1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58
59 #include "workqueue_internal.h"
60
61 enum worker_pool_flags {
62 /*
63 * worker_pool flags
64 *
65 * A bound pool is either associated or disassociated with its CPU.
66 * While associated (!DISASSOCIATED), all workers are bound to the
67 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 * is in effect.
69 *
70 * While DISASSOCIATED, the cpu may be offline and all workers have
71 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 * be executing on any CPU. The pool behaves as an unbound one.
73 *
74 * Note that DISASSOCIATED should be flipped only while holding
75 * wq_pool_attach_mutex to avoid changing binding state while
76 * worker_attach_to_pool() is in progress.
77 *
78 * As there can only be one concurrent BH execution context per CPU, a
79 * BH pool is per-CPU and always DISASSOCIATED.
80 */
81 POOL_BH = 1 << 0, /* is a BH pool */
82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */
83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */
85 };
86
87 enum worker_flags {
88 /* worker flags */
89 WORKER_DIE = 1 << 1, /* die die die */
90 WORKER_IDLE = 1 << 2, /* is idle */
91 WORKER_PREP = 1 << 3, /* preparing to run works */
92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
94 WORKER_REBOUND = 1 << 8, /* worker was rebound */
95
96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
97 WORKER_UNBOUND | WORKER_REBOUND,
98 };
99
100 enum work_cancel_flags {
101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */
102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */
103 };
104
105 enum wq_internal_consts {
106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
107
108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
110
111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
113
114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
115 /* call for help after 10ms
116 (min two ticks) */
117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
118 CREATE_COOLDOWN = HZ, /* time to breath after fail */
119
120 /*
121 * Rescue workers are used only on emergencies and shared by
122 * all cpus. Give MIN_NICE.
123 */
124 RESCUER_NICE_LEVEL = MIN_NICE,
125 HIGHPRI_NICE_LEVEL = MIN_NICE,
126
127 WQ_NAME_LEN = 32,
128 WORKER_ID_LEN = 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
129 };
130
131 /*
132 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
134 * msecs_to_jiffies() can't be an initializer.
135 */
136 #define BH_WORKER_JIFFIES msecs_to_jiffies(2)
137 #define BH_WORKER_RESTARTS 10
138
139 /*
140 * Structure fields follow one of the following exclusion rules.
141 *
142 * I: Modifiable by initialization/destruction paths and read-only for
143 * everyone else.
144 *
145 * P: Preemption protected. Disabling preemption is enough and should
146 * only be modified and accessed from the local cpu.
147 *
148 * L: pool->lock protected. Access with pool->lock held.
149 *
150 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
151 * reads.
152 *
153 * K: Only modified by worker while holding pool->lock. Can be safely read by
154 * self, while holding pool->lock or from IRQ context if %current is the
155 * kworker.
156 *
157 * S: Only modified by worker self.
158 *
159 * A: wq_pool_attach_mutex protected.
160 *
161 * PL: wq_pool_mutex protected.
162 *
163 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
164 *
165 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
166 *
167 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
168 * RCU for reads.
169 *
170 * WQ: wq->mutex protected.
171 *
172 * WR: wq->mutex protected for writes. RCU protected for reads.
173 *
174 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
175 * with READ_ONCE() without locking.
176 *
177 * MD: wq_mayday_lock protected.
178 *
179 * WD: Used internally by the watchdog.
180 */
181
182 /* struct worker is defined in workqueue_internal.h */
183
184 struct worker_pool {
185 raw_spinlock_t lock; /* the pool lock */
186 int cpu; /* I: the associated cpu */
187 int node; /* I: the associated node ID */
188 int id; /* I: pool ID */
189 unsigned int flags; /* L: flags */
190
191 unsigned long watchdog_ts; /* L: watchdog timestamp */
192 bool cpu_stall; /* WD: stalled cpu bound pool */
193
194 /*
195 * The counter is incremented in a process context on the associated CPU
196 * w/ preemption disabled, and decremented or reset in the same context
197 * but w/ pool->lock held. The readers grab pool->lock and are
198 * guaranteed to see if the counter reached zero.
199 */
200 int nr_running;
201
202 struct list_head worklist; /* L: list of pending works */
203
204 int nr_workers; /* L: total number of workers */
205 int nr_idle; /* L: currently idle workers */
206
207 struct list_head idle_list; /* L: list of idle workers */
208 struct timer_list idle_timer; /* L: worker idle timeout */
209 struct work_struct idle_cull_work; /* L: worker idle cleanup */
210
211 struct timer_list mayday_timer; /* L: SOS timer for workers */
212
213 /* a workers is either on busy_hash or idle_list, or the manager */
214 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
215 /* L: hash of busy workers */
216
217 struct worker *manager; /* L: purely informational */
218 struct list_head workers; /* A: attached workers */
219
220 struct ida worker_ida; /* worker IDs for task name */
221
222 struct workqueue_attrs *attrs; /* I: worker attributes */
223 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
224 int refcnt; /* PL: refcnt for unbound pools */
225
226 /*
227 * Destruction of pool is RCU protected to allow dereferences
228 * from get_work_pool().
229 */
230 struct rcu_head rcu;
231 };
232
233 /*
234 * Per-pool_workqueue statistics. These can be monitored using
235 * tools/workqueue/wq_monitor.py.
236 */
237 enum pool_workqueue_stats {
238 PWQ_STAT_STARTED, /* work items started execution */
239 PWQ_STAT_COMPLETED, /* work items completed execution */
240 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
241 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
242 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
243 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
244 PWQ_STAT_MAYDAY, /* maydays to rescuer */
245 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
246
247 PWQ_NR_STATS,
248 };
249
250 /*
251 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT
252 * of work_struct->data are used for flags and the remaining high bits
253 * point to the pwq; thus, pwqs need to be aligned at two's power of the
254 * number of flag bits.
255 */
256 struct pool_workqueue {
257 struct worker_pool *pool; /* I: the associated pool */
258 struct workqueue_struct *wq; /* I: the owning workqueue */
259 int work_color; /* L: current color */
260 int flush_color; /* L: flushing color */
261 int refcnt; /* L: reference count */
262 int nr_in_flight[WORK_NR_COLORS];
263 /* L: nr of in_flight works */
264 bool plugged; /* L: execution suspended */
265
266 /*
267 * nr_active management and WORK_STRUCT_INACTIVE:
268 *
269 * When pwq->nr_active >= max_active, new work item is queued to
270 * pwq->inactive_works instead of pool->worklist and marked with
271 * WORK_STRUCT_INACTIVE.
272 *
273 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
274 * nr_active and all work items in pwq->inactive_works are marked with
275 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
276 * in pwq->inactive_works. Some of them are ready to run in
277 * pool->worklist or worker->scheduled. Those work itmes are only struct
278 * wq_barrier which is used for flush_work() and should not participate
279 * in nr_active. For non-barrier work item, it is marked with
280 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
281 */
282 int nr_active; /* L: nr of active works */
283 struct list_head inactive_works; /* L: inactive works */
284 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */
285 struct list_head pwqs_node; /* WR: node on wq->pwqs */
286 struct list_head mayday_node; /* MD: node on wq->maydays */
287
288 u64 stats[PWQ_NR_STATS];
289
290 /*
291 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
292 * and pwq_release_workfn() for details. pool_workqueue itself is also
293 * RCU protected so that the first pwq can be determined without
294 * grabbing wq->mutex.
295 */
296 struct kthread_work release_work;
297 struct rcu_head rcu;
298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
299
300 /*
301 * Structure used to wait for workqueue flush.
302 */
303 struct wq_flusher {
304 struct list_head list; /* WQ: list of flushers */
305 int flush_color; /* WQ: flush color waiting for */
306 struct completion done; /* flush completion */
307 };
308
309 struct wq_device;
310
311 /*
312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
313 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
314 * As sharing a single nr_active across multiple sockets can be very expensive,
315 * the counting and enforcement is per NUMA node.
316 *
317 * The following struct is used to enforce per-node max_active. When a pwq wants
318 * to start executing a work item, it should increment ->nr using
319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
322 * round-robin order.
323 */
324 struct wq_node_nr_active {
325 int max; /* per-node max_active */
326 atomic_t nr; /* per-node nr_active */
327 raw_spinlock_t lock; /* nests inside pool locks */
328 struct list_head pending_pwqs; /* LN: pwqs with inactive works */
329 };
330
331 /*
332 * The externally visible workqueue. It relays the issued work items to
333 * the appropriate worker_pool through its pool_workqueues.
334 */
335 struct workqueue_struct {
336 struct list_head pwqs; /* WR: all pwqs of this wq */
337 struct list_head list; /* PR: list of all workqueues */
338
339 struct mutex mutex; /* protects this wq */
340 int work_color; /* WQ: current work color */
341 int flush_color; /* WQ: current flush color */
342 atomic_t nr_pwqs_to_flush; /* flush in progress */
343 struct wq_flusher *first_flusher; /* WQ: first flusher */
344 struct list_head flusher_queue; /* WQ: flush waiters */
345 struct list_head flusher_overflow; /* WQ: flush overflow list */
346
347 struct list_head maydays; /* MD: pwqs requesting rescue */
348 struct worker *rescuer; /* MD: rescue worker */
349
350 int nr_drainers; /* WQ: drain in progress */
351
352 /* See alloc_workqueue() function comment for info on min/max_active */
353 int max_active; /* WO: max active works */
354 int min_active; /* WO: min active works */
355 int saved_max_active; /* WQ: saved max_active */
356 int saved_min_active; /* WQ: saved min_active */
357
358 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
359 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */
360
361 #ifdef CONFIG_SYSFS
362 struct wq_device *wq_dev; /* I: for sysfs interface */
363 #endif
364 #ifdef CONFIG_LOCKDEP
365 char *lock_name;
366 struct lock_class_key key;
367 struct lockdep_map __lockdep_map;
368 struct lockdep_map *lockdep_map;
369 #endif
370 char name[WQ_NAME_LEN]; /* I: workqueue name */
371
372 /*
373 * Destruction of workqueue_struct is RCU protected to allow walking
374 * the workqueues list without grabbing wq_pool_mutex.
375 * This is used to dump all workqueues from sysrq.
376 */
377 struct rcu_head rcu;
378
379 /* hot fields used during command issue, aligned to cacheline */
380 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
381 struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
382 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
383 };
384
385 /*
386 * Each pod type describes how CPUs should be grouped for unbound workqueues.
387 * See the comment above workqueue_attrs->affn_scope.
388 */
389 struct wq_pod_type {
390 int nr_pods; /* number of pods */
391 cpumask_var_t *pod_cpus; /* pod -> cpus */
392 int *pod_node; /* pod -> node */
393 int *cpu_pod; /* cpu -> pod */
394 };
395
396 struct work_offq_data {
397 u32 pool_id;
398 u32 disable;
399 u32 flags;
400 };
401
402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
403 [WQ_AFFN_DFL] = "default",
404 [WQ_AFFN_CPU] = "cpu",
405 [WQ_AFFN_SMT] = "smt",
406 [WQ_AFFN_CACHE] = "cache",
407 [WQ_AFFN_NUMA] = "numa",
408 [WQ_AFFN_SYSTEM] = "system",
409 };
410
411 /*
412 * Per-cpu work items which run for longer than the following threshold are
413 * automatically considered CPU intensive and excluded from concurrency
414 * management to prevent them from noticeably delaying other per-cpu work items.
415 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
416 * The actual value is initialized in wq_cpu_intensive_thresh_init().
417 */
418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
421 static unsigned int wq_cpu_intensive_warning_thresh = 4;
422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
423 #endif
424
425 /* see the comment above the definition of WQ_POWER_EFFICIENT */
426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
427 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
428
429 static bool wq_online; /* can kworkers be created yet? */
430 static bool wq_topo_initialized __read_mostly = false;
431
432 static struct kmem_cache *pwq_cache;
433
434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
436
437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
438 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
439
440 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
443 /* wait for manager to go away */
444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
445
446 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
447 static bool workqueue_freezing; /* PL: have wqs started freezing? */
448
449 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
450 static cpumask_var_t wq_online_cpumask;
451
452 /* PL&A: allowable cpus for unbound wqs and work items */
453 static cpumask_var_t wq_unbound_cpumask;
454
455 /* PL: user requested unbound cpumask via sysfs */
456 static cpumask_var_t wq_requested_unbound_cpumask;
457
458 /* PL: isolated cpumask to be excluded from unbound cpumask */
459 static cpumask_var_t wq_isolated_cpumask;
460
461 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
462 static struct cpumask wq_cmdline_cpumask __initdata;
463
464 /* CPU where unbound work was last round robin scheduled from this CPU */
465 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
466
467 /*
468 * Local execution of unbound work items is no longer guaranteed. The
469 * following always forces round-robin CPU selection on unbound work items
470 * to uncover usages which depend on it.
471 */
472 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
473 static bool wq_debug_force_rr_cpu = true;
474 #else
475 static bool wq_debug_force_rr_cpu = false;
476 #endif
477 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
478
479 /* to raise softirq for the BH worker pools on other CPUs */
480 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works);
481
482 /* the BH worker pools */
483 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools);
484
485 /* the per-cpu worker pools */
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
487
488 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
489
490 /* PL: hash of all unbound pools keyed by pool->attrs */
491 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
492
493 /* I: attributes used when instantiating standard unbound pools on demand */
494 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
495
496 /* I: attributes used when instantiating ordered pools on demand */
497 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
498
499 /*
500 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
501 * process context while holding a pool lock. Bounce to a dedicated kthread
502 * worker to avoid A-A deadlocks.
503 */
504 static struct kthread_worker *pwq_release_worker __ro_after_init;
505
506 struct workqueue_struct *system_wq __ro_after_init;
507 EXPORT_SYMBOL(system_wq);
508 struct workqueue_struct *system_highpri_wq __ro_after_init;
509 EXPORT_SYMBOL_GPL(system_highpri_wq);
510 struct workqueue_struct *system_long_wq __ro_after_init;
511 EXPORT_SYMBOL_GPL(system_long_wq);
512 struct workqueue_struct *system_unbound_wq __ro_after_init;
513 EXPORT_SYMBOL_GPL(system_unbound_wq);
514 struct workqueue_struct *system_freezable_wq __ro_after_init;
515 EXPORT_SYMBOL_GPL(system_freezable_wq);
516 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
517 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
518 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
519 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
520 struct workqueue_struct *system_bh_wq;
521 EXPORT_SYMBOL_GPL(system_bh_wq);
522 struct workqueue_struct *system_bh_highpri_wq;
523 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
524
525 static int worker_thread(void *__worker);
526 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
527 static void show_pwq(struct pool_workqueue *pwq);
528 static void show_one_worker_pool(struct worker_pool *pool);
529
530 #define CREATE_TRACE_POINTS
531 #include <trace/events/workqueue.h>
532
533 #define assert_rcu_or_pool_mutex() \
534 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
535 !lockdep_is_held(&wq_pool_mutex), \
536 "RCU or wq_pool_mutex should be held")
537
538 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
539 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
540 !lockdep_is_held(&wq->mutex) && \
541 !lockdep_is_held(&wq_pool_mutex), \
542 "RCU, wq->mutex or wq_pool_mutex should be held")
543
544 #define for_each_bh_worker_pool(pool, cpu) \
545 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \
546 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
547 (pool)++)
548
549 #define for_each_cpu_worker_pool(pool, cpu) \
550 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
551 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
552 (pool)++)
553
554 /**
555 * for_each_pool - iterate through all worker_pools in the system
556 * @pool: iteration cursor
557 * @pi: integer used for iteration
558 *
559 * This must be called either with wq_pool_mutex held or RCU read
560 * locked. If the pool needs to be used beyond the locking in effect, the
561 * caller is responsible for guaranteeing that the pool stays online.
562 *
563 * The if/else clause exists only for the lockdep assertion and can be
564 * ignored.
565 */
566 #define for_each_pool(pool, pi) \
567 idr_for_each_entry(&worker_pool_idr, pool, pi) \
568 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
569 else
570
571 /**
572 * for_each_pool_worker - iterate through all workers of a worker_pool
573 * @worker: iteration cursor
574 * @pool: worker_pool to iterate workers of
575 *
576 * This must be called with wq_pool_attach_mutex.
577 *
578 * The if/else clause exists only for the lockdep assertion and can be
579 * ignored.
580 */
581 #define for_each_pool_worker(worker, pool) \
582 list_for_each_entry((worker), &(pool)->workers, node) \
583 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
584 else
585
586 /**
587 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
588 * @pwq: iteration cursor
589 * @wq: the target workqueue
590 *
591 * This must be called either with wq->mutex held or RCU read locked.
592 * If the pwq needs to be used beyond the locking in effect, the caller is
593 * responsible for guaranteeing that the pwq stays online.
594 *
595 * The if/else clause exists only for the lockdep assertion and can be
596 * ignored.
597 */
598 #define for_each_pwq(pwq, wq) \
599 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
600 lockdep_is_held(&(wq->mutex)))
601
602 #ifdef CONFIG_DEBUG_OBJECTS_WORK
603
604 static const struct debug_obj_descr work_debug_descr;
605
work_debug_hint(void * addr)606 static void *work_debug_hint(void *addr)
607 {
608 return ((struct work_struct *) addr)->func;
609 }
610
work_is_static_object(void * addr)611 static bool work_is_static_object(void *addr)
612 {
613 struct work_struct *work = addr;
614
615 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
616 }
617
618 /*
619 * fixup_init is called when:
620 * - an active object is initialized
621 */
work_fixup_init(void * addr,enum debug_obj_state state)622 static bool work_fixup_init(void *addr, enum debug_obj_state state)
623 {
624 struct work_struct *work = addr;
625
626 switch (state) {
627 case ODEBUG_STATE_ACTIVE:
628 cancel_work_sync(work);
629 debug_object_init(work, &work_debug_descr);
630 return true;
631 default:
632 return false;
633 }
634 }
635
636 /*
637 * fixup_free is called when:
638 * - an active object is freed
639 */
work_fixup_free(void * addr,enum debug_obj_state state)640 static bool work_fixup_free(void *addr, enum debug_obj_state state)
641 {
642 struct work_struct *work = addr;
643
644 switch (state) {
645 case ODEBUG_STATE_ACTIVE:
646 cancel_work_sync(work);
647 debug_object_free(work, &work_debug_descr);
648 return true;
649 default:
650 return false;
651 }
652 }
653
654 static const struct debug_obj_descr work_debug_descr = {
655 .name = "work_struct",
656 .debug_hint = work_debug_hint,
657 .is_static_object = work_is_static_object,
658 .fixup_init = work_fixup_init,
659 .fixup_free = work_fixup_free,
660 };
661
debug_work_activate(struct work_struct * work)662 static inline void debug_work_activate(struct work_struct *work)
663 {
664 debug_object_activate(work, &work_debug_descr);
665 }
666
debug_work_deactivate(struct work_struct * work)667 static inline void debug_work_deactivate(struct work_struct *work)
668 {
669 debug_object_deactivate(work, &work_debug_descr);
670 }
671
__init_work(struct work_struct * work,int onstack)672 void __init_work(struct work_struct *work, int onstack)
673 {
674 if (onstack)
675 debug_object_init_on_stack(work, &work_debug_descr);
676 else
677 debug_object_init(work, &work_debug_descr);
678 }
679 EXPORT_SYMBOL_GPL(__init_work);
680
destroy_work_on_stack(struct work_struct * work)681 void destroy_work_on_stack(struct work_struct *work)
682 {
683 debug_object_free(work, &work_debug_descr);
684 }
685 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
686
destroy_delayed_work_on_stack(struct delayed_work * work)687 void destroy_delayed_work_on_stack(struct delayed_work *work)
688 {
689 destroy_timer_on_stack(&work->timer);
690 debug_object_free(&work->work, &work_debug_descr);
691 }
692 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
693
694 #else
debug_work_activate(struct work_struct * work)695 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)696 static inline void debug_work_deactivate(struct work_struct *work) { }
697 #endif
698
699 /**
700 * worker_pool_assign_id - allocate ID and assign it to @pool
701 * @pool: the pool pointer of interest
702 *
703 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
704 * successfully, -errno on failure.
705 */
worker_pool_assign_id(struct worker_pool * pool)706 static int worker_pool_assign_id(struct worker_pool *pool)
707 {
708 int ret;
709
710 lockdep_assert_held(&wq_pool_mutex);
711
712 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
713 GFP_KERNEL);
714 if (ret >= 0) {
715 pool->id = ret;
716 return 0;
717 }
718 return ret;
719 }
720
721 static struct pool_workqueue __rcu **
unbound_pwq_slot(struct workqueue_struct * wq,int cpu)722 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
723 {
724 if (cpu >= 0)
725 return per_cpu_ptr(wq->cpu_pwq, cpu);
726 else
727 return &wq->dfl_pwq;
728 }
729
730 /* @cpu < 0 for dfl_pwq */
unbound_pwq(struct workqueue_struct * wq,int cpu)731 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
732 {
733 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
734 lockdep_is_held(&wq_pool_mutex) ||
735 lockdep_is_held(&wq->mutex));
736 }
737
738 /**
739 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
740 * @wq: workqueue of interest
741 *
742 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
743 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
744 * default pwq is always mapped to the pool with the current effective cpumask.
745 */
unbound_effective_cpumask(struct workqueue_struct * wq)746 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
747 {
748 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
749 }
750
work_color_to_flags(int color)751 static unsigned int work_color_to_flags(int color)
752 {
753 return color << WORK_STRUCT_COLOR_SHIFT;
754 }
755
get_work_color(unsigned long work_data)756 static int get_work_color(unsigned long work_data)
757 {
758 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
759 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
760 }
761
work_next_color(int color)762 static int work_next_color(int color)
763 {
764 return (color + 1) % WORK_NR_COLORS;
765 }
766
pool_offq_flags(struct worker_pool * pool)767 static unsigned long pool_offq_flags(struct worker_pool *pool)
768 {
769 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
770 }
771
772 /*
773 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
774 * contain the pointer to the queued pwq. Once execution starts, the flag
775 * is cleared and the high bits contain OFFQ flags and pool ID.
776 *
777 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
778 * can be used to set the pwq, pool or clear work->data. These functions should
779 * only be called while the work is owned - ie. while the PENDING bit is set.
780 *
781 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
782 * corresponding to a work. Pool is available once the work has been
783 * queued anywhere after initialization until it is sync canceled. pwq is
784 * available only while the work item is queued.
785 */
set_work_data(struct work_struct * work,unsigned long data)786 static inline void set_work_data(struct work_struct *work, unsigned long data)
787 {
788 WARN_ON_ONCE(!work_pending(work));
789 atomic_long_set(&work->data, data | work_static(work));
790 }
791
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long flags)792 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
793 unsigned long flags)
794 {
795 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
796 WORK_STRUCT_PWQ | flags);
797 }
798
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id,unsigned long flags)799 static void set_work_pool_and_keep_pending(struct work_struct *work,
800 int pool_id, unsigned long flags)
801 {
802 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
803 WORK_STRUCT_PENDING | flags);
804 }
805
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id,unsigned long flags)806 static void set_work_pool_and_clear_pending(struct work_struct *work,
807 int pool_id, unsigned long flags)
808 {
809 /*
810 * The following wmb is paired with the implied mb in
811 * test_and_set_bit(PENDING) and ensures all updates to @work made
812 * here are visible to and precede any updates by the next PENDING
813 * owner.
814 */
815 smp_wmb();
816 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
817 flags);
818 /*
819 * The following mb guarantees that previous clear of a PENDING bit
820 * will not be reordered with any speculative LOADS or STORES from
821 * work->current_func, which is executed afterwards. This possible
822 * reordering can lead to a missed execution on attempt to queue
823 * the same @work. E.g. consider this case:
824 *
825 * CPU#0 CPU#1
826 * ---------------------------- --------------------------------
827 *
828 * 1 STORE event_indicated
829 * 2 queue_work_on() {
830 * 3 test_and_set_bit(PENDING)
831 * 4 } set_..._and_clear_pending() {
832 * 5 set_work_data() # clear bit
833 * 6 smp_mb()
834 * 7 work->current_func() {
835 * 8 LOAD event_indicated
836 * }
837 *
838 * Without an explicit full barrier speculative LOAD on line 8 can
839 * be executed before CPU#0 does STORE on line 1. If that happens,
840 * CPU#0 observes the PENDING bit is still set and new execution of
841 * a @work is not queued in a hope, that CPU#1 will eventually
842 * finish the queued @work. Meanwhile CPU#1 does not see
843 * event_indicated is set, because speculative LOAD was executed
844 * before actual STORE.
845 */
846 smp_mb();
847 }
848
work_struct_pwq(unsigned long data)849 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
850 {
851 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
852 }
853
get_work_pwq(struct work_struct * work)854 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
855 {
856 unsigned long data = atomic_long_read(&work->data);
857
858 if (data & WORK_STRUCT_PWQ)
859 return work_struct_pwq(data);
860 else
861 return NULL;
862 }
863
864 /**
865 * get_work_pool - return the worker_pool a given work was associated with
866 * @work: the work item of interest
867 *
868 * Pools are created and destroyed under wq_pool_mutex, and allows read
869 * access under RCU read lock. As such, this function should be
870 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
871 *
872 * All fields of the returned pool are accessible as long as the above
873 * mentioned locking is in effect. If the returned pool needs to be used
874 * beyond the critical section, the caller is responsible for ensuring the
875 * returned pool is and stays online.
876 *
877 * Return: The worker_pool @work was last associated with. %NULL if none.
878 */
get_work_pool(struct work_struct * work)879 static struct worker_pool *get_work_pool(struct work_struct *work)
880 {
881 unsigned long data = atomic_long_read(&work->data);
882 int pool_id;
883
884 assert_rcu_or_pool_mutex();
885
886 if (data & WORK_STRUCT_PWQ)
887 return work_struct_pwq(data)->pool;
888
889 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
890 if (pool_id == WORK_OFFQ_POOL_NONE)
891 return NULL;
892
893 return idr_find(&worker_pool_idr, pool_id);
894 }
895
shift_and_mask(unsigned long v,u32 shift,u32 bits)896 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
897 {
898 return (v >> shift) & ((1U << bits) - 1);
899 }
900
work_offqd_unpack(struct work_offq_data * offqd,unsigned long data)901 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
902 {
903 WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
904
905 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
906 WORK_OFFQ_POOL_BITS);
907 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
908 WORK_OFFQ_DISABLE_BITS);
909 offqd->flags = data & WORK_OFFQ_FLAG_MASK;
910 }
911
work_offqd_pack_flags(struct work_offq_data * offqd)912 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
913 {
914 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
915 ((unsigned long)offqd->flags);
916 }
917
918 /*
919 * Policy functions. These define the policies on how the global worker
920 * pools are managed. Unless noted otherwise, these functions assume that
921 * they're being called with pool->lock held.
922 */
923
924 /*
925 * Need to wake up a worker? Called from anything but currently
926 * running workers.
927 *
928 * Note that, because unbound workers never contribute to nr_running, this
929 * function will always return %true for unbound pools as long as the
930 * worklist isn't empty.
931 */
need_more_worker(struct worker_pool * pool)932 static bool need_more_worker(struct worker_pool *pool)
933 {
934 return !list_empty(&pool->worklist) && !pool->nr_running;
935 }
936
937 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)938 static bool may_start_working(struct worker_pool *pool)
939 {
940 return pool->nr_idle;
941 }
942
943 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)944 static bool keep_working(struct worker_pool *pool)
945 {
946 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
947 }
948
949 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)950 static bool need_to_create_worker(struct worker_pool *pool)
951 {
952 return need_more_worker(pool) && !may_start_working(pool);
953 }
954
955 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)956 static bool too_many_workers(struct worker_pool *pool)
957 {
958 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
959 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
960 int nr_busy = pool->nr_workers - nr_idle;
961
962 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
963 }
964
965 /**
966 * worker_set_flags - set worker flags and adjust nr_running accordingly
967 * @worker: self
968 * @flags: flags to set
969 *
970 * Set @flags in @worker->flags and adjust nr_running accordingly.
971 */
worker_set_flags(struct worker * worker,unsigned int flags)972 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
973 {
974 struct worker_pool *pool = worker->pool;
975
976 lockdep_assert_held(&pool->lock);
977
978 /* If transitioning into NOT_RUNNING, adjust nr_running. */
979 if ((flags & WORKER_NOT_RUNNING) &&
980 !(worker->flags & WORKER_NOT_RUNNING)) {
981 pool->nr_running--;
982 }
983
984 worker->flags |= flags;
985 }
986
987 /**
988 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
989 * @worker: self
990 * @flags: flags to clear
991 *
992 * Clear @flags in @worker->flags and adjust nr_running accordingly.
993 */
worker_clr_flags(struct worker * worker,unsigned int flags)994 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
995 {
996 struct worker_pool *pool = worker->pool;
997 unsigned int oflags = worker->flags;
998
999 lockdep_assert_held(&pool->lock);
1000
1001 worker->flags &= ~flags;
1002
1003 /*
1004 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1005 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1006 * of multiple flags, not a single flag.
1007 */
1008 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1009 if (!(worker->flags & WORKER_NOT_RUNNING))
1010 pool->nr_running++;
1011 }
1012
1013 /* Return the first idle worker. Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)1014 static struct worker *first_idle_worker(struct worker_pool *pool)
1015 {
1016 if (unlikely(list_empty(&pool->idle_list)))
1017 return NULL;
1018
1019 return list_first_entry(&pool->idle_list, struct worker, entry);
1020 }
1021
1022 /**
1023 * worker_enter_idle - enter idle state
1024 * @worker: worker which is entering idle state
1025 *
1026 * @worker is entering idle state. Update stats and idle timer if
1027 * necessary.
1028 *
1029 * LOCKING:
1030 * raw_spin_lock_irq(pool->lock).
1031 */
worker_enter_idle(struct worker * worker)1032 static void worker_enter_idle(struct worker *worker)
1033 {
1034 struct worker_pool *pool = worker->pool;
1035
1036 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1037 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1038 (worker->hentry.next || worker->hentry.pprev)))
1039 return;
1040
1041 /* can't use worker_set_flags(), also called from create_worker() */
1042 worker->flags |= WORKER_IDLE;
1043 pool->nr_idle++;
1044 worker->last_active = jiffies;
1045
1046 /* idle_list is LIFO */
1047 list_add(&worker->entry, &pool->idle_list);
1048
1049 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1050 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1051
1052 /* Sanity check nr_running. */
1053 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1054 }
1055
1056 /**
1057 * worker_leave_idle - leave idle state
1058 * @worker: worker which is leaving idle state
1059 *
1060 * @worker is leaving idle state. Update stats.
1061 *
1062 * LOCKING:
1063 * raw_spin_lock_irq(pool->lock).
1064 */
worker_leave_idle(struct worker * worker)1065 static void worker_leave_idle(struct worker *worker)
1066 {
1067 struct worker_pool *pool = worker->pool;
1068
1069 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1070 return;
1071 worker_clr_flags(worker, WORKER_IDLE);
1072 pool->nr_idle--;
1073 list_del_init(&worker->entry);
1074 }
1075
1076 /**
1077 * find_worker_executing_work - find worker which is executing a work
1078 * @pool: pool of interest
1079 * @work: work to find worker for
1080 *
1081 * Find a worker which is executing @work on @pool by searching
1082 * @pool->busy_hash which is keyed by the address of @work. For a worker
1083 * to match, its current execution should match the address of @work and
1084 * its work function. This is to avoid unwanted dependency between
1085 * unrelated work executions through a work item being recycled while still
1086 * being executed.
1087 *
1088 * This is a bit tricky. A work item may be freed once its execution
1089 * starts and nothing prevents the freed area from being recycled for
1090 * another work item. If the same work item address ends up being reused
1091 * before the original execution finishes, workqueue will identify the
1092 * recycled work item as currently executing and make it wait until the
1093 * current execution finishes, introducing an unwanted dependency.
