xref: /linux/drivers/scsi/sd.c (revision cb429866a8259705e4dec104585bfba517f2ebc2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/bio-integrity.h>
37 #include <linux/module.h>
38 #include <linux/fs.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/rw_hint.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <linux/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_devinfo.h>
67 #include <scsi/scsi_driver.h>
68 #include <scsi/scsi_eh.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_ioctl.h>
71 #include <scsi/scsicam.h>
72 #include <scsi/scsi_common.h>
73 
74 #include "sd.h"
75 #include "scsi_priv.h"
76 #include "scsi_logging.h"
77 
78 MODULE_AUTHOR("Eric Youngdale");
79 MODULE_DESCRIPTION("SCSI disk (sd) driver");
80 MODULE_LICENSE("GPL");
81 
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
97 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
100 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
101 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
102 
103 #define SD_MINORS	16
104 
105 static void sd_config_write_same(struct scsi_disk *sdkp,
106 		struct queue_limits *lim);
107 static void  sd_revalidate_disk(struct gendisk *);
108 
109 static DEFINE_IDA(sd_index_ida);
110 
111 static mempool_t *sd_page_pool;
112 static struct lock_class_key sd_bio_compl_lkclass;
113 
114 static const char *sd_cache_types[] = {
115 	"write through", "none", "write back",
116 	"write back, no read (daft)"
117 };
118 
119 static void sd_disable_discard(struct scsi_disk *sdkp)
120 {
121 	sdkp->provisioning_mode = SD_LBP_DISABLE;
122 	blk_queue_disable_discard(sdkp->disk->queue);
123 }
124 
125 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
126 		unsigned int mode)
127 {
128 	unsigned int logical_block_size = sdkp->device->sector_size;
129 	unsigned int max_blocks = 0;
130 
131 	lim->discard_alignment = sdkp->unmap_alignment * logical_block_size;
132 	lim->discard_granularity = max(sdkp->physical_block_size,
133 			sdkp->unmap_granularity * logical_block_size);
134 	sdkp->provisioning_mode = mode;
135 
136 	switch (mode) {
137 
138 	case SD_LBP_FULL:
139 	case SD_LBP_DISABLE:
140 		break;
141 
142 	case SD_LBP_UNMAP:
143 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
144 					  (u32)SD_MAX_WS16_BLOCKS);
145 		break;
146 
147 	case SD_LBP_WS16:
148 		if (sdkp->device->unmap_limit_for_ws)
149 			max_blocks = sdkp->max_unmap_blocks;
150 		else
151 			max_blocks = sdkp->max_ws_blocks;
152 
153 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
154 		break;
155 
156 	case SD_LBP_WS10:
157 		if (sdkp->device->unmap_limit_for_ws)
158 			max_blocks = sdkp->max_unmap_blocks;
159 		else
160 			max_blocks = sdkp->max_ws_blocks;
161 
162 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
163 		break;
164 
165 	case SD_LBP_ZERO:
166 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
167 					  (u32)SD_MAX_WS10_BLOCKS);
168 		break;
169 	}
170 
171 	lim->max_hw_discard_sectors = max_blocks *
172 		(logical_block_size >> SECTOR_SHIFT);
173 }
174 
175 static void sd_set_flush_flag(struct scsi_disk *sdkp,
176 		struct queue_limits *lim)
177 {
178 	if (sdkp->WCE) {
179 		lim->features |= BLK_FEAT_WRITE_CACHE;
180 		if (sdkp->DPOFUA)
181 			lim->features |= BLK_FEAT_FUA;
182 		else
183 			lim->features &= ~BLK_FEAT_FUA;
184 	} else {
185 		lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
186 	}
187 }
188 
189 static ssize_t
190 cache_type_store(struct device *dev, struct device_attribute *attr,
191 		 const char *buf, size_t count)
192 {
193 	int ct, rcd, wce, sp;
194 	struct scsi_disk *sdkp = to_scsi_disk(dev);
195 	struct scsi_device *sdp = sdkp->device;
196 	char buffer[64];
197 	char *buffer_data;
198 	struct scsi_mode_data data;
199 	struct scsi_sense_hdr sshdr;
200 	static const char temp[] = "temporary ";
201 	int len, ret;
202 
203 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
204 		/* no cache control on RBC devices; theoretically they
205 		 * can do it, but there's probably so many exceptions
206 		 * it's not worth the risk */
207 		return -EINVAL;
208 
209 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
210 		buf += sizeof(temp) - 1;
211 		sdkp->cache_override = 1;
212 	} else {
213 		sdkp->cache_override = 0;
214 	}
215 
216 	ct = sysfs_match_string(sd_cache_types, buf);
217 	if (ct < 0)
218 		return -EINVAL;
219 
220 	rcd = ct & 0x01 ? 1 : 0;
221 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
222 
223 	if (sdkp->cache_override) {
224 		struct queue_limits lim;
225 
226 		sdkp->WCE = wce;
227 		sdkp->RCD = rcd;
228 
229 		lim = queue_limits_start_update(sdkp->disk->queue);
230 		sd_set_flush_flag(sdkp, &lim);
231 		ret = queue_limits_commit_update_frozen(sdkp->disk->queue,
232 				&lim);
233 		if (ret)
234 			return ret;
235 		return count;
236 	}
237 
238 	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
239 			    sdkp->max_retries, &data, NULL))
240 		return -EINVAL;
241 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
242 		  data.block_descriptor_length);
243 	buffer_data = buffer + data.header_length +
244 		data.block_descriptor_length;
245 	buffer_data[2] &= ~0x05;
246 	buffer_data[2] |= wce << 2 | rcd;
247 	sp = buffer_data[0] & 0x80 ? 1 : 0;
248 	buffer_data[0] &= ~0x80;
249 
250 	/*
251 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
252 	 * received mode parameter buffer before doing MODE SELECT.
253 	 */
254 	data.device_specific = 0;
255 
256 	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
257 			       sdkp->max_retries, &data, &sshdr);
258 	if (ret) {
259 		if (ret > 0 && scsi_sense_valid(&sshdr))
260 			sd_print_sense_hdr(sdkp, &sshdr);
261 		return -EINVAL;
262 	}
263 	sd_revalidate_disk(sdkp->disk);
264 	return count;
265 }
266 
267 static ssize_t
268 manage_start_stop_show(struct device *dev,
269 		       struct device_attribute *attr, char *buf)
270 {
271 	struct scsi_disk *sdkp = to_scsi_disk(dev);
272 	struct scsi_device *sdp = sdkp->device;
273 
274 	return sysfs_emit(buf, "%u\n",
275 			  sdp->manage_system_start_stop &&
276 			  sdp->manage_runtime_start_stop &&
277 			  sdp->manage_shutdown);
278 }
279 static DEVICE_ATTR_RO(manage_start_stop);
280 
281 static ssize_t
282 manage_system_start_stop_show(struct device *dev,
283 			      struct device_attribute *attr, char *buf)
284 {
285 	struct scsi_disk *sdkp = to_scsi_disk(dev);
286 	struct scsi_device *sdp = sdkp->device;
287 
288 	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
289 }
290 
291 static ssize_t
292 manage_system_start_stop_store(struct device *dev,
293 			       struct device_attribute *attr,
294 			       const char *buf, size_t count)
295 {
296 	struct scsi_disk *sdkp = to_scsi_disk(dev);
297 	struct scsi_device *sdp = sdkp->device;
298 	bool v;
299 
300 	if (!capable(CAP_SYS_ADMIN))
301 		return -EACCES;
302 
303 	if (kstrtobool(buf, &v))
304 		return -EINVAL;
305 
306 	sdp->manage_system_start_stop = v;
307 
308 	return count;
309 }
310 static DEVICE_ATTR_RW(manage_system_start_stop);
311 
312 static ssize_t
313 manage_runtime_start_stop_show(struct device *dev,
314 			       struct device_attribute *attr, char *buf)
315 {
316 	struct scsi_disk *sdkp = to_scsi_disk(dev);
317 	struct scsi_device *sdp = sdkp->device;
318 
319 	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
320 }
321 
322 static ssize_t
323 manage_runtime_start_stop_store(struct device *dev,
324 				struct device_attribute *attr,
325 				const char *buf, size_t count)
326 {
327 	struct scsi_disk *sdkp = to_scsi_disk(dev);
328 	struct scsi_device *sdp = sdkp->device;
329 	bool v;
330 
331 	if (!capable(CAP_SYS_ADMIN))
332 		return -EACCES;
333 
334 	if (kstrtobool(buf, &v))
335 		return -EINVAL;
336 
337 	sdp->manage_runtime_start_stop = v;
338 
339 	return count;
340 }
341 static DEVICE_ATTR_RW(manage_runtime_start_stop);
342 
343 static ssize_t manage_shutdown_show(struct device *dev,
344 				    struct device_attribute *attr, char *buf)
345 {
346 	struct scsi_disk *sdkp = to_scsi_disk(dev);
347 	struct scsi_device *sdp = sdkp->device;
348 
349 	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
350 }
351 
352 static ssize_t manage_shutdown_store(struct device *dev,
353 				     struct device_attribute *attr,
354 				     const char *buf, size_t count)
355 {
356 	struct scsi_disk *sdkp = to_scsi_disk(dev);
357 	struct scsi_device *sdp = sdkp->device;
358 	bool v;
359 
360 	if (!capable(CAP_SYS_ADMIN))
361 		return -EACCES;
362 
363 	if (kstrtobool(buf, &v))
364 		return -EINVAL;
365 
366 	sdp->manage_shutdown = v;
367 
368 	return count;
369 }
370 static DEVICE_ATTR_RW(manage_shutdown);
371 
372 static ssize_t manage_restart_show(struct device *dev,
373 				   struct device_attribute *attr, char *buf)
374 {
375 	struct scsi_disk *sdkp = to_scsi_disk(dev);
376 	struct scsi_device *sdp = sdkp->device;
377 
378 	return sysfs_emit(buf, "%u\n", sdp->manage_restart);
379 }
380 
381 static ssize_t manage_restart_store(struct device *dev,
382 				    struct device_attribute *attr,
383 				    const char *buf, size_t count)
384 {
385 	struct scsi_disk *sdkp = to_scsi_disk(dev);
386 	struct scsi_device *sdp = sdkp->device;
387 	bool v;
388 
389 	if (!capable(CAP_SYS_ADMIN))
390 		return -EACCES;
391 
392 	if (kstrtobool(buf, &v))
393 		return -EINVAL;
394 
395 	sdp->manage_restart = v;
396 
397 	return count;
398 }
399 static DEVICE_ATTR_RW(manage_restart);
400 
401 static ssize_t
402 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
403 {
404 	struct scsi_disk *sdkp = to_scsi_disk(dev);
405 
406 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
407 }
408 
409 static ssize_t
410 allow_restart_store(struct device *dev, struct device_attribute *attr,
411 		    const char *buf, size_t count)
412 {
413 	bool v;
414 	struct scsi_disk *sdkp = to_scsi_disk(dev);
415 	struct scsi_device *sdp = sdkp->device;
416 
417 	if (!capable(CAP_SYS_ADMIN))
418 		return -EACCES;
419 
420 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
421 		return -EINVAL;
422 
423 	if (kstrtobool(buf, &v))
424 		return -EINVAL;
425 
426 	sdp->allow_restart = v;
427 
428 	return count;
429 }
430 static DEVICE_ATTR_RW(allow_restart);
431 
432 static ssize_t
433 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
434 {
435 	struct scsi_disk *sdkp = to_scsi_disk(dev);
436 	int ct = sdkp->RCD + 2*sdkp->WCE;
437 
438 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
439 }
440 static DEVICE_ATTR_RW(cache_type);
441 
442 static ssize_t
443 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
444 {
445 	struct scsi_disk *sdkp = to_scsi_disk(dev);
446 
