xref: /linux/mm/vma.c (revision c25f2fb1f469deaed2df8db524d91f3321a0f816)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /*
4  * VMA-specific functions.
5  */
6 
7 #include "vma_internal.h"
8 #include "vma.h"
9 
10 struct mmap_state {
11 	struct mm_struct *mm;
12 	struct vma_iterator *vmi;
13 
14 	unsigned long addr;
15 	unsigned long end;
16 	pgoff_t pgoff;
17 	unsigned long pglen;
18 	vm_flags_t vm_flags;
19 	struct file *file;
20 	pgprot_t page_prot;
21 
22 	/* User-defined fields, perhaps updated by .mmap_prepare(). */
23 	const struct vm_operations_struct *vm_ops;
24 	void *vm_private_data;
25 
26 	unsigned long charged;
27 
28 	struct vm_area_struct *prev;
29 	struct vm_area_struct *next;
30 
31 	/* Unmapping state. */
32 	struct vma_munmap_struct vms;
33 	struct ma_state mas_detach;
34 	struct maple_tree mt_detach;
35 
36 	/* Determine if we can check KSM flags early in mmap() logic. */
37 	bool check_ksm_early :1;
38 	/* If we map new, hold the file rmap lock on mapping. */
39 	bool hold_file_rmap_lock :1;
40 	/* If .mmap_prepare changed the file, we don't need to pin. */
41 	bool file_doesnt_need_get :1;
42 };
43 
44 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, vm_flags_, file_) \
45 	struct mmap_state name = {					\
46 		.mm = mm_,						\
47 		.vmi = vmi_,						\
48 		.addr = addr_,						\
49 		.end = (addr_) + (len_),				\
50 		.pgoff = pgoff_,					\
51 		.pglen = PHYS_PFN(len_),				\
52 		.vm_flags = vm_flags_,					\
53 		.file = file_,						\
54 		.page_prot = vm_get_page_prot(vm_flags_),		\
55 	}
56 
57 #define VMG_MMAP_STATE(name, map_, vma_)				\
58 	struct vma_merge_struct name = {				\
59 		.mm = (map_)->mm,					\
60 		.vmi = (map_)->vmi,					\
61 		.start = (map_)->addr,					\
62 		.end = (map_)->end,					\
63 		.vm_flags = (map_)->vm_flags,				\
64 		.pgoff = (map_)->pgoff,					\
65 		.file = (map_)->file,					\
66 		.prev = (map_)->prev,					\
67 		.middle = vma_,						\
68 		.next = (vma_) ? NULL : (map_)->next,			\
69 		.state = VMA_MERGE_START,				\
70 	}
71 
72 /* Was this VMA ever forked from a parent, i.e. maybe contains CoW mappings? */
vma_is_fork_child(struct vm_area_struct * vma)73 static bool vma_is_fork_child(struct vm_area_struct *vma)
74 {
75 	/*
76 	 * The list_is_singular() test is to avoid merging VMA cloned from
77 	 * parents. This can improve scalability caused by the anon_vma root
78 	 * lock.
79 	 */
80 	return vma && vma->anon_vma && !list_is_singular(&vma->anon_vma_chain);
81 }
82 
is_mergeable_vma(struct vma_merge_struct * vmg,bool merge_next)83 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
84 {
85 	struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
86 
87 	if (!mpol_equal(vmg->policy, vma_policy(vma)))
88 		return false;
89 	if ((vma->vm_flags ^ vmg->vm_flags) & ~VM_IGNORE_MERGE)
90 		return false;
91 	if (vma->vm_file != vmg->file)
92 		return false;
93 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx))
94 		return false;
95 	if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name))
96 		return false;
97 	return true;
98 }
99 
is_mergeable_anon_vma(struct vma_merge_struct * vmg,bool merge_next)100 static bool is_mergeable_anon_vma(struct vma_merge_struct *vmg, bool merge_next)
101 {
102 	struct vm_area_struct *tgt = merge_next ? vmg->next : vmg->prev;
103 	struct vm_area_struct *src = vmg->middle; /* existing merge case. */
104 	struct anon_vma *tgt_anon = tgt->anon_vma;
105 	struct anon_vma *src_anon = vmg->anon_vma;
106 
107 	/*
108 	 * We _can_ have !src, vmg->anon_vma via copy_vma(). In this instance we
109 	 * will remove the existing VMA's anon_vma's so there's no scalability
110 	 * concerns.
111 	 */
112 	VM_WARN_ON(src && src_anon != src->anon_vma);
113 
114 	/* Case 1 - we will dup_anon_vma() from src into tgt. */
115 	if (!tgt_anon && src_anon) {
116 		struct vm_area_struct *copied_from = vmg->copied_from;
117 
118 		if (vma_is_fork_child(src))
119 			return false;
120 		if (vma_is_fork_child(copied_from))
121 			return false;
122 
123 		return true;
124 	}
125 	/* Case 2 - we will simply use tgt's anon_vma. */
126 	if (tgt_anon && !src_anon)
127 		return !vma_is_fork_child(tgt);
128 	/* Case 3 - the anon_vma's are already shared. */
129 	return src_anon == tgt_anon;
130 }
131 
132 /*
133  * init_multi_vma_prep() - Initializer for struct vma_prepare
134  * @vp: The vma_prepare struct
135  * @vma: The vma that will be altered once locked
136  * @vmg: The merge state that will be used to determine adjustment and VMA
137  *       removal.
138  */
init_multi_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma,struct vma_merge_struct * vmg)139 static void init_multi_vma_prep(struct vma_prepare *vp,
140 				struct vm_area_struct *vma,
141 				struct vma_merge_struct *vmg)
142 {
143 	struct vm_area_struct *adjust;
144 	struct vm_area_struct **remove = &vp->remove;
145 
146 	memset(vp, 0, sizeof(struct vma_prepare));
147 	vp->vma = vma;
148 	vp->anon_vma = vma->anon_vma;
149 
150 	if (vmg && vmg->__remove_middle) {
151 		*remove = vmg->middle;
152 		remove = &vp->remove2;
153 	}
154 	if (vmg && vmg->__remove_next)
155 		*remove = vmg->next;
156 
157 	if (vmg && vmg->__adjust_middle_start)
158 		adjust = vmg->middle;
159 	else if (vmg && vmg->__adjust_next_start)
160 		adjust = vmg->next;
161 	else
162 		adjust = NULL;
163 
164 	vp->adj_next = adjust;
165 	if (!vp->anon_vma && adjust)
166 		vp->anon_vma = adjust->anon_vma;
167 
168 	VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma &&
169 		   vp->anon_vma != adjust->anon_vma);
170 
171 	vp->file = vma->vm_file;
172 	if (vp->file)
173 		vp->mapping = vma->vm_file->f_mapping;
174 
175 	if (vmg && vmg->skip_vma_uprobe)
176 		vp->skip_vma_uprobe = true;
177 }
178 
179 /*
180  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
181  * in front of (at a lower virtual address and file offset than) the vma.
182  *
183  * We cannot merge two vmas if they have differently assigned (non-NULL)
184  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
185  *
186  * We don't check here for the merged mmap wrapping around the end of pagecache
187  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
188  * wrap, nor mmaps which cover the final page at index -1UL.
189  *
190  * We assume the vma may be removed as part of the merge.
191  */
can_vma_merge_before(struct vma_merge_struct * vmg)192 static bool can_vma_merge_before(struct vma_merge_struct *vmg)
193 {
194 	pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
195 
196 	if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
197 	    is_mergeable_anon_vma(vmg, /* merge_next = */ true)) {
198 		if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
199 			return true;
200 	}
201 
202 	return false;
203 }
204 
205 /*
206  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
207  * beyond (at a higher virtual address and file offset than) the vma.
208  *
209  * We cannot merge two vmas if they have differently assigned (non-NULL)
210  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
211  *
212  * We assume that vma is not removed as part of the merge.
213  */
can_vma_merge_after(struct vma_merge_struct * vmg)214 static bool can_vma_merge_after(struct vma_merge_struct *vmg)
215 {
216 	if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
217 	    is_mergeable_anon_vma(vmg, /* merge_next = */ false)) {
218 		if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff)
219 			return true;
220 	}
221 	return false;
222 }
223 
__vma_link_file(struct vm_area_struct * vma,struct address_space * mapping)224 static void __vma_link_file(struct vm_area_struct *vma,
225 			    struct address_space *mapping)
226 {
227 	if (vma_is_shared_maywrite(vma))
228 		mapping_allow_writable(mapping);
229 
230 	flush_dcache_mmap_lock(mapping);
231 	vma_interval_tree_insert(vma, &mapping->i_mmap);
232 	flush_dcache_mmap_unlock(mapping);
233 }
234 
235 /*
236  * Requires inode->i_mapping->i_mmap_rwsem
237  */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct address_space * mapping)238 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
239 				      struct address_space *mapping)
240 {
241 	if (vma_is_shared_maywrite(vma))
242 		mapping_unmap_writable(mapping);
243 
244 	flush_dcache_mmap_lock(mapping);
245 	vma_interval_tree_remove(vma, &mapping->i_mmap);
246 	flush_dcache_mmap_unlock(mapping);
247 }
248 
249 /*
250  * vma has some anon_vma assigned, and is already inserted on that
251  * anon_vma's interval trees.
252  *
253  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
254  * vma must be removed from the anon_vma's interval trees using
255  * anon_vma_interval_tree_pre_update_vma().
256  *
257  * After the update, the vma will be reinserted using
258  * anon_vma_interval_tree_post_update_vma().
259  *
260  * The entire update must be protected by exclusive mmap_lock and by
261  * the root anon_vma's mutex.
262  */
263 static void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)264 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
265 {
266 	struct anon_vma_chain *avc;
267 
268 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
269 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
270 }
271 
272 static void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)273 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
274 {
275 	struct anon_vma_chain *avc;
276 
277 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
278 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
279 }
280 
281 /*
282  * vma_prepare() - Helper function for handling locking VMAs prior to altering
283  * @vp: The initialized vma_prepare struct
284  */
vma_prepare(struct vma_prepare * vp)285 static void vma_prepare(struct vma_prepare *vp)
286 {
287 	if (vp->file) {
288 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
289 
290 		if (vp->adj_next)
291 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
292 				      vp->adj_next->vm_end);
293 
294 		i_mmap_lock_write(vp->mapping);
295 		if (vp->insert && vp->insert->vm_file) {
296 			/*
297 			 * Put into interval tree now, so instantiated pages
298 			 * are visible to arm/parisc __flush_dcache_page
299 			 * throughout; but we cannot insert into address
300 			 * space until vma start or end is updated.
301 			 */
302 			__vma_link_file(vp->insert,
303 					vp->insert->vm_file->f_mapping);
304 		}
305 	}
306 
307 	if (vp->anon_vma) {
308 		anon_vma_lock_write(vp->anon_vma);
309 		anon_vma_interval_tree_pre_update_vma(vp->vma);
310 		if (vp->adj_next)
311 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
312 	}
313 
314 	if (vp->file) {
315 		flush_dcache_mmap_lock(vp->mapping);
316 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
317 		if (vp->adj_next)
318 			vma_interval_tree_remove(vp->adj_next,
319 						 &vp->mapping->i_mmap);
320 	}
321 
322 }
323 
324 /*
325  * vma_complete- Helper function for handling the unlocking after altering VMAs,
326  * or for inserting a VMA.
327  *
328  * @vp: The vma_prepare struct
329  * @vmi: The vma iterator
330  * @mm: The mm_struct
331  */
vma_complete(struct vma_prepare * vp,struct vma_iterator * vmi,struct mm_struct * mm)332 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
333 			 struct mm_struct *mm)
334 {
335 	if (vp->file) {
336 		if (vp->adj_next)
337 			vma_interval_tree_insert(vp->adj_next,
338 						 &vp->mapping->i_mmap);
339 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
340 		flush_dcache_mmap_unlock(vp->mapping);
341 	}
342 
343 	if (vp->remove && vp->file) {
344 		__remove_shared_vm_struct(vp->remove, vp->mapping);
345 		if (vp->remove2)
346 			__remove_shared_vm_struct(vp->remove2, vp->mapping);
347 	} else if (vp->insert) {
348 		/*
349 		 * split_vma has split insert from vma, and needs
350 		 * us to insert it before dropping the locks
351 		 * (it may either follow vma or precede it).
352 		 */
353 		vma_iter_store_new(vmi, vp->insert);
354 		mm->map_count++;
355 	}
356 
357 	if (vp->anon_vma) {
358 		anon_vma_interval_tree_post_update_vma(vp->vma);
359 		if (vp->adj_next)
360 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
361 		anon_vma_unlock_write(vp->anon_vma);
362 	}
363 
364 	if (vp->file) {
365 		i_mmap_unlock_write(vp->mapping);
366 
367 		if (!vp->skip_vma_uprobe) {
368 			uprobe_mmap(vp->vma);
369 
370 			if (vp->adj_next)
371 				uprobe_mmap(vp->adj_next);
372 		}
373 	}
374 
375 	if (vp->remove) {
376 again:
377 		vma_mark_detached(vp->remove);
378 		if (vp->file) {
379 			uprobe_munmap(vp->remove, vp->remove->vm_start,
380 				      vp->remove->vm_end);
381 			fput(vp->file);
382 		}
383 		if (vp->remove->anon_vma)
384 			anon_vma_merge(vp->vma, vp->remove);
385 		mm->map_count--;
386 		mpol_put(vma_policy(vp->remove));
387 		if (!vp->remove2)
388 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
389 		vm_area_free(vp->remove);
390 
391 		/*
392 		 * In mprotect's case 6 (see comments on vma_merge),
393 		 * we are removing both mid and next vmas
394 		 */
395 		if (vp->remove2) {
396 			vp->remove = vp->remove2;
397 			vp->remove2 = NULL;
398 			goto again;
399 		}
400 	}
401 	if (vp->insert && vp->file)
402 		uprobe_mmap(vp->insert);
403 }
404 
405 /*
406  * init_vma_prep() - Initializer wrapper for vma_prepare struct
407  * @vp: The vma_prepare struct
408  * @vma: The vma that will be altered once locked
409  */
init_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma)410 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
411 {
412 	init_multi_vma_prep(vp, vma, NULL);
413 }
414 
415 /*
416  * Can the proposed VMA be merged with the left (previous) VMA taking into
417  * account the start position of the proposed range.
418  */
can_vma_merge_left(struct vma_merge_struct * vmg)419 static bool can_vma_merge_left(struct vma_merge_struct *vmg)
420 
421 {
422 	return vmg->prev && vmg->prev->vm_end == vmg->start &&
423 		can_vma_merge_after(vmg);
424 }
425 
426 /*
427  * Can the proposed VMA be merged with the right (next) VMA taking into
428  * account the end position of the proposed range.
429  *
430  * In addition, if we can merge with the left VMA, ensure that left and right
431  * anon_vma's are also compatible.
