1 /* Generic MTRR (Memory Type Range Register) driver.
2
3 Copyright (C) 1997-2000 Richard Gooch
4 Copyright (c) 2002 Patrick Mochel
5
6 This library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 This library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with this library; if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20 Richard Gooch may be reached by email at rgooch@atnf.csiro.au
21 The postal address is:
22 Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23
24 Source: "Pentium Pro Family Developer's Manual, Volume 3:
25 Operating System Writer's Guide" (Intel document number 242692),
26 section 11.11.7
27
28 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29 on 6-7 March 2002.
30 Source: Intel Architecture Software Developers Manual, Volume 3:
31 System Programming Guide; Section 9.11. (1997 edition - PPro).
32 */
33
34 #include <linux/types.h> /* FIXME: kvm_para.h needs this */
35
36 #include <linux/stop_machine.h>
37 #include <linux/kvm_para.h>
38 #include <linux/uaccess.h>
39 #include <linux/export.h>
40 #include <linux/mutex.h>
41 #include <linux/init.h>
42 #include <linux/sort.h>
43 #include <linux/cpu.h>
44 #include <linux/pci.h>
45 #include <linux/smp.h>
46 #include <linux/syscore_ops.h>
47 #include <linux/rcupdate.h>
48
49 #include <asm/cacheinfo.h>
50 #include <asm/cpufeature.h>
51 #include <asm/e820/api.h>
52 #include <asm/mtrr.h>
53 #include <asm/msr.h>
54 #include <asm/memtype.h>
55
56 #include "mtrr.h"
57
58 static_assert(X86_MEMTYPE_UC == MTRR_TYPE_UNCACHABLE);
59 static_assert(X86_MEMTYPE_WC == MTRR_TYPE_WRCOMB);
60 static_assert(X86_MEMTYPE_WT == MTRR_TYPE_WRTHROUGH);
61 static_assert(X86_MEMTYPE_WP == MTRR_TYPE_WRPROT);
62 static_assert(X86_MEMTYPE_WB == MTRR_TYPE_WRBACK);
63
64 /* arch_phys_wc_add returns an MTRR register index plus this offset. */
65 #define MTRR_TO_PHYS_WC_OFFSET 1000
66
67 u32 num_var_ranges;
68
69 unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
70 DEFINE_MUTEX(mtrr_mutex);
71
72 const struct mtrr_ops *mtrr_if;
73
74 /* Returns non-zero if we have the write-combining memory type */
have_wrcomb(void)75 static int have_wrcomb(void)
76 {
77 struct pci_dev *dev;
78
79 dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
80 if (dev != NULL) {
81 /*
82 * ServerWorks LE chipsets < rev 6 have problems with
83 * write-combining. Don't allow it and leave room for other
84 * chipsets to be tagged
85 */
86 if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
87 dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
88 dev->revision <= 5) {
89 pr_info("Serverworks LE rev < 6 detected. Write-combining disabled.\n");
90 pci_dev_put(dev);
91 return 0;
92 }
93 /*
94 * Intel 450NX errata # 23. Non ascending cacheline evictions to
95 * write combining memory may resulting in data corruption
96 */
97 if (dev->vendor == PCI_VENDOR_ID_INTEL &&
98 dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
99 pr_info("Intel 450NX MMC detected. Write-combining disabled.\n");
100 pci_dev_put(dev);
101 return 0;
102 }
103 pci_dev_put(dev);
104 }
105 return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
106 }
107
init_table(void)108 static void __init init_table(void)
109 {
110 int i, max;
111
112 max = num_var_ranges;
113 for (i = 0; i < max; i++)
114 mtrr_usage_table[i] = 1;
115 }
116
117 struct set_mtrr_data {
118 unsigned long smp_base;
119 unsigned long smp_size;
120 unsigned int smp_reg;
121 mtrr_type smp_type;
122 };
123
124 /**
125 * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
126 * by all the CPUs.
127 * @info: pointer to mtrr configuration data
128 *
129 * Returns nothing.