447 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
448 }
449 static DEVICE_ATTR_RO(FUA);
450 
451 static ssize_t
452 protection_type_show(struct device *dev, struct device_attribute *attr,
453 		     char *buf)
454 {
455 	struct scsi_disk *sdkp = to_scsi_disk(dev);
456 
457 	return sprintf(buf, "%u\n", sdkp->protection_type);
458 }
459 
460 static ssize_t
461 protection_type_store(struct device *dev, struct device_attribute *attr,
462 		      const char *buf, size_t count)
463 {
464 	struct scsi_disk *sdkp = to_scsi_disk(dev);
465 	unsigned int val;
466 	int err;
467 
468 	if (!capable(CAP_SYS_ADMIN))
469 		return -EACCES;
470 
471 	err = kstrtouint(buf, 10, &val);
472 
473 	if (err)
474 		return err;
475 
476 	if (val <= T10_PI_TYPE3_PROTECTION)
477 		sdkp->protection_type = val;
478 
479 	return count;
480 }
481 static DEVICE_ATTR_RW(protection_type);
482 
483 static ssize_t
484 protection_mode_show(struct device *dev, struct device_attribute *attr,
485 		     char *buf)
486 {
487 	struct scsi_disk *sdkp = to_scsi_disk(dev);
488 	struct scsi_device *sdp = sdkp->device;
489 	unsigned int dif, dix;
490 
491 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
492 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
493 
494 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
495 		dif = 0;
496 		dix = 1;
497 	}
498 
499 	if (!dif && !dix)
500 		return sprintf(buf, "none\n");
501 
502 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
503 }
504 static DEVICE_ATTR_RO(protection_mode);
505 
506 static ssize_t
507 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
508 {
509 	struct scsi_disk *sdkp = to_scsi_disk(dev);
510 
511 	return sprintf(buf, "%u\n", sdkp->ATO);
512 }
513 static DEVICE_ATTR_RO(app_tag_own);
514 
515 static ssize_t
516 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
517 		       char *buf)
518 {
519 	struct scsi_disk *sdkp = to_scsi_disk(dev);
520 
521 	return sprintf(buf, "%u\n", sdkp->lbpme);
522 }
523 static DEVICE_ATTR_RO(thin_provisioning);
524 
525 /* sysfs_match_string() requires dense arrays */
526 static const char *lbp_mode[] = {
527 	[SD_LBP_FULL]		= "full",
528 	[SD_LBP_UNMAP]		= "unmap",
529 	[SD_LBP_WS16]		= "writesame_16",
530 	[SD_LBP_WS10]		= "writesame_10",
531 	[SD_LBP_ZERO]		= "writesame_zero",
532 	[SD_LBP_DISABLE]	= "disabled",
533 };
534 
535 static ssize_t
536 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
537 		       char *buf)
538 {
539 	struct scsi_disk *sdkp = to_scsi_disk(dev);
540 
541 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
542 }
543 
544 static ssize_t
545 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
546 			const char *buf, size_t count)
547 {
548 	struct scsi_disk *sdkp = to_scsi_disk(dev);
549 	struct scsi_device *sdp = sdkp->device;
550 	struct queue_limits lim;
551 	int mode, err;
552 
553 	if (!capable(CAP_SYS_ADMIN))
554 		return -EACCES;
555 
556 	if (sdp->type != TYPE_DISK)
557 		return -EINVAL;
558 
559 	mode = sysfs_match_string(lbp_mode, buf);
560 	if (mode < 0)
561 		return -EINVAL;
562 
563 	lim = queue_limits_start_update(sdkp->disk->queue);
564 	sd_config_discard(sdkp, &lim, mode);
565 	err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
566 	if (err)
567 		return err;
568 	return count;
569 }
570 static DEVICE_ATTR_RW(provisioning_mode);
571 
572 /* sysfs_match_string() requires dense arrays */
573 static const char *zeroing_mode[] = {
574 	[SD_ZERO_WRITE]		= "write",
575 	[SD_ZERO_WS]		= "writesame",
576 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
577 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
578 };
579 
580 static ssize_t
581 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
582 		  char *buf)
583 {
584 	struct scsi_disk *sdkp = to_scsi_disk(dev);
585 
586 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
587 }
588 
589 static ssize_t
590 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
591 		   const char *buf, size_t count)
592 {
593 	struct scsi_disk *sdkp = to_scsi_disk(dev);
594 	int mode;
595 
596 	if (!capable(CAP_SYS_ADMIN))
597 		return -EACCES;
598 
599 	mode = sysfs_match_string(zeroing_mode, buf);
600 	if (mode < 0)
601 		return -EINVAL;
602 
603 	sdkp->zeroing_mode = mode;
604 
605 	return count;
606 }
607 static DEVICE_ATTR_RW(zeroing_mode);
608 
609 static ssize_t
610 max_medium_access_timeouts_show(struct device *dev,
611 				struct device_attribute *attr, char *buf)
612 {
613 	struct scsi_disk *sdkp = to_scsi_disk(dev);
614 
615 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
616 }
617 
618 static ssize_t
619 max_medium_access_timeouts_store(struct device *dev,
620 				 struct device_attribute *attr, const char *buf,
621 				 size_t count)
622 {
623 	struct scsi_disk *sdkp = to_scsi_disk(dev);
624 	int err;
625 
626 	if (!capable(CAP_SYS_ADMIN))
627 		return -EACCES;
628 
629 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
630 
631 	return err ? err : count;
632 }
633 static DEVICE_ATTR_RW(max_medium_access_timeouts);
634 
635 static ssize_t
636 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
637 			   char *buf)
638 {
639 	struct scsi_disk *sdkp = to_scsi_disk(dev);
640 
641 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
642 }
643 
644 static ssize_t
645 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
646 			    const char *buf, size_t count)
647 {
648 	struct scsi_disk *sdkp = to_scsi_disk(dev);
649 	struct scsi_device *sdp = sdkp->device;
650 	struct queue_limits lim;
651 	unsigned long max;
652 	int err;
653 
654 	if (!capable(CAP_SYS_ADMIN))
655 		return -EACCES;
656 
657 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
658 		return -EINVAL;
659 
660 	err = kstrtoul(buf, 10, &max);
661 
662 	if (err)
663 		return err;
664 
665 	if (max == 0)
666 		sdp->no_write_same = 1;
667 	else if (max <= SD_MAX_WS16_BLOCKS) {
668 		sdp->no_write_same = 0;
669 		sdkp->max_ws_blocks = max;
670 	}
671 
672 	lim = queue_limits_start_update(sdkp->disk->queue);
673 	sd_config_write_same(sdkp, &lim);
674 	err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
675 	if (err)
676 		return err;
677 	return count;
678 }
679 static DEVICE_ATTR_RW(max_write_same_blocks);
680 
681 static ssize_t
682 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
683 {
684 	struct scsi_disk *sdkp = to_scsi_disk(dev);
685 
686 	if (sdkp->device->type == TYPE_ZBC)
687 		return sprintf(buf, "host-managed\n");
688 	if (sdkp->zoned == 1)
689 		return sprintf(buf, "host-aware\n");
690 	if (sdkp->zoned == 2)
691 		return sprintf(buf, "drive-managed\n");
692 	return sprintf(buf, "none\n");
693 }
694 static DEVICE_ATTR_RO(zoned_cap);
695 
696 static ssize_t
697 max_retries_store(struct device *dev, struct device_attribute *attr,
698 		  const char *buf, size_t count)
699 {
700 	struct scsi_disk *sdkp = to_scsi_disk(dev);
701 	struct scsi_device *sdev = sdkp->device;
702 	int retries, err;
703 
704 	err = kstrtoint(buf, 10, &retries);
705 	if (err)
706 		return err;
707 
708 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
709 		sdkp->max_retries = retries;
710 		return count;
711 	}
712 
713 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
714 		    SD_MAX_RETRIES);
715 	return -EINVAL;
716 }
717 
718 static ssize_t
719 max_retries_show(struct device *dev, struct device_attribute *attr,
720 		 char *buf)
721 {
722 	struct scsi_disk *sdkp = to_scsi_disk(dev);
723 
724 	return sprintf(buf, "%d\n", sdkp->max_retries);
725 }
726 
727 static DEVICE_ATTR_RW(max_retries);
728 
729 static struct attribute *sd_disk_attrs[] = {
730 	&dev_attr_cache_type.attr,
731 	&dev_attr_FUA.attr,
732 	&dev_attr_allow_restart.attr,
733 	&dev_attr_manage_start_stop.attr,
734 	&dev_attr_manage_system_start_stop.attr,
735 	&dev_attr_manage_runtime_start_stop.attr,
736 	&dev_attr_manage_shutdown.attr,
737 	&dev_attr_manage_restart.attr,
738 	&dev_attr_protection_type.attr,
739 	&dev_attr_protection_mode.attr,
740 	&dev_attr_app_tag_own.attr,
741 	&dev_attr_thin_provisioning.attr,
742 	&dev_attr_provisioning_mode.attr,
743 	&dev_attr_zeroing_mode.attr,
744 	&dev_attr_max_write_same_blocks.attr,
745 	&dev_attr_max_medium_access_timeouts.attr,
746 	&dev_attr_zoned_cap.attr,
747 	&dev_attr_max_retries.attr,
748 	NULL,
749 };
750 ATTRIBUTE_GROUPS(sd_disk);
751 
752 static void scsi_disk_release(struct device *dev)
753 {
754 	struct scsi_disk *sdkp = to_scsi_disk(dev);
755 
756 	ida_free(&sd_index_ida, sdkp->index);
757 	put_device(&sdkp->device->sdev_gendev);
758 	free_opal_dev(sdkp->opal_dev);
759 
760 	kfree(sdkp);
761 }
762 
763 static struct class sd_disk_class = {
764 	.name		= "scsi_disk",
765 	.dev_release	= scsi_disk_release,
766 	.dev_groups	= sd_disk_groups,
767 };
768 
769 /*
770  * Don't request a new module, as that could deadlock in multipath
771  * environment.
772  */
773 static void sd_default_probe(dev_t devt)
774 {
775 }
776 
777 /*
778  * Device no to disk mapping:
779  *
780  *       major         disc2     disc  p1
781  *   |............|.............|....|....| <- dev_t
782  *    31        20 19          8 7  4 3  0
783  *
784  * Inside a major, we have 16k disks, however mapped non-
785  * contiguously. The first 16 disks are for major0, the next
786  * ones with major1, ... Disk 256 is for major0 again, disk 272
787  * for major1, ...
788  * As we stay compatible with our numbering scheme, we can reuse
789  * the well-know SCSI majors 8, 65--71, 136--143.
790  */
791 static int sd_major(int major_idx)
792 {
793 	switch (major_idx) {
794 	case 0:
795 		return SCSI_DISK0_MAJOR;
796 	case 1 ... 7:
797 		return SCSI_DISK1_MAJOR + major_idx - 1;
798 	case 8 ... 15:
799 		return SCSI_DISK8_MAJOR + major_idx - 8;
800 	default:
801 		BUG();
802 		return 0;	/* shut up gcc */
803 	}
804 }
805 
806 #ifdef CONFIG_BLK_SED_OPAL
807 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
808 		size_t len, bool send)
809 {
810 	struct scsi_disk *sdkp = data;
811 	struct scsi_device *sdev = sdkp->device;
812 	u8 cdb[12] = { 0, };
813 	const struct scsi_exec_args exec_args = {
814 		.req_flags = BLK_MQ_REQ_PM,
815 	};
816 	int ret;
817 
818 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
819 	cdb[1] = secp;
820 	put_unaligned_be16(spsp, &cdb[2]);
821 	put_unaligned_be32(len, &cdb[6]);
822 
823 	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
824 			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
825 			       &exec_args);
826 	return ret <= 0 ? ret : -EIO;
827 }
828 #endif /* CONFIG_BLK_SED_OPAL */
829 
830 /*
831  * Look up the DIX operation based on whether the command is read or
832  * write and whether dix and dif are enabled.