432  */
can_vma_merge_right(struct vma_merge_struct * vmg,bool can_merge_left)433 static bool can_vma_merge_right(struct vma_merge_struct *vmg,
434 				bool can_merge_left)
435 {
436 	struct vm_area_struct *next = vmg->next;
437 	struct vm_area_struct *prev;
438 
439 	if (!next || vmg->end != next->vm_start || !can_vma_merge_before(vmg))
440 		return false;
441 
442 	if (!can_merge_left)
443 		return true;
444 
445 	/*
446 	 * If we can merge with prev (left) and next (right), indicating that
447 	 * each VMA's anon_vma is compatible with the proposed anon_vma, this
448 	 * does not mean prev and next are compatible with EACH OTHER.
449 	 *
450 	 * We therefore check this in addition to mergeability to either side.
451 	 */
452 	prev = vmg->prev;
453 	return !prev->anon_vma || !next->anon_vma ||
454 		prev->anon_vma == next->anon_vma;
455 }
456 
457 /*
458  * Close a vm structure and free it.
459  */
remove_vma(struct vm_area_struct * vma)460 void remove_vma(struct vm_area_struct *vma)
461 {
462 	might_sleep();
463 	vma_close(vma);
464 	if (vma->vm_file)
465 		fput(vma->vm_file);
466 	mpol_put(vma_policy(vma));
467 	vm_area_free(vma);
468 }
469 
470 /*
471  * Get rid of page table information in the indicated region.
472  *
473  * Called with the mm semaphore held.
474  */
unmap_region(struct ma_state * mas,struct vm_area_struct * vma,struct vm_area_struct * prev,struct vm_area_struct * next)475 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
476 		struct vm_area_struct *prev, struct vm_area_struct *next)
477 {
478 	struct mm_struct *mm = vma->vm_mm;
479 	struct mmu_gather tlb;
480 
481 	tlb_gather_mmu(&tlb, mm);
482 	update_hiwater_rss(mm);
483 	unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end);
484 	mas_set(mas, vma->vm_end);
485 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
486 		      next ? next->vm_start : USER_PGTABLES_CEILING,
487 		      /* mm_wr_locked = */ true);
488 	tlb_finish_mmu(&tlb);
489 }
490 
491 /*
492  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
493  * has already been checked or doesn't make sense to fail.
494  * VMA Iterator will point to the original VMA.
495  */
496 static __must_check int
__split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)497 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
498 	    unsigned long addr, int new_below)
499 {
500 	struct vma_prepare vp;
501 	struct vm_area_struct *new;
502 	int err;
503 
504 	WARN_ON(vma->vm_start >= addr);
505 	WARN_ON(vma->vm_end <= addr);
506 
507 	if (vma->vm_ops && vma->vm_ops->may_split) {
508 		err = vma->vm_ops->may_split(vma, addr);
509 		if (err)
510 			return err;
511 	}
512 
513 	new = vm_area_dup(vma);
514 	if (!new)
515 		return -ENOMEM;
516 
517 	if (new_below) {
518 		new->vm_end = addr;
519 	} else {
520 		new->vm_start = addr;
521 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
522 	}
523 
524 	err = -ENOMEM;
525 	vma_iter_config(vmi, new->vm_start, new->vm_end);
526 	if (vma_iter_prealloc(vmi, new))
527 		goto out_free_vma;
528 
529 	err = vma_dup_policy(vma, new);
530 	if (err)
531 		goto out_free_vmi;
532 
533 	err = anon_vma_clone(new, vma);
534 	if (err)
535 		goto out_free_mpol;
536 
537 	if (new->vm_file)
538 		get_file(new->vm_file);
539 
540 	if (new->vm_ops && new->vm_ops->open)
541 		new->vm_ops->open(new);
542 
543 	vma_start_write(vma);
544 	vma_start_write(new);
545 
546 	init_vma_prep(&vp, vma);
547 	vp.insert = new;
548 	vma_prepare(&vp);
549 
550 	/*
551 	 * Get rid of huge pages and shared page tables straddling the split
552 	 * boundary.
553 	 */
554 	vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL);
555 	if (is_vm_hugetlb_page(vma))
556 		hugetlb_split(vma, addr);
557 
558 	if (new_below) {
559 		vma->vm_start = addr;
560 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
561 	} else {
562 		vma->vm_end = addr;
563 	}
564 
565 	/* vma_complete stores the new vma */
566 	vma_complete(&vp, vmi, vma->vm_mm);
567 	validate_mm(vma->vm_mm);
568 
569 	/* Success. */
570 	if (new_below)
571 		vma_next(vmi);
572 	else
573 		vma_prev(vmi);
574 
575 	return 0;
576 
577 out_free_mpol:
578 	mpol_put(vma_policy(new));
579 out_free_vmi:
580 	vma_iter_free(vmi);
581 out_free_vma:
582 	vm_area_free(new);
583 	return err;
584 }
585 
586 /*
587  * Split a vma into two pieces at address 'addr', a new vma is allocated
588  * either for the first part or the tail.
589  */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)590 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
591 		     unsigned long addr, int new_below)
592 {
593 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
594 		return -ENOMEM;
595 
596 	return __split_vma(vmi, vma, addr, new_below);
597 }
598 
599 /*
600  * dup_anon_vma() - Helper function to duplicate anon_vma on VMA merge in the
601  * instance that the destination VMA has no anon_vma but the source does.
602  *
603  * @dst: The destination VMA
604  * @src: The source VMA
605  * @dup: Pointer to the destination VMA when successful.
606  *
607  * Returns: 0 on success.
608  */
dup_anon_vma(struct vm_area_struct * dst,struct vm_area_struct * src,struct vm_area_struct ** dup)609 static int dup_anon_vma(struct vm_area_struct *dst,
610 			struct vm_area_struct *src, struct vm_area_struct **dup)
611 {
612 	/*
613 	 * There are three cases to consider for correctly propagating
614 	 * anon_vma's on merge.
615 	 *
616 	 * The first is trivial - neither VMA has anon_vma, we need not do
617 	 * anything.
618 	 *
619 	 * The second where both have anon_vma is also a no-op, as they must
620 	 * then be the same, so there is simply nothing to copy.
621 	 *
622 	 * Here we cover the third - if the destination VMA has no anon_vma,
623 	 * that is it is unfaulted, we need to ensure that the newly merged
624 	 * range is referenced by the anon_vma's of the source.
625 	 */
626 	if (src->anon_vma && !dst->anon_vma) {
627 		int ret;
628 
629 		vma_assert_write_locked(dst);
630 		dst->anon_vma = src->anon_vma;
631 		ret = anon_vma_clone(dst, src);
632 		if (ret)
633 			return ret;
634 
635 		*dup = dst;
636 	}
637 
638 	return 0;
639 }
640 
641 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
validate_mm(struct mm_struct * mm)642 void validate_mm(struct mm_struct *mm)
643 {
644 	int bug = 0;
645 	int i = 0;
646 	struct vm_area_struct *vma;
647 	VMA_ITERATOR(vmi, mm, 0);
648 
649 	mt_validate(&mm->mm_mt);
650 	for_each_vma(vmi, vma) {
651 #ifdef CONFIG_DEBUG_VM_RB
652 		struct anon_vma *anon_vma = vma->anon_vma;
653 		struct anon_vma_chain *avc;
654 #endif
655 		unsigned long vmi_start, vmi_end;
656 		bool warn = 0;
657 
658 		vmi_start = vma_iter_addr(&vmi);
659 		vmi_end = vma_iter_end(&vmi);
660 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
661 			warn = 1;
662 
663 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
664 			warn = 1;
665 
666 		if (warn) {
667 			pr_emerg("issue in %s\n", current->comm);
668 			dump_stack();
669 			dump_vma(vma);
670 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
671 				 vmi_start, vmi_end - 1);
672 			vma_iter_dump_tree(&vmi);
673 		}
674 
675 #ifdef CONFIG_DEBUG_VM_RB
676 		if (anon_vma) {
677 			anon_vma_lock_read(anon_vma);
678 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
679 				anon_vma_interval_tree_verify(avc);
680 			anon_vma_unlock_read(anon_vma);
681 		}
682 #endif
683 		/* Check for a infinite loop */
684 		if (++i > mm->map_count + 10) {
685 			i = -1;
686 			break;
687 		}
688 	}
689 	if (i != mm->map_count) {
690 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
691 		bug = 1;
692 	}
693 	VM_BUG_ON_MM(bug, mm);
694 }
695 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
696 
697 /*
698  * Based on the vmg flag indicating whether we need to adjust the vm_start field
699  * for the middle or next VMA, we calculate what the range of the newly adjusted
700  * VMA ought to be, and set the VMA's range accordingly.
701  */
vmg_adjust_set_range(struct vma_merge_struct * vmg)702 static void vmg_adjust_set_range(struct vma_merge_struct *vmg)
703 {
704 	struct vm_area_struct *adjust;
705 	pgoff_t pgoff;
706 
707 	if (vmg->__adjust_middle_start) {
708 		adjust = vmg->middle;
709 		pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start);
710 	} else if (vmg->__adjust_next_start) {
711 		adjust = vmg->next;
712 		pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end);
713 	} else {
714 		return;
715 	}
716 
717 	vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff);
718 }
719 
720 /*
721  * Actually perform the VMA merge operation.
722  *
723  * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not
724  * modify any VMAs or cause inconsistent state should an OOM condition arise.
725  *
726  * Returns 0 on success, or an error value on failure.
727  */
commit_merge(struct vma_merge_struct * vmg)728 static int commit_merge(struct vma_merge_struct *vmg)
729 {
730 	struct vm_area_struct *vma;
731 	struct vma_prepare vp;
732 
733 	if (vmg->__adjust_next_start) {
734 		/* We manipulate middle and adjust next, which is the target. */
735 		vma = vmg->middle;
736 		vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end);
737 	} else {
738 		vma = vmg->target;
739 		 /* Note: vma iterator must be pointing to 'start'. */
740 		vma_iter_config(vmg->vmi, vmg->start, vmg->end);
741 	}
742 
743 	init_multi_vma_prep(&vp, vma, vmg);
744 
745 	/*
746 	 * If vmg->give_up_on_oom is set, we're safe, because we don't actually
747 	 * manipulate any VMAs until we succeed at preallocation.
748 	 *
749 	 * Past this point, we will not return an error.
750 	 */
751 	if (vma_iter_prealloc(vmg->vmi, vma))
752 		return -ENOMEM;
753 
754 	vma_prepare(&vp);
755 	/*
756 	 * THP pages may need to do additional splits if we increase
757 	 * middle->vm_start.
758 	 */
759 	vma_adjust_trans_huge(vma, vmg->start, vmg->end,
760 			      vmg->__adjust_middle_start ? vmg->middle : NULL);
761 	vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff);
762 	vmg_adjust_set_range(vmg);
763 	vma_iter_store_overwrite(vmg->vmi, vmg->target);
764 
765 	vma_complete(&vp, vmg->vmi, vma->vm_mm);
766 
767 	return 0;
768 }
769 
770 /* We can only remove VMAs when merging if they do not have a close hook. */
can_merge_remove_vma(struct vm_area_struct * vma)771 static bool can_merge_remove_vma(struct vm_area_struct *vma)
772 {
773 	return !vma->vm_ops || !vma->vm_ops->close;
774 }
775 
776 /*
777  * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
778  * attributes modified.
779  *
780  * @vmg: Describes the modifications being made to a VMA and associated
781  *       metadata.
782  *
783  * When the attributes of a range within a VMA change, then it might be possible
784  * for immediately adjacent VMAs to be merged into that VMA due to having
785  * identical properties.
786  *
787  * This function checks for the existence of any such mergeable VMAs and updates
788  * the maple tree describing the @vmg->middle->vm_mm address space to account
789  * for this, as well as any VMAs shrunk/expanded/deleted as a result of this
790  * merge.
791  *
792  * As part of this operation, if a merge occurs, the @vmg object will have its
793  * vma, start, end, and pgoff fields modified to execute the merge. Subsequent
794  * calls to this function should reset these fields.
795  *
796  * Returns: The merged VMA if merge succeeds, or NULL otherwise.
797  *
798  * ASSUMPTIONS:
799  * - The caller must assign the VMA to be modified to @vmg->middle.
800  * - The caller must have set @vmg->prev to the previous VMA, if there is one.
801  * - The caller must not set @vmg->next, as we determine this.
802  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
803  * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end).
804  */
vma_merge_existing_range(struct vma_merge_struct * vmg)805 static __must_check struct vm_area_struct *vma_merge_existing_range(
806 		struct vma_merge_struct *vmg)
807 {
808 	vm_flags_t sticky_flags = vmg->vm_flags & VM_STICKY;
809 	struct vm_area_struct *middle = vmg->middle;
810 	struct vm_area_struct *prev = vmg->prev;
811 	struct vm_area_struct *next;
812 	struct vm_area_struct *anon_dup = NULL;
813 	unsigned long start = vmg->start;
814 	unsigned long end = vmg->end;
815 	bool left_side = middle && start == middle->vm_start;
816 	bool right_side = middle && end == middle->vm_end;
817 	int err = 0;
818 	bool merge_left, merge_right, merge_both;
819 
820 	mmap_assert_write_locked(vmg->mm);
821 	VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */
822 	VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */
823 	VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg);
824 	VM_WARN_ON_VMG(start >= end, vmg);
825 
826 	/*
827 	 * If middle == prev, then we are offset into a VMA. Otherwise, if we are
828 	 * not, we must span a portion of the VMA.
829 	 */
830 	VM_WARN_ON_VMG(middle &&
831 		       ((middle != prev && vmg->start != middle->vm_start) ||
832 			vmg->end > middle->vm_end), vmg);
833 	/* The vmi must be positioned within vmg->middle. */
834 	VM_WARN_ON_VMG(middle &&
835 		       !(vma_iter_addr(vmg->vmi) >= middle->vm_start &&
836 			 vma_iter_addr(vmg->vmi) < middle->vm_end), vmg);
837 	/* An existing merge can never be used by the mremap() logic. */
838 	VM_WARN_ON_VMG(vmg->copied_from, vmg);
839 
840 	vmg->state = VMA_MERGE_NOMERGE;
841 
842 	/*
843 	 * If a special mapping or if the range being modified is neither at the
844 	 * furthermost left or right side of the VMA, then we have no chance of
845 	 * merging and should abort.
846 	 */
847 	if (vmg->vm_flags & VM_SPECIAL || (!left_side && !right_side))
848 		return NULL;
849 
850 	if (left_side)
851 		merge_left = can_vma_merge_left(vmg);
852 	else
853 		merge_left = false;
854 
855 	if (right_side) {
856 		next = vmg->next = vma_iter_next_range(vmg->vmi);
857 		vma_iter_prev_range(vmg->vmi);
858 
859 		merge_right = can_vma_merge_right(vmg, merge_left);
860 	} else {
861 		merge_right = false;
862 		next = NULL;
863 	}
864 
865 	if (merge_left)		/* If merging prev, position iterator there. */
866 		vma_prev(vmg->vmi);
867 	else if (!merge_right)	/* If we have nothing to merge, abort. */
868 		return NULL;
869 
870 	merge_both = merge_left && merge_right;
871 	/* If we span the entire VMA, a merge implies it will be deleted. */
872 	vmg->__remove_middle = left_side && right_side;
873 
874 	/*
875 	 * If we need to remove middle in its entirety but are unable to do so,
876 	 * we have no sensible recourse but to abort the merge.
