1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /*
4 * VMA-specific functions.
5 */
6
7 #include "vma_internal.h"
8 #include "vma.h"
9
10 struct mmap_state {
11 struct mm_struct *mm;
12 struct vma_iterator *vmi;
13
14 unsigned long addr;
15 unsigned long end;
16 pgoff_t pgoff;
17 unsigned long pglen;
18 vm_flags_t vm_flags;
19 struct file *file;
20 pgprot_t page_prot;
21
22 /* User-defined fields, perhaps updated by .mmap_prepare(). */
23 const struct vm_operations_struct *vm_ops;
24 void *vm_private_data;
25
26 unsigned long charged;
27
28 struct vm_area_struct *prev;
29 struct vm_area_struct *next;
30
31 /* Unmapping state. */
32 struct vma_munmap_struct vms;
33 struct ma_state mas_detach;
34 struct maple_tree mt_detach;
35
36 /* Determine if we can check KSM flags early in mmap() logic. */
37 bool check_ksm_early :1;
38 /* If we map new, hold the file rmap lock on mapping. */
39 bool hold_file_rmap_lock :1;
40 /* If .mmap_prepare changed the file, we don't need to pin. */
41 bool file_doesnt_need_get :1;
42 };
43
44 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, vm_flags_, file_) \
45 struct mmap_state name = { \
46 .mm = mm_, \
47 .vmi = vmi_, \
48 .addr = addr_, \
49 .end = (addr_) + (len_), \
50 .pgoff = pgoff_, \
51 .pglen = PHYS_PFN(len_), \
52 .vm_flags = vm_flags_, \
53 .file = file_, \
54 .page_prot = vm_get_page_prot(vm_flags_), \
55 }
56
57 #define VMG_MMAP_STATE(name, map_, vma_) \
58 struct vma_merge_struct name = { \
59 .mm = (map_)->mm, \
60 .vmi = (map_)->vmi, \
61 .start = (map_)->addr, \
62 .end = (map_)->end, \
63 .vm_flags = (map_)->vm_flags, \
64 .pgoff = (map_)->pgoff, \
65 .file = (map_)->file, \
66 .prev = (map_)->prev, \
67 .middle = vma_, \
68 .next = (vma_) ? NULL : (map_)->next, \
69 .state = VMA_MERGE_START, \
70 }
71
72 /* Was this VMA ever forked from a parent, i.e. maybe contains CoW mappings? */
vma_is_fork_child(struct vm_area_struct * vma)73 static bool vma_is_fork_child(struct vm_area_struct *vma)
74 {
75 /*
76 * The list_is_singular() test is to avoid merging VMA cloned from
77 * parents. This can improve scalability caused by the anon_vma root
78 * lock.
79 */
80 return vma && vma->anon_vma && !list_is_singular(&vma->anon_vma_chain);
81 }
82
is_mergeable_vma(struct vma_merge_struct * vmg,bool merge_next)83 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
84 {
85 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
86
87 if (!mpol_equal(vmg->policy, vma_policy(vma)))
88 return false;
89 if ((vma->vm_flags ^ vmg->vm_flags) & ~VM_IGNORE_MERGE)
90 return false;
91 if (vma->vm_file != vmg->file)
92 return false;
93 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx))
94 return false;
95 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name))
96 return false;
97 return true;
98 }
99
is_mergeable_anon_vma(struct vma_merge_struct * vmg,bool merge_next)100 static bool is_mergeable_anon_vma(struct vma_merge_struct *vmg, bool merge_next)
101 {
102 struct vm_area_struct *tgt = merge_next ? vmg->next : vmg->prev;
103 struct vm_area_struct *src = vmg->middle; /* existing merge case. */
104 struct anon_vma *tgt_anon = tgt->anon_vma;
105 struct anon_vma *src_anon = vmg->anon_vma;
106
107 /*
108 * We _can_ have !src, vmg->anon_vma via copy_vma(). In this instance we
109 * will remove the existing VMA's anon_vma's so there's no scalability
110 * concerns.
111 */
112 VM_WARN_ON(src && src_anon != src->anon_vma);
113
114 /* Case 1 - we will dup_anon_vma() from src into tgt. */
115 if (!tgt_anon && src_anon) {
116 struct vm_area_struct *copied_from = vmg->copied_from;
117
118 if (vma_is_fork_child(src))
119 return false;
120 if (vma_is_fork_child(copied_from))
121 return false;
122
123 return true;
124 }
125 /* Case 2 - we will simply use tgt's anon_vma. */
126 if (tgt_anon && !src_anon)
127 return !vma_is_fork_child(tgt);
128 /* Case 3 - the anon_vma's are already shared. */
129 return src_anon == tgt_anon;
130 }
131
132 /*
133 * init_multi_vma_prep() - Initializer for struct vma_prepare
134 * @vp: The vma_prepare struct
135 * @vma: The vma that will be altered once locked
136 * @vmg: The merge state that will be used to determine adjustment and VMA
137 * removal.
138 */
init_multi_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma,struct vma_merge_struct * vmg)139 static void init_multi_vma_prep(struct vma_prepare *vp,
140 struct vm_area_struct *vma,
141 struct vma_merge_struct *vmg)
142 {
143 struct vm_area_struct *adjust;
144 struct vm_area_struct **remove = &vp->remove;
145
146 memset(vp, 0, sizeof(struct vma_prepare));
147 vp->vma = vma;
148 vp->anon_vma = vma->anon_vma;
149
150 if (vmg && vmg->__remove_middle) {
151 *remove = vmg->middle;
152 remove = &vp->remove2;
153 }
154 if (vmg && vmg->__remove_next)
155 *remove = vmg->next;
156
157 if (vmg && vmg->__adjust_middle_start)
158 adjust = vmg->middle;
159 else if (vmg && vmg->__adjust_next_start)
160 adjust = vmg->next;
161 else
162 adjust = NULL;
163
164 vp->adj_next = adjust;
165 if (!vp->anon_vma && adjust)
166 vp->anon_vma = adjust->anon_vma;
167
168 VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma &&
169 vp->anon_vma != adjust->anon_vma);
170
171 vp->file = vma->vm_file;
172 if (vp->file)
173 vp->mapping = vma->vm_file->f_mapping;
174
175 if (vmg && vmg->skip_vma_uprobe)
176 vp->skip_vma_uprobe = true;
177 }
178
179 /*
180 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
181 * in front of (at a lower virtual address and file offset than) the vma.
182 *
183 * We cannot merge two vmas if they have differently assigned (non-NULL)
184 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
185 *
186 * We don't check here for the merged mmap wrapping around the end of pagecache
187 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
188 * wrap, nor mmaps which cover the final page at index -1UL.
189 *
190 * We assume the vma may be removed as part of the merge.
191 */
can_vma_merge_before(struct vma_merge_struct * vmg)192 static bool can_vma_merge_before(struct vma_merge_struct *vmg)
193 {
194 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
195
196 if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
197 is_mergeable_anon_vma(vmg, /* merge_next = */ true)) {
198 if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
199 return true;
200 }
201
202 return false;
203 }
204
205 /*
206 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
207 * beyond (at a higher virtual address and file offset than) the vma.
208 *
209 * We cannot merge two vmas if they have differently assigned (non-NULL)
210 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
211 *
212 * We assume that vma is not removed as part of the merge.
213 */
can_vma_merge_after(struct vma_merge_struct * vmg)214 static bool can_vma_merge_after(struct vma_merge_struct *vmg)
215 {
216 if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
217 is_mergeable_anon_vma(vmg, /* merge_next = */ false)) {
218 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff)
219 return true;
220 }
221 return false;
222 }
223
__vma_link_file(struct vm_area_struct * vma,struct address_space * mapping)224 static void __vma_link_file(struct vm_area_struct *vma,
225 struct address_space *mapping)
226 {
227 if (vma_is_shared_maywrite(vma))
228 mapping_allow_writable(mapping);
229
230 flush_dcache_mmap_lock(mapping);
231 vma_interval_tree_insert(vma, &mapping->i_mmap);
232 flush_dcache_mmap_unlock(mapping);
233 }
234
235 /*
236 * Requires inode->i_mapping->i_mmap_rwsem
237 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct address_space * mapping)238 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
239 struct address_space *mapping)
240 {
241 if (vma_is_shared_maywrite(vma))
242 mapping_unmap_writable(mapping);
243
244 flush_dcache_mmap_lock(mapping);
245 vma_interval_tree_remove(vma, &mapping->i_mmap);
246 flush_dcache_mmap_unlock(mapping);
247 }
248
249 /*
250 * vma has some anon_vma assigned, and is already inserted on that
251 * anon_vma's interval trees.
252 *
253 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
254 * vma must be removed from the anon_vma's interval trees using
255 * anon_vma_interval_tree_pre_update_vma().
256 *
257 * After the update, the vma will be reinserted using
258 * anon_vma_interval_tree_post_update_vma().
259 *
260 * The entire update must be protected by exclusive mmap_lock and by
261 * the root anon_vma's mutex.
262 */
263 static void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)264 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
265 {
266 struct anon_vma_chain *avc;
267
268 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
269 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
270 }
271
272 static void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)273 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
274 {
275 struct anon_vma_chain *avc;
276
277 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
278 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
279 }
280
281 /*
282 * vma_prepare() - Helper function for handling locking VMAs prior to altering
283 * @vp: The initialized vma_prepare struct
284 */
vma_prepare(struct vma_prepare * vp)285 static void vma_prepare(struct vma_prepare *vp)
286 {
287 if (vp->file) {
288 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
289
290 if (vp->adj_next)
291 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
292 vp->adj_next->vm_end);
293
294 i_mmap_lock_write(vp->mapping);
295 if (vp->insert && vp->insert->vm_file) {
296 /*
297 * Put into interval tree now, so instantiated pages
298 * are visible to arm/parisc __flush_dcache_page
299 * throughout; but we cannot insert into address
300 * space until vma start or end is updated.
301 */
302 __vma_link_file(vp->insert,
303 vp->insert->vm_file->f_mapping);
304 }
305 }
306
307 if (vp->anon_vma) {
308 anon_vma_lock_write(vp->anon_vma);
309 anon_vma_interval_tree_pre_update_vma(vp->vma);
310 if (vp->adj_next)
311 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
312 }
313
314 if (vp->file) {
315 flush_dcache_mmap_lock(vp->mapping);
316 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
317 if (vp->adj_next)
318 vma_interval_tree_remove(vp->adj_next,
319 &vp->mapping->i_mmap);
320 }
321
322 }
323
324 /*
325 * vma_complete- Helper function for handling the unlocking after altering VMAs,
326 * or for inserting a VMA.
327 *
328 * @vp: The vma_prepare struct
329 * @vmi: The vma iterator
330 * @mm: The mm_struct
331 */
vma_complete(struct vma_prepare * vp,struct vma_iterator * vmi,struct mm_struct * mm)332 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
333 struct mm_struct *mm)
334 {
335 if (vp->file) {
336 if (vp->adj_next)
337 vma_interval_tree_insert(vp->adj_next,
338 &vp->mapping->i_mmap);
339 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
340 flush_dcache_mmap_unlock(vp->mapping);
341 }
342
343 if (vp->remove && vp->file) {
344 __remove_shared_vm_struct(vp->remove, vp->mapping);
345 if (vp->remove2)
346 __remove_shared_vm_struct(vp->remove2, vp->mapping);
347 } else if (vp->insert) {
348 /*
349 * split_vma has split insert from vma, and needs
350 * us to insert it before dropping the locks
351 * (it may either follow vma or precede it).
352 */
353 vma_iter_store_new(vmi, vp->insert);
354 mm->map_count++;
355 }
356
357 if (vp->anon_vma) {
358 anon_vma_interval_tree_post_update_vma(vp->vma);
359 if (vp->adj_next)
360 anon_vma_interval_tree_post_update_vma(vp->adj_next);
361 anon_vma_unlock_write(vp->anon_vma);
362 }
363
364 if (vp->file) {
365 i_mmap_unlock_write(vp->mapping);
366
367 if (!vp->skip_vma_uprobe) {
368 uprobe_mmap(vp->vma);
369
370 if (vp->adj_next)
371 uprobe_mmap(vp->adj_next);
372 }
373 }
374
375 if (vp->remove) {
376 again:
377 vma_mark_detached(vp->remove);
378 if (vp->file) {
379 uprobe_munmap(vp->remove, vp->remove->vm_start,
380 vp->remove->vm_end);
381 fput(vp->file);
382 }
383 if (vp->remove->anon_vma)
384 anon_vma_merge(vp->vma, vp->remove);
385 mm->map_count--;
386 mpol_put(vma_policy(vp->remove));
387 if (!vp->remove2)
388 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
389 vm_area_free(vp->remove);
390
391 /*
392 * In mprotect's case 6 (see comments on vma_merge),
393 * we are removing both mid and next vmas
394 */
395 if (vp->remove2) {
396 vp->remove = vp->remove2;
397 vp->remove2 = NULL;
398 goto again;
399 }
400 }
401 if (vp->insert && vp->file)
402 uprobe_mmap(vp->insert);
403 }
404
405 /*
406 * init_vma_prep() - Initializer wrapper for vma_prepare struct
407 * @vp: The vma_prepare struct
408 * @vma: The vma that will be altered once locked
409 */
init_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma)410 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
411 {
412 init_multi_vma_prep(vp, vma, NULL);
413 }
414
415 /*
416 * Can the proposed VMA be merged with the left (previous) VMA taking into
417 * account the start position of the proposed range.
418 */
can_vma_merge_left(struct vma_merge_struct * vmg)419 static bool can_vma_merge_left(struct vma_merge_struct *vmg)
420
421 {
422 return vmg->prev && vmg->prev->vm_end == vmg->start &&
423 can_vma_merge_after(vmg);
424 }
425
426 /*
427 * Can the proposed VMA be merged with the right (next) VMA taking into
428 * account the end position of the proposed range.
429 *
430 * In addition, if we can merge with the left VMA, ensure that left and right
431 * anon_vma's are also compatible.
