xref: /linux/tools/perf/util/annotate-data.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Convert sample address to data type using DWARF debug info.
4  *
5  * Written by Namhyung Kim <namhyung@kernel.org>
6  */
7 
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <inttypes.h>
11 #include <linux/zalloc.h>
12 
13 #include "annotate.h"
14 #include "annotate-data.h"
15 #include "debuginfo.h"
16 #include "debug.h"
17 #include "dso.h"
18 #include "dwarf-regs.h"
19 #include "evsel.h"
20 #include "evlist.h"
21 #include "map.h"
22 #include "map_symbol.h"
23 #include "sort.h"
24 #include "strbuf.h"
25 #include "symbol.h"
26 #include "symbol_conf.h"
27 #include "thread.h"
28 
29 /* register number of the stack pointer */
30 #define X86_REG_SP 7
31 
32 static void delete_var_types(struct die_var_type *var_types);
33 
34 #define pr_debug_dtp(fmt, ...)					\
35 do {								\
36 	if (debug_type_profile)					\
37 		pr_info(fmt, ##__VA_ARGS__);			\
38 	else							\
39 		pr_debug3(fmt, ##__VA_ARGS__);			\
40 } while (0)
41 
pr_debug_type_name(Dwarf_Die * die,enum type_state_kind kind)42 void pr_debug_type_name(Dwarf_Die *die, enum type_state_kind kind)
43 {
44 	struct strbuf sb;
45 	char *str;
46 	Dwarf_Word size = 0;
47 
48 	if (!debug_type_profile && verbose < 3)
49 		return;
50 
51 	switch (kind) {
52 	case TSR_KIND_INVALID:
53 		pr_info("\n");
54 		return;
55 	case TSR_KIND_PERCPU_BASE:
56 		pr_info(" percpu base\n");
57 		return;
58 	case TSR_KIND_CONST:
59 		pr_info(" constant\n");
60 		return;
61 	case TSR_KIND_POINTER:
62 		pr_info(" pointer");
63 		/* it also prints the type info */
64 		break;
65 	case TSR_KIND_CANARY:
66 		pr_info(" stack canary\n");
67 		return;
68 	case TSR_KIND_TYPE:
69 	default:
70 		break;
71 	}
72 
73 	dwarf_aggregate_size(die, &size);
74 
75 	strbuf_init(&sb, 32);
76 	die_get_typename_from_type(die, &sb);
77 	str = strbuf_detach(&sb, NULL);
78 	pr_info(" type='%s' size=%#lx (die:%#lx)\n",
79 		str, (long)size, (long)dwarf_dieoffset(die));
80 	free(str);
81 }
82 
pr_debug_location(Dwarf_Die * die,u64 pc,int reg)83 static void pr_debug_location(Dwarf_Die *die, u64 pc, int reg)
84 {
85 	ptrdiff_t off = 0;
86 	Dwarf_Attribute attr;
87 	Dwarf_Addr base, start, end;
88 	Dwarf_Op *ops;
89 	size_t nops;
90 
91 	if (!debug_type_profile && verbose < 3)
92 		return;
93 
94 	if (dwarf_attr(die, DW_AT_location, &attr) == NULL)
95 		return;
96 
97 	while ((off = dwarf_getlocations(&attr, off, &base, &start, &end, &ops, &nops)) > 0) {
98 		if (reg != DWARF_REG_PC && end <= pc)
99 			continue;
100 		if (reg != DWARF_REG_PC && start > pc)
101 			break;
102 
103 		pr_info(" variable location: ");
104 		switch (ops->atom) {
105 		case DW_OP_reg0 ...DW_OP_reg31:
106 			pr_info("reg%d\n", ops->atom - DW_OP_reg0);
107 			break;
108 		case DW_OP_breg0 ...DW_OP_breg31:
109 			pr_info("base=reg%d, offset=%#lx\n",
110 				ops->atom - DW_OP_breg0, (long)ops->number);
111 			break;
112 		case DW_OP_regx:
113 			pr_info("reg%ld\n", (long)ops->number);
114 			break;
115 		case DW_OP_bregx:
116 			pr_info("base=reg%ld, offset=%#lx\n",
117 				(long)ops->number, (long)ops->number2);
118 			break;
119 		case DW_OP_fbreg:
120 			pr_info("use frame base, offset=%#lx\n", (long)ops->number);
121 			break;
122 		case DW_OP_addr:
123 			pr_info("address=%#lx\n", (long)ops->number);
124 			break;
125 		default:
126 			pr_info("unknown: code=%#x, number=%#lx\n",
127 				ops->atom, (long)ops->number);
128 			break;
129 		}
130 		break;
131 	}
132 }
133 
pr_debug_scope(Dwarf_Die * scope_die)134 static void pr_debug_scope(Dwarf_Die *scope_die)
135 {
136 	int tag;
137 
138 	if (!debug_type_profile && verbose < 3)
139 		return;
140 
141 	pr_info("(die:%lx) ", (long)dwarf_dieoffset(scope_die));
142 
143 	tag = dwarf_tag(scope_die);
144 	if (tag == DW_TAG_subprogram)
145 		pr_info("[function] %s\n", dwarf_diename(scope_die));
146 	else if (tag == DW_TAG_inlined_subroutine)
147 		pr_info("[inlined] %s\n", dwarf_diename(scope_die));
148 	else if (tag == DW_TAG_lexical_block)
149 		pr_info("[block]\n");
150 	else
151 		pr_info("[unknown] tag=%x\n", tag);
152 }
153 
has_reg_type(struct type_state * state,int reg)154 bool has_reg_type(struct type_state *state, int reg)
155 {
156 	return (unsigned)reg < ARRAY_SIZE(state->regs);
157 }
158 
init_type_state(struct type_state * state,struct arch * arch)159 static void init_type_state(struct type_state *state, struct arch *arch)
160 {
161 	memset(state, 0, sizeof(*state));
162 	INIT_LIST_HEAD(&state->stack_vars);
163 
164 	if (arch__is(arch, "x86")) {
165 		state->regs[0].caller_saved = true;
166 		state->regs[1].caller_saved = true;
167 		state->regs[2].caller_saved = true;
168 		state->regs[4].caller_saved = true;
169 		state->regs[5].caller_saved = true;
170 		state->regs[8].caller_saved = true;
171 		state->regs[9].caller_saved = true;
172 		state->regs[10].caller_saved = true;
173 		state->regs[11].caller_saved = true;
174 		state->ret_reg = 0;
175 		state->stack_reg = X86_REG_SP;
176 	}
177 }
178 
exit_type_state(struct type_state * state)179 static void exit_type_state(struct type_state *state)
180 {
181 	struct type_state_stack *stack, *tmp;
182 
183 	list_for_each_entry_safe(stack, tmp, &state->stack_vars, list) {
184 		list_del(&stack->list);
185 		free(stack);
186 	}
187 }
188 
189 /*
190  * Compare type name and size to maintain them in a tree.
191  * I'm not sure if DWARF would have information of a single type in many
192  * different places (compilation units).  If not, it could compare the
193  * offset of the type entry in the .debug_info section.