833  */
834 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
835 {
836 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
837 	static const unsigned int ops[] = {	/* wrt dix dif */
838 		SCSI_PROT_NORMAL,		/*  0	0   0  */
839 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
840 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
841 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
842 		SCSI_PROT_NORMAL,		/*  1	0   0  */
843 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
844 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
845 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
846 	};
847 
848 	return ops[write << 2 | dix << 1 | dif];
849 }
850 
851 /*
852  * Returns a mask of the protection flags that are valid for a given DIX
853  * operation.
854  */
855 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
856 {
857 	static const unsigned int flag_mask[] = {
858 		[SCSI_PROT_NORMAL]		= 0,
859 
860 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
861 						  SCSI_PROT_GUARD_CHECK |
862 						  SCSI_PROT_REF_CHECK |
863 						  SCSI_PROT_REF_INCREMENT,
864 
865 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
866 						  SCSI_PROT_IP_CHECKSUM,
867 
868 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
869 						  SCSI_PROT_GUARD_CHECK |
870 						  SCSI_PROT_REF_CHECK |
871 						  SCSI_PROT_REF_INCREMENT |
872 						  SCSI_PROT_IP_CHECKSUM,
873 
874 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
875 						  SCSI_PROT_REF_INCREMENT,
876 
877 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
878 						  SCSI_PROT_REF_CHECK |
879 						  SCSI_PROT_REF_INCREMENT |
880 						  SCSI_PROT_IP_CHECKSUM,
881 
882 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
883 						  SCSI_PROT_GUARD_CHECK |
884 						  SCSI_PROT_REF_CHECK |
885 						  SCSI_PROT_REF_INCREMENT |
886 						  SCSI_PROT_IP_CHECKSUM,
887 	};
888 
889 	return flag_mask[prot_op];
890 }
891 
892 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
893 					   unsigned int dix, unsigned int dif)
894 {
895 	struct request *rq = scsi_cmd_to_rq(scmd);
896 	struct bio *bio = rq->bio;
897 	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
898 	unsigned int protect = 0;
899 
900 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
901 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
902 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
903 
904 		if (bio_integrity_flagged(bio, BIP_CHECK_GUARD))
905 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
906 	}
907 
908 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
909 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
910 
911 		if (bio_integrity_flagged(bio, BIP_CHECK_REFTAG))
912 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
913 	}
914 
915 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
916 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
917 
918 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
919 			protect = 3 << 5;	/* Disable target PI checking */
920 		else
921 			protect = 1 << 5;	/* Enable target PI checking */
922 	}
923 
924 	scsi_set_prot_op(scmd, prot_op);
925 	scsi_set_prot_type(scmd, dif);
926 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
927 
928 	return protect;
929 }
930 
931 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
932 {
933 	struct page *page;
934 
935 	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
936 	if (!page)
937 		return NULL;
938 	clear_highpage(page);
939 	bvec_set_page(&rq->special_vec, page, data_len, 0);
940 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
941 	return bvec_virt(&rq->special_vec);
942 }
943 
944 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
945 {
946 	struct scsi_device *sdp = cmd->device;
947 	struct request *rq = scsi_cmd_to_rq(cmd);
948 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
949 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
950 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
951 	unsigned int data_len = 24;
952 	char *buf;
953 
954 	buf = sd_set_special_bvec(rq, data_len);
955 	if (!buf)
956 		return BLK_STS_RESOURCE;
957 
958 	cmd->cmd_len = 10;
959 	cmd->cmnd[0] = UNMAP;
960 	cmd->cmnd[8] = 24;
961 
962 	put_unaligned_be16(6 + 16, &buf[0]);
963 	put_unaligned_be16(16, &buf[2]);
964 	put_unaligned_be64(lba, &buf[8]);
965 	put_unaligned_be32(nr_blocks, &buf[16]);
966 
967 	cmd->allowed = sdkp->max_retries;
968 	cmd->transfersize = data_len;
969 	rq->timeout = SD_TIMEOUT;
970 
971 	return scsi_alloc_sgtables(cmd);
972 }
973 
974 static void sd_config_atomic(struct scsi_disk *sdkp, struct queue_limits *lim)
975 {
976 	unsigned int logical_block_size = sdkp->device->sector_size,
977 		physical_block_size_sectors, max_atomic, unit_min, unit_max;
978 
979 	if ((!sdkp->max_atomic && !sdkp->max_atomic_with_boundary) ||
980 	    sdkp->protection_type == T10_PI_TYPE2_PROTECTION)
981 		return;
982 
983 	physical_block_size_sectors = sdkp->physical_block_size /
984 					sdkp->device->sector_size;
985 
986 	unit_min = rounddown_pow_of_two(sdkp->atomic_granularity ?
987 					sdkp->atomic_granularity :
988 					physical_block_size_sectors);
989 
990 	/*
991 	 * Only use atomic boundary when we have the odd scenario of
992 	 * sdkp->max_atomic == 0, which the spec does permit.
993 	 */
994 	if (sdkp->max_atomic) {
995 		max_atomic = sdkp->max_atomic;
996 		unit_max = rounddown_pow_of_two(sdkp->max_atomic);
997 		sdkp->use_atomic_write_boundary = 0;
998 	} else {
999 		max_atomic = sdkp->max_atomic_with_boundary;
1000 		unit_max = rounddown_pow_of_two(sdkp->max_atomic_boundary);
1001 		sdkp->use_atomic_write_boundary = 1;
1002 	}
1003 
1004 	/*
1005 	 * Ensure compliance with granularity and alignment. For now, keep it
1006 	 * simple and just don't support atomic writes for values mismatched
1007 	 * with max_{boundary}atomic, physical block size, and
1008 	 * atomic_granularity itself.
1009 	 *
1010 	 * We're really being distrustful by checking unit_max also...
1011 	 */
1012 	if (sdkp->atomic_granularity > 1) {
1013 		if (unit_min > 1 && unit_min % sdkp->atomic_granularity)
1014 			return;
1015 		if (unit_max > 1 && unit_max % sdkp->atomic_granularity)
1016 			return;
1017 	}
1018 
1019 	if (sdkp->atomic_alignment > 1) {
1020 		if (unit_min > 1 && unit_min % sdkp->atomic_alignment)
1021 			return;
1022 		if (unit_max > 1 && unit_max % sdkp->atomic_alignment)
1023 			return;
1024 	}
1025 
1026 	lim->atomic_write_hw_max = max_atomic * logical_block_size;
1027 	lim->atomic_write_hw_boundary = 0;
1028 	lim->atomic_write_hw_unit_min = unit_min * logical_block_size;
1029 	lim->atomic_write_hw_unit_max = unit_max * logical_block_size;
1030 	lim->features |= BLK_FEAT_ATOMIC_WRITES;
1031 }
1032 
1033 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
1034 		bool unmap)
1035 {
1036 	struct scsi_device *sdp = cmd->device;
1037 	struct request *rq = scsi_cmd_to_rq(cmd);
1038 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1039 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1040 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1041 	u32 data_len = sdp->sector_size;
1042 
1043 	if (!sd_set_special_bvec(rq, data_len))
1044 		return BLK_STS_RESOURCE;
1045 
1046 	cmd->cmd_len = 16;
1047 	cmd->cmnd[0] = WRITE_SAME_16;
1048 	if (unmap)
1049 		cmd->cmnd[1] = 0x8; /* UNMAP */
1050 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1051 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1052 
1053 	cmd->allowed = sdkp->max_retries;
1054 	cmd->transfersize = data_len;
1055 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
1056 
1057 	return scsi_alloc_sgtables(cmd);
1058 }
1059 
1060 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
1061 		bool unmap)
1062 {
1063 	struct scsi_device *sdp = cmd->device;
1064 	struct request *rq = scsi_cmd_to_rq(cmd);
1065 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1066 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1067 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1068 	u32 data_len = sdp->sector_size;
1069 
1070 	if (!sd_set_special_bvec(rq, data_len))
1071 		return BLK_STS_RESOURCE;
1072 
1073 	cmd->cmd_len = 10;
1074 	cmd->cmnd[0] = WRITE_SAME;
1075 	if (unmap)
1076 		cmd->cmnd[1] = 0x8; /* UNMAP */
1077 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1078 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1079 
1080 	cmd->allowed = sdkp->max_retries;
1081 	cmd->transfersize = data_len;
1082 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
1083 
1084 	return scsi_alloc_sgtables(cmd);
1085 }
1086 
1087 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
1088 {
1089 	struct request *rq = scsi_cmd_to_rq(cmd);
1090 	struct scsi_device *sdp = cmd->device;
1091 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1092 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1093 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1094 
1095 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
1096 		switch (sdkp->zeroing_mode) {
1097 		case SD_ZERO_WS16_UNMAP:
1098 			return sd_setup_write_same16_cmnd(cmd, true);
1099 		case SD_ZERO_WS10_UNMAP:
1100 			return sd_setup_write_same10_cmnd(cmd, true);
1101 		}
1102 	}
1103 
1104 	if (sdp->no_write_same) {
1105 		rq->rq_flags |= RQF_QUIET;
1106 		return BLK_STS_TARGET;
1107 	}
1108 
1109 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
1110 		return sd_setup_write_same16_cmnd(cmd, false);
1111 
1112 	return sd_setup_write_same10_cmnd(cmd, false);
1113 }
1114 
1115 static void sd_disable_write_same(struct scsi_disk *sdkp)
1116 {
1117 	sdkp->device->no_write_same = 1;
1118 	sdkp->max_ws_blocks = 0;
1119 	blk_queue_disable_write_zeroes(sdkp->disk->queue);
1120 }
1121 
1122 static void sd_config_write_same(struct scsi_disk *sdkp,
1123 		struct queue_limits *lim)
1124 {
1125 	unsigned int logical_block_size = sdkp->device->sector_size;
1126 
1127 	if (sdkp->device->no_write_same) {
1128 		sdkp->max_ws_blocks = 0;
1129 		goto out;
1130 	}
1131 
1132 	/* Some devices can not handle block counts above 0xffff despite
1133 	 * supporting WRITE SAME(16). Consequently we default to 64k
1134 	 * blocks per I/O unless the device explicitly advertises a
1135 	 * bigger limit.
1136 	 */
1137 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1138 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1139 						   (u32)SD_MAX_WS16_BLOCKS);
1140 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1141 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1142 						   (u32)SD_MAX_WS10_BLOCKS);
1143 	else {
1144 		sdkp->device->no_write_same = 1;
1145 		sdkp->max_ws_blocks = 0;
1146 	}
1147 
1148 	if (sdkp->lbprz && sdkp->lbpws)
1149 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1150 	else if (sdkp->lbprz && sdkp->lbpws10)
1151 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1152 	else if (sdkp->max_ws_blocks)
1153 		sdkp->zeroing_mode = SD_ZERO_WS;
1154 	else
1155 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1156 
1157 	if (sdkp->max_ws_blocks &&
1158 	    sdkp->physical_block_size > logical_block_size) {
1159 		/*
1160 		 * Reporting a maximum number of blocks that is not aligned
1161 		 * on the device physical size would cause a large write same
1162 		 * request to be split into physically unaligned chunks by
1163 		 * __blkdev_issue_write_zeroes() even if the caller of this
1164 		 * functions took care to align the large request. So make sure
1165 		 * the maximum reported is aligned to the device physical block
1166 		 * size. This is only an optional optimization for regular
1167 		 * disks, but this is mandatory to avoid failure of large write
1168 		 * same requests directed at sequential write required zones of
1169 		 * host-managed ZBC disks.