432 */
can_vma_merge_right(struct vma_merge_struct * vmg,bool can_merge_left)433 static bool can_vma_merge_right(struct vma_merge_struct *vmg,
434 bool can_merge_left)
435 {
436 struct vm_area_struct *next = vmg->next;
437 struct vm_area_struct *prev;
438
439 if (!next || vmg->end != next->vm_start || !can_vma_merge_before(vmg))
440 return false;
441
442 if (!can_merge_left)
443 return true;
444
445 /*
446 * If we can merge with prev (left) and next (right), indicating that
447 * each VMA's anon_vma is compatible with the proposed anon_vma, this
448 * does not mean prev and next are compatible with EACH OTHER.
449 *
450 * We therefore check this in addition to mergeability to either side.
451 */
452 prev = vmg->prev;
453 return !prev->anon_vma || !next->anon_vma ||
454 prev->anon_vma == next->anon_vma;
455 }
456
457 /*
458 * Close a vm structure and free it.
459 */
remove_vma(struct vm_area_struct * vma)460 void remove_vma(struct vm_area_struct *vma)
461 {
462 might_sleep();
463 vma_close(vma);
464 if (vma->vm_file)
465 fput(vma->vm_file);
466 mpol_put(vma_policy(vma));
467 vm_area_free(vma);
468 }
469
470 /*
471 * Get rid of page table information in the indicated region.
472 *
473 * Called with the mm semaphore held.
474 */
unmap_region(struct ma_state * mas,struct vm_area_struct * vma,struct vm_area_struct * prev,struct vm_area_struct * next)475 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
476 struct vm_area_struct *prev, struct vm_area_struct *next)
477 {
478 struct mm_struct *mm = vma->vm_mm;
479 struct mmu_gather tlb;
480
481 tlb_gather_mmu(&tlb, mm);
482 update_hiwater_rss(mm);
483 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end);
484 mas_set(mas, vma->vm_end);
485 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
486 next ? next->vm_start : USER_PGTABLES_CEILING,
487 /* mm_wr_locked = */ true);
488 tlb_finish_mmu(&tlb);
489 }
490
491 /*
492 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
493 * has already been checked or doesn't make sense to fail.
494 * VMA Iterator will point to the original VMA.
495 */
496 static __must_check int
__split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)497 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
498 unsigned long addr, int new_below)
499 {
500 struct vma_prepare vp;
501 struct vm_area_struct *new;
502 int err;
503
504 WARN_ON(vma->vm_start >= addr);
505 WARN_ON(vma->vm_end <= addr);
506
507 if (vma->vm_ops && vma->vm_ops->may_split) {
508 err = vma->vm_ops->may_split(vma, addr);
509 if (err)
510 return err;
511 }
512
513 new = vm_area_dup(vma);
514 if (!new)
515 return -ENOMEM;
516
517 if (new_below) {
518 new->vm_end = addr;
519 } else {
520 new->vm_start = addr;
521 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
522 }
523
524 err = -ENOMEM;
525 vma_iter_config(vmi, new->vm_start, new->vm_end);
526 if (vma_iter_prealloc(vmi, new))
527 goto out_free_vma;
528
529 err = vma_dup_policy(vma, new);
530 if (err)
531 goto out_free_vmi;
532
533 err = anon_vma_clone(new, vma);
534 if (err)
535 goto out_free_mpol;
536
537 if (new->vm_file)
538 get_file(new->vm_file);
539
540 if (new->vm_ops && new->vm_ops->open)
541 new->vm_ops->open(new);
542
543 vma_start_write(vma);
544 vma_start_write(new);
545
546 init_vma_prep(&vp, vma);
547 vp.insert = new;
548 vma_prepare(&vp);
549
550 /*
551 * Get rid of huge pages and shared page tables straddling the split
552 * boundary.
553 */
554 vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL);
555 if (is_vm_hugetlb_page(vma))
556 hugetlb_split(vma, addr);
557
558 if (new_below) {
559 vma->vm_start = addr;
560 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
561 } else {
562 vma->vm_end = addr;
563 }
564
565 /* vma_complete stores the new vma */
566 vma_complete(&vp, vmi, vma->vm_mm);
567 validate_mm(vma->vm_mm);
568
569 /* Success. */
570 if (new_below)
571 vma_next(vmi);
572 else
573 vma_prev(vmi);
574
575 return 0;
576
577 out_free_mpol:
578 mpol_put(vma_policy(new));
579 out_free_vmi:
580 vma_iter_free(vmi);
581 out_free_vma:
582 vm_area_free(new);
583 return err;
584 }
585
586 /*
587 * Split a vma into two pieces at address 'addr', a new vma is allocated
588 * either for the first part or the tail.
589 */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)590 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
591 unsigned long addr, int new_below)
592 {
593 if (vma->vm_mm->map_count >= sysctl_max_map_count)
594 return -ENOMEM;
595
596 return __split_vma(vmi, vma, addr, new_below);
597 }
598
599 /*
600 * dup_anon_vma() - Helper function to duplicate anon_vma on VMA merge in the
601 * instance that the destination VMA has no anon_vma but the source does.
602 *
603 * @dst: The destination VMA
604 * @src: The source VMA
605 * @dup: Pointer to the destination VMA when successful.
606 *
607 * Returns: 0 on success.
608 */
dup_anon_vma(struct vm_area_struct * dst,struct vm_area_struct * src,struct vm_area_struct ** dup)609 static int dup_anon_vma(struct vm_area_struct *dst,
610 struct vm_area_struct *src, struct vm_area_struct **dup)
611 {
612 /*
613 * There are three cases to consider for correctly propagating
614 * anon_vma's on merge.
615 *
616 * The first is trivial - neither VMA has anon_vma, we need not do
617 * anything.
618 *
619 * The second where both have anon_vma is also a no-op, as they must
620 * then be the same, so there is simply nothing to copy.
621 *
622 * Here we cover the third - if the destination VMA has no anon_vma,
623 * that is it is unfaulted, we need to ensure that the newly merged
624 * range is referenced by the anon_vma's of the source.
625 */
626 if (src->anon_vma && !dst->anon_vma) {
627 int ret;
628
629 vma_assert_write_locked(dst);
630 dst->anon_vma = src->anon_vma;
631 ret = anon_vma_clone(dst, src);
632 if (ret)
633 return ret;
634
635 *dup = dst;
636 }
637
638 return 0;
639 }
640
641 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
validate_mm(struct mm_struct * mm)642 void validate_mm(struct mm_struct *mm)
643 {
644 int bug = 0;
645 int i = 0;
646 struct vm_area_struct *vma;
647 VMA_ITERATOR(vmi, mm, 0);
648
649 mt_validate(&mm->mm_mt);
650 for_each_vma(vmi, vma) {
651 #ifdef CONFIG_DEBUG_VM_RB
652 struct anon_vma *anon_vma = vma->anon_vma;
653 struct anon_vma_chain *avc;
654 #endif
655 unsigned long vmi_start, vmi_end;
656 bool warn = 0;
657
658 vmi_start = vma_iter_addr(&vmi);
659 vmi_end = vma_iter_end(&vmi);
660 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
661 warn = 1;
662
663 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
664 warn = 1;
665
666 if (warn) {
667 pr_emerg("issue in %s\n", current->comm);
668 dump_stack();
669 dump_vma(vma);
670 pr_emerg("tree range: %px start %lx end %lx\n", vma,
671 vmi_start, vmi_end - 1);
672 vma_iter_dump_tree(&vmi);
673 }
674
675 #ifdef CONFIG_DEBUG_VM_RB
676 if (anon_vma) {
677 anon_vma_lock_read(anon_vma);
678 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
679 anon_vma_interval_tree_verify(avc);
680 anon_vma_unlock_read(anon_vma);
681 }
682 #endif
683 /* Check for a infinite loop */
684 if (++i > mm->map_count + 10) {
685 i = -1;
686 break;
687 }
688 }
689 if (i != mm->map_count) {
690 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
691 bug = 1;
692 }
693 VM_BUG_ON_MM(bug, mm);
694 }
695 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
696
697 /*
698 * Based on the vmg flag indicating whether we need to adjust the vm_start field
699 * for the middle or next VMA, we calculate what the range of the newly adjusted
700 * VMA ought to be, and set the VMA's range accordingly.
701 */
vmg_adjust_set_range(struct vma_merge_struct * vmg)702 static void vmg_adjust_set_range(struct vma_merge_struct *vmg)
703 {
704 struct vm_area_struct *adjust;
705 pgoff_t pgoff;
706
707 if (vmg->__adjust_middle_start) {
708 adjust = vmg->middle;
709 pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start);
710 } else if (vmg->__adjust_next_start) {
711 adjust = vmg->next;
712 pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end);
713 } else {
714 return;
715 }
716
717 vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff);
718 }
719
720 /*
721 * Actually perform the VMA merge operation.
722 *
723 * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not
724 * modify any VMAs or cause inconsistent state should an OOM condition arise.
725 *
726 * Returns 0 on success, or an error value on failure.
727 */
commit_merge(struct vma_merge_struct * vmg)728 static int commit_merge(struct vma_merge_struct *vmg)
729 {
730 struct vm_area_struct *vma;
731 struct vma_prepare vp;
732
733 if (vmg->__adjust_next_start) {
734 /* We manipulate middle and adjust next, which is the target. */
735 vma = vmg->middle;
736 vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end);
737 } else {
738 vma = vmg->target;
739 /* Note: vma iterator must be pointing to 'start'. */
740 vma_iter_config(vmg->vmi, vmg->start, vmg->end);
741 }
742
743 init_multi_vma_prep(&vp, vma, vmg);
744
745 /*
746 * If vmg->give_up_on_oom is set, we're safe, because we don't actually
747 * manipulate any VMAs until we succeed at preallocation.
748 *
749 * Past this point, we will not return an error.
750 */
751 if (vma_iter_prealloc(vmg->vmi, vma))
752 return -ENOMEM;
753
754 vma_prepare(&vp);
755 /*
756 * THP pages may need to do additional splits if we increase
757 * middle->vm_start.
758 */
759 vma_adjust_trans_huge(vma, vmg->start, vmg->end,
760 vmg->__adjust_middle_start ? vmg->middle : NULL);
761 vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff);
762 vmg_adjust_set_range(vmg);
763 vma_iter_store_overwrite(vmg->vmi, vmg->target);
764
765 vma_complete(&vp, vmg->vmi, vma->vm_mm);
766
767 return 0;
768 }
769
770 /* We can only remove VMAs when merging if they do not have a close hook. */
can_merge_remove_vma(struct vm_area_struct * vma)771 static bool can_merge_remove_vma(struct vm_area_struct *vma)
772 {
773 return !vma->vm_ops || !vma->vm_ops->close;
774 }
775
776 /*
777 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
778 * attributes modified.
779 *
780 * @vmg: Describes the modifications being made to a VMA and associated
781 * metadata.
782 *
783 * When the attributes of a range within a VMA change, then it might be possible
784 * for immediately adjacent VMAs to be merged into that VMA due to having
785 * identical properties.
786 *
787 * This function checks for the existence of any such mergeable VMAs and updates
788 * the maple tree describing the @vmg->middle->vm_mm address space to account
789 * for this, as well as any VMAs shrunk/expanded/deleted as a result of this
790 * merge.
791 *
792 * As part of this operation, if a merge occurs, the @vmg object will have its
793 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent
794 * calls to this function should reset these fields.
795 *
796 * Returns: The merged VMA if merge succeeds, or NULL otherwise.
797 *
798 * ASSUMPTIONS:
799 * - The caller must assign the VMA to be modified to @vmg->middle.
800 * - The caller must have set @vmg->prev to the previous VMA, if there is one.
801 * - The caller must not set @vmg->next, as we determine this.
802 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
803 * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end).
804 */
vma_merge_existing_range(struct vma_merge_struct * vmg)805 static __must_check struct vm_area_struct *vma_merge_existing_range(
806 struct vma_merge_struct *vmg)
807 {
808 vm_flags_t sticky_flags = vmg->vm_flags & VM_STICKY;
809 struct vm_area_struct *middle = vmg->middle;
810 struct vm_area_struct *prev = vmg->prev;
811 struct vm_area_struct *next;
812 struct vm_area_struct *anon_dup = NULL;
813 unsigned long start = vmg->start;
814 unsigned long end = vmg->end;
815 bool left_side = middle && start == middle->vm_start;
816 bool right_side = middle && end == middle->vm_end;
817 int err = 0;
818 bool merge_left, merge_right, merge_both;
819
820 mmap_assert_write_locked(vmg->mm);
821 VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */
822 VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */
823 VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg);
824 VM_WARN_ON_VMG(start >= end, vmg);
825
826 /*
827 * If middle == prev, then we are offset into a VMA. Otherwise, if we are
828 * not, we must span a portion of the VMA.
829 */
830 VM_WARN_ON_VMG(middle &&
831 ((middle != prev && vmg->start != middle->vm_start) ||
832 vmg->end > middle->vm_end), vmg);
833 /* The vmi must be positioned within vmg->middle. */
834 VM_WARN_ON_VMG(middle &&
835 !(vma_iter_addr(vmg->vmi) >= middle->vm_start &&
836 vma_iter_addr(vmg->vmi) < middle->vm_end), vmg);
837 /* An existing merge can never be used by the mremap() logic. */
838 VM_WARN_ON_VMG(vmg->copied_from, vmg);
839
840 vmg->state = VMA_MERGE_NOMERGE;
841
842 /*
843 * If a special mapping or if the range being modified is neither at the
844 * furthermost left or right side of the VMA, then we have no chance of
845 * merging and should abort.
846 */
847 if (vmg->vm_flags & VM_SPECIAL || (!left_side && !right_side))
848 return NULL;
849
850 if (left_side)
851 merge_left = can_vma_merge_left(vmg);
852 else
853 merge_left = false;
854
855 if (right_side) {
856 next = vmg->next = vma_iter_next_range(vmg->vmi);
857 vma_iter_prev_range(vmg->vmi);
858
859 merge_right = can_vma_merge_right(vmg, merge_left);
860 } else {
861 merge_right = false;
862 next = NULL;
863 }
864
865 if (merge_left) /* If merging prev, position iterator there. */
866 vma_prev(vmg->vmi);
867 else if (!merge_right) /* If we have nothing to merge, abort. */
868 return NULL;
869
870 merge_both = merge_left && merge_right;
871 /* If we span the entire VMA, a merge implies it will be deleted. */
872 vmg->__remove_middle = left_side && right_side;
873
874 /*
875 * If we need to remove middle in its entirety but are unable to do so,
876 * we have no sensible recourse but to abort the merge.