1094 *
1095 * This function checks the work item address and work function to avoid
1096 * false positives. Note that this isn't complete as one may construct a
1097 * work function which can introduce dependency onto itself through a
1098 * recycled work item. Well, if somebody wants to shoot oneself in the
1099 * foot that badly, there's only so much we can do, and if such deadlock
1100 * actually occurs, it should be easy to locate the culprit work function.
1101 *
1102 * CONTEXT:
1103 * raw_spin_lock_irq(pool->lock).
1104 *
1105 * Return:
1106 * Pointer to worker which is executing @work if found, %NULL
1107 * otherwise.
1108 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1109 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1110 struct work_struct *work)
1111 {
1112 struct worker *worker;
1113
1114 hash_for_each_possible(pool->busy_hash, worker, hentry,
1115 (unsigned long)work)
1116 if (worker->current_work == work &&
1117 worker->current_func == work->func)
1118 return worker;
1119
1120 return NULL;
1121 }
1122
1123 /**
1124 * move_linked_works - move linked works to a list
1125 * @work: start of series of works to be scheduled
1126 * @head: target list to append @work to
1127 * @nextp: out parameter for nested worklist walking
1128 *
1129 * Schedule linked works starting from @work to @head. Work series to be
1130 * scheduled starts at @work and includes any consecutive work with
1131 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1132 * @nextp.
1133 *
1134 * CONTEXT:
1135 * raw_spin_lock_irq(pool->lock).
1136 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1137 static void move_linked_works(struct work_struct *work, struct list_head *head,
1138 struct work_struct **nextp)
1139 {
1140 struct work_struct *n;
1141
1142 /*
1143 * Linked worklist will always end before the end of the list,
1144 * use NULL for list head.
1145 */
1146 list_for_each_entry_safe_from(work, n, NULL, entry) {
1147 list_move_tail(&work->entry, head);
1148 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1149 break;
1150 }
1151
1152 /*
1153 * If we're already inside safe list traversal and have moved
1154 * multiple works to the scheduled queue, the next position
1155 * needs to be updated.
1156 */
1157 if (nextp)
1158 *nextp = n;
1159 }
1160
1161 /**
1162 * assign_work - assign a work item and its linked work items to a worker
1163 * @work: work to assign
1164 * @worker: worker to assign to
1165 * @nextp: out parameter for nested worklist walking
1166 *
1167 * Assign @work and its linked work items to @worker. If @work is already being
1168 * executed by another worker in the same pool, it'll be punted there.
1169 *
1170 * If @nextp is not NULL, it's updated to point to the next work of the last
1171 * scheduled work. This allows assign_work() to be nested inside
1172 * list_for_each_entry_safe().
1173 *
1174 * Returns %true if @work was successfully assigned to @worker. %false if @work
1175 * was punted to another worker already executing it.
1176 */
assign_work(struct work_struct * work,struct worker * worker,struct work_struct ** nextp)1177 static bool assign_work(struct work_struct *work, struct worker *worker,
1178 struct work_struct **nextp)
1179 {
1180 struct worker_pool *pool = worker->pool;
1181 struct worker *collision;
1182
1183 lockdep_assert_held(&pool->lock);
1184
1185 /*
1186 * A single work shouldn't be executed concurrently by multiple workers.
1187 * __queue_work() ensures that @work doesn't jump to a different pool
1188 * while still running in the previous pool. Here, we should ensure that
1189 * @work is not executed concurrently by multiple workers from the same
1190 * pool. Check whether anyone is already processing the work. If so,
1191 * defer the work to the currently executing one.
1192 */
1193 collision = find_worker_executing_work(pool, work);
1194 if (unlikely(collision)) {
1195 move_linked_works(work, &collision->scheduled, nextp);
1196 return false;
1197 }
1198
1199 move_linked_works(work, &worker->scheduled, nextp);
1200 return true;
1201 }
1202
bh_pool_irq_work(struct worker_pool * pool)1203 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1204 {
1205 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1206
1207 return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1208 }
1209
kick_bh_pool(struct worker_pool * pool)1210 static void kick_bh_pool(struct worker_pool *pool)
1211 {
1212 #ifdef CONFIG_SMP
1213 /* see drain_dead_softirq_workfn() for BH_DRAINING */
1214 if (unlikely(pool->cpu != smp_processor_id() &&
1215 !(pool->flags & POOL_BH_DRAINING))) {
1216 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1217 return;
1218 }
1219 #endif
1220 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1221 raise_softirq_irqoff(HI_SOFTIRQ);
1222 else
1223 raise_softirq_irqoff(TASKLET_SOFTIRQ);
1224 }
1225
1226 /**
1227 * kick_pool - wake up an idle worker if necessary
1228 * @pool: pool to kick
1229 *
1230 * @pool may have pending work items. Wake up worker if necessary. Returns
1231 * whether a worker was woken up.
1232 */
kick_pool(struct worker_pool * pool)1233 static bool kick_pool(struct worker_pool *pool)
1234 {
1235 struct worker *worker = first_idle_worker(pool);
1236 struct task_struct *p;
1237
1238 lockdep_assert_held(&pool->lock);
1239
1240 if (!need_more_worker(pool) || !worker)
1241 return false;
1242
1243 if (pool->flags & POOL_BH) {
1244 kick_bh_pool(pool);
1245 return true;
1246 }
1247
1248 p = worker->task;
1249
1250 #ifdef CONFIG_SMP
1251 /*
1252 * Idle @worker is about to execute @work and waking up provides an
1253 * opportunity to migrate @worker at a lower cost by setting the task's
1254 * wake_cpu field. Let's see if we want to move @worker to improve
1255 * execution locality.
1256 *
1257 * We're waking the worker that went idle the latest and there's some
1258 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1259 * so, setting the wake_cpu won't do anything. As this is a best-effort
1260 * optimization and the race window is narrow, let's leave as-is for
1261 * now. If this becomes pronounced, we can skip over workers which are
1262 * still on cpu when picking an idle worker.
1263 *
1264 * If @pool has non-strict affinity, @worker might have ended up outside
1265 * its affinity scope. Repatriate.
1266 */
1267 if (!pool->attrs->affn_strict &&
1268 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1269 struct work_struct *work = list_first_entry(&pool->worklist,
1270 struct work_struct, entry);
1271 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1272 cpu_online_mask);
1273 if (wake_cpu < nr_cpu_ids) {
1274 p->wake_cpu = wake_cpu;
1275 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1276 }
1277 }
1278 #endif
1279 wake_up_process(p);
1280 return true;
1281 }
1282
1283 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1284
1285 /*
1286 * Concurrency-managed per-cpu work items that hog CPU for longer than
1287 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1288 * which prevents them from stalling other concurrency-managed work items. If a
1289 * work function keeps triggering this mechanism, it's likely that the work item
1290 * should be using an unbound workqueue instead.
1291 *
1292 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1293 * and report them so that they can be examined and converted to use unbound
1294 * workqueues as appropriate. To avoid flooding the console, each violating work
1295 * function is tracked and reported with exponential backoff.
1296 */
1297 #define WCI_MAX_ENTS 128
1298
1299 struct wci_ent {
1300 work_func_t func;
1301 atomic64_t cnt;
1302 struct hlist_node hash_node;
1303 };
1304
1305 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1306 static int wci_nr_ents;
1307 static DEFINE_RAW_SPINLOCK(wci_lock);
1308 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1309
wci_find_ent(work_func_t func)1310 static struct wci_ent *wci_find_ent(work_func_t func)
1311 {
1312 struct wci_ent *ent;
1313
1314 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1315 (unsigned long)func) {
1316 if (ent->func == func)
1317 return ent;
1318 }
1319 return NULL;
1320 }
1321
wq_cpu_intensive_report(work_func_t func)1322 static void wq_cpu_intensive_report(work_func_t func)
1323 {
1324 struct wci_ent *ent;
1325
1326 restart:
1327 ent = wci_find_ent(func);
1328 if (ent) {
1329 u64 cnt;
1330
1331 /*
1332 * Start reporting from the warning_thresh and back off
1333 * exponentially.
1334 */
1335 cnt = atomic64_inc_return_relaxed(&ent->cnt);
1336 if (wq_cpu_intensive_warning_thresh &&
1337 cnt >= wq_cpu_intensive_warning_thresh &&
1338 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1339 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1340 ent->func, wq_cpu_intensive_thresh_us,
1341 atomic64_read(&ent->cnt));
1342 return;
1343 }
1344
1345 /*
1346 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1347 * is exhausted, something went really wrong and we probably made enough
1348 * noise already.
1349 */
1350 if (wci_nr_ents >= WCI_MAX_ENTS)
1351 return;
1352
1353 raw_spin_lock(&wci_lock);
1354
1355 if (wci_nr_ents >= WCI_MAX_ENTS) {
1356 raw_spin_unlock(&wci_lock);
1357 return;
1358 }
1359
1360 if (wci_find_ent(func)) {
1361 raw_spin_unlock(&wci_lock);
1362 goto restart;
1363 }
1364
1365 ent = &wci_ents[wci_nr_ents++];
1366 ent->func = func;
1367 atomic64_set(&ent->cnt, 0);
1368 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1369
1370 raw_spin_unlock(&wci_lock);
1371
1372 goto restart;
1373 }
1374
1375 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
wq_cpu_intensive_report(work_func_t func)1376 static void wq_cpu_intensive_report(work_func_t func) {}
1377 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1378
1379 /**
1380 * wq_worker_running - a worker is running again
1381 * @task: task waking up
1382 *
1383 * This function is called when a worker returns from schedule()
1384 */
wq_worker_running(struct task_struct * task)1385 void wq_worker_running(struct task_struct *task)
1386 {
1387 struct worker *worker = kthread_data(task);
1388
1389 if (!READ_ONCE(worker->sleeping))
1390 return;
1391
1392 /*
1393 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1394 * and the nr_running increment below, we may ruin the nr_running reset
1395 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1396 * pool. Protect against such race.
1397 */
1398 preempt_disable();
1399 if (!(worker->flags & WORKER_NOT_RUNNING))
1400 worker->pool->nr_running++;
1401 preempt_enable();
1402
1403 /*
1404 * CPU intensive auto-detection cares about how long a work item hogged
1405 * CPU without sleeping. Reset the starting timestamp on wakeup.
1406 */
1407 worker->current_at = worker->task->se.sum_exec_runtime;
1408
1409 WRITE_ONCE(worker->sleeping, 0);
1410 }
1411
1412 /**
1413 * wq_worker_sleeping - a worker is going to sleep
1414 * @task: task going to sleep
1415 *
1416 * This function is called from schedule() when a busy worker is
1417 * going to sleep.
1418 */
wq_worker_sleeping(struct task_struct * task)1419 void wq_worker_sleeping(struct task_struct *task)
1420 {
1421 struct worker *worker = kthread_data(task);
1422 struct worker_pool *pool;
1423
1424 /*
1425 * Rescuers, which may not have all the fields set up like normal
1426 * workers, also reach here, let's not access anything before
1427 * checking NOT_RUNNING.
1428 */
1429 if (worker->flags & WORKER_NOT_RUNNING)
1430 return;
1431
1432 pool = worker->pool;
1433
1434 /* Return if preempted before wq_worker_running() was reached */
1435 if (READ_ONCE(worker->sleeping))
1436 return;
1437
1438 WRITE_ONCE(worker->sleeping, 1);
1439 raw_spin_lock_irq(&pool->lock);
1440
1441 /*
1442 * Recheck in case unbind_workers() preempted us. We don't
1443 * want to decrement nr_running after the worker is unbound
1444 * and nr_running has been reset.
1445 */
1446 if (worker->flags & WORKER_NOT_RUNNING) {
1447 raw_spin_unlock_irq(&pool->lock);
1448 return;
1449 }
1450
1451 pool->nr_running--;
1452 if (kick_pool(pool))
1453 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1454
1455 raw_spin_unlock_irq(&pool->lock);
1456 }
1457
1458 /**
1459 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1460 * @task: task currently running
1461 *
1462 * Called from sched_tick(). We're in the IRQ context and the current
1463 * worker's fields which follow the 'K' locking rule can be accessed safely.
1464 */
wq_worker_tick(struct task_struct * task)1465 void wq_worker_tick(struct task_struct *task)
1466 {
1467 struct worker *worker = kthread_data(task);
1468 struct pool_workqueue *pwq = worker->current_pwq;
1469 struct worker_pool *pool = worker->pool;
1470
1471 if (!pwq)
1472 return;
1473
1474 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1475
1476 if (!wq_cpu_intensive_thresh_us)
1477 return;
1478
1479 /*
1480 * If the current worker is concurrency managed and hogged the CPU for
1481 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1482 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1483 *
1484 * Set @worker->sleeping means that @worker is in the process of
1485 * switching out voluntarily and won't be contributing to
1486 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1487 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1488 * double decrements. The task is releasing the CPU anyway. Let's skip.
1489 * We probably want to make this prettier in the future.
1490 */
1491 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1492 worker->task->se.sum_exec_runtime - worker->current_at <
1493 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1494 return;
1495
1496 raw_spin_lock(&pool->lock);
1497
1498 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1499 wq_cpu_intensive_report(worker->current_func);
1500 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1501
1502 if (kick_pool(pool))
1503 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1504
1505 raw_spin_unlock(&pool->lock);
1506 }
1507
1508 /**
1509 * wq_worker_last_func - retrieve worker's last work function
1510 * @task: Task to retrieve last work function of.
1511 *
1512 * Determine the last function a worker executed. This is called from
1513 * the scheduler to get a worker's last known identity.
1514 *
1515 * CONTEXT:
1516 * raw_spin_lock_irq(rq->lock)
1517 *
1518 * This function is called during schedule() when a kworker is going
1519 * to sleep. It's used by psi to identify aggregation workers during
1520 * dequeuing, to allow periodic aggregation to shut-off when that
1521 * worker is the last task in the system or cgroup to go to sleep.
1522 *
1523 * As this function doesn't involve any workqueue-related locking, it
1524 * only returns stable values when called from inside the scheduler's
1525 * queuing and dequeuing paths, when @task, which must be a kworker,
1526 * is guaranteed to not be processing any works.
1527 *
1528 * Return:
1529 * The last work function %current executed as a worker, NULL if it
1530 * hasn't executed any work yet.
1531 */
wq_worker_last_func(struct task_struct * task)1532 work_func_t wq_worker_last_func(struct task_struct *task)
1533 {
1534 struct worker *worker = kthread_data(task);
1535
1536 return worker->last_func;
1537 }
1538
1539 /**
1540 * wq_node_nr_active - Determine wq_node_nr_active to use
1541 * @wq: workqueue of interest
1542 * @node: NUMA node, can be %NUMA_NO_NODE
1543 *
1544 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1545 *
1546 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1547 *
1548 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1549 *
1550 * - Otherwise, node_nr_active[@node].
1551 */
wq_node_nr_active(struct workqueue_struct * wq,int node)1552 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1553 int node)
1554 {
1555 if (!(wq->flags & WQ_UNBOUND))
1556 return NULL;
1557
1558 if (node == NUMA_NO_NODE)
1559 node = nr_node_ids;
1560
1561 return wq->node_nr_active[node];
1562 }
1563
1564 /**
1565 * wq_update_node_max_active - Update per-node max_actives to use
1566 * @wq: workqueue to update
1567 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1568 *
1569 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1570 * distributed among nodes according to the proportions of numbers of online
1571 * cpus. The result is always between @wq->min_active and max_active.
1572 */
wq_update_node_max_active(struct workqueue_struct * wq,int off_cpu)1573 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1574 {
1575 struct cpumask *effective = unbound_effective_cpumask(wq);
1576 int min_active = READ_ONCE(wq->min_active);
1577 int max_active = READ_ONCE(wq->max_active);
1578 int total_cpus, node;
1579
1580 lockdep_assert_held(&wq->mutex);
1581
1582 if (!wq_topo_initialized)
1583 return;
1584
1585 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1586 off_cpu = -1;
1587
1588 total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1589 if (off_cpu >= 0)
1590 total_cpus--;
1591
1592 /* If all CPUs of the wq get offline, use the default values */
1593 if (unlikely(!total_cpus)) {
1594 for_each_node(node)
1595 wq_node_nr_active(wq, node)->max = min_active;
1596
1597 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1598 return;
1599 }
1600
1601 for_each_node(node) {
1602 int node_cpus;
1603
1604 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1605 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1606 node_cpus--;
1607
1608 wq_node_nr_active(wq, node)->max =
1609 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1610 min_active, max_active);
1611 }
1612
1613 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1614 }
1615
1616 /**
1617 * get_pwq - get an extra reference on the specified pool_workqueue
1618 * @pwq: pool_workqueue to get
1619 *
1620 * Obtain an extra reference on @pwq. The caller should guarantee that
1621 * @pwq has positive refcnt and be holding the matching pool->lock.
1622 */
get_pwq(struct pool_workqueue * pwq)1623 static void get_pwq(struct pool_workqueue *pwq)
1624 {
1625 lockdep_assert_held(&pwq->pool->lock);
1626 WARN_ON_ONCE(pwq->refcnt <= 0);
1627 pwq->refcnt++;
1628 }
1629
1630 /**
1631 * put_pwq - put a pool_workqueue reference
1632 * @pwq: pool_workqueue to put
1633 *
1634 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1635 * destruction. The caller should be holding the matching pool->lock.
1636 */
put_pwq(struct pool_workqueue * pwq)1637 static void put_pwq(struct pool_workqueue *pwq)
1638 {
1639 lockdep_assert_held(&pwq->pool->lock);
1640 if (likely(--pwq->refcnt))
1641 return;
1642 /*
1643 * @pwq can't be released under pool->lock, bounce to a dedicated
1644 * kthread_worker to avoid A-A deadlocks.
1645 */
1646 kthread_queue_work(pwq_release_worker, &pwq->release_work);
1647 }
1648
1649 /**
1650 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1651 * @pwq: pool_workqueue to put (can be %NULL)
1652 *
1653 * put_pwq() with locking. This function also allows %NULL @pwq.
1654 */
put_pwq_unlocked(struct pool_workqueue * pwq)1655 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1656 {
1657 if (pwq) {
1658 /*
1659 * As both pwqs and pools are RCU protected, the
1660 * following lock operations are safe.
1661 */
1662 raw_spin_lock_irq(&pwq->pool->lock);
1663 put_pwq(pwq);
1664 raw_spin_unlock_irq(&pwq->pool->lock);
1665 }
1666 }
1667
pwq_is_empty(struct pool_workqueue * pwq)1668 static bool pwq_is_empty(struct pool_workqueue *pwq)
1669 {
1670 return !pwq->nr_active && list_empty(&pwq->inactive_works);
1671 }
1672
__pwq_activate_work(struct pool_workqueue * pwq,struct work_struct * work)1673 static void __pwq_activate_work(struct pool_workqueue *pwq,
1674 struct work_struct *work)
1675 {
1676 unsigned long *wdb = work_data_bits(work);
1677
1678 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1679 trace_workqueue_activate_work(work);
1680 if (list_empty(&pwq->pool->worklist))
1681 pwq->pool->watchdog_ts = jiffies;
1682 move_linked_works(work, &pwq->pool->worklist, NULL);
1683 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1684 }
1685
tryinc_node_nr_active(struct wq_node_nr_active * nna)1686 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1687 {
1688 int max = READ_ONCE(nna->max);
1689
1690 while (true) {
1691 int old, tmp;
1692
1693 old = atomic_read(&nna->nr);
1694 if (old >= max)
1695 return false;
1696 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1697 if (tmp == old)
1698 return true;
1699 }
1700 }
1701
1702 /**
1703 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1704 * @pwq: pool_workqueue of interest
1705 * @fill: max_active may have increased, try to increase concurrency level
1706 *
1707 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1708 * successfully obtained. %false otherwise.
1709 */
pwq_tryinc_nr_active(struct pool_workqueue * pwq,bool fill)1710 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1711 {
1712 struct workqueue_struct *wq = pwq->wq;
1713 struct worker_pool *pool = pwq->pool;
1714 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1715 bool obtained = false;
1716
1717 lockdep_assert_held(&pool->lock);
1718
1719 if (!nna) {
1720 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1721 obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1722 goto out;
1723 }
1724
1725 if (unlikely(pwq->plugged))
1726 return false;
1727
1728 /*
1729 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1730 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1731 * concurrency level. Don't jump the line.
1732 *
1733 * We need to ignore the pending test after max_active has increased as
1734 * pwq_dec_nr_active() can only maintain the concurrency level but not
1735 * increase it. This is indicated by @fill.
1736 */
1737 if (!list_empty(&pwq->pending_node) && likely(!fill))
1738 goto out;
1739
1740 obtained = tryinc_node_nr_active(nna);
1741 if (obtained)
1742 goto out;
1743
1744 /*
1745 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1746 * and try again. The smp_mb() is paired with the implied memory barrier
1747 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1748 * we see the decremented $nna->nr or they see non-empty
1749 * $nna->pending_pwqs.
1750 */
1751 raw_spin_lock(&nna->lock);
1752
1753 if (list_empty(&pwq->pending_node))
1754 list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1755 else if (likely(!fill))
1756 goto out_unlock;
1757
1758 smp_mb();
1759
1760 obtained = tryinc_node_nr_active(nna);
1761
1762 /*
1763 * If @fill, @pwq might have already been pending. Being spuriously
1764 * pending in cold paths doesn't affect anything. Let's leave it be.
1765 */
1766 if (obtained && likely(!fill))
1767 list_del_init(&pwq->pending_node);
1768
1769 out_unlock:
1770 raw_spin_unlock(&nna->lock);
1771 out:
1772 if (obtained)
1773 pwq->nr_active++;
1774 return obtained;
1775 }
1776
1777 /**
1778 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1779 * @pwq: pool_workqueue of interest
1780 * @fill: max_active may have increased, try to increase concurrency level
1781 *
1782 * Activate the first inactive work item of @pwq if available and allowed by
1783 * max_active limit.
1784 *
1785 * Returns %true if an inactive work item has been activated. %false if no
1786 * inactive work item is found or max_active limit is reached.
1787 */
pwq_activate_first_inactive(struct pool_workqueue * pwq,bool fill)1788 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1789 {
1790 struct work_struct *work =
1791 list_first_entry_or_null(&pwq->inactive_works,
1792 struct work_struct, entry);
1793
1794 if (work && pwq_tryinc_nr_active(pwq, fill)) {
1795 __pwq_activate_work(pwq, work);
1796 return true;
1797 } else {
1798 return false;
1799 }
1800 }
1801
1802 /**
1803 * unplug_oldest_pwq - unplug the oldest pool_workqueue
1804 * @wq: workqueue_struct where its oldest pwq is to be unplugged
1805 *
1806 * This function should only be called for ordered workqueues where only the
1807 * oldest pwq is unplugged, the others are plugged to suspend execution to
1808 * ensure proper work item ordering::
1809 *
1810 * dfl_pwq --------------+ [P] - plugged
1811 * |
1812 * v
1813 * pwqs -> A -> B [P] -> C [P] (newest)
1814 * | | |
1815 * 1 3 5
1816 * | | |
1817 * 2 4 6
1818 *
1819 * When the oldest pwq is drained and removed, this function should be called
1820 * to unplug the next oldest one to start its work item execution. Note that
1821 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1822 * the list is the oldest.
1823 */
unplug_oldest_pwq(struct workqueue_struct * wq)1824 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1825 {
1826 struct pool_workqueue *pwq;
1827
1828 lockdep_assert_held(&wq->mutex);
1829
1830 /* Caller should make sure that pwqs isn't empty before calling */
1831 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1832 pwqs_node);
1833 raw_spin_lock_irq(&pwq->pool->lock);
1834 if (pwq->plugged) {
1835 pwq->plugged = false;
1836 if (pwq_activate_first_inactive(pwq, true))
1837 kick_pool(pwq->pool);
1838 }
1839 raw_spin_unlock_irq(&pwq->pool->lock);
1840 }
1841
1842 /**
1843 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1844 * @nna: wq_node_nr_active to activate a pending pwq for
1845 * @caller_pool: worker_pool the caller is locking
1846 *
1847 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1848 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1849 */
node_activate_pending_pwq(struct wq_node_nr_active * nna,struct worker_pool * caller_pool)1850 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1851 struct worker_pool *caller_pool)
1852 {
1853 struct worker_pool *locked_pool = caller_pool;
1854 struct pool_workqueue *pwq;
1855 struct work_struct *work;
1856
1857 lockdep_assert_held(&caller_pool->lock);
1858
1859 raw_spin_lock(&nna->lock);
1860 retry:
1861 pwq = list_first_entry_or_null(&nna->pending_pwqs,
1862 struct pool_workqueue, pending_node);
1863 if (!pwq)
1864 goto out_unlock;
1865
1866 /*
1867 * If @pwq is for a different pool than @locked_pool, we need to lock
1868 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1869 * / lock dance. For that, we also need to release @nna->lock as it's
1870 * nested inside pool locks.
1871 */
1872 if (pwq->pool != locked_pool) {
1873 raw_spin_unlock(&locked_pool->lock);
1874 locked_pool = pwq->pool;
1875 if (!raw_spin_trylock(&locked_pool->lock)) {
1876 raw_spin_unlock(&nna->lock);
1877 raw_spin_lock(&locked_pool->lock);
1878 raw_spin_lock(&nna->lock);
1879 goto retry;
1880 }
1881 }
1882
1883 /*
1884 * $pwq may not have any inactive work items due to e.g. cancellations.
1885 * Drop it from pending_pwqs and see if there's another one.
1886 */
1887 work = list_first_entry_or_null(&pwq->inactive_works,
1888 struct work_struct, entry);
1889 if (!work) {
1890 list_del_init(&pwq->pending_node);
1891 goto retry;
1892 }
1893
1894 /*
1895 * Acquire an nr_active count and activate the inactive work item. If
1896 * $pwq still has inactive work items, rotate it to the end of the
1897 * pending_pwqs so that we round-robin through them. This means that
1898 * inactive work items are not activated in queueing order which is fine
1899 * given that there has never been any ordering across different pwqs.
1900 */
1901 if (likely(tryinc_node_nr_active(nna))) {
1902 pwq->nr_active++;
1903 __pwq_activate_work(pwq, work);
1904
1905 if (list_empty(&pwq->inactive_works))
1906 list_del_init(&pwq->pending_node);
1907 else
1908 list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1909
1910 /* if activating a foreign pool, make sure it's running */
1911 if (pwq->pool != caller_pool)
1912 kick_pool(pwq->pool);
1913 }
1914
1915 out_unlock:
1916 raw_spin_unlock(&nna->lock);
1917 if (locked_pool != caller_pool) {
1918 raw_spin_unlock(&locked_pool->lock);
1919 raw_spin_lock(&caller_pool->lock);
1920 }
1921 }
1922
1923 /**
1924 * pwq_dec_nr_active - Retire an active count
1925 * @pwq: pool_workqueue of interest
1926 *
1927 * Decrement @pwq's nr_active and try to activate the first inactive work item.
1928 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1929 */
pwq_dec_nr_active(struct pool_workqueue * pwq)1930 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1931 {
1932 struct worker_pool *pool = pwq->pool;
1933 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1934
1935 lockdep_assert_held(&pool->lock);
1936
1937 /*
1938 * @pwq->nr_active should be decremented for both percpu and unbound
1939 * workqueues.
1940 */
1941 pwq->nr_active--;
1942
1943 /*
1944 * For a percpu workqueue, it's simple. Just need to kick the first
1945 * inactive work item on @pwq itself.
1946 */
1947 if (!nna) {
1948 pwq_activate_first_inactive(pwq, false);
1949 return;
1950 }
1951
1952 /*
1953 * If @pwq is for an unbound workqueue, it's more complicated because
1954 * multiple pwqs and pools may be sharing the nr_active count. When a
1955 * pwq needs to wait for an nr_active count, it puts itself on
1956 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1957 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1958 * guarantee that either we see non-empty pending_pwqs or they see
1959 * decremented $nna->nr.
1960 *
1961 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1962 * max_active gets updated. However, it is guaranteed to be equal to or
1963 * larger than @pwq->wq->min_active which is above zero unless freezing.
1964 * This maintains the forward progress guarantee.
1965 */
1966 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1967 return;
1968
1969 if (!list_empty(&nna->pending_pwqs))
1970 node_activate_pending_pwq(nna, pool);
1971 }
1972
1973 /**
1974 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1975 * @pwq: pwq of interest
1976 * @work_data: work_data of work which left the queue
1977 *
1978 * A work either has completed or is removed from pending queue,
1979 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1980 *
1981 * NOTE:
1982 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1983 * and thus should be called after all other state updates for the in-flight
1984 * work item is complete.
1985 *
1986 * CONTEXT:
1987 * raw_spin_lock_irq(pool->lock).
1988 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1989 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1990 {
1991 int color = get_work_color(work_data);
1992
1993 if (!(work_data & WORK_STRUCT_INACTIVE))
1994 pwq_dec_nr_active(pwq);
1995
1996 pwq->nr_in_flight[color]--;
1997
1998 /* is flush in progress and are we at the flushing tip? */
1999 if (likely(pwq->flush_color != color))
2000 goto out_put;
2001
2002 /* are there still in-flight works? */
2003 if (pwq->nr_in_flight[color])
2004 goto out_put;
2005
2006 /* this pwq is done, clear flush_color */
2007 pwq->flush_color = -1;
2008
2009 /*
2010 * If this was the last pwq, wake up the first flusher. It
2011 * will handle the rest.
2012 */
2013 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2014 complete(&pwq->wq->first_flusher->done);
2015 out_put:
2016 put_pwq(pwq);
2017 }
2018
2019 /**
2020 * try_to_grab_pending - steal work item from worklist and disable irq
2021 * @work: work item to steal
2022 * @cflags: %WORK_CANCEL_ flags
2023 * @irq_flags: place to store irq state
2024 *
2025 * Try to grab PENDING bit of @work. This function can handle @work in any
2026 * stable state - idle, on timer or on worklist.
2027 *
2028 * Return:
2029 *
2030 * ======== ================================================================
2031 * 1 if @work was pending and we successfully stole PENDING
2032 * 0 if @work was idle and we claimed PENDING
2033 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
2034 * ======== ================================================================
2035 *
2036 * Note:
2037 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
2038 * interrupted while holding PENDING and @work off queue, irq must be
2039 * disabled on entry. This, combined with delayed_work->timer being
2040 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2041 *
2042 * On successful return, >= 0, irq is disabled and the caller is
2043 * responsible for releasing it using local_irq_restore(*@irq_flags).
2044 *
2045 * This function is safe to call from any context including IRQ handler.
2046 */
try_to_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2047 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2048 unsigned long *irq_flags)
2049 {
2050 struct worker_pool *pool;
2051 struct pool_workqueue *pwq;
2052
2053 local_irq_save(*irq_flags);
2054
2055 /* try to steal the timer if it exists */
2056 if (cflags & WORK_CANCEL_DELAYED) {
2057 struct delayed_work *dwork = to_delayed_work(work);
2058
2059 /*
2060 * dwork->timer is irqsafe. If del_timer() fails, it's
2061 * guaranteed that the timer is not queued anywhere and not
2062 * running on the local CPU.
2063 */
2064 if (likely(del_timer(&dwork->timer)))
2065 return 1;
2066 }
2067
2068 /* try to claim PENDING the normal way */
2069 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2070 return 0;
2071
2072 rcu_read_lock();
2073 /*
2074 * The queueing is in progress, or it is already queued. Try to
2075 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2076 */
2077 pool = get_work_pool(work);
2078 if (!pool)
2079 goto fail;
2080
2081 raw_spin_lock(&pool->lock);
2082 /*
2083 * work->data is guaranteed to point to pwq only while the work
2084 * item is queued on pwq->wq, and both updating work->data to point
2085 * to pwq on queueing and to pool on dequeueing are done under
2086 * pwq->pool->lock. This in turn guarantees that, if work->data
2087 * points to pwq which is associated with a locked pool, the work
2088 * item is currently queued on that pool.