877 	 */
878 	if (vmg->__remove_middle && !can_merge_remove_vma(middle))
879 		return NULL;
880 
881 	/*
882 	 * If we merge both VMAs, then next is also deleted. This implies
883 	 * merge_will_delete_vma also.
884 	 */
885 	vmg->__remove_next = merge_both;
886 
887 	/*
888 	 * If we cannot delete next, then we can reduce the operation to merging
889 	 * prev and middle (thereby deleting middle).
890 	 */
891 	if (vmg->__remove_next && !can_merge_remove_vma(next)) {
892 		vmg->__remove_next = false;
893 		merge_right = false;
894 		merge_both = false;
895 	}
896 
897 	/* No matter what happens, we will be adjusting middle. */
898 	vma_start_write(middle);
899 
900 	if (merge_right) {
901 		vma_start_write(next);
902 		vmg->target = next;
903 		sticky_flags |= (next->vm_flags & VM_STICKY);
904 	}
905 
906 	if (merge_left) {
907 		vma_start_write(prev);
908 		vmg->target = prev;
909 		sticky_flags |= (prev->vm_flags & VM_STICKY);
910 	}
911 
912 	if (merge_both) {
913 		/*
914 		 * |<-------------------->|
915 		 * |-------********-------|
916 		 *   prev   middle   next
917 		 *  extend  delete  delete
918 		 */
919 
920 		vmg->start = prev->vm_start;
921 		vmg->end = next->vm_end;
922 		vmg->pgoff = prev->vm_pgoff;
923 
924 		/*
925 		 * We already ensured anon_vma compatibility above, so now it's
926 		 * simply a case of, if prev has no anon_vma object, which of
927 		 * next or middle contains the anon_vma we must duplicate.
928 		 */
929 		err = dup_anon_vma(prev, next->anon_vma ? next : middle,
930 				   &anon_dup);
931 	} else if (merge_left) {
932 		/*
933 		 * |<------------>|      OR
934 		 * |<----------------->|
935 		 * |-------*************
936 		 *   prev     middle
937 		 *  extend shrink/delete
938 		 */
939 
940 		vmg->start = prev->vm_start;
941 		vmg->pgoff = prev->vm_pgoff;
942 
943 		if (!vmg->__remove_middle)
944 			vmg->__adjust_middle_start = true;
945 
946 		err = dup_anon_vma(prev, middle, &anon_dup);
947 	} else { /* merge_right */
948 		/*
949 		 *     |<------------->| OR
950 		 * |<----------------->|
951 		 * *************-------|
952 		 *    middle     next
953 		 * shrink/delete extend
954 		 */
955 
956 		pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
957 
958 		VM_WARN_ON_VMG(!merge_right, vmg);
959 		/* If we are offset into a VMA, then prev must be middle. */
960 		VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg);
961 
962 		if (vmg->__remove_middle) {
963 			vmg->end = next->vm_end;
964 			vmg->pgoff = next->vm_pgoff - pglen;
965 		} else {
966 			/* We shrink middle and expand next. */
967 			vmg->__adjust_next_start = true;
968 			vmg->start = middle->vm_start;
969 			vmg->end = start;
970 			vmg->pgoff = middle->vm_pgoff;
971 		}
972 
973 		err = dup_anon_vma(next, middle, &anon_dup);
974 	}
975 
976 	if (err || commit_merge(vmg))
977 		goto abort;
978 
979 	vm_flags_set(vmg->target, sticky_flags);
980 	khugepaged_enter_vma(vmg->target, vmg->vm_flags);
981 	vmg->state = VMA_MERGE_SUCCESS;
982 	return vmg->target;
983 
984 abort:
985 	vma_iter_set(vmg->vmi, start);
986 	vma_iter_load(vmg->vmi);
987 
988 	if (anon_dup)
989 		unlink_anon_vmas(anon_dup);
990 
991 	/*
992 	 * This means we have failed to clone anon_vma's correctly, but no
993 	 * actual changes to VMAs have occurred, so no harm no foul - if the
994 	 * user doesn't want this reported and instead just wants to give up on
995 	 * the merge, allow it.
996 	 */
997 	if (!vmg->give_up_on_oom)
998 		vmg->state = VMA_MERGE_ERROR_NOMEM;
999 	return NULL;
1000 }
1001 
1002 /*
1003  * vma_merge_new_range - Attempt to merge a new VMA into address space
1004  *
1005  * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
1006  *       (exclusive), which we try to merge with any adjacent VMAs if possible.
1007  *
1008  * We are about to add a VMA to the address space starting at @vmg->start and
1009  * ending at @vmg->end. There are three different possible scenarios:
1010  *
1011  * 1. There is a VMA with identical properties immediately adjacent to the
1012  *    proposed new VMA [@vmg->start, @vmg->end) either before or after it -
1013  *    EXPAND that VMA:
1014  *
1015  * Proposed:       |-----|  or  |-----|
1016  * Existing:  |----|                  |----|
1017  *
1018  * 2. There are VMAs with identical properties immediately adjacent to the
1019  *    proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
1020  *    EXPAND the former and REMOVE the latter:
1021  *
1022  * Proposed:       |-----|
1023  * Existing:  |----|     |----|
1024  *
1025  * 3. There are no VMAs immediately adjacent to the proposed new VMA or those
1026  *    VMAs do not have identical attributes - NO MERGE POSSIBLE.
1027  *
1028  * In instances where we can merge, this function returns the expanded VMA which
1029  * will have its range adjusted accordingly and the underlying maple tree also
1030  * adjusted.
1031  *
1032  * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
1033  *          to the VMA we expanded.
1034  *
1035  * This function adjusts @vmg to provide @vmg->next if not already specified,
1036  * and adjusts [@vmg->start, @vmg->end) to span the expanded range.
1037  *
1038  * ASSUMPTIONS:
1039  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
1040  * - The caller must have determined that [@vmg->start, @vmg->end) is empty,
1041      other than VMAs that will be unmapped should the operation succeed.
1042  * - The caller must have specified the previous vma in @vmg->prev.
1043  * - The caller must have specified the next vma in @vmg->next.
1044  * - The caller must have positioned the vmi at or before the gap.
1045  */
vma_merge_new_range(struct vma_merge_struct * vmg)1046 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
1047 {
1048 	struct vm_area_struct *prev = vmg->prev;
1049 	struct vm_area_struct *next = vmg->next;
1050 	unsigned long end = vmg->end;
1051 	bool can_merge_left, can_merge_right;
1052 
1053 	mmap_assert_write_locked(vmg->mm);
1054 	VM_WARN_ON_VMG(vmg->middle, vmg);
1055 	VM_WARN_ON_VMG(vmg->target, vmg);
1056 	/* vmi must point at or before the gap. */
1057 	VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg);
1058 
1059 	vmg->state = VMA_MERGE_NOMERGE;
1060 
1061 	/* Special VMAs are unmergeable, also if no prev/next. */
1062 	if ((vmg->vm_flags & VM_SPECIAL) || (!prev && !next))
1063 		return NULL;
1064 
1065 	can_merge_left = can_vma_merge_left(vmg);
1066 	can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left);
1067 
1068 	/* If we can merge with the next VMA, adjust vmg accordingly. */
1069 	if (can_merge_right) {
1070 		vmg->end = next->vm_end;
1071 		vmg->target = next;
1072 	}
1073 
1074 	/* If we can merge with the previous VMA, adjust vmg accordingly. */
1075 	if (can_merge_left) {
1076 		vmg->start = prev->vm_start;
1077 		vmg->target = prev;
1078 		vmg->pgoff = prev->vm_pgoff;
1079 
1080 		/*
1081 		 * If this merge would result in removal of the next VMA but we
1082 		 * are not permitted to do so, reduce the operation to merging
1083 		 * prev and vma.
1084 		 */
1085 		if (can_merge_right && !can_merge_remove_vma(next))
1086 			vmg->end = end;
1087 
1088 		/* In expand-only case we are already positioned at prev. */
1089 		if (!vmg->just_expand) {
1090 			/* Equivalent to going to the previous range. */
1091 			vma_prev(vmg->vmi);
1092 		}
1093 	}
1094 
1095 	/*
1096 	 * Now try to expand adjacent VMA(s). This takes care of removing the
1097 	 * following VMA if we have VMAs on both sides.
1098 	 */
1099 	if (vmg->target && !vma_expand(vmg)) {
1100 		khugepaged_enter_vma(vmg->target, vmg->vm_flags);
1101 		vmg->state = VMA_MERGE_SUCCESS;
1102 		return vmg->target;
1103 	}
1104 
1105 	return NULL;
1106 }
1107 
1108 /*
1109  * vma_merge_copied_range - Attempt to merge a VMA that is being copied by
1110  * mremap()
1111  *
1112  * @vmg: Describes the VMA we are adding, in the copied-to range @vmg->start to
1113  *       @vmg->end (exclusive), which we try to merge with any adjacent VMAs if
1114  *       possible.
1115  *
1116  * vmg->prev, next, start, end, pgoff should all be relative to the COPIED TO
1117  * range, i.e. the target range for the VMA.
1118  *
1119  * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
1120  *          to the VMA we expanded.
1121  *
1122  * ASSUMPTIONS: Same as vma_merge_new_range(), except vmg->middle must contain
1123  *              the copied-from VMA.
1124  */
vma_merge_copied_range(struct vma_merge_struct * vmg)1125 static struct vm_area_struct *vma_merge_copied_range(struct vma_merge_struct *vmg)
1126 {
1127 	/* We must have a copied-from VMA. */
1128 	VM_WARN_ON_VMG(!vmg->middle, vmg);
1129 
1130 	vmg->copied_from = vmg->middle;
1131 	vmg->middle = NULL;
1132 	return vma_merge_new_range(vmg);
1133 }
1134 
1135 /*
1136  * vma_expand - Expand an existing VMA
1137  *
1138  * @vmg: Describes a VMA expansion operation.
1139  *
1140  * Expand @vma to vmg->start and vmg->end.  Can expand off the start and end.
1141  * Will expand over vmg->next if it's different from vmg->target and vmg->end ==
1142  * vmg->next->vm_end.  Checking if the vmg->target can expand and merge with
1143  * vmg->next needs to be handled by the caller.
1144  *
1145  * Returns: 0 on success.
1146  *
1147  * ASSUMPTIONS:
1148  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
1149  * - The caller must have set @vmg->target and @vmg->next.
1150  */
vma_expand(struct vma_merge_struct * vmg)1151 int vma_expand(struct vma_merge_struct *vmg)
1152 {
1153 	struct vm_area_struct *anon_dup = NULL;
1154 	struct vm_area_struct *target = vmg->target;
1155 	struct vm_area_struct *next = vmg->next;
1156 	bool remove_next = false;
1157 	vm_flags_t sticky_flags;
1158 	int ret = 0;
1159 
1160 	mmap_assert_write_locked(vmg->mm);
1161 	vma_start_write(target);
1162 
1163 	if (next && target != next && vmg->end == next->vm_end)
1164 		remove_next = true;
1165 
1166 	/* We must have a target. */
1167 	VM_WARN_ON_VMG(!target, vmg);
1168 	/* This should have already been checked by this point. */
1169 	VM_WARN_ON_VMG(remove_next && !can_merge_remove_vma(next), vmg);
1170 	/* Not merging but overwriting any part of next is not handled. */
1171 	VM_WARN_ON_VMG(next && !remove_next &&
1172 		       next != target && vmg->end > next->vm_start, vmg);
1173 	/* Only handles expanding. */
1174 	VM_WARN_ON_VMG(target->vm_start < vmg->start ||
1175 		       target->vm_end > vmg->end, vmg);
1176 
1177 	sticky_flags = vmg->vm_flags & VM_STICKY;
1178 	sticky_flags |= target->vm_flags & VM_STICKY;
1179 	if (remove_next)
1180 		sticky_flags |= next->vm_flags & VM_STICKY;
1181 
1182 	/*
1183 	 * If we are removing the next VMA or copying from a VMA
1184 	 * (e.g. mremap()'ing), we must propagate anon_vma state.
1185 	 *
1186 	 * Note that, by convention, callers ignore OOM for this case, so
1187 	 * we don't need to account for vmg->give_up_on_mm here.
1188 	 */
1189 	if (remove_next)
1190 		ret = dup_anon_vma(target, next, &anon_dup);
1191 	if (!ret && vmg->copied_from)
1192 		ret = dup_anon_vma(target, vmg->copied_from, &anon_dup);
1193 	if (ret)
1194 		return ret;
1195 
1196 	if (remove_next) {
1197 		vma_start_write(next);
1198 		vmg->__remove_next = true;
1199 	}
1200 	if (commit_merge(vmg))
1201 		goto nomem;
1202 
1203 	vm_flags_set(target, sticky_flags);
1204 	return 0;
1205 
1206 nomem:
1207 	if (anon_dup)
1208 		unlink_anon_vmas(anon_dup);
1209 	/*
1210 	 * If the user requests that we just give upon OOM, we are safe to do so
1211 	 * here, as commit merge provides this contract to us. Nothing has been
1212 	 * changed - no harm no foul, just don't report it.
1213 	 */
1214 	if (!vmg->give_up_on_oom)
1215 		vmg->state = VMA_MERGE_ERROR_NOMEM;
1216 	return -ENOMEM;
1217 }
1218 
1219 /*
1220  * vma_shrink() - Reduce an existing VMAs memory area
1221  * @vmi: The vma iterator
1222  * @vma: The VMA to modify
1223  * @start: The new start
1224  * @end: The new end
1225  *
1226  * Returns: 0 on success, -ENOMEM otherwise
1227  */
vma_shrink(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff)1228 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
1229 	       unsigned long start, unsigned long end, pgoff_t pgoff)
1230 {
1231 	struct vma_prepare vp;
1232 
1233 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
1234 
1235 	if (vma->vm_start < start)
1236 		vma_iter_config(vmi, vma->vm_start, start);
1237 	else
1238 		vma_iter_config(vmi, end, vma->vm_end);
1239 
1240 	if (vma_iter_prealloc(vmi, NULL))
1241 		return -ENOMEM;
1242 
1243 	vma_start_write(vma);
1244 
1245 	init_vma_prep(&vp, vma);
1246 	vma_prepare(&vp);
1247 	vma_adjust_trans_huge(vma, start, end, NULL);
1248 
1249 	vma_iter_clear(vmi);
1250 	vma_set_range(vma, start, end, pgoff);
1251 	vma_complete(&vp, vmi, vma->vm_mm);
1252 	validate_mm(vma->vm_mm);
1253 	return 0;
1254 }
1255 
vms_clear_ptes(struct vma_munmap_struct * vms,struct ma_state * mas_detach,bool mm_wr_locked)1256 static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
1257 		    struct ma_state *mas_detach, bool mm_wr_locked)
1258 {
1259 	struct mmu_gather tlb;
1260 
1261 	if (!vms->clear_ptes) /* Nothing to do */
1262 		return;
1263 
1264 	/*
1265 	 * We can free page tables without write-locking mmap_lock because VMAs
1266 	 * were isolated before we downgraded mmap_lock.