877 */
878 if (vmg->__remove_middle && !can_merge_remove_vma(middle))
879 return NULL;
880
881 /*
882 * If we merge both VMAs, then next is also deleted. This implies
883 * merge_will_delete_vma also.
884 */
885 vmg->__remove_next = merge_both;
886
887 /*
888 * If we cannot delete next, then we can reduce the operation to merging
889 * prev and middle (thereby deleting middle).
890 */
891 if (vmg->__remove_next && !can_merge_remove_vma(next)) {
892 vmg->__remove_next = false;
893 merge_right = false;
894 merge_both = false;
895 }
896
897 /* No matter what happens, we will be adjusting middle. */
898 vma_start_write(middle);
899
900 if (merge_right) {
901 vma_start_write(next);
902 vmg->target = next;
903 sticky_flags |= (next->vm_flags & VM_STICKY);
904 }
905
906 if (merge_left) {
907 vma_start_write(prev);
908 vmg->target = prev;
909 sticky_flags |= (prev->vm_flags & VM_STICKY);
910 }
911
912 if (merge_both) {
913 /*
914 * |<-------------------->|
915 * |-------********-------|
916 * prev middle next
917 * extend delete delete
918 */
919
920 vmg->start = prev->vm_start;
921 vmg->end = next->vm_end;
922 vmg->pgoff = prev->vm_pgoff;
923
924 /*
925 * We already ensured anon_vma compatibility above, so now it's
926 * simply a case of, if prev has no anon_vma object, which of
927 * next or middle contains the anon_vma we must duplicate.
928 */
929 err = dup_anon_vma(prev, next->anon_vma ? next : middle,
930 &anon_dup);
931 } else if (merge_left) {
932 /*
933 * |<------------>| OR
934 * |<----------------->|
935 * |-------*************
936 * prev middle
937 * extend shrink/delete
938 */
939
940 vmg->start = prev->vm_start;
941 vmg->pgoff = prev->vm_pgoff;
942
943 if (!vmg->__remove_middle)
944 vmg->__adjust_middle_start = true;
945
946 err = dup_anon_vma(prev, middle, &anon_dup);
947 } else { /* merge_right */
948 /*
949 * |<------------->| OR
950 * |<----------------->|
951 * *************-------|
952 * middle next
953 * shrink/delete extend
954 */
955
956 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
957
958 VM_WARN_ON_VMG(!merge_right, vmg);
959 /* If we are offset into a VMA, then prev must be middle. */
960 VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg);
961
962 if (vmg->__remove_middle) {
963 vmg->end = next->vm_end;
964 vmg->pgoff = next->vm_pgoff - pglen;
965 } else {
966 /* We shrink middle and expand next. */
967 vmg->__adjust_next_start = true;
968 vmg->start = middle->vm_start;
969 vmg->end = start;
970 vmg->pgoff = middle->vm_pgoff;
971 }
972
973 err = dup_anon_vma(next, middle, &anon_dup);
974 }
975
976 if (err || commit_merge(vmg))
977 goto abort;
978
979 vm_flags_set(vmg->target, sticky_flags);
980 khugepaged_enter_vma(vmg->target, vmg->vm_flags);
981 vmg->state = VMA_MERGE_SUCCESS;
982 return vmg->target;
983
984 abort:
985 vma_iter_set(vmg->vmi, start);
986 vma_iter_load(vmg->vmi);
987
988 if (anon_dup)
989 unlink_anon_vmas(anon_dup);
990
991 /*
992 * This means we have failed to clone anon_vma's correctly, but no
993 * actual changes to VMAs have occurred, so no harm no foul - if the
994 * user doesn't want this reported and instead just wants to give up on
995 * the merge, allow it.
996 */
997 if (!vmg->give_up_on_oom)
998 vmg->state = VMA_MERGE_ERROR_NOMEM;
999 return NULL;
1000 }
1001
1002 /*
1003 * vma_merge_new_range - Attempt to merge a new VMA into address space
1004 *
1005 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
1006 * (exclusive), which we try to merge with any adjacent VMAs if possible.
1007 *
1008 * We are about to add a VMA to the address space starting at @vmg->start and
1009 * ending at @vmg->end. There are three different possible scenarios:
1010 *
1011 * 1. There is a VMA with identical properties immediately adjacent to the
1012 * proposed new VMA [@vmg->start, @vmg->end) either before or after it -
1013 * EXPAND that VMA:
1014 *
1015 * Proposed: |-----| or |-----|
1016 * Existing: |----| |----|
1017 *
1018 * 2. There are VMAs with identical properties immediately adjacent to the
1019 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
1020 * EXPAND the former and REMOVE the latter:
1021 *
1022 * Proposed: |-----|
1023 * Existing: |----| |----|
1024 *
1025 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those
1026 * VMAs do not have identical attributes - NO MERGE POSSIBLE.
1027 *
1028 * In instances where we can merge, this function returns the expanded VMA which
1029 * will have its range adjusted accordingly and the underlying maple tree also
1030 * adjusted.
1031 *
1032 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
1033 * to the VMA we expanded.
1034 *
1035 * This function adjusts @vmg to provide @vmg->next if not already specified,
1036 * and adjusts [@vmg->start, @vmg->end) to span the expanded range.
1037 *
1038 * ASSUMPTIONS:
1039 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
1040 * - The caller must have determined that [@vmg->start, @vmg->end) is empty,
1041 other than VMAs that will be unmapped should the operation succeed.
1042 * - The caller must have specified the previous vma in @vmg->prev.
1043 * - The caller must have specified the next vma in @vmg->next.
1044 * - The caller must have positioned the vmi at or before the gap.
1045 */
vma_merge_new_range(struct vma_merge_struct * vmg)1046 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
1047 {
1048 struct vm_area_struct *prev = vmg->prev;
1049 struct vm_area_struct *next = vmg->next;
1050 unsigned long end = vmg->end;
1051 bool can_merge_left, can_merge_right;
1052
1053 mmap_assert_write_locked(vmg->mm);
1054 VM_WARN_ON_VMG(vmg->middle, vmg);
1055 VM_WARN_ON_VMG(vmg->target, vmg);
1056 /* vmi must point at or before the gap. */
1057 VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg);
1058
1059 vmg->state = VMA_MERGE_NOMERGE;
1060
1061 /* Special VMAs are unmergeable, also if no prev/next. */
1062 if ((vmg->vm_flags & VM_SPECIAL) || (!prev && !next))
1063 return NULL;
1064
1065 can_merge_left = can_vma_merge_left(vmg);
1066 can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left);
1067
1068 /* If we can merge with the next VMA, adjust vmg accordingly. */
1069 if (can_merge_right) {
1070 vmg->end = next->vm_end;
1071 vmg->target = next;
1072 }
1073
1074 /* If we can merge with the previous VMA, adjust vmg accordingly. */
1075 if (can_merge_left) {
1076 vmg->start = prev->vm_start;
1077 vmg->target = prev;
1078 vmg->pgoff = prev->vm_pgoff;
1079
1080 /*
1081 * If this merge would result in removal of the next VMA but we
1082 * are not permitted to do so, reduce the operation to merging
1083 * prev and vma.
1084 */
1085 if (can_merge_right && !can_merge_remove_vma(next))
1086 vmg->end = end;
1087
1088 /* In expand-only case we are already positioned at prev. */
1089 if (!vmg->just_expand) {
1090 /* Equivalent to going to the previous range. */
1091 vma_prev(vmg->vmi);
1092 }
1093 }
1094
1095 /*
1096 * Now try to expand adjacent VMA(s). This takes care of removing the
1097 * following VMA if we have VMAs on both sides.
1098 */
1099 if (vmg->target && !vma_expand(vmg)) {
1100 khugepaged_enter_vma(vmg->target, vmg->vm_flags);
1101 vmg->state = VMA_MERGE_SUCCESS;
1102 return vmg->target;
1103 }
1104
1105 return NULL;
1106 }
1107
1108 /*
1109 * vma_merge_copied_range - Attempt to merge a VMA that is being copied by
1110 * mremap()
1111 *
1112 * @vmg: Describes the VMA we are adding, in the copied-to range @vmg->start to
1113 * @vmg->end (exclusive), which we try to merge with any adjacent VMAs if
1114 * possible.
1115 *
1116 * vmg->prev, next, start, end, pgoff should all be relative to the COPIED TO
1117 * range, i.e. the target range for the VMA.
1118 *
1119 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
1120 * to the VMA we expanded.
1121 *
1122 * ASSUMPTIONS: Same as vma_merge_new_range(), except vmg->middle must contain
1123 * the copied-from VMA.
1124 */
vma_merge_copied_range(struct vma_merge_struct * vmg)1125 static struct vm_area_struct *vma_merge_copied_range(struct vma_merge_struct *vmg)
1126 {
1127 /* We must have a copied-from VMA. */
1128 VM_WARN_ON_VMG(!vmg->middle, vmg);
1129
1130 vmg->copied_from = vmg->middle;
1131 vmg->middle = NULL;
1132 return vma_merge_new_range(vmg);
1133 }
1134
1135 /*
1136 * vma_expand - Expand an existing VMA
1137 *
1138 * @vmg: Describes a VMA expansion operation.
1139 *
1140 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end.
1141 * Will expand over vmg->next if it's different from vmg->target and vmg->end ==
1142 * vmg->next->vm_end. Checking if the vmg->target can expand and merge with
1143 * vmg->next needs to be handled by the caller.
1144 *
1145 * Returns: 0 on success.
1146 *
1147 * ASSUMPTIONS:
1148 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
1149 * - The caller must have set @vmg->target and @vmg->next.
1150 */
vma_expand(struct vma_merge_struct * vmg)1151 int vma_expand(struct vma_merge_struct *vmg)
1152 {
1153 struct vm_area_struct *anon_dup = NULL;
1154 struct vm_area_struct *target = vmg->target;
1155 struct vm_area_struct *next = vmg->next;
1156 bool remove_next = false;
1157 vm_flags_t sticky_flags;
1158 int ret = 0;
1159
1160 mmap_assert_write_locked(vmg->mm);
1161 vma_start_write(target);
1162
1163 if (next && target != next && vmg->end == next->vm_end)
1164 remove_next = true;
1165
1166 /* We must have a target. */
1167 VM_WARN_ON_VMG(!target, vmg);
1168 /* This should have already been checked by this point. */
1169 VM_WARN_ON_VMG(remove_next && !can_merge_remove_vma(next), vmg);
1170 /* Not merging but overwriting any part of next is not handled. */
1171 VM_WARN_ON_VMG(next && !remove_next &&
1172 next != target && vmg->end > next->vm_start, vmg);
1173 /* Only handles expanding. */
1174 VM_WARN_ON_VMG(target->vm_start < vmg->start ||
1175 target->vm_end > vmg->end, vmg);
1176
1177 sticky_flags = vmg->vm_flags & VM_STICKY;
1178 sticky_flags |= target->vm_flags & VM_STICKY;
1179 if (remove_next)
1180 sticky_flags |= next->vm_flags & VM_STICKY;
1181
1182 /*
1183 * If we are removing the next VMA or copying from a VMA
1184 * (e.g. mremap()'ing), we must propagate anon_vma state.
1185 *
1186 * Note that, by convention, callers ignore OOM for this case, so
1187 * we don't need to account for vmg->give_up_on_mm here.
1188 */
1189 if (remove_next)
1190 ret = dup_anon_vma(target, next, &anon_dup);
1191 if (!ret && vmg->copied_from)
1192 ret = dup_anon_vma(target, vmg->copied_from, &anon_dup);
1193 if (ret)
1194 return ret;
1195
1196 if (remove_next) {
1197 vma_start_write(next);
1198 vmg->__remove_next = true;
1199 }
1200 if (commit_merge(vmg))
1201 goto nomem;
1202
1203 vm_flags_set(target, sticky_flags);
1204 return 0;
1205
1206 nomem:
1207 if (anon_dup)
1208 unlink_anon_vmas(anon_dup);
1209 /*
1210 * If the user requests that we just give upon OOM, we are safe to do so
1211 * here, as commit merge provides this contract to us. Nothing has been
1212 * changed - no harm no foul, just don't report it.
1213 */
1214 if (!vmg->give_up_on_oom)
1215 vmg->state = VMA_MERGE_ERROR_NOMEM;
1216 return -ENOMEM;
1217 }
1218
1219 /*
1220 * vma_shrink() - Reduce an existing VMAs memory area
1221 * @vmi: The vma iterator
1222 * @vma: The VMA to modify
1223 * @start: The new start
1224 * @end: The new end
1225 *
1226 * Returns: 0 on success, -ENOMEM otherwise
1227 */
vma_shrink(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff)1228 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
1229 unsigned long start, unsigned long end, pgoff_t pgoff)
1230 {
1231 struct vma_prepare vp;
1232
1233 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
1234
1235 if (vma->vm_start < start)
1236 vma_iter_config(vmi, vma->vm_start, start);
1237 else
1238 vma_iter_config(vmi, end, vma->vm_end);
1239
1240 if (vma_iter_prealloc(vmi, NULL))
1241 return -ENOMEM;
1242
1243 vma_start_write(vma);
1244
1245 init_vma_prep(&vp, vma);
1246 vma_prepare(&vp);
1247 vma_adjust_trans_huge(vma, start, end, NULL);
1248
1249 vma_iter_clear(vmi);
1250 vma_set_range(vma, start, end, pgoff);
1251 vma_complete(&vp, vmi, vma->vm_mm);
1252 validate_mm(vma->vm_mm);
1253 return 0;
1254 }
1255
vms_clear_ptes(struct vma_munmap_struct * vms,struct ma_state * mas_detach,bool mm_wr_locked)1256 static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
1257 struct ma_state *mas_detach, bool mm_wr_locked)
1258 {
1259 struct mmu_gather tlb;
1260
1261 if (!vms->clear_ptes) /* Nothing to do */
1262 return;
1263
1264 /*
1265 * We can free page tables without write-locking mmap_lock because VMAs
1266 * were isolated before we downgraded mmap_lock.