2089 */
2090 pwq = get_work_pwq(work);
2091 if (pwq && pwq->pool == pool) {
2092 unsigned long work_data = *work_data_bits(work);
2093
2094 debug_work_deactivate(work);
2095
2096 /*
2097 * A cancelable inactive work item must be in the
2098 * pwq->inactive_works since a queued barrier can't be
2099 * canceled (see the comments in insert_wq_barrier()).
2100 *
2101 * An inactive work item cannot be deleted directly because
2102 * it might have linked barrier work items which, if left
2103 * on the inactive_works list, will confuse pwq->nr_active
2104 * management later on and cause stall. Move the linked
2105 * barrier work items to the worklist when deleting the grabbed
2106 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2107 * it doesn't participate in nr_active management in later
2108 * pwq_dec_nr_in_flight().
2109 */
2110 if (work_data & WORK_STRUCT_INACTIVE)
2111 move_linked_works(work, &pwq->pool->worklist, NULL);
2112
2113 list_del_init(&work->entry);
2114
2115 /*
2116 * work->data points to pwq iff queued. Let's point to pool. As
2117 * this destroys work->data needed by the next step, stash it.
2118 */
2119 set_work_pool_and_keep_pending(work, pool->id,
2120 pool_offq_flags(pool));
2121
2122 /* must be the last step, see the function comment */
2123 pwq_dec_nr_in_flight(pwq, work_data);
2124
2125 raw_spin_unlock(&pool->lock);
2126 rcu_read_unlock();
2127 return 1;
2128 }
2129 raw_spin_unlock(&pool->lock);
2130 fail:
2131 rcu_read_unlock();
2132 local_irq_restore(*irq_flags);
2133 return -EAGAIN;
2134 }
2135
2136 /**
2137 * work_grab_pending - steal work item from worklist and disable irq
2138 * @work: work item to steal
2139 * @cflags: %WORK_CANCEL_ flags
2140 * @irq_flags: place to store IRQ state
2141 *
2142 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2143 * or on worklist.
2144 *
2145 * Can be called from any context. IRQ is disabled on return with IRQ state
2146 * stored in *@irq_flags. The caller is responsible for re-enabling it using
2147 * local_irq_restore().
2148 *
2149 * Returns %true if @work was pending. %false if idle.
2150 */
work_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2151 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2152 unsigned long *irq_flags)
2153 {
2154 int ret;
2155
2156 while (true) {
2157 ret = try_to_grab_pending(work, cflags, irq_flags);
2158 if (ret >= 0)
2159 return ret;
2160 cpu_relax();
2161 }
2162 }
2163
2164 /**
2165 * insert_work - insert a work into a pool
2166 * @pwq: pwq @work belongs to
2167 * @work: work to insert
2168 * @head: insertion point
2169 * @extra_flags: extra WORK_STRUCT_* flags to set
2170 *
2171 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
2172 * work_struct flags.
2173 *
2174 * CONTEXT:
2175 * raw_spin_lock_irq(pool->lock).
2176 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)2177 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2178 struct list_head *head, unsigned int extra_flags)
2179 {
2180 debug_work_activate(work);
2181
2182 /* record the work call stack in order to print it in KASAN reports */
2183 kasan_record_aux_stack_noalloc(work);
2184
2185 /* we own @work, set data and link */
2186 set_work_pwq(work, pwq, extra_flags);
2187 list_add_tail(&work->entry, head);
2188 get_pwq(pwq);
2189 }
2190
2191 /*
2192 * Test whether @work is being queued from another work executing on the
2193 * same workqueue.
2194 */
is_chained_work(struct workqueue_struct * wq)2195 static bool is_chained_work(struct workqueue_struct *wq)
2196 {
2197 struct worker *worker;
2198
2199 worker = current_wq_worker();
2200 /*
2201 * Return %true iff I'm a worker executing a work item on @wq. If
2202 * I'm @worker, it's safe to dereference it without locking.
2203 */
2204 return worker && worker->current_pwq->wq == wq;
2205 }
2206
2207 /*
2208 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2209 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
2210 * avoid perturbing sensitive tasks.
2211 */
wq_select_unbound_cpu(int cpu)2212 static int wq_select_unbound_cpu(int cpu)
2213 {
2214 int new_cpu;
2215
2216 if (likely(!wq_debug_force_rr_cpu)) {
2217 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2218 return cpu;
2219 } else {
2220 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2221 }
2222
2223 new_cpu = __this_cpu_read(wq_rr_cpu_last);
2224 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2225 if (unlikely(new_cpu >= nr_cpu_ids)) {
2226 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2227 if (unlikely(new_cpu >= nr_cpu_ids))
2228 return cpu;
2229 }
2230 __this_cpu_write(wq_rr_cpu_last, new_cpu);
2231
2232 return new_cpu;
2233 }
2234
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)2235 static void __queue_work(int cpu, struct workqueue_struct *wq,
2236 struct work_struct *work)
2237 {
2238 struct pool_workqueue *pwq;
2239 struct worker_pool *last_pool, *pool;
2240 unsigned int work_flags;
2241 unsigned int req_cpu = cpu;
2242
2243 /*
2244 * While a work item is PENDING && off queue, a task trying to
2245 * steal the PENDING will busy-loop waiting for it to either get
2246 * queued or lose PENDING. Grabbing PENDING and queueing should
2247 * happen with IRQ disabled.
2248 */
2249 lockdep_assert_irqs_disabled();
2250
2251 /*
2252 * For a draining wq, only works from the same workqueue are
2253 * allowed. The __WQ_DESTROYING helps to spot the issue that
2254 * queues a new work item to a wq after destroy_workqueue(wq).
2255 */
2256 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2257 WARN_ON_ONCE(!is_chained_work(wq))))
2258 return;
2259 rcu_read_lock();
2260 retry:
2261 /* pwq which will be used unless @work is executing elsewhere */
2262 if (req_cpu == WORK_CPU_UNBOUND) {
2263 if (wq->flags & WQ_UNBOUND)
2264 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2265 else
2266 cpu = raw_smp_processor_id();
2267 }
2268
2269 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2270 pool = pwq->pool;
2271
2272 /*
2273 * If @work was previously on a different pool, it might still be
2274 * running there, in which case the work needs to be queued on that
2275 * pool to guarantee non-reentrancy.
2276 *
2277 * For ordered workqueue, work items must be queued on the newest pwq
2278 * for accurate order management. Guaranteed order also guarantees
2279 * non-reentrancy. See the comments above unplug_oldest_pwq().
2280 */
2281 last_pool = get_work_pool(work);
2282 if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2283 struct worker *worker;
2284
2285 raw_spin_lock(&last_pool->lock);
2286
2287 worker = find_worker_executing_work(last_pool, work);
2288
2289 if (worker && worker->current_pwq->wq == wq) {
2290 pwq = worker->current_pwq;
2291 pool = pwq->pool;
2292 WARN_ON_ONCE(pool != last_pool);
2293 } else {
2294 /* meh... not running there, queue here */
2295 raw_spin_unlock(&last_pool->lock);
2296 raw_spin_lock(&pool->lock);
2297 }
2298 } else {
2299 raw_spin_lock(&pool->lock);
2300 }
2301
2302 /*
2303 * pwq is determined and locked. For unbound pools, we could have raced
2304 * with pwq release and it could already be dead. If its refcnt is zero,
2305 * repeat pwq selection. Note that unbound pwqs never die without
2306 * another pwq replacing it in cpu_pwq or while work items are executing
2307 * on it, so the retrying is guaranteed to make forward-progress.
2308 */
2309 if (unlikely(!pwq->refcnt)) {
2310 if (wq->flags & WQ_UNBOUND) {
2311 raw_spin_unlock(&pool->lock);
2312 cpu_relax();
2313 goto retry;
2314 }
2315 /* oops */
2316 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2317 wq->name, cpu);
2318 }
2319
2320 /* pwq determined, queue */
2321 trace_workqueue_queue_work(req_cpu, pwq, work);
2322
2323 if (WARN_ON(!list_empty(&work->entry)))
2324 goto out;
2325
2326 pwq->nr_in_flight[pwq->work_color]++;
2327 work_flags = work_color_to_flags(pwq->work_color);
2328
2329 /*
2330 * Limit the number of concurrently active work items to max_active.
2331 * @work must also queue behind existing inactive work items to maintain
2332 * ordering when max_active changes. See wq_adjust_max_active().
2333 */
2334 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2335 if (list_empty(&pool->worklist))
2336 pool->watchdog_ts = jiffies;
2337
2338 trace_workqueue_activate_work(work);
2339 insert_work(pwq, work, &pool->worklist, work_flags);
2340 kick_pool(pool);
2341 } else {
2342 work_flags |= WORK_STRUCT_INACTIVE;
2343 insert_work(pwq, work, &pwq->inactive_works, work_flags);
2344 }
2345
2346 out:
2347 raw_spin_unlock(&pool->lock);
2348 rcu_read_unlock();
2349 }
2350
clear_pending_if_disabled(struct work_struct * work)2351 static bool clear_pending_if_disabled(struct work_struct *work)
2352 {
2353 unsigned long data = *work_data_bits(work);
2354 struct work_offq_data offqd;
2355
2356 if (likely((data & WORK_STRUCT_PWQ) ||
2357 !(data & WORK_OFFQ_DISABLE_MASK)))
2358 return false;
2359
2360 work_offqd_unpack(&offqd, data);
2361 set_work_pool_and_clear_pending(work, offqd.pool_id,
2362 work_offqd_pack_flags(&offqd));
2363 return true;
2364 }
2365
2366 /**
2367 * queue_work_on - queue work on specific cpu
2368 * @cpu: CPU number to execute work on
2369 * @wq: workqueue to use
2370 * @work: work to queue
2371 *
2372 * We queue the work to a specific CPU, the caller must ensure it
2373 * can't go away. Callers that fail to ensure that the specified
2374 * CPU cannot go away will execute on a randomly chosen CPU.
2375 * But note well that callers specifying a CPU that never has been
2376 * online will get a splat.
2377 *
2378 * Return: %false if @work was already on a queue, %true otherwise.
2379 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)2380 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2381 struct work_struct *work)
2382 {
2383 bool ret = false;
2384 unsigned long irq_flags;
2385
2386 local_irq_save(irq_flags);
2387
2388 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2389 !clear_pending_if_disabled(work)) {
2390 __queue_work(cpu, wq, work);
2391 ret = true;
2392 }
2393
2394 local_irq_restore(irq_flags);
2395 return ret;
2396 }
2397 EXPORT_SYMBOL(queue_work_on);
2398
2399 /**
2400 * select_numa_node_cpu - Select a CPU based on NUMA node
2401 * @node: NUMA node ID that we want to select a CPU from
2402 *
2403 * This function will attempt to find a "random" cpu available on a given
2404 * node. If there are no CPUs available on the given node it will return
2405 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2406 * available CPU if we need to schedule this work.
2407 */
select_numa_node_cpu(int node)2408 static int select_numa_node_cpu(int node)
2409 {
2410 int cpu;
2411
2412 /* Delay binding to CPU if node is not valid or online */
2413 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2414 return WORK_CPU_UNBOUND;
2415
2416 /* Use local node/cpu if we are already there */
2417 cpu = raw_smp_processor_id();
2418 if (node == cpu_to_node(cpu))
2419 return cpu;
2420
2421 /* Use "random" otherwise know as "first" online CPU of node */
2422 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2423
2424 /* If CPU is valid return that, otherwise just defer */
2425 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2426 }
2427
2428 /**
2429 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2430 * @node: NUMA node that we are targeting the work for
2431 * @wq: workqueue to use
2432 * @work: work to queue
2433 *
2434 * We queue the work to a "random" CPU within a given NUMA node. The basic
2435 * idea here is to provide a way to somehow associate work with a given
2436 * NUMA node.
2437 *
2438 * This function will only make a best effort attempt at getting this onto
2439 * the right NUMA node. If no node is requested or the requested node is
2440 * offline then we just fall back to standard queue_work behavior.
2441 *
2442 * Currently the "random" CPU ends up being the first available CPU in the
2443 * intersection of cpu_online_mask and the cpumask of the node, unless we
2444 * are running on the node. In that case we just use the current CPU.
2445 *
2446 * Return: %false if @work was already on a queue, %true otherwise.
2447 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)2448 bool queue_work_node(int node, struct workqueue_struct *wq,
2449 struct work_struct *work)
2450 {
2451 unsigned long irq_flags;
2452 bool ret = false;
2453
2454 /*
2455 * This current implementation is specific to unbound workqueues.
2456 * Specifically we only return the first available CPU for a given
2457 * node instead of cycling through individual CPUs within the node.
2458 *
2459 * If this is used with a per-cpu workqueue then the logic in
2460 * workqueue_select_cpu_near would need to be updated to allow for
2461 * some round robin type logic.
2462 */
2463 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2464
2465 local_irq_save(irq_flags);
2466
2467 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2468 !clear_pending_if_disabled(work)) {
2469 int cpu = select_numa_node_cpu(node);
2470
2471 __queue_work(cpu, wq, work);
2472 ret = true;
2473 }
2474
2475 local_irq_restore(irq_flags);
2476 return ret;
2477 }
2478 EXPORT_SYMBOL_GPL(queue_work_node);
2479
delayed_work_timer_fn(struct timer_list * t)2480 void delayed_work_timer_fn(struct timer_list *t)
2481 {
2482 struct delayed_work *dwork = from_timer(dwork, t, timer);
2483
2484 /* should have been called from irqsafe timer with irq already off */
2485 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2486 }
2487 EXPORT_SYMBOL(delayed_work_timer_fn);
2488
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2489 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2490 struct delayed_work *dwork, unsigned long delay)
2491 {
2492 struct timer_list *timer = &dwork->timer;
2493 struct work_struct *work = &dwork->work;
2494
2495 WARN_ON_ONCE(!wq);
2496 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2497 WARN_ON_ONCE(timer_pending(timer));
2498 WARN_ON_ONCE(!list_empty(&work->entry));
2499
2500 /*
2501 * If @delay is 0, queue @dwork->work immediately. This is for
2502 * both optimization and correctness. The earliest @timer can
2503 * expire is on the closest next tick and delayed_work users depend
2504 * on that there's no such delay when @delay is 0.
2505 */
2506 if (!delay) {
2507 __queue_work(cpu, wq, &dwork->work);
2508 return;
2509 }
2510
2511 dwork->wq = wq;
2512 dwork->cpu = cpu;
2513 timer->expires = jiffies + delay;
2514
2515 if (housekeeping_enabled(HK_TYPE_TIMER)) {
2516 /* If the current cpu is a housekeeping cpu, use it. */
2517 cpu = smp_processor_id();
2518 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2519 cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2520 add_timer_on(timer, cpu);
2521 } else {
2522 if (likely(cpu == WORK_CPU_UNBOUND))
2523 add_timer_global(timer);
2524 else
2525 add_timer_on(timer, cpu);
2526 }
2527 }
2528
2529 /**
2530 * queue_delayed_work_on - queue work on specific CPU after delay
2531 * @cpu: CPU number to execute work on
2532 * @wq: workqueue to use
2533 * @dwork: work to queue
2534 * @delay: number of jiffies to wait before queueing
2535 *
2536 * Return: %false if @work was already on a queue, %true otherwise. If
2537 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2538 * execution.
2539 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2540 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2541 struct delayed_work *dwork, unsigned long delay)
2542 {
2543 struct work_struct *work = &dwork->work;
2544 bool ret = false;
2545 unsigned long irq_flags;
2546
2547 /* read the comment in __queue_work() */
2548 local_irq_save(irq_flags);
2549
2550 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2551 !clear_pending_if_disabled(work)) {
2552 __queue_delayed_work(cpu, wq, dwork, delay);
2553 ret = true;
2554 }
2555
2556 local_irq_restore(irq_flags);
2557 return ret;
2558 }
2559 EXPORT_SYMBOL(queue_delayed_work_on);
2560
2561 /**
2562 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2563 * @cpu: CPU number to execute work on
2564 * @wq: workqueue to use
2565 * @dwork: work to queue
2566 * @delay: number of jiffies to wait before queueing
2567 *
2568 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2569 * modify @dwork's timer so that it expires after @delay. If @delay is
2570 * zero, @work is guaranteed to be scheduled immediately regardless of its
2571 * current state.
2572 *
2573 * Return: %false if @dwork was idle and queued, %true if @dwork was
2574 * pending and its timer was modified.
2575 *
2576 * This function is safe to call from any context including IRQ handler.
2577 * See try_to_grab_pending() for details.
2578 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2579 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2580 struct delayed_work *dwork, unsigned long delay)
2581 {
2582 unsigned long irq_flags;
2583 bool ret;
2584
2585 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2586
2587 if (!clear_pending_if_disabled(&dwork->work))
2588 __queue_delayed_work(cpu, wq, dwork, delay);
2589
2590 local_irq_restore(irq_flags);
2591 return ret;
2592 }
2593 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2594
rcu_work_rcufn(struct rcu_head * rcu)2595 static void rcu_work_rcufn(struct rcu_head *rcu)
2596 {
2597 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2598
2599 /* read the comment in __queue_work() */
2600 local_irq_disable();
2601 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2602 local_irq_enable();
2603 }
2604
2605 /**
2606 * queue_rcu_work - queue work after a RCU grace period
2607 * @wq: workqueue to use
2608 * @rwork: work to queue
2609 *
2610 * Return: %false if @rwork was already pending, %true otherwise. Note
2611 * that a full RCU grace period is guaranteed only after a %true return.
2612 * While @rwork is guaranteed to be executed after a %false return, the
2613 * execution may happen before a full RCU grace period has passed.
2614 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)2615 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2616 {
2617 struct work_struct *work = &rwork->work;
2618
2619 /*
2620 * rcu_work can't be canceled or disabled. Warn if the user reached
2621 * inside @rwork and disabled the inner work.
2622 */
2623 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2624 !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2625 rwork->wq = wq;
2626 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2627 return true;
2628 }
2629
2630 return false;
2631 }
2632 EXPORT_SYMBOL(queue_rcu_work);
2633
alloc_worker(int node)2634 static struct worker *alloc_worker(int node)
2635 {
2636 struct worker *worker;
2637
2638 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2639 if (worker) {
2640 INIT_LIST_HEAD(&worker->entry);
2641 INIT_LIST_HEAD(&worker->scheduled);
2642 INIT_LIST_HEAD(&worker->node);
2643 /* on creation a worker is in !idle && prep state */
2644 worker->flags = WORKER_PREP;
2645 }
2646 return worker;
2647 }
2648
pool_allowed_cpus(struct worker_pool * pool)2649 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2650 {
2651 if (pool->cpu < 0 && pool->attrs->affn_strict)
2652 return pool->attrs->__pod_cpumask;
2653 else
2654 return pool->attrs->cpumask;
2655 }
2656
2657 /**
2658 * worker_attach_to_pool() - attach a worker to a pool
2659 * @worker: worker to be attached
2660 * @pool: the target pool
2661 *
2662 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2663 * cpu-binding of @worker are kept coordinated with the pool across
2664 * cpu-[un]hotplugs.
2665 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)2666 static void worker_attach_to_pool(struct worker *worker,
2667 struct worker_pool *pool)
2668 {
2669 mutex_lock(&wq_pool_attach_mutex);
2670
2671 /*
2672 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2673 * across this function. See the comments above the flag definition for
2674 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2675 */
2676 if (pool->flags & POOL_DISASSOCIATED) {
2677 worker->flags |= WORKER_UNBOUND;
2678 } else {
2679 WARN_ON_ONCE(pool->flags & POOL_BH);
2680 kthread_set_per_cpu(worker->task, pool->cpu);
2681 }
2682
2683 if (worker->rescue_wq)
2684 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2685
2686 list_add_tail(&worker->node, &pool->workers);
2687 worker->pool = pool;
2688
2689 mutex_unlock(&wq_pool_attach_mutex);
2690 }
2691
unbind_worker(struct worker * worker)2692 static void unbind_worker(struct worker *worker)
2693 {
2694 lockdep_assert_held(&wq_pool_attach_mutex);
2695
2696 kthread_set_per_cpu(worker->task, -1);
2697 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2698 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2699 else
2700 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2701 }
2702
2703
detach_worker(struct worker * worker)2704 static void detach_worker(struct worker *worker)
2705 {
2706 lockdep_assert_held(&wq_pool_attach_mutex);
2707
2708 unbind_worker(worker);
2709 list_del(&worker->node);
2710 }
2711
2712 /**
2713 * worker_detach_from_pool() - detach a worker from its pool
2714 * @worker: worker which is attached to its pool
2715 *
2716 * Undo the attaching which had been done in worker_attach_to_pool(). The
2717 * caller worker shouldn't access to the pool after detached except it has
2718 * other reference to the pool.
2719 */
worker_detach_from_pool(struct worker * worker)2720 static void worker_detach_from_pool(struct worker *worker)
2721 {
2722 struct worker_pool *pool = worker->pool;
2723
2724 /* there is one permanent BH worker per CPU which should never detach */
2725 WARN_ON_ONCE(pool->flags & POOL_BH);
2726
2727 mutex_lock(&wq_pool_attach_mutex);
2728 detach_worker(worker);
2729 worker->pool = NULL;
2730 mutex_unlock(&wq_pool_attach_mutex);
2731
2732 /* clear leftover flags without pool->lock after it is detached */
2733 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2734 }
2735
format_worker_id(char * buf,size_t size,struct worker * worker,struct worker_pool * pool)2736 static int format_worker_id(char *buf, size_t size, struct worker *worker,
2737 struct worker_pool *pool)
2738 {
2739 if (worker->rescue_wq)
2740 return scnprintf(buf, size, "kworker/R-%s",
2741 worker->rescue_wq->name);
2742
2743 if (pool) {
2744 if (pool->cpu >= 0)
2745 return scnprintf(buf, size, "kworker/%d:%d%s",
2746 pool->cpu, worker->id,
2747 pool->attrs->nice < 0 ? "H" : "");
2748 else
2749 return scnprintf(buf, size, "kworker/u%d:%d",
2750 pool->id, worker->id);
2751 } else {
2752 return scnprintf(buf, size, "kworker/dying");
2753 }
2754 }
2755
2756 /**
2757 * create_worker - create a new workqueue worker
2758 * @pool: pool the new worker will belong to
2759 *
2760 * Create and start a new worker which is attached to @pool.
2761 *
2762 * CONTEXT:
2763 * Might sleep. Does GFP_KERNEL allocations.
2764 *
2765 * Return:
2766 * Pointer to the newly created worker.
2767 */
create_worker(struct worker_pool * pool)2768 static struct worker *create_worker(struct worker_pool *pool)
2769 {
2770 struct worker *worker;
2771 int id;
2772
2773 /* ID is needed to determine kthread name */
2774 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2775 if (id < 0) {
2776 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2777 ERR_PTR(id));
2778 return NULL;
2779 }
2780
2781 worker = alloc_worker(pool->node);
2782 if (!worker) {
2783 pr_err_once("workqueue: Failed to allocate a worker\n");
2784 goto fail;
2785 }
2786
2787 worker->id = id;
2788
2789 if (!(pool->flags & POOL_BH)) {
2790 char id_buf[WORKER_ID_LEN];
2791
2792 format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2793 worker->task = kthread_create_on_node(worker_thread, worker,
2794 pool->node, "%s", id_buf);
2795 if (IS_ERR(worker->task)) {
2796 if (PTR_ERR(worker->task) == -EINTR) {
2797 pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2798 id_buf);
2799 } else {
2800 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2801 worker->task);
2802 }
2803 goto fail;
2804 }
2805
2806 set_user_nice(worker->task, pool->attrs->nice);
2807 kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2808 }
2809
2810 /* successful, attach the worker to the pool */
2811 worker_attach_to_pool(worker, pool);
2812
2813 /* start the newly created worker */
2814 raw_spin_lock_irq(&pool->lock);
2815
2816 worker->pool->nr_workers++;
2817 worker_enter_idle(worker);
2818
2819 /*
2820 * @worker is waiting on a completion in kthread() and will trigger hung
2821 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2822 * wake it up explicitly.
2823 */
2824 if (worker->task)
2825 wake_up_process(worker->task);
2826
2827 raw_spin_unlock_irq(&pool->lock);
2828
2829 return worker;
2830
2831 fail:
2832 ida_free(&pool->worker_ida, id);
2833 kfree(worker);
2834 return NULL;
2835 }
2836
detach_dying_workers(struct list_head * cull_list)2837 static void detach_dying_workers(struct list_head *cull_list)
2838 {
2839 struct worker *worker;
2840
2841 list_for_each_entry(worker, cull_list, entry)
2842 detach_worker(worker);
2843 }
2844
reap_dying_workers(struct list_head * cull_list)2845 static void reap_dying_workers(struct list_head *cull_list)
2846 {
2847 struct worker *worker, *tmp;
2848
2849 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2850 list_del_init(&worker->entry);
2851 kthread_stop_put(worker->task);
2852 kfree(worker);
2853 }
2854 }
2855
2856 /**
2857 * set_worker_dying - Tag a worker for destruction
2858 * @worker: worker to be destroyed
2859 * @list: transfer worker away from its pool->idle_list and into list
2860 *
2861 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2862 * should be idle.
2863 *
2864 * CONTEXT:
2865 * raw_spin_lock_irq(pool->lock).
2866 */
set_worker_dying(struct worker * worker,struct list_head * list)2867 static void set_worker_dying(struct worker *worker, struct list_head *list)
2868 {
2869 struct worker_pool *pool = worker->pool;
2870
2871 lockdep_assert_held(&pool->lock);
2872 lockdep_assert_held(&wq_pool_attach_mutex);
2873
2874 /* sanity check frenzy */
2875 if (WARN_ON(worker->current_work) ||
2876 WARN_ON(!list_empty(&worker->scheduled)) ||
2877 WARN_ON(!(worker->flags & WORKER_IDLE)))
2878 return;
2879
2880 pool->nr_workers--;
2881 pool->nr_idle--;
2882
2883 worker->flags |= WORKER_DIE;
2884
2885 list_move(&worker->entry, list);
2886
2887 /* get an extra task struct reference for later kthread_stop_put() */
2888 get_task_struct(worker->task);
2889 }
2890
2891 /**
2892 * idle_worker_timeout - check if some idle workers can now be deleted.
2893 * @t: The pool's idle_timer that just expired
2894 *
2895 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2896 * worker_leave_idle(), as a worker flicking between idle and active while its
2897 * pool is at the too_many_workers() tipping point would cause too much timer
2898 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2899 * it expire and re-evaluate things from there.
2900 */
idle_worker_timeout(struct timer_list * t)2901 static void idle_worker_timeout(struct timer_list *t)
2902 {
2903 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2904 bool do_cull = false;
2905
2906 if (work_pending(&pool->idle_cull_work))
2907 return;
2908
2909 raw_spin_lock_irq(&pool->lock);
2910
2911 if (too_many_workers(pool)) {
2912 struct worker *worker;
2913 unsigned long expires;
2914
2915 /* idle_list is kept in LIFO order, check the last one */
2916 worker = list_last_entry(&pool->idle_list, struct worker, entry);
2917 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2918 do_cull = !time_before(jiffies, expires);
2919
2920 if (!do_cull)
2921 mod_timer(&pool->idle_timer, expires);
2922 }
2923 raw_spin_unlock_irq(&pool->lock);
2924
2925 if (do_cull)
2926 queue_work(system_unbound_wq, &pool->idle_cull_work);
2927 }
2928
2929 /**
2930 * idle_cull_fn - cull workers that have been idle for too long.
2931 * @work: the pool's work for handling these idle workers
2932 *
2933 * This goes through a pool's idle workers and gets rid of those that have been
2934 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2935 *
2936 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2937 * culled, so this also resets worker affinity. This requires a sleepable
2938 * context, hence the split between timer callback and work item.
2939 */
idle_cull_fn(struct work_struct * work)2940 static void idle_cull_fn(struct work_struct *work)
2941 {
2942 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2943 LIST_HEAD(cull_list);
2944
2945 /*
2946 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2947 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2948 * This is required as a previously-preempted worker could run after
2949 * set_worker_dying() has happened but before detach_dying_workers() did.
2950 */
2951 mutex_lock(&wq_pool_attach_mutex);
2952 raw_spin_lock_irq(&pool->lock);
2953
2954 while (too_many_workers(pool)) {
2955 struct worker *worker;
2956 unsigned long expires;
2957
2958 worker = list_last_entry(&pool->idle_list, struct worker, entry);
2959 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2960
2961 if (time_before(jiffies, expires)) {
2962 mod_timer(&pool->idle_timer, expires);
2963 break;
2964 }
2965
2966 set_worker_dying(worker, &cull_list);
2967 }
2968
2969 raw_spin_unlock_irq(&pool->lock);
2970 detach_dying_workers(&cull_list);
2971 mutex_unlock(&wq_pool_attach_mutex);
2972
2973 reap_dying_workers(&cull_list);
2974 }
2975
send_mayday(struct work_struct * work)2976 static void send_mayday(struct work_struct *work)
2977 {
2978 struct pool_workqueue *pwq = get_work_pwq(work);
2979 struct workqueue_struct *wq = pwq->wq;
2980
2981 lockdep_assert_held(&wq_mayday_lock);
2982
2983 if (!wq->rescuer)
2984 return;
2985
2986 /* mayday mayday mayday */
2987 if (list_empty(&pwq->mayday_node)) {
2988 /*
2989 * If @pwq is for an unbound wq, its base ref may be put at
2990 * any time due to an attribute change. Pin @pwq until the
2991 * rescuer is done with it.
2992 */
2993 get_pwq(pwq);
2994 list_add_tail(&pwq->mayday_node, &wq->maydays);
2995 wake_up_process(wq->rescuer->task);
2996 pwq->stats[PWQ_STAT_MAYDAY]++;
2997 }
2998 }
2999
pool_mayday_timeout(struct timer_list * t)3000 static void pool_mayday_timeout(struct timer_list *t)
3001 {
3002 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3003 struct work_struct *work;
3004
3005 raw_spin_lock_irq(&pool->lock);
3006 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
3007
3008 if (need_to_create_worker(pool)) {
3009 /*
3010 * We've been trying to create a new worker but
3011 * haven't been successful. We might be hitting an
3012 * allocation deadlock. Send distress signals to
3013 * rescuers.
3014 */
3015 list_for_each_entry(work, &pool->worklist, entry)
3016 send_mayday(work);
3017 }
3018
3019 raw_spin_unlock(&wq_mayday_lock);
3020 raw_spin_unlock_irq(&pool->lock);
3021
3022 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3023 }
3024
3025 /**
3026 * maybe_create_worker - create a new worker if necessary
3027 * @pool: pool to create a new worker for
3028 *
3029 * Create a new worker for @pool if necessary. @pool is guaranteed to
3030 * have at least one idle worker on return from this function. If
3031 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3032 * sent to all rescuers with works scheduled on @pool to resolve
3033 * possible allocation deadlock.
3034 *
3035 * On return, need_to_create_worker() is guaranteed to be %false and
3036 * may_start_working() %true.
3037 *
3038 * LOCKING:
3039 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3040 * multiple times. Does GFP_KERNEL allocations. Called only from
3041 * manager.