194  */
data_type_cmp(const void * _key,const struct rb_node * node)195 static int data_type_cmp(const void *_key, const struct rb_node *node)
196 {
197 	const struct annotated_data_type *key = _key;
198 	struct annotated_data_type *type;
199 
200 	type = rb_entry(node, struct annotated_data_type, node);
201 
202 	if (key->self.size != type->self.size)
203 		return key->self.size - type->self.size;
204 	return strcmp(key->self.type_name, type->self.type_name);
205 }
206 
data_type_less(struct rb_node * node_a,const struct rb_node * node_b)207 static bool data_type_less(struct rb_node *node_a, const struct rb_node *node_b)
208 {
209 	struct annotated_data_type *a, *b;
210 
211 	a = rb_entry(node_a, struct annotated_data_type, node);
212 	b = rb_entry(node_b, struct annotated_data_type, node);
213 
214 	if (a->self.size != b->self.size)
215 		return a->self.size < b->self.size;
216 	return strcmp(a->self.type_name, b->self.type_name) < 0;
217 }
218 
219 /* Recursively add new members for struct/union */
__add_member_cb(Dwarf_Die * die,void * arg)220 static int __add_member_cb(Dwarf_Die *die, void *arg)
221 {
222 	struct annotated_member *parent = arg;
223 	struct annotated_member *member;
224 	Dwarf_Die member_type, die_mem;
225 	Dwarf_Word size, loc, bit_size = 0;
226 	Dwarf_Attribute attr;
227 	struct strbuf sb;
228 	int tag;
229 
230 	if (dwarf_tag(die) != DW_TAG_member)
231 		return DIE_FIND_CB_SIBLING;
232 
233 	member = zalloc(sizeof(*member));
234 	if (member == NULL)
235 		return DIE_FIND_CB_END;
236 
237 	strbuf_init(&sb, 32);
238 	die_get_typename(die, &sb);
239 
240 	__die_get_real_type(die, &member_type);
241 	if (dwarf_tag(&member_type) == DW_TAG_typedef)
242 		die_get_real_type(&member_type, &die_mem);
243 	else
244 		die_mem = member_type;
245 
246 	if (dwarf_aggregate_size(&die_mem, &size) < 0)
247 		size = 0;
248 
249 	if (dwarf_attr_integrate(die, DW_AT_data_member_location, &attr))
250 		dwarf_formudata(&attr, &loc);
251 	else {
252 		/* bitfield member */
253 		if (dwarf_attr_integrate(die, DW_AT_data_bit_offset, &attr) &&
254 		    dwarf_formudata(&attr, &loc) == 0)
255 			loc /= 8;
256 		else
257 			loc = 0;
258 
259 		if (dwarf_attr_integrate(die, DW_AT_bit_size, &attr) &&
260 		    dwarf_formudata(&attr, &bit_size) == 0)
261 			size = (bit_size + 7) / 8;
262 	}
263 
264 	member->type_name = strbuf_detach(&sb, NULL);
265 	/* member->var_name can be NULL */
266 	if (dwarf_diename(die)) {
267 		if (bit_size) {
268 			if (asprintf(&member->var_name, "%s:%ld",
269 				     dwarf_diename(die), (long)bit_size) < 0)
270 				member->var_name = NULL;
271 		} else {
272 			member->var_name = strdup(dwarf_diename(die));
273 		}
274 
275 		if (member->var_name == NULL) {
276 			free(member);
277 			return DIE_FIND_CB_END;
278 		}
279 	}
280 	member->size = size;
281 	member->offset = loc + parent->offset;
282 	INIT_LIST_HEAD(&member->children);
283 	list_add_tail(&member->node, &parent->children);
284 
285 	tag = dwarf_tag(&die_mem);
286 	switch (tag) {
287 	case DW_TAG_structure_type:
288 	case DW_TAG_union_type:
289 		die_find_child(&die_mem, __add_member_cb, member, &die_mem);
290 		break;
291 	default:
292 		break;
293 	}
294 	return DIE_FIND_CB_SIBLING;
295 }
296 
add_member_types(struct annotated_data_type * parent,Dwarf_Die * type)297 static void add_member_types(struct annotated_data_type *parent, Dwarf_Die *type)
298 {
299 	Dwarf_Die die_mem;
300 
301 	die_find_child(type, __add_member_cb, &parent->self, &die_mem);
302 }
303 
delete_members(struct annotated_member * member)304 static void delete_members(struct annotated_member *member)
305 {
306 	struct annotated_member *child, *tmp;
307 
308 	list_for_each_entry_safe(child, tmp, &member->children, node) {
309 		list_del(&child->node);
310 		delete_members(child);
311 		zfree(&child->type_name);
312 		zfree(&child->var_name);
313 		free(child);
314 	}
315 }
316 
dso__findnew_data_type(struct dso * dso,Dwarf_Die * type_die)317 static struct annotated_data_type *dso__findnew_data_type(struct dso *dso,
318 							  Dwarf_Die *type_die)
319 {
320 	struct annotated_data_type *result = NULL;
321 	struct annotated_data_type key;
322 	struct rb_node *node;
323 	struct strbuf sb;
324 	char *type_name;
325 	Dwarf_Word size;
326 
327 	strbuf_init(&sb, 32);
328 	if (die_get_typename_from_type(type_die, &sb) < 0)
329 		strbuf_add(&sb, "(unknown type)", 14);
330 	type_name = strbuf_detach(&sb, NULL);
331 
332 	if (dwarf_tag(type_die) == DW_TAG_typedef)
333 		die_get_real_type(type_die, type_die);
334 
335 	dwarf_aggregate_size(type_die, &size);
336 
337 	/* Check existing nodes in dso->data_types tree */
338 	key.self.type_name = type_name;
339 	key.self.size = size;
340 	node = rb_find(&key, dso__data_types(dso), data_type_cmp);
341 	if (node) {
342 		result = rb_entry(node, struct annotated_data_type, node);
343 		free(type_name);
344 		return result;
345 	}
346 
347 	/* If not, add a new one */
348 	result = zalloc(sizeof(*result));
349 	if (result == NULL) {
350 		free(type_name);
351 		return NULL;
352 	}
353 
354 	result->self.type_name = type_name;
355 	result->self.size = size;
356 	INIT_LIST_HEAD(&result->self.children);
357 
358 	if (symbol_conf.annotate_data_member)
359 		add_member_types(result, type_die);
360 
361 	rb_add(&result->node, dso__data_types(dso), data_type_less);
362 	return result;
363 }
364 
find_cu_die(struct debuginfo * di,u64 pc,Dwarf_Die * cu_die)365 static bool find_cu_die(struct debuginfo *di, u64 pc, Dwarf_Die *cu_die)
366 {
367 	Dwarf_Off off, next_off;
368 	size_t header_size;
369 
370 	if (dwarf_addrdie(di->dbg, pc, cu_die) != NULL)
371 		return cu_die;
372 
373 	/*
374 	 * There are some kernels don't have full aranges and contain only a few
375 	 * aranges entries.  Fallback to iterate all CU entries in .debug_info
376 	 * in case it's missing.
377 	 */
378 	off = 0;
379 	while (dwarf_nextcu(di->dbg, off, &next_off, &header_size,
380 			    NULL, NULL, NULL) == 0) {
381 		if (dwarf_offdie(di->dbg, off + header_size, cu_die) &&
382 		    dwarf_haspc(cu_die, pc))
383 			return true;
384 
385 		off = next_off;
386 	}
387 	return false;
388 }
389 
390 enum type_match_result {
391 	PERF_TMR_UNKNOWN = 0,
392 	PERF_TMR_OK,
393 	PERF_TMR_NO_TYPE,
394 	PERF_TMR_NO_POINTER,
395 	PERF_TMR_NO_SIZE,
396 	PERF_TMR_BAD_OFFSET,
397 	PERF_TMR_BAIL_OUT,
398 };
399 
match_result_str(enum type_match_result tmr)400 static const char *match_result_str(enum type_match_result tmr)
401 {
402 	switch (tmr) {
403 	case PERF_TMR_OK:
404 		return "Good!";
405 	case PERF_TMR_NO_TYPE:
406 		return "no type information";
407 	case PERF_TMR_NO_POINTER:
408 		return "no/void pointer";
409 	case PERF_TMR_NO_SIZE:
410 		return "type size is unknown";
411 	case PERF_TMR_BAD_OFFSET:
412 		return "offset bigger than size";
413 	case PERF_TMR_UNKNOWN:
414 	case PERF_TMR_BAIL_OUT:
415 	default:
416 		return "invalid state";
417 	}
418 }
419 
is_pointer_type(Dwarf_Die * type_die)420 static bool is_pointer_type(Dwarf_Die *type_die)
421 {
422 	int tag = dwarf_tag(type_die);
423 
424 	return tag == DW_TAG_pointer_type || tag == DW_TAG_array_type;
425 }
426 
is_compound_type(Dwarf_Die * type_die)427 static bool is_compound_type(Dwarf_Die *type_die)
428 {
429 	int tag = dwarf_tag(type_die);
430 
431 	return tag == DW_TAG_structure_type || tag == DW_TAG_union_type;
432 }
433 
434 /* returns if Type B has better information than Type A */
is_better_type(Dwarf_Die * type_a,Dwarf_Die * type_b)435 static bool is_better_type(Dwarf_Die *type_a, Dwarf_Die *type_b)
436 {
437 	Dwarf_Word size_a, size_b;
438 	Dwarf_Die die_a, die_b;
439 
440 	/* pointer type is preferred */
441 	if (is_pointer_type(type_a) != is_pointer_type(type_b))
442 		return is_pointer_type(type_b);
443 
444 	if (is_pointer_type(type_b)) {
445 		/*
446 		 * We want to compare the target type, but 'void *' can fail to
447 		 * get the target type.
448 		 */
449 		if (die_get_real_type(type_a, &die_a) == NULL)
450 			return true;
451 		if (die_get_real_type(type_b, &die_b) == NULL)
452 			return false;
453 
454 		type_a = &die_a;
455 		type_b = &die_b;
456 	}
457 
458 	/* bigger type is preferred */
459 	if (dwarf_aggregate_size(type_a, &size_a) < 0 ||
460 	    dwarf_aggregate_size(type_b, &size_b) < 0)
461 		return false;
462 
463 	if (size_a != size_b)
464 		return size_a < size_b;
465 
466 	/* struct or union is preferred */
467 	if (is_compound_type(type_a) != is_compound_type(type_b))
468 		return is_compound_type(type_b);
469 
470 	/* typedef is preferred */
471 	if (dwarf_tag(type_b) == DW_TAG_typedef)
472 		return true;
473 
474 	return false;
475 }
476 
477 /* The type info will be saved in @type_die */
check_variable(struct data_loc_info * dloc,Dwarf_Die * var_die,Dwarf_Die * type_die,int reg,int offset,bool is_fbreg)478 static enum type_match_result check_variable(struct data_loc_info *dloc,
479 					     Dwarf_Die *var_die,
480 					     Dwarf_Die *type_die, int reg,
481 					     int offset, bool is_fbreg)
482 {
483 	Dwarf_Word size;
484 	bool needs_pointer = true;
485 	Dwarf_Die sized_type;
486 
487 	if (reg == DWARF_REG_PC)
488 		needs_pointer = false;
489 	else if (reg == dloc->fbreg || is_fbreg)
490 		needs_pointer = false;
491 	else if (arch__is(dloc->arch, "x86") && reg == X86_REG_SP)
492 		needs_pointer = false;
493 
494 	/* Get the type of the variable */
495 	if (__die_get_real_type(var_die, type_die) == NULL)
496 		return PERF_TMR_NO_TYPE;
497 
498 	/*
499 	 * Usually it expects a pointer type for a memory access.