1170 		 */
1171 		sdkp->max_ws_blocks =
1172 			round_down(sdkp->max_ws_blocks,
1173 				   bytes_to_logical(sdkp->device,
1174 						    sdkp->physical_block_size));
1175 	}
1176 
1177 out:
1178 	lim->max_write_zeroes_sectors =
1179 		sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT);
1180 
1181 	if (sdkp->zeroing_mode == SD_ZERO_WS16_UNMAP ||
1182 	    sdkp->zeroing_mode == SD_ZERO_WS10_UNMAP)
1183 		lim->max_hw_wzeroes_unmap_sectors =
1184 				lim->max_write_zeroes_sectors;
1185 }
1186 
1187 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1188 {
1189 	struct request *rq = scsi_cmd_to_rq(cmd);
1190 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1191 
1192 	/* flush requests don't perform I/O, zero the S/G table */
1193 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1194 
1195 	if (cmd->device->use_16_for_sync) {
1196 		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1197 		cmd->cmd_len = 16;
1198 	} else {
1199 		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1200 		cmd->cmd_len = 10;
1201 	}
1202 	cmd->transfersize = 0;
1203 	cmd->allowed = sdkp->max_retries;
1204 
1205 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1206 	return BLK_STS_OK;
1207 }
1208 
1209 /**
1210  * sd_group_number() - Compute the GROUP NUMBER field
1211  * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
1212  *	field.
1213  *
1214  * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
1215  * 0: no relative lifetime.
1216  * 1: shortest relative lifetime.
1217  * 2: second shortest relative lifetime.
1218  * 3 - 0x3d: intermediate relative lifetimes.
1219  * 0x3e: second longest relative lifetime.
1220  * 0x3f: longest relative lifetime.
1221  */
1222 static u8 sd_group_number(struct scsi_cmnd *cmd)
1223 {
1224 	const struct request *rq = scsi_cmd_to_rq(cmd);
1225 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1226 
1227 	if (!sdkp->rscs)
1228 		return 0;
1229 
1230 	return min3((u32)rq->bio->bi_write_hint,
1231 		    (u32)sdkp->permanent_stream_count, 0x3fu);
1232 }
1233 
1234 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1235 				       sector_t lba, unsigned int nr_blocks,
1236 				       unsigned char flags, unsigned int dld)
1237 {
1238 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1239 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1240 	cmd->cmnd[6]  = sd_group_number(cmd);
1241 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1242 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1243 	cmd->cmnd[10] = flags;
1244 	cmd->cmnd[11] = dld & 0x07;
1245 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1246 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1247 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1248 
1249 	return BLK_STS_OK;
1250 }
1251 
1252 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1253 				       sector_t lba, unsigned int nr_blocks,
1254 				       unsigned char flags, unsigned int dld)
1255 {
1256 	cmd->cmd_len  = 16;
1257 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1258 	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1259 	cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
1260 	cmd->cmnd[15] = 0;
1261 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1262 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1263 
1264 	return BLK_STS_OK;
1265 }
1266 
1267 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1268 				       sector_t lba, unsigned int nr_blocks,
1269 				       unsigned char flags)
1270 {
1271 	cmd->cmd_len = 10;
1272 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1273 	cmd->cmnd[1] = flags;
1274 	cmd->cmnd[6] = sd_group_number(cmd);
1275 	cmd->cmnd[9] = 0;
1276 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1277 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1278 
1279 	return BLK_STS_OK;
1280 }
1281 
1282 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1283 				      sector_t lba, unsigned int nr_blocks,
1284 				      unsigned char flags)
1285 {
1286 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1287 	if (WARN_ON_ONCE(nr_blocks == 0))
1288 		return BLK_STS_IOERR;
1289 
1290 	if (unlikely(flags & 0x8)) {
1291 		/*
1292 		 * This happens only if this drive failed 10byte rw
1293 		 * command with ILLEGAL_REQUEST during operation and
1294 		 * thus turned off use_10_for_rw.
1295 		 */
1296 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1297 		return BLK_STS_IOERR;
1298 	}
1299 
1300 	cmd->cmd_len = 6;
1301 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1302 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1303 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1304 	cmd->cmnd[3] = lba & 0xff;
1305 	cmd->cmnd[4] = nr_blocks;
1306 	cmd->cmnd[5] = 0;
1307 
1308 	return BLK_STS_OK;
1309 }
1310 
1311 /*
1312  * Check if a command has a duration limit set. If it does, and the target
1313  * device supports CDL and the feature is enabled, return the limit
1314  * descriptor index to use. Return 0 (no limit) otherwise.
1315  */
1316 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1317 {
1318 	struct scsi_device *sdp = sdkp->device;
1319 	int hint;
1320 
1321 	if (!sdp->cdl_supported || !sdp->cdl_enable)
1322 		return 0;
1323 
1324 	/*
1325 	 * Use "no limit" if the request ioprio does not specify a duration
1326 	 * limit hint.
1327 	 */
1328 	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1329 	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1330 	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1331 		return 0;
1332 
1333 	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1334 }
1335 
1336 static blk_status_t sd_setup_atomic_cmnd(struct scsi_cmnd *cmd,
1337 					sector_t lba, unsigned int nr_blocks,
1338 					bool boundary, unsigned char flags)
1339 {
1340 	cmd->cmd_len  = 16;
1341 	cmd->cmnd[0]  = WRITE_ATOMIC_16;
1342 	cmd->cmnd[1]  = flags;
1343 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1344 	put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
1345 	if (boundary)
1346 		put_unaligned_be16(nr_blocks, &cmd->cmnd[10]);
1347 	else
1348 		put_unaligned_be16(0, &cmd->cmnd[10]);
1349 	put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
1350 	cmd->cmnd[14] = 0;
1351 	cmd->cmnd[15] = 0;
1352 
1353 	return BLK_STS_OK;
1354 }
1355 
1356 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1357 {
1358 	struct request *rq = scsi_cmd_to_rq(cmd);
1359 	struct scsi_device *sdp = cmd->device;
1360 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1361 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1362 	sector_t threshold;
1363 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1364 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1365 	bool write = rq_data_dir(rq) == WRITE;
1366 	unsigned char protect, fua;
1367 	unsigned int dld;
1368 	blk_status_t ret;
1369 	unsigned int dif;
1370 	bool dix;
1371 
1372 	ret = scsi_alloc_sgtables(cmd);
1373 	if (ret != BLK_STS_OK)
1374 		return ret;
1375 
1376 	ret = BLK_STS_IOERR;
1377 	if (!scsi_device_online(sdp) || sdp->changed) {
1378 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1379 		goto fail;
1380 	}
1381 
1382 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1383 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1384 		goto fail;
1385 	}
1386 
1387 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1388 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1389 		goto fail;
1390 	}
1391 
1392 	/*
1393 	 * Some SD card readers can't handle accesses which touch the
1394 	 * last one or two logical blocks. Split accesses as needed.
1395 	 */
1396 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1397 
1398 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1399 		if (lba < threshold) {
1400 			/* Access up to the threshold but not beyond */
1401 			nr_blocks = threshold - lba;
1402 		} else {
1403 			/* Access only a single logical block */
1404 			nr_blocks = 1;
1405 		}
1406 	}
1407 
1408 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1409 	dix = scsi_prot_sg_count(cmd);
1410 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1411 	dld = sd_cdl_dld(sdkp, cmd);
1412 
1413 	if (dif || dix)
1414 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1415 	else
1416 		protect = 0;
1417 
1418 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1419 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1420 					 protect | fua, dld);
1421 	} else if (rq->cmd_flags & REQ_ATOMIC) {
1422 		ret = sd_setup_atomic_cmnd(cmd, lba, nr_blocks,
1423 				sdkp->use_atomic_write_boundary,
1424 				protect | fua);
1425 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1426 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1427 					 protect | fua, dld);
1428 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1429 		   sdp->use_10_for_rw || protect || rq->bio->bi_write_hint) {
1430 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1431 					 protect | fua);
1432 	} else {
1433 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1434 					protect | fua);
1435 	}
1436 
1437 	if (unlikely(ret != BLK_STS_OK))
1438 		goto fail;
1439 
1440 	/*
1441 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1442 	 * host adapter, it's safe to assume that we can at least transfer
1443 	 * this many bytes between each connect / disconnect.
1444 	 */
1445 	cmd->transfersize = sdp->sector_size;
1446 	cmd->underflow = nr_blocks << 9;
1447 	cmd->allowed = sdkp->max_retries;
1448 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1449 
1450 	SCSI_LOG_HLQUEUE(1,
1451 			 scmd_printk(KERN_INFO, cmd,
1452 				     "%s: block=%llu, count=%d\n", __func__,
1453 				     (unsigned long long)blk_rq_pos(rq),
1454 				     blk_rq_sectors(rq)));
1455 	SCSI_LOG_HLQUEUE(2,
1456 			 scmd_printk(KERN_INFO, cmd,
1457 				     "%s %d/%u 512 byte blocks.\n",
1458 				     write ? "writing" : "reading", nr_blocks,
1459 				     blk_rq_sectors(rq)));
1460 
1461 	/*
1462 	 * This indicates that the command is ready from our end to be queued.
1463 	 */
1464 	return BLK_STS_OK;
1465 fail:
1466 	scsi_free_sgtables(cmd);
1467 	return ret;
1468 }
1469 
1470 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1471 {
1472 	struct request *rq = scsi_cmd_to_rq(cmd);
1473 
1474 	switch (req_op(rq)) {
1475 	case REQ_OP_DISCARD:
1476 		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1477 		case SD_LBP_UNMAP:
1478 			return sd_setup_unmap_cmnd(cmd);
1479 		case SD_LBP_WS16:
1480 			return sd_setup_write_same16_cmnd(cmd, true);
1481 		case SD_LBP_WS10:
1482 			return sd_setup_write_same10_cmnd(cmd, true);
1483 		case SD_LBP_ZERO:
1484 			return sd_setup_write_same10_cmnd(cmd, false);
1485 		default:
1486 			return BLK_STS_TARGET;
1487 		}
1488 	case REQ_OP_WRITE_ZEROES:
1489 		return sd_setup_write_zeroes_cmnd(cmd);
1490 	case REQ_OP_FLUSH:
1491 		return sd_setup_flush_cmnd(cmd);
1492 	case REQ_OP_READ:
1493 	case REQ_OP_WRITE:
1494 		return sd_setup_read_write_cmnd(cmd);
1495 	case REQ_OP_ZONE_RESET:
1496 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1497 						   false);
1498 	case REQ_OP_ZONE_RESET_ALL:
1499 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1500 						   true);
1501 	case REQ_OP_ZONE_OPEN:
1502 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1503 	case REQ_OP_ZONE_CLOSE:
1504 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1505 	case REQ_OP_ZONE_FINISH:
1506 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1507 	default:
1508 		WARN_ON_ONCE(1);
1509 		return BLK_STS_NOTSUPP;
1510 	}
1511 }
1512 
1513 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1514 {
1515 	struct request *rq = scsi_cmd_to_rq(SCpnt);
1516 
1517 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1518 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1519 }
1520 
1521 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1522 {
1523 	if (sdkp->device->removable || sdkp->write_prot) {
1524 		if (disk_check_media_change(disk))
1525 			return true;
1526 	}
1527 
1528 	/*
1529 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1530 	 * nothing to do with partitions, BLKRRPART is used to force a full
1531 	 * revalidate after things like a format for historical reasons.
1532 	 */
1533 	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1534 }
1535 
1536 /**
1537  *	sd_open - open a scsi disk device
1538  *	@disk: disk to open
1539  *	@mode: open mode
1540  *
1541  *	Returns 0 if successful. Returns a negated errno value in case
1542  *	of error.
1543  *
1544  *	Note: This can be called from a user context (e.g. fsck(1) )
1545  *	or from within the kernel (e.g. as a result of a mount(1) ).
1546  *	In the latter case @inode and @filp carry an abridged amount
1547  *	of information as noted above.
1548  *
1549  *	Locking: called with disk->open_mutex held.
1550  **/
1551 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1552 {
1553 	struct scsi_disk *sdkp = scsi_disk(disk);
1554 	struct scsi_device *sdev = sdkp->device;
1555 	int retval;
1556 
1557 	if (scsi_device_get(sdev))
1558 		return -ENXIO;
1559 
1560 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1561 
1562 	/*
1563 	 * If the device is in error recovery, wait until it is done.
