform state variables.
96 * @spe_id: HV spe id returned by lv1_construct_logical_spe().
97 * @resource_id: HV spe resource id returned by
98 * ps3_repository_read_spe_resource_id().
99 * @priv2_addr: lpar address of spe priv2 area returned by
100 * lv1_construct_logical_spe().
101 * @shadow_addr: lpar address of spe register shadow area returned by
102 * lv1_construct_logical_spe().
103 * @shadow: Virtual (ioremap) address of spe register shadow area.
104 * @cache: Cached values of priv1 registers.
105 */
106
107 struct spu_pdata {
108 u64 spe_id;
109 u64 resource_id;
110 u64 priv2_addr;
111 u64 shadow_addr;
112 struct spe_shadow __iomem *shadow;
113 struct priv1_cache cache;
114 };
115
spu_pdata(struct spu * spu)116 static struct spu_pdata *spu_pdata(struct spu *spu)
117 {
118 return spu->pdata;
119 }
120
121 #define dump_areas(_a, _b, _c, _d, _e) \
122 _dump_areas(_a, _b, _c, _d, _e, __func__, __LINE__)
_dump_areas(unsigned int spe_id,unsigned long priv2,unsigned long problem,unsigned long ls,unsigned long shadow,const char * func,int line)123 static void _dump_areas(unsigned int spe_id, unsigned long priv2,
124 unsigned long problem, unsigned long ls, unsigned long shadow,
125 const char* func, int line)
126 {
127 pr_debug("%s:%d: spe_id: %xh (%u)\n", func, line, spe_id, spe_id);
128 pr_debug("%s:%d: priv2: %lxh\n", func, line, priv2);
129 pr_debug("%s:%d: problem: %lxh\n", func, line, problem);
130 pr_debug("%s:%d: ls: %lxh\n", func, line, ls);
131 pr_debug("%s:%d: shadow: %lxh\n", func, line, shadow);
132 }
133
ps3_get_spe_id(void * arg)134 u64 ps3_get_spe_id(void *arg)
135 {
136 return spu_pdata(arg)->spe_id;
137 }
138 EXPORT_SYMBOL_GPL(ps3_get_spe_id);
139
get_vas_id(void)140 static unsigned long __init get_vas_id(void)
141 {
142 u64 id;
143
144 lv1_get_logical_ppe_id(&id);
145 lv1_get_virtual_address_space_id_of_ppe(&id);
146
147 return id;
148 }
149
construct_spu(struct spu * spu)150 static int __init construct_spu(struct spu *spu)
151 {
152 int result;
153 u64 unused;
154 u64 problem_phys;
155 u64 local_store_phys;
156
157 result = lv1_construct_logical_spe(PAGE_SHIFT, PAGE_SHIFT, PAGE_SHIFT,
158 PAGE_SHIFT, PAGE_SHIFT, get_vas_id(), SPE_TYPE_LOGICAL,
159 &spu_pdata(spu)->priv2_addr, &problem_phys,
160 &local_store_phys, &unused,
161 &spu_pdata(spu)->shadow_addr,
162 &spu_pdata(spu)->spe_id);
163 spu->problem_phys = problem_phys;
164 spu->local_store_phys = local_store_phys;
165
166 if (result) {
167 pr_debug("%s:%d: lv1_construct_logical_spe failed: %s\n",
168 __func__, __LINE__, ps3_result(result));
169 return result;
170 }
171
172 return result;
173 }
174
spu_unmap(struct spu * spu)175 static void spu_unmap(struct spu *spu)
176 {
177 iounmap(spu->priv2);
178 iounmap(spu->problem);
179 iounmap((__force u8 __iomem *)spu->local_store);
180 iounmap(spu_pdata(spu)->shadow);
181 }
182
183 /**
184 * setup_areas - Map the spu regions into the address space.
185 *
186 * The current HV requires the spu shadow regs to be mapped with the
187 * PTE page protection bits set as read-only.