500 	 * Convert to a real type it points to.  But global variables
501 	 * and local variables are accessed directly without a pointer.
502 	 */
503 	if (needs_pointer) {
504 		if (!is_pointer_type(type_die) ||
505 		    __die_get_real_type(type_die, type_die) == NULL)
506 			return PERF_TMR_NO_POINTER;
507 	}
508 
509 	if (dwarf_tag(type_die) == DW_TAG_typedef)
510 		die_get_real_type(type_die, &sized_type);
511 	else
512 		sized_type = *type_die;
513 
514 	/* Get the size of the actual type */
515 	if (dwarf_aggregate_size(&sized_type, &size) < 0)
516 		return PERF_TMR_NO_SIZE;
517 
518 	/* Minimal sanity check */
519 	if ((unsigned)offset >= size)
520 		return PERF_TMR_BAD_OFFSET;
521 
522 	return PERF_TMR_OK;
523 }
524 
find_stack_state(struct type_state * state,int offset)525 struct type_state_stack *find_stack_state(struct type_state *state,
526 						 int offset)
527 {
528 	struct type_state_stack *stack;
529 
530 	list_for_each_entry(stack, &state->stack_vars, list) {
531 		if (offset == stack->offset)
532 			return stack;
533 
534 		if (stack->compound && stack->offset < offset &&
535 		    offset < stack->offset + stack->size)
536 			return stack;
537 	}
538 	return NULL;
539 }
540 
set_stack_state(struct type_state_stack * stack,int offset,u8 kind,Dwarf_Die * type_die)541 void set_stack_state(struct type_state_stack *stack, int offset, u8 kind,
542 			    Dwarf_Die *type_die)
543 {
544 	int tag;
545 	Dwarf_Word size;
546 
547 	if (dwarf_aggregate_size(type_die, &size) < 0)
548 		size = 0;
549 
550 	tag = dwarf_tag(type_die);
551 
552 	stack->type = *type_die;
553 	stack->size = size;
554 	stack->offset = offset;
555 	stack->kind = kind;
556 
557 	switch (tag) {
558 	case DW_TAG_structure_type:
559 	case DW_TAG_union_type:
560 		stack->compound = (kind != TSR_KIND_POINTER);
561 		break;
562 	default:
563 		stack->compound = false;
564 		break;
565 	}
566 }
567 
findnew_stack_state(struct type_state * state,int offset,u8 kind,Dwarf_Die * type_die)568 struct type_state_stack *findnew_stack_state(struct type_state *state,
569 						    int offset, u8 kind,
570 						    Dwarf_Die *type_die)
571 {
572 	struct type_state_stack *stack = find_stack_state(state, offset);
573 
574 	if (stack) {
575 		set_stack_state(stack, offset, kind, type_die);
576 		return stack;
577 	}
578 
579 	stack = malloc(sizeof(*stack));
580 	if (stack) {
581 		set_stack_state(stack, offset, kind, type_die);
582 		list_add(&stack->list, &state->stack_vars);
583 	}
584 	return stack;
585 }
586 
587 /* Maintain a cache for quick global variable lookup */
588 struct global_var_entry {
589 	struct rb_node node;
590 	char *name;
591 	u64 start;
592 	u64 end;
593 	u64 die_offset;
594 };
595 
global_var_cmp(const void * _key,const struct rb_node * node)596 static int global_var_cmp(const void *_key, const struct rb_node *node)
597 {
598 	const u64 addr = (uintptr_t)_key;
599 	struct global_var_entry *gvar;
600 
601 	gvar = rb_entry(node, struct global_var_entry, node);
602 
603 	if (gvar->start <= addr && addr < gvar->end)
604 		return 0;
605 	return gvar->start > addr ? -1 : 1;
606 }
607 
global_var_less(struct rb_node * node_a,const struct rb_node * node_b)608 static bool global_var_less(struct rb_node *node_a, const struct rb_node *node_b)
609 {
610 	struct global_var_entry *gvar_a, *gvar_b;
611 
612 	gvar_a = rb_entry(node_a, struct global_var_entry, node);
613 	gvar_b = rb_entry(node_b, struct global_var_entry, node);
614 
615 	return gvar_a->start < gvar_b->start;
616 }
617 
global_var__find(struct data_loc_info * dloc,u64 addr)618 static struct global_var_entry *global_var__find(struct data_loc_info *dloc, u64 addr)
619 {
620 	struct dso *dso = map__dso(dloc->ms->map);
621 	struct rb_node *node;
622 
623 	node = rb_find((void *)(uintptr_t)addr, dso__global_vars(dso), global_var_cmp);
624 	if (node == NULL)
625 		return NULL;
626 
627 	return rb_entry(node, struct global_var_entry, node);
628 }
629 
global_var__add(struct data_loc_info * dloc,u64 addr,const char * name,Dwarf_Die * type_die)630 static bool global_var__add(struct data_loc_info *dloc, u64 addr,
631 			    const char *name, Dwarf_Die *type_die)
632 {
633 	struct dso *dso = map__dso(dloc->ms->map);
634 	struct global_var_entry *gvar;
635 	Dwarf_Word size;
636 
637 	if (dwarf_aggregate_size(type_die, &size) < 0)
638 		return false;
639 
640 	gvar = malloc(sizeof(*gvar));
641 	if (gvar == NULL)
642 		return false;
643 
644 	gvar->name = name ? strdup(name) : NULL;
645 	if (name && gvar->name == NULL) {
646 		free(gvar);
647 		return false;
648 	}
649 
650 	gvar->start = addr;
651 	gvar->end = addr + size;
652 	gvar->die_offset = dwarf_dieoffset(type_die);
653 
654 	rb_add(&gvar->node, dso__global_vars(dso), global_var_less);
655 	return true;
656 }
657 
global_var_type__tree_delete(struct rb_root * root)658 void global_var_type__tree_delete(struct rb_root *root)
659 {
660 	struct global_var_entry *gvar;
661 
662 	while (!RB_EMPTY_ROOT(root)) {
663 		struct rb_node *node = rb_first(root);
664 
665 		rb_erase(node, root);
666 		gvar = rb_entry(node, struct global_var_entry, node);
667 		zfree(&gvar->name);
668 		free(gvar);
669 	}
670 }
671 
get_global_var_info(struct data_loc_info * dloc,u64 addr,const char ** var_name,int * var_offset)672 bool get_global_var_info(struct data_loc_info *dloc, u64 addr,
673 				const char **var_name, int *var_offset)
674 {
675 	struct addr_location al;
676 	struct symbol *sym;
677 	u64 mem_addr;
678 
679 	/* Kernel symbols might be relocated */
680 	mem_addr = addr + map__reloc(dloc->ms->map);
681 
682 	addr_location__init(&al);
683 	sym = thread__find_symbol_fb(dloc->thread, dloc->cpumode,
684 				     mem_addr, &al);
685 	if (sym) {
686 		*var_name = sym->name;
687 		/* Calculate type offset from the start of variable */
688 		*var_offset = mem_addr - map__unmap_ip(al.map, sym->start);
689 	} else {
690 		*var_name = NULL;
691 	}
692 	addr_location__exit(&al);
693 	if (*var_name == NULL)
694 		return false;
695 
696 	return true;
697 }
698 
global_var__collect(struct data_loc_info * dloc)699 static void global_var__collect(struct data_loc_info *dloc)
700 {
701 	Dwarf *dwarf = dloc->di->dbg;
702 	Dwarf_Off off, next_off;
703 	Dwarf_Die cu_die, type_die;
704 	size_t header_size;
705 
706 	/* Iterate all CU and collect global variables that have no location in a register. */
707 	off = 0;
708 	while (dwarf_nextcu(dwarf, off, &next_off, &header_size,
709 			    NULL, NULL, NULL) == 0) {
710 		struct die_var_type *var_types = NULL;
711 		struct die_var_type *pos;
712 
713 		if (dwarf_offdie(dwarf, off + header_size, &cu_die) == NULL) {
714 			off = next_off;
715 			continue;
716 		}
717 
718 		die_collect_global_vars(&cu_die, &var_types);
719 
720 		for (pos = var_types; pos; pos = pos->next) {
721 			const char *var_name = NULL;
722 			int var_offset = 0;
723 
724 			if (pos->reg != -1)
725 				continue;
726 
727 			if (!dwarf_offdie(dwarf, pos->die_off, &type_die))
728 				continue;
729 
730 			if (!get_global_var_info(dloc, pos->addr, &var_name,
731 						 &var_offset))
732 				continue;
733 
734 			if (var_offset != 0)
735 				continue;
736 
737 			global_var__add(dloc, pos->addr, var_name, &type_die);
738 		}
739 
740 		delete_var_types(var_types);
741 
742 		off = next_off;
743 	}
744 }
745 
get_global_var_type(Dwarf_Die * cu_die,struct data_loc_info * dloc,u64 ip,u64 var_addr,int * var_offset,Dwarf_Die * type_die)746 bool get_global_var_type(Dwarf_Die *cu_die, struct data_loc_info *dloc,
747 				u64 ip, u64 var_addr, int *var_offset,
748 				Dwarf_Die *type_die)
749 {
750 	u64 pc;
751 	int offset;
752 	const char *var_name = NULL;
753 	struct global_var_entry *gvar;
754 	struct dso *dso = map__dso(dloc->ms->map);
755 	Dwarf_Die var_die;