1267 */
1268 mas_set(mas_detach, 1);
1269 tlb_gather_mmu(&tlb, vms->vma->vm_mm);
1270 update_hiwater_rss(vms->vma->vm_mm);
1271 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
1272 vms->vma_count);
1273
1274 mas_set(mas_detach, 1);
1275 /* start and end may be different if there is no prev or next vma. */
1276 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
1277 vms->unmap_end, mm_wr_locked);
1278 tlb_finish_mmu(&tlb);
1279 vms->clear_ptes = false;
1280 }
1281
vms_clean_up_area(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1282 static void vms_clean_up_area(struct vma_munmap_struct *vms,
1283 struct ma_state *mas_detach)
1284 {
1285 struct vm_area_struct *vma;
1286
1287 if (!vms->nr_pages)
1288 return;
1289
1290 vms_clear_ptes(vms, mas_detach, true);
1291 mas_set(mas_detach, 0);
1292 mas_for_each(mas_detach, vma, ULONG_MAX)
1293 vma_close(vma);
1294 }
1295
1296 /*
1297 * vms_complete_munmap_vmas() - Finish the munmap() operation
1298 * @vms: The vma munmap struct
1299 * @mas_detach: The maple state of the detached vmas
1300 *
1301 * This updates the mm_struct, unmaps the region, frees the resources
1302 * used for the munmap() and may downgrade the lock - if requested. Everything
1303 * needed to be done once the vma maple tree is updated.
1304 */
vms_complete_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1305 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
1306 struct ma_state *mas_detach)
1307 {
1308 struct vm_area_struct *vma;
1309 struct mm_struct *mm;
1310
1311 mm = current->mm;
1312 mm->map_count -= vms->vma_count;
1313 mm->locked_vm -= vms->locked_vm;
1314 if (vms->unlock)
1315 mmap_write_downgrade(mm);
1316
1317 if (!vms->nr_pages)
1318 return;
1319
1320 vms_clear_ptes(vms, mas_detach, !vms->unlock);
1321 /* Update high watermark before we lower total_vm */
1322 update_hiwater_vm(mm);
1323 /* Stat accounting */
1324 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
1325 /* Paranoid bookkeeping */
1326 VM_WARN_ON(vms->exec_vm > mm->exec_vm);
1327 VM_WARN_ON(vms->stack_vm > mm->stack_vm);
1328 VM_WARN_ON(vms->data_vm > mm->data_vm);
1329 mm->exec_vm -= vms->exec_vm;
1330 mm->stack_vm -= vms->stack_vm;
1331 mm->data_vm -= vms->data_vm;
1332
1333 /* Remove and clean up vmas */
1334 mas_set(mas_detach, 0);
1335 mas_for_each(mas_detach, vma, ULONG_MAX)
1336 remove_vma(vma);
1337
1338 vm_unacct_memory(vms->nr_accounted);
1339 validate_mm(mm);
1340 if (vms->unlock)
1341 mmap_read_unlock(mm);
1342
1343 __mt_destroy(mas_detach->tree);
1344 }
1345
1346 /*
1347 * reattach_vmas() - Undo any munmap work and free resources
1348 * @mas_detach: The maple state with the detached maple tree
1349 *
1350 * Reattach any detached vmas and free up the maple tree used to track the vmas.
1351 */
reattach_vmas(struct ma_state * mas_detach)1352 static void reattach_vmas(struct ma_state *mas_detach)
1353 {
1354 struct vm_area_struct *vma;
1355
1356 mas_set(mas_detach, 0);
1357 mas_for_each(mas_detach, vma, ULONG_MAX)
1358 vma_mark_attached(vma);
1359
1360 __mt_destroy(mas_detach->tree);
1361 }
1362
1363 /*
1364 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
1365 * for removal at a later date. Handles splitting first and last if necessary
1366 * and marking the vmas as isolated.
1367 *
1368 * @vms: The vma munmap struct
1369 * @mas_detach: The maple state tracking the detached tree
1370 *
1371 * Return: 0 on success, error otherwise
1372 */
vms_gather_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1373 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
1374 struct ma_state *mas_detach)
1375 {
1376 struct vm_area_struct *next = NULL;
1377 int error;
1378
1379 /*
1380 * If we need to split any vma, do it now to save pain later.
1381 * Does it split the first one?
1382 */
1383 if (vms->start > vms->vma->vm_start) {
1384
1385 /*
1386 * Make sure that map_count on return from munmap() will
1387 * not exceed its limit; but let map_count go just above
1388 * its limit temporarily, to help free resources as expected.
1389 */
1390 if (vms->end < vms->vma->vm_end &&
1391 vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
1392 error = -ENOMEM;
1393 goto map_count_exceeded;
1394 }
1395
1396 /* Don't bother splitting the VMA if we can't unmap it anyway */
1397 if (vma_is_sealed(vms->vma)) {
1398 error = -EPERM;
1399 goto start_split_failed;
1400 }
1401
1402 error = __split_vma(vms->vmi, vms->vma, vms->start, 1);
1403 if (error)
1404 goto start_split_failed;
1405 }
1406 vms->prev = vma_prev(vms->vmi);
1407 if (vms->prev)
1408 vms->unmap_start = vms->prev->vm_end;
1409
1410 /*
1411 * Detach a range of VMAs from the mm. Using next as a temp variable as
1412 * it is always overwritten.
1413 */
1414 for_each_vma_range(*(vms->vmi), next, vms->end) {
1415 long nrpages;
1416
1417 if (vma_is_sealed(next)) {
1418 error = -EPERM;
1419 goto modify_vma_failed;
1420 }
1421 /* Does it split the end? */
1422 if (next->vm_end > vms->end) {
1423 error = __split_vma(vms->vmi, next, vms->end, 0);
1424 if (error)
1425 goto end_split_failed;
1426 }
1427 vma_start_write(next);
1428 mas_set(mas_detach, vms->vma_count++);
1429 error = mas_store_gfp(mas_detach, next, GFP_KERNEL);
1430 if (error)
1431 goto munmap_gather_failed;
1432
1433 vma_mark_detached(next);
1434 nrpages = vma_pages(next);
1435
1436 vms->nr_pages += nrpages;
1437 if (next->vm_flags & VM_LOCKED)
1438 vms->locked_vm += nrpages;
1439
1440 if (next->vm_flags & VM_ACCOUNT)
1441 vms->nr_accounted += nrpages;
1442
1443 if (is_exec_mapping(next->vm_flags))
1444 vms->exec_vm += nrpages;
1445 else if (is_stack_mapping(next->vm_flags))
1446 vms->stack_vm += nrpages;
1447 else if (is_data_mapping(next->vm_flags))
1448 vms->data_vm += nrpages;
1449
1450 if (vms->uf) {
1451 /*
1452 * If userfaultfd_unmap_prep returns an error the vmas
1453 * will remain split, but userland will get a
1454 * highly unexpected error anyway. This is no
1455 * different than the case where the first of the two
1456 * __split_vma fails, but we don't undo the first
1457 * split, despite we could. This is unlikely enough
1458 * failure that it's not worth optimizing it for.
1459 */
1460 error = userfaultfd_unmap_prep(next, vms->start,
1461 vms->end, vms->uf);
1462 if (error)
1463 goto userfaultfd_error;
1464 }
1465 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
1466 BUG_ON(next->vm_start < vms->start);
1467 BUG_ON(next->vm_start > vms->end);
1468 #endif
1469 }
1470
1471 vms->next = vma_next(vms->vmi);
1472 if (vms->next)
1473 vms->unmap_end = vms->next->vm_start;
1474
1475 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1476 /* Make sure no VMAs are about to be lost. */
1477 {
1478 MA_STATE(test, mas_detach->tree, 0, 0);
1479 struct vm_area_struct *vma_mas, *vma_test;
1480 int test_count = 0;
1481
1482 vma_iter_set(vms->vmi, vms->start);
1483 rcu_read_lock();
1484 vma_test = mas_find(&test, vms->vma_count - 1);
1485 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
1486 BUG_ON(vma_mas != vma_test);
1487 test_count++;
1488 vma_test = mas_next(&test, vms->vma_count - 1);
1489 }
1490 rcu_read_unlock();
1491 BUG_ON(vms->vma_count != test_count);
1492 }
1493 #endif
1494
1495 while (vma_iter_addr(vms->vmi) > vms->start)
1496 vma_iter_prev_range(vms->vmi);
1497
1498 vms->clear_ptes = true;
1499 return 0;
1500
1501 userfaultfd_error:
1502 munmap_gather_failed:
1503 end_split_failed:
1504 modify_vma_failed:
1505 reattach_vmas(mas_detach);
1506 start_split_failed:
1507 map_count_exceeded:
1508 return error;
1509 }
1510
1511 /*
1512 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct
1513 * @vms: The vma munmap struct
1514 * @vmi: The vma iterator
1515 * @vma: The first vm_area_struct to munmap
1516 * @start: The aligned start address to munmap
1517 * @end: The aligned end address to munmap
1518 * @uf: The userfaultfd list_head
1519 * @unlock: Unlock after the operation. Only unlocked on success
1520 */
init_vma_munmap(struct vma_munmap_struct * vms,struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)1521 static void init_vma_munmap(struct vma_munmap_struct *vms,
1522 struct vma_iterator *vmi, struct vm_area_struct *vma,
1523 unsigned long start, unsigned long end, struct list_head *uf,
1524 bool unlock)
1525 {
1526 vms->vmi = vmi;
1527 vms->vma = vma;
1528 if (vma) {
1529 vms->start = start;
1530 vms->end = end;
1531 } else {
1532 vms->start = vms->end = 0;
1533 }
1534 vms->unlock = unlock;
1535 vms->uf = uf;
1536 vms->vma_count = 0;
1537 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0;
1538 vms->exec_vm = vms->stack_vm = vms->data_vm = 0;
1539 vms->unmap_start = FIRST_USER_ADDRESS;
1540 vms->unmap_end = USER_PGTABLES_CEILING;
1541 vms->clear_ptes = false;
1542 }
1543
1544 /*
1545 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
1546 * @vmi: The vma iterator
1547 * @vma: The starting vm_area_struct
1548 * @mm: The mm_struct
1549 * @start: The aligned start address to munmap.
1550 * @end: The aligned end address to munmap.
1551 * @uf: The userfaultfd list_head
1552 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
1553 * success.
1554 *
1555 * Return: 0 on success and drops the lock if so directed, error and leaves the
1556 * lock held otherwise.
1557 */
do_vmi_align_munmap(struct vma_iterator * vmi,struct vm_area_struct * vma,struct mm_struct * mm,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)1558 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
1559 struct mm_struct *mm, unsigned long start, unsigned long end,
1560 struct list_head *uf, bool unlock)
1561 {
1562 struct maple_tree mt_detach;
1563 MA_STATE(mas_detach, &mt_detach, 0, 0);
1564 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1565 mt_on_stack(mt_detach);
1566 struct vma_munmap_struct vms;
1567 int error;
1568
1569 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
1570 error = vms_gather_munmap_vmas(&vms, &mas_detach);
1571 if (error)
1572 goto gather_failed;
1573
1574 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
1575 if (error)
1576 goto clear_tree_failed;
1577
1578 /* Point of no return */
1579 vms_complete_munmap_vmas(&vms, &mas_detach);
1580 return 0;
1581
1582 clear_tree_failed:
1583 reattach_vmas(&mas_detach);
1584 gather_failed:
1585 validate_mm(mm);
1586 return error;
1587 }
1588
1589 /*
1590 * do_vmi_munmap() - munmap a given range.
1591 * @vmi: The vma iterator
1592 * @mm: The mm_struct
1593 * @start: The start address to munmap
1594 * @len: The length of the range to munmap
1595 * @uf: The userfaultfd list_head
1596 * @unlock: set to true if the user wants to drop the mmap_lock on success
1597 *
1598 * This function takes a @mas that is either pointing to the previous VMA or set
1599 * to MA_START and sets it up to remove the mapping(s). The @len will be
1600 * aligned.
1601 *
1602 * Return: 0 on success and drops the lock if so directed, error and leaves the
1603 * lock held otherwise.
1604 */
do_vmi_munmap(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool unlock)1605 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
1606 unsigned long start, size_t len, struct list_head *uf,
1607 bool unlock)
1608 {
1609 unsigned long end;
1610 struct vm_area_struct *vma;
1611
1612 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1613 return -EINVAL;
1614
1615 end = start + PAGE_ALIGN(len);
1616 if (end == start)
1617 return -EINVAL;
1618
1619 /* Find the first overlapping VMA */
1620 vma = vma_find(vmi, end);
1621 if (!vma) {
1622 if (unlock)
1623 mmap_write_unlock(mm);
1624 return 0;
1625 }
1626
1627 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
1628 }
1629
1630 /*
1631 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1632 * context and anonymous VMA name within the range [start, end).
1633 *
1634 * As a result, we might be able to merge the newly modified VMA range with an
1635 * adjacent VMA with identical properties.
1636 *
1637 * If no merge is possible and the range does not span the entirety of the VMA,
1638 * we then need to split the VMA to accommodate the change.
1639 *
1640 * The function returns either the merged VMA, the original VMA if a split was
1641 * required instead, or an error if the split failed.
1642 */
vma_modify(struct vma_merge_struct * vmg)1643 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
1644 {
1645 struct vm_area_struct *vma = vmg->middle;
1646 unsigned long start = vmg->start;
1647 unsigned long end = vmg->end;
1648 struct vm_area_struct *merged;
1649
1650 /* First, try to merge. */
1651 merged = vma_merge_existing_range(vmg);
1652 if (merged)
1653 return merged;
1654 if (vmg_nomem(vmg))
1655 return ERR_PTR(-ENOMEM);
1656
1657 /*
1658 * Split can fail for reasons other than OOM, so if the user requests
1659 * this it's probably a mistake.