188 */
189
setup_areas(struct spu * spu)190 static int __init setup_areas(struct spu *spu)
191 {
192 struct table {char* name; unsigned long addr; unsigned long size;};
193 unsigned long shadow_flags = pgprot_val(pgprot_noncached_wc(PAGE_KERNEL_RO));
194
195 spu_pdata(spu)->shadow = ioremap_prot(spu_pdata(spu)->shadow_addr,
196 sizeof(struct spe_shadow), shadow_flags);
197 if (!spu_pdata(spu)->shadow) {
198 pr_debug("%s:%d: ioremap shadow failed\n", __func__, __LINE__);
199 goto fail_ioremap;
200 }
201
202 spu->local_store = (__force void *)ioremap_wc(spu->local_store_phys, LS_SIZE);
203
204 if (!spu->local_store) {
205 pr_debug("%s:%d: ioremap local_store failed\n",
206 __func__, __LINE__);
207 goto fail_ioremap;
208 }
209
210 spu->problem = ioremap(spu->problem_phys,
211 sizeof(struct spu_problem));
212
213 if (!spu->problem) {
214 pr_debug("%s:%d: ioremap problem failed\n", __func__, __LINE__);
215 goto fail_ioremap;
216 }
217
218 spu->priv2 = ioremap(spu_pdata(spu)->priv2_addr,
219 sizeof(struct spu_priv2));
220
221 if (!spu->priv2) {
222 pr_debug("%s:%d: ioremap priv2 failed\n", __func__, __LINE__);
223 goto fail_ioremap;
224 }
225
226 dump_areas(spu_pdata(spu)->spe_id, spu_pdata(spu)->priv2_addr,
227 spu->problem_phys, spu->local_store_phys,
228 spu_pdata(spu)->shadow_addr);
229 dump_areas(spu_pdata(spu)->spe_id, (unsigned long)spu->priv2,
230 (unsigned long)spu->problem, (unsigned long)spu->local_store,
231 (unsigned long)spu_pdata(spu)->shadow);
232
233 return 0;
234
235 fail_ioremap:
236 spu_unmap(spu);
237
238 return -ENOMEM;
239 }
240
setup_interrupts(struct spu * spu)241 static int __init setup_interrupts(struct spu *spu)
242 {
243 int result;
244
245 result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
246 0, &spu->irqs[0]);
247
248 if (result)
249 goto fail_alloc_0;
250
251 result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
252 1, &spu->irqs[1]);
253
254 if (result)
255 goto fail_alloc_1;
256
257 result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
258 2, &spu->irqs[2]);
259
260 if (result)
261 goto fail_alloc_2;
262
263 return result;
264
265 fail_alloc_2:
266 ps3_spe_irq_destroy(spu->irqs[1]);
267 fail_alloc_1:
268 ps3_spe_irq_destroy(spu->irqs[0]);
269 fail_alloc_0:
270 spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = 0;
271 return result;
272 }
273
enable_spu(struct spu * spu)274 static int __init enable_spu(struct spu *spu)
275 {
276 int result;
277
278 result = lv1_enable_logical_spe(spu_pdata(spu)->spe_id,
279 spu_pdata(spu)->resource_id);
280
281 if (result) {
282 pr_debug("%s:%d: lv1_enable_logical_spe failed: %s\n",
283 __func__, __LINE__, ps3_result(result));
284 goto fail_enable;
285 }
286
287 result = setup_areas(spu);
288
289 if (result)
290 goto fail_areas;
291
292 result = setup_interrupts(spu);
293
294 if (result)
295 goto fail_interrupts;
296
297 return 0;
298
299 fail_interrupts:
300 spu_unmap(spu);
301 fail_areas:
302 lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0);
303 fail_enable:
304 return result;
305 }
306
ps3_destroy_spu(struct spu * spu)307 static int ps3_destroy_spu(struct spu *spu)
308 {
309 int result;
310
311 pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number);
312
313 result = lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0);