756 
757 	if (RB_EMPTY_ROOT(dso__global_vars(dso)))
758 		global_var__collect(dloc);
759 
760 	gvar = global_var__find(dloc, var_addr);
761 	if (gvar) {
762 		if (!dwarf_offdie(dloc->di->dbg, gvar->die_offset, type_die))
763 			return false;
764 
765 		*var_offset = var_addr - gvar->start;
766 		return true;
767 	}
768 
769 	/* Try to get the variable by address first */
770 	if (die_find_variable_by_addr(cu_die, var_addr, &var_die, &offset) &&
771 	    check_variable(dloc, &var_die, type_die, DWARF_REG_PC, offset,
772 			   /*is_fbreg=*/false) == PERF_TMR_OK) {
773 		var_name = dwarf_diename(&var_die);
774 		*var_offset = offset;
775 		goto ok;
776 	}
777 
778 	if (!get_global_var_info(dloc, var_addr, &var_name, var_offset))
779 		return false;
780 
781 	pc = map__rip_2objdump(dloc->ms->map, ip);
782 
783 	/* Try to get the name of global variable */
784 	if (die_find_variable_at(cu_die, var_name, pc, &var_die) &&
785 	    check_variable(dloc, &var_die, type_die, DWARF_REG_PC, *var_offset,
786 			   /*is_fbreg=*/false) == PERF_TMR_OK)
787 		goto ok;
788 
789 	return false;
790 
791 ok:
792 	/* The address should point to the start of the variable */
793 	global_var__add(dloc, var_addr - *var_offset, var_name, type_die);
794 	return true;
795 }
796 
die_is_same(Dwarf_Die * die_a,Dwarf_Die * die_b)797 static bool die_is_same(Dwarf_Die *die_a, Dwarf_Die *die_b)
798 {
799 	return (die_a->cu == die_b->cu) && (die_a->addr == die_b->addr);
800 }
801 
802 /**
803  * update_var_state - Update type state using given variables
804  * @state: type state table
805  * @dloc: data location info
806  * @addr: instruction address to match with variable
807  * @insn_offset: instruction offset (for debug)
808  * @var_types: list of variables with type info
809  *
810  * This function fills the @state table using @var_types info.  Each variable
811  * is used only at the given location and updates an entry in the table.
812  */
update_var_state(struct type_state * state,struct data_loc_info * dloc,u64 addr,u64 insn_offset,struct die_var_type * var_types)813 static void update_var_state(struct type_state *state, struct data_loc_info *dloc,
814 			     u64 addr, u64 insn_offset, struct die_var_type *var_types)
815 {
816 	Dwarf_Die mem_die;
817 	struct die_var_type *var;
818 	int fbreg = dloc->fbreg;
819 	int fb_offset = 0;
820 
821 	if (dloc->fb_cfa) {
822 		if (die_get_cfa(dloc->di->dbg, addr, &fbreg, &fb_offset) < 0)
823 			fbreg = -1;
824 	}
825 
826 	for (var = var_types; var != NULL; var = var->next) {
827 		if (var->addr != addr)
828 			continue;
829 		/* Get the type DIE using the offset */
830 		if (!dwarf_offdie(dloc->di->dbg, var->die_off, &mem_die))
831 			continue;
832 
833 		if (var->reg == DWARF_REG_FB || var->reg == fbreg) {
834 			int offset = var->offset;
835 			struct type_state_stack *stack;
836 
837 			if (var->reg != DWARF_REG_FB)
838 				offset -= fb_offset;
839 
840 			stack = find_stack_state(state, offset);
841 			if (stack && stack->kind == TSR_KIND_TYPE &&
842 			    !is_better_type(&stack->type, &mem_die))
843 				continue;
844 
845 			findnew_stack_state(state, offset, TSR_KIND_TYPE,
846 					    &mem_die);
847 
848 			pr_debug_dtp("var [%"PRIx64"] -%#x(stack)",
849 				     insn_offset, -offset);
850 			pr_debug_type_name(&mem_die, TSR_KIND_TYPE);
851 		} else if (has_reg_type(state, var->reg) && var->offset == 0) {
852 			struct type_state_reg *reg;
853 			Dwarf_Die orig_type;
854 
855 			reg = &state->regs[var->reg];
856 
857 			if (reg->ok && reg->kind == TSR_KIND_TYPE &&
858 			    !is_better_type(&reg->type, &mem_die))
859 				continue;
860 
861 			orig_type = reg->type;
862 
863 			reg->type = mem_die;
864 			reg->kind = TSR_KIND_TYPE;
865 			reg->ok = true;
866 
867 			pr_debug_dtp("var [%"PRIx64"] reg%d",
868 				     insn_offset, var->reg);
869 			pr_debug_type_name(&mem_die, TSR_KIND_TYPE);
870 
871 			/*
872 			 * If this register is directly copied from another and it gets a
873 			 * better type, also update the type of the source register.  This
874 			 * is usually the case of container_of() macro with offset of 0.
875 			 */
876 			if (has_reg_type(state, reg->copied_from)) {
877 				struct type_state_reg *copy_reg;
878 
879 				copy_reg = &state->regs[reg->copied_from];
880 
881 				/* TODO: check if type is compatible or embedded */
882 				if (!copy_reg->ok || (copy_reg->kind != TSR_KIND_TYPE) ||
883 				    !die_is_same(&copy_reg->type, &orig_type) ||
884 				    !is_better_type(&copy_reg->type, &mem_die))
885 					continue;
886 
887 				copy_reg->type = mem_die;
888 
889 				pr_debug_dtp("var [%"PRIx64"] copyback reg%d",
890 					     insn_offset, reg->copied_from);
891 				pr_debug_type_name(&mem_die, TSR_KIND_TYPE);
892 			}
893 		}
894 	}
895 }
896 
897 /**
898  * update_insn_state - Update type state for an instruction
899  * @state: type state table
900  * @dloc: data location info
901  * @cu_die: compile unit debug entry
902  * @dl: disasm line for the instruction
903  *
904  * This function updates the @state table for the target operand of the
905  * instruction at @dl if it transfers the type like MOV on x86.  Since it
906  * tracks the type, it won't care about the values like in arithmetic
907  * instructions like ADD/SUB/MUL/DIV and INC/DEC.
908  *
909  * Note that ops->reg2 is only available when both mem_ref and multi_regs
910  * are true.
911  */
update_insn_state(struct type_state * state,struct data_loc_info * dloc,Dwarf_Die * cu_die,struct disasm_line * dl)912 static void update_insn_state(struct type_state *state, struct data_loc_info *dloc,
913 			      Dwarf_Die *cu_die, struct disasm_line *dl)
914 {
915 	if (dloc->arch->update_insn_state)
916 		dloc->arch->update_insn_state(state, dloc, cu_die, dl);
917 }
918 
919 /*
920  * Prepend this_blocks (from the outer scope) to full_blocks, removing
921  * duplicate disasm line.
922  */
prepend_basic_blocks(struct list_head * this_blocks,struct list_head * full_blocks)923 static void prepend_basic_blocks(struct list_head *this_blocks,
924 				 struct list_head *full_blocks)
925 {
926 	struct annotated_basic_block *first_bb, *last_bb;
927 
928 	last_bb = list_last_entry(this_blocks, typeof(*last_bb), list);
929 	first_bb = list_first_entry(full_blocks, typeof(*first_bb), list);
930 
931 	if (list_empty(full_blocks))
932 		goto out;
933 
934 	/* Last insn in this_blocks should be same as first insn in full_blocks */
935 	if (last_bb->end != first_bb->begin) {
936 		pr_debug("prepend basic blocks: mismatched disasm line %"PRIx64" -> %"PRIx64"\n",
937 			 last_bb->end->al.offset, first_bb->begin->al.offset);
938 		goto out;
939 	}
940 
941 	/* Is the basic block have only one disasm_line? */
942 	if (last_bb->begin == last_bb->end) {
943 		list_del(&last_bb->list);
944 		free(last_bb);
945 		goto out;
946 	}
947 
948 	/* Point to the insn before the last when adding this block to full_blocks */
949 	last_bb->end = list_prev_entry(last_bb->end, al.node);
950 
951 out:
952 	list_splice(this_blocks, full_blocks);
953 }
954 
delete_basic_blocks(struct list_head * basic_blocks)955 static void delete_basic_blocks(struct list_head *basic_blocks)
956 {
957 	struct annotated_basic_block *bb, *tmp;
958 
959 	list_for_each_entry_safe(bb, tmp, basic_blocks, list) {
960 		list_del(&bb->list);
961 		free(bb);
962 	}
963 }
964 
965 /* Make sure all variables have a valid start address */
fixup_var_address(struct die_var_type * var_types,u64 addr)966 static void fixup_var_address(struct die_var_type *var_types, u64 addr)
967 {
968 	while (var_types) {
969 		/*
970 		 * Some variables have no address range meaning it's always
971 		 * available in the whole scope.  Let's adjust the start
972 		 * address to the start of the scope.