1564 	 * If the device is offline, then disallow any access to it.
1565 	 */
1566 	retval = -ENXIO;
1567 	if (!scsi_block_when_processing_errors(sdev))
1568 		goto error_out;
1569 
1570 	if (sd_need_revalidate(disk, sdkp))
1571 		sd_revalidate_disk(disk);
1572 
1573 	/*
1574 	 * If the drive is empty, just let the open fail.
1575 	 */
1576 	retval = -ENOMEDIUM;
1577 	if (sdev->removable && !sdkp->media_present &&
1578 	    !(mode & BLK_OPEN_NDELAY))
1579 		goto error_out;
1580 
1581 	/*
1582 	 * If the device has the write protect tab set, have the open fail
1583 	 * if the user expects to be able to write to the thing.
1584 	 */
1585 	retval = -EROFS;
1586 	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1587 		goto error_out;
1588 
1589 	/*
1590 	 * It is possible that the disk changing stuff resulted in
1591 	 * the device being taken offline.  If this is the case,
1592 	 * report this to the user, and don't pretend that the
1593 	 * open actually succeeded.
1594 	 */
1595 	retval = -ENXIO;
1596 	if (!scsi_device_online(sdev))
1597 		goto error_out;
1598 
1599 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1600 		if (scsi_block_when_processing_errors(sdev))
1601 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1602 	}
1603 
1604 	return 0;
1605 
1606 error_out:
1607 	scsi_device_put(sdev);
1608 	return retval;
1609 }
1610 
1611 /**
1612  *	sd_release - invoked when the (last) close(2) is called on this
1613  *	scsi disk.
1614  *	@disk: disk to release
1615  *
1616  *	Returns 0.
1617  *
1618  *	Note: may block (uninterruptible) if error recovery is underway
1619  *	on this disk.
1620  *
1621  *	Locking: called with disk->open_mutex held.
1622  **/
1623 static void sd_release(struct gendisk *disk)
1624 {
1625 	struct scsi_disk *sdkp = scsi_disk(disk);
1626 	struct scsi_device *sdev = sdkp->device;
1627 
1628 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1629 
1630 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1631 		if (scsi_block_when_processing_errors(sdev))
1632 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1633 	}
1634 
1635 	scsi_device_put(sdev);
1636 }
1637 
1638 static int sd_getgeo(struct gendisk *disk, struct hd_geometry *geo)
1639 {
1640 	struct scsi_disk *sdkp = scsi_disk(disk);
1641 	struct scsi_device *sdp = sdkp->device;
1642 	struct Scsi_Host *host = sdp->host;
1643 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1644 	int diskinfo[4];
1645 
1646 	/* default to most commonly used values */
1647 	diskinfo[0] = 0x40;	/* 1 << 6 */
1648 	diskinfo[1] = 0x20;	/* 1 << 5 */
1649 	diskinfo[2] = capacity >> 11;
1650 
1651 	/* override with calculated, extended default, or driver values */
1652 	if (host->hostt->bios_param)
1653 		host->hostt->bios_param(sdp, disk, capacity, diskinfo);
1654 	else
1655 		scsicam_bios_param(disk, capacity, diskinfo);
1656 
1657 	geo->heads = diskinfo[0];
1658 	geo->sectors = diskinfo[1];
1659 	geo->cylinders = diskinfo[2];
1660 	return 0;
1661 }
1662 
1663 /**
1664  *	sd_ioctl - process an ioctl
1665  *	@bdev: target block device
1666  *	@mode: open mode
1667  *	@cmd: ioctl command number
1668  *	@arg: this is third argument given to ioctl(2) system call.
1669  *	Often contains a pointer.
1670  *
1671  *	Returns 0 if successful (some ioctls return positive numbers on
1672  *	success as well). Returns a negated errno value in case of error.
1673  *
1674  *	Note: most ioctls are forward onto the block subsystem or further
1675  *	down in the scsi subsystem.
1676  **/
1677 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1678 		    unsigned int cmd, unsigned long arg)
1679 {
1680 	struct gendisk *disk = bdev->bd_disk;
1681 	struct scsi_disk *sdkp = scsi_disk(disk);
1682 	struct scsi_device *sdp = sdkp->device;
1683 	void __user *p = (void __user *)arg;
1684 	int error;
1685 
1686 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp,
1687 				    "sd_ioctl: disk=%s, cmd=0x%x\n",
1688 				    disk->disk_name, cmd));
1689 
1690 	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1691 		return -ENOIOCTLCMD;
1692 
1693 	/*
1694 	 * If we are in the middle of error recovery, don't let anyone
1695 	 * else try and use this device.  Also, if error recovery fails, it
1696 	 * may try and take the device offline, in which case all further
1697 	 * access to the device is prohibited.
1698 	 */
1699 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1700 			(mode & BLK_OPEN_NDELAY));
1701 	if (error)
1702 		return error;
1703 
1704 	if (is_sed_ioctl(cmd))
1705 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1706 	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1707 }
1708 
1709 static void set_media_not_present(struct scsi_disk *sdkp)
1710 {
1711 	if (sdkp->media_present)
1712 		sdkp->device->changed = 1;
1713 
1714 	if (sdkp->device->removable) {
1715 		sdkp->media_present = 0;
1716 		sdkp->capacity = 0;
1717 	}
1718 }
1719 
1720 static int media_not_present(struct scsi_disk *sdkp,
1721 			     struct scsi_sense_hdr *sshdr)
1722 {
1723 	if (!scsi_sense_valid(sshdr))
1724 		return 0;
1725 
1726 	/* not invoked for commands that could return deferred errors */
1727 	switch (sshdr->sense_key) {
1728 	case UNIT_ATTENTION:
1729 	case NOT_READY:
1730 		/* medium not present */
1731 		if (sshdr->asc == 0x3A) {
1732 			set_media_not_present(sdkp);
1733 			return 1;
1734 		}
1735 	}
1736 	return 0;
1737 }
1738 
1739 /**
1740  *	sd_check_events - check media events
1741  *	@disk: kernel device descriptor
1742  *	@clearing: disk events currently being cleared
1743  *
1744  *	Returns mask of DISK_EVENT_*.
1745  *
1746  *	Note: this function is invoked from the block subsystem.
1747  **/
1748 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1749 {
1750 	struct scsi_disk *sdkp = disk->private_data;
1751 	struct scsi_device *sdp;
1752 	int retval;
1753 	bool disk_changed;
1754 
1755 	if (!sdkp)
1756 		return 0;
1757 
1758 	sdp = sdkp->device;
1759 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1760 
1761 	/*
1762 	 * If the device is offline, don't send any commands - just pretend as
1763 	 * if the command failed.  If the device ever comes back online, we
1764 	 * can deal with it then.  It is only because of unrecoverable errors
1765 	 * that we would ever take a device offline in the first place.
1766 	 */
1767 	if (!scsi_device_online(sdp)) {
1768 		set_media_not_present(sdkp);
1769 		goto out;
1770 	}
1771 
1772 	/*
1773 	 * Using TEST_UNIT_READY enables differentiation between drive with
1774 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1775 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1776 	 *
1777 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1778 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1779 	 * sd_revalidate() is called.
1780 	 */
1781 	if (scsi_block_when_processing_errors(sdp)) {
1782 		struct scsi_sense_hdr sshdr = { 0, };
1783 
1784 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1785 					      &sshdr);
1786 
1787 		/* failed to execute TUR, assume media not present */
1788 		if (retval < 0 || host_byte(retval)) {
1789 			set_media_not_present(sdkp);
1790 			goto out;
1791 		}
1792 
1793 		if (media_not_present(sdkp, &sshdr))
1794 			goto out;
1795 	}
1796 
1797 	/*
1798 	 * For removable scsi disk we have to recognise the presence
1799 	 * of a disk in the drive.
1800 	 */
1801 	if (!sdkp->media_present)
1802 		sdp->changed = 1;
1803 	sdkp->media_present = 1;
1804 out:
1805 	/*
1806 	 * sdp->changed is set under the following conditions:
1807 	 *
1808 	 *	Medium present state has changed in either direction.
1809 	 *	Device has indicated UNIT_ATTENTION.
1810 	 */
1811 	disk_changed = sdp->changed;
1812 	sdp->changed = 0;
1813 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1814 }
1815 
1816 static int sd_sync_cache(struct scsi_disk *sdkp)
1817 {
1818 	int res;
1819 	struct scsi_device *sdp = sdkp->device;
1820 	const int timeout = sdp->request_queue->rq_timeout
1821 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1822 	/* Leave the rest of the command zero to indicate flush everything. */
1823 	const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1824 				SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1825 	struct scsi_sense_hdr sshdr;
1826 	struct scsi_failure failure_defs[] = {
1827 		{
1828 			.allowed = 3,
1829 			.result = SCMD_FAILURE_RESULT_ANY,
1830 		},
1831 		{}
1832 	};
1833 	struct scsi_failures failures = {
1834 		.failure_definitions = failure_defs,
1835 	};
1836 	const struct scsi_exec_args exec_args = {
1837 		.req_flags = BLK_MQ_REQ_PM,
1838 		.sshdr = &sshdr,
1839 		.failures = &failures,
1840 	};
1841 
1842 	if (!scsi_device_online(sdp))
1843 		return -ENODEV;
1844 
1845 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1846 			       sdkp->max_retries, &exec_args);
1847 	if (res) {
1848 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1849 
1850 		if (res < 0)
1851 			return res;
1852 
1853 		if (scsi_status_is_check_condition(res) &&
1854 		    scsi_sense_valid(&sshdr)) {
1855 			sd_print_sense_hdr(sdkp, &sshdr);
1856 
1857 			/* we need to evaluate the error return  */
1858 			if (sshdr.asc == 0x3a ||	/* medium not present */
1859 			    sshdr.asc == 0x20 ||	/* invalid command */
1860 			    (sshdr.asc == 0x74 && sshdr.ascq == 0x71))	/* drive is password locked */
1861 				/* this is no error here */
1862 				return 0;
1863 
1864 			/*
1865 			 * If a format is in progress or if the drive does not
1866 			 * support sync, there is not much we can do because
1867 			 * this is called during shutdown or suspend so just
1868 			 * return success so those operations can proceed.
1869 			 */
1870 			if ((sshdr.asc == 0x04 && sshdr.ascq == 0x04) ||
1871 			    sshdr.sense_key == ILLEGAL_REQUEST)
1872 				return 0;
1873 		}
1874 
1875 		switch (host_byte(res)) {
1876 		/* ignore errors due to racing a disconnection */
1877 		case DID_BAD_TARGET:
1878 		case DID_NO_CONNECT:
1879 			return 0;
1880 		/* signal the upper layer it might try again */
1881 		case DID_BUS_BUSY:
1882 		case DID_IMM_RETRY:
1883 		case DID_REQUEUE:
1884 		case DID_SOFT_ERROR:
1885 			return -EBUSY;
1886 		default:
1887 			return -EIO;
1888 		}
1889 	}
1890 	return 0;
1891 }
1892 
1893 static void sd_rescan(struct device *dev)
1894 {
1895 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1896 
1897 	sd_revalidate_disk(sdkp->disk);
1898 }
1899 
1900 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1901 		enum blk_unique_id type)
1902 {
1903 	struct scsi_device *sdev = scsi_disk(disk)->device;
1904 	const struct scsi_vpd *vpd;
1905 	const unsigned char *d;
1906 	int ret = -ENXIO, len;
1907 
1908 	rcu_read_lock();
1909 	vpd = rcu_dereference(sdev->vpd_pg83);
1910 	if (!vpd)
1911 		goto out_unlock;
1912 
1913 	ret = -EINVAL;
1914 	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1915 		/* we only care about designators with LU association */
1916 		if (((d[1] >> 4) & 0x3) != 0x00)
1917 			continue;
1918 		if ((d[1] & 0xf) != type)
1919 			continue;
1920 
1921 		/*
1922 		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1923 		 * keep looking as one with more entropy might still show up.