1660 */
1661 VM_WARN_ON(vmg->give_up_on_oom &&
1662 (vma->vm_start != start || vma->vm_end != end));
1663
1664 /* Split any preceding portion of the VMA. */
1665 if (vma->vm_start < start) {
1666 int err = split_vma(vmg->vmi, vma, start, 1);
1667
1668 if (err)
1669 return ERR_PTR(err);
1670 }
1671
1672 /* Split any trailing portion of the VMA. */
1673 if (vma->vm_end > end) {
1674 int err = split_vma(vmg->vmi, vma, end, 0);
1675
1676 if (err)
1677 return ERR_PTR(err);
1678 }
1679
1680 return vma;
1681 }
1682
vma_modify_flags(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,vm_flags_t * vm_flags_ptr)1683 struct vm_area_struct *vma_modify_flags(struct vma_iterator *vmi,
1684 struct vm_area_struct *prev, struct vm_area_struct *vma,
1685 unsigned long start, unsigned long end,
1686 vm_flags_t *vm_flags_ptr)
1687 {
1688 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1689 const vm_flags_t vm_flags = *vm_flags_ptr;
1690 struct vm_area_struct *ret;
1691
1692 vmg.vm_flags = vm_flags;
1693
1694 ret = vma_modify(&vmg);
1695 if (IS_ERR(ret))
1696 return ret;
1697
1698 /*
1699 * For a merge to succeed, the flags must match those
1700 * requested. However, sticky flags may have been retained, so propagate
1701 * them to the caller.
1702 */
1703 if (vmg.state == VMA_MERGE_SUCCESS)
1704 *vm_flags_ptr = ret->vm_flags;
1705 return ret;
1706 }
1707
vma_modify_name(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct anon_vma_name * new_name)1708 struct vm_area_struct *vma_modify_name(struct vma_iterator *vmi,
1709 struct vm_area_struct *prev, struct vm_area_struct *vma,
1710 unsigned long start, unsigned long end,
1711 struct anon_vma_name *new_name)
1712 {
1713 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1714
1715 vmg.anon_name = new_name;
1716
1717 return vma_modify(&vmg);
1718 }
1719
vma_modify_policy(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct mempolicy * new_pol)1720 struct vm_area_struct *vma_modify_policy(struct vma_iterator *vmi,
1721 struct vm_area_struct *prev, struct vm_area_struct *vma,
1722 unsigned long start, unsigned long end,
1723 struct mempolicy *new_pol)
1724 {
1725 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1726
1727 vmg.policy = new_pol;
1728
1729 return vma_modify(&vmg);
1730 }
1731
vma_modify_flags_uffd(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,vm_flags_t vm_flags,struct vm_userfaultfd_ctx new_ctx,bool give_up_on_oom)1732 struct vm_area_struct *vma_modify_flags_uffd(struct vma_iterator *vmi,
1733 struct vm_area_struct *prev, struct vm_area_struct *vma,
1734 unsigned long start, unsigned long end, vm_flags_t vm_flags,
1735 struct vm_userfaultfd_ctx new_ctx, bool give_up_on_oom)
1736 {
1737 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1738
1739 vmg.vm_flags = vm_flags;
1740 vmg.uffd_ctx = new_ctx;
1741 if (give_up_on_oom)
1742 vmg.give_up_on_oom = true;
1743
1744 return vma_modify(&vmg);
1745 }
1746
1747 /*
1748 * Expand vma by delta bytes, potentially merging with an immediately adjacent
1749 * VMA with identical properties.
1750 */
vma_merge_extend(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long delta)1751 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1752 struct vm_area_struct *vma,
1753 unsigned long delta)
1754 {
1755 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
1756
1757 vmg.next = vma_iter_next_rewind(vmi, NULL);
1758 vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */
1759
1760 return vma_merge_new_range(&vmg);
1761 }
1762
unlink_file_vma_batch_init(struct unlink_vma_file_batch * vb)1763 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1764 {
1765 vb->count = 0;
1766 }
1767
unlink_file_vma_batch_process(struct unlink_vma_file_batch * vb)1768 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1769 {
1770 struct address_space *mapping;
1771 int i;
1772
1773 mapping = vb->vmas[0]->vm_file->f_mapping;
1774 i_mmap_lock_write(mapping);
1775 for (i = 0; i < vb->count; i++) {
1776 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1777 __remove_shared_vm_struct(vb->vmas[i], mapping);
1778 }
1779 i_mmap_unlock_write(mapping);
1780
1781 unlink_file_vma_batch_init(vb);
1782 }
1783
unlink_file_vma_batch_add(struct unlink_vma_file_batch * vb,struct vm_area_struct * vma)1784 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1785 struct vm_area_struct *vma)
1786 {
1787 if (vma->vm_file == NULL)
1788 return;
1789
1790 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1791 vb->count == ARRAY_SIZE(vb->vmas))
1792 unlink_file_vma_batch_process(vb);
1793
1794 vb->vmas[vb->count] = vma;
1795 vb->count++;
1796 }
1797
unlink_file_vma_batch_final(struct unlink_vma_file_batch * vb)1798 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1799 {
1800 if (vb->count > 0)
1801 unlink_file_vma_batch_process(vb);
1802 }
1803
vma_link_file(struct vm_area_struct * vma,bool hold_rmap_lock)1804 static void vma_link_file(struct vm_area_struct *vma, bool hold_rmap_lock)
1805 {
1806 struct file *file = vma->vm_file;
1807 struct address_space *mapping;
1808
1809 if (file) {
1810 mapping = file->f_mapping;
1811 i_mmap_lock_write(mapping);
1812 __vma_link_file(vma, mapping);
1813 if (!hold_rmap_lock)
1814 i_mmap_unlock_write(mapping);
1815 }
1816 }
1817
vma_link(struct mm_struct * mm,struct vm_area_struct * vma)1818 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1819 {
1820 VMA_ITERATOR(vmi, mm, 0);
1821
1822 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1823 if (vma_iter_prealloc(&vmi, vma))
1824 return -ENOMEM;
1825
1826 vma_start_write(vma);
1827 vma_iter_store_new(&vmi, vma);
1828 vma_link_file(vma, /* hold_rmap_lock= */false);
1829 mm->map_count++;
1830 validate_mm(mm);
1831 return 0;
1832 }
1833
1834 /*
1835 * Copy the vma structure to a new location in the same mm,
1836 * prior to moving page table entries, to effect an mremap move.
1837 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)1838 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1839 unsigned long addr, unsigned long len, pgoff_t pgoff,
1840 bool *need_rmap_locks)
1841 {
1842 struct vm_area_struct *vma = *vmap;
1843 unsigned long vma_start = vma->vm_start;
1844 struct mm_struct *mm = vma->vm_mm;
1845 struct vm_area_struct *new_vma;
1846 bool faulted_in_anon_vma = true;
1847 VMA_ITERATOR(vmi, mm, addr);
1848 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
1849
1850 /*
1851 * If anonymous vma has not yet been faulted, update new pgoff
1852 * to match new location, to increase its chance of merging.
1853 */
1854 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1855 pgoff = addr >> PAGE_SHIFT;
1856 faulted_in_anon_vma = false;
1857 }
1858
1859 /*
1860 * If the VMA we are copying might contain a uprobe PTE, ensure
1861 * that we do not establish one upon merge. Otherwise, when mremap()
1862 * moves page tables, it will orphan the newly created PTE.
1863 */
1864 if (vma->vm_file)
1865 vmg.skip_vma_uprobe = true;
1866
1867 new_vma = find_vma_prev(mm, addr, &vmg.prev);
1868 if (new_vma && new_vma->vm_start < addr + len)
1869 return NULL; /* should never get here */
1870
1871 vmg.pgoff = pgoff;
1872 vmg.next = vma_iter_next_rewind(&vmi, NULL);
1873 new_vma = vma_merge_copied_range(&vmg);
1874
1875 if (new_vma) {
1876 /*
1877 * Source vma may have been merged into new_vma
1878 */
1879 if (unlikely(vma_start >= new_vma->vm_start &&
1880 vma_start < new_vma->vm_end)) {
1881 /*
1882 * The only way we can get a vma_merge with
1883 * self during an mremap is if the vma hasn't
1884 * been faulted in yet and we were allowed to
1885 * reset the dst vma->vm_pgoff to the
1886 * destination address of the mremap to allow
1887 * the merge to happen. mremap must change the
1888 * vm_pgoff linearity between src and dst vmas
1889 * (in turn preventing a vma_merge) to be
1890 * safe. It is only safe to keep the vm_pgoff
1891 * linear if there are no pages mapped yet.
1892 */
1893 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1894 *vmap = vma = new_vma;
1895 }
1896 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1897 } else {
1898 new_vma = vm_area_dup(vma);
1899 if (!new_vma)
1900 goto out;
1901 vma_set_range(new_vma, addr, addr + len, pgoff);
1902 if (vma_dup_policy(vma, new_vma))
1903 goto out_free_vma;
1904 if (anon_vma_clone(new_vma, vma))
1905 goto out_free_mempol;
1906 if (new_vma->vm_file)
1907 get_file(new_vma->vm_file);
1908 if (new_vma->vm_ops && new_vma->vm_ops->open)
1909 new_vma->vm_ops->open(new_vma);
1910 if (vma_link(mm, new_vma))
1911 goto out_vma_link;
1912 *need_rmap_locks = false;
1913 }
1914 return new_vma;
1915
1916 out_vma_link:
1917 fixup_hugetlb_reservations(new_vma);
1918 vma_close(new_vma);
1919
1920 if (new_vma->vm_file)
1921 fput(new_vma->vm_file);
1922
1923 unlink_anon_vmas(new_vma);
1924 out_free_mempol:
1925 mpol_put(vma_policy(new_vma));
1926 out_free_vma:
1927 vm_area_free(new_vma);
1928 out:
1929 return NULL;
1930 }
1931
1932 /*
1933 * Rough compatibility check to quickly see if it's even worth looking
1934 * at sharing an anon_vma.
1935 *
1936 * They need to have the same vm_file, and the flags can only differ
1937 * in things that mprotect may change.
1938 *
1939 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1940 * we can merge the two vma's. For example, we refuse to merge a vma if
1941 * there is a vm_ops->close() function, because that indicates that the
1942 * driver is doing some kind of reference counting. But that doesn't
1943 * really matter for the anon_vma sharing case.
1944 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1945 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1946 {
1947 return a->vm_end == b->vm_start &&
1948 mpol_equal(vma_policy(a), vma_policy(b)) &&
1949 a->vm_file == b->vm_file &&
1950 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_IGNORE_MERGE)) &&
1951 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1952 }
1953
1954 /*
1955 * Do some basic sanity checking to see if we can re-use the anon_vma
1956 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1957 * the same as 'old', the other will be the new one that is trying
1958 * to share the anon_vma.
1959 *
1960 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1961 * the anon_vma of 'old' is concurrently in the process of being set up
1962 * by another page fault trying to merge _that_. But that's ok: if it
1963 * is being set up, that automatically means that it will be a singleton
1964 * acceptable for merging, so we can do all of this optimistically. But
1965 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1966 *
1967 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1968 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1969 * is to return an anon_vma that is "complex" due to having gone through
1970 * a fork).
1971 *
1972 * We also make sure that the two vma's are compatible (adjacent,
1973 * and with the same memory policies). That's all stable, even with just
1974 * a read lock on the mmap_lock.
1975 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1976 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1977 struct vm_area_struct *a,
1978 struct vm_area_struct *b)
1979 {
1980 if (anon_vma_compatible(a, b)) {
1981 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1982
1983 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1984 return anon_vma;
1985 }
1986 return NULL;
1987 }
1988
1989 /*
1990 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1991 * neighbouring vmas for a suitable anon_vma, before it goes off
1992 * to allocate a new anon_vma. It checks because a repetitive
1993 * sequence of mprotects and faults may otherwise lead to distinct
1994 * anon_vmas being allocated, preventing vma merge in subsequent
1995 * mprotect.
1996 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1997 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1998 {
1999 struct anon_vma *anon_vma = NULL;
2000 struct vm_area_struct *prev, *next;
2001 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
2002
2003 /* Try next first. */
2004 next = vma_iter_load(&vmi);
2005 if (next) {
2006 anon_vma = reusable_anon_vma(next, vma, next);
2007 if (anon_vma)
2008 return anon_vma;
2009 }
2010
2011 prev = vma_prev(&vmi);
2012 VM_BUG_ON_VMA(prev != vma, vma);
2013 prev = vma_prev(&vmi);
2014 /* Try prev next. */
2015 if (prev)
2016 anon_vma = reusable_anon_vma(prev, prev, vma);
2017
2018 /*
2019 * We might reach here with anon_vma == NULL if we can't find
2020 * any reusable anon_vma.
2021 * There's no absolute need to look only at touching neighbours:
2022 * we could search further afield for "compatible" anon_vmas.
2023 * But it would probably just be a waste of time searching,
2024 * or lead to too many vmas hanging off the same anon_vma.
2025 * We're trying to allow mprotect remerging later on,
2026 * not trying to minimize memory used for anon_vmas.
2027 */
2028 return anon_vma;
2029 }
2030
vm_ops_needs_writenotify(const struct vm_operations_struct * vm_ops)2031 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
2032 {
2033 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
2034 }
2035
vma_is_shared_writable(struct vm_area_struct * vma)2036 static bool vma_is_shared_writable(struct vm_area_struct *vma)
2037 {
2038 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
2039 (VM_WRITE | VM_SHARED);
2040 }
2041
vma_fs_can_writeback(struct vm_area_struct * vma)2042 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
2043 {
2044 /* No managed pages to writeback. */
2045 if (vma->vm_flags & VM_PFNMAP)
2046 return false;
2047
2048 return vma->vm_file && vma->vm_file->f_mapping &&
2049 mapping_can_writeback(vma->vm_file->f_mapping);
2050 }
2051
2052 /*
2053 * Does this VMA require the underlying folios to have their dirty state
2054 * tracked?
2055 */
vma_needs_dirty_tracking(struct vm_area_struct * vma)2056 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
2057 {
2058 /* Only shared, writable VMAs require dirty tracking. */
2059 if (!vma_is_shared_writable(vma))
2060 return false;
2061
2062 /* Does the filesystem need to be notified? */
2063 if (vm_ops_needs_writenotify(vma->vm_ops))
2064 return true;
2065
2066 /*
2067 * Even if the filesystem doesn't indicate a need for writenotify, if it
2068 * can writeback, dirty tracking is still required.
2069 */
2070 return vma_fs_can_writeback(vma);
2071 }
2072
2073 /*
2074 * Some shared mappings will want the pages marked read-only
2075 * to track write events. If so, we'll downgrade vm_page_prot
2076 * to the private version (using protection_map[] without the
2077 * VM_SHARED bit).