314 BUG_ON(result);
315
316 ps3_spe_irq_destroy(spu->irqs[2]);
317 ps3_spe_irq_destroy(spu->irqs[1]);
318 ps3_spe_irq_destroy(spu->irqs[0]);
319
320 spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = 0;
321
322 spu_unmap(spu);
323
324 result = lv1_destruct_logical_spe(spu_pdata(spu)->spe_id);
325 BUG_ON(result);
326
327 kfree(spu->pdata);
328 spu->pdata = NULL;
329
330 return 0;
331 }
332
ps3_create_spu(struct spu * spu,void * data)333 static int __init ps3_create_spu(struct spu *spu, void *data)
334 {
335 int result;
336
337 pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number);
338
339 spu->pdata = kzalloc(sizeof(struct spu_pdata),
340 GFP_KERNEL);
341
342 if (!spu->pdata) {
343 result = -ENOMEM;
344 goto fail_malloc;
345 }
346
347 spu_pdata(spu)->resource_id = (unsigned long)data;
348
349 /* Init cached reg values to HV defaults. */
350
351 spu_pdata(spu)->cache.sr1 = 0x33;
352
353 result = construct_spu(spu);
354
355 if (result)
356 goto fail_construct;
357
358 /* For now, just go ahead and enable it. */
359
360 result = enable_spu(spu);
361
362 if (result)
363 goto fail_enable;
364
365 /* Make sure the spu is in SPE_EX_STATE_EXECUTED. */
366
367 /* need something better here!!! */
368 while (in_be64(&spu_pdata(spu)->shadow->spe_execution_status)
369 != SPE_EX_STATE_EXECUTED)
370 (void)0;
371
372 return result;
373
374 fail_enable:
375 fail_construct:
376 ps3_destroy_spu(spu);
377 fail_malloc:
378 return result;
379 }
380
ps3_enumerate_spus(int (* fn)(void * data))381 static int __init ps3_enumerate_spus(int (*fn)(void *data))
382 {
383 int result;
384 unsigned int num_resource_id;
385 unsigned int i;
386
387 result = ps3_repository_read_num_spu_resource_id(&num_resource_id);
388
389 pr_debug("%s:%d: num_resource_id %u\n", __func__, __LINE__,
390 num_resource_id);
391
392 /*
393 * For now, just create logical spus equal to the number
394 * of physical spus reserved for the partition.
395 */
396
397 for (i = 0; i < num_resource_id; i++) {
398 enum ps3_spu_resource_type resource_type;
399 unsigned int resource_id;
400
401 result = ps3_repository_read_spu_resource_id(i,
402 &resource_type, &resource_id);
403
404 if (result)
405 break;
406
407 if (resource_type == PS3_SPU_RESOURCE_TYPE_EXCLUSIVE) {
408 result = fn((void*)(unsigned long)resource_id);
409
410 if (result)
411 break;
412 }
413 }
414
415 if (result) {
416 printk(KERN_WARNING "%s:%d: Error initializing spus\n",
417 __func__, __LINE__);
418 return result;
419 }
420
421 return num_resource_id;
422 }
423
ps3_init_affinity(void)424 static int ps3_init_affinity(void)
425 {
426 return 0;
427 }
428
429 /**
430 * ps3_enable_spu - Enable SPU run control.
431 *
432 * An outstanding enhancement for the PS3 would be to add a guard to check
433 * for incorrect access to the spu problem state when the spu context is
434 * disabled. This check could be implemented with a flag added to the spu
435 * context that would inhibit mapping problem state pages, and a routine
436 * to unmap spu problem state pages. When the spu is enabled with
437 * ps3_enable_spu() the flag would be set allowing pages to be mapped,
438 * and when the spu is disabled with ps3_disable_spu() the flag would be
439 * cleared and the mapped problem state pages would be unmapped.