973 		 */
974 		if (var_types->addr == 0)
975 			var_types->addr = addr;
976 
977 		var_types = var_types->next;
978 	}
979 }
980 
delete_var_types(struct die_var_type * var_types)981 static void delete_var_types(struct die_var_type *var_types)
982 {
983 	while (var_types) {
984 		struct die_var_type *next = var_types->next;
985 
986 		free(var_types);
987 		var_types = next;
988 	}
989 }
990 
991 /* should match to is_stack_canary() in util/annotate.c */
setup_stack_canary(struct data_loc_info * dloc)992 static void setup_stack_canary(struct data_loc_info *dloc)
993 {
994 	if (arch__is(dloc->arch, "x86")) {
995 		dloc->op->segment = INSN_SEG_X86_GS;
996 		dloc->op->imm = true;
997 		dloc->op->offset = 40;
998 	}
999 }
1000 
1001 /*
1002  * It's at the target address, check if it has a matching type.
1003  * It returns PERF_TMR_BAIL_OUT when it looks up per-cpu variables which
1004  * are similar to global variables and no additional info is needed.
1005  */
check_matching_type(struct type_state * state,struct data_loc_info * dloc,Dwarf_Die * cu_die,struct disasm_line * dl,Dwarf_Die * type_die)1006 static enum type_match_result check_matching_type(struct type_state *state,
1007 						  struct data_loc_info *dloc,
1008 						  Dwarf_Die *cu_die,
1009 						  struct disasm_line *dl,
1010 						  Dwarf_Die *type_die)
1011 {
1012 	Dwarf_Word size;
1013 	u32 insn_offset = dl->al.offset;
1014 	int reg = dloc->op->reg1;
1015 	int offset = dloc->op->offset;
1016 	const char *offset_sign = "";
1017 	bool retry = true;
1018 
1019 	if (offset < 0) {
1020 		offset = -offset;
1021 		offset_sign = "-";
1022 	}
1023 
1024 again:
1025 	pr_debug_dtp("chk [%x] reg%d offset=%s%#x ok=%d kind=%d ",
1026 		     insn_offset, reg, offset_sign, offset,
1027 		     state->regs[reg].ok, state->regs[reg].kind);
1028 
1029 	if (!state->regs[reg].ok)
1030 		goto check_non_register;
1031 
1032 	if (state->regs[reg].kind == TSR_KIND_TYPE) {
1033 		Dwarf_Die sized_type;
1034 		struct strbuf sb;
1035 
1036 		strbuf_init(&sb, 32);
1037 		die_get_typename_from_type(&state->regs[reg].type, &sb);
1038 		pr_debug_dtp("(%s)", sb.buf);
1039 		strbuf_release(&sb);
1040 
1041 		/*
1042 		 * Normal registers should hold a pointer (or array) to
1043 		 * dereference a memory location.
1044 		 */
1045 		if (!is_pointer_type(&state->regs[reg].type)) {
1046 			if (dloc->op->offset < 0 && reg != state->stack_reg)
1047 				goto check_kernel;
1048 
1049 			return PERF_TMR_NO_POINTER;
1050 		}
1051 
1052 		/* Remove the pointer and get the target type */
1053 		if (__die_get_real_type(&state->regs[reg].type, type_die) == NULL)
1054 			return PERF_TMR_NO_POINTER;
1055 
1056 		dloc->type_offset = dloc->op->offset;
1057 
1058 		if (dwarf_tag(type_die) == DW_TAG_typedef)
1059 			die_get_real_type(type_die, &sized_type);
1060 		else
1061 			sized_type = *type_die;
1062 
1063 		/* Get the size of the actual type */
1064 		if (dwarf_aggregate_size(&sized_type, &size) < 0 ||
1065 		    (unsigned)dloc->type_offset >= size)
1066 			return PERF_TMR_BAD_OFFSET;
1067 
1068 		return PERF_TMR_OK;
1069 	}
1070 
1071 	if (state->regs[reg].kind == TSR_KIND_POINTER) {
1072 		pr_debug_dtp("percpu ptr");
1073 
1074 		/*
1075 		 * It's actaully pointer but the address was calculated using
1076 		 * some arithmetic.  So it points to the actual type already.
1077 		 */
1078 		*type_die = state->regs[reg].type;
1079 
1080 		dloc->type_offset = dloc->op->offset;
1081 
1082 		/* Get the size of the actual type */
1083 		if (dwarf_aggregate_size(type_die, &size) < 0 ||
1084 		    (unsigned)dloc->type_offset >= size)
1085 			return PERF_TMR_BAIL_OUT;
1086 
1087 		return PERF_TMR_OK;
1088 	}
1089 
1090 	if (state->regs[reg].kind == TSR_KIND_CANARY) {
1091 		pr_debug_dtp("stack canary");
1092 
1093 		/*
1094 		 * This is a saved value of the stack canary which will be handled
1095 		 * in the outer logic when it returns failure here.  Pretend it's
1096 		 * from the stack canary directly.
1097 		 */
1098 		setup_stack_canary(dloc);
1099 
1100 		return PERF_TMR_BAIL_OUT;
1101 	}
1102 
1103 	if (state->regs[reg].kind == TSR_KIND_PERCPU_BASE) {
1104 		u64 var_addr = dloc->op->offset;
1105 		int var_offset;
1106 
1107 		pr_debug_dtp("percpu var");
1108 
1109 		if (dloc->op->multi_regs) {
1110 			int reg2 = dloc->op->reg2;
1111 
1112 			if (dloc->op->reg2 == reg)
1113 				reg2 = dloc->op->reg1;
1114 
1115 			if (has_reg_type(state, reg2) && state->regs[reg2].ok &&
1116 			    state->regs[reg2].kind == TSR_KIND_CONST)
1117 				var_addr += state->regs[reg2].imm_value;
1118 		}
1119 
1120 		if (get_global_var_type(cu_die, dloc, dloc->ip, var_addr,
1121 					&var_offset, type_die)) {
1122 			dloc->type_offset = var_offset;
1123 			return PERF_TMR_OK;
1124 		}
1125 		/* No need to retry per-cpu (global) variables */
1126 		return PERF_TMR_BAIL_OUT;
1127 	}
1128 
1129 check_non_register:
1130 	if (reg == dloc->fbreg) {
1131 		struct type_state_stack *stack;
1132 
1133 		pr_debug_dtp("fbreg");
1134 
1135 		stack = find_stack_state(state, dloc->type_offset);
1136 		if (stack == NULL) {
1137 			if (retry) {
1138 				pr_debug_dtp(" : retry\n");
1139 				retry = false;
1140 
1141 				/* update type info it's the first store to the stack */
1142 				update_insn_state(state, dloc, cu_die, dl);
1143 				goto again;
1144 			}
1145 			return PERF_TMR_NO_TYPE;
1146 		}
1147 
1148 		if (stack->kind == TSR_KIND_CANARY) {
1149 			setup_stack_canary(dloc);
1150 			return PERF_TMR_BAIL_OUT;
1151 		}
1152 
1153 		if (stack->kind != TSR_KIND_TYPE)
1154 			return PERF_TMR_NO_TYPE;
1155 
1156 		*type_die = stack->type;
1157 		/* Update the type offset from the start of slot */
1158 		dloc->type_offset -= stack->offset;
1159 
1160 		return PERF_TMR_OK;
1161 	}
1162 
1163 	if (dloc->fb_cfa) {
1164 		struct type_state_stack *stack;
1165 		u64 pc = map__rip_2objdump(dloc->ms->map, dloc->ip);
1166 		int fbreg, fboff;
1167 
1168 		pr_debug_dtp("cfa");
1169 
1170 		if (die_get_cfa(dloc->di->dbg, pc, &fbreg, &fboff) < 0)
1171 			fbreg = -1;
1172 
1173 		if (reg != fbreg)
1174 			return PERF_TMR_NO_TYPE;
1175 
1176 		stack = find_stack_state(state, dloc->type_offset - fboff);
1177 		if (stack == NULL) {
1178 			if (retry) {
1179 				pr_debug_dtp(" : retry\n");
1180 				retry = false;
1181 
1182 				/* update type info it's the first store to the stack */
1183 				update_insn_state(state, dloc, cu_die, dl);
1184 				goto again;
1185 			}
1186 			return PERF_TMR_NO_TYPE;
1187 		}
1188 
1189 		if (stack->kind == TSR_KIND_CANARY) {
1190 			setup_stack_canary(dloc);
1191 			return PERF_TMR_BAIL_OUT;
1192 		}
1193 
1194 		if (stack->kind != TSR_KIND_TYPE)
1195 			return PERF_TMR_NO_TYPE;
1196 
1197 		*type_die = stack->type;
1198 		/* Update the type offset from the start of slot */
1199 		dloc->type_offset -= fboff + stack->offset;
1200 
1201 		return PERF_TMR_OK;
1202 	}
1203 
1204 check_kernel:
1205 	if (dso__kernel(map__dso(dloc->ms->map))) {
1206 		u64 addr;
1207 
1208 		/* Direct this-cpu access like "%gs:0x34740" */
1209 		if (dloc->op->segment == INSN_SEG_X86_GS && dloc->op->imm &&
1210 		    arch__is(dloc->arch, "x86")) {
1211 			pr_debug_dtp("this-cpu var");
1212 
1213 			addr = dloc->op->offset;
1214 
1215 			if (get_global_var_type(cu_die, dloc, dloc->ip, addr,
1216 						&offset, type_die)) {