1267 	 */
1268 	mas_set(mas_detach, 1);
1269 	tlb_gather_mmu(&tlb, vms->vma->vm_mm);
1270 	update_hiwater_rss(vms->vma->vm_mm);
1271 	unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
1272 		   vms->vma_count);
1273 
1274 	mas_set(mas_detach, 1);
1275 	/* start and end may be different if there is no prev or next vma. */
1276 	free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
1277 		      vms->unmap_end, mm_wr_locked);
1278 	tlb_finish_mmu(&tlb);
1279 	vms->clear_ptes = false;
1280 }
1281 
vms_clean_up_area(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1282 static void vms_clean_up_area(struct vma_munmap_struct *vms,
1283 		struct ma_state *mas_detach)
1284 {
1285 	struct vm_area_struct *vma;
1286 
1287 	if (!vms->nr_pages)
1288 		return;
1289 
1290 	vms_clear_ptes(vms, mas_detach, true);
1291 	mas_set(mas_detach, 0);
1292 	mas_for_each(mas_detach, vma, ULONG_MAX)
1293 		vma_close(vma);
1294 }
1295 
1296 /*
1297  * vms_complete_munmap_vmas() - Finish the munmap() operation
1298  * @vms: The vma munmap struct
1299  * @mas_detach: The maple state of the detached vmas
1300  *
1301  * This updates the mm_struct, unmaps the region, frees the resources
1302  * used for the munmap() and may downgrade the lock - if requested.  Everything
1303  * needed to be done once the vma maple tree is updated.
1304  */
vms_complete_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1305 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
1306 		struct ma_state *mas_detach)
1307 {
1308 	struct vm_area_struct *vma;
1309 	struct mm_struct *mm;
1310 
1311 	mm = current->mm;
1312 	mm->map_count -= vms->vma_count;
1313 	mm->locked_vm -= vms->locked_vm;
1314 	if (vms->unlock)
1315 		mmap_write_downgrade(mm);
1316 
1317 	if (!vms->nr_pages)
1318 		return;
1319 
1320 	vms_clear_ptes(vms, mas_detach, !vms->unlock);
1321 	/* Update high watermark before we lower total_vm */
1322 	update_hiwater_vm(mm);
1323 	/* Stat accounting */
1324 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
1325 	/* Paranoid bookkeeping */
1326 	VM_WARN_ON(vms->exec_vm > mm->exec_vm);
1327 	VM_WARN_ON(vms->stack_vm > mm->stack_vm);
1328 	VM_WARN_ON(vms->data_vm > mm->data_vm);
1329 	mm->exec_vm -= vms->exec_vm;
1330 	mm->stack_vm -= vms->stack_vm;
1331 	mm->data_vm -= vms->data_vm;
1332 
1333 	/* Remove and clean up vmas */
1334 	mas_set(mas_detach, 0);
1335 	mas_for_each(mas_detach, vma, ULONG_MAX)
1336 		remove_vma(vma);
1337 
1338 	vm_unacct_memory(vms->nr_accounted);
1339 	validate_mm(mm);
1340 	if (vms->unlock)
1341 		mmap_read_unlock(mm);
1342 
1343 	__mt_destroy(mas_detach->tree);
1344 }
1345 
1346 /*
1347  * reattach_vmas() - Undo any munmap work and free resources
1348  * @mas_detach: The maple state with the detached maple tree
1349  *
1350  * Reattach any detached vmas and free up the maple tree used to track the vmas.
1351  */
reattach_vmas(struct ma_state * mas_detach)1352 static void reattach_vmas(struct ma_state *mas_detach)
1353 {
1354 	struct vm_area_struct *vma;
1355 
1356 	mas_set(mas_detach, 0);
1357 	mas_for_each(mas_detach, vma, ULONG_MAX)
1358 		vma_mark_attached(vma);
1359 
1360 	__mt_destroy(mas_detach->tree);
1361 }
1362 
1363 /*
1364  * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
1365  * for removal at a later date.  Handles splitting first and last if necessary
1366  * and marking the vmas as isolated.
1367  *
1368  * @vms: The vma munmap struct
1369  * @mas_detach: The maple state tracking the detached tree
1370  *
1371  * Return: 0 on success, error otherwise
1372  */
vms_gather_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1373 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
1374 		struct ma_state *mas_detach)
1375 {
1376 	struct vm_area_struct *next = NULL;
1377 	int error;
1378 
1379 	/*
1380 	 * If we need to split any vma, do it now to save pain later.
1381 	 * Does it split the first one?
1382 	 */
1383 	if (vms->start > vms->vma->vm_start) {
1384 
1385 		/*
1386 		 * Make sure that map_count on return from munmap() will
1387 		 * not exceed its limit; but let map_count go just above
1388 		 * its limit temporarily, to help free resources as expected.
1389 		 */
1390 		if (vms->end < vms->vma->vm_end &&
1391 		    vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
1392 			error = -ENOMEM;
1393 			goto map_count_exceeded;
1394 		}
1395 
1396 		/* Don't bother splitting the VMA if we can't unmap it anyway */
1397 		if (vma_is_sealed(vms->vma)) {
1398 			error = -EPERM;
1399 			goto start_split_failed;
1400 		}
1401 
1402 		error = __split_vma(vms->vmi, vms->vma, vms->start, 1);
1403 		if (error)
1404 			goto start_split_failed;
1405 	}
1406 	vms->prev = vma_prev(vms->vmi);
1407 	if (vms->prev)
1408 		vms->unmap_start = vms->prev->vm_end;
1409 
1410 	/*
1411 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
1412 	 * it is always overwritten.
1413 	 */
1414 	for_each_vma_range(*(vms->vmi), next, vms->end) {
1415 		long nrpages;
1416 
1417 		if (vma_is_sealed(next)) {
1418 			error = -EPERM;
1419 			goto modify_vma_failed;
1420 		}
1421 		/* Does it split the end? */
1422 		if (next->vm_end > vms->end) {
1423 			error = __split_vma(vms->vmi, next, vms->end, 0);
1424 			if (error)
1425 				goto end_split_failed;
1426 		}
1427 		vma_start_write(next);
1428 		mas_set(mas_detach, vms->vma_count++);
1429 		error = mas_store_gfp(mas_detach, next, GFP_KERNEL);
1430 		if (error)
1431 			goto munmap_gather_failed;
1432 
1433 		vma_mark_detached(next);
1434 		nrpages = vma_pages(next);
1435 
1436 		vms->nr_pages += nrpages;
1437 		if (next->vm_flags & VM_LOCKED)
1438 			vms->locked_vm += nrpages;
1439 
1440 		if (next->vm_flags & VM_ACCOUNT)
1441 			vms->nr_accounted += nrpages;
1442 
1443 		if (is_exec_mapping(next->vm_flags))
1444 			vms->exec_vm += nrpages;
1445 		else if (is_stack_mapping(next->vm_flags))
1446 			vms->stack_vm += nrpages;
1447 		else if (is_data_mapping(next->vm_flags))
1448 			vms->data_vm += nrpages;
1449 
1450 		if (vms->uf) {
1451 			/*
1452 			 * If userfaultfd_unmap_prep returns an error the vmas
1453 			 * will remain split, but userland will get a
1454 			 * highly unexpected error anyway. This is no
1455 			 * different than the case where the first of the two
1456 			 * __split_vma fails, but we don't undo the first
1457 			 * split, despite we could. This is unlikely enough
1458 			 * failure that it's not worth optimizing it for.
1459 			 */
1460 			error = userfaultfd_unmap_prep(next, vms->start,
1461 						       vms->end, vms->uf);
1462 			if (error)
1463 				goto userfaultfd_error;
1464 		}
1465 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
1466 		BUG_ON(next->vm_start < vms->start);
1467 		BUG_ON(next->vm_start > vms->end);
1468 #endif
1469 	}
1470 
1471 	vms->next = vma_next(vms->vmi);
1472 	if (vms->next)
1473 		vms->unmap_end = vms->next->vm_start;
1474 
1475 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1476 	/* Make sure no VMAs are about to be lost. */
1477 	{
1478 		MA_STATE(test, mas_detach->tree, 0, 0);
1479 		struct vm_area_struct *vma_mas, *vma_test;
1480 		int test_count = 0;
1481 
1482 		vma_iter_set(vms->vmi, vms->start);
1483 		rcu_read_lock();
1484 		vma_test = mas_find(&test, vms->vma_count - 1);
1485 		for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
1486 			BUG_ON(vma_mas != vma_test);
1487 			test_count++;
1488 			vma_test = mas_next(&test, vms->vma_count - 1);
1489 		}
1490 		rcu_read_unlock();
1491 		BUG_ON(vms->vma_count != test_count);
1492 	}
1493 #endif
1494 
1495 	while (vma_iter_addr(vms->vmi) > vms->start)
1496 		vma_iter_prev_range(vms->vmi);
1497 
1498 	vms->clear_ptes = true;
1499 	return 0;
1500 
1501 userfaultfd_error:
1502 munmap_gather_failed:
1503 end_split_failed:
1504 modify_vma_failed:
1505 	reattach_vmas(mas_detach);
1506 start_split_failed:
1507 map_count_exceeded:
1508 	return error;
1509 }
1510 
1511 /*
1512  * init_vma_munmap() - Initializer wrapper for vma_munmap_struct
1513  * @vms: The vma munmap struct
1514  * @vmi: The vma iterator
1515  * @vma: The first vm_area_struct to munmap
1516  * @start: The aligned start address to munmap
1517  * @end: The aligned end address to munmap
1518  * @uf: The userfaultfd list_head
1519  * @unlock: Unlock after the operation.  Only unlocked on success
1520  */
init_vma_munmap(struct vma_munmap_struct * vms,struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)1521 static void init_vma_munmap(struct vma_munmap_struct *vms,
1522 		struct vma_iterator *vmi, struct vm_area_struct *vma,
1523 		unsigned long start, unsigned long end, struct list_head *uf,
1524 		bool unlock)
1525 {
1526 	vms->vmi = vmi;
1527 	vms->vma = vma;
1528 	if (vma) {
1529 		vms->start = start;
1530 		vms->end = end;
1531 	} else {
1532 		vms->start = vms->end = 0;
1533 	}
1534 	vms->unlock = unlock;
1535 	vms->uf = uf;
1536 	vms->vma_count = 0;
1537 	vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0;
1538 	vms->exec_vm = vms->stack_vm = vms->data_vm = 0;
1539 	vms->unmap_start = FIRST_USER_ADDRESS;
1540 	vms->unmap_end = USER_PGTABLES_CEILING;
1541 	vms->clear_ptes = false;
1542 }
1543 
1544 /*
1545  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
1546  * @vmi: The vma iterator
1547  * @vma: The starting vm_area_struct
1548  * @mm: The mm_struct
1549  * @start: The aligned start address to munmap.
1550  * @end: The aligned end address to munmap.
1551  * @uf: The userfaultfd list_head
1552  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
1553  * success.
1554  *
1555  * Return: 0 on success and drops the lock if so directed, error and leaves the
1556  * lock held otherwise.
1557  */
do_vmi_align_munmap(struct vma_iterator * vmi,struct vm_area_struct * vma,struct mm_struct * mm,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)1558 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
1559 		struct mm_struct *mm, unsigned long start, unsigned long end,
1560 		struct list_head *uf, bool unlock)
1561 {
1562 	struct maple_tree mt_detach;
1563 	MA_STATE(mas_detach, &mt_detach, 0, 0);
1564 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1565 	mt_on_stack(mt_detach);
1566 	struct vma_munmap_struct vms;
1567 	int error;
1568 
1569 	init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
1570 	error = vms_gather_munmap_vmas(&vms, &mas_detach);
1571 	if (error)
1572 		goto gather_failed;
1573 
1574 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
1575 	if (error)
1576 		goto clear_tree_failed;
1577 
1578 	/* Point of no return */
1579 	vms_complete_munmap_vmas(&vms, &mas_detach);
1580 	return 0;
1581 
1582 clear_tree_failed:
1583 	reattach_vmas(&mas_detach);
1584 gather_failed:
1585 	validate_mm(mm);
1586 	return error;
1587 }
1588 
1589 /*
1590  * do_vmi_munmap() - munmap a given range.
1591  * @vmi: The vma iterator
1592  * @mm: The mm_struct
1593  * @start: The start address to munmap
1594  * @len: The length of the range to munmap
1595  * @uf: The userfaultfd list_head
1596  * @unlock: set to true if the user wants to drop the mmap_lock on success
1597  *
1598  * This function takes a @mas that is either pointing to the previous VMA or set
1599  * to MA_START and sets it up to remove the mapping(s).  The @len will be
1600  * aligned.
1601  *
1602  * Return: 0 on success and drops the lock if so directed, error and leaves the
1603  * lock held otherwise.
1604  */
do_vmi_munmap(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool unlock)1605 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
1606 		  unsigned long start, size_t len, struct list_head *uf,
1607 		  bool unlock)
1608 {
1609 	unsigned long end;
1610 	struct vm_area_struct *vma;
1611 
1612 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1613 		return -EINVAL;
1614 
1615 	end = start + PAGE_ALIGN(len);
1616 	if (end == start)
1617 		return -EINVAL;
1618 
1619 	/* Find the first overlapping VMA */
1620 	vma = vma_find(vmi, end);
1621 	if (!vma) {
1622 		if (unlock)
1623 			mmap_write_unlock(mm);
1624 		return 0;
1625 	}
1626 
1627 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
1628 }
1629 
1630 /*
1631  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1632  * context and anonymous VMA name within the range [start, end).
1633  *
1634  * As a result, we might be able to merge the newly modified VMA range with an
1635  * adjacent VMA with identical properties.
1636  *
1637  * If no merge is possible and the range does not span the entirety of the VMA,
1638  * we then need to split the VMA to accommodate the change.
1639  *
1640  * The function returns either the merged VMA, the original VMA if a split was
1641  * required instead, or an error if the split failed.
1642  */
vma_modify(struct vma_merge_struct * vmg)1643 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
1644 {
1645 	struct vm_area_struct *vma = vmg->middle;
1646 	unsigned long start = vmg->start;
1647 	unsigned long end = vmg->end;
1648 	struct vm_area_struct *merged;
1649 
1650 	/* First, try to merge. */
1651 	merged = vma_merge_existing_range(vmg);
1652 	if (merged)
1653 		return merged;
1654 	if (vmg_nomem(vmg))
1655 		return ERR_PTR(-ENOMEM);
1656 
1657 	/*
1658 	 * Split can fail for reasons other than OOM, so if the user requests
1659 	 * this it's probably a mistake.