440 */
441
ps3_enable_spu(struct spu_context * ctx)442 static void ps3_enable_spu(struct spu_context *ctx)
443 {
444 }
445
ps3_disable_spu(struct spu_context * ctx)446 static void ps3_disable_spu(struct spu_context *ctx)
447 {
448 ctx->ops->runcntl_stop(ctx);
449 }
450
451 static const struct spu_management_ops spu_management_ps3_ops = {
452 .enumerate_spus = ps3_enumerate_spus,
453 .create_spu = ps3_create_spu,
454 .destroy_spu = ps3_destroy_spu,
455 .enable_spu = ps3_enable_spu,
456 .disable_spu = ps3_disable_spu,
457 .init_affinity = ps3_init_affinity,
458 };
459
460 /* spu_priv1_ops */
461
int_mask_and(struct spu * spu,int class,u64 mask)462 static void int_mask_and(struct spu *spu, int class, u64 mask)
463 {
464 u64 old_mask;
465
466 /* are these serialized by caller??? */
467 old_mask = spu_int_mask_get(spu, class);
468 spu_int_mask_set(spu, class, old_mask & mask);
469 }
470
int_mask_or(struct spu * spu,int class,u64 mask)471 static void int_mask_or(struct spu *spu, int class, u64 mask)
472 {
473 u64 old_mask;
474
475 old_mask = spu_int_mask_get(spu, class);
476 spu_int_mask_set(spu, class, old_mask | mask);
477 }
478
int_mask_set(struct spu * spu,int class,u64 mask)479 static void int_mask_set(struct spu *spu, int class, u64 mask)
480 {
481 spu_pdata(spu)->cache.masks[class] = mask;
482 lv1_set_spe_interrupt_mask(spu_pdata(spu)->spe_id, class,
483 spu_pdata(spu)->cache.masks[class]);
484 }
485
int_mask_get(struct spu * spu,int class)486 static u64 int_mask_get(struct spu *spu, int class)
487 {
488 return spu_pdata(spu)->cache.masks[class];
489 }
490
int_stat_clear(struct spu * spu,int class,u64 stat)491 static void int_stat_clear(struct spu *spu, int class, u64 stat)
492 {
493 /* Note that MFC_DSISR will be cleared when class1[MF] is set. */
494
495 lv1_clear_spe_interrupt_status(spu_pdata(spu)->spe_id, class,
496 stat, 0);
497 }
498
int_stat_get(struct spu * spu,int class)499 static u64 int_stat_get(struct spu *spu, int class)
500 {
501 u64 stat;
502
503 lv1_get_spe_interrupt_status(spu_pdata(spu)->spe_id, class, &stat);
504 return stat;
505 }
506
cpu_affinity_set(struct spu * spu,int cpu)507 static void cpu_affinity_set(struct spu *spu, int cpu)
508 {
509 /* No support. */
510 }
511
mfc_dar_get(struct spu * spu)512 static u64 mfc_dar_get(struct spu *spu)
513 {
514 return in_be64(&spu_pdata(spu)->shadow->mfc_dar_RW);
515 }
516
mfc_dsisr_set(struct spu * spu,u64 dsisr)517 static void mfc_dsisr_set(struct spu *spu, u64 dsisr)
518 {
519 /* Nothing to do, cleared in int_stat_clear(). */
520 }
521
mfc_dsisr_get(struct spu * spu)522 static u64 mfc_dsisr_get(struct spu *spu)
523 {
524 return in_be64(&spu_pdata(spu)->shadow->mfc_dsisr_RW);
525 }
526
mfc_sdr_setup(struct spu * spu)527 static void mfc_sdr_setup(struct spu *spu)
528 {
529 /* Nothing to do. */
530 }
531
mfc_sr1_set(struct spu * spu,u64 sr1)532 static void mfc_sr1_set(struct spu *spu, u64 sr1)
533 {