1217 				dloc->type_offset = offset;
1218 				return PERF_TMR_OK;
1219 			}
1220 			return PERF_TMR_BAIL_OUT;
1221 		}
1222 
1223 		/* Access to global variable like "-0x7dcf0500(,%rdx,8)" */
1224 		if (dloc->op->offset < 0 && reg != state->stack_reg) {
1225 			addr = (s64) dloc->op->offset;
1226 
1227 			if (get_global_var_type(cu_die, dloc, dloc->ip, addr,
1228 						&offset, type_die)) {
1229 				pr_debug_dtp("global var");
1230 
1231 				dloc->type_offset = offset;
1232 				return PERF_TMR_OK;
1233 			}
1234 			return PERF_TMR_BAIL_OUT;
1235 		}
1236 	}
1237 
1238 	return PERF_TMR_UNKNOWN;
1239 }
1240 
1241 /* Iterate instructions in basic blocks and update type table */
find_data_type_insn(struct data_loc_info * dloc,struct list_head * basic_blocks,struct die_var_type * var_types,Dwarf_Die * cu_die,Dwarf_Die * type_die)1242 static enum type_match_result find_data_type_insn(struct data_loc_info *dloc,
1243 						  struct list_head *basic_blocks,
1244 						  struct die_var_type *var_types,
1245 						  Dwarf_Die *cu_die,
1246 						  Dwarf_Die *type_die)
1247 {
1248 	struct type_state state;
1249 	struct symbol *sym = dloc->ms->sym;
1250 	struct annotation *notes = symbol__annotation(sym);
1251 	struct annotated_basic_block *bb;
1252 	enum type_match_result ret = PERF_TMR_UNKNOWN;
1253 
1254 	init_type_state(&state, dloc->arch);
1255 
1256 	list_for_each_entry(bb, basic_blocks, list) {
1257 		struct disasm_line *dl = bb->begin;
1258 
1259 		BUG_ON(bb->begin->al.offset == -1 || bb->end->al.offset == -1);
1260 
1261 		pr_debug_dtp("bb: [%"PRIx64" - %"PRIx64"]\n",
1262 			     bb->begin->al.offset, bb->end->al.offset);
1263 
1264 		list_for_each_entry_from(dl, &notes->src->source, al.node) {
1265 			u64 this_ip = sym->start + dl->al.offset;
1266 			u64 addr = map__rip_2objdump(dloc->ms->map, this_ip);
1267 
1268 			/* Skip comment or debug info lines */
1269 			if (dl->al.offset == -1)
1270 				continue;
1271 
1272 			/* Update variable type at this address */
1273 			update_var_state(&state, dloc, addr, dl->al.offset, var_types);
1274 
1275 			if (this_ip == dloc->ip) {
1276 				ret = check_matching_type(&state, dloc,
1277 							  cu_die, dl, type_die);
1278 				pr_debug_dtp(" : %s\n", match_result_str(ret));
1279 				goto out;
1280 			}
1281 
1282 			/* Update type table after processing the instruction */
1283 			update_insn_state(&state, dloc, cu_die, dl);
1284 			if (dl == bb->end)
1285 				break;
1286 		}
1287 	}
1288 
1289 out:
1290 	exit_type_state(&state);
1291 	return ret;
1292 }
1293 
arch_supports_insn_tracking(struct data_loc_info * dloc)1294 static int arch_supports_insn_tracking(struct data_loc_info *dloc)
1295 {
1296 	if ((arch__is(dloc->arch, "x86")) || (arch__is(dloc->arch, "powerpc")))
1297 		return 1;
1298 	return 0;
1299 }
1300 
1301 /*
1302  * Construct a list of basic blocks for each scope with variables and try to find
1303  * the data type by updating a type state table through instructions.
1304  */
find_data_type_block(struct data_loc_info * dloc,Dwarf_Die * cu_die,Dwarf_Die * scopes,int nr_scopes,Dwarf_Die * type_die)1305 static enum type_match_result find_data_type_block(struct data_loc_info *dloc,
1306 						   Dwarf_Die *cu_die,
1307 						   Dwarf_Die *scopes,
1308 						   int nr_scopes,
1309 						   Dwarf_Die *type_die)
1310 {
1311 	LIST_HEAD(basic_blocks);
1312 	struct die_var_type *var_types = NULL;
1313 	u64 src_ip, dst_ip, prev_dst_ip;
1314 	enum type_match_result ret = PERF_TMR_UNKNOWN;
1315 
1316 	/* TODO: other architecture support */
1317 	if (!arch_supports_insn_tracking(dloc))
1318 		return PERF_TMR_BAIL_OUT;
1319 
1320 	prev_dst_ip = dst_ip = dloc->ip;
1321 	for (int i = nr_scopes - 1; i >= 0; i--) {
1322 		Dwarf_Addr base, start, end;
1323 		LIST_HEAD(this_blocks);
1324 
1325 		if (dwarf_ranges(&scopes[i], 0, &base, &start, &end) < 0)
1326 			break;
1327 
1328 		pr_debug_dtp("scope: [%d/%d] ", i + 1, nr_scopes);
1329 		pr_debug_scope(&scopes[i]);
1330 
1331 		src_ip = map__objdump_2rip(dloc->ms->map, start);
1332 
1333 again:
1334 		/* Get basic blocks for this scope */
1335 		if (annotate_get_basic_blocks(dloc->ms->sym, src_ip, dst_ip,
1336 					      &this_blocks) < 0) {
1337 			/* Try previous block if they are not connected */
1338 			if (prev_dst_ip != dst_ip) {
1339 				dst_ip = prev_dst_ip;
1340 				goto again;
1341 			}
1342 
1343 			pr_debug_dtp("cannot find a basic block from %"PRIx64" to %"PRIx64"\n",
1344 				     src_ip - dloc->ms->sym->start,
1345 				     dst_ip - dloc->ms->sym->start);
1346 			continue;
1347 		}
1348 		prepend_basic_blocks(&this_blocks, &basic_blocks);
1349 
1350 		/* Get variable info for this scope and add to var_types list */
1351 		die_collect_vars(&scopes[i], &var_types);
1352 		fixup_var_address(var_types, start);
1353 
1354 		/* Find from start of this scope to the target instruction */
1355 		ret = find_data_type_insn(dloc, &basic_blocks, var_types,
1356 					    cu_die, type_die);
1357 		if (ret == PERF_TMR_OK) {
1358 			char buf[64];
1359 			int offset = dloc->op->offset;
1360 			const char *offset_sign = "";
1361 
1362 			if (offset < 0) {
1363 				offset = -offset;
1364 				offset_sign = "-";
1365 			}
1366 
1367 			if (dloc->op->multi_regs)
1368 				snprintf(buf, sizeof(buf), "reg%d, reg%d",
1369 					 dloc->op->reg1, dloc->op->reg2);
1370 			else
1371 				snprintf(buf, sizeof(buf), "reg%d", dloc->op->reg1);
1372 
1373 			pr_debug_dtp("found by insn track: %s%#x(%s) type-offset=%#x\n",
1374 				     offset_sign, offset, buf, dloc->type_offset);
1375 			break;
1376 		}
1377 
1378 		if (ret == PERF_TMR_BAIL_OUT)
1379 			break;
1380 
1381 		/* Go up to the next scope and find blocks to the start */
1382 		prev_dst_ip = dst_ip;
1383 		dst_ip = src_ip;
1384 	}
1385 
1386 	delete_basic_blocks(&basic_blocks);
1387 	delete_var_types(var_types);
1388 	return ret;
1389 }
1390 
1391 /* The result will be saved in @type_die */
find_data_type_die(struct data_loc_info * dloc,Dwarf_Die * type_die)1392 static int find_data_type_die(struct data_loc_info *dloc, Dwarf_Die *type_die)
1393 {
1394 	struct annotated_op_loc *loc = dloc->op;
1395 	Dwarf_Die cu_die, var_die;
1396 	Dwarf_Die *scopes = NULL;
1397 	int reg, offset = loc->offset;
1398 	int ret = -1;
1399 	int i, nr_scopes;
1400 	int fbreg = -1;
1401 	int fb_offset = 0;
1402 	bool is_fbreg = false;
1403 	bool found = false;
1404 	u64 pc;
1405 	char buf[64];
1406 	enum type_match_result result = PERF_TMR_UNKNOWN;
1407 	const char *offset_sign = "";
1408 
1409 	if (dloc->op->multi_regs)
1410 		snprintf(buf, sizeof(buf), "reg%d, reg%d", dloc->op->reg1, dloc->op->reg2);
1411 	else if (dloc->op->reg1 == DWARF_REG_PC)
1412 		snprintf(buf, sizeof(buf), "PC");
1413 	else
1414 		snprintf(buf, sizeof(buf), "reg%d", dloc->op->reg1);
1415 
1416 	if (offset < 0) {
1417 		offset = -offset;
1418 		offset_sign = "-";
1419 	}
1420 
1421 	pr_debug_dtp("-----------------------------------------------------------\n");
1422 	pr_debug_dtp("find data type for %s%#x(%s) at %s+%#"PRIx64"\n",
1423 		     offset_sign, offset, buf,
1424 		     dloc->ms->sym->name, dloc->ip - dloc->ms->sym->start);
1425 
1426 	/*
1427 	 * IP is a relative instruction address from the start of the map, as
1428 	 * it can be randomized/relocated, it needs to translate to PC which is
1429 	 * a file address for DWARF processing.