1660 	 */
1661 	VM_WARN_ON(vmg->give_up_on_oom &&
1662 		   (vma->vm_start != start || vma->vm_end != end));
1663 
1664 	/* Split any preceding portion of the VMA. */
1665 	if (vma->vm_start < start) {
1666 		int err = split_vma(vmg->vmi, vma, start, 1);
1667 
1668 		if (err)
1669 			return ERR_PTR(err);
1670 	}
1671 
1672 	/* Split any trailing portion of the VMA. */
1673 	if (vma->vm_end > end) {
1674 		int err = split_vma(vmg->vmi, vma, end, 0);
1675 
1676 		if (err)
1677 			return ERR_PTR(err);
1678 	}
1679 
1680 	return vma;
1681 }
1682 
vma_modify_flags(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,vm_flags_t * vm_flags_ptr)1683 struct vm_area_struct *vma_modify_flags(struct vma_iterator *vmi,
1684 		struct vm_area_struct *prev, struct vm_area_struct *vma,
1685 		unsigned long start, unsigned long end,
1686 		vm_flags_t *vm_flags_ptr)
1687 {
1688 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1689 	const vm_flags_t vm_flags = *vm_flags_ptr;
1690 	struct vm_area_struct *ret;
1691 
1692 	vmg.vm_flags = vm_flags;
1693 
1694 	ret = vma_modify(&vmg);
1695 	if (IS_ERR(ret))
1696 		return ret;
1697 
1698 	/*
1699 	 * For a merge to succeed, the flags must match those
1700 	 * requested. However, sticky flags may have been retained, so propagate
1701 	 * them to the caller.
1702 	 */
1703 	if (vmg.state == VMA_MERGE_SUCCESS)
1704 		*vm_flags_ptr = ret->vm_flags;
1705 	return ret;
1706 }
1707 
vma_modify_name(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct anon_vma_name * new_name)1708 struct vm_area_struct *vma_modify_name(struct vma_iterator *vmi,
1709 		struct vm_area_struct *prev, struct vm_area_struct *vma,
1710 		unsigned long start, unsigned long end,
1711 		struct anon_vma_name *new_name)
1712 {
1713 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1714 
1715 	vmg.anon_name = new_name;
1716 
1717 	return vma_modify(&vmg);
1718 }
1719 
vma_modify_policy(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct mempolicy * new_pol)1720 struct vm_area_struct *vma_modify_policy(struct vma_iterator *vmi,
1721 		struct vm_area_struct *prev, struct vm_area_struct *vma,
1722 		unsigned long start, unsigned long end,
1723 		struct mempolicy *new_pol)
1724 {
1725 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1726 
1727 	vmg.policy = new_pol;
1728 
1729 	return vma_modify(&vmg);
1730 }
1731 
vma_modify_flags_uffd(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,vm_flags_t vm_flags,struct vm_userfaultfd_ctx new_ctx,bool give_up_on_oom)1732 struct vm_area_struct *vma_modify_flags_uffd(struct vma_iterator *vmi,
1733 		struct vm_area_struct *prev, struct vm_area_struct *vma,
1734 		unsigned long start, unsigned long end, vm_flags_t vm_flags,
1735 		struct vm_userfaultfd_ctx new_ctx, bool give_up_on_oom)
1736 {
1737 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1738 
1739 	vmg.vm_flags = vm_flags;
1740 	vmg.uffd_ctx = new_ctx;
1741 	if (give_up_on_oom)
1742 		vmg.give_up_on_oom = true;
1743 
1744 	return vma_modify(&vmg);
1745 }
1746 
1747 /*
1748  * Expand vma by delta bytes, potentially merging with an immediately adjacent
1749  * VMA with identical properties.
1750  */
vma_merge_extend(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long delta)1751 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1752 					struct vm_area_struct *vma,
1753 					unsigned long delta)
1754 {
1755 	VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
1756 
1757 	vmg.next = vma_iter_next_rewind(vmi, NULL);
1758 	vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */
1759 
1760 	return vma_merge_new_range(&vmg);
1761 }
1762 
unlink_file_vma_batch_init(struct unlink_vma_file_batch * vb)1763 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1764 {
1765 	vb->count = 0;
1766 }
1767 
unlink_file_vma_batch_process(struct unlink_vma_file_batch * vb)1768 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1769 {
1770 	struct address_space *mapping;
1771 	int i;
1772 
1773 	mapping = vb->vmas[0]->vm_file->f_mapping;
1774 	i_mmap_lock_write(mapping);
1775 	for (i = 0; i < vb->count; i++) {
1776 		VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1777 		__remove_shared_vm_struct(vb->vmas[i], mapping);
1778 	}
1779 	i_mmap_unlock_write(mapping);
1780 
1781 	unlink_file_vma_batch_init(vb);
1782 }
1783 
unlink_file_vma_batch_add(struct unlink_vma_file_batch * vb,struct vm_area_struct * vma)1784 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1785 			       struct vm_area_struct *vma)
1786 {
1787 	if (vma->vm_file == NULL)
1788 		return;
1789 
1790 	if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1791 	    vb->count == ARRAY_SIZE(vb->vmas))
1792 		unlink_file_vma_batch_process(vb);
1793 
1794 	vb->vmas[vb->count] = vma;
1795 	vb->count++;
1796 }
1797 
unlink_file_vma_batch_final(struct unlink_vma_file_batch * vb)1798 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1799 {
1800 	if (vb->count > 0)
1801 		unlink_file_vma_batch_process(vb);
1802 }
1803 
vma_link_file(struct vm_area_struct * vma,bool hold_rmap_lock)1804 static void vma_link_file(struct vm_area_struct *vma, bool hold_rmap_lock)
1805 {
1806 	struct file *file = vma->vm_file;
1807 	struct address_space *mapping;
1808 
1809 	if (file) {
1810 		mapping = file->f_mapping;
1811 		i_mmap_lock_write(mapping);
1812 		__vma_link_file(vma, mapping);
1813 		if (!hold_rmap_lock)
1814 			i_mmap_unlock_write(mapping);
1815 	}
1816 }
1817 
vma_link(struct mm_struct * mm,struct vm_area_struct * vma)1818 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1819 {
1820 	VMA_ITERATOR(vmi, mm, 0);
1821 
1822 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1823 	if (vma_iter_prealloc(&vmi, vma))
1824 		return -ENOMEM;
1825 
1826 	vma_start_write(vma);
1827 	vma_iter_store_new(&vmi, vma);
1828 	vma_link_file(vma, /* hold_rmap_lock= */false);
1829 	mm->map_count++;
1830 	validate_mm(mm);
1831 	return 0;
1832 }
1833 
1834 /*
1835  * Copy the vma structure to a new location in the same mm,
1836  * prior to moving page table entries, to effect an mremap move.
1837  */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)1838 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1839 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1840 	bool *need_rmap_locks)
1841 {
1842 	struct vm_area_struct *vma = *vmap;
1843 	unsigned long vma_start = vma->vm_start;
1844 	struct mm_struct *mm = vma->vm_mm;
1845 	struct vm_area_struct *new_vma;
1846 	bool faulted_in_anon_vma = true;
1847 	VMA_ITERATOR(vmi, mm, addr);
1848 	VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
1849 
1850 	/*
1851 	 * If anonymous vma has not yet been faulted, update new pgoff
1852 	 * to match new location, to increase its chance of merging.
1853 	 */
1854 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1855 		pgoff = addr >> PAGE_SHIFT;
1856 		faulted_in_anon_vma = false;
1857 	}
1858 
1859 	/*
1860 	 * If the VMA we are copying might contain a uprobe PTE, ensure
1861 	 * that we do not establish one upon merge. Otherwise, when mremap()
1862 	 * moves page tables, it will orphan the newly created PTE.
1863 	 */
1864 	if (vma->vm_file)
1865 		vmg.skip_vma_uprobe = true;
1866 
1867 	new_vma = find_vma_prev(mm, addr, &vmg.prev);
1868 	if (new_vma && new_vma->vm_start < addr + len)
1869 		return NULL;	/* should never get here */
1870 
1871 	vmg.pgoff = pgoff;
1872 	vmg.next = vma_iter_next_rewind(&vmi, NULL);
1873 	new_vma = vma_merge_copied_range(&vmg);
1874 
1875 	if (new_vma) {
1876 		/*
1877 		 * Source vma may have been merged into new_vma
1878 		 */
1879 		if (unlikely(vma_start >= new_vma->vm_start &&
1880 			     vma_start < new_vma->vm_end)) {
1881 			/*
1882 			 * The only way we can get a vma_merge with
1883 			 * self during an mremap is if the vma hasn't
1884 			 * been faulted in yet and we were allowed to
1885 			 * reset the dst vma->vm_pgoff to the
1886 			 * destination address of the mremap to allow
1887 			 * the merge to happen. mremap must change the
1888 			 * vm_pgoff linearity between src and dst vmas
1889 			 * (in turn preventing a vma_merge) to be
1890 			 * safe. It is only safe to keep the vm_pgoff
1891 			 * linear if there are no pages mapped yet.
1892 			 */
1893 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1894 			*vmap = vma = new_vma;
1895 		}
1896 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1897 	} else {
1898 		new_vma = vm_area_dup(vma);
1899 		if (!new_vma)
1900 			goto out;
1901 		vma_set_range(new_vma, addr, addr + len, pgoff);
1902 		if (vma_dup_policy(vma, new_vma))
1903 			goto out_free_vma;
1904 		if (anon_vma_clone(new_vma, vma))
1905 			goto out_free_mempol;
1906 		if (new_vma->vm_file)
1907 			get_file(new_vma->vm_file);
1908 		if (new_vma->vm_ops && new_vma->vm_ops->open)
1909 			new_vma->vm_ops->open(new_vma);
1910 		if (vma_link(mm, new_vma))
1911 			goto out_vma_link;
1912 		*need_rmap_locks = false;
1913 	}
1914 	return new_vma;
1915 
1916 out_vma_link:
1917 	fixup_hugetlb_reservations(new_vma);
1918 	vma_close(new_vma);
1919 
1920 	if (new_vma->vm_file)
1921 		fput(new_vma->vm_file);
1922 
1923 	unlink_anon_vmas(new_vma);
1924 out_free_mempol:
1925 	mpol_put(vma_policy(new_vma));
1926 out_free_vma:
1927 	vm_area_free(new_vma);
1928 out:
1929 	return NULL;
1930 }
1931 
1932 /*
1933  * Rough compatibility check to quickly see if it's even worth looking
1934  * at sharing an anon_vma.
1935  *
1936  * They need to have the same vm_file, and the flags can only differ
1937  * in things that mprotect may change.
1938  *
1939  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1940  * we can merge the two vma's. For example, we refuse to merge a vma if
1941  * there is a vm_ops->close() function, because that indicates that the
1942  * driver is doing some kind of reference counting. But that doesn't
1943  * really matter for the anon_vma sharing case.
1944  */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1945 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1946 {
1947 	return a->vm_end == b->vm_start &&
1948 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1949 		a->vm_file == b->vm_file &&
1950 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_IGNORE_MERGE)) &&
1951 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1952 }
1953 
1954 /*
1955  * Do some basic sanity checking to see if we can re-use the anon_vma
1956  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1957  * the same as 'old', the other will be the new one that is trying
1958  * to share the anon_vma.
1959  *
1960  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1961  * the anon_vma of 'old' is concurrently in the process of being set up
1962  * by another page fault trying to merge _that_. But that's ok: if it
1963  * is being set up, that automatically means that it will be a singleton
1964  * acceptable for merging, so we can do all of this optimistically. But
1965  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1966  *
1967  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1968  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1969  * is to return an anon_vma that is "complex" due to having gone through
1970  * a fork).
1971  *
1972  * We also make sure that the two vma's are compatible (adjacent,
1973  * and with the same memory policies). That's all stable, even with just
1974  * a read lock on the mmap_lock.
1975  */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1976 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1977 					  struct vm_area_struct *a,
1978 					  struct vm_area_struct *b)
1979 {
1980 	if (anon_vma_compatible(a, b)) {
1981 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1982 
1983 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1984 			return anon_vma;
1985 	}
1986 	return NULL;
1987 }
1988 
1989 /*
1990  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1991  * neighbouring vmas for a suitable anon_vma, before it goes off
1992  * to allocate a new anon_vma.  It checks because a repetitive
1993  * sequence of mprotects and faults may otherwise lead to distinct
1994  * anon_vmas being allocated, preventing vma merge in subsequent
1995  * mprotect.
1996  */
find_mergeable_anon_vma(struct vm_area_struct * vma)1997 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1998 {
1999 	struct anon_vma *anon_vma = NULL;
2000 	struct vm_area_struct *prev, *next;
2001 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
2002 
2003 	/* Try next first. */
2004 	next = vma_iter_load(&vmi);
2005 	if (next) {
2006 		anon_vma = reusable_anon_vma(next, vma, next);
2007 		if (anon_vma)
2008 			return anon_vma;
2009 	}
2010 
2011 	prev = vma_prev(&vmi);
2012 	VM_BUG_ON_VMA(prev != vma, vma);
2013 	prev = vma_prev(&vmi);
2014 	/* Try prev next. */
2015 	if (prev)
2016 		anon_vma = reusable_anon_vma(prev, prev, vma);
2017 
2018 	/*
2019 	 * We might reach here with anon_vma == NULL if we can't find
2020 	 * any reusable anon_vma.
2021 	 * There's no absolute need to look only at touching neighbours:
2022 	 * we could search further afield for "compatible" anon_vmas.
2023 	 * But it would probably just be a waste of time searching,
2024 	 * or lead to too many vmas hanging off the same anon_vma.
2025 	 * We're trying to allow mprotect remerging later on,
2026 	 * not trying to minimize memory used for anon_vmas.
2027 	 */
2028 	return anon_vma;
2029 }
2030 
vm_ops_needs_writenotify(const struct vm_operations_struct * vm_ops)2031 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
2032 {
2033 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
2034 }
2035 
vma_is_shared_writable(struct vm_area_struct * vma)2036 static bool vma_is_shared_writable(struct vm_area_struct *vma)
2037 {
2038 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
2039 		(VM_WRITE | VM_SHARED);
2040 }
2041 
vma_fs_can_writeback(struct vm_area_struct * vma)2042 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
2043 {
2044 	/* No managed pages to writeback. */
2045 	if (vma->vm_flags & VM_PFNMAP)
2046 		return false;
2047 
2048 	return vma->vm_file && vma->vm_file->f_mapping &&
2049 		mapping_can_writeback(vma->vm_file->f_mapping);
2050 }
2051 
2052 /*
2053  * Does this VMA require the underlying folios to have their dirty state
2054  * tracked?
2055  */
vma_needs_dirty_tracking(struct vm_area_struct * vma)2056 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
2057 {
2058 	/* Only shared, writable VMAs require dirty tracking. */
2059 	if (!vma_is_shared_writable(vma))
2060 		return false;
2061 
2062 	/* Does the filesystem need to be notified? */
2063 	if (vm_ops_needs_writenotify(vma->vm_ops))
2064 		return true;
2065 
2066 	/*
2067 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
2068 	 * can writeback, dirty tracking is still required.