1924 		 */
1925 		len = d[3];
1926 		if (len != 8 && len != 12 && len != 16)
1927 			continue;
1928 		ret = len;
1929 		memcpy(id, d + 4, len);
1930 		if (len == 16)
1931 			break;
1932 	}
1933 out_unlock:
1934 	rcu_read_unlock();
1935 	return ret;
1936 }
1937 
1938 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1939 {
1940 	switch (host_byte(result)) {
1941 	case DID_TRANSPORT_MARGINAL:
1942 	case DID_TRANSPORT_DISRUPTED:
1943 	case DID_BUS_BUSY:
1944 		return PR_STS_RETRY_PATH_FAILURE;
1945 	case DID_NO_CONNECT:
1946 		return PR_STS_PATH_FAILED;
1947 	case DID_TRANSPORT_FAILFAST:
1948 		return PR_STS_PATH_FAST_FAILED;
1949 	}
1950 
1951 	switch (status_byte(result)) {
1952 	case SAM_STAT_RESERVATION_CONFLICT:
1953 		return PR_STS_RESERVATION_CONFLICT;
1954 	case SAM_STAT_CHECK_CONDITION:
1955 		if (!scsi_sense_valid(sshdr))
1956 			return PR_STS_IOERR;
1957 
1958 		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1959 		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1960 			return -EINVAL;
1961 
1962 		fallthrough;
1963 	default:
1964 		return PR_STS_IOERR;
1965 	}
1966 }
1967 
1968 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1969 			    unsigned char *data, int data_len)
1970 {
1971 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1972 	struct scsi_device *sdev = sdkp->device;
1973 	struct scsi_sense_hdr sshdr;
1974 	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1975 	struct scsi_failure failure_defs[] = {
1976 		{
1977 			.sense = UNIT_ATTENTION,
1978 			.asc = SCMD_FAILURE_ASC_ANY,
1979 			.ascq = SCMD_FAILURE_ASCQ_ANY,
1980 			.allowed = 5,
1981 			.result = SAM_STAT_CHECK_CONDITION,
1982 		},
1983 		{}
1984 	};
1985 	struct scsi_failures failures = {
1986 		.failure_definitions = failure_defs,
1987 	};
1988 	const struct scsi_exec_args exec_args = {
1989 		.sshdr = &sshdr,
1990 		.failures = &failures,
1991 	};
1992 	int result;
1993 
1994 	put_unaligned_be16(data_len, &cmd[7]);
1995 
1996 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1997 				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1998 	if (scsi_status_is_check_condition(result) &&
1999 	    scsi_sense_valid(&sshdr)) {
2000 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
2001 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
2002 	}
2003 
2004 	if (result <= 0)
2005 		return result;
2006 
2007 	return sd_scsi_to_pr_err(&sshdr, result);
2008 }
2009 
2010 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
2011 {
2012 	int result, i, data_offset, num_copy_keys;
2013 	u32 num_keys = keys_info->num_keys;
2014 	int data_len;
2015 	u8 *data;
2016 
2017 	/*
2018 	 * Each reservation key takes 8 bytes and there is an 8-byte header
2019 	 * before the reservation key list. The total size must fit into the
2020 	 * 16-bit ALLOCATION LENGTH field.
2021 	 */
2022 	if (check_mul_overflow(num_keys, 8, &data_len) ||
2023 	    check_add_overflow(data_len, 8, &data_len) ||
2024 	    data_len > USHRT_MAX)
2025 		return -EINVAL;
2026 
2027 	data = kzalloc(data_len, GFP_KERNEL);
2028 	if (!data)
2029 		return -ENOMEM;
2030 
2031 	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
2032 	if (result)
2033 		goto free_data;
2034 
2035 	keys_info->generation = get_unaligned_be32(&data[0]);
2036 	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
2037 
2038 	data_offset = 8;
2039 	num_copy_keys = min(num_keys, keys_info->num_keys);
2040 
2041 	for (i = 0; i < num_copy_keys; i++) {
2042 		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
2043 		data_offset += 8;
2044 	}
2045 
2046 free_data:
2047 	kfree(data);
2048 	return result;
2049 }
2050 
2051 static int sd_pr_read_reservation(struct block_device *bdev,
2052 				  struct pr_held_reservation *rsv)
2053 {
2054 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
2055 	struct scsi_device *sdev = sdkp->device;
2056 	u8 data[24] = { };
2057 	int result, len;
2058 
2059 	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
2060 	if (result)
2061 		return result;
2062 
2063 	len = get_unaligned_be32(&data[4]);
2064 	if (!len)
2065 		return 0;
2066 
2067 	/* Make sure we have at least the key and type */
2068 	if (len < 14) {
2069 		sdev_printk(KERN_INFO, sdev,
2070 			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
2071 			    len);
2072 		return -EINVAL;
2073 	}
2074 
2075 	rsv->generation = get_unaligned_be32(&data[0]);
2076 	rsv->key = get_unaligned_be64(&data[8]);
2077 	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
2078 	return 0;
2079 }
2080 
2081 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
2082 			     u64 sa_key, enum scsi_pr_type type, u8 flags)
2083 {
2084 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
2085 	struct scsi_device *sdev = sdkp->device;
2086 	struct scsi_sense_hdr sshdr;
2087 	struct scsi_failure failure_defs[] = {
2088 		{
2089 			.sense = UNIT_ATTENTION,
2090 			.asc = SCMD_FAILURE_ASC_ANY,
2091 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2092 			.allowed = 5,
2093 			.result = SAM_STAT_CHECK_CONDITION,
2094 		},
2095 		{}
2096 	};
2097 	struct scsi_failures failures = {
2098 		.failure_definitions = failure_defs,
2099 	};
2100 	const struct scsi_exec_args exec_args = {
2101 		.sshdr = &sshdr,
2102 		.failures = &failures,
2103 	};
2104 	int result;
2105 	u8 cmd[16] = { 0, };
2106 	u8 data[24] = { 0, };
2107 
2108 	cmd[0] = PERSISTENT_RESERVE_OUT;
2109 	cmd[1] = sa;
2110 	cmd[2] = type;
2111 	put_unaligned_be32(sizeof(data), &cmd[5]);
2112 
2113 	put_unaligned_be64(key, &data[0]);
2114 	put_unaligned_be64(sa_key, &data[8]);
2115 	data[20] = flags;
2116 
2117 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
2118 				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
2119 				  &exec_args);
2120 
2121 	if (scsi_status_is_check_condition(result) &&
2122 	    scsi_sense_valid(&sshdr)) {
2123 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
2124 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
2125 	}
2126 
2127 	if (result <= 0)
2128 		return result;
2129 
2130 	return sd_scsi_to_pr_err(&sshdr, result);
2131 }
2132 
2133 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2134 		u32 flags)
2135 {
2136 	if (flags & ~PR_FL_IGNORE_KEY)
2137 		return -EOPNOTSUPP;
2138 	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
2139 			old_key, new_key, 0,
2140 			(1 << 0) /* APTPL */);
2141 }
2142 
2143 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2144 		u32 flags)
2145 {
2146 	if (flags)
2147 		return -EOPNOTSUPP;
2148 	return sd_pr_out_command(bdev, 0x01, key, 0,
2149 				 block_pr_type_to_scsi(type), 0);
2150 }
2151 
2152 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2153 {
2154 	return sd_pr_out_command(bdev, 0x02, key, 0,
2155 				 block_pr_type_to_scsi(type), 0);
2156 }
2157 
2158 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2159 		enum pr_type type, bool abort)
2160 {
2161 	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
2162 				 block_pr_type_to_scsi(type), 0);
2163 }
2164 
2165 static int sd_pr_clear(struct block_device *bdev, u64 key)
2166 {
2167 	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
2168 }
2169 
2170 static const struct pr_ops sd_pr_ops = {
2171 	.pr_register	= sd_pr_register,
2172 	.pr_reserve	= sd_pr_reserve,
2173 	.pr_release	= sd_pr_release,
2174 	.pr_preempt	= sd_pr_preempt,
2175 	.pr_clear	= sd_pr_clear,
2176 	.pr_read_keys	= sd_pr_read_keys,
2177 	.pr_read_reservation = sd_pr_read_reservation,
2178 };
2179 
2180 static void scsi_disk_free_disk(struct gendisk *disk)
2181 {
2182 	struct scsi_disk *sdkp = scsi_disk(disk);
2183 
2184 	put_device(&sdkp->disk_dev);
2185 }
2186 
2187 /**
2188  *	sd_eh_reset - reset error handling callback
2189  *	@scmd:		sd-issued command that has failed
2190  *
2191  *	This function is called by the SCSI midlayer before starting
2192  *	SCSI EH. When counting medium access failures we have to be
2193  *	careful to register it only only once per device and SCSI EH run;
2194  *	there might be several timed out commands which will cause the
2195  *	'max_medium_access_timeouts' counter to trigger after the first
2196  *	SCSI EH run already and set the device to offline.
2197  *	So this function resets the internal counter before starting SCSI EH.
2198  **/
2199 static void sd_eh_reset(struct scsi_cmnd *scmd)
2200 {
2201 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2202 
2203 	/* New SCSI EH run, reset gate variable */
2204 	sdkp->ignore_medium_access_errors = false;
2205 }
2206 
2207 /**
2208  *	sd_eh_action - error handling callback
2209  *	@scmd:		sd-issued command that has failed
2210  *	@eh_disp:	The recovery disposition suggested by the midlayer
2211  *
2212  *	This function is called by the SCSI midlayer upon completion of an
2213  *	error test command (currently TEST UNIT READY). The result of sending
2214  *	the eh command is passed in eh_disp.  We're looking for devices that
2215  *	fail medium access commands but are OK with non access commands like
2216  *	test unit ready (so wrongly see the device as having a successful
2217  *	recovery)
2218  **/
2219 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2220 {
2221 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2222 	struct scsi_device *sdev = scmd->device;
2223 
2224 	if (!scsi_device_online(sdev) ||
2225 	    !scsi_medium_access_command(scmd) ||
2226 	    host_byte(scmd->result) != DID_TIME_OUT ||
2227 	    eh_disp != SUCCESS)
2228 		return eh_disp;
2229 
2230 	/*
2231 	 * The device has timed out executing a medium access command.
2232 	 * However, the TEST UNIT READY command sent during error
2233 	 * handling completed successfully. Either the device is in the
2234 	 * process of recovering or has it suffered an internal failure
2235 	 * that prevents access to the storage medium.
2236 	 */
2237 	if (!sdkp->ignore_medium_access_errors) {
2238 		sdkp->medium_access_timed_out++;
2239 		sdkp->ignore_medium_access_errors = true;
2240 	}
2241 
2242 	/*
2243 	 * If the device keeps failing read/write commands but TEST UNIT
2244 	 * READY always completes successfully we assume that medium
2245 	 * access is no longer possible and take the device offline.
2246 	 */
2247 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2248 		scmd_printk(KERN_ERR, scmd,
2249 			    "Medium access timeout failure. Offlining disk!\n");
2250 		mutex_lock(&sdev->state_mutex);
2251 		scsi_device_set_state(sdev, SDEV_OFFLINE);
2252 		mutex_unlock(&sdev->state_mutex);
2253 
2254 		return SUCCESS;
2255 	}
2256 
2257 	return eh_disp;
2258 }
2259 
2260 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2261 {
2262 	struct request *req = scsi_cmd_to_rq(scmd);
2263 	struct scsi_device *sdev = scmd->device;
2264 	unsigned int transferred, good_bytes;
2265 	u64 start_lba, end_lba, bad_lba;
2266 
2267 	/*
2268 	 * Some commands have a payload smaller than the device logical
2269 	 * block size (e.g. INQUIRY on a 4K disk).