2078 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)2079 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
2080 {
2081 /* If it was private or non-writable, the write bit is already clear */
2082 if (!vma_is_shared_writable(vma))
2083 return false;
2084
2085 /* The backer wishes to know when pages are first written to? */
2086 if (vm_ops_needs_writenotify(vma->vm_ops))
2087 return true;
2088
2089 /* The open routine did something to the protections that pgprot_modify
2090 * won't preserve? */
2091 if (pgprot_val(vm_page_prot) !=
2092 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
2093 return false;
2094
2095 /*
2096 * Do we need to track softdirty? hugetlb does not support softdirty
2097 * tracking yet.
2098 */
2099 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
2100 return true;
2101
2102 /* Do we need write faults for uffd-wp tracking? */
2103 if (userfaultfd_wp(vma))
2104 return true;
2105
2106 /* Can the mapping track the dirty pages? */
2107 return vma_fs_can_writeback(vma);
2108 }
2109
2110 static DEFINE_MUTEX(mm_all_locks_mutex);
2111
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)2112 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2113 {
2114 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2115 /*
2116 * The LSB of head.next can't change from under us
2117 * because we hold the mm_all_locks_mutex.
2118 */
2119 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
2120 /*
2121 * We can safely modify head.next after taking the
2122 * anon_vma->root->rwsem. If some other vma in this mm shares
2123 * the same anon_vma we won't take it again.
2124 *
2125 * No need of atomic instructions here, head.next
2126 * can't change from under us thanks to the
2127 * anon_vma->root->rwsem.
2128 */
2129 if (__test_and_set_bit(0, (unsigned long *)
2130 &anon_vma->root->rb_root.rb_root.rb_node))
2131 BUG();
2132 }
2133 }
2134
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)2135 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2136 {
2137 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2138 /*
2139 * AS_MM_ALL_LOCKS can't change from under us because
2140 * we hold the mm_all_locks_mutex.
2141 *
2142 * Operations on ->flags have to be atomic because
2143 * even if AS_MM_ALL_LOCKS is stable thanks to the
2144 * mm_all_locks_mutex, there may be other cpus
2145 * changing other bitflags in parallel to us.
2146 */
2147 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2148 BUG();
2149 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
2150 }
2151 }
2152
2153 /*
2154 * This operation locks against the VM for all pte/vma/mm related
2155 * operations that could ever happen on a certain mm. This includes
2156 * vmtruncate, try_to_unmap, and all page faults.
2157 *
2158 * The caller must take the mmap_lock in write mode before calling
2159 * mm_take_all_locks(). The caller isn't allowed to release the
2160 * mmap_lock until mm_drop_all_locks() returns.
2161 *
2162 * mmap_lock in write mode is required in order to block all operations
2163 * that could modify pagetables and free pages without need of
2164 * altering the vma layout. It's also needed in write mode to avoid new
2165 * anon_vmas to be associated with existing vmas.
2166 *
2167 * A single task can't take more than one mm_take_all_locks() in a row
2168 * or it would deadlock.
2169 *
2170 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2171 * mapping->flags avoid to take the same lock twice, if more than one
2172 * vma in this mm is backed by the same anon_vma or address_space.
2173 *
2174 * We take locks in following order, accordingly to comment at beginning
2175 * of mm/rmap.c:
2176 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
2177 * hugetlb mapping);
2178 * - all vmas marked locked
2179 * - all i_mmap_rwsem locks;
2180 * - all anon_vma->rwseml
2181 *
2182 * We can take all locks within these types randomly because the VM code
2183 * doesn't nest them and we protected from parallel mm_take_all_locks() by
2184 * mm_all_locks_mutex.
2185 *
2186 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2187 * that may have to take thousand of locks.
2188 *
2189 * mm_take_all_locks() can fail if it's interrupted by signals.
2190 */
mm_take_all_locks(struct mm_struct * mm)2191 int mm_take_all_locks(struct mm_struct *mm)
2192 {
2193 struct vm_area_struct *vma;
2194 struct anon_vma_chain *avc;
2195 VMA_ITERATOR(vmi, mm, 0);
2196
2197 mmap_assert_write_locked(mm);
2198
2199 mutex_lock(&mm_all_locks_mutex);
2200
2201 /*
2202 * vma_start_write() does not have a complement in mm_drop_all_locks()
2203 * because vma_start_write() is always asymmetrical; it marks a VMA as
2204 * being written to until mmap_write_unlock() or mmap_write_downgrade()
2205 * is reached.
2206 */
2207 for_each_vma(vmi, vma) {
2208 if (signal_pending(current))
2209 goto out_unlock;
2210 vma_start_write(vma);
2211 }
2212
2213 vma_iter_init(&vmi, mm, 0);
2214 for_each_vma(vmi, vma) {
2215 if (signal_pending(current))
2216 goto out_unlock;
2217 if (vma->vm_file && vma->vm_file->f_mapping &&
2218 is_vm_hugetlb_page(vma))
2219 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2220 }
2221
2222 vma_iter_init(&vmi, mm, 0);
2223 for_each_vma(vmi, vma) {
2224 if (signal_pending(current))
2225 goto out_unlock;
2226 if (vma->vm_file && vma->vm_file->f_mapping &&
2227 !is_vm_hugetlb_page(vma))
2228 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2229 }
2230
2231 vma_iter_init(&vmi, mm, 0);
2232 for_each_vma(vmi, vma) {
2233 if (signal_pending(current))
2234 goto out_unlock;
2235 if (vma->anon_vma)
2236 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2237 vm_lock_anon_vma(mm, avc->anon_vma);
2238 }
2239
2240 return 0;
2241
2242 out_unlock:
2243 mm_drop_all_locks(mm);
2244 return -EINTR;
2245 }
2246
vm_unlock_anon_vma(struct anon_vma * anon_vma)2247 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2248 {
2249 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2250 /*
2251 * The LSB of head.next can't change to 0 from under
2252 * us because we hold the mm_all_locks_mutex.
2253 *
2254 * We must however clear the bitflag before unlocking
2255 * the vma so the users using the anon_vma->rb_root will
2256 * never see our bitflag.
2257 *
2258 * No need of atomic instructions here, head.next
2259 * can't change from under us until we release the
2260 * anon_vma->root->rwsem.
2261 */
2262 if (!__test_and_clear_bit(0, (unsigned long *)
2263 &anon_vma->root->rb_root.rb_root.rb_node))
2264 BUG();
2265 anon_vma_unlock_write(anon_vma);
2266 }
2267 }
2268
vm_unlock_mapping(struct address_space * mapping)2269 static void vm_unlock_mapping(struct address_space *mapping)
2270 {
2271 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2272 /*
2273 * AS_MM_ALL_LOCKS can't change to 0 from under us
2274 * because we hold the mm_all_locks_mutex.
2275 */
2276 i_mmap_unlock_write(mapping);
2277 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2278 &mapping->flags))
2279 BUG();
2280 }
2281 }
2282
2283 /*
2284 * The mmap_lock cannot be released by the caller until
2285 * mm_drop_all_locks() returns.
2286 */
mm_drop_all_locks(struct mm_struct * mm)2287 void mm_drop_all_locks(struct mm_struct *mm)
2288 {
2289 struct vm_area_struct *vma;
2290 struct anon_vma_chain *avc;
2291 VMA_ITERATOR(vmi, mm, 0);
2292
2293 mmap_assert_write_locked(mm);
2294 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2295
2296 for_each_vma(vmi, vma) {
2297 if (vma->anon_vma)
2298 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2299 vm_unlock_anon_vma(avc->anon_vma);
2300 if (vma->vm_file && vma->vm_file->f_mapping)
2301 vm_unlock_mapping(vma->vm_file->f_mapping);
2302 }
2303
2304 mutex_unlock(&mm_all_locks_mutex);
2305 }
2306
2307 /*
2308 * We account for memory if it's a private writeable mapping,
2309 * not hugepages and VM_NORESERVE wasn't set.
2310 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)2311 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
2312 {
2313 /*
2314 * hugetlb has its own accounting separate from the core VM
2315 * VM_HUGETLB may not be set yet so we cannot check for that flag.
2316 */
2317 if (file && is_file_hugepages(file))
2318 return false;
2319
2320 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
2321 }
2322
2323 /*
2324 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap()
2325 * operation.
2326 * @vms: The vma unmap structure
2327 * @mas_detach: The maple state with the detached maple tree
2328 *
2329 * Reattach any detached vmas, free up the maple tree used to track the vmas.
2330 * If that's not possible because the ptes are cleared (and vm_ops->closed() may
2331 * have been called), then a NULL is written over the vmas and the vmas are
2332 * removed (munmap() completed).
2333 */
vms_abort_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)2334 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms,
2335 struct ma_state *mas_detach)
2336 {
2337 struct ma_state *mas = &vms->vmi->mas;
2338
2339 if (!vms->nr_pages)
2340 return;
2341
2342 if (vms->clear_ptes)
2343 return reattach_vmas(mas_detach);
2344
2345 /*
2346 * Aborting cannot just call the vm_ops open() because they are often
2347 * not symmetrical and state data has been lost. Resort to the old
2348 * failure method of leaving a gap where the MAP_FIXED mapping failed.
2349 */
2350 mas_set_range(mas, vms->start, vms->end - 1);
2351 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL);
2352 /* Clean up the insertion of the unfortunate gap */
2353 vms_complete_munmap_vmas(vms, mas_detach);
2354 }
2355
update_ksm_flags(struct mmap_state * map)2356 static void update_ksm_flags(struct mmap_state *map)
2357 {
2358 map->vm_flags = ksm_vma_flags(map->mm, map->file, map->vm_flags);
2359 }
2360
set_desc_from_map(struct vm_area_desc * desc,const struct mmap_state * map)2361 static void set_desc_from_map(struct vm_area_desc *desc,
2362 const struct mmap_state *map)
2363 {
2364 desc->start = map->addr;
2365 desc->end = map->end;
2366
2367 desc->pgoff = map->pgoff;
2368 desc->vm_file = map->file;
2369 desc->vm_flags = map->vm_flags;
2370 desc->page_prot = map->page_prot;
2371 }
2372
2373 /*
2374 * __mmap_setup() - Prepare to gather any overlapping VMAs that need to be
2375 * unmapped once the map operation is completed, check limits, account mapping
2376 * and clean up any pre-existing VMAs.
2377 *
2378 * As a result it sets up the @map and @desc objects.
2379 *
2380 * @map: Mapping state.
2381 * @desc: VMA descriptor
2382 * @uf: Userfaultfd context list.
2383 *
2384 * Returns: 0 on success, error code otherwise.
2385 */
__mmap_setup(struct mmap_state * map,struct vm_area_desc * desc,struct list_head * uf)2386 static int __mmap_setup(struct mmap_state *map, struct vm_area_desc *desc,
2387 struct list_head *uf)
2388 {
2389 int error;
2390 struct vma_iterator *vmi = map->vmi;
2391 struct vma_munmap_struct *vms = &map->vms;
2392
2393 /* Find the first overlapping VMA and initialise unmap state. */
2394 vms->vma = vma_find(vmi, map->end);
2395 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf,
2396 /* unlock = */ false);
2397
2398 /* OK, we have overlapping VMAs - prepare to unmap them. */
2399 if (vms->vma) {
2400 mt_init_flags(&map->mt_detach,
2401 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2402 mt_on_stack(map->mt_detach);
2403 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0);
2404 /* Prepare to unmap any existing mapping in the area */
2405 error = vms_gather_munmap_vmas(vms, &map->mas_detach);
2406 if (error) {
2407 /* On error VMAs will already have been reattached. */
2408 vms->nr_pages = 0;
2409 return error;
2410 }
2411
2412 map->next = vms->next;
2413 map->prev = vms->prev;
2414 } else {
2415 map->next = vma_iter_next_rewind(vmi, &map->prev);
2416 }
2417
2418 /* Check against address space limit. */
2419 if (!may_expand_vm(map->mm, map->vm_flags, map->pglen - vms->nr_pages))
2420 return -ENOMEM;
2421
2422 /* Private writable mapping: check memory availability. */
2423 if (accountable_mapping(map->file, map->vm_flags)) {
2424 map->charged = map->pglen;
2425 map->charged -= vms->nr_accounted;
2426 if (map->charged) {
2427 error = security_vm_enough_memory_mm(map->mm, map->charged);
2428 if (error)
2429 return error;
2430 }
2431
2432 vms->nr_accounted = 0;
2433 map->vm_flags |= VM_ACCOUNT;
2434 }
2435
2436 /*
2437 * Clear PTEs while the vma is still in the tree so that rmap
2438 * cannot race with the freeing later in the truncate scenario.
2439 * This is also needed for mmap_file(), which is why vm_ops
2440 * close function is called.
2441 */
2442 vms_clean_up_area(vms, &map->mas_detach);
2443
2444 set_desc_from_map(desc, map);
2445 return 0;
2446 }
2447
2448
__mmap_new_file_vma(struct mmap_state * map,struct vm_area_struct * vma)2449 static int __mmap_new_file_vma(struct mmap_state *map,
2450 struct vm_area_struct *vma)
2451 {
2452 struct vma_iterator *vmi = map->vmi;
2453 int error;
2454
2455 vma->vm_file = map->file;
2456 if (!map->file_doesnt_need_get)
2457 get_file(map->file);
2458
2459 if (!map->file->f_op->mmap)
2460 return 0;
2461
2462 error = mmap_file(vma->vm_file, vma);
2463 if (error) {
2464 fput(vma->vm_file);
2465 vma->vm_file = NULL;
2466
2467 vma_iter_set(vmi, vma->vm_end);
2468 /* Undo any partial mapping done by a device driver. */
2469 unmap_region(&vmi->mas, vma, map->prev, map->next);
2470
2471 return error;
2472 }
2473
2474 /* Drivers cannot alter the address of the VMA. */
2475 WARN_ON_ONCE(map->addr != vma->vm_start);
2476 /*
2477 * Drivers should not permit writability when previously it was
2478 * disallowed.