1430 	 */
1431 	pc = map__rip_2objdump(dloc->ms->map, dloc->ip);
1432 
1433 	/* Get a compile_unit for this address */
1434 	if (!find_cu_die(dloc->di, pc, &cu_die)) {
1435 		pr_debug_dtp("cannot find CU for address %"PRIx64"\n", pc);
1436 		ann_data_stat.no_cuinfo++;
1437 		return -1;
1438 	}
1439 
1440 	reg = loc->reg1;
1441 	offset = loc->offset;
1442 
1443 	pr_debug_dtp("CU for %s (die:%#lx)\n",
1444 		     dwarf_diename(&cu_die), (long)dwarf_dieoffset(&cu_die));
1445 
1446 	if (reg == DWARF_REG_PC) {
1447 		if (get_global_var_type(&cu_die, dloc, dloc->ip, dloc->var_addr,
1448 					&offset, type_die)) {
1449 			dloc->type_offset = offset;
1450 
1451 			pr_debug_dtp("found by addr=%#"PRIx64" type_offset=%#x\n",
1452 				     dloc->var_addr, offset);
1453 			pr_debug_type_name(type_die, TSR_KIND_TYPE);
1454 			found = true;
1455 			goto out;
1456 		}
1457 	}
1458 
1459 	/* Get a list of nested scopes - i.e. (inlined) functions and blocks. */
1460 	nr_scopes = die_get_scopes(&cu_die, pc, &scopes);
1461 
1462 	if (reg != DWARF_REG_PC && dwarf_hasattr(&scopes[0], DW_AT_frame_base)) {
1463 		Dwarf_Attribute attr;
1464 		Dwarf_Block block;
1465 
1466 		/* Check if the 'reg' is assigned as frame base register */
1467 		if (dwarf_attr(&scopes[0], DW_AT_frame_base, &attr) != NULL &&
1468 		    dwarf_formblock(&attr, &block) == 0 && block.length == 1) {
1469 			switch (*block.data) {
1470 			case DW_OP_reg0 ... DW_OP_reg31:
1471 				fbreg = dloc->fbreg = *block.data - DW_OP_reg0;
1472 				break;
1473 			case DW_OP_call_frame_cfa:
1474 				dloc->fb_cfa = true;
1475 				if (die_get_cfa(dloc->di->dbg, pc, &fbreg,
1476 						&fb_offset) < 0)
1477 					fbreg = -1;
1478 				break;
1479 			default:
1480 				break;
1481 			}
1482 
1483 			pr_debug_dtp("frame base: cfa=%d fbreg=%d\n",
1484 				     dloc->fb_cfa, fbreg);
1485 		}
1486 	}
1487 
1488 retry:
1489 	is_fbreg = (reg == fbreg);
1490 	if (is_fbreg)
1491 		offset = loc->offset - fb_offset;
1492 
1493 	/* Search from the inner-most scope to the outer */
1494 	for (i = nr_scopes - 1; i >= 0; i--) {
1495 		Dwarf_Die mem_die;
1496 		int type_offset = offset;
1497 
1498 		if (reg == DWARF_REG_PC) {
1499 			if (!die_find_variable_by_addr(&scopes[i], dloc->var_addr,
1500 						       &var_die, &type_offset))
1501 				continue;
1502 		} else {
1503 			/* Look up variables/parameters in this scope */
1504 			if (!die_find_variable_by_reg(&scopes[i], pc, reg,
1505 						      &type_offset, is_fbreg, &var_die))
1506 				continue;
1507 		}
1508 
1509 		pr_debug_dtp("found \"%s\" (die: %#lx) in scope=%d/%d (die: %#lx) ",
1510 			     dwarf_diename(&var_die), (long)dwarf_dieoffset(&var_die),
1511 			     i+1, nr_scopes, (long)dwarf_dieoffset(&scopes[i]));
1512 
1513 		/* Found a variable, see if it's correct */
1514 		result = check_variable(dloc, &var_die, &mem_die, reg, type_offset, is_fbreg);
1515 		if (result == PERF_TMR_OK) {
1516 			if (reg == DWARF_REG_PC) {
1517 				pr_debug_dtp("addr=%#"PRIx64" type_offset=%#x\n",
1518 					     dloc->var_addr, type_offset);
1519 			} else if (reg == DWARF_REG_FB || is_fbreg) {
1520 				pr_debug_dtp("stack_offset=%#x type_offset=%#x\n",
1521 					     fb_offset, type_offset);
1522 			} else {
1523 				pr_debug_dtp("type_offset=%#x\n", type_offset);
1524 			}
1525 
1526 			if (!found || is_better_type(type_die, &mem_die)) {
1527 				*type_die = mem_die;
1528 				dloc->type_offset = type_offset;
1529 				found = true;
1530 			}
1531 		} else {
1532 			pr_debug_dtp("failed: %s\n", match_result_str(result));
1533 		}
1534 
1535 		pr_debug_location(&var_die, pc, reg);
1536 		pr_debug_type_name(&mem_die, TSR_KIND_TYPE);
1537 	}
1538 
1539 	if (!found && loc->multi_regs && reg == loc->reg1 && loc->reg1 != loc->reg2) {
1540 		reg = loc->reg2;
1541 		goto retry;
1542 	}
1543 
1544 	if (!found && reg != DWARF_REG_PC) {
1545 		result = find_data_type_block(dloc, &cu_die, scopes,
1546 					      nr_scopes, type_die);
1547 		if (result == PERF_TMR_OK) {
1548 			ann_data_stat.insn_track++;
1549 			found = true;
1550 		}
1551 	}
1552 
1553 out:
1554 	pr_debug_dtp("final result: ");
1555 	if (found) {
1556 		pr_debug_type_name(type_die, TSR_KIND_TYPE);
1557 		ret = 0;
1558 	} else {
1559 		switch (result) {
1560 		case PERF_TMR_NO_TYPE:
1561 		case PERF_TMR_NO_POINTER:
1562 			pr_debug_dtp("%s\n", match_result_str(result));
1563 			ann_data_stat.no_typeinfo++;
1564 			break;
1565 		case PERF_TMR_NO_SIZE:
1566 			pr_debug_dtp("%s\n", match_result_str(result));
1567 			ann_data_stat.invalid_size++;
1568 			break;
1569 		case PERF_TMR_BAD_OFFSET:
1570 			pr_debug_dtp("%s\n", match_result_str(result));
1571 			ann_data_stat.bad_offset++;
1572 			break;
1573 		case PERF_TMR_UNKNOWN:
1574 		case PERF_TMR_BAIL_OUT:
1575 		case PERF_TMR_OK:  /* should not reach here */
1576 		default:
1577 			pr_debug_dtp("no variable found\n");
1578 			ann_data_stat.no_var++;
1579 			break;
1580 		}
1581 		ret = -1;
1582 	}
1583 
1584 	free(scopes);
1585 	return ret;
1586 }
1587 
1588 /**
1589  * find_data_type - Return a data type at the location
1590  * @dloc: data location
1591  *
1592  * This functions searches the debug information of the binary to get the data
1593  * type it accesses.  The exact location is expressed by (ip, reg, offset)
1594  * for pointer variables or (ip, addr) for global variables.  Note that global
1595  * variables might update the @dloc->type_offset after finding the start of the
1596  * variable.  If it cannot find a global variable by address, it tried to find
1597  * a declaration of the variable using var_name.  In that case, @dloc->offset
1598  * won't be updated.
1599  *
1600  * It return %NULL if not found.