3042 */
maybe_create_worker(struct worker_pool * pool)3043 static void maybe_create_worker(struct worker_pool *pool)
3044 __releases(&pool->lock)
3045 __acquires(&pool->lock)
3046 {
3047 restart:
3048 raw_spin_unlock_irq(&pool->lock);
3049
3050 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3051 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3052
3053 while (true) {
3054 if (create_worker(pool) || !need_to_create_worker(pool))
3055 break;
3056
3057 schedule_timeout_interruptible(CREATE_COOLDOWN);
3058
3059 if (!need_to_create_worker(pool))
3060 break;
3061 }
3062
3063 del_timer_sync(&pool->mayday_timer);
3064 raw_spin_lock_irq(&pool->lock);
3065 /*
3066 * This is necessary even after a new worker was just successfully
3067 * created as @pool->lock was dropped and the new worker might have
3068 * already become busy.
3069 */
3070 if (need_to_create_worker(pool))
3071 goto restart;
3072 }
3073
3074 /**
3075 * manage_workers - manage worker pool
3076 * @worker: self
3077 *
3078 * Assume the manager role and manage the worker pool @worker belongs
3079 * to. At any given time, there can be only zero or one manager per
3080 * pool. The exclusion is handled automatically by this function.
3081 *
3082 * The caller can safely start processing works on false return. On
3083 * true return, it's guaranteed that need_to_create_worker() is false
3084 * and may_start_working() is true.
3085 *
3086 * CONTEXT:
3087 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3088 * multiple times. Does GFP_KERNEL allocations.
3089 *
3090 * Return:
3091 * %false if the pool doesn't need management and the caller can safely
3092 * start processing works, %true if management function was performed and
3093 * the conditions that the caller verified before calling the function may
3094 * no longer be true.
3095 */
manage_workers(struct worker * worker)3096 static bool manage_workers(struct worker *worker)
3097 {
3098 struct worker_pool *pool = worker->pool;
3099
3100 if (pool->flags & POOL_MANAGER_ACTIVE)
3101 return false;
3102
3103 pool->flags |= POOL_MANAGER_ACTIVE;
3104 pool->manager = worker;
3105
3106 maybe_create_worker(pool);
3107
3108 pool->manager = NULL;
3109 pool->flags &= ~POOL_MANAGER_ACTIVE;
3110 rcuwait_wake_up(&manager_wait);
3111 return true;
3112 }
3113
3114 /**
3115 * process_one_work - process single work
3116 * @worker: self
3117 * @work: work to process
3118 *
3119 * Process @work. This function contains all the logics necessary to
3120 * process a single work including synchronization against and
3121 * interaction with other workers on the same cpu, queueing and
3122 * flushing. As long as context requirement is met, any worker can
3123 * call this function to process a work.
3124 *
3125 * CONTEXT:
3126 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3127 */
process_one_work(struct worker * worker,struct work_struct * work)3128 static void process_one_work(struct worker *worker, struct work_struct *work)
3129 __releases(&pool->lock)
3130 __acquires(&pool->lock)
3131 {
3132 struct pool_workqueue *pwq = get_work_pwq(work);
3133 struct worker_pool *pool = worker->pool;
3134 unsigned long work_data;
3135 int lockdep_start_depth, rcu_start_depth;
3136 bool bh_draining = pool->flags & POOL_BH_DRAINING;
3137 #ifdef CONFIG_LOCKDEP
3138 /*
3139 * It is permissible to free the struct work_struct from
3140 * inside the function that is called from it, this we need to
3141 * take into account for lockdep too. To avoid bogus "held
3142 * lock freed" warnings as well as problems when looking into
3143 * work->lockdep_map, make a copy and use that here.
3144 */
3145 struct lockdep_map lockdep_map;
3146
3147 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3148 #endif
3149 /* ensure we're on the correct CPU */
3150 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3151 raw_smp_processor_id() != pool->cpu);
3152
3153 /* claim and dequeue */
3154 debug_work_deactivate(work);
3155 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3156 worker->current_work = work;
3157 worker->current_func = work->func;
3158 worker->current_pwq = pwq;
3159 if (worker->task)
3160 worker->current_at = worker->task->se.sum_exec_runtime;
3161 work_data = *work_data_bits(work);
3162 worker->current_color = get_work_color(work_data);
3163
3164 /*
3165 * Record wq name for cmdline and debug reporting, may get
3166 * overridden through set_worker_desc().
3167 */
3168 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3169
3170 list_del_init(&work->entry);
3171
3172 /*
3173 * CPU intensive works don't participate in concurrency management.
3174 * They're the scheduler's responsibility. This takes @worker out
3175 * of concurrency management and the next code block will chain
3176 * execution of the pending work items.
3177 */
3178 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3179 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3180
3181 /*
3182 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3183 * since nr_running would always be >= 1 at this point. This is used to
3184 * chain execution of the pending work items for WORKER_NOT_RUNNING
3185 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3186 */
3187 kick_pool(pool);
3188
3189 /*
3190 * Record the last pool and clear PENDING which should be the last
3191 * update to @work. Also, do this inside @pool->lock so that
3192 * PENDING and queued state changes happen together while IRQ is
3193 * disabled.
3194 */
3195 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3196
3197 pwq->stats[PWQ_STAT_STARTED]++;
3198 raw_spin_unlock_irq(&pool->lock);
3199
3200 rcu_start_depth = rcu_preempt_depth();
3201 lockdep_start_depth = lockdep_depth(current);
3202 /* see drain_dead_softirq_workfn() */
3203 if (!bh_draining)
3204 lock_map_acquire(pwq->wq->lockdep_map);
3205 lock_map_acquire(&lockdep_map);
3206 /*
3207 * Strictly speaking we should mark the invariant state without holding
3208 * any locks, that is, before these two lock_map_acquire()'s.
3209 *
3210 * However, that would result in:
3211 *
3212 * A(W1)
3213 * WFC(C)
3214 * A(W1)
3215 * C(C)
3216 *
3217 * Which would create W1->C->W1 dependencies, even though there is no
3218 * actual deadlock possible. There are two solutions, using a
3219 * read-recursive acquire on the work(queue) 'locks', but this will then
3220 * hit the lockdep limitation on recursive locks, or simply discard
3221 * these locks.
3222 *
3223 * AFAICT there is no possible deadlock scenario between the
3224 * flush_work() and complete() primitives (except for single-threaded
3225 * workqueues), so hiding them isn't a problem.
3226 */
3227 lockdep_invariant_state(true);
3228 trace_workqueue_execute_start(work);
3229 worker->current_func(work);
3230 /*
3231 * While we must be careful to not use "work" after this, the trace
3232 * point will only record its address.
3233 */
3234 trace_workqueue_execute_end(work, worker->current_func);
3235 pwq->stats[PWQ_STAT_COMPLETED]++;
3236 lock_map_release(&lockdep_map);
3237 if (!bh_draining)
3238 lock_map_release(pwq->wq->lockdep_map);
3239
3240 if (unlikely((worker->task && in_atomic()) ||
3241 lockdep_depth(current) != lockdep_start_depth ||
3242 rcu_preempt_depth() != rcu_start_depth)) {
3243 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3244 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3245 current->comm, task_pid_nr(current), preempt_count(),
3246 lockdep_start_depth, lockdep_depth(current),
3247 rcu_start_depth, rcu_preempt_depth(),
3248 worker->current_func);
3249 debug_show_held_locks(current);
3250 dump_stack();
3251 }
3252
3253 /*
3254 * The following prevents a kworker from hogging CPU on !PREEMPTION
3255 * kernels, where a requeueing work item waiting for something to
3256 * happen could deadlock with stop_machine as such work item could
3257 * indefinitely requeue itself while all other CPUs are trapped in
3258 * stop_machine. At the same time, report a quiescent RCU state so
3259 * the same condition doesn't freeze RCU.
3260 */
3261 if (worker->task)
3262 cond_resched();
3263
3264 raw_spin_lock_irq(&pool->lock);
3265
3266 /*
3267 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3268 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3269 * wq_cpu_intensive_thresh_us. Clear it.
3270 */
3271 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3272
3273 /* tag the worker for identification in schedule() */
3274 worker->last_func = worker->current_func;
3275
3276 /* we're done with it, release */
3277 hash_del(&worker->hentry);
3278 worker->current_work = NULL;
3279 worker->current_func = NULL;
3280 worker->current_pwq = NULL;
3281 worker->current_color = INT_MAX;
3282
3283 /* must be the last step, see the function comment */
3284 pwq_dec_nr_in_flight(pwq, work_data);
3285 }
3286
3287 /**
3288 * process_scheduled_works - process scheduled works
3289 * @worker: self
3290 *
3291 * Process all scheduled works. Please note that the scheduled list
3292 * may change while processing a work, so this function repeatedly
3293 * fetches a work from the top and executes it.
3294 *
3295 * CONTEXT:
3296 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3297 * multiple times.
3298 */
process_scheduled_works(struct worker * worker)3299 static void process_scheduled_works(struct worker *worker)
3300 {
3301 struct work_struct *work;
3302 bool first = true;
3303
3304 while ((work = list_first_entry_or_null(&worker->scheduled,
3305 struct work_struct, entry))) {
3306 if (first) {
3307 worker->pool->watchdog_ts = jiffies;
3308 first = false;
3309 }
3310 process_one_work(worker, work);
3311 }
3312 }
3313
set_pf_worker(bool val)3314 static void set_pf_worker(bool val)
3315 {
3316 mutex_lock(&wq_pool_attach_mutex);
3317 if (val)
3318 current->flags |= PF_WQ_WORKER;
3319 else
3320 current->flags &= ~PF_WQ_WORKER;
3321 mutex_unlock(&wq_pool_attach_mutex);
3322 }
3323
3324 /**
3325 * worker_thread - the worker thread function
3326 * @__worker: self
3327 *
3328 * The worker thread function. All workers belong to a worker_pool -
3329 * either a per-cpu one or dynamic unbound one. These workers process all
3330 * work items regardless of their specific target workqueue. The only
3331 * exception is work items which belong to workqueues with a rescuer which
3332 * will be explained in rescuer_thread().
3333 *
3334 * Return: 0
3335 */
worker_thread(void * __worker)3336 static int worker_thread(void *__worker)
3337 {
3338 struct worker *worker = __worker;
3339 struct worker_pool *pool = worker->pool;
3340
3341 /* tell the scheduler that this is a workqueue worker */
3342 set_pf_worker(true);
3343 woke_up:
3344 raw_spin_lock_irq(&pool->lock);
3345
3346 /* am I supposed to die? */
3347 if (unlikely(worker->flags & WORKER_DIE)) {
3348 raw_spin_unlock_irq(&pool->lock);
3349 set_pf_worker(false);
3350 /*
3351 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3352 * shouldn't be accessed, reset it to NULL in case otherwise.
3353 */
3354 worker->pool = NULL;
3355 ida_free(&pool->worker_ida, worker->id);
3356 return 0;
3357 }
3358
3359 worker_leave_idle(worker);
3360 recheck:
3361 /* no more worker necessary? */
3362 if (!need_more_worker(pool))
3363 goto sleep;
3364
3365 /* do we need to manage? */
3366 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3367 goto recheck;
3368
3369 /*
3370 * ->scheduled list can only be filled while a worker is
3371 * preparing to process a work or actually processing it.
3372 * Make sure nobody diddled with it while I was sleeping.
3373 */
3374 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3375
3376 /*
3377 * Finish PREP stage. We're guaranteed to have at least one idle
3378 * worker or that someone else has already assumed the manager
3379 * role. This is where @worker starts participating in concurrency
3380 * management if applicable and concurrency management is restored
3381 * after being rebound. See rebind_workers() for details.
3382 */
3383 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3384
3385 do {
3386 struct work_struct *work =
3387 list_first_entry(&pool->worklist,
3388 struct work_struct, entry);
3389
3390 if (assign_work(work, worker, NULL))
3391 process_scheduled_works(worker);
3392 } while (keep_working(pool));
3393
3394 worker_set_flags(worker, WORKER_PREP);
3395 sleep:
3396 /*
3397 * pool->lock is held and there's no work to process and no need to
3398 * manage, sleep. Workers are woken up only while holding
3399 * pool->lock or from local cpu, so setting the current state
3400 * before releasing pool->lock is enough to prevent losing any
3401 * event.
3402 */
3403 worker_enter_idle(worker);
3404 __set_current_state(TASK_IDLE);
3405 raw_spin_unlock_irq(&pool->lock);
3406 schedule();
3407 goto woke_up;
3408 }
3409
3410 /**
3411 * rescuer_thread - the rescuer thread function
3412 * @__rescuer: self
3413 *
3414 * Workqueue rescuer thread function. There's one rescuer for each
3415 * workqueue which has WQ_MEM_RECLAIM set.
3416 *
3417 * Regular work processing on a pool may block trying to create a new
3418 * worker which uses GFP_KERNEL allocation which has slight chance of
3419 * developing into deadlock if some works currently on the same queue
3420 * need to be processed to satisfy the GFP_KERNEL allocation. This is
3421 * the problem rescuer solves.
3422 *
3423 * When such condition is possible, the pool summons rescuers of all
3424 * workqueues which have works queued on the pool and let them process
3425 * those works so that forward progress can be guaranteed.
3426 *
3427 * This should happen rarely.
3428 *
3429 * Return: 0
3430 */
rescuer_thread(void * __rescuer)3431 static int rescuer_thread(void *__rescuer)
3432 {
3433 struct worker *rescuer = __rescuer;
3434 struct workqueue_struct *wq = rescuer->rescue_wq;
3435 bool should_stop;
3436
3437 set_user_nice(current, RESCUER_NICE_LEVEL);
3438
3439 /*
3440 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
3441 * doesn't participate in concurrency management.
3442 */
3443 set_pf_worker(true);
3444 repeat:
3445 set_current_state(TASK_IDLE);
3446
3447 /*
3448 * By the time the rescuer is requested to stop, the workqueue
3449 * shouldn't have any work pending, but @wq->maydays may still have
3450 * pwq(s) queued. This can happen by non-rescuer workers consuming
3451 * all the work items before the rescuer got to them. Go through
3452 * @wq->maydays processing before acting on should_stop so that the
3453 * list is always empty on exit.
3454 */
3455 should_stop = kthread_should_stop();
3456
3457 /* see whether any pwq is asking for help */
3458 raw_spin_lock_irq(&wq_mayday_lock);
3459
3460 while (!list_empty(&wq->maydays)) {
3461 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3462 struct pool_workqueue, mayday_node);
3463 struct worker_pool *pool = pwq->pool;
3464 struct work_struct *work, *n;
3465
3466 __set_current_state(TASK_RUNNING);
3467 list_del_init(&pwq->mayday_node);
3468
3469 raw_spin_unlock_irq(&wq_mayday_lock);
3470
3471 worker_attach_to_pool(rescuer, pool);
3472
3473 raw_spin_lock_irq(&pool->lock);
3474
3475 /*
3476 * Slurp in all works issued via this workqueue and
3477 * process'em.
3478 */
3479 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3480 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3481 if (get_work_pwq(work) == pwq &&
3482 assign_work(work, rescuer, &n))
3483 pwq->stats[PWQ_STAT_RESCUED]++;
3484 }
3485
3486 if (!list_empty(&rescuer->scheduled)) {
3487 process_scheduled_works(rescuer);
3488
3489 /*
3490 * The above execution of rescued work items could
3491 * have created more to rescue through
3492 * pwq_activate_first_inactive() or chained
3493 * queueing. Let's put @pwq back on mayday list so
3494 * that such back-to-back work items, which may be
3495 * being used to relieve memory pressure, don't
3496 * incur MAYDAY_INTERVAL delay inbetween.
3497 */
3498 if (pwq->nr_active && need_to_create_worker(pool)) {
3499 raw_spin_lock(&wq_mayday_lock);
3500 /*
3501 * Queue iff we aren't racing destruction
3502 * and somebody else hasn't queued it already.
3503 */
3504 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3505 get_pwq(pwq);
3506 list_add_tail(&pwq->mayday_node, &wq->maydays);
3507 }
3508 raw_spin_unlock(&wq_mayday_lock);
3509 }
3510 }
3511
3512 /*
3513 * Put the reference grabbed by send_mayday(). @pool won't
3514 * go away while we're still attached to it.
3515 */
3516 put_pwq(pwq);
3517
3518 /*
3519 * Leave this pool. Notify regular workers; otherwise, we end up
3520 * with 0 concurrency and stalling the execution.
3521 */
3522 kick_pool(pool);
3523
3524 raw_spin_unlock_irq(&pool->lock);
3525
3526 worker_detach_from_pool(rescuer);
3527
3528 raw_spin_lock_irq(&wq_mayday_lock);
3529 }
3530
3531 raw_spin_unlock_irq(&wq_mayday_lock);
3532
3533 if (should_stop) {
3534 __set_current_state(TASK_RUNNING);
3535 set_pf_worker(false);
3536 return 0;
3537 }
3538
3539 /* rescuers should never participate in concurrency management */
3540 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3541 schedule();
3542 goto repeat;
3543 }
3544
bh_worker(struct worker * worker)3545 static void bh_worker(struct worker *worker)
3546 {
3547 struct worker_pool *pool = worker->pool;
3548 int nr_restarts = BH_WORKER_RESTARTS;
3549 unsigned long end = jiffies + BH_WORKER_JIFFIES;
3550
3551 raw_spin_lock_irq(&pool->lock);
3552 worker_leave_idle(worker);
3553
3554 /*
3555 * This function follows the structure of worker_thread(). See there for
3556 * explanations on each step.
3557 */
3558 if (!need_more_worker(pool))
3559 goto done;
3560
3561 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3562 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3563
3564 do {
3565 struct work_struct *work =
3566 list_first_entry(&pool->worklist,
3567 struct work_struct, entry);
3568
3569 if (assign_work(work, worker, NULL))
3570 process_scheduled_works(worker);
3571 } while (keep_working(pool) &&
3572 --nr_restarts && time_before(jiffies, end));
3573
3574 worker_set_flags(worker, WORKER_PREP);
3575 done:
3576 worker_enter_idle(worker);
3577 kick_pool(pool);
3578 raw_spin_unlock_irq(&pool->lock);
3579 }
3580
3581 /*
3582 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3583 *
3584 * This is currently called from tasklet[_hi]action() and thus is also called
3585 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3586 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3587 * can be dropped.
3588 *
3589 * After full conversion, we'll add worker->softirq_action, directly use the
3590 * softirq action and obtain the worker pointer from the softirq_action pointer.
3591 */
workqueue_softirq_action(bool highpri)3592 void workqueue_softirq_action(bool highpri)
3593 {
3594 struct worker_pool *pool =
3595 &per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3596 if (need_more_worker(pool))
3597 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3598 }
3599
3600 struct wq_drain_dead_softirq_work {
3601 struct work_struct work;
3602 struct worker_pool *pool;
3603 struct completion done;
3604 };
3605
drain_dead_softirq_workfn(struct work_struct * work)3606 static void drain_dead_softirq_workfn(struct work_struct *work)
3607 {
3608 struct wq_drain_dead_softirq_work *dead_work =
3609 container_of(work, struct wq_drain_dead_softirq_work, work);
3610 struct worker_pool *pool = dead_work->pool;
3611 bool repeat;
3612
3613 /*
3614 * @pool's CPU is dead and we want to execute its still pending work
3615 * items from this BH work item which is running on a different CPU. As
3616 * its CPU is dead, @pool can't be kicked and, as work execution path
3617 * will be nested, a lockdep annotation needs to be suppressed. Mark
3618 * @pool with %POOL_BH_DRAINING for the special treatments.
3619 */
3620 raw_spin_lock_irq(&pool->lock);
3621 pool->flags |= POOL_BH_DRAINING;
3622 raw_spin_unlock_irq(&pool->lock);
3623
3624 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3625
3626 raw_spin_lock_irq(&pool->lock);
3627 pool->flags &= ~POOL_BH_DRAINING;
3628 repeat = need_more_worker(pool);
3629 raw_spin_unlock_irq(&pool->lock);
3630
3631 /*
3632 * bh_worker() might hit consecutive execution limit and bail. If there
3633 * still are pending work items, reschedule self and return so that we
3634 * don't hog this CPU's BH.
3635 */
3636 if (repeat) {
3637 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3638 queue_work(system_bh_highpri_wq, work);
3639 else
3640 queue_work(system_bh_wq, work);
3641 } else {
3642 complete(&dead_work->done);
3643 }
3644 }
3645
3646 /*
3647 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3648 * possible to allocate dead_work per CPU and avoid flushing. However, then we
3649 * have to worry about draining overlapping with CPU coming back online or
3650 * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3651 * on). Let's keep it simple and drain them synchronously. These are BH work
3652 * items which shouldn't be requeued on the same pool. Shouldn't take long.
3653 */
workqueue_softirq_dead(unsigned int cpu)3654 void workqueue_softirq_dead(unsigned int cpu)
3655 {
3656 int i;
3657
3658 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3659 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3660 struct wq_drain_dead_softirq_work dead_work;
3661
3662 if (!need_more_worker(pool))
3663 continue;
3664
3665 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3666 dead_work.pool = pool;
3667 init_completion(&dead_work.done);
3668
3669 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3670 queue_work(system_bh_highpri_wq, &dead_work.work);
3671 else
3672 queue_work(system_bh_wq, &dead_work.work);
3673
3674 wait_for_completion(&dead_work.done);
3675 destroy_work_on_stack(&dead_work.work);
3676 }
3677 }
3678
3679 /**
3680 * check_flush_dependency - check for flush dependency sanity
3681 * @target_wq: workqueue being flushed
3682 * @target_work: work item being flushed (NULL for workqueue flushes)
3683 *
3684 * %current is trying to flush the whole @target_wq or @target_work on it.
3685 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3686 * reclaiming memory or running on a workqueue which doesn't have
3687 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3688 * a deadlock.
3689 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)3690 static void check_flush_dependency(struct workqueue_struct *target_wq,
3691 struct work_struct *target_work)
3692 {
3693 work_func_t target_func = target_work ? target_work->func : NULL;
3694 struct worker *worker;
3695
3696 if (target_wq->flags & WQ_MEM_RECLAIM)
3697 return;
3698
3699 worker = current_wq_worker();
3700
3701 WARN_ONCE(current->flags & PF_MEMALLOC,
3702 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3703 current->pid, current->comm, target_wq->name, target_func);
3704 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3705 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3706 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3707 worker->current_pwq->wq->name, worker->current_func,
3708 target_wq->name, target_func);
3709 }
3710
3711 struct wq_barrier {
3712 struct work_struct work;
3713 struct completion done;
3714 struct task_struct *task; /* purely informational */
3715 };
3716
wq_barrier_func(struct work_struct * work)3717 static void wq_barrier_func(struct work_struct *work)
3718 {
3719 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3720 complete(&barr->done);
3721 }
3722
3723 /**
3724 * insert_wq_barrier - insert a barrier work
3725 * @pwq: pwq to insert barrier into
3726 * @barr: wq_barrier to insert
3727 * @target: target work to attach @barr to
3728 * @worker: worker currently executing @target, NULL if @target is not executing
3729 *
3730 * @barr is linked to @target such that @barr is completed only after
3731 * @target finishes execution. Please note that the ordering
3732 * guarantee is observed only with respect to @target and on the local
3733 * cpu.
3734 *
3735 * Currently, a queued barrier can't be canceled. This is because
3736 * try_to_grab_pending() can't determine whether the work to be
3737 * grabbed is at the head of the queue and thus can't clear LINKED
3738 * flag of the previous work while there must be a valid next work
3739 * after a work with LINKED flag set.
3740 *
3741 * Note that when @worker is non-NULL, @target may be modified
3742 * underneath us, so we can't reliably determine pwq from @target.
3743 *
3744 * CONTEXT:
3745 * raw_spin_lock_irq(pool->lock).
3746 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)3747 static void insert_wq_barrier(struct pool_workqueue *pwq,
3748 struct wq_barrier *barr,
3749 struct work_struct *target, struct worker *worker)
3750 {
3751 static __maybe_unused struct lock_class_key bh_key, thr_key;
3752 unsigned int work_flags = 0;
3753 unsigned int work_color;
3754 struct list_head *head;
3755
3756 /*
3757 * debugobject calls are safe here even with pool->lock locked
3758 * as we know for sure that this will not trigger any of the
3759 * checks and call back into the fixup functions where we
3760 * might deadlock.
3761 *
3762 * BH and threaded workqueues need separate lockdep keys to avoid
3763 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3764 * usage".
3765 */
3766 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3767 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3768 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3769
3770 init_completion_map(&barr->done, &target->lockdep_map);
3771
3772 barr->task = current;
3773
3774 /* The barrier work item does not participate in nr_active. */
3775 work_flags |= WORK_STRUCT_INACTIVE;
3776
3777 /*
3778 * If @target is currently being executed, schedule the
3779 * barrier to the worker; otherwise, put it after @target.
3780 */
3781 if (worker) {
3782 head = worker->scheduled.next;
3783 work_color = worker->current_color;
3784 } else {
3785 unsigned long *bits = work_data_bits(target);
3786
3787 head = target->entry.next;
3788 /* there can already be other linked works, inherit and set */
3789 work_flags |= *bits & WORK_STRUCT_LINKED;
3790 work_color = get_work_color(*bits);
3791 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3792 }
3793
3794 pwq->nr_in_flight[work_color]++;
3795 work_flags |= work_color_to_flags(work_color);
3796
3797 insert_work(pwq, &barr->work, head, work_flags);
3798 }
3799
3800 /**
3801 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3802 * @wq: workqueue being flushed
3803 * @flush_color: new flush color, < 0 for no-op
3804 * @work_color: new work color, < 0 for no-op
3805 *
3806 * Prepare pwqs for workqueue flushing.
3807 *
3808 * If @flush_color is non-negative, flush_color on all pwqs should be
3809 * -1. If no pwq has in-flight commands at the specified color, all
3810 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3811 * has in flight commands, its pwq->flush_color is set to
3812 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3813 * wakeup logic is armed and %true is returned.
3814 *
3815 * The caller should have initialized @wq->first_flusher prior to
3816 * calling this function with non-negative @flush_color. If
3817 * @flush_color is negative, no flush color update is done and %false
3818 * is returned.
3819 *
3820 * If @work_color is non-negative, all pwqs should have the same
3821 * work_color which is previous to @work_color and all will be
3822 * advanced to @work_color.
3823 *
3824 * CONTEXT:
3825 * mutex_lock(wq->mutex).
3826 *
3827 * Return:
3828 * %true if @flush_color >= 0 and there's something to flush. %false
3829 * otherwise.
3830 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)3831 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3832 int flush_color, int work_color)
3833 {
3834 bool wait = false;
3835 struct pool_workqueue *pwq;
3836 struct worker_pool *current_pool = NULL;
3837
3838 if (flush_color >= 0) {
3839 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3840 atomic_set(&wq->nr_pwqs_to_flush, 1);
3841 }
3842
3843 /*
3844 * For unbound workqueue, pwqs will map to only a few pools.
3845 * Most of the time, pwqs within the same pool will be linked
3846 * sequentially to wq->pwqs by cpu index. So in the majority
3847 * of pwq iters, the pool is the same, only doing lock/unlock
3848 * if the pool has changed. This can largely reduce expensive
3849 * lock operations.
3850 */
3851 for_each_pwq(pwq, wq) {
3852 if (current_pool != pwq->pool) {
3853 if (likely(current_pool))
3854 raw_spin_unlock_irq(¤t_pool->lock);
3855 current_pool = pwq->pool;
3856 raw_spin_lock_irq(¤t_pool->lock);
3857 }
3858
3859 if (flush_color >= 0) {
3860 WARN_ON_ONCE(pwq->flush_color != -1);
3861
3862 if (pwq->nr_in_flight[flush_color]) {
3863 pwq->flush_color = flush_color;
3864 atomic_inc(&wq->nr_pwqs_to_flush);
3865 wait = true;
3866 }
3867 }
3868
3869 if (work_color >= 0) {
3870 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3871 pwq->work_color = work_color;
3872 }
3873
3874 }
3875
3876 if (current_pool)
3877 raw_spin_unlock_irq(¤t_pool->lock);
3878
3879 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3880 complete(&wq->first_flusher->done);
3881
3882 return wait;
3883 }
3884
touch_wq_lockdep_map(struct workqueue_struct * wq)3885 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3886 {
3887 #ifdef CONFIG_LOCKDEP
3888 if (unlikely(!wq->lockdep_map))
3889 return;
3890
3891 if (wq->flags & WQ_BH)
3892 local_bh_disable();
3893
3894 lock_map_acquire(wq->lockdep_map);
3895 lock_map_release(wq->lockdep_map);
3896
3897 if (wq->flags & WQ_BH)
3898 local_bh_enable();
3899 #endif
3900 }
3901
touch_work_lockdep_map(struct work_struct * work,struct workqueue_struct * wq)3902 static void touch_work_lockdep_map(struct work_struct *work,
3903 struct workqueue_struct *wq)
3904 {
3905 #ifdef CONFIG_LOCKDEP
3906 if (wq->flags & WQ_BH)
3907 local_bh_disable();
3908
3909 lock_map_acquire(&work->lockdep_map);
3910 lock_map_release(&work->lockdep_map);
3911
3912 if (wq->flags & WQ_BH)
3913 local_bh_enable();
3914 #endif
3915 }
3916
3917 /**
3918 * __flush_workqueue - ensure that any scheduled work has run to completion.
3919 * @wq: workqueue to flush
3920 *
3921 * This function sleeps until all work items which were queued on entry
3922 * have finished execution, but it is not livelocked by new incoming ones.
3923 */
__flush_workqueue(struct workqueue_struct * wq)3924 void __flush_workqueue(struct workqueue_struct *wq)
3925 {
3926 struct wq_flusher this_flusher = {
3927 .list = LIST_HEAD_INIT(this_flusher.list),
3928 .flush_color = -1,
3929 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)),
3930 };
3931 int next_color;
3932
3933 if (WARN_ON(!wq_online))
3934 return;
3935
3936 touch_wq_lockdep_map(wq);
3937
3938 mutex_lock(&wq->mutex);
3939
3940 /*
3941 * Start-to-wait phase
3942 */
3943 next_color = work_next_color(wq->work_color);
3944
3945 if (next_color != wq->flush_color) {
3946 /*
3947 * Color space is not full. The current work_color
3948 * becomes our flush_color and work_color is advanced
3949 * by one.
3950 */
3951 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3952 this_flusher.flush_color = wq->work_color;
3953 wq->work_color = next_color;
3954
3955 if (!wq->first_flusher) {
3956 /* no flush in progress, become the first flusher */
3957 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3958
3959 wq->first_flusher = &this_flusher;
3960
3961 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3962 wq->work_color)) {
3963 /* nothing to flush, done */
3964 wq->flush_color = next_color;
3965 wq->first_flusher = NULL;
3966 goto out_unlock;
3967 }
3968 } else {
3969 /* wait in queue */
3970 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3971 list_add_tail(&this_flusher.list, &wq->flusher_queue);
3972 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3973 }
3974 } else {
3975 /*
3976 * Oops, color space is full, wait on overflow queue.
3977 * The next flush completion will assign us
3978 * flush_color and transfer to flusher_queue.
3979 */
3980 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3981 }
3982
3983 check_flush_dependency(wq, NULL);
3984
3985 mutex_unlock(&wq->mutex);
3986
3987 wait_for_completion(&this_flusher.done);
3988
3989 /*
3990 * Wake-up-and-cascade phase
3991 *
3992 * First flushers are responsible for cascading flushes and
3993 * handling overflow. Non-first flushers can simply return.