130 */
mtrr_rendezvous_handler(void * info)131 static int mtrr_rendezvous_handler(void *info)
132 {
133 struct set_mtrr_data *data = info;
134
135 mtrr_if->set(data->smp_reg, data->smp_base,
136 data->smp_size, data->smp_type);
137 return 0;
138 }
139
types_compatible(mtrr_type type1,mtrr_type type2)140 static inline int types_compatible(mtrr_type type1, mtrr_type type2)
141 {
142 return type1 == MTRR_TYPE_UNCACHABLE ||
143 type2 == MTRR_TYPE_UNCACHABLE ||
144 (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
145 (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
146 }
147
148 /**
149 * set_mtrr - update mtrrs on all processors
150 * @reg: mtrr in question
151 * @base: mtrr base
152 * @size: mtrr size
153 * @type: mtrr type
154 *
155 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
156 *
157 * 1. Queue work to do the following on all processors:
158 * 2. Disable Interrupts
159 * 3. Wait for all procs to do so
160 * 4. Enter no-fill cache mode
161 * 5. Flush caches
162 * 6. Clear PGE bit
163 * 7. Flush all TLBs
164 * 8. Disable all range registers
165 * 9. Update the MTRRs
166 * 10. Enable all range registers
167 * 11. Flush all TLBs and caches again
168 * 12. Enter normal cache mode and reenable caching
169 * 13. Set PGE
170 * 14. Wait for buddies to catch up
171 * 15. Enable interrupts.
172 *
173 * What does that mean for us? Well, stop_machine() will ensure that
174 * the rendezvous handler is started on each CPU. And in lockstep they
175 * do the state transition of disabling interrupts, updating MTRR's
176 * (the CPU vendors may each do it differently, so we call mtrr_if->set()
177 * callback and let them take care of it.) and enabling interrupts.
178 *
179 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
180 * becomes nops.
181 */
set_mtrr(unsigned int reg,unsigned long base,unsigned long size,mtrr_type type)182 static void set_mtrr(unsigned int reg, unsigned long base, unsigned long size,
183 mtrr_type type)
184 {
185 struct set_mtrr_data data = { .smp_reg = reg,
186 .smp_base = base,
187 .smp_size = size,
188 .smp_type = type
189 };
190
191 stop_machine_cpuslocked(mtrr_rendezvous_handler, &data, cpu_online_mask);
192
193 generic_rebuild_map();
194 }
195
196 /**
197 * mtrr_add_page - Add a memory type region
198 * @base: Physical base address of region in pages (in units of 4 kB!)
199 * @size: Physical size of region in pages (4 kB)
200 * @type: Type of MTRR desired
201 * @increment: If this is true do usage counting on the region
202 *
203 * Memory type region registers control the caching on newer Intel and
204 * non Intel processors. This function allows drivers to request an
205 * MTRR is added. The details and hardware specifics of each processor's
206 * implementation are hidden from the caller, but nevertheless the
207 * caller should expect to need to provide a power of two size on an
208 * equivalent power of two boundary.
209 *
210 * If the region cannot be added either because all regions are in use
211 * or the CPU cannot support it a negative value is returned. On success
212 * the register number for this entry is returned, but should be treated
213 * as a cookie only.
214 *
215 * On a multiprocessor machine the changes are made to all processors.
216 * This is required on x86 by the Intel processors.
217 *
218 * The available types are
219 *
220 * %MTRR_TYPE_UNCACHABLE - No caching
221 *
222 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
223 *
224 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
225 *
226 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
227 *
228 * BUGS: Needs a quiet flag for the cases where drivers do not mind
229 * failures and do not wish system log messages to be sent.