2479 */
2480 VM_WARN_ON_ONCE(map->vm_flags != vma->vm_flags &&
2481 !(map->vm_flags & VM_MAYWRITE) &&
2482 (vma->vm_flags & VM_MAYWRITE));
2483
2484 map->file = vma->vm_file;
2485 map->vm_flags = vma->vm_flags;
2486
2487 return 0;
2488 }
2489
2490 /*
2491 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not
2492 * possible.
2493 *
2494 * @map: Mapping state.
2495 * @vmap: Output pointer for the new VMA.
2496 *
2497 * Returns: Zero on success, or an error.
2498 */
__mmap_new_vma(struct mmap_state * map,struct vm_area_struct ** vmap)2499 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap)
2500 {
2501 struct vma_iterator *vmi = map->vmi;
2502 int error = 0;
2503 struct vm_area_struct *vma;
2504
2505 /*
2506 * Determine the object being mapped and call the appropriate
2507 * specific mapper. the address has already been validated, but
2508 * not unmapped, but the maps are removed from the list.
2509 */
2510 vma = vm_area_alloc(map->mm);
2511 if (!vma)
2512 return -ENOMEM;
2513
2514 vma_iter_config(vmi, map->addr, map->end);
2515 vma_set_range(vma, map->addr, map->end, map->pgoff);
2516 vm_flags_init(vma, map->vm_flags);
2517 vma->vm_page_prot = map->page_prot;
2518
2519 if (vma_iter_prealloc(vmi, vma)) {
2520 error = -ENOMEM;
2521 goto free_vma;
2522 }
2523
2524 if (map->file)
2525 error = __mmap_new_file_vma(map, vma);
2526 else if (map->vm_flags & VM_SHARED)
2527 error = shmem_zero_setup(vma);
2528 else
2529 vma_set_anonymous(vma);
2530
2531 if (error)
2532 goto free_iter_vma;
2533
2534 if (!map->check_ksm_early) {
2535 update_ksm_flags(map);
2536 vm_flags_init(vma, map->vm_flags);
2537 }
2538
2539 #ifdef CONFIG_SPARC64
2540 /* TODO: Fix SPARC ADI! */
2541 WARN_ON_ONCE(!arch_validate_flags(map->vm_flags));
2542 #endif
2543
2544 /* Lock the VMA since it is modified after insertion into VMA tree */
2545 vma_start_write(vma);
2546 vma_iter_store_new(vmi, vma);
2547 map->mm->map_count++;
2548 vma_link_file(vma, map->hold_file_rmap_lock);
2549
2550 /*
2551 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below
2552 * call covers the non-merge case.
2553 */
2554 if (!vma_is_anonymous(vma))
2555 khugepaged_enter_vma(vma, map->vm_flags);
2556 *vmap = vma;
2557 return 0;
2558
2559 free_iter_vma:
2560 vma_iter_free(vmi);
2561 free_vma:
2562 vm_area_free(vma);
2563 return error;
2564 }
2565
2566 /*
2567 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping
2568 * statistics, handle locking and finalise the VMA.
2569 *
2570 * @map: Mapping state.
2571 * @vma: Merged or newly allocated VMA for the mmap()'d region.
2572 */
__mmap_complete(struct mmap_state * map,struct vm_area_struct * vma)2573 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma)
2574 {
2575 struct mm_struct *mm = map->mm;
2576 vm_flags_t vm_flags = vma->vm_flags;
2577
2578 perf_event_mmap(vma);
2579
2580 /* Unmap any existing mapping in the area. */
2581 vms_complete_munmap_vmas(&map->vms, &map->mas_detach);
2582
2583 vm_stat_account(mm, vma->vm_flags, map->pglen);
2584 if (vm_flags & VM_LOCKED) {
2585 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2586 is_vm_hugetlb_page(vma) ||
2587 vma == get_gate_vma(mm))
2588 vm_flags_clear(vma, VM_LOCKED_MASK);
2589 else
2590 mm->locked_vm += map->pglen;
2591 }
2592
2593 if (vma->vm_file)
2594 uprobe_mmap(vma);
2595
2596 /*
2597 * New (or expanded) vma always get soft dirty status.
2598 * Otherwise user-space soft-dirty page tracker won't
2599 * be able to distinguish situation when vma area unmapped,
2600 * then new mapped in-place (which must be aimed as
2601 * a completely new data area).
2602 */
2603 if (pgtable_supports_soft_dirty())
2604 vm_flags_set(vma, VM_SOFTDIRTY);
2605
2606 vma_set_page_prot(vma);
2607 }
2608
call_action_prepare(struct mmap_state * map,struct vm_area_desc * desc)2609 static void call_action_prepare(struct mmap_state *map,
2610 struct vm_area_desc *desc)
2611 {
2612 struct mmap_action *action = &desc->action;
2613
2614 mmap_action_prepare(action, desc);
2615
2616 if (action->hide_from_rmap_until_complete)
2617 map->hold_file_rmap_lock = true;
2618 }
2619
2620 /*
2621 * Invoke the f_op->mmap_prepare() callback for a file-backed mapping that
2622 * specifies it.
2623 *
2624 * This is called prior to any merge attempt, and updates whitelisted fields
2625 * that are permitted to be updated by the caller.
2626 *
2627 * All but user-defined fields will be pre-populated with original values.
2628 *
2629 * Returns 0 on success, or an error code otherwise.
2630 */
call_mmap_prepare(struct mmap_state * map,struct vm_area_desc * desc)2631 static int call_mmap_prepare(struct mmap_state *map,
2632 struct vm_area_desc *desc)
2633 {
2634 int err;
2635
2636 /* Invoke the hook. */
2637 err = vfs_mmap_prepare(map->file, desc);
2638 if (err)
2639 return err;
2640
2641 call_action_prepare(map, desc);
2642
2643 /* Update fields permitted to be changed. */
2644 map->pgoff = desc->pgoff;
2645 if (desc->vm_file != map->file) {
2646 map->file_doesnt_need_get = true;
2647 map->file = desc->vm_file;
2648 }
2649 map->vm_flags = desc->vm_flags;
2650 map->page_prot = desc->page_prot;
2651 /* User-defined fields. */
2652 map->vm_ops = desc->vm_ops;
2653 map->vm_private_data = desc->private_data;
2654
2655 return 0;
2656 }
2657
set_vma_user_defined_fields(struct vm_area_struct * vma,struct mmap_state * map)2658 static void set_vma_user_defined_fields(struct vm_area_struct *vma,
2659 struct mmap_state *map)
2660 {
2661 if (map->vm_ops)
2662 vma->vm_ops = map->vm_ops;
2663 vma->vm_private_data = map->vm_private_data;
2664 }
2665
2666 /*
2667 * Are we guaranteed no driver can change state such as to preclude KSM merging?
2668 * If so, let's set the KSM mergeable flag early so we don't break VMA merging.
2669 */
can_set_ksm_flags_early(struct mmap_state * map)2670 static bool can_set_ksm_flags_early(struct mmap_state *map)
2671 {
2672 struct file *file = map->file;
2673
2674 /* Anonymous mappings have no driver which can change them. */
2675 if (!file)
2676 return true;
2677
2678 /*
2679 * If .mmap_prepare() is specified, then the driver will have already
2680 * manipulated state prior to updating KSM flags. So no need to worry
2681 * about mmap callbacks modifying VMA flags after the KSM flag has been
2682 * updated here, which could otherwise affect KSM eligibility.
2683 */
2684 if (file->f_op->mmap_prepare)
2685 return true;
2686
2687 /* shmem is safe. */
2688 if (shmem_file(file))
2689 return true;
2690
2691 /* Any other .mmap callback is not safe. */
2692 return false;
2693 }
2694
call_action_complete(struct mmap_state * map,struct vm_area_desc * desc,struct vm_area_struct * vma)2695 static int call_action_complete(struct mmap_state *map,
2696 struct vm_area_desc *desc,
2697 struct vm_area_struct *vma)
2698 {
2699 struct mmap_action *action = &desc->action;
2700 int ret;
2701
2702 ret = mmap_action_complete(action, vma);
2703
2704 /* If we held the file rmap we need to release it. */
2705 if (map->hold_file_rmap_lock) {
2706 struct file *file = vma->vm_file;
2707
2708 i_mmap_unlock_write(file->f_mapping);
2709 }
2710 return ret;
2711 }
2712
__mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2713 static unsigned long __mmap_region(struct file *file, unsigned long addr,
2714 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2715 struct list_head *uf)
2716 {
2717 struct mm_struct *mm = current->mm;
2718 struct vm_area_struct *vma = NULL;
2719 bool have_mmap_prepare = file && file->f_op->mmap_prepare;
2720 VMA_ITERATOR(vmi, mm, addr);
2721 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file);
2722 struct vm_area_desc desc = {
2723 .mm = mm,
2724 .file = file,
2725 .action = {
2726 .type = MMAP_NOTHING, /* Default to no further action. */
2727 },
2728 };
2729 bool allocated_new = false;
2730 int error;
2731
2732 map.check_ksm_early = can_set_ksm_flags_early(&map);
2733
2734 error = __mmap_setup(&map, &desc, uf);
2735 if (!error && have_mmap_prepare)
2736 error = call_mmap_prepare(&map, &desc);
2737 if (error)
2738 goto abort_munmap;
2739
2740 if (map.check_ksm_early)
2741 update_ksm_flags(&map);
2742
2743 /* Attempt to merge with adjacent VMAs... */
2744 if (map.prev || map.next) {
2745 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL);
2746
2747 vma = vma_merge_new_range(&vmg);
2748 }
2749
2750 /* ...but if we can't, allocate a new VMA. */
2751 if (!vma) {
2752 error = __mmap_new_vma(&map, &vma);
2753 if (error)
2754 goto unacct_error;
2755 allocated_new = true;
2756 }
2757
2758 if (have_mmap_prepare)
2759 set_vma_user_defined_fields(vma, &map);
2760
2761 __mmap_complete(&map, vma);
2762
2763 if (have_mmap_prepare && allocated_new) {
2764 error = call_action_complete(&map, &desc, vma);
2765
2766 if (error)
2767 return error;
2768 }
2769
2770 return addr;
2771
2772 /* Accounting was done by __mmap_setup(). */
2773 unacct_error:
2774 if (map.charged)
2775 vm_unacct_memory(map.charged);
2776 abort_munmap:
2777 vms_abort_munmap_vmas(&map.vms, &map.mas_detach);
2778 return error;
2779 }
2780
2781 /**
2782 * mmap_region() - Actually perform the userland mapping of a VMA into
2783 * current->mm with known, aligned and overflow-checked @addr and @len, and
2784 * correctly determined VMA flags @vm_flags and page offset @pgoff.
2785 *
2786 * This is an internal memory management function, and should not be used
2787 * directly.
2788 *
2789 * The caller must write-lock current->mm->mmap_lock.
2790 *
2791 * @file: If a file-backed mapping, a pointer to the struct file describing the
2792 * file to be mapped, otherwise NULL.
2793 * @addr: The page-aligned address at which to perform the mapping.
2794 * @len: The page-aligned, non-zero, length of the mapping.
2795 * @vm_flags: The VMA flags which should be applied to the mapping.
2796 * @pgoff: If @file is specified, the page offset into the file, if not then
2797 * the virtual page offset in memory of the anonymous mapping.
2798 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap
2799 * events.
2800 *
2801 * Returns: Either an error, or the address at which the requested mapping has
2802 * been performed.
2803 */
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2804 unsigned long mmap_region(struct file *file, unsigned long addr,
2805 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2806 struct list_head *uf)
2807 {
2808 unsigned long ret;
2809 bool writable_file_mapping = false;
2810
2811 mmap_assert_write_locked(current->mm);
2812
2813 /* Check to see if MDWE is applicable. */
2814 if (map_deny_write_exec(vm_flags, vm_flags))
2815 return -EACCES;
2816
2817 /* Allow architectures to sanity-check the vm_flags. */
2818 if (!arch_validate_flags(vm_flags))
2819 return -EINVAL;
2820
2821 /* Map writable and ensure this isn't a sealed memfd. */
2822 if (file && is_shared_maywrite(vm_flags)) {
2823 int error = mapping_map_writable(file->f_mapping);
2824
2825 if (error)
2826 return error;
2827 writable_file_mapping = true;
2828 }
2829
2830 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
2831
2832 /* Clear our write mapping regardless of error. */
2833 if (writable_file_mapping)
2834 mapping_unmap_writable(file->f_mapping);
2835
2836 validate_mm(current->mm);
2837 return ret;
2838 }
2839
2840 /*
2841 * do_brk_flags() - Increase the brk vma if the flags match.
2842 * @vmi: The vma iterator
2843 * @addr: The start address
2844 * @len: The length of the increase
2845 * @vma: The vma,
2846 * @vm_flags: The VMA Flags
2847 *
2848 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
2849 * do not match then create a new anonymous VMA. Eventually we may be able to
2850 * do some brk-specific accounting here.
2851 */
do_brk_flags(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,unsigned long len,vm_flags_t vm_flags)2852 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2853 unsigned long addr, unsigned long len, vm_flags_t vm_flags)
2854 {
2855 struct mm_struct *mm = current->mm;
2856
2857 /*
2858 * Check against address space limits by the changed size
2859 * Note: This happens *after* clearing old mappings in some code paths.
2860 */
2861 vm_flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2862 vm_flags = ksm_vma_flags(mm, NULL, vm_flags);
2863 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT))
2864 return -ENOMEM;
2865
2866 if (mm->map_count > sysctl_max_map_count)
2867 return -ENOMEM;
2868
2869 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2870 return -ENOMEM;
2871
2872 /*
2873 * Expand the existing vma if possible; Note that singular lists do not
2874 * occur after forking, so the expand will only happen on new VMAs.