3994 */
3995 if (READ_ONCE(wq->first_flusher) != &this_flusher)
3996 return;
3997
3998 mutex_lock(&wq->mutex);
3999
4000 /* we might have raced, check again with mutex held */
4001 if (wq->first_flusher != &this_flusher)
4002 goto out_unlock;
4003
4004 WRITE_ONCE(wq->first_flusher, NULL);
4005
4006 WARN_ON_ONCE(!list_empty(&this_flusher.list));
4007 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4008
4009 while (true) {
4010 struct wq_flusher *next, *tmp;
4011
4012 /* complete all the flushers sharing the current flush color */
4013 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4014 if (next->flush_color != wq->flush_color)
4015 break;
4016 list_del_init(&next->list);
4017 complete(&next->done);
4018 }
4019
4020 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4021 wq->flush_color != work_next_color(wq->work_color));
4022
4023 /* this flush_color is finished, advance by one */
4024 wq->flush_color = work_next_color(wq->flush_color);
4025
4026 /* one color has been freed, handle overflow queue */
4027 if (!list_empty(&wq->flusher_overflow)) {
4028 /*
4029 * Assign the same color to all overflowed
4030 * flushers, advance work_color and append to
4031 * flusher_queue. This is the start-to-wait
4032 * phase for these overflowed flushers.
4033 */
4034 list_for_each_entry(tmp, &wq->flusher_overflow, list)
4035 tmp->flush_color = wq->work_color;
4036
4037 wq->work_color = work_next_color(wq->work_color);
4038
4039 list_splice_tail_init(&wq->flusher_overflow,
4040 &wq->flusher_queue);
4041 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4042 }
4043
4044 if (list_empty(&wq->flusher_queue)) {
4045 WARN_ON_ONCE(wq->flush_color != wq->work_color);
4046 break;
4047 }
4048
4049 /*
4050 * Need to flush more colors. Make the next flusher
4051 * the new first flusher and arm pwqs.
4052 */
4053 WARN_ON_ONCE(wq->flush_color == wq->work_color);
4054 WARN_ON_ONCE(wq->flush_color != next->flush_color);
4055
4056 list_del_init(&next->list);
4057 wq->first_flusher = next;
4058
4059 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4060 break;
4061
4062 /*
4063 * Meh... this color is already done, clear first
4064 * flusher and repeat cascading.
4065 */
4066 wq->first_flusher = NULL;
4067 }
4068
4069 out_unlock:
4070 mutex_unlock(&wq->mutex);
4071 }
4072 EXPORT_SYMBOL(__flush_workqueue);
4073
4074 /**
4075 * drain_workqueue - drain a workqueue
4076 * @wq: workqueue to drain
4077 *
4078 * Wait until the workqueue becomes empty. While draining is in progress,
4079 * only chain queueing is allowed. IOW, only currently pending or running
4080 * work items on @wq can queue further work items on it. @wq is flushed
4081 * repeatedly until it becomes empty. The number of flushing is determined
4082 * by the depth of chaining and should be relatively short. Whine if it
4083 * takes too long.
4084 */
drain_workqueue(struct workqueue_struct * wq)4085 void drain_workqueue(struct workqueue_struct *wq)
4086 {
4087 unsigned int flush_cnt = 0;
4088 struct pool_workqueue *pwq;
4089
4090 /*
4091 * __queue_work() needs to test whether there are drainers, is much
4092 * hotter than drain_workqueue() and already looks at @wq->flags.
4093 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4094 */
4095 mutex_lock(&wq->mutex);
4096 if (!wq->nr_drainers++)
4097 wq->flags |= __WQ_DRAINING;
4098 mutex_unlock(&wq->mutex);
4099 reflush:
4100 __flush_workqueue(wq);
4101
4102 mutex_lock(&wq->mutex);
4103
4104 for_each_pwq(pwq, wq) {
4105 bool drained;
4106
4107 raw_spin_lock_irq(&pwq->pool->lock);
4108 drained = pwq_is_empty(pwq);
4109 raw_spin_unlock_irq(&pwq->pool->lock);
4110
4111 if (drained)
4112 continue;
4113
4114 if (++flush_cnt == 10 ||
4115 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4116 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4117 wq->name, __func__, flush_cnt);
4118
4119 mutex_unlock(&wq->mutex);
4120 goto reflush;
4121 }
4122
4123 if (!--wq->nr_drainers)
4124 wq->flags &= ~__WQ_DRAINING;
4125 mutex_unlock(&wq->mutex);
4126 }
4127 EXPORT_SYMBOL_GPL(drain_workqueue);
4128
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)4129 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4130 bool from_cancel)
4131 {
4132 struct worker *worker = NULL;
4133 struct worker_pool *pool;
4134 struct pool_workqueue *pwq;
4135 struct workqueue_struct *wq;
4136
4137 rcu_read_lock();
4138 pool = get_work_pool(work);
4139 if (!pool) {
4140 rcu_read_unlock();
4141 return false;
4142 }
4143
4144 raw_spin_lock_irq(&pool->lock);
4145 /* see the comment in try_to_grab_pending() with the same code */
4146 pwq = get_work_pwq(work);
4147 if (pwq) {
4148 if (unlikely(pwq->pool != pool))
4149 goto already_gone;
4150 } else {
4151 worker = find_worker_executing_work(pool, work);
4152 if (!worker)
4153 goto already_gone;
4154 pwq = worker->current_pwq;
4155 }
4156
4157 wq = pwq->wq;
4158 check_flush_dependency(wq, work);
4159
4160 insert_wq_barrier(pwq, barr, work, worker);
4161 raw_spin_unlock_irq(&pool->lock);
4162
4163 touch_work_lockdep_map(work, wq);
4164
4165 /*
4166 * Force a lock recursion deadlock when using flush_work() inside a
4167 * single-threaded or rescuer equipped workqueue.
4168 *
4169 * For single threaded workqueues the deadlock happens when the work
4170 * is after the work issuing the flush_work(). For rescuer equipped
4171 * workqueues the deadlock happens when the rescuer stalls, blocking
4172 * forward progress.
4173 */
4174 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4175 touch_wq_lockdep_map(wq);
4176
4177 rcu_read_unlock();
4178 return true;
4179 already_gone:
4180 raw_spin_unlock_irq(&pool->lock);
4181 rcu_read_unlock();
4182 return false;
4183 }
4184
__flush_work(struct work_struct * work,bool from_cancel)4185 static bool __flush_work(struct work_struct *work, bool from_cancel)
4186 {
4187 struct wq_barrier barr;
4188
4189 if (WARN_ON(!wq_online))
4190 return false;
4191
4192 if (WARN_ON(!work->func))
4193 return false;
4194
4195 if (!start_flush_work(work, &barr, from_cancel))
4196 return false;
4197
4198 /*
4199 * start_flush_work() returned %true. If @from_cancel is set, we know
4200 * that @work must have been executing during start_flush_work() and
4201 * can't currently be queued. Its data must contain OFFQ bits. If @work
4202 * was queued on a BH workqueue, we also know that it was running in the
4203 * BH context and thus can be busy-waited.
4204 */
4205 if (from_cancel) {
4206 unsigned long data = *work_data_bits(work);
4207
4208 if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4209 (data & WORK_OFFQ_BH)) {
4210 /*
4211 * On RT, prevent a live lock when %current preempted
4212 * soft interrupt processing or prevents ksoftirqd from
4213 * running by keeping flipping BH. If the BH work item
4214 * runs on a different CPU then this has no effect other
4215 * than doing the BH disable/enable dance for nothing.
4216 * This is copied from
4217 * kernel/softirq.c::tasklet_unlock_spin_wait().
4218 */
4219 while (!try_wait_for_completion(&barr.done)) {
4220 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4221 local_bh_disable();
4222 local_bh_enable();
4223 } else {
4224 cpu_relax();
4225 }
4226 }
4227 goto out_destroy;
4228 }
4229 }
4230
4231 wait_for_completion(&barr.done);
4232
4233 out_destroy:
4234 destroy_work_on_stack(&barr.work);
4235 return true;
4236 }
4237
4238 /**
4239 * flush_work - wait for a work to finish executing the last queueing instance
4240 * @work: the work to flush
4241 *
4242 * Wait until @work has finished execution. @work is guaranteed to be idle
4243 * on return if it hasn't been requeued since flush started.
4244 *
4245 * Return:
4246 * %true if flush_work() waited for the work to finish execution,
4247 * %false if it was already idle.
4248 */
flush_work(struct work_struct * work)4249 bool flush_work(struct work_struct *work)
4250 {
4251 might_sleep();
4252 return __flush_work(work, false);
4253 }
4254 EXPORT_SYMBOL_GPL(flush_work);
4255
4256 /**
4257 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4258 * @dwork: the delayed work to flush
4259 *
4260 * Delayed timer is cancelled and the pending work is queued for
4261 * immediate execution. Like flush_work(), this function only
4262 * considers the last queueing instance of @dwork.
4263 *
4264 * Return:
4265 * %true if flush_work() waited for the work to finish execution,
4266 * %false if it was already idle.
4267 */
flush_delayed_work(struct delayed_work * dwork)4268 bool flush_delayed_work(struct delayed_work *dwork)
4269 {
4270 local_irq_disable();
4271 if (del_timer_sync(&dwork->timer))
4272 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
4273 local_irq_enable();
4274 return flush_work(&dwork->work);
4275 }
4276 EXPORT_SYMBOL(flush_delayed_work);
4277
4278 /**
4279 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4280 * @rwork: the rcu work to flush
4281 *
4282 * Return:
4283 * %true if flush_rcu_work() waited for the work to finish execution,
4284 * %false if it was already idle.
4285 */
flush_rcu_work(struct rcu_work * rwork)4286 bool flush_rcu_work(struct rcu_work *rwork)
4287 {
4288 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4289 rcu_barrier();
4290 flush_work(&rwork->work);
4291 return true;
4292 } else {
4293 return flush_work(&rwork->work);
4294 }
4295 }
4296 EXPORT_SYMBOL(flush_rcu_work);
4297
work_offqd_disable(struct work_offq_data * offqd)4298 static void work_offqd_disable(struct work_offq_data *offqd)
4299 {
4300 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4301
4302 if (likely(offqd->disable < max))
4303 offqd->disable++;
4304 else
4305 WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4306 }
4307
work_offqd_enable(struct work_offq_data * offqd)4308 static void work_offqd_enable(struct work_offq_data *offqd)
4309 {
4310 if (likely(offqd->disable > 0))
4311 offqd->disable--;
4312 else
4313 WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4314 }
4315
__cancel_work(struct work_struct * work,u32 cflags)4316 static bool __cancel_work(struct work_struct *work, u32 cflags)
4317 {
4318 struct work_offq_data offqd;
4319 unsigned long irq_flags;
4320 int ret;
4321
4322 ret = work_grab_pending(work, cflags, &irq_flags);
4323
4324 work_offqd_unpack(&offqd, *work_data_bits(work));
4325
4326 if (cflags & WORK_CANCEL_DISABLE)
4327 work_offqd_disable(&offqd);
4328
4329 set_work_pool_and_clear_pending(work, offqd.pool_id,
4330 work_offqd_pack_flags(&offqd));
4331 local_irq_restore(irq_flags);
4332 return ret;
4333 }
4334
__cancel_work_sync(struct work_struct * work,u32 cflags)4335 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4336 {
4337 bool ret;
4338
4339 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4340
4341 if (*work_data_bits(work) & WORK_OFFQ_BH)
4342 WARN_ON_ONCE(in_hardirq());
4343 else
4344 might_sleep();
4345
4346 /*
4347 * Skip __flush_work() during early boot when we know that @work isn't
4348 * executing. This allows canceling during early boot.
4349 */
4350 if (wq_online)
4351 __flush_work(work, true);
4352
4353 if (!(cflags & WORK_CANCEL_DISABLE))
4354 enable_work(work);
4355
4356 return ret;
4357 }
4358
4359 /*
4360 * See cancel_delayed_work()
4361 */
cancel_work(struct work_struct * work)4362 bool cancel_work(struct work_struct *work)
4363 {
4364 return __cancel_work(work, 0);
4365 }
4366 EXPORT_SYMBOL(cancel_work);
4367
4368 /**
4369 * cancel_work_sync - cancel a work and wait for it to finish
4370 * @work: the work to cancel
4371 *
4372 * Cancel @work and wait for its execution to finish. This function can be used
4373 * even if the work re-queues itself or migrates to another workqueue. On return
4374 * from this function, @work is guaranteed to be not pending or executing on any
4375 * CPU as long as there aren't racing enqueues.
4376 *
4377 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4378 * Use cancel_delayed_work_sync() instead.
4379 *
4380 * Must be called from a sleepable context if @work was last queued on a non-BH
4381 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4382 * if @work was last queued on a BH workqueue.
4383 *
4384 * Returns %true if @work was pending, %false otherwise.
4385 */
cancel_work_sync(struct work_struct * work)4386 bool cancel_work_sync(struct work_struct *work)
4387 {
4388 return __cancel_work_sync(work, 0);
4389 }
4390 EXPORT_SYMBOL_GPL(cancel_work_sync);
4391
4392 /**
4393 * cancel_delayed_work - cancel a delayed work
4394 * @dwork: delayed_work to cancel
4395 *
4396 * Kill off a pending delayed_work.
4397 *
4398 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4399 * pending.
4400 *
4401 * Note:
4402 * The work callback function may still be running on return, unless
4403 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
4404 * use cancel_delayed_work_sync() to wait on it.
4405 *
4406 * This function is safe to call from any context including IRQ handler.
4407 */
cancel_delayed_work(struct delayed_work * dwork)4408 bool cancel_delayed_work(struct delayed_work *dwork)
4409 {
4410 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4411 }
4412 EXPORT_SYMBOL(cancel_delayed_work);
4413
4414 /**
4415 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4416 * @dwork: the delayed work cancel
4417 *
4418 * This is cancel_work_sync() for delayed works.
4419 *
4420 * Return:
4421 * %true if @dwork was pending, %false otherwise.
4422 */
cancel_delayed_work_sync(struct delayed_work * dwork)4423 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4424 {
4425 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4426 }
4427 EXPORT_SYMBOL(cancel_delayed_work_sync);
4428
4429 /**
4430 * disable_work - Disable and cancel a work item
4431 * @work: work item to disable
4432 *
4433 * Disable @work by incrementing its disable count and cancel it if currently
4434 * pending. As long as the disable count is non-zero, any attempt to queue @work
4435 * will fail and return %false. The maximum supported disable depth is 2 to the
4436 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4437 *
4438 * Can be called from any context. Returns %true if @work was pending, %false
4439 * otherwise.
4440 */
disable_work(struct work_struct * work)4441 bool disable_work(struct work_struct *work)
4442 {
4443 return __cancel_work(work, WORK_CANCEL_DISABLE);
4444 }
4445 EXPORT_SYMBOL_GPL(disable_work);
4446
4447 /**
4448 * disable_work_sync - Disable, cancel and drain a work item
4449 * @work: work item to disable
4450 *
4451 * Similar to disable_work() but also wait for @work to finish if currently
4452 * executing.
4453 *
4454 * Must be called from a sleepable context if @work was last queued on a non-BH
4455 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4456 * if @work was last queued on a BH workqueue.
4457 *
4458 * Returns %true if @work was pending, %false otherwise.
4459 */
disable_work_sync(struct work_struct * work)4460 bool disable_work_sync(struct work_struct *work)
4461 {
4462 return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4463 }
4464 EXPORT_SYMBOL_GPL(disable_work_sync);
4465
4466 /**
4467 * enable_work - Enable a work item
4468 * @work: work item to enable
4469 *
4470 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4471 * only be queued if its disable count is 0.
4472 *
4473 * Can be called from any context. Returns %true if the disable count reached 0.
4474 * Otherwise, %false.
4475 */
enable_work(struct work_struct * work)4476 bool enable_work(struct work_struct *work)
4477 {
4478 struct work_offq_data offqd;
4479 unsigned long irq_flags;
4480
4481 work_grab_pending(work, 0, &irq_flags);
4482
4483 work_offqd_unpack(&offqd, *work_data_bits(work));
4484 work_offqd_enable(&offqd);
4485 set_work_pool_and_clear_pending(work, offqd.pool_id,
4486 work_offqd_pack_flags(&offqd));
4487 local_irq_restore(irq_flags);
4488
4489 return !offqd.disable;
4490 }
4491 EXPORT_SYMBOL_GPL(enable_work);
4492
4493 /**
4494 * disable_delayed_work - Disable and cancel a delayed work item
4495 * @dwork: delayed work item to disable
4496 *
4497 * disable_work() for delayed work items.
4498 */
disable_delayed_work(struct delayed_work * dwork)4499 bool disable_delayed_work(struct delayed_work *dwork)
4500 {
4501 return __cancel_work(&dwork->work,
4502 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4503 }
4504 EXPORT_SYMBOL_GPL(disable_delayed_work);
4505
4506 /**
4507 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4508 * @dwork: delayed work item to disable
4509 *
4510 * disable_work_sync() for delayed work items.
4511 */
disable_delayed_work_sync(struct delayed_work * dwork)4512 bool disable_delayed_work_sync(struct delayed_work *dwork)
4513 {
4514 return __cancel_work_sync(&dwork->work,
4515 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4516 }
4517 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4518
4519 /**
4520 * enable_delayed_work - Enable a delayed work item
4521 * @dwork: delayed work item to enable
4522 *
4523 * enable_work() for delayed work items.
4524 */
enable_delayed_work(struct delayed_work * dwork)4525 bool enable_delayed_work(struct delayed_work *dwork)
4526 {
4527 return enable_work(&dwork->work);
4528 }
4529 EXPORT_SYMBOL_GPL(enable_delayed_work);
4530
4531 /**
4532 * schedule_on_each_cpu - execute a function synchronously on each online CPU
4533 * @func: the function to call
4534 *
4535 * schedule_on_each_cpu() executes @func on each online CPU using the
4536 * system workqueue and blocks until all CPUs have completed.
4537 * schedule_on_each_cpu() is very slow.
4538 *
4539 * Return:
4540 * 0 on success, -errno on failure.
4541 */
schedule_on_each_cpu(work_func_t func)4542 int schedule_on_each_cpu(work_func_t func)
4543 {
4544 int cpu;
4545 struct work_struct __percpu *works;
4546
4547 works = alloc_percpu(struct work_struct);
4548 if (!works)
4549 return -ENOMEM;
4550
4551 cpus_read_lock();
4552
4553 for_each_online_cpu(cpu) {
4554 struct work_struct *work = per_cpu_ptr(works, cpu);
4555
4556 INIT_WORK(work, func);
4557 schedule_work_on(cpu, work);
4558 }
4559
4560 for_each_online_cpu(cpu)
4561 flush_work(per_cpu_ptr(works, cpu));
4562
4563 cpus_read_unlock();
4564 free_percpu(works);
4565 return 0;
4566 }
4567
4568 /**
4569 * execute_in_process_context - reliably execute the routine with user context
4570 * @fn: the function to execute
4571 * @ew: guaranteed storage for the execute work structure (must
4572 * be available when the work executes)
4573 *
4574 * Executes the function immediately if process context is available,
4575 * otherwise schedules the function for delayed execution.
4576 *
4577 * Return: 0 - function was executed
4578 * 1 - function was scheduled for execution
4579 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)4580 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4581 {
4582 if (!in_interrupt()) {
4583 fn(&ew->work);
4584 return 0;
4585 }
4586
4587 INIT_WORK(&ew->work, fn);
4588 schedule_work(&ew->work);
4589
4590 return 1;
4591 }
4592 EXPORT_SYMBOL_GPL(execute_in_process_context);
4593
4594 /**
4595 * free_workqueue_attrs - free a workqueue_attrs
4596 * @attrs: workqueue_attrs to free
4597 *
4598 * Undo alloc_workqueue_attrs().
4599 */
free_workqueue_attrs(struct workqueue_attrs * attrs)4600 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4601 {
4602 if (attrs) {
4603 free_cpumask_var(attrs->cpumask);
4604 free_cpumask_var(attrs->__pod_cpumask);
4605 kfree(attrs);
4606 }
4607 }
4608
4609 /**
4610 * alloc_workqueue_attrs - allocate a workqueue_attrs
4611 *
4612 * Allocate a new workqueue_attrs, initialize with default settings and
4613 * return it.
4614 *
4615 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4616 */
alloc_workqueue_attrs(void)4617 struct workqueue_attrs *alloc_workqueue_attrs(void)
4618 {
4619 struct workqueue_attrs *attrs;
4620
4621 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4622 if (!attrs)
4623 goto fail;
4624 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4625 goto fail;
4626 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4627 goto fail;
4628
4629 cpumask_copy(attrs->cpumask, cpu_possible_mask);
4630 attrs->affn_scope = WQ_AFFN_DFL;
4631 return attrs;
4632 fail:
4633 free_workqueue_attrs(attrs);
4634 return NULL;
4635 }
4636
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)4637 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4638 const struct workqueue_attrs *from)
4639 {
4640 to->nice = from->nice;
4641 cpumask_copy(to->cpumask, from->cpumask);
4642 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4643 to->affn_strict = from->affn_strict;
4644
4645 /*
4646 * Unlike hash and equality test, copying shouldn't ignore wq-only
4647 * fields as copying is used for both pool and wq attrs. Instead,
4648 * get_unbound_pool() explicitly clears the fields.
4649 */
4650 to->affn_scope = from->affn_scope;
4651 to->ordered = from->ordered;
4652 }
4653
4654 /*
4655 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4656 * comments in 'struct workqueue_attrs' definition.
4657 */
wqattrs_clear_for_pool(struct workqueue_attrs * attrs)4658 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4659 {
4660 attrs->affn_scope = WQ_AFFN_NR_TYPES;
4661 attrs->ordered = false;
4662 if (attrs->affn_strict)
4663 cpumask_copy(attrs->cpumask, cpu_possible_mask);
4664 }
4665
4666 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)4667 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4668 {
4669 u32 hash = 0;
4670
4671 hash = jhash_1word(attrs->nice, hash);
4672 hash = jhash_1word(attrs->affn_strict, hash);
4673 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4674 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4675 if (!attrs->affn_strict)
4676 hash = jhash(cpumask_bits(attrs->cpumask),
4677 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4678 return hash;
4679 }
4680
4681 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)4682 static bool wqattrs_equal(const struct workqueue_attrs *a,
4683 const struct workqueue_attrs *b)
4684 {
4685 if (a->nice != b->nice)
4686 return false;
4687 if (a->affn_strict != b->affn_strict)
4688 return false;
4689 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4690 return false;
4691 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4692 return false;
4693 return true;
4694 }
4695
4696 /* Update @attrs with actually available CPUs */
wqattrs_actualize_cpumask(struct workqueue_attrs * attrs,const cpumask_t * unbound_cpumask)4697 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4698 const cpumask_t *unbound_cpumask)
4699 {
4700 /*
4701 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4702 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4703 * @unbound_cpumask.
4704 */
4705 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4706 if (unlikely(cpumask_empty(attrs->cpumask)))
4707 cpumask_copy(attrs->cpumask, unbound_cpumask);
4708 }
4709
4710 /* find wq_pod_type to use for @attrs */
4711 static const struct wq_pod_type *
wqattrs_pod_type(const struct workqueue_attrs * attrs)4712 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4713 {
4714 enum wq_affn_scope scope;
4715 struct wq_pod_type *pt;
4716
4717 /* to synchronize access to wq_affn_dfl */
4718 lockdep_assert_held(&wq_pool_mutex);
4719
4720 if (attrs->affn_scope == WQ_AFFN_DFL)
4721 scope = wq_affn_dfl;
4722 else
4723 scope = attrs->affn_scope;
4724
4725 pt = &wq_pod_types[scope];
4726
4727 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4728 likely(pt->nr_pods))
4729 return pt;
4730
4731 /*
4732 * Before workqueue_init_topology(), only SYSTEM is available which is
4733 * initialized in workqueue_init_early().
4734 */
4735 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4736 BUG_ON(!pt->nr_pods);
4737 return pt;
4738 }
4739
4740 /**
4741 * init_worker_pool - initialize a newly zalloc'd worker_pool
4742 * @pool: worker_pool to initialize
4743 *
4744 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
4745 *
4746 * Return: 0 on success, -errno on failure. Even on failure, all fields
4747 * inside @pool proper are initialized and put_unbound_pool() can be called
4748 * on @pool safely to release it.
4749 */
init_worker_pool(struct worker_pool * pool)4750 static int init_worker_pool(struct worker_pool *pool)
4751 {
4752 raw_spin_lock_init(&pool->lock);
4753 pool->id = -1;
4754 pool->cpu = -1;
4755 pool->node = NUMA_NO_NODE;
4756 pool->flags |= POOL_DISASSOCIATED;
4757 pool->watchdog_ts = jiffies;
4758 INIT_LIST_HEAD(&pool->worklist);
4759 INIT_LIST_HEAD(&pool->idle_list);
4760 hash_init(pool->busy_hash);
4761
4762 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4763 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4764
4765 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4766
4767 INIT_LIST_HEAD(&pool->workers);
4768
4769 ida_init(&pool->worker_ida);
4770 INIT_HLIST_NODE(&pool->hash_node);
4771 pool->refcnt = 1;
4772
4773 /* shouldn't fail above this point */
4774 pool->attrs = alloc_workqueue_attrs();
4775 if (!pool->attrs)
4776 return -ENOMEM;
4777
4778 wqattrs_clear_for_pool(pool->attrs);
4779
4780 return 0;
4781 }
4782
4783 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)4784 static void wq_init_lockdep(struct workqueue_struct *wq)
4785 {
4786 char *lock_name;
4787
4788 lockdep_register_key(&wq->key);
4789 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4790 if (!lock_name)
4791 lock_name = wq->name;
4792
4793 wq->lock_name = lock_name;
4794 wq->lockdep_map = &wq->__lockdep_map;
4795 lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0);
4796 }
4797
wq_unregister_lockdep(struct workqueue_struct * wq)4798 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4799 {
4800 if (wq->lockdep_map != &wq->__lockdep_map)
4801 return;
4802
4803 lockdep_unregister_key(&wq->key);
4804 }
4805
wq_free_lockdep(struct workqueue_struct * wq)4806 static void wq_free_lockdep(struct workqueue_struct *wq)
4807 {
4808 if (wq->lockdep_map != &wq->__lockdep_map)
4809 return;
4810
4811 if (wq->lock_name != wq->name)
4812 kfree(wq->lock_name);
4813 }
4814 #else
wq_init_lockdep(struct workqueue_struct * wq)4815 static void wq_init_lockdep(struct workqueue_struct *wq)
4816 {
4817 }
4818
wq_unregister_lockdep(struct workqueue_struct * wq)4819 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4820 {
4821 }
4822
wq_free_lockdep(struct workqueue_struct * wq)4823 static void wq_free_lockdep(struct workqueue_struct *wq)
4824 {
4825 }
4826 #endif
4827
free_node_nr_active(struct wq_node_nr_active ** nna_ar)4828 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4829 {
4830 int node;
4831
4832 for_each_node(node) {
4833 kfree(nna_ar[node]);
4834 nna_ar[node] = NULL;
4835 }
4836
4837 kfree(nna_ar[nr_node_ids]);
4838 nna_ar[nr_node_ids] = NULL;
4839 }
4840
init_node_nr_active(struct wq_node_nr_active * nna)4841 static void init_node_nr_active(struct wq_node_nr_active *nna)
4842 {
4843 nna->max = WQ_DFL_MIN_ACTIVE;
4844 atomic_set(&nna->nr, 0);
4845 raw_spin_lock_init(&nna->lock);
4846 INIT_LIST_HEAD(&nna->pending_pwqs);
4847 }
4848
4849 /*
4850 * Each node's nr_active counter will be accessed mostly from its own node and
4851 * should be allocated in the node.
4852 */
alloc_node_nr_active(struct wq_node_nr_active ** nna_ar)4853 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4854 {
4855 struct wq_node_nr_active *nna;
4856 int node;
4857
4858 for_each_node(node) {
4859 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4860 if (!nna)
4861 goto err_free;
4862 init_node_nr_active(nna);
4863 nna_ar[node] = nna;
4864 }
4865
4866 /* [nr_node_ids] is used as the fallback */
4867 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4868 if (!nna)
4869 goto err_free;
4870 init_node_nr_active(nna);
4871 nna_ar[nr_node_ids] = nna;
4872
4873 return 0;
4874
4875 err_free:
4876 free_node_nr_active(nna_ar);
4877 return -ENOMEM;
4878 }
4879
rcu_free_wq(struct rcu_head * rcu)4880 static void rcu_free_wq(struct rcu_head *rcu)
4881 {
4882 struct workqueue_struct *wq =
4883 container_of(rcu, struct workqueue_struct, rcu);
4884
4885 if (wq->flags & WQ_UNBOUND)
4886 free_node_nr_active(wq->node_nr_active);
4887
4888 wq_free_lockdep(wq);
4889 free_percpu(wq->cpu_pwq);
4890 free_workqueue_attrs(wq->unbound_attrs);
4891 kfree(wq);
4892 }
4893
rcu_free_pool(struct rcu_head * rcu)4894 static void rcu_free_pool(struct rcu_head *rcu)
4895 {
4896 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4897
4898 ida_destroy(&pool->worker_ida);
4899 free_workqueue_attrs(pool->attrs);
4900 kfree(pool);
4901 }
4902
4903 /**
4904 * put_unbound_pool - put a worker_pool
4905 * @pool: worker_pool to put
4906 *
4907 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
4908 * safe manner. get_unbound_pool() calls this function on its failure path
4909 * and this function should be able to release pools which went through,
4910 * successfully or not, init_worker_pool().
4911 *
4912 * Should be called with wq_pool_mutex held.
4913 */
put_unbound_pool(struct worker_pool * pool)4914 static void put_unbound_pool(struct worker_pool *pool)
4915 {
4916 struct worker *worker;
4917 LIST_HEAD(cull_list);
4918
4919 lockdep_assert_held(&wq_pool_mutex);
4920
4921 if (--pool->refcnt)
4922 return;
4923
4924 /* sanity checks */
4925 if (WARN_ON(!(pool->cpu < 0)) ||
4926 WARN_ON(!list_empty(&pool->worklist)))
4927 return;
4928
4929 /* release id and unhash */
4930 if (pool->id >= 0)
4931 idr_remove(&worker_pool_idr, pool->id);
4932 hash_del(&pool->hash_node);
4933
4934 /*
4935 * Become the manager and destroy all workers. This prevents
4936 * @pool's workers from blocking on attach_mutex. We're the last
4937 * manager and @pool gets freed with the flag set.
4938 *
4939 * Having a concurrent manager is quite unlikely to happen as we can
4940 * only get here with
4941 * pwq->refcnt == pool->refcnt == 0
4942 * which implies no work queued to the pool, which implies no worker can
4943 * become the manager. However a worker could have taken the role of
4944 * manager before the refcnts dropped to 0, since maybe_create_worker()
4945 * drops pool->lock
4946 */
4947 while (true) {
4948 rcuwait_wait_event(&manager_wait,
4949 !(pool->flags & POOL_MANAGER_ACTIVE),
4950 TASK_UNINTERRUPTIBLE);
4951
4952 mutex_lock(&wq_pool_attach_mutex);
4953 raw_spin_lock_irq(&pool->lock);
4954 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4955 pool->flags |= POOL_MANAGER_ACTIVE;
4956 break;
4957 }
4958 raw_spin_unlock_irq(&pool->lock);
4959 mutex_unlock(&wq_pool_attach_mutex);
4960 }
4961
4962 while ((worker = first_idle_worker(pool)))
4963 set_worker_dying(worker, &cull_list);
4964 WARN_ON(pool->nr_workers || pool->nr_idle);
4965 raw_spin_unlock_irq(&pool->lock);
4966
4967 detach_dying_workers(&cull_list);
4968
4969 mutex_unlock(&wq_pool_attach_mutex);
4970
4971 reap_dying_workers(&cull_list);
4972
4973 /* shut down the timers */
4974 del_timer_sync(&pool->idle_timer);
4975 cancel_work_sync(&pool->idle_cull_work);
4976 del_timer_sync(&pool->mayday_timer);
4977
4978 /* RCU protected to allow dereferences from get_work_pool() */
4979 call_rcu(&pool->rcu, rcu_free_pool);
4980 }
4981
4982 /**
4983 * get_unbound_pool - get a worker_pool with the specified attributes
4984 * @attrs: the attributes of the worker_pool to get
4985 *
4986 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4987 * reference count and return it. If there already is a matching
4988 * worker_pool, it will be used; otherwise, this function attempts to
4989 * create a new one.