2069 	 */
2070 	return vma_fs_can_writeback(vma);
2071 }
2072 
2073 /*
2074  * Some shared mappings will want the pages marked read-only
2075  * to track write events. If so, we'll downgrade vm_page_prot
2076  * to the private version (using protection_map[] without the
2077  * VM_SHARED bit).
2078  */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)2079 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
2080 {
2081 	/* If it was private or non-writable, the write bit is already clear */
2082 	if (!vma_is_shared_writable(vma))
2083 		return false;
2084 
2085 	/* The backer wishes to know when pages are first written to? */
2086 	if (vm_ops_needs_writenotify(vma->vm_ops))
2087 		return true;
2088 
2089 	/* The open routine did something to the protections that pgprot_modify
2090 	 * won't preserve? */
2091 	if (pgprot_val(vm_page_prot) !=
2092 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
2093 		return false;
2094 
2095 	/*
2096 	 * Do we need to track softdirty? hugetlb does not support softdirty
2097 	 * tracking yet.
2098 	 */
2099 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
2100 		return true;
2101 
2102 	/* Do we need write faults for uffd-wp tracking? */
2103 	if (userfaultfd_wp(vma))
2104 		return true;
2105 
2106 	/* Can the mapping track the dirty pages? */
2107 	return vma_fs_can_writeback(vma);
2108 }
2109 
2110 static DEFINE_MUTEX(mm_all_locks_mutex);
2111 
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)2112 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2113 {
2114 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2115 		/*
2116 		 * The LSB of head.next can't change from under us
2117 		 * because we hold the mm_all_locks_mutex.
2118 		 */
2119 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
2120 		/*
2121 		 * We can safely modify head.next after taking the
2122 		 * anon_vma->root->rwsem. If some other vma in this mm shares
2123 		 * the same anon_vma we won't take it again.
2124 		 *
2125 		 * No need of atomic instructions here, head.next
2126 		 * can't change from under us thanks to the
2127 		 * anon_vma->root->rwsem.
2128 		 */
2129 		if (__test_and_set_bit(0, (unsigned long *)
2130 				       &anon_vma->root->rb_root.rb_root.rb_node))
2131 			BUG();
2132 	}
2133 }
2134 
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)2135 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2136 {
2137 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2138 		/*
2139 		 * AS_MM_ALL_LOCKS can't change from under us because
2140 		 * we hold the mm_all_locks_mutex.
2141 		 *
2142 		 * Operations on ->flags have to be atomic because
2143 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2144 		 * mm_all_locks_mutex, there may be other cpus
2145 		 * changing other bitflags in parallel to us.
2146 		 */
2147 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2148 			BUG();
2149 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
2150 	}
2151 }
2152 
2153 /*
2154  * This operation locks against the VM for all pte/vma/mm related
2155  * operations that could ever happen on a certain mm. This includes
2156  * vmtruncate, try_to_unmap, and all page faults.
2157  *
2158  * The caller must take the mmap_lock in write mode before calling
2159  * mm_take_all_locks(). The caller isn't allowed to release the
2160  * mmap_lock until mm_drop_all_locks() returns.
2161  *
2162  * mmap_lock in write mode is required in order to block all operations
2163  * that could modify pagetables and free pages without need of
2164  * altering the vma layout. It's also needed in write mode to avoid new
2165  * anon_vmas to be associated with existing vmas.
2166  *
2167  * A single task can't take more than one mm_take_all_locks() in a row
2168  * or it would deadlock.
2169  *
2170  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2171  * mapping->flags avoid to take the same lock twice, if more than one
2172  * vma in this mm is backed by the same anon_vma or address_space.
2173  *
2174  * We take locks in following order, accordingly to comment at beginning
2175  * of mm/rmap.c:
2176  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
2177  *     hugetlb mapping);
2178  *   - all vmas marked locked
2179  *   - all i_mmap_rwsem locks;
2180  *   - all anon_vma->rwseml
2181  *
2182  * We can take all locks within these types randomly because the VM code
2183  * doesn't nest them and we protected from parallel mm_take_all_locks() by
2184  * mm_all_locks_mutex.
2185  *
2186  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2187  * that may have to take thousand of locks.
2188  *
2189  * mm_take_all_locks() can fail if it's interrupted by signals.
2190  */
mm_take_all_locks(struct mm_struct * mm)2191 int mm_take_all_locks(struct mm_struct *mm)
2192 {
2193 	struct vm_area_struct *vma;
2194 	struct anon_vma_chain *avc;
2195 	VMA_ITERATOR(vmi, mm, 0);
2196 
2197 	mmap_assert_write_locked(mm);
2198 
2199 	mutex_lock(&mm_all_locks_mutex);
2200 
2201 	/*
2202 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
2203 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
2204 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
2205 	 * is reached.
2206 	 */
2207 	for_each_vma(vmi, vma) {
2208 		if (signal_pending(current))
2209 			goto out_unlock;
2210 		vma_start_write(vma);
2211 	}
2212 
2213 	vma_iter_init(&vmi, mm, 0);
2214 	for_each_vma(vmi, vma) {
2215 		if (signal_pending(current))
2216 			goto out_unlock;
2217 		if (vma->vm_file && vma->vm_file->f_mapping &&
2218 				is_vm_hugetlb_page(vma))
2219 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2220 	}
2221 
2222 	vma_iter_init(&vmi, mm, 0);
2223 	for_each_vma(vmi, vma) {
2224 		if (signal_pending(current))
2225 			goto out_unlock;
2226 		if (vma->vm_file && vma->vm_file->f_mapping &&
2227 				!is_vm_hugetlb_page(vma))
2228 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2229 	}
2230 
2231 	vma_iter_init(&vmi, mm, 0);
2232 	for_each_vma(vmi, vma) {
2233 		if (signal_pending(current))
2234 			goto out_unlock;
2235 		if (vma->anon_vma)
2236 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2237 				vm_lock_anon_vma(mm, avc->anon_vma);
2238 	}
2239 
2240 	return 0;
2241 
2242 out_unlock:
2243 	mm_drop_all_locks(mm);
2244 	return -EINTR;
2245 }
2246 
vm_unlock_anon_vma(struct anon_vma * anon_vma)2247 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2248 {
2249 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2250 		/*
2251 		 * The LSB of head.next can't change to 0 from under
2252 		 * us because we hold the mm_all_locks_mutex.
2253 		 *
2254 		 * We must however clear the bitflag before unlocking
2255 		 * the vma so the users using the anon_vma->rb_root will
2256 		 * never see our bitflag.
2257 		 *
2258 		 * No need of atomic instructions here, head.next
2259 		 * can't change from under us until we release the
2260 		 * anon_vma->root->rwsem.
2261 		 */
2262 		if (!__test_and_clear_bit(0, (unsigned long *)
2263 					  &anon_vma->root->rb_root.rb_root.rb_node))
2264 			BUG();
2265 		anon_vma_unlock_write(anon_vma);
2266 	}
2267 }
2268 
vm_unlock_mapping(struct address_space * mapping)2269 static void vm_unlock_mapping(struct address_space *mapping)
2270 {
2271 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2272 		/*
2273 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2274 		 * because we hold the mm_all_locks_mutex.
2275 		 */
2276 		i_mmap_unlock_write(mapping);
2277 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2278 					&mapping->flags))
2279 			BUG();
2280 	}
2281 }
2282 
2283 /*
2284  * The mmap_lock cannot be released by the caller until
2285  * mm_drop_all_locks() returns.
2286  */
mm_drop_all_locks(struct mm_struct * mm)2287 void mm_drop_all_locks(struct mm_struct *mm)
2288 {
2289 	struct vm_area_struct *vma;
2290 	struct anon_vma_chain *avc;
2291 	VMA_ITERATOR(vmi, mm, 0);
2292 
2293 	mmap_assert_write_locked(mm);
2294 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2295 
2296 	for_each_vma(vmi, vma) {
2297 		if (vma->anon_vma)
2298 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2299 				vm_unlock_anon_vma(avc->anon_vma);
2300 		if (vma->vm_file && vma->vm_file->f_mapping)
2301 			vm_unlock_mapping(vma->vm_file->f_mapping);
2302 	}
2303 
2304 	mutex_unlock(&mm_all_locks_mutex);
2305 }
2306 
2307 /*
2308  * We account for memory if it's a private writeable mapping,
2309  * not hugepages and VM_NORESERVE wasn't set.
2310  */
accountable_mapping(struct file * file,vm_flags_t vm_flags)2311 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
2312 {
2313 	/*
2314 	 * hugetlb has its own accounting separate from the core VM
2315 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
2316 	 */
2317 	if (file && is_file_hugepages(file))
2318 		return false;
2319 
2320 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
2321 }
2322 
2323 /*
2324  * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap()
2325  * operation.
2326  * @vms: The vma unmap structure
2327  * @mas_detach: The maple state with the detached maple tree
2328  *
2329  * Reattach any detached vmas, free up the maple tree used to track the vmas.
2330  * If that's not possible because the ptes are cleared (and vm_ops->closed() may
2331  * have been called), then a NULL is written over the vmas and the vmas are
2332  * removed (munmap() completed).
2333  */
vms_abort_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)2334 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms,
2335 		struct ma_state *mas_detach)
2336 {
2337 	struct ma_state *mas = &vms->vmi->mas;
2338 
2339 	if (!vms->nr_pages)
2340 		return;
2341 
2342 	if (vms->clear_ptes)
2343 		return reattach_vmas(mas_detach);
2344 
2345 	/*
2346 	 * Aborting cannot just call the vm_ops open() because they are often
2347 	 * not symmetrical and state data has been lost.  Resort to the old
2348 	 * failure method of leaving a gap where the MAP_FIXED mapping failed.
2349 	 */
2350 	mas_set_range(mas, vms->start, vms->end - 1);
2351 	mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL);
2352 	/* Clean up the insertion of the unfortunate gap */
2353 	vms_complete_munmap_vmas(vms, mas_detach);
2354 }
2355 
update_ksm_flags(struct mmap_state * map)2356 static void update_ksm_flags(struct mmap_state *map)
2357 {
2358 	map->vm_flags = ksm_vma_flags(map->mm, map->file, map->vm_flags);
2359 }
2360 
set_desc_from_map(struct vm_area_desc * desc,const struct mmap_state * map)2361 static void set_desc_from_map(struct vm_area_desc *desc,
2362 		const struct mmap_state *map)
2363 {
2364 	desc->start = map->addr;
2365 	desc->end = map->end;
2366 
2367 	desc->pgoff = map->pgoff;
2368 	desc->vm_file = map->file;
2369 	desc->vm_flags = map->vm_flags;
2370 	desc->page_prot = map->page_prot;
2371 }
2372 
2373 /*
2374  * __mmap_setup() - Prepare to gather any overlapping VMAs that need to be
2375  * unmapped once the map operation is completed, check limits, account mapping
2376  * and clean up any pre-existing VMAs.
2377  *
2378  * As a result it sets up the @map and @desc objects.
2379  *
2380  * @map: Mapping state.
2381  * @desc: VMA descriptor
2382  * @uf:  Userfaultfd context list.
2383  *
2384  * Returns: 0 on success, error code otherwise.
2385  */
__mmap_setup(struct mmap_state * map,struct vm_area_desc * desc,struct list_head * uf)2386 static int __mmap_setup(struct mmap_state *map, struct vm_area_desc *desc,
2387 			struct list_head *uf)
2388 {
2389 	int error;
2390 	struct vma_iterator *vmi = map->vmi;
2391 	struct vma_munmap_struct *vms = &map->vms;
2392 
2393 	/* Find the first overlapping VMA and initialise unmap state. */
2394 	vms->vma = vma_find(vmi, map->end);
2395 	init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf,
2396 			/* unlock = */ false);
2397 
2398 	/* OK, we have overlapping VMAs - prepare to unmap them. */
2399 	if (vms->vma) {
2400 		mt_init_flags(&map->mt_detach,
2401 			      vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2402 		mt_on_stack(map->mt_detach);
2403 		mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0);
2404 		/* Prepare to unmap any existing mapping in the area */
2405 		error = vms_gather_munmap_vmas(vms, &map->mas_detach);
2406 		if (error) {
2407 			/* On error VMAs will already have been reattached. */
2408 			vms->nr_pages = 0;
2409 			return error;
2410 		}
2411 
2412 		map->next = vms->next;
2413 		map->prev = vms->prev;
2414 	} else {
2415 		map->next = vma_iter_next_rewind(vmi, &map->prev);
2416 	}
2417 
2418 	/* Check against address space limit. */
2419 	if (!may_expand_vm(map->mm, map->vm_flags, map->pglen - vms->nr_pages))
2420 		return -ENOMEM;
2421 
2422 	/* Private writable mapping: check memory availability. */
2423 	if (accountable_mapping(map->file, map->vm_flags)) {
2424 		map->charged = map->pglen;
2425 		map->charged -= vms->nr_accounted;
2426 		if (map->charged) {
2427 			error = security_vm_enough_memory_mm(map->mm, map->charged);
2428 			if (error)
2429 				return error;
2430 		}
2431 
2432 		vms->nr_accounted = 0;
2433 		map->vm_flags |= VM_ACCOUNT;
2434 	}
2435 
2436 	/*
2437 	 * Clear PTEs while the vma is still in the tree so that rmap
2438 	 * cannot race with the freeing later in the truncate scenario.
2439 	 * This is also needed for mmap_file(), which is why vm_ops
2440 	 * close function is called.
2441 	 */
2442 	vms_clean_up_area(vms, &map->mas_detach);
2443 
2444 	set_desc_from_map(desc, map);
2445 	return 0;
2446 }
2447 
2448 
__mmap_new_file_vma(struct mmap_state * map,struct vm_area_struct * vma)2449 static int __mmap_new_file_vma(struct mmap_state *map,
2450 			       struct vm_area_struct *vma)
2451 {
2452 	struct vma_iterator *vmi = map->vmi;
2453 	int error;
2454 
2455 	vma->vm_file = map->file;
2456 	if (!map->file_doesnt_need_get)
2457 		get_file(map->file);
2458 
2459 	if (!map->file->f_op->mmap)
2460 		return 0;
2461 
2462 	error = mmap_file(vma->vm_file, vma);
2463 	if (error) {
2464 		fput(vma->vm_file);
2465 		vma->vm_file = NULL;
2466 
2467 		vma_iter_set(vmi, vma->vm_end);
2468 		/* Undo any partial mapping done by a device driver. */
2469 		unmap_region(&vmi->mas, vma, map->prev, map->next);
2470 
2471 		return error;
2472 	}
2473 
2474 	/* Drivers cannot alter the address of the VMA. */
2475 	WARN_ON_ONCE(map->addr != vma->vm_start);
2476 	/*
2477 	 * Drivers should not permit writability when previously it was
2478 	 * disallowed.