2270 	 */
2271 	if (scsi_bufflen(scmd) <= sdev->sector_size)
2272 		return 0;
2273 
2274 	/* Check if we have a 'bad_lba' information */
2275 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2276 				     SCSI_SENSE_BUFFERSIZE,
2277 				     &bad_lba))
2278 		return 0;
2279 
2280 	/*
2281 	 * If the bad lba was reported incorrectly, we have no idea where
2282 	 * the error is.
2283 	 */
2284 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2285 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2286 	if (bad_lba < start_lba || bad_lba >= end_lba)
2287 		return 0;
2288 
2289 	/*
2290 	 * resid is optional but mostly filled in.  When it's unused,
2291 	 * its value is zero, so we assume the whole buffer transferred
2292 	 */
2293 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2294 
2295 	/* This computation should always be done in terms of the
2296 	 * resolution of the device's medium.
2297 	 */
2298 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2299 
2300 	return min(good_bytes, transferred);
2301 }
2302 
2303 /**
2304  *	sd_done - bottom half handler: called when the lower level
2305  *	driver has completed (successfully or otherwise) a scsi command.
2306  *	@SCpnt: mid-level's per command structure.
2307  *
2308  *	Note: potentially run from within an ISR. Must not block.
2309  **/
2310 static int sd_done(struct scsi_cmnd *SCpnt)
2311 {
2312 	int result = SCpnt->result;
2313 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2314 	unsigned int sector_size = SCpnt->device->sector_size;
2315 	unsigned int resid;
2316 	struct scsi_sense_hdr sshdr;
2317 	struct request *req = scsi_cmd_to_rq(SCpnt);
2318 	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2319 	int sense_valid = 0;
2320 	int sense_deferred = 0;
2321 
2322 	switch (req_op(req)) {
2323 	case REQ_OP_DISCARD:
2324 	case REQ_OP_WRITE_ZEROES:
2325 	case REQ_OP_ZONE_RESET:
2326 	case REQ_OP_ZONE_RESET_ALL:
2327 	case REQ_OP_ZONE_OPEN:
2328 	case REQ_OP_ZONE_CLOSE:
2329 	case REQ_OP_ZONE_FINISH:
2330 		if (!result) {
2331 			good_bytes = blk_rq_bytes(req);
2332 			scsi_set_resid(SCpnt, 0);
2333 		} else {
2334 			good_bytes = 0;
2335 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2336 		}
2337 		break;
2338 	default:
2339 		/*
2340 		 * In case of bogus fw or device, we could end up having
2341 		 * an unaligned partial completion. Check this here and force
2342 		 * alignment.
2343 		 */
2344 		resid = scsi_get_resid(SCpnt);
2345 		if (resid & (sector_size - 1)) {
2346 			sd_printk(KERN_INFO, sdkp,
2347 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2348 				resid, sector_size);
2349 			scsi_print_command(SCpnt);
2350 			resid = min(scsi_bufflen(SCpnt),
2351 				    round_up(resid, sector_size));
2352 			scsi_set_resid(SCpnt, resid);
2353 		}
2354 	}
2355 
2356 	if (result) {
2357 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2358 		if (sense_valid)
2359 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2360 	}
2361 	sdkp->medium_access_timed_out = 0;
2362 
2363 	if (!scsi_status_is_check_condition(result) &&
2364 	    (!sense_valid || sense_deferred))
2365 		goto out;
2366 
2367 	switch (sshdr.sense_key) {
2368 	case HARDWARE_ERROR:
2369 	case MEDIUM_ERROR:
2370 		good_bytes = sd_completed_bytes(SCpnt);
2371 		break;
2372 	case RECOVERED_ERROR:
2373 		good_bytes = scsi_bufflen(SCpnt);
2374 		break;
2375 	case NO_SENSE:
2376 		/* This indicates a false check condition, so ignore it.  An
2377 		 * unknown amount of data was transferred so treat it as an
2378 		 * error.
2379 		 */
2380 		SCpnt->result = 0;
2381 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2382 		break;
2383 	case ABORTED_COMMAND:
2384 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2385 			good_bytes = sd_completed_bytes(SCpnt);
2386 		break;
2387 	case ILLEGAL_REQUEST:
2388 		switch (sshdr.asc) {
2389 		case 0x10:	/* DIX: Host detected corruption */
2390 			good_bytes = sd_completed_bytes(SCpnt);
2391 			break;
2392 		case 0x20:	/* INVALID COMMAND OPCODE */
2393 		case 0x24:	/* INVALID FIELD IN CDB */
2394 			switch (SCpnt->cmnd[0]) {
2395 			case UNMAP:
2396 				sd_disable_discard(sdkp);
2397 				break;
2398 			case WRITE_SAME_16:
2399 			case WRITE_SAME:
2400 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2401 					sd_disable_discard(sdkp);
2402 				} else {
2403 					sd_disable_write_same(sdkp);
2404 					req->rq_flags |= RQF_QUIET;
2405 				}
2406 				break;
2407 			}
2408 		}
2409 		break;
2410 	default:
2411 		break;
2412 	}
2413 
2414  out:
2415 	if (sdkp->device->type == TYPE_ZBC)
2416 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2417 
2418 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2419 					   "sd_done: completed %d of %d bytes\n",
2420 					   good_bytes, scsi_bufflen(SCpnt)));
2421 
2422 	return good_bytes;
2423 }
2424 
2425 /*
2426  * spinup disk - called only in sd_revalidate_disk()
2427  */
2428 static void
2429 sd_spinup_disk(struct scsi_disk *sdkp)
2430 {
2431 	static const u8 cmd[10] = { TEST_UNIT_READY };
2432 	unsigned long spintime_expire = 0;
2433 	int spintime, sense_valid = 0;
2434 	unsigned int the_result;
2435 	struct scsi_sense_hdr sshdr;
2436 	struct scsi_failure failure_defs[] = {
2437 		/* Do not retry Medium Not Present */
2438 		{
2439 			.sense = UNIT_ATTENTION,
2440 			.asc = 0x3A,
2441 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2442 			.result = SAM_STAT_CHECK_CONDITION,
2443 		},
2444 		{
2445 			.sense = NOT_READY,
2446 			.asc = 0x3A,
2447 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2448 			.result = SAM_STAT_CHECK_CONDITION,
2449 		},
2450 		/* Retry when scsi_status_is_good would return false 3 times */
2451 		{
2452 			.result = SCMD_FAILURE_STAT_ANY,
2453 			.allowed = 3,
2454 		},
2455 		{}
2456 	};
2457 	struct scsi_failures failures = {
2458 		.failure_definitions = failure_defs,
2459 	};
2460 	const struct scsi_exec_args exec_args = {
2461 		.sshdr = &sshdr,
2462 		.failures = &failures,
2463 	};
2464 
2465 	spintime = 0;
2466 
2467 	/* Spin up drives, as required.  Only do this at boot time */
2468 	/* Spinup needs to be done for module loads too. */
2469 	do {
2470 		bool media_was_present = sdkp->media_present;
2471 
2472 		scsi_failures_reset_retries(&failures);
2473 
2474 		the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2475 					      NULL, 0, SD_TIMEOUT,
2476 					      sdkp->max_retries, &exec_args);
2477 
2478 
2479 		if (the_result > 0) {
2480 			/*
2481 			 * If the drive has indicated to us that it doesn't
2482 			 * have any media in it, don't bother with any more
2483 			 * polling.
2484 			 */
2485 			if (media_not_present(sdkp, &sshdr)) {
2486 				if (media_was_present)
2487 					sd_printk(KERN_NOTICE, sdkp,
2488 						  "Media removed, stopped polling\n");
2489 				return;
2490 			}
2491 			sense_valid = scsi_sense_valid(&sshdr);
2492 		}
2493 
2494 		if (!scsi_status_is_check_condition(the_result)) {
2495 			/* no sense, TUR either succeeded or failed
2496 			 * with a status error */
2497 			if(!spintime && !scsi_status_is_good(the_result)) {
2498 				sd_print_result(sdkp, "Test Unit Ready failed",
2499 						the_result);
2500 			}
2501 			break;
2502 		}
2503 
2504 		/*
2505 		 * The device does not want the automatic start to be issued.
2506 		 */
2507 		if (sdkp->device->no_start_on_add)
2508 			break;
2509 
2510 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2511 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2512 				break;	/* manual intervention required */
2513 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2514 				break;	/* standby */
2515 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2516 				break;	/* unavailable */
2517 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2518 				break;	/* sanitize in progress */
2519 			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2520 				break;	/* depopulation in progress */
2521 			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2522 				break;	/* depopulation restoration in progress */
2523 			/*
2524 			 * Issue command to spin up drive when not ready
2525 			 */
2526 			if (!spintime) {
2527 				/* Return immediately and start spin cycle */
2528 				const u8 start_cmd[10] = {
2529 					[0] = START_STOP,
2530 					[1] = 1,
2531 					[4] = sdkp->device->start_stop_pwr_cond ?
2532 						0x11 : 1,
2533 				};
2534 
2535 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2536 				scsi_execute_cmd(sdkp->device, start_cmd,
2537 						 REQ_OP_DRV_IN, NULL, 0,
2538 						 SD_TIMEOUT, sdkp->max_retries,
2539 						 &exec_args);
2540 				spintime_expire = jiffies + 100 * HZ;
2541 				spintime = 1;
2542 			}
2543 			/* Wait 1 second for next try */
2544 			msleep(1000);
2545 			printk(KERN_CONT ".");
2546 
2547 		/*
2548 		 * Wait for USB flash devices with slow firmware.
2549 		 * Yes, this sense key/ASC combination shouldn't
2550 		 * occur here.  It's characteristic of these devices.
2551 		 */
2552 		} else if (sense_valid &&
2553 				sshdr.sense_key == UNIT_ATTENTION &&
2554 				sshdr.asc == 0x28) {
2555 			if (!spintime) {
2556 				spintime_expire = jiffies + 5 * HZ;
2557 				spintime = 1;
2558 			}
2559 			/* Wait 1 second for next try */
2560 			msleep(1000);
2561 		} else {
2562 			/* we don't understand the sense code, so it's
2563 			 * probably pointless to loop */
2564 			if(!spintime) {
2565 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2566 				sd_print_sense_hdr(sdkp, &sshdr);
2567 			}
2568 			break;
2569 		}
2570 
2571 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2572 
2573 	if (spintime) {
2574 		if (scsi_status_is_good(the_result))
2575 			printk(KERN_CONT "ready\n");
2576 		else
2577 			printk(KERN_CONT "not responding...\n");
2578 	}
2579 }
2580 
2581 /*
2582  * Determine whether disk supports Data Integrity Field.
2583  */
2584 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2585 {
2586 	struct scsi_device *sdp = sdkp->device;
2587 	u8 type;
2588 
2589 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2590 		sdkp->protection_type = 0;
2591 		return 0;
2592 	}
2593 
2594 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2595 
2596 	if (type > T10_PI_TYPE3_PROTECTION) {
2597 		sd_printk(KERN_ERR, sdkp,
2598 			  "formatted with unsupported protection type %u. Disabling disk!\n",
2599 			  type);
2600 		sdkp->protection_type = 0;
2601 		return -ENODEV;
2602 	}
2603 
2604 	sdkp->protection_type = type;
2605 
2606 	return 0;
2607 }
2608 
2609 static void sd_config_protection(struct scsi_disk *sdkp,
2610 		struct queue_limits *lim)
2611 {
2612 	struct scsi_device *sdp = sdkp->device;
2613 
2614 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
2615 		sd_dif_config_host(sdkp, lim);
2616 
2617 	if (!sdkp->protection_type)
2618 		return;
2619 
2620 	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2621 		sd_first_printk(KERN_NOTICE, sdkp,
2622 				"Disabling DIF Type %u protection\n",
2623 				sdkp->protection_type);
2624 		sdkp->protection_type = 0;
2625 	}
2626 
2627 	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2628 			sdkp->protection_type);
2629 }
2630 
2631 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2632 			struct scsi_sense_hdr *sshdr, int sense_valid,
2633 			int the_result)
2634 {
2635 	if (sense_valid)
2636 		sd_print_sense_hdr(sdkp, sshdr);
2637 	else
2638 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2639 
2640 	/*
2641 	 * Set dirty bit for removable devices if not ready -
2642 	 * sometimes drives will not report this properly.