4990 *
4991 * Should be called with wq_pool_mutex held.
4992 *
4993 * Return: On success, a worker_pool with the same attributes as @attrs.
4994 * On failure, %NULL.
4995 */
get_unbound_pool(const struct workqueue_attrs * attrs)4996 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4997 {
4998 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4999 u32 hash = wqattrs_hash(attrs);
5000 struct worker_pool *pool;
5001 int pod, node = NUMA_NO_NODE;
5002
5003 lockdep_assert_held(&wq_pool_mutex);
5004
5005 /* do we already have a matching pool? */
5006 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
5007 if (wqattrs_equal(pool->attrs, attrs)) {
5008 pool->refcnt++;
5009 return pool;
5010 }
5011 }
5012
5013 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
5014 for (pod = 0; pod < pt->nr_pods; pod++) {
5015 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
5016 node = pt->pod_node[pod];
5017 break;
5018 }
5019 }
5020
5021 /* nope, create a new one */
5022 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5023 if (!pool || init_worker_pool(pool) < 0)
5024 goto fail;
5025
5026 pool->node = node;
5027 copy_workqueue_attrs(pool->attrs, attrs);
5028 wqattrs_clear_for_pool(pool->attrs);
5029
5030 if (worker_pool_assign_id(pool) < 0)
5031 goto fail;
5032
5033 /* create and start the initial worker */
5034 if (wq_online && !create_worker(pool))
5035 goto fail;
5036
5037 /* install */
5038 hash_add(unbound_pool_hash, &pool->hash_node, hash);
5039
5040 return pool;
5041 fail:
5042 if (pool)
5043 put_unbound_pool(pool);
5044 return NULL;
5045 }
5046
5047 /*
5048 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5049 * refcnt and needs to be destroyed.
5050 */
pwq_release_workfn(struct kthread_work * work)5051 static void pwq_release_workfn(struct kthread_work *work)
5052 {
5053 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5054 release_work);
5055 struct workqueue_struct *wq = pwq->wq;
5056 struct worker_pool *pool = pwq->pool;
5057 bool is_last = false;
5058
5059 /*
5060 * When @pwq is not linked, it doesn't hold any reference to the
5061 * @wq, and @wq is invalid to access.
5062 */
5063 if (!list_empty(&pwq->pwqs_node)) {
5064 mutex_lock(&wq->mutex);
5065 list_del_rcu(&pwq->pwqs_node);
5066 is_last = list_empty(&wq->pwqs);
5067
5068 /*
5069 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5070 */
5071 if (!is_last && (wq->flags & __WQ_ORDERED))
5072 unplug_oldest_pwq(wq);
5073
5074 mutex_unlock(&wq->mutex);
5075 }
5076
5077 if (wq->flags & WQ_UNBOUND) {
5078 mutex_lock(&wq_pool_mutex);
5079 put_unbound_pool(pool);
5080 mutex_unlock(&wq_pool_mutex);
5081 }
5082
5083 if (!list_empty(&pwq->pending_node)) {
5084 struct wq_node_nr_active *nna =
5085 wq_node_nr_active(pwq->wq, pwq->pool->node);
5086
5087 raw_spin_lock_irq(&nna->lock);
5088 list_del_init(&pwq->pending_node);
5089 raw_spin_unlock_irq(&nna->lock);
5090 }
5091
5092 kfree_rcu(pwq, rcu);
5093
5094 /*
5095 * If we're the last pwq going away, @wq is already dead and no one
5096 * is gonna access it anymore. Schedule RCU free.
5097 */
5098 if (is_last) {
5099 wq_unregister_lockdep(wq);
5100 call_rcu(&wq->rcu, rcu_free_wq);
5101 }
5102 }
5103
5104 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)5105 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5106 struct worker_pool *pool)
5107 {
5108 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5109
5110 memset(pwq, 0, sizeof(*pwq));
5111
5112 pwq->pool = pool;
5113 pwq->wq = wq;
5114 pwq->flush_color = -1;
5115 pwq->refcnt = 1;
5116 INIT_LIST_HEAD(&pwq->inactive_works);
5117 INIT_LIST_HEAD(&pwq->pending_node);
5118 INIT_LIST_HEAD(&pwq->pwqs_node);
5119 INIT_LIST_HEAD(&pwq->mayday_node);
5120 kthread_init_work(&pwq->release_work, pwq_release_workfn);
5121 }
5122
5123 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)5124 static void link_pwq(struct pool_workqueue *pwq)
5125 {
5126 struct workqueue_struct *wq = pwq->wq;
5127
5128 lockdep_assert_held(&wq->mutex);
5129
5130 /* may be called multiple times, ignore if already linked */
5131 if (!list_empty(&pwq->pwqs_node))
5132 return;
5133
5134 /* set the matching work_color */
5135 pwq->work_color = wq->work_color;
5136
5137 /* link in @pwq */
5138 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5139 }
5140
5141 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5142 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5143 const struct workqueue_attrs *attrs)
5144 {
5145 struct worker_pool *pool;
5146 struct pool_workqueue *pwq;
5147
5148 lockdep_assert_held(&wq_pool_mutex);
5149
5150 pool = get_unbound_pool(attrs);
5151 if (!pool)
5152 return NULL;
5153
5154 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5155 if (!pwq) {
5156 put_unbound_pool(pool);
5157 return NULL;
5158 }
5159
5160 init_pwq(pwq, wq, pool);
5161 return pwq;
5162 }
5163
apply_wqattrs_lock(void)5164 static void apply_wqattrs_lock(void)
5165 {
5166 mutex_lock(&wq_pool_mutex);
5167 }
5168
apply_wqattrs_unlock(void)5169 static void apply_wqattrs_unlock(void)
5170 {
5171 mutex_unlock(&wq_pool_mutex);
5172 }
5173
5174 /**
5175 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5176 * @attrs: the wq_attrs of the default pwq of the target workqueue
5177 * @cpu: the target CPU
5178 *
5179 * Calculate the cpumask a workqueue with @attrs should use on @pod.
5180 * The result is stored in @attrs->__pod_cpumask.
5181 *
5182 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5183 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5184 * intersection of the possible CPUs of @pod and @attrs->cpumask.
5185 *
5186 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5187 */
wq_calc_pod_cpumask(struct workqueue_attrs * attrs,int cpu)5188 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5189 {
5190 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5191 int pod = pt->cpu_pod[cpu];
5192
5193 /* calculate possible CPUs in @pod that @attrs wants */
5194 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5195 /* does @pod have any online CPUs @attrs wants? */
5196 if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5197 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5198 return;
5199 }
5200 }
5201
5202 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
install_unbound_pwq(struct workqueue_struct * wq,int cpu,struct pool_workqueue * pwq)5203 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5204 int cpu, struct pool_workqueue *pwq)
5205 {
5206 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5207 struct pool_workqueue *old_pwq;
5208
5209 lockdep_assert_held(&wq_pool_mutex);
5210 lockdep_assert_held(&wq->mutex);
5211
5212 /* link_pwq() can handle duplicate calls */
5213 link_pwq(pwq);
5214
5215 old_pwq = rcu_access_pointer(*slot);
5216 rcu_assign_pointer(*slot, pwq);
5217 return old_pwq;
5218 }
5219
5220 /* context to store the prepared attrs & pwqs before applying */
5221 struct apply_wqattrs_ctx {
5222 struct workqueue_struct *wq; /* target workqueue */
5223 struct workqueue_attrs *attrs; /* attrs to apply */
5224 struct list_head list; /* queued for batching commit */
5225 struct pool_workqueue *dfl_pwq;
5226 struct pool_workqueue *pwq_tbl[];
5227 };
5228
5229 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)5230 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5231 {
5232 if (ctx) {
5233 int cpu;
5234
5235 for_each_possible_cpu(cpu)
5236 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5237 put_pwq_unlocked(ctx->dfl_pwq);
5238
5239 free_workqueue_attrs(ctx->attrs);
5240
5241 kfree(ctx);
5242 }
5243 }
5244
5245 /* allocate the attrs and pwqs for later installation */
5246 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)5247 apply_wqattrs_prepare(struct workqueue_struct *wq,
5248 const struct workqueue_attrs *attrs,
5249 const cpumask_var_t unbound_cpumask)
5250 {
5251 struct apply_wqattrs_ctx *ctx;
5252 struct workqueue_attrs *new_attrs;
5253 int cpu;
5254
5255 lockdep_assert_held(&wq_pool_mutex);
5256
5257 if (WARN_ON(attrs->affn_scope < 0 ||
5258 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5259 return ERR_PTR(-EINVAL);
5260
5261 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5262
5263 new_attrs = alloc_workqueue_attrs();
5264 if (!ctx || !new_attrs)
5265 goto out_free;
5266
5267 /*
5268 * If something goes wrong during CPU up/down, we'll fall back to
5269 * the default pwq covering whole @attrs->cpumask. Always create
5270 * it even if we don't use it immediately.
5271 */
5272 copy_workqueue_attrs(new_attrs, attrs);
5273 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5274 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5275 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5276 if (!ctx->dfl_pwq)
5277 goto out_free;
5278
5279 for_each_possible_cpu(cpu) {
5280 if (new_attrs->ordered) {
5281 ctx->dfl_pwq->refcnt++;
5282 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5283 } else {
5284 wq_calc_pod_cpumask(new_attrs, cpu);
5285 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5286 if (!ctx->pwq_tbl[cpu])
5287 goto out_free;
5288 }
5289 }
5290
5291 /* save the user configured attrs and sanitize it. */
5292 copy_workqueue_attrs(new_attrs, attrs);
5293 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5294 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5295 ctx->attrs = new_attrs;
5296
5297 /*
5298 * For initialized ordered workqueues, there should only be one pwq
5299 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5300 * of newly queued work items until execution of older work items in
5301 * the old pwq's have completed.
5302 */
5303 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5304 ctx->dfl_pwq->plugged = true;
5305
5306 ctx->wq = wq;
5307 return ctx;
5308
5309 out_free:
5310 free_workqueue_attrs(new_attrs);
5311 apply_wqattrs_cleanup(ctx);
5312 return ERR_PTR(-ENOMEM);
5313 }
5314
5315 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)5316 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5317 {
5318 int cpu;
5319
5320 /* all pwqs have been created successfully, let's install'em */
5321 mutex_lock(&ctx->wq->mutex);
5322
5323 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5324
5325 /* save the previous pwqs and install the new ones */
5326 for_each_possible_cpu(cpu)
5327 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5328 ctx->pwq_tbl[cpu]);
5329 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5330
5331 /* update node_nr_active->max */
5332 wq_update_node_max_active(ctx->wq, -1);
5333
5334 /* rescuer needs to respect wq cpumask changes */
5335 if (ctx->wq->rescuer)
5336 set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5337 unbound_effective_cpumask(ctx->wq));
5338
5339 mutex_unlock(&ctx->wq->mutex);
5340 }
5341
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5342 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5343 const struct workqueue_attrs *attrs)
5344 {
5345 struct apply_wqattrs_ctx *ctx;
5346
5347 /* only unbound workqueues can change attributes */
5348 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5349 return -EINVAL;
5350
5351 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5352 if (IS_ERR(ctx))
5353 return PTR_ERR(ctx);
5354
5355 /* the ctx has been prepared successfully, let's commit it */
5356 apply_wqattrs_commit(ctx);
5357 apply_wqattrs_cleanup(ctx);
5358
5359 return 0;
5360 }
5361
5362 /**
5363 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5364 * @wq: the target workqueue
5365 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5366 *
5367 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5368 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5369 * work items are affine to the pod it was issued on. Older pwqs are released as
5370 * in-flight work items finish. Note that a work item which repeatedly requeues
5371 * itself back-to-back will stay on its current pwq.
5372 *
5373 * Performs GFP_KERNEL allocations.
5374 *
5375 * Return: 0 on success and -errno on failure.
5376 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5377 int apply_workqueue_attrs(struct workqueue_struct *wq,
5378 const struct workqueue_attrs *attrs)
5379 {
5380 int ret;
5381
5382 mutex_lock(&wq_pool_mutex);
5383 ret = apply_workqueue_attrs_locked(wq, attrs);
5384 mutex_unlock(&wq_pool_mutex);
5385
5386 return ret;
5387 }
5388
5389 /**
5390 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5391 * @wq: the target workqueue
5392 * @cpu: the CPU to update the pwq slot for
5393 *
5394 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5395 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged.
5396 *
5397 *
5398 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5399 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5400 *
5401 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5402 * with a cpumask spanning multiple pods, the workers which were already
5403 * executing the work items for the workqueue will lose their CPU affinity and
5404 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5405 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5406 * responsibility to flush the work item from CPU_DOWN_PREPARE.
5407 */
unbound_wq_update_pwq(struct workqueue_struct * wq,int cpu)5408 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5409 {
5410 struct pool_workqueue *old_pwq = NULL, *pwq;
5411 struct workqueue_attrs *target_attrs;
5412
5413 lockdep_assert_held(&wq_pool_mutex);
5414
5415 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5416 return;
5417
5418 /*
5419 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5420 * Let's use a preallocated one. The following buf is protected by
5421 * CPU hotplug exclusion.
5422 */
5423 target_attrs = unbound_wq_update_pwq_attrs_buf;
5424
5425 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5426 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5427
5428 /* nothing to do if the target cpumask matches the current pwq */
5429 wq_calc_pod_cpumask(target_attrs, cpu);
5430 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5431 return;
5432
5433 /* create a new pwq */
5434 pwq = alloc_unbound_pwq(wq, target_attrs);
5435 if (!pwq) {
5436 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5437 wq->name);
5438 goto use_dfl_pwq;
5439 }
5440
5441 /* Install the new pwq. */
5442 mutex_lock(&wq->mutex);
5443 old_pwq = install_unbound_pwq(wq, cpu, pwq);
5444 goto out_unlock;
5445
5446 use_dfl_pwq:
5447 mutex_lock(&wq->mutex);
5448 pwq = unbound_pwq(wq, -1);
5449 raw_spin_lock_irq(&pwq->pool->lock);
5450 get_pwq(pwq);
5451 raw_spin_unlock_irq(&pwq->pool->lock);
5452 old_pwq = install_unbound_pwq(wq, cpu, pwq);
5453 out_unlock:
5454 mutex_unlock(&wq->mutex);
5455 put_pwq_unlocked(old_pwq);
5456 }
5457
alloc_and_link_pwqs(struct workqueue_struct * wq)5458 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5459 {
5460 bool highpri = wq->flags & WQ_HIGHPRI;
5461 int cpu, ret;
5462
5463 lockdep_assert_held(&wq_pool_mutex);
5464
5465 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5466 if (!wq->cpu_pwq)
5467 goto enomem;
5468
5469 if (!(wq->flags & WQ_UNBOUND)) {
5470 struct worker_pool __percpu *pools;
5471
5472 if (wq->flags & WQ_BH)
5473 pools = bh_worker_pools;
5474 else
5475 pools = cpu_worker_pools;
5476
5477 for_each_possible_cpu(cpu) {
5478 struct pool_workqueue **pwq_p;
5479 struct worker_pool *pool;
5480
5481 pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5482 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5483
5484 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5485 pool->node);
5486 if (!*pwq_p)
5487 goto enomem;
5488
5489 init_pwq(*pwq_p, wq, pool);
5490
5491 mutex_lock(&wq->mutex);
5492 link_pwq(*pwq_p);
5493 mutex_unlock(&wq->mutex);
5494 }
5495 return 0;
5496 }
5497
5498 if (wq->flags & __WQ_ORDERED) {
5499 struct pool_workqueue *dfl_pwq;
5500
5501 ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5502 /* there should only be single pwq for ordering guarantee */
5503 dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5504 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5505 wq->pwqs.prev != &dfl_pwq->pwqs_node),
5506 "ordering guarantee broken for workqueue %s\n", wq->name);
5507 } else {
5508 ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5509 }
5510
5511 return ret;
5512
5513 enomem:
5514 if (wq->cpu_pwq) {
5515 for_each_possible_cpu(cpu) {
5516 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5517
5518 if (pwq)
5519 kmem_cache_free(pwq_cache, pwq);
5520 }
5521 free_percpu(wq->cpu_pwq);
5522 wq->cpu_pwq = NULL;
5523 }
5524 return -ENOMEM;
5525 }
5526
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)5527 static int wq_clamp_max_active(int max_active, unsigned int flags,
5528 const char *name)
5529 {
5530 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5531 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5532 max_active, name, 1, WQ_MAX_ACTIVE);
5533
5534 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5535 }
5536
5537 /*
5538 * Workqueues which may be used during memory reclaim should have a rescuer
5539 * to guarantee forward progress.
5540 */
init_rescuer(struct workqueue_struct * wq)5541 static int init_rescuer(struct workqueue_struct *wq)
5542 {
5543 struct worker *rescuer;
5544 char id_buf[WORKER_ID_LEN];
5545 int ret;
5546
5547 lockdep_assert_held(&wq_pool_mutex);
5548
5549 if (!(wq->flags & WQ_MEM_RECLAIM))
5550 return 0;
5551
5552 rescuer = alloc_worker(NUMA_NO_NODE);
5553 if (!rescuer) {
5554 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5555 wq->name);
5556 return -ENOMEM;
5557 }
5558
5559 rescuer->rescue_wq = wq;
5560 format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5561
5562 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5563 if (IS_ERR(rescuer->task)) {
5564 ret = PTR_ERR(rescuer->task);
5565 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5566 wq->name, ERR_PTR(ret));
5567 kfree(rescuer);
5568 return ret;
5569 }
5570
5571 wq->rescuer = rescuer;
5572 if (wq->flags & WQ_UNBOUND)
5573 kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
5574 else
5575 kthread_bind_mask(rescuer->task, cpu_possible_mask);
5576 wake_up_process(rescuer->task);
5577
5578 return 0;
5579 }
5580
5581 /**
5582 * wq_adjust_max_active - update a wq's max_active to the current setting
5583 * @wq: target workqueue
5584 *
5585 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5586 * activate inactive work items accordingly. If @wq is freezing, clear
5587 * @wq->max_active to zero.
5588 */
wq_adjust_max_active(struct workqueue_struct * wq)5589 static void wq_adjust_max_active(struct workqueue_struct *wq)
5590 {
5591 bool activated;
5592 int new_max, new_min;
5593
5594 lockdep_assert_held(&wq->mutex);
5595
5596 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5597 new_max = 0;
5598 new_min = 0;
5599 } else {
5600 new_max = wq->saved_max_active;
5601 new_min = wq->saved_min_active;
5602 }
5603
5604 if (wq->max_active == new_max && wq->min_active == new_min)
5605 return;
5606
5607 /*
5608 * Update @wq->max/min_active and then kick inactive work items if more
5609 * active work items are allowed. This doesn't break work item ordering
5610 * because new work items are always queued behind existing inactive
5611 * work items if there are any.
5612 */
5613 WRITE_ONCE(wq->max_active, new_max);
5614 WRITE_ONCE(wq->min_active, new_min);
5615
5616 if (wq->flags & WQ_UNBOUND)
5617 wq_update_node_max_active(wq, -1);
5618
5619 if (new_max == 0)
5620 return;
5621
5622 /*
5623 * Round-robin through pwq's activating the first inactive work item
5624 * until max_active is filled.
5625 */
5626 do {
5627 struct pool_workqueue *pwq;
5628
5629 activated = false;
5630 for_each_pwq(pwq, wq) {
5631 unsigned long irq_flags;
5632
5633 /* can be called during early boot w/ irq disabled */
5634 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5635 if (pwq_activate_first_inactive(pwq, true)) {
5636 activated = true;
5637 kick_pool(pwq->pool);
5638 }
5639 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5640 }
5641 } while (activated);
5642 }
5643
__alloc_workqueue(const char * fmt,unsigned int flags,int max_active,va_list args)5644 static struct workqueue_struct *__alloc_workqueue(const char *fmt,
5645 unsigned int flags,
5646 int max_active, va_list args)
5647 {
5648 struct workqueue_struct *wq;
5649 size_t wq_size;
5650 int name_len;
5651
5652 if (flags & WQ_BH) {
5653 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5654 return NULL;
5655 if (WARN_ON_ONCE(max_active))
5656 return NULL;
5657 }
5658
5659 /* see the comment above the definition of WQ_POWER_EFFICIENT */
5660 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5661 flags |= WQ_UNBOUND;
5662
5663 /* allocate wq and format name */
5664 if (flags & WQ_UNBOUND)
5665 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5666 else
5667 wq_size = sizeof(*wq);
5668
5669 wq = kzalloc(wq_size, GFP_KERNEL);
5670 if (!wq)
5671 return NULL;
5672
5673 if (flags & WQ_UNBOUND) {
5674 wq->unbound_attrs = alloc_workqueue_attrs();
5675 if (!wq->unbound_attrs)
5676 goto err_free_wq;
5677 }
5678
5679 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5680
5681 if (name_len >= WQ_NAME_LEN)
5682 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5683 wq->name);
5684
5685 if (flags & WQ_BH) {
5686 /*
5687 * BH workqueues always share a single execution context per CPU
5688 * and don't impose any max_active limit.
5689 */
5690 max_active = INT_MAX;
5691 } else {
5692 max_active = max_active ?: WQ_DFL_ACTIVE;
5693 max_active = wq_clamp_max_active(max_active, flags, wq->name);
5694 }
5695
5696 /* init wq */
5697 wq->flags = flags;
5698 wq->max_active = max_active;
5699 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5700 wq->saved_max_active = wq->max_active;
5701 wq->saved_min_active = wq->min_active;
5702 mutex_init(&wq->mutex);
5703 atomic_set(&wq->nr_pwqs_to_flush, 0);
5704 INIT_LIST_HEAD(&wq->pwqs);
5705 INIT_LIST_HEAD(&wq->flusher_queue);
5706 INIT_LIST_HEAD(&wq->flusher_overflow);
5707 INIT_LIST_HEAD(&wq->maydays);
5708
5709 INIT_LIST_HEAD(&wq->list);
5710
5711 if (flags & WQ_UNBOUND) {
5712 if (alloc_node_nr_active(wq->node_nr_active) < 0)
5713 goto err_free_wq;
5714 }
5715
5716 /*
5717 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5718 * and the global freeze state.
5719 */
5720 apply_wqattrs_lock();
5721
5722 if (alloc_and_link_pwqs(wq) < 0)
5723 goto err_unlock_free_node_nr_active;
5724
5725 mutex_lock(&wq->mutex);
5726 wq_adjust_max_active(wq);
5727 mutex_unlock(&wq->mutex);
5728
5729 list_add_tail_rcu(&wq->list, &workqueues);
5730
5731 if (wq_online && init_rescuer(wq) < 0)
5732 goto err_unlock_destroy;
5733
5734 apply_wqattrs_unlock();
5735
5736 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5737 goto err_destroy;
5738
5739 return wq;
5740
5741 err_unlock_free_node_nr_active:
5742 apply_wqattrs_unlock();
5743 /*
5744 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5745 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5746 * completes before calling kfree(wq).
5747 */
5748 if (wq->flags & WQ_UNBOUND) {
5749 kthread_flush_worker(pwq_release_worker);
5750 free_node_nr_active(wq->node_nr_active);
5751 }
5752 err_free_wq:
5753 free_workqueue_attrs(wq->unbound_attrs);
5754 kfree(wq);
5755 return NULL;
5756 err_unlock_destroy:
5757 apply_wqattrs_unlock();
5758 err_destroy:
5759 destroy_workqueue(wq);
5760 return NULL;
5761 }
5762
5763 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)5764 struct workqueue_struct *alloc_workqueue(const char *fmt,
5765 unsigned int flags,
5766 int max_active, ...)
5767 {
5768 struct workqueue_struct *wq;
5769 va_list args;
5770
5771 va_start(args, max_active);
5772 wq = __alloc_workqueue(fmt, flags, max_active, args);
5773 va_end(args);
5774 if (!wq)
5775 return NULL;
5776
5777 wq_init_lockdep(wq);
5778
5779 return wq;
5780 }
5781 EXPORT_SYMBOL_GPL(alloc_workqueue);
5782
5783 #ifdef CONFIG_LOCKDEP
5784 __printf(1, 5)
5785 struct workqueue_struct *
alloc_workqueue_lockdep_map(const char * fmt,unsigned int flags,int max_active,struct lockdep_map * lockdep_map,...)5786 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags,
5787 int max_active, struct lockdep_map *lockdep_map, ...)
5788 {
5789 struct workqueue_struct *wq;
5790 va_list args;
5791
5792 va_start(args, lockdep_map);
5793 wq = __alloc_workqueue(fmt, flags, max_active, args);
5794 va_end(args);
5795 if (!wq)
5796 return NULL;
5797
5798 wq->lockdep_map = lockdep_map;
5799
5800 return wq;
5801 }
5802 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map);
5803 #endif
5804
pwq_busy(struct pool_workqueue * pwq)5805 static bool pwq_busy(struct pool_workqueue *pwq)
5806 {
5807 int i;
5808
5809 for (i = 0; i < WORK_NR_COLORS; i++)
5810 if (pwq->nr_in_flight[i])
5811 return true;
5812
5813 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5814 return true;
5815 if (!pwq_is_empty(pwq))
5816 return true;
5817
5818 return false;
5819 }
5820
5821 /**
5822 * destroy_workqueue - safely terminate a workqueue
5823 * @wq: target workqueue
5824 *
5825 * Safely destroy a workqueue. All work currently pending will be done first.
5826 */
destroy_workqueue(struct workqueue_struct * wq)5827 void destroy_workqueue(struct workqueue_struct *wq)
5828 {
5829 struct pool_workqueue *pwq;
5830 int cpu;
5831
5832 /*
5833 * Remove it from sysfs first so that sanity check failure doesn't
5834 * lead to sysfs name conflicts.
5835 */
5836 workqueue_sysfs_unregister(wq);
5837
5838 /* mark the workqueue destruction is in progress */
5839 mutex_lock(&wq->mutex);
5840 wq->flags |= __WQ_DESTROYING;
5841 mutex_unlock(&wq->mutex);
5842
5843 /* drain it before proceeding with destruction */
5844 drain_workqueue(wq);
5845
5846 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5847 if (wq->rescuer) {
5848 struct worker *rescuer = wq->rescuer;
5849
5850 /* this prevents new queueing */
5851 raw_spin_lock_irq(&wq_mayday_lock);
5852 wq->rescuer = NULL;
5853 raw_spin_unlock_irq(&wq_mayday_lock);
5854
5855 /* rescuer will empty maydays list before exiting */
5856 kthread_stop(rescuer->task);
5857 kfree(rescuer);
5858 }
5859
5860 /*
5861 * Sanity checks - grab all the locks so that we wait for all
5862 * in-flight operations which may do put_pwq().
5863 */
5864 mutex_lock(&wq_pool_mutex);
5865 mutex_lock(&wq->mutex);
5866 for_each_pwq(pwq, wq) {
5867 raw_spin_lock_irq(&pwq->pool->lock);
5868 if (WARN_ON(pwq_busy(pwq))) {
5869 pr_warn("%s: %s has the following busy pwq\n",
5870 __func__, wq->name);
5871 show_pwq(pwq);
5872 raw_spin_unlock_irq(&pwq->pool->lock);
5873 mutex_unlock(&wq->mutex);
5874 mutex_unlock(&wq_pool_mutex);
5875 show_one_workqueue(wq);
5876 return;
5877 }
5878 raw_spin_unlock_irq(&pwq->pool->lock);
5879 }
5880 mutex_unlock(&wq->mutex);
5881
5882 /*
5883 * wq list is used to freeze wq, remove from list after
5884 * flushing is complete in case freeze races us.
5885 */
5886 list_del_rcu(&wq->list);
5887 mutex_unlock(&wq_pool_mutex);
5888
5889 /*
5890 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5891 * to put the base refs. @wq will be auto-destroyed from the last
5892 * pwq_put. RCU read lock prevents @wq from going away from under us.
5893 */
5894 rcu_read_lock();
5895
5896 for_each_possible_cpu(cpu) {
5897 put_pwq_unlocked(unbound_pwq(wq, cpu));
5898 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5899 }
5900
5901 put_pwq_unlocked(unbound_pwq(wq, -1));
5902 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5903
5904 rcu_read_unlock();
5905 }
5906 EXPORT_SYMBOL_GPL(destroy_workqueue);
5907
5908 /**
5909 * workqueue_set_max_active - adjust max_active of a workqueue
5910 * @wq: target workqueue
5911 * @max_active: new max_active value.
5912 *
5913 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5914 * comment.
5915 *
5916 * CONTEXT:
5917 * Don't call from IRQ context.
5918 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)5919 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5920 {
5921 /* max_active doesn't mean anything for BH workqueues */
5922 if (WARN_ON(wq->flags & WQ_BH))
5923 return;
5924 /* disallow meddling with max_active for ordered workqueues */
5925 if (WARN_ON(wq->flags & __WQ_ORDERED))
5926 return;
5927
5928 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5929
5930 mutex_lock(&wq->mutex);
5931
5932 wq->saved_max_active = max_active;
5933 if (wq->flags & WQ_UNBOUND)
5934 wq->saved_min_active = min(wq->saved_min_active, max_active);
5935
5936 wq_adjust_max_active(wq);
5937
5938 mutex_unlock(&wq->mutex);
5939 }
5940 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5941
5942 /**
5943 * workqueue_set_min_active - adjust min_active of an unbound workqueue
5944 * @wq: target unbound workqueue
5945 * @min_active: new min_active value
5946 *
5947 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5948 * unbound workqueue is not guaranteed to be able to process max_active
5949 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5950 * able to process min_active number of interdependent work items which is
5951 * %WQ_DFL_MIN_ACTIVE by default.
5952 *
5953 * Use this function to adjust the min_active value between 0 and the current
5954 * max_active.
5955 */
workqueue_set_min_active(struct workqueue_struct * wq,int min_active)5956 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5957 {
5958 /* min_active is only meaningful for non-ordered unbound workqueues */
5959 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5960 WQ_UNBOUND))
5961 return;
5962
5963 mutex_lock(&wq->mutex);
5964 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5965 wq_adjust_max_active(wq);
5966 mutex_unlock(&wq->mutex);
5967 }
5968
5969 /**
5970 * current_work - retrieve %current task's work struct
5971 *
5972 * Determine if %current task is a workqueue worker and what it's working on.
5973 * Useful to find out the context that the %current task is running in.
5974 *
5975 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5976 */
current_work(void)5977 struct work_struct *current_work(void)
5978 {
5979 struct worker *worker = current_wq_worker();
5980
5981 return worker ? worker->current_work : NULL;
5982 }
5983 EXPORT_SYMBOL(current_work);
5984
5985 /**
5986 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5987 *
5988 * Determine whether %current is a workqueue rescuer. Can be used from
5989 * work functions to determine whether it's being run off the rescuer task.
5990 *
5991 * Return: %true if %current is a workqueue rescuer. %false otherwise.
5992 */
current_is_workqueue_rescuer(void)5993 bool current_is_workqueue_rescuer(void)
5994 {
5995 struct worker *worker = current_wq_worker();
5996
5997 return worker && worker->rescue_wq;
5998 }
5999
6000 /**
6001 * workqueue_congested - test whether a workqueue is congested
6002 * @cpu: CPU in question
6003 * @wq: target workqueue
6004 *
6005 * Test whether @wq's cpu workqueue for @cpu is congested. There is
6006 * no synchronization around this function and the test result is
6007 * unreliable and only useful as advisory hints or for debugging.