2479 	 */
2480 	VM_WARN_ON_ONCE(map->vm_flags != vma->vm_flags &&
2481 			!(map->vm_flags & VM_MAYWRITE) &&
2482 			(vma->vm_flags & VM_MAYWRITE));
2483 
2484 	map->file = vma->vm_file;
2485 	map->vm_flags = vma->vm_flags;
2486 
2487 	return 0;
2488 }
2489 
2490 /*
2491  * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not
2492  * possible.
2493  *
2494  * @map:  Mapping state.
2495  * @vmap: Output pointer for the new VMA.
2496  *
2497  * Returns: Zero on success, or an error.
2498  */
__mmap_new_vma(struct mmap_state * map,struct vm_area_struct ** vmap)2499 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap)
2500 {
2501 	struct vma_iterator *vmi = map->vmi;
2502 	int error = 0;
2503 	struct vm_area_struct *vma;
2504 
2505 	/*
2506 	 * Determine the object being mapped and call the appropriate
2507 	 * specific mapper. the address has already been validated, but
2508 	 * not unmapped, but the maps are removed from the list.
2509 	 */
2510 	vma = vm_area_alloc(map->mm);
2511 	if (!vma)
2512 		return -ENOMEM;
2513 
2514 	vma_iter_config(vmi, map->addr, map->end);
2515 	vma_set_range(vma, map->addr, map->end, map->pgoff);
2516 	vm_flags_init(vma, map->vm_flags);
2517 	vma->vm_page_prot = map->page_prot;
2518 
2519 	if (vma_iter_prealloc(vmi, vma)) {
2520 		error = -ENOMEM;
2521 		goto free_vma;
2522 	}
2523 
2524 	if (map->file)
2525 		error = __mmap_new_file_vma(map, vma);
2526 	else if (map->vm_flags & VM_SHARED)
2527 		error = shmem_zero_setup(vma);
2528 	else
2529 		vma_set_anonymous(vma);
2530 
2531 	if (error)
2532 		goto free_iter_vma;
2533 
2534 	if (!map->check_ksm_early) {
2535 		update_ksm_flags(map);
2536 		vm_flags_init(vma, map->vm_flags);
2537 	}
2538 
2539 #ifdef CONFIG_SPARC64
2540 	/* TODO: Fix SPARC ADI! */
2541 	WARN_ON_ONCE(!arch_validate_flags(map->vm_flags));
2542 #endif
2543 
2544 	/* Lock the VMA since it is modified after insertion into VMA tree */
2545 	vma_start_write(vma);
2546 	vma_iter_store_new(vmi, vma);
2547 	map->mm->map_count++;
2548 	vma_link_file(vma, map->hold_file_rmap_lock);
2549 
2550 	/*
2551 	 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below
2552 	 * call covers the non-merge case.
2553 	 */
2554 	if (!vma_is_anonymous(vma))
2555 		khugepaged_enter_vma(vma, map->vm_flags);
2556 	*vmap = vma;
2557 	return 0;
2558 
2559 free_iter_vma:
2560 	vma_iter_free(vmi);
2561 free_vma:
2562 	vm_area_free(vma);
2563 	return error;
2564 }
2565 
2566 /*
2567  * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping
2568  *                     statistics, handle locking and finalise the VMA.
2569  *
2570  * @map: Mapping state.
2571  * @vma: Merged or newly allocated VMA for the mmap()'d region.
2572  */
__mmap_complete(struct mmap_state * map,struct vm_area_struct * vma)2573 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma)
2574 {
2575 	struct mm_struct *mm = map->mm;
2576 	vm_flags_t vm_flags = vma->vm_flags;
2577 
2578 	perf_event_mmap(vma);
2579 
2580 	/* Unmap any existing mapping in the area. */
2581 	vms_complete_munmap_vmas(&map->vms, &map->mas_detach);
2582 
2583 	vm_stat_account(mm, vma->vm_flags, map->pglen);
2584 	if (vm_flags & VM_LOCKED) {
2585 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2586 					is_vm_hugetlb_page(vma) ||
2587 					vma == get_gate_vma(mm))
2588 			vm_flags_clear(vma, VM_LOCKED_MASK);
2589 		else
2590 			mm->locked_vm += map->pglen;
2591 	}
2592 
2593 	if (vma->vm_file)
2594 		uprobe_mmap(vma);
2595 
2596 	/*
2597 	 * New (or expanded) vma always get soft dirty status.
2598 	 * Otherwise user-space soft-dirty page tracker won't
2599 	 * be able to distinguish situation when vma area unmapped,
2600 	 * then new mapped in-place (which must be aimed as
2601 	 * a completely new data area).
2602 	 */
2603 	if (pgtable_supports_soft_dirty())
2604 		vm_flags_set(vma, VM_SOFTDIRTY);
2605 
2606 	vma_set_page_prot(vma);
2607 }
2608 
call_action_prepare(struct mmap_state * map,struct vm_area_desc * desc)2609 static void call_action_prepare(struct mmap_state *map,
2610 				struct vm_area_desc *desc)
2611 {
2612 	struct mmap_action *action = &desc->action;
2613 
2614 	mmap_action_prepare(action, desc);
2615 
2616 	if (action->hide_from_rmap_until_complete)
2617 		map->hold_file_rmap_lock = true;
2618 }
2619 
2620 /*
2621  * Invoke the f_op->mmap_prepare() callback for a file-backed mapping that
2622  * specifies it.
2623  *
2624  * This is called prior to any merge attempt, and updates whitelisted fields
2625  * that are permitted to be updated by the caller.
2626  *
2627  * All but user-defined fields will be pre-populated with original values.
2628  *
2629  * Returns 0 on success, or an error code otherwise.
2630  */
call_mmap_prepare(struct mmap_state * map,struct vm_area_desc * desc)2631 static int call_mmap_prepare(struct mmap_state *map,
2632 		struct vm_area_desc *desc)
2633 {
2634 	int err;
2635 
2636 	/* Invoke the hook. */
2637 	err = vfs_mmap_prepare(map->file, desc);
2638 	if (err)
2639 		return err;
2640 
2641 	call_action_prepare(map, desc);
2642 
2643 	/* Update fields permitted to be changed. */
2644 	map->pgoff = desc->pgoff;
2645 	if (desc->vm_file != map->file) {
2646 		map->file_doesnt_need_get = true;
2647 		map->file = desc->vm_file;
2648 	}
2649 	map->vm_flags = desc->vm_flags;
2650 	map->page_prot = desc->page_prot;
2651 	/* User-defined fields. */
2652 	map->vm_ops = desc->vm_ops;
2653 	map->vm_private_data = desc->private_data;
2654 
2655 	return 0;
2656 }
2657 
set_vma_user_defined_fields(struct vm_area_struct * vma,struct mmap_state * map)2658 static void set_vma_user_defined_fields(struct vm_area_struct *vma,
2659 		struct mmap_state *map)
2660 {
2661 	if (map->vm_ops)
2662 		vma->vm_ops = map->vm_ops;
2663 	vma->vm_private_data = map->vm_private_data;
2664 }
2665 
2666 /*
2667  * Are we guaranteed no driver can change state such as to preclude KSM merging?
2668  * If so, let's set the KSM mergeable flag early so we don't break VMA merging.
2669  */
can_set_ksm_flags_early(struct mmap_state * map)2670 static bool can_set_ksm_flags_early(struct mmap_state *map)
2671 {
2672 	struct file *file = map->file;
2673 
2674 	/* Anonymous mappings have no driver which can change them. */
2675 	if (!file)
2676 		return true;
2677 
2678 	/*
2679 	 * If .mmap_prepare() is specified, then the driver will have already
2680 	 * manipulated state prior to updating KSM flags. So no need to worry
2681 	 * about mmap callbacks modifying VMA flags after the KSM flag has been
2682 	 * updated here, which could otherwise affect KSM eligibility.
2683 	 */
2684 	if (file->f_op->mmap_prepare)
2685 		return true;
2686 
2687 	/* shmem is safe. */
2688 	if (shmem_file(file))
2689 		return true;
2690 
2691 	/* Any other .mmap callback is not safe. */
2692 	return false;
2693 }
2694 
call_action_complete(struct mmap_state * map,struct vm_area_desc * desc,struct vm_area_struct * vma)2695 static int call_action_complete(struct mmap_state *map,
2696 				struct vm_area_desc *desc,
2697 				struct vm_area_struct *vma)
2698 {
2699 	struct mmap_action *action = &desc->action;
2700 	int ret;
2701 
2702 	ret = mmap_action_complete(action, vma);
2703 
2704 	/* If we held the file rmap we need to release it. */
2705 	if (map->hold_file_rmap_lock) {
2706 		struct file *file = vma->vm_file;
2707 
2708 		i_mmap_unlock_write(file->f_mapping);
2709 	}
2710 	return ret;
2711 }
2712 
__mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2713 static unsigned long __mmap_region(struct file *file, unsigned long addr,
2714 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2715 		struct list_head *uf)
2716 {
2717 	struct mm_struct *mm = current->mm;
2718 	struct vm_area_struct *vma = NULL;
2719 	bool have_mmap_prepare = file && file->f_op->mmap_prepare;
2720 	VMA_ITERATOR(vmi, mm, addr);
2721 	MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file);
2722 	struct vm_area_desc desc = {
2723 		.mm = mm,
2724 		.file = file,
2725 		.action = {
2726 			.type = MMAP_NOTHING, /* Default to no further action. */
2727 		},
2728 	};
2729 	bool allocated_new = false;
2730 	int error;
2731 
2732 	map.check_ksm_early = can_set_ksm_flags_early(&map);
2733 
2734 	error = __mmap_setup(&map, &desc, uf);
2735 	if (!error && have_mmap_prepare)
2736 		error = call_mmap_prepare(&map, &desc);
2737 	if (error)
2738 		goto abort_munmap;
2739 
2740 	if (map.check_ksm_early)
2741 		update_ksm_flags(&map);
2742 
2743 	/* Attempt to merge with adjacent VMAs... */
2744 	if (map.prev || map.next) {
2745 		VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL);
2746 
2747 		vma = vma_merge_new_range(&vmg);
2748 	}
2749 
2750 	/* ...but if we can't, allocate a new VMA. */
2751 	if (!vma) {
2752 		error = __mmap_new_vma(&map, &vma);
2753 		if (error)
2754 			goto unacct_error;
2755 		allocated_new = true;
2756 	}
2757 
2758 	if (have_mmap_prepare)
2759 		set_vma_user_defined_fields(vma, &map);
2760 
2761 	__mmap_complete(&map, vma);
2762 
2763 	if (have_mmap_prepare && allocated_new) {
2764 		error = call_action_complete(&map, &desc, vma);
2765 
2766 		if (error)
2767 			return error;
2768 	}
2769 
2770 	return addr;
2771 
2772 	/* Accounting was done by __mmap_setup(). */
2773 unacct_error:
2774 	if (map.charged)
2775 		vm_unacct_memory(map.charged);
2776 abort_munmap:
2777 	vms_abort_munmap_vmas(&map.vms, &map.mas_detach);
2778 	return error;
2779 }
2780 
2781 /**
2782  * mmap_region() - Actually perform the userland mapping of a VMA into
2783  * current->mm with known, aligned and overflow-checked @addr and @len, and
2784  * correctly determined VMA flags @vm_flags and page offset @pgoff.
2785  *
2786  * This is an internal memory management function, and should not be used
2787  * directly.
2788  *
2789  * The caller must write-lock current->mm->mmap_lock.
2790  *
2791  * @file: If a file-backed mapping, a pointer to the struct file describing the
2792  * file to be mapped, otherwise NULL.
2793  * @addr: The page-aligned address at which to perform the mapping.
2794  * @len: The page-aligned, non-zero, length of the mapping.
2795  * @vm_flags: The VMA flags which should be applied to the mapping.
2796  * @pgoff: If @file is specified, the page offset into the file, if not then
2797  * the virtual page offset in memory of the anonymous mapping.
2798  * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap
2799  * events.
2800  *
2801  * Returns: Either an error, or the address at which the requested mapping has
2802  * been performed.
2803  */
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2804 unsigned long mmap_region(struct file *file, unsigned long addr,
2805 			  unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2806 			  struct list_head *uf)
2807 {
2808 	unsigned long ret;
2809 	bool writable_file_mapping = false;
2810 
2811 	mmap_assert_write_locked(current->mm);
2812 
2813 	/* Check to see if MDWE is applicable. */
2814 	if (map_deny_write_exec(vm_flags, vm_flags))
2815 		return -EACCES;
2816 
2817 	/* Allow architectures to sanity-check the vm_flags. */
2818 	if (!arch_validate_flags(vm_flags))
2819 		return -EINVAL;
2820 
2821 	/* Map writable and ensure this isn't a sealed memfd. */
2822 	if (file && is_shared_maywrite(vm_flags)) {
2823 		int error = mapping_map_writable(file->f_mapping);
2824 
2825 		if (error)
2826 			return error;
2827 		writable_file_mapping = true;
2828 	}
2829 
2830 	ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
2831 
2832 	/* Clear our write mapping regardless of error. */
2833 	if (writable_file_mapping)
2834 		mapping_unmap_writable(file->f_mapping);
2835 
2836 	validate_mm(current->mm);
2837 	return ret;
2838 }
2839 
2840 /*
2841  * do_brk_flags() - Increase the brk vma if the flags match.
2842  * @vmi: The vma iterator
2843  * @addr: The start address
2844  * @len: The length of the increase
2845  * @vma: The vma,
2846  * @vm_flags: The VMA Flags
2847  *
2848  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
2849  * do not match then create a new anonymous VMA.  Eventually we may be able to
2850  * do some brk-specific accounting here.
2851  */
do_brk_flags(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,unsigned long len,vm_flags_t vm_flags)2852 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2853 		 unsigned long addr, unsigned long len, vm_flags_t vm_flags)
2854 {
2855 	struct mm_struct *mm = current->mm;
2856 
2857 	/*
2858 	 * Check against address space limits by the changed size
2859 	 * Note: This happens *after* clearing old mappings in some code paths.
2860 	 */
2861 	vm_flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2862 	vm_flags = ksm_vma_flags(mm, NULL, vm_flags);
2863 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT))
2864 		return -ENOMEM;
2865 
2866 	if (mm->map_count > sysctl_max_map_count)
2867 		return -ENOMEM;
2868 
2869 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2870 		return -ENOMEM;
2871 
2872 	/*
2873 	 * Expand the existing vma if possible; Note that singular lists do not
2874 	 * occur after forking, so the expand will only happen on new VMAs.