2875 */
2876 if (vma && vma->vm_end == addr) {
2877 VMG_STATE(vmg, mm, vmi, addr, addr + len, vm_flags, PHYS_PFN(addr));
2878
2879 vmg.prev = vma;
2880 /* vmi is positioned at prev, which this mode expects. */
2881 vmg.just_expand = true;
2882
2883 if (vma_merge_new_range(&vmg))
2884 goto out;
2885 else if (vmg_nomem(&vmg))
2886 goto unacct_fail;
2887 }
2888
2889 if (vma)
2890 vma_iter_next_range(vmi);
2891 /* create a vma struct for an anonymous mapping */
2892 vma = vm_area_alloc(mm);
2893 if (!vma)
2894 goto unacct_fail;
2895
2896 vma_set_anonymous(vma);
2897 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
2898 vm_flags_init(vma, vm_flags);
2899 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2900 vma_start_write(vma);
2901 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
2902 goto mas_store_fail;
2903
2904 mm->map_count++;
2905 validate_mm(mm);
2906 out:
2907 perf_event_mmap(vma);
2908 mm->total_vm += len >> PAGE_SHIFT;
2909 mm->data_vm += len >> PAGE_SHIFT;
2910 if (vm_flags & VM_LOCKED)
2911 mm->locked_vm += (len >> PAGE_SHIFT);
2912 if (pgtable_supports_soft_dirty())
2913 vm_flags_set(vma, VM_SOFTDIRTY);
2914 return 0;
2915
2916 mas_store_fail:
2917 vm_area_free(vma);
2918 unacct_fail:
2919 vm_unacct_memory(len >> PAGE_SHIFT);
2920 return -ENOMEM;
2921 }
2922
2923 /**
2924 * unmapped_area() - Find an area between the low_limit and the high_limit with
2925 * the correct alignment and offset, all from @info. Note: current->mm is used
2926 * for the search.
2927 *
2928 * @info: The unmapped area information including the range [low_limit -
2929 * high_limit), the alignment offset and mask.
2930 *
2931 * Return: A memory address or -ENOMEM.
2932 */
unmapped_area(struct vm_unmapped_area_info * info)2933 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
2934 {
2935 unsigned long length, gap;
2936 unsigned long low_limit, high_limit;
2937 struct vm_area_struct *tmp;
2938 VMA_ITERATOR(vmi, current->mm, 0);
2939
2940 /* Adjust search length to account for worst case alignment overhead */
2941 length = info->length + info->align_mask + info->start_gap;
2942 if (length < info->length)
2943 return -ENOMEM;
2944
2945 low_limit = info->low_limit;
2946 if (low_limit < mmap_min_addr)
2947 low_limit = mmap_min_addr;
2948 high_limit = info->high_limit;
2949 retry:
2950 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
2951 return -ENOMEM;
2952
2953 /*
2954 * Adjust for the gap first so it doesn't interfere with the
2955 * later alignment. The first step is the minimum needed to
2956 * fulill the start gap, the next steps is the minimum to align
2957 * that. It is the minimum needed to fulill both.
2958 */
2959 gap = vma_iter_addr(&vmi) + info->start_gap;
2960 gap += (info->align_offset - gap) & info->align_mask;
2961 tmp = vma_next(&vmi);
2962 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2963 if (vm_start_gap(tmp) < gap + length - 1) {
2964 low_limit = tmp->vm_end;
2965 vma_iter_reset(&vmi);
2966 goto retry;
2967 }
2968 } else {
2969 tmp = vma_prev(&vmi);
2970 if (tmp && vm_end_gap(tmp) > gap) {
2971 low_limit = vm_end_gap(tmp);
2972 vma_iter_reset(&vmi);
2973 goto retry;
2974 }
2975 }
2976
2977 return gap;
2978 }
2979
2980 /**
2981 * unmapped_area_topdown() - Find an area between the low_limit and the
2982 * high_limit with the correct alignment and offset at the highest available
2983 * address, all from @info. Note: current->mm is used for the search.
2984 *
2985 * @info: The unmapped area information including the range [low_limit -
2986 * high_limit), the alignment offset and mask.
2987 *
2988 * Return: A memory address or -ENOMEM.
2989 */
unmapped_area_topdown(struct vm_unmapped_area_info * info)2990 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2991 {
2992 unsigned long length, gap, gap_end;
2993 unsigned long low_limit, high_limit;
2994 struct vm_area_struct *tmp;
2995 VMA_ITERATOR(vmi, current->mm, 0);
2996
2997 /* Adjust search length to account for worst case alignment overhead */
2998 length = info->length + info->align_mask + info->start_gap;
2999 if (length < info->length)
3000 return -ENOMEM;
3001
3002 low_limit = info->low_limit;
3003 if (low_limit < mmap_min_addr)
3004 low_limit = mmap_min_addr;
3005 high_limit = info->high_limit;
3006 retry:
3007 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
3008 return -ENOMEM;
3009
3010 gap = vma_iter_end(&vmi) - info->length;
3011 gap -= (gap - info->align_offset) & info->align_mask;
3012 gap_end = vma_iter_end(&vmi);
3013 tmp = vma_next(&vmi);
3014 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
3015 if (vm_start_gap(tmp) < gap_end) {
3016 high_limit = vm_start_gap(tmp);
3017 vma_iter_reset(&vmi);
3018 goto retry;
3019 }
3020 } else {
3021 tmp = vma_prev(&vmi);
3022 if (tmp && vm_end_gap(tmp) > gap) {
3023 high_limit = tmp->vm_start;
3024 vma_iter_reset(&vmi);
3025 goto retry;
3026 }
3027 }
3028
3029 return gap;
3030 }
3031
3032 /*
3033 * Verify that the stack growth is acceptable and
3034 * update accounting. This is shared with both the
3035 * grow-up and grow-down cases.
3036 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)3037 static int acct_stack_growth(struct vm_area_struct *vma,
3038 unsigned long size, unsigned long grow)
3039 {
3040 struct mm_struct *mm = vma->vm_mm;
3041 unsigned long new_start;
3042
3043 /* address space limit tests */
3044 if (!may_expand_vm(mm, vma->vm_flags, grow))
3045 return -ENOMEM;
3046
3047 /* Stack limit test */
3048 if (size > rlimit(RLIMIT_STACK))
3049 return -ENOMEM;
3050
3051 /* mlock limit tests */
3052 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
3053 return -ENOMEM;
3054
3055 /* Check to ensure the stack will not grow into a hugetlb-only region */
3056 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
3057 vma->vm_end - size;
3058 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
3059 return -EFAULT;
3060
3061 /*
3062 * Overcommit.. This must be the final test, as it will
3063 * update security statistics.
3064 */
3065 if (security_vm_enough_memory_mm(mm, grow))
3066 return -ENOMEM;
3067
3068 return 0;
3069 }
3070
3071 #if defined(CONFIG_STACK_GROWSUP)
3072 /*
3073 * PA-RISC uses this for its stack.
3074 * vma is the last one with address > vma->vm_end. Have to extend vma.
3075 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)3076 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
3077 {
3078 struct mm_struct *mm = vma->vm_mm;
3079 struct vm_area_struct *next;
3080 unsigned long gap_addr;
3081 int error = 0;
3082 VMA_ITERATOR(vmi, mm, vma->vm_start);
3083
3084 if (!(vma->vm_flags & VM_GROWSUP))
3085 return -EFAULT;
3086
3087 mmap_assert_write_locked(mm);
3088
3089 /* Guard against exceeding limits of the address space. */
3090 address &= PAGE_MASK;
3091 if (address >= (TASK_SIZE & PAGE_MASK))
3092 return -ENOMEM;
3093 address += PAGE_SIZE;
3094
3095 /* Enforce stack_guard_gap */
3096 gap_addr = address + stack_guard_gap;
3097
3098 /* Guard against overflow */
3099 if (gap_addr < address || gap_addr > TASK_SIZE)
3100 gap_addr = TASK_SIZE;
3101
3102 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
3103 if (next && vma_is_accessible(next)) {
3104 if (!(next->vm_flags & VM_GROWSUP))
3105 return -ENOMEM;
3106 /* Check that both stack segments have the same anon_vma? */
3107 }
3108
3109 if (next)
3110 vma_iter_prev_range_limit(&vmi, address);
3111
3112 vma_iter_config(&vmi, vma->vm_start, address);
3113 if (vma_iter_prealloc(&vmi, vma))
3114 return -ENOMEM;
3115
3116 /* We must make sure the anon_vma is allocated. */
3117 if (unlikely(anon_vma_prepare(vma))) {
3118 vma_iter_free(&vmi);
3119 return -ENOMEM;
3120 }
3121
3122 /* Lock the VMA before expanding to prevent concurrent page faults */
3123 vma_start_write(vma);
3124 /* We update the anon VMA tree. */
3125 anon_vma_lock_write(vma->anon_vma);
3126
3127 /* Somebody else might have raced and expanded it already */
3128 if (address > vma->vm_end) {
3129 unsigned long size, grow;
3130
3131 size = address - vma->vm_start;
3132 grow = (address - vma->vm_end) >> PAGE_SHIFT;
3133
3134 error = -ENOMEM;
3135 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
3136 error = acct_stack_growth(vma, size, grow);
3137 if (!error) {
3138 if (vma->vm_flags & VM_LOCKED)
3139 mm->locked_vm += grow;
3140 vm_stat_account(mm, vma->vm_flags, grow);
3141 anon_vma_interval_tree_pre_update_vma(vma);
3142 vma->vm_end = address;
3143 /* Overwrite old entry in mtree. */
3144 vma_iter_store_overwrite(&vmi, vma);
3145 anon_vma_interval_tree_post_update_vma(vma);
3146
3147 perf_event_mmap(vma);
3148 }
3149 }
3150 }
3151 anon_vma_unlock_write(vma->anon_vma);
3152 vma_iter_free(&vmi);
3153 validate_mm(mm);
3154 return error;
3155 }
3156 #endif /* CONFIG_STACK_GROWSUP */
3157
3158 /*
3159 * vma is the first one with address < vma->vm_start. Have to extend vma.
3160 * mmap_lock held for writing.
3161 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)3162 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
3163 {
3164 struct mm_struct *mm = vma->vm_mm;
3165 struct vm_area_struct *prev;
3166 int error = 0;
3167 VMA_ITERATOR(vmi, mm, vma->vm_start);
3168
3169 if (!(vma->vm_flags & VM_GROWSDOWN))
3170 return -EFAULT;
3171
3172 mmap_assert_write_locked(mm);
3173
3174 address &= PAGE_MASK;
3175 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
3176 return -EPERM;
3177
3178 /* Enforce stack_guard_gap */
3179 prev = vma_prev(&vmi);
3180 /* Check that both stack segments have the same anon_vma? */
3181 if (prev) {
3182 if (!(prev->vm_flags & VM_GROWSDOWN) &&
3183 vma_is_accessible(prev) &&
3184 (address - prev->vm_end < stack_guard_gap))
3185 return -ENOMEM;
3186 }
3187
3188 if (prev)
3189 vma_iter_next_range_limit(&vmi, vma->vm_start);
3190
3191 vma_iter_config(&vmi, address, vma->vm_end);
3192 if (vma_iter_prealloc(&vmi, vma))
3193 return -ENOMEM;
3194
3195 /* We must make sure the anon_vma is allocated. */
3196 if (unlikely(anon_vma_prepare(vma))) {
3197 vma_iter_free(&vmi);
3198 return -ENOMEM;
3199 }
3200
3201 /* Lock the VMA before expanding to prevent concurrent page faults */
3202 vma_start_write(vma);
3203 /* We update the anon VMA tree. */
3204 anon_vma_lock_write(vma->anon_vma);
3205
3206 /* Somebody else might have raced and expanded it already */
3207 if (address < vma->vm_start) {
3208 unsigned long size, grow;
3209
3210 size = vma->vm_end - address;
3211 grow = (vma->vm_start - address) >> PAGE_SHIFT;
3212
3213 error = -ENOMEM;
3214 if (grow <= vma->vm_pgoff) {
3215 error = acct_stack_growth(vma, size, grow);
3216 if (!error) {
3217 if (vma->vm_flags & VM_LOCKED)
3218 mm->locked_vm += grow;
3219 vm_stat_account(mm, vma->vm_flags, grow);
3220 anon_vma_interval_tree_pre_update_vma(vma);
3221 vma->vm_start = address;
3222 vma->vm_pgoff -= grow;
3223 /* Overwrite old entry in mtree. */
3224 vma_iter_store_overwrite(&vmi, vma);
3225 anon_vma_interval_tree_post_update_vma(vma);
3226
3227 perf_event_mmap(vma);
3228 }
3229 }
3230 }
3231 anon_vma_unlock_write(vma->anon_vma);
3232 vma_iter_free(&vmi);
3233 validate_mm(mm);
3234 return error;
3235 }
3236
__vm_munmap(unsigned long start,size_t len,bool unlock)3237 int __vm_munmap(unsigned long start, size_t len, bool unlock)
3238 {
3239 int ret;
3240 struct mm_struct *mm = current->mm;
3241 LIST_HEAD(uf);
3242 VMA_ITERATOR(vmi, mm, start);
3243
3244 if (mmap_write_lock_killable(mm))
3245 return -EINTR;
3246
3247 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3248 if (ret || !unlock)
3249 mmap_write_unlock(mm);
3250
3251 userfaultfd_unmap_complete(mm, &uf);
3252 return ret;
3253 }
3254
3255 /* Insert vm structure into process list sorted by address
3256 * and into the inode's i_mmap tree. If vm_file is non-NULL
3257 * then i_mmap_rwsem is taken here.
3258 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3259 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3260 {
3261 unsigned long charged = vma_pages(vma);
3262
3263
3264 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3265 return -ENOMEM;
3266
3267 if ((vma->vm_flags & VM_ACCOUNT) &&
3268 security_vm_enough_memory_mm(mm, charged))
3269 return -ENOMEM;
3270
3271 /*
3272 * The vm_pgoff of a purely anonymous vma should be irrelevant
3273 * until its first write fault, when page's anon_vma and index
3274 * are set. But now set the vm_pgoff it will almost certainly
3275 * end up with (unless mremap moves it elsewhere before that
3276 * first wfault), so /proc/pid/maps tells a consistent story.
3277 *
3278 * By setting it to reflect the virtual start address of the
3279 * vma, merges and splits can happen in a seamless way, just
3280 * using the existing file pgoff checks and manipulations.
3281 * Similarly in do_mmap and in do_brk_flags.
3282 */
3283 if (vma_is_anonymous(vma)) {
3284 BUG_ON(vma->anon_vma);
3285 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3286 }
3287
3288 if (vma_link(mm, vma)) {
3289 if (vma->vm_flags & VM_ACCOUNT)
3290 vm_unacct_memory(charged);
3291 return -ENOMEM;
3292 }
3293
3294 return 0;
3295 }
3296