230 */
mtrr_add_page(unsigned long base,unsigned long size,unsigned int type,bool increment)231 int mtrr_add_page(unsigned long base, unsigned long size,
232 unsigned int type, bool increment)
233 {
234 unsigned long lbase, lsize;
235 int i, replace, error;
236 mtrr_type ltype;
237
238 if (!mtrr_enabled())
239 return -ENXIO;
240
241 error = mtrr_if->validate_add_page(base, size, type);
242 if (error)
243 return error;
244
245 if (type >= MTRR_NUM_TYPES) {
246 pr_warn("type: %u invalid\n", type);
247 return -EINVAL;
248 }
249
250 /* If the type is WC, check that this processor supports it */
251 if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
252 pr_warn("your processor doesn't support write-combining\n");
253 return -ENOSYS;
254 }
255
256 if (!size) {
257 pr_warn("zero sized request\n");
258 return -EINVAL;
259 }
260
261 if ((base | (base + size - 1)) >>
262 (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) {
263 pr_warn("base or size exceeds the MTRR width\n");
264 return -EINVAL;
265 }
266
267 error = -EINVAL;
268 replace = -1;
269
270 /* No CPU hotplug when we change MTRR entries */
271 cpus_read_lock();
272
273 /* Search for existing MTRR */
274 mutex_lock(&mtrr_mutex);
275 for (i = 0; i < num_var_ranges; ++i) {
276 mtrr_if->get(i, &lbase, &lsize, <ype);
277 if (!lsize || base > lbase + lsize - 1 ||
278 base + size - 1 < lbase)
279 continue;
280 /*
281 * At this point we know there is some kind of
282 * overlap/enclosure
283 */
284 if (base < lbase || base + size - 1 > lbase + lsize - 1) {
285 if (base <= lbase &&
286 base + size - 1 >= lbase + lsize - 1) {
287 /* New region encloses an existing region */
288 if (type == ltype) {
289 replace = replace == -1 ? i : -2;
290 continue;
291 } else if (types_compatible(type, ltype))
292 continue;
293 }
294 pr_warn("0x%lx000,0x%lx000 overlaps existing 0x%lx000,0x%lx000\n", base, size, lbase,
295 lsize);
296 goto out;
297 }
298 /* New region is enclosed by an existing region */
299 if (ltype != type) {
300 if (types_compatible(type, ltype))
301 continue;
302 pr_warn("type mismatch for %lx000,%lx000 old: %s new: %s\n",
303 base, size, mtrr_attrib_to_str(ltype),
304 mtrr_attrib_to_str(type));
305 goto out;
306 }
307 if (increment)
308 ++mtrr_usage_table[i];
309 error = i;
310 goto out;
311 }
312 /* Search for an empty MTRR */
313 i = mtrr_if->get_free_region(base, size, replace);
314 if (i >= 0) {
315 set_mtrr(i, base, size, type);
316 if (likely(replace < 0)) {
317 mtrr_usage_table[i] = 1;
318 } else {
319 mtrr_usage_table[i] = mtrr_usage_table[replace];
320 if (increment)
321 mtrr_usage_table[i]++;
322 if (unlikely(replace != i)) {
323 set_mtrr(replace, 0, 0, 0);
324 mtrr_usage_table[replace] = 0;
325 }
326 }
327 } else {
328 pr_info("no more MTRRs available\n");
329 }
330 error = i;
331 out:
332 mutex_unlock(&mtrr_mutex);
333 cpus_read_unlock();
334 return error;
335 }
336
mtrr_check(unsigned long base,unsigned long size)337 static int mtrr_check(unsigned long base, unsigned long size)
338 {
339 if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
340 pr_warn("size and base must be multiples of 4 kiB\n");
341 Dprintk("size: 0x%lx base: 0x%lx\n", size, base);
342 dump_stack();
343 return -1;
344 }
345 return 0;
346 }
347
348 /**
349 * mtrr_add - Add a memory type region
350 * @base: Physical base address of region
351 * @size: Physical size of region
352 * @type: Type of MTRR desired
353 * @increment: If this is true do usage counting on the region
354 *
355 * Memory type region registers control the caching on newer Intel and
356 * non Intel processors. This function allows drivers to request an
357 * MTRR is added. The details and hardware specifics of each processor's
358 * implementation are hidden from the caller, but nevertheless the
359 * caller should expect to need to provide a power of two size on an
360 * equivalent power of two boundary.
361 *
362 * If the region cannot be added either because all regions are in use
363 * or the CPU cannot support it a negative value is returned. On success
364 * the register number for this entry is returned, but should be treated
365 * as a cookie only.
366 *
367 * On a multiprocessor machine the changes are made to all processors.
368 * This is required on x86 by the Intel processors.
369 *
370 * The available types are
371 *
372 * %MTRR_TYPE_UNCACHABLE - No caching
373 *
374 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
375 *
376 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
377 *
378 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
379 *
380 * BUGS: Needs a quiet flag for the cases where drivers do not mind
381 * failures and do not wish system log messages to be sent.