1601  */
find_data_type(struct data_loc_info * dloc)1602 struct annotated_data_type *find_data_type(struct data_loc_info *dloc)
1603 {
1604 	struct dso *dso = map__dso(dloc->ms->map);
1605 	Dwarf_Die type_die;
1606 
1607 	/*
1608 	 * The type offset is the same as instruction offset by default.
1609 	 * But when finding a global variable, the offset won't be valid.
1610 	 */
1611 	dloc->type_offset = dloc->op->offset;
1612 
1613 	dloc->fbreg = -1;
1614 
1615 	if (find_data_type_die(dloc, &type_die) < 0)
1616 		return NULL;
1617 
1618 	return dso__findnew_data_type(dso, &type_die);
1619 }
1620 
alloc_data_type_histograms(struct annotated_data_type * adt,int nr_entries)1621 static int alloc_data_type_histograms(struct annotated_data_type *adt, int nr_entries)
1622 {
1623 	int i;
1624 	size_t sz = sizeof(struct type_hist);
1625 
1626 	sz += sizeof(struct type_hist_entry) * adt->self.size;
1627 
1628 	/* Allocate a table of pointers for each event */
1629 	adt->histograms = calloc(nr_entries, sizeof(*adt->histograms));
1630 	if (adt->histograms == NULL)
1631 		return -ENOMEM;
1632 
1633 	/*
1634 	 * Each histogram is allocated for the whole size of the type.
1635 	 * TODO: Probably we can move the histogram to members.
1636 	 */
1637 	for (i = 0; i < nr_entries; i++) {
1638 		adt->histograms[i] = zalloc(sz);
1639 		if (adt->histograms[i] == NULL)
1640 			goto err;
1641 	}
1642 
1643 	adt->nr_histograms = nr_entries;
1644 	return 0;
1645 
1646 err:
1647 	while (--i >= 0)
1648 		zfree(&(adt->histograms[i]));
1649 	zfree(&adt->histograms);
1650 	return -ENOMEM;
1651 }
1652 
delete_data_type_histograms(struct annotated_data_type * adt)1653 static void delete_data_type_histograms(struct annotated_data_type *adt)
1654 {
1655 	for (int i = 0; i < adt->nr_histograms; i++)
1656 		zfree(&(adt->histograms[i]));
1657 
1658 	zfree(&adt->histograms);
1659 	adt->nr_histograms = 0;
1660 }
1661 
annotated_data_type__tree_delete(struct rb_root * root)1662 void annotated_data_type__tree_delete(struct rb_root *root)
1663 {
1664 	struct annotated_data_type *pos;
1665 
1666 	while (!RB_EMPTY_ROOT(root)) {
1667 		struct rb_node *node = rb_first(root);
1668 
1669 		rb_erase(node, root);
1670 		pos = rb_entry(node, struct annotated_data_type, node);
1671 		delete_members(&pos->self);
1672 		delete_data_type_histograms(pos);
1673 		zfree(&pos->self.type_name);
1674 		free(pos);
1675 	}
1676 }
1677 
1678 /**
1679  * annotated_data_type__update_samples - Update histogram
1680  * @adt: Data type to update
1681  * @evsel: Event to update
1682  * @offset: Offset in the type
1683  * @nr_samples: Number of samples at this offset
1684  * @period: Event count at this offset
1685  *
1686  * This function updates type histogram at @ofs for @evsel.  Samples are
1687  * aggregated before calling this function so it can be called with more
1688  * than one samples at a certain offset.
1689  */
annotated_data_type__update_samples(struct annotated_data_type * adt,struct evsel * evsel,int offset,int nr_samples,u64 period)1690 int annotated_data_type__update_samples(struct annotated_data_type *adt,
1691 					struct evsel *evsel, int offset,
1692 					int nr_samples, u64 period)
1693 {
1694 	struct type_hist *h;
1695 
1696 	if (adt == NULL)
1697 		return 0;
1698 
1699 	if (adt->histograms == NULL) {
1700 		int nr = evsel->evlist->core.nr_entries;
1701 
1702 		if (alloc_data_type_histograms(adt, nr) < 0)
1703 			return -1;
1704 	}
1705 
1706 	if (offset < 0 || offset >= adt->self.size)
1707 		return -1;
1708 
1709 	h = adt->histograms[evsel->core.idx];
1710 
1711 	h->nr_samples += nr_samples;
1712 	h->addr[offset].nr_samples += nr_samples;
1713 	h->period += period;
1714 	h->addr[offset].period += period;
1715 	return 0;
1716 }
1717 
print_annotated_data_header(struct hist_entry * he,struct evsel * evsel)1718 static void print_annotated_data_header(struct hist_entry *he, struct evsel *evsel)
1719 {
1720 	struct dso *dso = map__dso(he->ms.map);
1721 	int nr_members = 1;
1722 	int nr_samples = he->stat.nr_events;
1723 	int width = 7;
1724 	const char *val_hdr = "Percent";
1725 
1726 	if (evsel__is_group_event(evsel)) {
1727 		struct hist_entry *pair;
1728 
1729 		list_for_each_entry(pair, &he->pairs.head, pairs.node)
1730 			nr_samples += pair->stat.nr_events;
1731 	}
1732 
1733 	printf("Annotate type: '%s' in %s (%d samples):\n",
1734 	       he->mem_type->self.type_name, dso__name(dso), nr_samples);
1735 
1736 	if (evsel__is_group_event(evsel)) {
1737 		struct evsel *pos;
1738 		int i = 0;
1739 
1740 		nr_members = 0;
1741 		for_each_group_evsel(pos, evsel) {
1742 			if (symbol_conf.skip_empty &&
1743 			    evsel__hists(pos)->stats.nr_samples == 0)
1744 				continue;
1745 
1746 			printf(" event[%d] = %s\n", i++, pos->name);
1747 			nr_members++;
1748 		}
1749 	}
1750 
1751 	if (symbol_conf.show_total_period) {
1752 		width = 11;
1753 		val_hdr = "Period";
1754 	} else if (symbol_conf.show_nr_samples) {
1755 		width = 7;
1756 		val_hdr = "Samples";
1757 	}
1758 
1759 	printf("============================================================================\n");
1760 	printf("%*s %10s %10s  %s\n", (width + 1) * nr_members, val_hdr,
1761 	       "offset", "size", "field");
1762 }
1763 
print_annotated_data_value(struct type_hist * h,u64 period,int nr_samples)1764 static void print_annotated_data_value(struct type_hist *h, u64 period, int nr_samples)
1765 {
1766 	double percent = h->period ? (100.0 * period / h->period) : 0;
1767 	const char *color = get_percent_color(percent);
1768 
1769 	if (symbol_conf.show_total_period)
1770 		color_fprintf(stdout, color, " %11" PRIu64, period);
1771 	else if (symbol_conf.show_nr_samples)
1772 		color_fprintf(stdout, color, " %7d", nr_samples);
1773 	else
1774 		color_fprintf(stdout, color, " %7.2f", percent);
1775 }
1776 
print_annotated_data_type(struct annotated_data_type * mem_type,struct annotated_member * member,struct evsel * evsel,int indent)1777 static void print_annotated_data_type(struct annotated_data_type *mem_type,
1778 				      struct annotated_member *member,
1779 				      struct evsel *evsel, int indent)
1780 {
1781 	struct annotated_member *child;
1782 	struct type_hist *h = mem_type->histograms[evsel->core.idx];
1783 	int i, nr_events = 0, samples = 0;
1784 	u64 period = 0;
1785 	int width = symbol_conf.show_total_period ? 11 : 7;
1786 	struct evsel *pos;
1787 
1788 	for_each_group_evsel(pos, evsel) {
1789 		h = mem_type->histograms[pos->core.idx];
1790 
1791 		if (symbol_conf.skip_empty &&
1792 		    evsel__hists(pos)->stats.nr_samples == 0)
1793 			continue;
1794 
1795 		samples = 0;
1796 		period = 0;
1797 		for (i = 0; i < member->size; i++) {
1798 			samples += h->addr[member->offset + i].nr_samples;
1799 			period += h->addr[member->offset + i].period;
1800 		}
1801 		print_annotated_data_value(h, period, samples);
1802 		nr_events++;
1803 	}
1804 
1805 	printf(" %#10x %#10x  %*s%s\t%s",
1806 	       member->offset, member->size, indent, "", member->type_name,
1807 	       member->var_name ?: "");
1808 
1809 	if (!list_empty(&member->children))
1810 		printf(" {\n");
1811 
1812 	list_for_each_entry(child, &member->children, node)
1813 		print_annotated_data_type(mem_type, child, evsel, indent + 4);
1814 
1815 	if (!list_empty(&member->children))
1816 		printf("%*s}", (width + 1) * nr_events + 24 + indent, "");
1817 	printf(";\n");
1818 }
1819 
hist_entry__annotate_data_tty(struct hist_entry * he,struct evsel * evsel)1820 int hist_entry__annotate_data_tty(struct hist_entry *he, struct evsel *evsel)
1821 {
1822 	print_annotated_data_header(he, evsel);
1823 	print_annotated_data_type(he->mem_type, &he->mem_type->self, evsel, 0);
1824 	printf("\n");
1825 
1826 	/* move to the next entry */
1827 	return '>';
1828 }
1829