534 /* Check bits allowed by HV. */
535
536 static const u64 allowed = ~(MFC_STATE1_LOCAL_STORAGE_DECODE_MASK
537 | MFC_STATE1_PROBLEM_STATE_MASK);
538
539 BUG_ON((sr1 & allowed) != (spu_pdata(spu)->cache.sr1 & allowed));
540
541 spu_pdata(spu)->cache.sr1 = sr1;
542 lv1_set_spe_privilege_state_area_1_register(
543 spu_pdata(spu)->spe_id,
544 offsetof(struct spu_priv1, mfc_sr1_RW),
545 spu_pdata(spu)->cache.sr1);
546 }
547
mfc_sr1_get(struct spu * spu)548 static u64 mfc_sr1_get(struct spu *spu)
549 {
550 return spu_pdata(spu)->cache.sr1;
551 }
552
mfc_tclass_id_set(struct spu * spu,u64 tclass_id)553 static void mfc_tclass_id_set(struct spu *spu, u64 tclass_id)
554 {
555 spu_pdata(spu)->cache.tclass_id = tclass_id;
556 lv1_set_spe_privilege_state_area_1_register(
557 spu_pdata(spu)->spe_id,
558 offsetof(struct spu_priv1, mfc_tclass_id_RW),
559 spu_pdata(spu)->cache.tclass_id);
560 }
561
mfc_tclass_id_get(struct spu * spu)562 static u64 mfc_tclass_id_get(struct spu *spu)
563 {
564 return spu_pdata(spu)->cache.tclass_id;
565 }
566
tlb_invalidate(struct spu * spu)567 static void tlb_invalidate(struct spu *spu)
568 {
569 /* Nothing to do. */
570 }
571
resource_allocation_groupID_set(struct spu * spu,u64 id)572 static void resource_allocation_groupID_set(struct spu *spu, u64 id)
573 {
574 /* No support. */
575 }
576
resource_allocation_groupID_get(struct spu * spu)577 static u64 resource_allocation_groupID_get(struct spu *spu)
578 {
579 return 0; /* No support. */
580 }
581
resource_allocation_enable_set(struct spu * spu,u64 enable)582 static void resource_allocation_enable_set(struct spu *spu, u64 enable)
583 {
584 /* No support. */
585 }
586
resource_allocation_enable_get(struct spu * spu)587 static u64 resource_allocation_enable_get(struct spu *spu)
588 {
589 return 0; /* No support. */
590 }
591
592 static const struct spu_priv1_ops spu_priv1_ps3_ops = {
593 .int_mask_and = int_mask_and,
594 .int_mask_or = int_mask_or,
595 .int_mask_set = int_mask_set,
596 .int_mask_get = int_mask_get,
597 .int_stat_clear = int_stat_clear,
598 .int_stat_get = int_stat_get,
599 .cpu_affinity_set = cpu_affinity_set,
600 .mfc_dar_get = mfc_dar_get,
601 .mfc_dsisr_set = mfc_dsisr_set,
602 .mfc_dsisr_get = mfc_dsisr_get,
603 .mfc_sdr_setup = mfc_sdr_setup,
604 .mfc_sr1_set = mfc_sr1_set,
605 .mfc_sr1_get = mfc_sr1_get,
606 .mfc_tclass_id_set = mfc_tclass_id_set,
607 .mfc_tclass_id_get = mfc_tclass_id_get,
608 .tlb_invalidate = tlb_invalidate,
609 .resource_allocation_groupID_set = resource_allocation_groupID_set,
610 .resource_allocation_groupID_get = resource_allocation_groupID_get,
611 .resource_allocation_enable_set = resource_allocation_enable_set,
612 .resource_allocation_enable_get = resource_allocation_enable_get,
613 };
614
ps3_spu_set_platform(void)615 void ps3_spu_set_platform(void)
616 {
617 spu_priv1_ops = &spu_priv1_ps3_ops;
618 spu_management_ops = &spu_management_ps3_ops;
619 }
620