382 */
mtrr_add(unsigned long base,unsigned long size,unsigned int type,bool increment)383 int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
384 bool increment)
385 {
386 if (!mtrr_enabled())
387 return -ENODEV;
388 if (mtrr_check(base, size))
389 return -EINVAL;
390 return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
391 increment);
392 }
393
394 /**
395 * mtrr_del_page - delete a memory type region
396 * @reg: Register returned by mtrr_add
397 * @base: Physical base address
398 * @size: Size of region
399 *
400 * If register is supplied then base and size are ignored. This is
401 * how drivers should call it.
402 *
403 * Releases an MTRR region. If the usage count drops to zero the
404 * register is freed and the region returns to default state.
405 * On success the register is returned, on failure a negative error
406 * code.
407 */
mtrr_del_page(int reg,unsigned long base,unsigned long size)408 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
409 {
410 int i, max;
411 mtrr_type ltype;
412 unsigned long lbase, lsize;
413 int error = -EINVAL;
414
415 if (!mtrr_enabled())
416 return -ENODEV;
417
418 max = num_var_ranges;
419 /* No CPU hotplug when we change MTRR entries */
420 cpus_read_lock();
421 mutex_lock(&mtrr_mutex);
422 if (reg < 0) {
423 /* Search for existing MTRR */
424 for (i = 0; i < max; ++i) {
425 mtrr_if->get(i, &lbase, &lsize, <ype);
426 if (lbase == base && lsize == size) {
427 reg = i;
428 break;
429 }
430 }
431 if (reg < 0) {
432 Dprintk("no MTRR for %lx000,%lx000 found\n", base, size);
433 goto out;
434 }
435 }
436 if (reg >= max) {
437 pr_warn("register: %d too big\n", reg);
438 goto out;
439 }
440 mtrr_if->get(reg, &lbase, &lsize, <ype);
441 if (lsize < 1) {
442 pr_warn("MTRR %d not used\n", reg);
443 goto out;
444 }
445 if (mtrr_usage_table[reg] < 1) {
446 pr_warn("reg: %d has count=0\n", reg);
447 goto out;
448 }
449 if (--mtrr_usage_table[reg] < 1)
450 set_mtrr(reg, 0, 0, 0);
451 error = reg;
452 out:
453 mutex_unlock(&mtrr_mutex);
454 cpus_read_unlock();
455 return error;
456 }
457
458 /**
459 * mtrr_del - delete a memory type region
460 * @reg: Register returned by mtrr_add
461 * @base: Physical base address
462 * @size: Size of region
463 *
464 * If register is supplied then base and size are ignored. This is
465 * how drivers should call it.
466 *
467 * Releases an MTRR region. If the usage count drops to zero the
468 * register is freed and the region returns to default state.
469 * On success the register is returned, on failure a negative error
470 * code.
471 */
mtrr_del(int reg,unsigned long base,unsigned long size)472 int mtrr_del(int reg, unsigned long base, unsigned long size)
473 {
474 if (!mtrr_enabled())
475 return -ENODEV;
476 if (mtrr_check(base, size))
477 return -EINVAL;
478 return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
479 }
480
481 /**
482 * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable
483 * @base: Physical base address
484 * @size: Size of region
485 *
486 * If PAT is available, this does nothing. If PAT is unavailable, it
487 * attempts to add a WC MTRR covering size bytes starting at base and
488 * logs an error if this fails.
489 *
490 * The called should provide a power of two size on an equivalent
491 * power of two boundary.
492 *
493 * Drivers must store the return value to pass to mtrr_del_wc_if_needed,
494 * but drivers should not try to interpret that return value.
495 */
arch_phys_wc_add(unsigned long base,unsigned long size)496 int arch_phys_wc_add(unsigned long base, unsigned long size)
497 {
498 int ret;
499
500 if (pat_enabled() || !mtrr_enabled())
501 return 0; /* Success! (We don't need to do anything.) */
502
503 ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true);
504 if (ret < 0) {
505 pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.",
506 (void *)base, (void *)(base + size - 1));
507 return ret;
508 }
509 return ret + MTRR_TO_PHYS_WC_OFFSET;
510 }
511 EXPORT_SYMBOL(arch_phys_wc_add);
512
513 /*
514 * arch_phys_wc_del - undoes arch_phys_wc_add
515 * @handle: Return value from arch_phys_wc_add
516 *
517 * This cleans up after mtrr_add_wc_if_needed.