6008 *
6009 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
6010 *
6011 * With the exception of ordered workqueues, all workqueues have per-cpu
6012 * pool_workqueues, each with its own congested state. A workqueue being
6013 * congested on one CPU doesn't mean that the workqueue is contested on any
6014 * other CPUs.
6015 *
6016 * Return:
6017 * %true if congested, %false otherwise.
6018 */
workqueue_congested(int cpu,struct workqueue_struct * wq)6019 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
6020 {
6021 struct pool_workqueue *pwq;
6022 bool ret;
6023
6024 rcu_read_lock();
6025 preempt_disable();
6026
6027 if (cpu == WORK_CPU_UNBOUND)
6028 cpu = smp_processor_id();
6029
6030 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
6031 ret = !list_empty(&pwq->inactive_works);
6032
6033 preempt_enable();
6034 rcu_read_unlock();
6035
6036 return ret;
6037 }
6038 EXPORT_SYMBOL_GPL(workqueue_congested);
6039
6040 /**
6041 * work_busy - test whether a work is currently pending or running
6042 * @work: the work to be tested
6043 *
6044 * Test whether @work is currently pending or running. There is no
6045 * synchronization around this function and the test result is
6046 * unreliable and only useful as advisory hints or for debugging.
6047 *
6048 * Return:
6049 * OR'd bitmask of WORK_BUSY_* bits.
6050 */
work_busy(struct work_struct * work)6051 unsigned int work_busy(struct work_struct *work)
6052 {
6053 struct worker_pool *pool;
6054 unsigned long irq_flags;
6055 unsigned int ret = 0;
6056
6057 if (work_pending(work))
6058 ret |= WORK_BUSY_PENDING;
6059
6060 rcu_read_lock();
6061 pool = get_work_pool(work);
6062 if (pool) {
6063 raw_spin_lock_irqsave(&pool->lock, irq_flags);
6064 if (find_worker_executing_work(pool, work))
6065 ret |= WORK_BUSY_RUNNING;
6066 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6067 }
6068 rcu_read_unlock();
6069
6070 return ret;
6071 }
6072 EXPORT_SYMBOL_GPL(work_busy);
6073
6074 /**
6075 * set_worker_desc - set description for the current work item
6076 * @fmt: printf-style format string
6077 * @...: arguments for the format string
6078 *
6079 * This function can be called by a running work function to describe what
6080 * the work item is about. If the worker task gets dumped, this
6081 * information will be printed out together to help debugging. The
6082 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6083 */
set_worker_desc(const char * fmt,...)6084 void set_worker_desc(const char *fmt, ...)
6085 {
6086 struct worker *worker = current_wq_worker();
6087 va_list args;
6088
6089 if (worker) {
6090 va_start(args, fmt);
6091 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6092 va_end(args);
6093 }
6094 }
6095 EXPORT_SYMBOL_GPL(set_worker_desc);
6096
6097 /**
6098 * print_worker_info - print out worker information and description
6099 * @log_lvl: the log level to use when printing
6100 * @task: target task
6101 *
6102 * If @task is a worker and currently executing a work item, print out the
6103 * name of the workqueue being serviced and worker description set with
6104 * set_worker_desc() by the currently executing work item.
6105 *
6106 * This function can be safely called on any task as long as the
6107 * task_struct itself is accessible. While safe, this function isn't
6108 * synchronized and may print out mixups or garbages of limited length.
6109 */
print_worker_info(const char * log_lvl,struct task_struct * task)6110 void print_worker_info(const char *log_lvl, struct task_struct *task)
6111 {
6112 work_func_t *fn = NULL;
6113 char name[WQ_NAME_LEN] = { };
6114 char desc[WORKER_DESC_LEN] = { };
6115 struct pool_workqueue *pwq = NULL;
6116 struct workqueue_struct *wq = NULL;
6117 struct worker *worker;
6118
6119 if (!(task->flags & PF_WQ_WORKER))
6120 return;
6121
6122 /*
6123 * This function is called without any synchronization and @task
6124 * could be in any state. Be careful with dereferences.
6125 */
6126 worker = kthread_probe_data(task);
6127
6128 /*
6129 * Carefully copy the associated workqueue's workfn, name and desc.
6130 * Keep the original last '\0' in case the original is garbage.
6131 */
6132 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6133 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6134 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6135 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6136 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6137
6138 if (fn || name[0] || desc[0]) {
6139 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6140 if (strcmp(name, desc))
6141 pr_cont(" (%s)", desc);
6142 pr_cont("\n");
6143 }
6144 }
6145
pr_cont_pool_info(struct worker_pool * pool)6146 static void pr_cont_pool_info(struct worker_pool *pool)
6147 {
6148 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6149 if (pool->node != NUMA_NO_NODE)
6150 pr_cont(" node=%d", pool->node);
6151 pr_cont(" flags=0x%x", pool->flags);
6152 if (pool->flags & POOL_BH)
6153 pr_cont(" bh%s",
6154 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6155 else
6156 pr_cont(" nice=%d", pool->attrs->nice);
6157 }
6158
pr_cont_worker_id(struct worker * worker)6159 static void pr_cont_worker_id(struct worker *worker)
6160 {
6161 struct worker_pool *pool = worker->pool;
6162
6163 if (pool->flags & WQ_BH)
6164 pr_cont("bh%s",
6165 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6166 else
6167 pr_cont("%d%s", task_pid_nr(worker->task),
6168 worker->rescue_wq ? "(RESCUER)" : "");
6169 }
6170
6171 struct pr_cont_work_struct {
6172 bool comma;
6173 work_func_t func;
6174 long ctr;
6175 };
6176
pr_cont_work_flush(bool comma,work_func_t func,struct pr_cont_work_struct * pcwsp)6177 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6178 {
6179 if (!pcwsp->ctr)
6180 goto out_record;
6181 if (func == pcwsp->func) {
6182 pcwsp->ctr++;
6183 return;
6184 }
6185 if (pcwsp->ctr == 1)
6186 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6187 else
6188 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6189 pcwsp->ctr = 0;
6190 out_record:
6191 if ((long)func == -1L)
6192 return;
6193 pcwsp->comma = comma;
6194 pcwsp->func = func;
6195 pcwsp->ctr = 1;
6196 }
6197
pr_cont_work(bool comma,struct work_struct * work,struct pr_cont_work_struct * pcwsp)6198 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6199 {
6200 if (work->func == wq_barrier_func) {
6201 struct wq_barrier *barr;
6202
6203 barr = container_of(work, struct wq_barrier, work);
6204
6205 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6206 pr_cont("%s BAR(%d)", comma ? "," : "",
6207 task_pid_nr(barr->task));
6208 } else {
6209 if (!comma)
6210 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6211 pr_cont_work_flush(comma, work->func, pcwsp);
6212 }
6213 }
6214
show_pwq(struct pool_workqueue * pwq)6215 static void show_pwq(struct pool_workqueue *pwq)
6216 {
6217 struct pr_cont_work_struct pcws = { .ctr = 0, };
6218 struct worker_pool *pool = pwq->pool;
6219 struct work_struct *work;
6220 struct worker *worker;
6221 bool has_in_flight = false, has_pending = false;
6222 int bkt;
6223
6224 pr_info(" pwq %d:", pool->id);
6225 pr_cont_pool_info(pool);
6226
6227 pr_cont(" active=%d refcnt=%d%s\n",
6228 pwq->nr_active, pwq->refcnt,
6229 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6230
6231 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6232 if (worker->current_pwq == pwq) {
6233 has_in_flight = true;
6234 break;
6235 }
6236 }
6237 if (has_in_flight) {
6238 bool comma = false;
6239
6240 pr_info(" in-flight:");
6241 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6242 if (worker->current_pwq != pwq)
6243 continue;
6244
6245 pr_cont(" %s", comma ? "," : "");
6246 pr_cont_worker_id(worker);
6247 pr_cont(":%ps", worker->current_func);
6248 list_for_each_entry(work, &worker->scheduled, entry)
6249 pr_cont_work(false, work, &pcws);
6250 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6251 comma = true;
6252 }
6253 pr_cont("\n");
6254 }
6255
6256 list_for_each_entry(work, &pool->worklist, entry) {
6257 if (get_work_pwq(work) == pwq) {
6258 has_pending = true;
6259 break;
6260 }
6261 }
6262 if (has_pending) {
6263 bool comma = false;
6264
6265 pr_info(" pending:");
6266 list_for_each_entry(work, &pool->worklist, entry) {
6267 if (get_work_pwq(work) != pwq)
6268 continue;
6269
6270 pr_cont_work(comma, work, &pcws);
6271 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6272 }
6273 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6274 pr_cont("\n");
6275 }
6276
6277 if (!list_empty(&pwq->inactive_works)) {
6278 bool comma = false;
6279
6280 pr_info(" inactive:");
6281 list_for_each_entry(work, &pwq->inactive_works, entry) {
6282 pr_cont_work(comma, work, &pcws);
6283 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6284 }
6285 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6286 pr_cont("\n");
6287 }
6288 }
6289
6290 /**
6291 * show_one_workqueue - dump state of specified workqueue
6292 * @wq: workqueue whose state will be printed
6293 */
show_one_workqueue(struct workqueue_struct * wq)6294 void show_one_workqueue(struct workqueue_struct *wq)
6295 {
6296 struct pool_workqueue *pwq;
6297 bool idle = true;
6298 unsigned long irq_flags;
6299
6300 for_each_pwq(pwq, wq) {
6301 if (!pwq_is_empty(pwq)) {
6302 idle = false;
6303 break;
6304 }
6305 }
6306 if (idle) /* Nothing to print for idle workqueue */
6307 return;
6308
6309 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6310
6311 for_each_pwq(pwq, wq) {
6312 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6313 if (!pwq_is_empty(pwq)) {
6314 /*
6315 * Defer printing to avoid deadlocks in console
6316 * drivers that queue work while holding locks
6317 * also taken in their write paths.
6318 */
6319 printk_deferred_enter();
6320 show_pwq(pwq);
6321 printk_deferred_exit();
6322 }
6323 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6324 /*
6325 * We could be printing a lot from atomic context, e.g.
6326 * sysrq-t -> show_all_workqueues(). Avoid triggering
6327 * hard lockup.
6328 */
6329 touch_nmi_watchdog();
6330 }
6331
6332 }
6333
6334 /**
6335 * show_one_worker_pool - dump state of specified worker pool
6336 * @pool: worker pool whose state will be printed
6337 */
show_one_worker_pool(struct worker_pool * pool)6338 static void show_one_worker_pool(struct worker_pool *pool)
6339 {
6340 struct worker *worker;
6341 bool first = true;
6342 unsigned long irq_flags;
6343 unsigned long hung = 0;
6344
6345 raw_spin_lock_irqsave(&pool->lock, irq_flags);
6346 if (pool->nr_workers == pool->nr_idle)
6347 goto next_pool;
6348
6349 /* How long the first pending work is waiting for a worker. */
6350 if (!list_empty(&pool->worklist))
6351 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6352
6353 /*
6354 * Defer printing to avoid deadlocks in console drivers that
6355 * queue work while holding locks also taken in their write
6356 * paths.
6357 */
6358 printk_deferred_enter();
6359 pr_info("pool %d:", pool->id);
6360 pr_cont_pool_info(pool);
6361 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6362 if (pool->manager)
6363 pr_cont(" manager: %d",
6364 task_pid_nr(pool->manager->task));
6365 list_for_each_entry(worker, &pool->idle_list, entry) {
6366 pr_cont(" %s", first ? "idle: " : "");
6367 pr_cont_worker_id(worker);
6368 first = false;
6369 }
6370 pr_cont("\n");
6371 printk_deferred_exit();
6372 next_pool:
6373 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6374 /*
6375 * We could be printing a lot from atomic context, e.g.
6376 * sysrq-t -> show_all_workqueues(). Avoid triggering
6377 * hard lockup.
6378 */
6379 touch_nmi_watchdog();
6380
6381 }
6382
6383 /**
6384 * show_all_workqueues - dump workqueue state
6385 *
6386 * Called from a sysrq handler and prints out all busy workqueues and pools.
6387 */
show_all_workqueues(void)6388 void show_all_workqueues(void)
6389 {
6390 struct workqueue_struct *wq;
6391 struct worker_pool *pool;
6392 int pi;
6393
6394 rcu_read_lock();
6395
6396 pr_info("Showing busy workqueues and worker pools:\n");
6397
6398 list_for_each_entry_rcu(wq, &workqueues, list)
6399 show_one_workqueue(wq);
6400
6401 for_each_pool(pool, pi)
6402 show_one_worker_pool(pool);
6403
6404 rcu_read_unlock();
6405 }
6406
6407 /**
6408 * show_freezable_workqueues - dump freezable workqueue state
6409 *
6410 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6411 * still busy.
6412 */
show_freezable_workqueues(void)6413 void show_freezable_workqueues(void)
6414 {
6415 struct workqueue_struct *wq;
6416
6417 rcu_read_lock();
6418
6419 pr_info("Showing freezable workqueues that are still busy:\n");
6420
6421 list_for_each_entry_rcu(wq, &workqueues, list) {
6422 if (!(wq->flags & WQ_FREEZABLE))
6423 continue;
6424 show_one_workqueue(wq);
6425 }
6426
6427 rcu_read_unlock();
6428 }
6429
6430 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)6431 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6432 {
6433 /* stabilize PF_WQ_WORKER and worker pool association */
6434 mutex_lock(&wq_pool_attach_mutex);
6435
6436 if (task->flags & PF_WQ_WORKER) {
6437 struct worker *worker = kthread_data(task);
6438 struct worker_pool *pool = worker->pool;
6439 int off;
6440
6441 off = format_worker_id(buf, size, worker, pool);
6442
6443 if (pool) {
6444 raw_spin_lock_irq(&pool->lock);
6445 /*
6446 * ->desc tracks information (wq name or
6447 * set_worker_desc()) for the latest execution. If
6448 * current, prepend '+', otherwise '-'.
6449 */
6450 if (worker->desc[0] != '\0') {
6451 if (worker->current_work)
6452 scnprintf(buf + off, size - off, "+%s",
6453 worker->desc);
6454 else
6455 scnprintf(buf + off, size - off, "-%s",
6456 worker->desc);
6457 }
6458 raw_spin_unlock_irq(&pool->lock);
6459 }
6460 } else {
6461 strscpy(buf, task->comm, size);
6462 }
6463
6464 mutex_unlock(&wq_pool_attach_mutex);
6465 }
6466
6467 #ifdef CONFIG_SMP
6468
6469 /*
6470 * CPU hotplug.
6471 *
6472 * There are two challenges in supporting CPU hotplug. Firstly, there
6473 * are a lot of assumptions on strong associations among work, pwq and
6474 * pool which make migrating pending and scheduled works very
6475 * difficult to implement without impacting hot paths. Secondly,
6476 * worker pools serve mix of short, long and very long running works making
6477 * blocked draining impractical.
6478 *
6479 * This is solved by allowing the pools to be disassociated from the CPU
6480 * running as an unbound one and allowing it to be reattached later if the
6481 * cpu comes back online.
6482 */
6483
unbind_workers(int cpu)6484 static void unbind_workers(int cpu)
6485 {
6486 struct worker_pool *pool;
6487 struct worker *worker;
6488
6489 for_each_cpu_worker_pool(pool, cpu) {
6490 mutex_lock(&wq_pool_attach_mutex);
6491 raw_spin_lock_irq(&pool->lock);
6492
6493 /*
6494 * We've blocked all attach/detach operations. Make all workers
6495 * unbound and set DISASSOCIATED. Before this, all workers
6496 * must be on the cpu. After this, they may become diasporas.
6497 * And the preemption disabled section in their sched callbacks
6498 * are guaranteed to see WORKER_UNBOUND since the code here
6499 * is on the same cpu.
6500 */
6501 for_each_pool_worker(worker, pool)
6502 worker->flags |= WORKER_UNBOUND;
6503
6504 pool->flags |= POOL_DISASSOCIATED;
6505
6506 /*
6507 * The handling of nr_running in sched callbacks are disabled
6508 * now. Zap nr_running. After this, nr_running stays zero and
6509 * need_more_worker() and keep_working() are always true as
6510 * long as the worklist is not empty. This pool now behaves as
6511 * an unbound (in terms of concurrency management) pool which
6512 * are served by workers tied to the pool.
6513 */
6514 pool->nr_running = 0;
6515
6516 /*
6517 * With concurrency management just turned off, a busy
6518 * worker blocking could lead to lengthy stalls. Kick off
6519 * unbound chain execution of currently pending work items.
6520 */
6521 kick_pool(pool);
6522
6523 raw_spin_unlock_irq(&pool->lock);
6524
6525 for_each_pool_worker(worker, pool)
6526 unbind_worker(worker);
6527
6528 mutex_unlock(&wq_pool_attach_mutex);
6529 }
6530 }
6531
6532 /**
6533 * rebind_workers - rebind all workers of a pool to the associated CPU
6534 * @pool: pool of interest
6535 *
6536 * @pool->cpu is coming online. Rebind all workers to the CPU.
6537 */
rebind_workers(struct worker_pool * pool)6538 static void rebind_workers(struct worker_pool *pool)
6539 {
6540 struct worker *worker;
6541
6542 lockdep_assert_held(&wq_pool_attach_mutex);
6543
6544 /*
6545 * Restore CPU affinity of all workers. As all idle workers should
6546 * be on the run-queue of the associated CPU before any local
6547 * wake-ups for concurrency management happen, restore CPU affinity
6548 * of all workers first and then clear UNBOUND. As we're called
6549 * from CPU_ONLINE, the following shouldn't fail.
6550 */
6551 for_each_pool_worker(worker, pool) {
6552 kthread_set_per_cpu(worker->task, pool->cpu);
6553 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6554 pool_allowed_cpus(pool)) < 0);
6555 }
6556
6557 raw_spin_lock_irq(&pool->lock);
6558
6559 pool->flags &= ~POOL_DISASSOCIATED;
6560
6561 for_each_pool_worker(worker, pool) {
6562 unsigned int worker_flags = worker->flags;
6563
6564 /*
6565 * We want to clear UNBOUND but can't directly call
6566 * worker_clr_flags() or adjust nr_running. Atomically
6567 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6568 * @worker will clear REBOUND using worker_clr_flags() when
6569 * it initiates the next execution cycle thus restoring
6570 * concurrency management. Note that when or whether
6571 * @worker clears REBOUND doesn't affect correctness.
6572 *
6573 * WRITE_ONCE() is necessary because @worker->flags may be
6574 * tested without holding any lock in
6575 * wq_worker_running(). Without it, NOT_RUNNING test may
6576 * fail incorrectly leading to premature concurrency
6577 * management operations.
6578 */
6579 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6580 worker_flags |= WORKER_REBOUND;
6581 worker_flags &= ~WORKER_UNBOUND;
6582 WRITE_ONCE(worker->flags, worker_flags);
6583 }
6584
6585 raw_spin_unlock_irq(&pool->lock);
6586 }
6587
6588 /**
6589 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6590 * @pool: unbound pool of interest
6591 * @cpu: the CPU which is coming up
6592 *
6593 * An unbound pool may end up with a cpumask which doesn't have any online
6594 * CPUs. When a worker of such pool get scheduled, the scheduler resets
6595 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
6596 * online CPU before, cpus_allowed of all its workers should be restored.
6597 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)6598 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6599 {
6600 static cpumask_t cpumask;
6601 struct worker *worker;
6602
6603 lockdep_assert_held(&wq_pool_attach_mutex);
6604
6605 /* is @cpu allowed for @pool? */
6606 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6607 return;
6608
6609 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6610
6611 /* as we're called from CPU_ONLINE, the following shouldn't fail */
6612 for_each_pool_worker(worker, pool)
6613 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6614 }
6615
workqueue_prepare_cpu(unsigned int cpu)6616 int workqueue_prepare_cpu(unsigned int cpu)
6617 {
6618 struct worker_pool *pool;
6619
6620 for_each_cpu_worker_pool(pool, cpu) {
6621 if (pool->nr_workers)
6622 continue;
6623 if (!create_worker(pool))
6624 return -ENOMEM;
6625 }
6626 return 0;
6627 }
6628
workqueue_online_cpu(unsigned int cpu)6629 int workqueue_online_cpu(unsigned int cpu)
6630 {
6631 struct worker_pool *pool;
6632 struct workqueue_struct *wq;
6633 int pi;
6634
6635 mutex_lock(&wq_pool_mutex);
6636
6637 cpumask_set_cpu(cpu, wq_online_cpumask);
6638
6639 for_each_pool(pool, pi) {
6640 /* BH pools aren't affected by hotplug */
6641 if (pool->flags & POOL_BH)
6642 continue;
6643
6644 mutex_lock(&wq_pool_attach_mutex);
6645 if (pool->cpu == cpu)
6646 rebind_workers(pool);
6647 else if (pool->cpu < 0)
6648 restore_unbound_workers_cpumask(pool, cpu);
6649 mutex_unlock(&wq_pool_attach_mutex);
6650 }
6651
6652 /* update pod affinity of unbound workqueues */
6653 list_for_each_entry(wq, &workqueues, list) {
6654 struct workqueue_attrs *attrs = wq->unbound_attrs;
6655
6656 if (attrs) {
6657 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6658 int tcpu;
6659
6660 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6661 unbound_wq_update_pwq(wq, tcpu);
6662
6663 mutex_lock(&wq->mutex);
6664 wq_update_node_max_active(wq, -1);
6665 mutex_unlock(&wq->mutex);
6666 }
6667 }
6668
6669 mutex_unlock(&wq_pool_mutex);
6670 return 0;
6671 }
6672
workqueue_offline_cpu(unsigned int cpu)6673 int workqueue_offline_cpu(unsigned int cpu)
6674 {
6675 struct workqueue_struct *wq;
6676
6677 /* unbinding per-cpu workers should happen on the local CPU */
6678 if (WARN_ON(cpu != smp_processor_id()))
6679 return -1;
6680
6681 unbind_workers(cpu);
6682
6683 /* update pod affinity of unbound workqueues */
6684 mutex_lock(&wq_pool_mutex);
6685
6686 cpumask_clear_cpu(cpu, wq_online_cpumask);
6687
6688 list_for_each_entry(wq, &workqueues, list) {
6689 struct workqueue_attrs *attrs = wq->unbound_attrs;
6690
6691 if (attrs) {
6692 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6693 int tcpu;
6694
6695 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6696 unbound_wq_update_pwq(wq, tcpu);
6697
6698 mutex_lock(&wq->mutex);
6699 wq_update_node_max_active(wq, cpu);
6700 mutex_unlock(&wq->mutex);
6701 }
6702 }
6703 mutex_unlock(&wq_pool_mutex);
6704
6705 return 0;
6706 }
6707
6708 struct work_for_cpu {
6709 struct work_struct work;
6710 long (*fn)(void *);
6711 void *arg;
6712 long ret;
6713 };
6714
work_for_cpu_fn(struct work_struct * work)6715 static void work_for_cpu_fn(struct work_struct *work)
6716 {
6717 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6718
6719 wfc->ret = wfc->fn(wfc->arg);
6720 }
6721
6722 /**
6723 * work_on_cpu_key - run a function in thread context on a particular cpu
6724 * @cpu: the cpu to run on
6725 * @fn: the function to run
6726 * @arg: the function arg
6727 * @key: The lock class key for lock debugging purposes
6728 *
6729 * It is up to the caller to ensure that the cpu doesn't go offline.
6730 * The caller must not hold any locks which would prevent @fn from completing.
6731 *
6732 * Return: The value @fn returns.
6733 */
work_on_cpu_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6734 long work_on_cpu_key(int cpu, long (*fn)(void *),
6735 void *arg, struct lock_class_key *key)
6736 {
6737 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6738
6739 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6740 schedule_work_on(cpu, &wfc.work);
6741 flush_work(&wfc.work);
6742 destroy_work_on_stack(&wfc.work);
6743 return wfc.ret;
6744 }
6745 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6746
6747 /**
6748 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6749 * @cpu: the cpu to run on
6750 * @fn: the function to run
6751 * @arg: the function argument
6752 * @key: The lock class key for lock debugging purposes
6753 *
6754 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6755 * any locks which would prevent @fn from completing.
6756 *
6757 * Return: The value @fn returns.
6758 */
work_on_cpu_safe_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6759 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6760 void *arg, struct lock_class_key *key)
6761 {
6762 long ret = -ENODEV;
6763
6764 cpus_read_lock();
6765 if (cpu_online(cpu))
6766 ret = work_on_cpu_key(cpu, fn, arg, key);
6767 cpus_read_unlock();
6768 return ret;
6769 }
6770 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6771 #endif /* CONFIG_SMP */
6772
6773 #ifdef CONFIG_FREEZER
6774
6775 /**
6776 * freeze_workqueues_begin - begin freezing workqueues
6777 *
6778 * Start freezing workqueues. After this function returns, all freezable
6779 * workqueues will queue new works to their inactive_works list instead of
6780 * pool->worklist.
6781 *
6782 * CONTEXT:
6783 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6784 */
freeze_workqueues_begin(void)6785 void freeze_workqueues_begin(void)
6786 {
6787 struct workqueue_struct *wq;
6788
6789 mutex_lock(&wq_pool_mutex);
6790
6791 WARN_ON_ONCE(workqueue_freezing);
6792 workqueue_freezing = true;
6793
6794 list_for_each_entry(wq, &workqueues, list) {
6795 mutex_lock(&wq->mutex);
6796 wq_adjust_max_active(wq);
6797 mutex_unlock(&wq->mutex);
6798 }
6799
6800 mutex_unlock(&wq_pool_mutex);
6801 }
6802
6803 /**
6804 * freeze_workqueues_busy - are freezable workqueues still busy?
6805 *
6806 * Check whether freezing is complete. This function must be called
6807 * between freeze_workqueues_begin() and thaw_workqueues().
6808 *
6809 * CONTEXT:
6810 * Grabs and releases wq_pool_mutex.
6811 *
6812 * Return:
6813 * %true if some freezable workqueues are still busy. %false if freezing
6814 * is complete.
6815 */
freeze_workqueues_busy(void)6816 bool freeze_workqueues_busy(void)
6817 {
6818 bool busy = false;
6819 struct workqueue_struct *wq;
6820 struct pool_workqueue *pwq;
6821
6822 mutex_lock(&wq_pool_mutex);
6823
6824 WARN_ON_ONCE(!workqueue_freezing);
6825
6826 list_for_each_entry(wq, &workqueues, list) {
6827 if (!(wq->flags & WQ_FREEZABLE))
6828 continue;
6829 /*
6830 * nr_active is monotonically decreasing. It's safe
6831 * to peek without lock.
6832 */
6833 rcu_read_lock();
6834 for_each_pwq(pwq, wq) {
6835 WARN_ON_ONCE(pwq->nr_active < 0);
6836 if (pwq->nr_active) {
6837 busy = true;
6838 rcu_read_unlock();
6839 goto out_unlock;
6840 }
6841 }
6842 rcu_read_unlock();
6843 }
6844 out_unlock:
6845 mutex_unlock(&wq_pool_mutex);
6846 return busy;
6847 }
6848
6849 /**
6850 * thaw_workqueues - thaw workqueues
6851 *
6852 * Thaw workqueues. Normal queueing is restored and all collected
6853 * frozen works are transferred to their respective pool worklists.
6854 *
6855 * CONTEXT:
6856 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6857 */
thaw_workqueues(void)6858 void thaw_workqueues(void)
6859 {
6860 struct workqueue_struct *wq;
6861
6862 mutex_lock(&wq_pool_mutex);
6863
6864 if (!workqueue_freezing)
6865 goto out_unlock;
6866
6867 workqueue_freezing = false;
6868
6869 /* restore max_active and repopulate worklist */
6870 list_for_each_entry(wq, &workqueues, list) {
6871 mutex_lock(&wq->mutex);
6872 wq_adjust_max_active(wq);
6873 mutex_unlock(&wq->mutex);
6874 }
6875
6876 out_unlock:
6877 mutex_unlock(&wq_pool_mutex);
6878 }
6879 #endif /* CONFIG_FREEZER */
6880
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)6881 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6882 {
6883 LIST_HEAD(ctxs);
6884 int ret = 0;
6885 struct workqueue_struct *wq;
6886 struct apply_wqattrs_ctx *ctx, *n;
6887
6888 lockdep_assert_held(&wq_pool_mutex);
6889
6890 list_for_each_entry(wq, &workqueues, list) {
6891 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6892 continue;
6893
6894 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6895 if (IS_ERR(ctx)) {
6896 ret = PTR_ERR(ctx);
6897 break;
6898 }
6899
6900 list_add_tail(&ctx->list, &ctxs);
6901 }
6902
6903 list_for_each_entry_safe(ctx, n, &ctxs, list) {
6904 if (!ret)
6905 apply_wqattrs_commit(ctx);
6906 apply_wqattrs_cleanup(ctx);
6907 }
6908
6909 if (!ret) {
6910 mutex_lock(&wq_pool_attach_mutex);
6911 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6912 mutex_unlock(&wq_pool_attach_mutex);
6913 }
6914 return ret;
6915 }
6916
6917 /**
6918 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6919 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6920 *
6921 * This function can be called from cpuset code to provide a set of isolated
6922 * CPUs that should be excluded from wq_unbound_cpumask.
6923 */
workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)6924 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6925 {
6926 cpumask_var_t cpumask;
6927 int ret = 0;
6928
6929 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6930 return -ENOMEM;
6931
6932 mutex_lock(&wq_pool_mutex);
6933
6934 /*
6935 * If the operation fails, it will fall back to
6936 * wq_requested_unbound_cpumask which is initially set to
6937 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6938 * by any subsequent write to workqueue/cpumask sysfs file.
6939 */
6940 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6941 cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6942 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6943 ret = workqueue_apply_unbound_cpumask(cpumask);
6944
6945 /* Save the current isolated cpumask & export it via sysfs */
6946 if (!ret)
6947 cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6948
6949 mutex_unlock(&wq_pool_mutex);
6950 free_cpumask_var(cpumask);
6951 return ret;
6952 }
6953
parse_affn_scope(const char * val)6954 static int parse_affn_scope(const char *val)
6955 {
6956 int i;
6957
6958 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6959 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6960 return i;
6961 }
6962 return -EINVAL;
6963 }
6964
wq_affn_dfl_set(const char * val,const struct kernel_param * kp)6965 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6966 {
6967 struct workqueue_struct *wq;
6968 int affn, cpu;
6969
6970 affn = parse_affn_scope(val);
6971 if (affn < 0)
6972 return affn;
6973 if (affn == WQ_AFFN_DFL)
6974 return -EINVAL;
6975
6976 cpus_read_lock();
6977 mutex_lock(&wq_pool_mutex);
6978
6979 wq_affn_dfl = affn;
6980
6981 list_for_each_entry(wq, &workqueues, list) {
6982 for_each_online_cpu(cpu)
6983 unbound_wq_update_pwq(wq, cpu);
6984 }
6985
6986 mutex_unlock(&wq_pool_mutex);
6987 cpus_read_unlock();
6988
6989 return 0;
6990 }
6991
wq_affn_dfl_get(char * buffer,const struct kernel_param * kp)6992 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6993 {
6994 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6995 }
6996
6997 static const struct kernel_param_ops wq_affn_dfl_ops = {
6998 .set = wq_affn_dfl_set,
6999 .get = wq_affn_dfl_get,
7000 };
7001
7002 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
7003
7004 #ifdef CONFIG_SYSFS
7005 /*
7006 * Workqueues with WQ_SYSFS flag set is visible to userland via
7007 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
7008 * following attributes.