2875 	 */
2876 	if (vma && vma->vm_end == addr) {
2877 		VMG_STATE(vmg, mm, vmi, addr, addr + len, vm_flags, PHYS_PFN(addr));
2878 
2879 		vmg.prev = vma;
2880 		/* vmi is positioned at prev, which this mode expects. */
2881 		vmg.just_expand = true;
2882 
2883 		if (vma_merge_new_range(&vmg))
2884 			goto out;
2885 		else if (vmg_nomem(&vmg))
2886 			goto unacct_fail;
2887 	}
2888 
2889 	if (vma)
2890 		vma_iter_next_range(vmi);
2891 	/* create a vma struct for an anonymous mapping */
2892 	vma = vm_area_alloc(mm);
2893 	if (!vma)
2894 		goto unacct_fail;
2895 
2896 	vma_set_anonymous(vma);
2897 	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
2898 	vm_flags_init(vma, vm_flags);
2899 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2900 	vma_start_write(vma);
2901 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
2902 		goto mas_store_fail;
2903 
2904 	mm->map_count++;
2905 	validate_mm(mm);
2906 out:
2907 	perf_event_mmap(vma);
2908 	mm->total_vm += len >> PAGE_SHIFT;
2909 	mm->data_vm += len >> PAGE_SHIFT;
2910 	if (vm_flags & VM_LOCKED)
2911 		mm->locked_vm += (len >> PAGE_SHIFT);
2912 	if (pgtable_supports_soft_dirty())
2913 		vm_flags_set(vma, VM_SOFTDIRTY);
2914 	return 0;
2915 
2916 mas_store_fail:
2917 	vm_area_free(vma);
2918 unacct_fail:
2919 	vm_unacct_memory(len >> PAGE_SHIFT);
2920 	return -ENOMEM;
2921 }
2922 
2923 /**
2924  * unmapped_area() - Find an area between the low_limit and the high_limit with
2925  * the correct alignment and offset, all from @info. Note: current->mm is used
2926  * for the search.
2927  *
2928  * @info: The unmapped area information including the range [low_limit -
2929  * high_limit), the alignment offset and mask.
2930  *
2931  * Return: A memory address or -ENOMEM.
2932  */
unmapped_area(struct vm_unmapped_area_info * info)2933 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
2934 {
2935 	unsigned long length, gap;
2936 	unsigned long low_limit, high_limit;
2937 	struct vm_area_struct *tmp;
2938 	VMA_ITERATOR(vmi, current->mm, 0);
2939 
2940 	/* Adjust search length to account for worst case alignment overhead */
2941 	length = info->length + info->align_mask + info->start_gap;
2942 	if (length < info->length)
2943 		return -ENOMEM;
2944 
2945 	low_limit = info->low_limit;
2946 	if (low_limit < mmap_min_addr)
2947 		low_limit = mmap_min_addr;
2948 	high_limit = info->high_limit;
2949 retry:
2950 	if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
2951 		return -ENOMEM;
2952 
2953 	/*
2954 	 * Adjust for the gap first so it doesn't interfere with the
2955 	 * later alignment. The first step is the minimum needed to
2956 	 * fulill the start gap, the next steps is the minimum to align
2957 	 * that. It is the minimum needed to fulill both.
2958 	 */
2959 	gap = vma_iter_addr(&vmi) + info->start_gap;
2960 	gap += (info->align_offset - gap) & info->align_mask;
2961 	tmp = vma_next(&vmi);
2962 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2963 		if (vm_start_gap(tmp) < gap + length - 1) {
2964 			low_limit = tmp->vm_end;
2965 			vma_iter_reset(&vmi);
2966 			goto retry;
2967 		}
2968 	} else {
2969 		tmp = vma_prev(&vmi);
2970 		if (tmp && vm_end_gap(tmp) > gap) {
2971 			low_limit = vm_end_gap(tmp);
2972 			vma_iter_reset(&vmi);
2973 			goto retry;
2974 		}
2975 	}
2976 
2977 	return gap;
2978 }
2979 
2980 /**
2981  * unmapped_area_topdown() - Find an area between the low_limit and the
2982  * high_limit with the correct alignment and offset at the highest available
2983  * address, all from @info. Note: current->mm is used for the search.
2984  *
2985  * @info: The unmapped area information including the range [low_limit -
2986  * high_limit), the alignment offset and mask.
2987  *
2988  * Return: A memory address or -ENOMEM.
2989  */
unmapped_area_topdown(struct vm_unmapped_area_info * info)2990 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2991 {
2992 	unsigned long length, gap, gap_end;
2993 	unsigned long low_limit, high_limit;
2994 	struct vm_area_struct *tmp;
2995 	VMA_ITERATOR(vmi, current->mm, 0);
2996 
2997 	/* Adjust search length to account for worst case alignment overhead */
2998 	length = info->length + info->align_mask + info->start_gap;
2999 	if (length < info->length)
3000 		return -ENOMEM;
3001 
3002 	low_limit = info->low_limit;
3003 	if (low_limit < mmap_min_addr)
3004 		low_limit = mmap_min_addr;
3005 	high_limit = info->high_limit;
3006 retry:
3007 	if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
3008 		return -ENOMEM;
3009 
3010 	gap = vma_iter_end(&vmi) - info->length;
3011 	gap -= (gap - info->align_offset) & info->align_mask;
3012 	gap_end = vma_iter_end(&vmi);
3013 	tmp = vma_next(&vmi);
3014 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
3015 		if (vm_start_gap(tmp) < gap_end) {
3016 			high_limit = vm_start_gap(tmp);
3017 			vma_iter_reset(&vmi);
3018 			goto retry;
3019 		}
3020 	} else {
3021 		tmp = vma_prev(&vmi);
3022 		if (tmp && vm_end_gap(tmp) > gap) {
3023 			high_limit = tmp->vm_start;
3024 			vma_iter_reset(&vmi);
3025 			goto retry;
3026 		}
3027 	}
3028 
3029 	return gap;
3030 }
3031 
3032 /*
3033  * Verify that the stack growth is acceptable and
3034  * update accounting. This is shared with both the
3035  * grow-up and grow-down cases.
3036  */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)3037 static int acct_stack_growth(struct vm_area_struct *vma,
3038 			     unsigned long size, unsigned long grow)
3039 {
3040 	struct mm_struct *mm = vma->vm_mm;
3041 	unsigned long new_start;
3042 
3043 	/* address space limit tests */
3044 	if (!may_expand_vm(mm, vma->vm_flags, grow))
3045 		return -ENOMEM;
3046 
3047 	/* Stack limit test */
3048 	if (size > rlimit(RLIMIT_STACK))
3049 		return -ENOMEM;
3050 
3051 	/* mlock limit tests */
3052 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
3053 		return -ENOMEM;
3054 
3055 	/* Check to ensure the stack will not grow into a hugetlb-only region */
3056 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
3057 			vma->vm_end - size;
3058 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
3059 		return -EFAULT;
3060 
3061 	/*
3062 	 * Overcommit..  This must be the final test, as it will
3063 	 * update security statistics.
3064 	 */
3065 	if (security_vm_enough_memory_mm(mm, grow))
3066 		return -ENOMEM;
3067 
3068 	return 0;
3069 }
3070 
3071 #if defined(CONFIG_STACK_GROWSUP)
3072 /*
3073  * PA-RISC uses this for its stack.
3074  * vma is the last one with address > vma->vm_end.  Have to extend vma.
3075  */
expand_upwards(struct vm_area_struct * vma,unsigned long address)3076 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
3077 {
3078 	struct mm_struct *mm = vma->vm_mm;
3079 	struct vm_area_struct *next;
3080 	unsigned long gap_addr;
3081 	int error = 0;
3082 	VMA_ITERATOR(vmi, mm, vma->vm_start);
3083 
3084 	if (!(vma->vm_flags & VM_GROWSUP))
3085 		return -EFAULT;
3086 
3087 	mmap_assert_write_locked(mm);
3088 
3089 	/* Guard against exceeding limits of the address space. */
3090 	address &= PAGE_MASK;
3091 	if (address >= (TASK_SIZE & PAGE_MASK))
3092 		return -ENOMEM;
3093 	address += PAGE_SIZE;
3094 
3095 	/* Enforce stack_guard_gap */
3096 	gap_addr = address + stack_guard_gap;
3097 
3098 	/* Guard against overflow */
3099 	if (gap_addr < address || gap_addr > TASK_SIZE)
3100 		gap_addr = TASK_SIZE;
3101 
3102 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
3103 	if (next && vma_is_accessible(next)) {
3104 		if (!(next->vm_flags & VM_GROWSUP))
3105 			return -ENOMEM;
3106 		/* Check that both stack segments have the same anon_vma? */
3107 	}
3108 
3109 	if (next)
3110 		vma_iter_prev_range_limit(&vmi, address);
3111 
3112 	vma_iter_config(&vmi, vma->vm_start, address);
3113 	if (vma_iter_prealloc(&vmi, vma))
3114 		return -ENOMEM;
3115 
3116 	/* We must make sure the anon_vma is allocated. */
3117 	if (unlikely(anon_vma_prepare(vma))) {
3118 		vma_iter_free(&vmi);
3119 		return -ENOMEM;
3120 	}
3121 
3122 	/* Lock the VMA before expanding to prevent concurrent page faults */
3123 	vma_start_write(vma);
3124 	/* We update the anon VMA tree. */
3125 	anon_vma_lock_write(vma->anon_vma);
3126 
3127 	/* Somebody else might have raced and expanded it already */
3128 	if (address > vma->vm_end) {
3129 		unsigned long size, grow;
3130 
3131 		size = address - vma->vm_start;
3132 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
3133 
3134 		error = -ENOMEM;
3135 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
3136 			error = acct_stack_growth(vma, size, grow);
3137 			if (!error) {
3138 				if (vma->vm_flags & VM_LOCKED)
3139 					mm->locked_vm += grow;
3140 				vm_stat_account(mm, vma->vm_flags, grow);
3141 				anon_vma_interval_tree_pre_update_vma(vma);
3142 				vma->vm_end = address;
3143 				/* Overwrite old entry in mtree. */
3144 				vma_iter_store_overwrite(&vmi, vma);
3145 				anon_vma_interval_tree_post_update_vma(vma);
3146 
3147 				perf_event_mmap(vma);
3148 			}
3149 		}
3150 	}
3151 	anon_vma_unlock_write(vma->anon_vma);
3152 	vma_iter_free(&vmi);
3153 	validate_mm(mm);
3154 	return error;
3155 }
3156 #endif /* CONFIG_STACK_GROWSUP */
3157 
3158 /*
3159  * vma is the first one with address < vma->vm_start.  Have to extend vma.
3160  * mmap_lock held for writing.
3161  */
expand_downwards(struct vm_area_struct * vma,unsigned long address)3162 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
3163 {
3164 	struct mm_struct *mm = vma->vm_mm;
3165 	struct vm_area_struct *prev;
3166 	int error = 0;
3167 	VMA_ITERATOR(vmi, mm, vma->vm_start);
3168 
3169 	if (!(vma->vm_flags & VM_GROWSDOWN))
3170 		return -EFAULT;
3171 
3172 	mmap_assert_write_locked(mm);
3173 
3174 	address &= PAGE_MASK;
3175 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
3176 		return -EPERM;
3177 
3178 	/* Enforce stack_guard_gap */
3179 	prev = vma_prev(&vmi);
3180 	/* Check that both stack segments have the same anon_vma? */
3181 	if (prev) {
3182 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
3183 		    vma_is_accessible(prev) &&
3184 		    (address - prev->vm_end < stack_guard_gap))
3185 			return -ENOMEM;
3186 	}
3187 
3188 	if (prev)
3189 		vma_iter_next_range_limit(&vmi, vma->vm_start);
3190 
3191 	vma_iter_config(&vmi, address, vma->vm_end);
3192 	if (vma_iter_prealloc(&vmi, vma))
3193 		return -ENOMEM;
3194 
3195 	/* We must make sure the anon_vma is allocated. */
3196 	if (unlikely(anon_vma_prepare(vma))) {
3197 		vma_iter_free(&vmi);
3198 		return -ENOMEM;
3199 	}
3200 
3201 	/* Lock the VMA before expanding to prevent concurrent page faults */
3202 	vma_start_write(vma);
3203 	/* We update the anon VMA tree. */
3204 	anon_vma_lock_write(vma->anon_vma);
3205 
3206 	/* Somebody else might have raced and expanded it already */
3207 	if (address < vma->vm_start) {
3208 		unsigned long size, grow;
3209 
3210 		size = vma->vm_end - address;
3211 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
3212 
3213 		error = -ENOMEM;
3214 		if (grow <= vma->vm_pgoff) {
3215 			error = acct_stack_growth(vma, size, grow);
3216 			if (!error) {
3217 				if (vma->vm_flags & VM_LOCKED)
3218 					mm->locked_vm += grow;
3219 				vm_stat_account(mm, vma->vm_flags, grow);
3220 				anon_vma_interval_tree_pre_update_vma(vma);
3221 				vma->vm_start = address;
3222 				vma->vm_pgoff -= grow;
3223 				/* Overwrite old entry in mtree. */
3224 				vma_iter_store_overwrite(&vmi, vma);
3225 				anon_vma_interval_tree_post_update_vma(vma);
3226 
3227 				perf_event_mmap(vma);
3228 			}
3229 		}
3230 	}
3231 	anon_vma_unlock_write(vma->anon_vma);
3232 	vma_iter_free(&vmi);
3233 	validate_mm(mm);
3234 	return error;
3235 }
3236 
__vm_munmap(unsigned long start,size_t len,bool unlock)3237 int __vm_munmap(unsigned long start, size_t len, bool unlock)
3238 {
3239 	int ret;
3240 	struct mm_struct *mm = current->mm;
3241 	LIST_HEAD(uf);
3242 	VMA_ITERATOR(vmi, mm, start);
3243 
3244 	if (mmap_write_lock_killable(mm))
3245 		return -EINTR;
3246 
3247 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3248 	if (ret || !unlock)
3249 		mmap_write_unlock(mm);
3250 
3251 	userfaultfd_unmap_complete(mm, &uf);
3252 	return ret;
3253 }
3254 
3255 /* Insert vm structure into process list sorted by address
3256  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3257  * then i_mmap_rwsem is taken here.
3258  */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3259 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3260 {
3261 	unsigned long charged = vma_pages(vma);
3262 
3263 
3264 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3265 		return -ENOMEM;
3266 
3267 	if ((vma->vm_flags & VM_ACCOUNT) &&
3268 	     security_vm_enough_memory_mm(mm, charged))
3269 		return -ENOMEM;
3270 
3271 	/*
3272 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3273 	 * until its first write fault, when page's anon_vma and index
3274 	 * are set.  But now set the vm_pgoff it will almost certainly
3275 	 * end up with (unless mremap moves it elsewhere before that
3276 	 * first wfault), so /proc/pid/maps tells a consistent story.
3277 	 *
3278 	 * By setting it to reflect the virtual start address of the
3279 	 * vma, merges and splits can happen in a seamless way, just
3280 	 * using the existing file pgoff checks and manipulations.
3281 	 * Similarly in do_mmap and in do_brk_flags.
3282 	 */
3283 	if (vma_is_anonymous(vma)) {
3284 		BUG_ON(vma->anon_vma);
3285 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3286 	}
3287 
3288 	if (vma_link(mm, vma)) {
3289 		if (vma->vm_flags & VM_ACCOUNT)
3290 			vm_unacct_memory(charged);
3291 		return -ENOMEM;
3292 	}
3293 
3294 	return 0;
3295 }
3296