518 *
519 * The API guarantees that mtrr_del_wc_if_needed(error code) and
520 * mtrr_del_wc_if_needed(0) do nothing.
521 */
arch_phys_wc_del(int handle)522 void arch_phys_wc_del(int handle)
523 {
524 if (handle >= 1) {
525 WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET);
526 mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0);
527 }
528 }
529 EXPORT_SYMBOL(arch_phys_wc_del);
530
531 /*
532 * arch_phys_wc_index - translates arch_phys_wc_add's return value
533 * @handle: Return value from arch_phys_wc_add
534 *
535 * This will turn the return value from arch_phys_wc_add into an mtrr
536 * index suitable for debugging.
537 *
538 * Note: There is no legitimate use for this function, except possibly
539 * in printk line. Alas there is an illegitimate use in some ancient
540 * drm ioctls.
541 */
arch_phys_wc_index(int handle)542 int arch_phys_wc_index(int handle)
543 {
544 if (handle < MTRR_TO_PHYS_WC_OFFSET)
545 return -1;
546 else
547 return handle - MTRR_TO_PHYS_WC_OFFSET;
548 }
549 EXPORT_SYMBOL_GPL(arch_phys_wc_index);
550
551 int __initdata changed_by_mtrr_cleanup;
552
553 /**
554 * mtrr_bp_init - initialize MTRRs on the boot CPU
555 *
556 * This needs to be called early; before any of the other CPUs are
557 * initialized (i.e. before smp_init()).
558 */
mtrr_bp_init(void)559 void __init mtrr_bp_init(void)
560 {
561 bool generic_mtrrs = cpu_feature_enabled(X86_FEATURE_MTRR);
562 const char *why = "(not available)";
563 unsigned long config, dummy;
564
565 phys_hi_rsvd = GENMASK(31, boot_cpu_data.x86_phys_bits - 32);
566
567 if (!generic_mtrrs && mtrr_state.enabled) {
568 /*
569 * Software overwrite of MTRR state, only for generic case.
570 * Note that X86_FEATURE_MTRR has been reset in this case.
571 */
572 init_table();
573 mtrr_build_map();
574 pr_info("MTRRs set to read-only\n");
575
576 return;
577 }
578
579 if (generic_mtrrs)
580 mtrr_if = &generic_mtrr_ops;
581 else
582 mtrr_set_if();
583
584 if (mtrr_enabled()) {
585 /* Get the number of variable MTRR ranges. */
586 if (mtrr_if == &generic_mtrr_ops)
587 rdmsr(MSR_MTRRcap, config, dummy);
588 else
589 config = mtrr_if->var_regs;
590 num_var_ranges = config & MTRR_CAP_VCNT;
591
592 init_table();
593 if (mtrr_if == &generic_mtrr_ops) {
594 /* BIOS may override */
595 if (get_mtrr_state()) {
596 memory_caching_control |= CACHE_MTRR;
597 changed_by_mtrr_cleanup = mtrr_cleanup();
598 mtrr_build_map();
599 } else {
600 mtrr_if = NULL;
601 why = "by BIOS";
602 }
603 }
604 }
605
606 if (!mtrr_enabled())
607 pr_info("MTRRs disabled %s\n", why);
608 }
609
610 /**
611 * mtrr_save_state - Save current fixed-range MTRR state of the first
612 * cpu in cpu_online_mask.
613 */
mtrr_save_state(void)614 void mtrr_save_state(void)
615 {
616 int first_cpu;
617
618 if (!mtrr_enabled() || !mtrr_state.have_fixed)
619 return;
620
621 first_cpu = cpumask_first(cpu_online_mask);
622 smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1);
623 }
624
mtrr_init_finalize(void)625 static int __init mtrr_init_finalize(void)
626 {
627 /*
628 * Map might exist if mtrr_overwrite_state() has been called or if
629 * mtrr_enabled() returns true.
630 */
631 mtrr_copy_map();
632
633 if (!mtrr_enabled())
634 return 0;
635
636 if (memory_caching_control & CACHE_MTRR) {
637 if (!changed_by_mtrr_cleanup)
638 mtrr_state_warn();
639 return 0;
640 }
641
642 mtrr_register_syscore();
643
644 return 0;
645 }
646 subsys_initcall(mtrr_init_finalize);
647