7009 *
7010 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
7011 * max_active RW int : maximum number of in-flight work items
7012 *
7013 * Unbound workqueues have the following extra attributes.
7014 *
7015 * nice RW int : nice value of the workers
7016 * cpumask RW mask : bitmask of allowed CPUs for the workers
7017 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
7018 * affinity_strict RW bool : worker CPU affinity is strict
7019 */
7020 struct wq_device {
7021 struct workqueue_struct *wq;
7022 struct device dev;
7023 };
7024
dev_to_wq(struct device * dev)7025 static struct workqueue_struct *dev_to_wq(struct device *dev)
7026 {
7027 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7028
7029 return wq_dev->wq;
7030 }
7031
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)7032 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
7033 char *buf)
7034 {
7035 struct workqueue_struct *wq = dev_to_wq(dev);
7036
7037 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
7038 }
7039 static DEVICE_ATTR_RO(per_cpu);
7040
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)7041 static ssize_t max_active_show(struct device *dev,
7042 struct device_attribute *attr, char *buf)
7043 {
7044 struct workqueue_struct *wq = dev_to_wq(dev);
7045
7046 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7047 }
7048
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7049 static ssize_t max_active_store(struct device *dev,
7050 struct device_attribute *attr, const char *buf,
7051 size_t count)
7052 {
7053 struct workqueue_struct *wq = dev_to_wq(dev);
7054 int val;
7055
7056 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7057 return -EINVAL;
7058
7059 workqueue_set_max_active(wq, val);
7060 return count;
7061 }
7062 static DEVICE_ATTR_RW(max_active);
7063
7064 static struct attribute *wq_sysfs_attrs[] = {
7065 &dev_attr_per_cpu.attr,
7066 &dev_attr_max_active.attr,
7067 NULL,
7068 };
7069 ATTRIBUTE_GROUPS(wq_sysfs);
7070
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)7071 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7072 char *buf)
7073 {
7074 struct workqueue_struct *wq = dev_to_wq(dev);
7075 int written;
7076
7077 mutex_lock(&wq->mutex);
7078 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7079 mutex_unlock(&wq->mutex);
7080
7081 return written;
7082 }
7083
7084 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)7085 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7086 {
7087 struct workqueue_attrs *attrs;
7088
7089 lockdep_assert_held(&wq_pool_mutex);
7090
7091 attrs = alloc_workqueue_attrs();
7092 if (!attrs)
7093 return NULL;
7094
7095 copy_workqueue_attrs(attrs, wq->unbound_attrs);
7096 return attrs;
7097 }
7098
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7099 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7100 const char *buf, size_t count)
7101 {
7102 struct workqueue_struct *wq = dev_to_wq(dev);
7103 struct workqueue_attrs *attrs;
7104 int ret = -ENOMEM;
7105
7106 apply_wqattrs_lock();
7107
7108 attrs = wq_sysfs_prep_attrs(wq);
7109 if (!attrs)
7110 goto out_unlock;
7111
7112 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7113 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7114 ret = apply_workqueue_attrs_locked(wq, attrs);
7115 else
7116 ret = -EINVAL;
7117
7118 out_unlock:
7119 apply_wqattrs_unlock();
7120 free_workqueue_attrs(attrs);
7121 return ret ?: count;
7122 }
7123
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7124 static ssize_t wq_cpumask_show(struct device *dev,
7125 struct device_attribute *attr, char *buf)
7126 {
7127 struct workqueue_struct *wq = dev_to_wq(dev);
7128 int written;
7129
7130 mutex_lock(&wq->mutex);
7131 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7132 cpumask_pr_args(wq->unbound_attrs->cpumask));
7133 mutex_unlock(&wq->mutex);
7134 return written;
7135 }
7136
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7137 static ssize_t wq_cpumask_store(struct device *dev,
7138 struct device_attribute *attr,
7139 const char *buf, size_t count)
7140 {
7141 struct workqueue_struct *wq = dev_to_wq(dev);
7142 struct workqueue_attrs *attrs;
7143 int ret = -ENOMEM;
7144
7145 apply_wqattrs_lock();
7146
7147 attrs = wq_sysfs_prep_attrs(wq);
7148 if (!attrs)
7149 goto out_unlock;
7150
7151 ret = cpumask_parse(buf, attrs->cpumask);
7152 if (!ret)
7153 ret = apply_workqueue_attrs_locked(wq, attrs);
7154
7155 out_unlock:
7156 apply_wqattrs_unlock();
7157 free_workqueue_attrs(attrs);
7158 return ret ?: count;
7159 }
7160
wq_affn_scope_show(struct device * dev,struct device_attribute * attr,char * buf)7161 static ssize_t wq_affn_scope_show(struct device *dev,
7162 struct device_attribute *attr, char *buf)
7163 {
7164 struct workqueue_struct *wq = dev_to_wq(dev);
7165 int written;
7166
7167 mutex_lock(&wq->mutex);
7168 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7169 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7170 wq_affn_names[WQ_AFFN_DFL],
7171 wq_affn_names[wq_affn_dfl]);
7172 else
7173 written = scnprintf(buf, PAGE_SIZE, "%s\n",
7174 wq_affn_names[wq->unbound_attrs->affn_scope]);
7175 mutex_unlock(&wq->mutex);
7176
7177 return written;
7178 }
7179
wq_affn_scope_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7180 static ssize_t wq_affn_scope_store(struct device *dev,
7181 struct device_attribute *attr,
7182 const char *buf, size_t count)
7183 {
7184 struct workqueue_struct *wq = dev_to_wq(dev);
7185 struct workqueue_attrs *attrs;
7186 int affn, ret = -ENOMEM;
7187
7188 affn = parse_affn_scope(buf);
7189 if (affn < 0)
7190 return affn;
7191
7192 apply_wqattrs_lock();
7193 attrs = wq_sysfs_prep_attrs(wq);
7194 if (attrs) {
7195 attrs->affn_scope = affn;
7196 ret = apply_workqueue_attrs_locked(wq, attrs);
7197 }
7198 apply_wqattrs_unlock();
7199 free_workqueue_attrs(attrs);
7200 return ret ?: count;
7201 }
7202
wq_affinity_strict_show(struct device * dev,struct device_attribute * attr,char * buf)7203 static ssize_t wq_affinity_strict_show(struct device *dev,
7204 struct device_attribute *attr, char *buf)
7205 {
7206 struct workqueue_struct *wq = dev_to_wq(dev);
7207
7208 return scnprintf(buf, PAGE_SIZE, "%d\n",
7209 wq->unbound_attrs->affn_strict);
7210 }
7211
wq_affinity_strict_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7212 static ssize_t wq_affinity_strict_store(struct device *dev,
7213 struct device_attribute *attr,
7214 const char *buf, size_t count)
7215 {
7216 struct workqueue_struct *wq = dev_to_wq(dev);
7217 struct workqueue_attrs *attrs;
7218 int v, ret = -ENOMEM;
7219
7220 if (sscanf(buf, "%d", &v) != 1)
7221 return -EINVAL;
7222
7223 apply_wqattrs_lock();
7224 attrs = wq_sysfs_prep_attrs(wq);
7225 if (attrs) {
7226 attrs->affn_strict = (bool)v;
7227 ret = apply_workqueue_attrs_locked(wq, attrs);
7228 }
7229 apply_wqattrs_unlock();
7230 free_workqueue_attrs(attrs);
7231 return ret ?: count;
7232 }
7233
7234 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7235 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7236 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7237 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7238 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7239 __ATTR_NULL,
7240 };
7241
7242 static const struct bus_type wq_subsys = {
7243 .name = "workqueue",
7244 .dev_groups = wq_sysfs_groups,
7245 };
7246
7247 /**
7248 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7249 * @cpumask: the cpumask to set
7250 *
7251 * The low-level workqueues cpumask is a global cpumask that limits
7252 * the affinity of all unbound workqueues. This function check the @cpumask
7253 * and apply it to all unbound workqueues and updates all pwqs of them.
7254 *
7255 * Return: 0 - Success
7256 * -EINVAL - Invalid @cpumask
7257 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
7258 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)7259 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7260 {
7261 int ret = -EINVAL;
7262
7263 /*
7264 * Not excluding isolated cpus on purpose.
7265 * If the user wishes to include them, we allow that.
7266 */
7267 cpumask_and(cpumask, cpumask, cpu_possible_mask);
7268 if (!cpumask_empty(cpumask)) {
7269 ret = 0;
7270 apply_wqattrs_lock();
7271 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7272 ret = workqueue_apply_unbound_cpumask(cpumask);
7273 if (!ret)
7274 cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7275 apply_wqattrs_unlock();
7276 }
7277
7278 return ret;
7279 }
7280
__wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf,cpumask_var_t mask)7281 static ssize_t __wq_cpumask_show(struct device *dev,
7282 struct device_attribute *attr, char *buf, cpumask_var_t mask)
7283 {
7284 int written;
7285
7286 mutex_lock(&wq_pool_mutex);
7287 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7288 mutex_unlock(&wq_pool_mutex);
7289
7290 return written;
7291 }
7292
cpumask_requested_show(struct device * dev,struct device_attribute * attr,char * buf)7293 static ssize_t cpumask_requested_show(struct device *dev,
7294 struct device_attribute *attr, char *buf)
7295 {
7296 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7297 }
7298 static DEVICE_ATTR_RO(cpumask_requested);
7299
cpumask_isolated_show(struct device * dev,struct device_attribute * attr,char * buf)7300 static ssize_t cpumask_isolated_show(struct device *dev,
7301 struct device_attribute *attr, char *buf)
7302 {
7303 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7304 }
7305 static DEVICE_ATTR_RO(cpumask_isolated);
7306
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7307 static ssize_t cpumask_show(struct device *dev,
7308 struct device_attribute *attr, char *buf)
7309 {
7310 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7311 }
7312
cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7313 static ssize_t cpumask_store(struct device *dev,
7314 struct device_attribute *attr, const char *buf, size_t count)
7315 {
7316 cpumask_var_t cpumask;
7317 int ret;
7318
7319 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7320 return -ENOMEM;
7321
7322 ret = cpumask_parse(buf, cpumask);
7323 if (!ret)
7324 ret = workqueue_set_unbound_cpumask(cpumask);
7325
7326 free_cpumask_var(cpumask);
7327 return ret ? ret : count;
7328 }
7329 static DEVICE_ATTR_RW(cpumask);
7330
7331 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7332 &dev_attr_cpumask.attr,
7333 &dev_attr_cpumask_requested.attr,
7334 &dev_attr_cpumask_isolated.attr,
7335 NULL,
7336 };
7337 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7338
wq_sysfs_init(void)7339 static int __init wq_sysfs_init(void)
7340 {
7341 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7342 }
7343 core_initcall(wq_sysfs_init);
7344
wq_device_release(struct device * dev)7345 static void wq_device_release(struct device *dev)
7346 {
7347 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7348
7349 kfree(wq_dev);
7350 }
7351
7352 /**
7353 * workqueue_sysfs_register - make a workqueue visible in sysfs
7354 * @wq: the workqueue to register
7355 *
7356 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7357 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7358 * which is the preferred method.
7359 *
7360 * Workqueue user should use this function directly iff it wants to apply
7361 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7362 * apply_workqueue_attrs() may race against userland updating the
7363 * attributes.
7364 *
7365 * Return: 0 on success, -errno on failure.
7366 */
workqueue_sysfs_register(struct workqueue_struct * wq)7367 int workqueue_sysfs_register(struct workqueue_struct *wq)
7368 {
7369 struct wq_device *wq_dev;
7370 int ret;
7371
7372 /*
7373 * Adjusting max_active breaks ordering guarantee. Disallow exposing
7374 * ordered workqueues.
7375 */
7376 if (WARN_ON(wq->flags & __WQ_ORDERED))
7377 return -EINVAL;
7378
7379 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7380 if (!wq_dev)
7381 return -ENOMEM;
7382
7383 wq_dev->wq = wq;
7384 wq_dev->dev.bus = &wq_subsys;
7385 wq_dev->dev.release = wq_device_release;
7386 dev_set_name(&wq_dev->dev, "%s", wq->name);
7387
7388 /*
7389 * unbound_attrs are created separately. Suppress uevent until
7390 * everything is ready.
7391 */
7392 dev_set_uevent_suppress(&wq_dev->dev, true);
7393
7394 ret = device_register(&wq_dev->dev);
7395 if (ret) {
7396 put_device(&wq_dev->dev);
7397 wq->wq_dev = NULL;
7398 return ret;
7399 }
7400
7401 if (wq->flags & WQ_UNBOUND) {
7402 struct device_attribute *attr;
7403
7404 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7405 ret = device_create_file(&wq_dev->dev, attr);
7406 if (ret) {
7407 device_unregister(&wq_dev->dev);
7408 wq->wq_dev = NULL;
7409 return ret;
7410 }
7411 }
7412 }
7413
7414 dev_set_uevent_suppress(&wq_dev->dev, false);
7415 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7416 return 0;
7417 }
7418
7419 /**
7420 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7421 * @wq: the workqueue to unregister
7422 *
7423 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7424 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7425 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7426 {
7427 struct wq_device *wq_dev = wq->wq_dev;
7428
7429 if (!wq->wq_dev)
7430 return;
7431
7432 wq->wq_dev = NULL;
7433 device_unregister(&wq_dev->dev);
7434 }
7435 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7436 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
7437 #endif /* CONFIG_SYSFS */
7438
7439 /*
7440 * Workqueue watchdog.
7441 *
7442 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7443 * flush dependency, a concurrency managed work item which stays RUNNING
7444 * indefinitely. Workqueue stalls can be very difficult to debug as the
7445 * usual warning mechanisms don't trigger and internal workqueue state is
7446 * largely opaque.
7447 *
7448 * Workqueue watchdog monitors all worker pools periodically and dumps
7449 * state if some pools failed to make forward progress for a while where
7450 * forward progress is defined as the first item on ->worklist changing.
7451 *
7452 * This mechanism is controlled through the kernel parameter
7453 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7454 * corresponding sysfs parameter file.
7455 */
7456 #ifdef CONFIG_WQ_WATCHDOG
7457
7458 static unsigned long wq_watchdog_thresh = 30;
7459 static struct timer_list wq_watchdog_timer;
7460
7461 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7462 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7463
7464 static unsigned int wq_panic_on_stall;
7465 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
7466
7467 /*
7468 * Show workers that might prevent the processing of pending work items.
7469 * The only candidates are CPU-bound workers in the running state.
7470 * Pending work items should be handled by another idle worker
7471 * in all other situations.
7472 */
show_cpu_pool_hog(struct worker_pool * pool)7473 static void show_cpu_pool_hog(struct worker_pool *pool)
7474 {
7475 struct worker *worker;
7476 unsigned long irq_flags;
7477 int bkt;
7478
7479 raw_spin_lock_irqsave(&pool->lock, irq_flags);
7480
7481 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7482 if (task_is_running(worker->task)) {
7483 /*
7484 * Defer printing to avoid deadlocks in console
7485 * drivers that queue work while holding locks
7486 * also taken in their write paths.
7487 */
7488 printk_deferred_enter();
7489
7490 pr_info("pool %d:\n", pool->id);
7491 sched_show_task(worker->task);
7492
7493 printk_deferred_exit();
7494 }
7495 }
7496
7497 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7498 }
7499
show_cpu_pools_hogs(void)7500 static void show_cpu_pools_hogs(void)
7501 {
7502 struct worker_pool *pool;
7503 int pi;
7504
7505 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7506
7507 rcu_read_lock();
7508
7509 for_each_pool(pool, pi) {
7510 if (pool->cpu_stall)
7511 show_cpu_pool_hog(pool);
7512
7513 }
7514
7515 rcu_read_unlock();
7516 }
7517
panic_on_wq_watchdog(void)7518 static void panic_on_wq_watchdog(void)
7519 {
7520 static unsigned int wq_stall;
7521
7522 if (wq_panic_on_stall) {
7523 wq_stall++;
7524 BUG_ON(wq_stall >= wq_panic_on_stall);
7525 }
7526 }
7527
wq_watchdog_reset_touched(void)7528 static void wq_watchdog_reset_touched(void)
7529 {
7530 int cpu;
7531
7532 wq_watchdog_touched = jiffies;
7533 for_each_possible_cpu(cpu)
7534 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7535 }
7536
wq_watchdog_timer_fn(struct timer_list * unused)7537 static void wq_watchdog_timer_fn(struct timer_list *unused)
7538 {
7539 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7540 bool lockup_detected = false;
7541 bool cpu_pool_stall = false;
7542 unsigned long now = jiffies;
7543 struct worker_pool *pool;
7544 int pi;
7545
7546 if (!thresh)
7547 return;
7548
7549 rcu_read_lock();
7550
7551 for_each_pool(pool, pi) {
7552 unsigned long pool_ts, touched, ts;
7553
7554 pool->cpu_stall = false;
7555 if (list_empty(&pool->worklist))
7556 continue;
7557
7558 /*
7559 * If a virtual machine is stopped by the host it can look to
7560 * the watchdog like a stall.
7561 */
7562 kvm_check_and_clear_guest_paused();
7563
7564 /* get the latest of pool and touched timestamps */
7565 if (pool->cpu >= 0)
7566 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7567 else
7568 touched = READ_ONCE(wq_watchdog_touched);
7569 pool_ts = READ_ONCE(pool->watchdog_ts);
7570
7571 if (time_after(pool_ts, touched))
7572 ts = pool_ts;
7573 else
7574 ts = touched;
7575
7576 /* did we stall? */
7577 if (time_after(now, ts + thresh)) {
7578 lockup_detected = true;
7579 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7580 pool->cpu_stall = true;
7581 cpu_pool_stall = true;
7582 }
7583 pr_emerg("BUG: workqueue lockup - pool");
7584 pr_cont_pool_info(pool);
7585 pr_cont(" stuck for %us!\n",
7586 jiffies_to_msecs(now - pool_ts) / 1000);
7587 }
7588
7589
7590 }
7591
7592 rcu_read_unlock();
7593
7594 if (lockup_detected)
7595 show_all_workqueues();
7596
7597 if (cpu_pool_stall)
7598 show_cpu_pools_hogs();
7599
7600 if (lockup_detected)
7601 panic_on_wq_watchdog();
7602
7603 wq_watchdog_reset_touched();
7604 mod_timer(&wq_watchdog_timer, jiffies + thresh);
7605 }
7606
wq_watchdog_touch(int cpu)7607 notrace void wq_watchdog_touch(int cpu)
7608 {
7609 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7610 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7611 unsigned long now = jiffies;
7612
7613 if (cpu >= 0)
7614 per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7615 else
7616 WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7617
7618 /* Don't unnecessarily store to global cacheline */
7619 if (time_after(now, touch_ts + thresh / 4))
7620 WRITE_ONCE(wq_watchdog_touched, jiffies);
7621 }
7622
wq_watchdog_set_thresh(unsigned long thresh)7623 static void wq_watchdog_set_thresh(unsigned long thresh)
7624 {
7625 wq_watchdog_thresh = 0;
7626 del_timer_sync(&wq_watchdog_timer);
7627
7628 if (thresh) {
7629 wq_watchdog_thresh = thresh;
7630 wq_watchdog_reset_touched();
7631 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7632 }
7633 }
7634
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)7635 static int wq_watchdog_param_set_thresh(const char *val,
7636 const struct kernel_param *kp)
7637 {
7638 unsigned long thresh;
7639 int ret;
7640
7641 ret = kstrtoul(val, 0, &thresh);
7642 if (ret)
7643 return ret;
7644
7645 if (system_wq)
7646 wq_watchdog_set_thresh(thresh);
7647 else
7648 wq_watchdog_thresh = thresh;
7649
7650 return 0;
7651 }
7652
7653 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7654 .set = wq_watchdog_param_set_thresh,
7655 .get = param_get_ulong,
7656 };
7657
7658 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7659 0644);
7660
wq_watchdog_init(void)7661 static void wq_watchdog_init(void)
7662 {
7663 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7664 wq_watchdog_set_thresh(wq_watchdog_thresh);
7665 }
7666
7667 #else /* CONFIG_WQ_WATCHDOG */
7668
wq_watchdog_init(void)7669 static inline void wq_watchdog_init(void) { }
7670
7671 #endif /* CONFIG_WQ_WATCHDOG */
7672
bh_pool_kick_normal(struct irq_work * irq_work)7673 static void bh_pool_kick_normal(struct irq_work *irq_work)
7674 {
7675 raise_softirq_irqoff(TASKLET_SOFTIRQ);
7676 }
7677
bh_pool_kick_highpri(struct irq_work * irq_work)7678 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7679 {
7680 raise_softirq_irqoff(HI_SOFTIRQ);
7681 }
7682
restrict_unbound_cpumask(const char * name,const struct cpumask * mask)7683 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7684 {
7685 if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7686 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7687 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7688 return;
7689 }
7690
7691 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7692 }
7693
init_cpu_worker_pool(struct worker_pool * pool,int cpu,int nice)7694 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7695 {
7696 BUG_ON(init_worker_pool(pool));
7697 pool->cpu = cpu;
7698 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7699 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7700 pool->attrs->nice = nice;
7701 pool->attrs->affn_strict = true;
7702 pool->node = cpu_to_node(cpu);
7703
7704 /* alloc pool ID */
7705 mutex_lock(&wq_pool_mutex);
7706 BUG_ON(worker_pool_assign_id(pool));
7707 mutex_unlock(&wq_pool_mutex);
7708 }
7709
7710 /**
7711 * workqueue_init_early - early init for workqueue subsystem
7712 *
7713 * This is the first step of three-staged workqueue subsystem initialization and
7714 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7715 * up. It sets up all the data structures and system workqueues and allows early
7716 * boot code to create workqueues and queue/cancel work items. Actual work item
7717 * execution starts only after kthreads can be created and scheduled right
7718 * before early initcalls.
7719 */
workqueue_init_early(void)7720 void __init workqueue_init_early(void)
7721 {
7722 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7723 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7724 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7725 bh_pool_kick_highpri };
7726 int i, cpu;
7727
7728 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7729
7730 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7731 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7732 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7733 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7734
7735 cpumask_copy(wq_online_cpumask, cpu_online_mask);
7736 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7737 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7738 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7739 if (!cpumask_empty(&wq_cmdline_cpumask))
7740 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7741
7742 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7743
7744 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7745
7746 unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7747 BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7748
7749 /*
7750 * If nohz_full is enabled, set power efficient workqueue as unbound.
7751 * This allows workqueue items to be moved to HK CPUs.
7752 */
7753 if (housekeeping_enabled(HK_TYPE_TICK))
7754 wq_power_efficient = true;
7755
7756 /* initialize WQ_AFFN_SYSTEM pods */
7757 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7758 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7759 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7760 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7761
7762 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7763
7764 pt->nr_pods = 1;
7765 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7766 pt->pod_node[0] = NUMA_NO_NODE;
7767 pt->cpu_pod[0] = 0;
7768
7769 /* initialize BH and CPU pools */
7770 for_each_possible_cpu(cpu) {
7771 struct worker_pool *pool;
7772
7773 i = 0;
7774 for_each_bh_worker_pool(pool, cpu) {
7775 init_cpu_worker_pool(pool, cpu, std_nice[i]);
7776 pool->flags |= POOL_BH;
7777 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7778 i++;
7779 }
7780
7781 i = 0;
7782 for_each_cpu_worker_pool(pool, cpu)
7783 init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7784 }
7785
7786 /* create default unbound and ordered wq attrs */
7787 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7788 struct workqueue_attrs *attrs;
7789
7790 BUG_ON(!(attrs = alloc_workqueue_attrs()));
7791 attrs->nice = std_nice[i];
7792 unbound_std_wq_attrs[i] = attrs;
7793
7794 /*
7795 * An ordered wq should have only one pwq as ordering is
7796 * guaranteed by max_active which is enforced by pwqs.
7797 */
7798 BUG_ON(!(attrs = alloc_workqueue_attrs()));
7799 attrs->nice = std_nice[i];
7800 attrs->ordered = true;
7801 ordered_wq_attrs[i] = attrs;
7802 }
7803
7804 system_wq = alloc_workqueue("events", 0, 0);
7805 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7806 system_long_wq = alloc_workqueue("events_long", 0, 0);
7807 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7808 WQ_MAX_ACTIVE);
7809 system_freezable_wq = alloc_workqueue("events_freezable",
7810 WQ_FREEZABLE, 0);
7811 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7812 WQ_POWER_EFFICIENT, 0);
7813 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7814 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7815 0);
7816 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7817 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7818 WQ_BH | WQ_HIGHPRI, 0);
7819 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7820 !system_unbound_wq || !system_freezable_wq ||
7821 !system_power_efficient_wq ||
7822 !system_freezable_power_efficient_wq ||
7823 !system_bh_wq || !system_bh_highpri_wq);
7824 }
7825
wq_cpu_intensive_thresh_init(void)7826 static void __init wq_cpu_intensive_thresh_init(void)
7827 {
7828 unsigned long thresh;
7829 unsigned long bogo;
7830
7831 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7832 BUG_ON(IS_ERR(pwq_release_worker));
7833
7834 /* if the user set it to a specific value, keep it */
7835 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7836 return;
7837
7838 /*
7839 * The default of 10ms is derived from the fact that most modern (as of
7840 * 2023) processors can do a lot in 10ms and that it's just below what
7841 * most consider human-perceivable. However, the kernel also runs on a
7842 * lot slower CPUs including microcontrollers where the threshold is way
7843 * too low.
7844 *
7845 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7846 * This is by no means accurate but it doesn't have to be. The mechanism
7847 * is still useful even when the threshold is fully scaled up. Also, as
7848 * the reports would usually be applicable to everyone, some machines
7849 * operating on longer thresholds won't significantly diminish their
7850 * usefulness.
7851 */
7852 thresh = 10 * USEC_PER_MSEC;
7853
7854 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
7855 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7856 if (bogo < 4000)
7857 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7858
7859 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7860 loops_per_jiffy, bogo, thresh);
7861
7862 wq_cpu_intensive_thresh_us = thresh;
7863 }
7864
7865 /**
7866 * workqueue_init - bring workqueue subsystem fully online
7867 *
7868 * This is the second step of three-staged workqueue subsystem initialization
7869 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7870 * been created and work items queued on them, but there are no kworkers
7871 * executing the work items yet. Populate the worker pools with the initial
7872 * workers and enable future kworker creations.
7873 */
workqueue_init(void)7874 void __init workqueue_init(void)
7875 {
7876 struct workqueue_struct *wq;
7877 struct worker_pool *pool;
7878 int cpu, bkt;
7879
7880 wq_cpu_intensive_thresh_init();
7881
7882 mutex_lock(&wq_pool_mutex);
7883
7884 /*
7885 * Per-cpu pools created earlier could be missing node hint. Fix them
7886 * up. Also, create a rescuer for workqueues that requested it.
7887 */
7888 for_each_possible_cpu(cpu) {
7889 for_each_bh_worker_pool(pool, cpu)
7890 pool->node = cpu_to_node(cpu);
7891 for_each_cpu_worker_pool(pool, cpu)
7892 pool->node = cpu_to_node(cpu);
7893 }
7894
7895 list_for_each_entry(wq, &workqueues, list) {
7896 WARN(init_rescuer(wq),
7897 "workqueue: failed to create early rescuer for %s",
7898 wq->name);
7899 }
7900
7901 mutex_unlock(&wq_pool_mutex);
7902
7903 /*
7904 * Create the initial workers. A BH pool has one pseudo worker that
7905 * represents the shared BH execution context and thus doesn't get
7906 * affected by hotplug events. Create the BH pseudo workers for all
7907 * possible CPUs here.
7908 */
7909 for_each_possible_cpu(cpu)
7910 for_each_bh_worker_pool(pool, cpu)
7911 BUG_ON(!create_worker(pool));
7912
7913 for_each_online_cpu(cpu) {
7914 for_each_cpu_worker_pool(pool, cpu) {
7915 pool->flags &= ~POOL_DISASSOCIATED;
7916 BUG_ON(!create_worker(pool));
7917 }
7918 }
7919
7920 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7921 BUG_ON(!create_worker(pool));
7922
7923 wq_online = true;
7924 wq_watchdog_init();
7925 }
7926
7927 /*
7928 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7929 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7930 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7931 */
init_pod_type(struct wq_pod_type * pt,bool (* cpus_share_pod)(int,int))7932 static void __init init_pod_type(struct wq_pod_type *pt,
7933 bool (*cpus_share_pod)(int, int))
7934 {
7935 int cur, pre, cpu, pod;
7936
7937 pt->nr_pods = 0;
7938
7939 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
7940 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7941 BUG_ON(!pt->cpu_pod);
7942
7943 for_each_possible_cpu(cur) {
7944 for_each_possible_cpu(pre) {
7945 if (pre >= cur) {
7946 pt->cpu_pod[cur] = pt->nr_pods++;
7947 break;
7948 }
7949 if (cpus_share_pod(cur, pre)) {
7950 pt->cpu_pod[cur] = pt->cpu_pod[pre];
7951 break;
7952 }
7953 }
7954 }
7955
7956 /* init the rest to match @pt->cpu_pod[] */
7957 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7958 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7959 BUG_ON(!pt->pod_cpus || !pt->pod_node);
7960
7961 for (pod = 0; pod < pt->nr_pods; pod++)
7962 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7963
7964 for_each_possible_cpu(cpu) {
7965 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7966 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7967 }
7968 }
7969
cpus_dont_share(int cpu0,int cpu1)7970 static bool __init cpus_dont_share(int cpu0, int cpu1)
7971 {
7972 return false;
7973 }
7974
cpus_share_smt(int cpu0,int cpu1)7975 static bool __init cpus_share_smt(int cpu0, int cpu1)
7976 {
7977 #ifdef CONFIG_SCHED_SMT
7978 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7979 #else
7980 return false;
7981 #endif
7982 }
7983
cpus_share_numa(int cpu0,int cpu1)7984 static bool __init cpus_share_numa(int cpu0, int cpu1)
7985 {
7986 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7987 }
7988
7989 /**
7990 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7991 *
7992 * This is the third step of three-staged workqueue subsystem initialization and
7993 * invoked after SMP and topology information are fully initialized. It
7994 * initializes the unbound CPU pods accordingly.
7995 */
workqueue_init_topology(void)7996 void __init workqueue_init_topology(void)
7997 {
7998 struct workqueue_struct *wq;
7999 int cpu;
8000
8001 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
8002 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
8003 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
8004 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
8005
8006 wq_topo_initialized = true;
8007
8008 mutex_lock(&wq_pool_mutex);
8009
8010 /*
8011 * Workqueues allocated earlier would have all CPUs sharing the default
8012 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
8013 * and CPU combinations to apply per-pod sharing.
8014 */
8015 list_for_each_entry(wq, &workqueues, list) {
8016 for_each_online_cpu(cpu)
8017 unbound_wq_update_pwq(wq, cpu);
8018 if (wq->flags & WQ_UNBOUND) {
8019 mutex_lock(&wq->mutex);
8020 wq_update_node_max_active(wq, -1);
8021 mutex_unlock(&wq->mutex);
8022 }
8023 }
8024
8025 mutex_unlock(&wq_pool_mutex);
8026 }
8027
__warn_flushing_systemwide_wq(void)8028 void __warn_flushing_systemwide_wq(void)
8029 {
8030 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8031 dump_stack();
8032 }
8033 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
8034
workqueue_unbound_cpus_setup(char * str)8035 static int __init workqueue_unbound_cpus_setup(char *str)
8036 {
8037 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
8038 cpumask_clear(&wq_cmdline_cpumask);
8039 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8040 }
8041
8042 return 1;
8043 }
8044 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
8045