2643 	 */
2644 	if (sdp->removable &&
2645 	    sense_valid && sshdr->sense_key == NOT_READY)
2646 		set_media_not_present(sdkp);
2647 
2648 	/*
2649 	 * We used to set media_present to 0 here to indicate no media
2650 	 * in the drive, but some drives fail read capacity even with
2651 	 * media present, so we can't do that.
2652 	 */
2653 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2654 }
2655 
2656 #define RC16_LEN 32
2657 #if RC16_LEN > SD_BUF_SIZE
2658 #error RC16_LEN must not be more than SD_BUF_SIZE
2659 #endif
2660 
2661 #define READ_CAPACITY_RETRIES_ON_RESET	10
2662 
2663 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2664 		struct queue_limits *lim, unsigned char *buffer)
2665 {
2666 	unsigned char cmd[16];
2667 	struct scsi_sense_hdr sshdr;
2668 	const struct scsi_exec_args exec_args = {
2669 		.sshdr = &sshdr,
2670 	};
2671 	int sense_valid = 0;
2672 	int the_result;
2673 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2674 	unsigned int alignment;
2675 	unsigned long long lba;
2676 	unsigned sector_size;
2677 
2678 	if (sdp->no_read_capacity_16)
2679 		return -EINVAL;
2680 
2681 	do {
2682 		memset(cmd, 0, 16);
2683 		cmd[0] = SERVICE_ACTION_IN_16;
2684 		cmd[1] = SAI_READ_CAPACITY_16;
2685 		cmd[13] = RC16_LEN;
2686 		memset(buffer, 0, RC16_LEN);
2687 
2688 		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2689 					      buffer, RC16_LEN, SD_TIMEOUT,
2690 					      sdkp->max_retries, &exec_args);
2691 		if (the_result > 0) {
2692 			if (media_not_present(sdkp, &sshdr))
2693 				return -ENODEV;
2694 
2695 			sense_valid = scsi_sense_valid(&sshdr);
2696 			if (sense_valid &&
2697 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2698 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2699 			    sshdr.ascq == 0x00)
2700 				/* Invalid Command Operation Code or
2701 				 * Invalid Field in CDB, just retry
2702 				 * silently with RC10 */
2703 				return -EINVAL;
2704 			if (sense_valid &&
2705 			    sshdr.sense_key == UNIT_ATTENTION &&
2706 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2707 				/* Device reset might occur several times,
2708 				 * give it one more chance */
2709 				if (--reset_retries > 0)
2710 					continue;
2711 		}
2712 		retries--;
2713 
2714 	} while (the_result && retries);
2715 
2716 	if (the_result) {
2717 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2718 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2719 		return -EINVAL;
2720 	}
2721 
2722 	sector_size = get_unaligned_be32(&buffer[8]);
2723 	lba = get_unaligned_be64(&buffer[0]);
2724 
2725 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2726 		sdkp->capacity = 0;
2727 		return -ENODEV;
2728 	}
2729 
2730 	/* Logical blocks per physical block exponent */
2731 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2732 
2733 	/* RC basis */
2734 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2735 
2736 	/* Lowest aligned logical block */
2737 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2738 	lim->alignment_offset = alignment;
2739 	if (alignment && sdkp->first_scan)
2740 		sd_printk(KERN_NOTICE, sdkp,
2741 			  "physical block alignment offset: %u\n", alignment);
2742 
2743 	if (buffer[14] & 0x80) { /* LBPME */
2744 		sdkp->lbpme = 1;
2745 
2746 		if (buffer[14] & 0x40) /* LBPRZ */
2747 			sdkp->lbprz = 1;
2748 	}
2749 
2750 	sdkp->capacity = lba + 1;
2751 	return sector_size;
2752 }
2753 
2754 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2755 						unsigned char *buffer)
2756 {
2757 	static const u8 cmd[10] = { READ_CAPACITY };
2758 	struct scsi_sense_hdr sshdr;
2759 	struct scsi_failure failure_defs[] = {
2760 		/* Do not retry Medium Not Present */
2761 		{
2762 			.sense = UNIT_ATTENTION,
2763 			.asc = 0x3A,
2764 			.result = SAM_STAT_CHECK_CONDITION,
2765 		},
2766 		{
2767 			.sense = NOT_READY,
2768 			.asc = 0x3A,
2769 			.result = SAM_STAT_CHECK_CONDITION,
2770 		},
2771 		 /* Device reset might occur several times so retry a lot */
2772 		{
2773 			.sense = UNIT_ATTENTION,
2774 			.asc = 0x29,
2775 			.allowed = READ_CAPACITY_RETRIES_ON_RESET,
2776 			.result = SAM_STAT_CHECK_CONDITION,
2777 		},
2778 		/* Any other error not listed above retry 3 times */
2779 		{
2780 			.result = SCMD_FAILURE_RESULT_ANY,
2781 			.allowed = 3,
2782 		},
2783 		{}
2784 	};
2785 	struct scsi_failures failures = {
2786 		.failure_definitions = failure_defs,
2787 	};
2788 	const struct scsi_exec_args exec_args = {
2789 		.sshdr = &sshdr,
2790 		.failures = &failures,
2791 	};
2792 	int sense_valid = 0;
2793 	int the_result;
2794 	sector_t lba;
2795 	unsigned sector_size;
2796 
2797 	memset(buffer, 0, 8);
2798 
2799 	the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2800 				      8, SD_TIMEOUT, sdkp->max_retries,
2801 				      &exec_args);
2802 
2803 	if (the_result > 0) {
2804 		sense_valid = scsi_sense_valid(&sshdr);
2805 
2806 		if (media_not_present(sdkp, &sshdr))
2807 			return -ENODEV;
2808 	}
2809 
2810 	if (the_result) {
2811 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2812 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2813 		return -EINVAL;
2814 	}
2815 
2816 	sector_size = get_unaligned_be32(&buffer[4]);
2817 	lba = get_unaligned_be32(&buffer[0]);
2818 
2819 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2820 		/* Some buggy (usb cardreader) devices return an lba of
2821 		   0xffffffff when the want to report a size of 0 (with
2822 		   which they really mean no media is present) */
2823 		sdkp->capacity = 0;
2824 		sdkp->physical_block_size = sector_size;
2825 		return sector_size;
2826 	}
2827 
2828 	sdkp->capacity = lba + 1;
2829 	sdkp->physical_block_size = sector_size;
2830 	return sector_size;
2831 }
2832 
2833 static int sd_try_rc16_first(struct scsi_device *sdp)
2834 {
2835 	if (sdp->host->max_cmd_len < 16)
2836 		return 0;
2837 	if (sdp->try_rc_10_first)
2838 		return 0;
2839 	if (sdp->scsi_level > SCSI_SPC_2)
2840 		return 1;
2841 	if (scsi_device_protection(sdp))
2842 		return 1;
2843 	return 0;
2844 }
2845 
2846 /*
2847  * read disk capacity
2848  */
2849 static void
2850 sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim,
2851 		unsigned char *buffer)
2852 {
2853 	int sector_size;
2854 	struct scsi_device *sdp = sdkp->device;
2855 
2856 	if (sd_try_rc16_first(sdp)) {
2857 		sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2858 		if (sector_size == -EOVERFLOW)
2859 			goto got_data;
2860 		if (sector_size == -ENODEV)
2861 			return;
2862 		if (sector_size < 0)
2863 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2864 		if (sector_size < 0)
2865 			return;
2866 	} else {
2867 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2868 		if (sector_size == -EOVERFLOW)
2869 			goto got_data;
2870 		if (sector_size < 0)
2871 			return;
2872 		if ((sizeof(sdkp->capacity) > 4) &&
2873 		    (sdkp->capacity > 0xffffffffULL)) {
2874 			int old_sector_size = sector_size;
2875 			sd_printk(KERN_NOTICE, sdkp,
2876 				  "Very big device. Trying to use READ CAPACITY(16).\n");
2877 			sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2878 			if (sector_size < 0) {
2879 				sd_printk(KERN_NOTICE, sdkp,
2880 					"Using 0xffffffff as device size\n");
2881 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2882 				sector_size = old_sector_size;
2883 				goto got_data;
2884 			}
2885 			/* Remember that READ CAPACITY(16) succeeded */
2886 			sdp->try_rc_10_first = 0;
2887 		}
2888 	}
2889 
2890 	/* Some devices are known to return the total number of blocks,
2891 	 * not the highest block number.  Some devices have versions
2892 	 * which do this and others which do not.  Some devices we might
2893 	 * suspect of doing this but we don't know for certain.
2894 	 *
2895 	 * If we know the reported capacity is wrong, decrement it.  If
2896 	 * we can only guess, then assume the number of blocks is even
2897 	 * (usually true but not always) and err on the side of lowering
2898 	 * the capacity.
2899 	 */
2900 	if (sdp->fix_capacity ||
2901 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2902 		sd_printk(KERN_INFO, sdkp,
2903 			  "Adjusting the sector count from its reported value: %llu\n",
2904 			  (unsigned long long) sdkp->capacity);
2905 		--sdkp->capacity;
2906 	}
2907 
2908 got_data:
2909 	if (sector_size == 0) {
2910 		sector_size = 512;
2911 		sd_printk(KERN_NOTICE, sdkp,
2912 			  "Sector size 0 reported, assuming 512.\n");
2913 	}
2914 
2915 	if (sector_size != 512 &&
2916 	    sector_size != 1024 &&
2917 	    sector_size != 2048 &&
2918 	    sector_size != 4096) {
2919 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2920 			  sector_size);
2921 		/*
2922 		 * The user might want to re-format the drive with
2923 		 * a supported sectorsize.  Once this happens, it
2924 		 * would be relatively trivial to set the thing up.
2925 		 * For this reason, we leave the thing in the table.
2926 		 */
2927 		sdkp->capacity = 0;
2928 		/*
2929 		 * set a bogus sector size so the normal read/write
2930 		 * logic in the block layer will eventually refuse any
2931 		 * request on this device without tripping over power
2932 		 * of two sector size assumptions
2933 		 */
2934 		sector_size = 512;
2935 	}
2936 	lim->logical_block_size = sector_size;
2937 	lim->physical_block_size = sdkp->physical_block_size;
2938 	sdkp->device->sector_size = sector_size;
2939 
2940 	if (sdkp->capacity > 0xffffffff)
2941 		sdp->use_16_for_rw = 1;
2942 
2943 }
2944 
2945 /*
2946  * Print disk capacity
2947  */
2948 static void
2949 sd_print_capacity(struct scsi_disk *sdkp,
2950 		  sector_t old_capacity)
2951 {
2952 	int sector_size = sdkp->device->sector_size;
2953 	char cap_str_2[10], cap_str_10[10];
2954 
2955 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2956 		return;
2957 
2958 	string_get_size(sdkp->capacity, sector_size,
2959 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2960 	string_get_size(sdkp->capacity, sector_size,
2961 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2962 
2963 	sd_printk(KERN_NOTICE, sdkp,
2964 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2965 		  (unsigned long long)sdkp->capacity,
2966 		  sector_size, cap_str_10, cap_str_2);
2967 
2968 	if (sdkp->physical_block_size != sector_size)
2969 		sd_printk(KERN_NOTICE, sdkp,
2970 			  "%u-byte physical blocks\n",
2971 			  sdkp->physical_block_size);
2972 }
2973 
2974 /* called with buffer of length 512 */
2975 static inline int
2976 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2977 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2978 		 struct scsi_sense_hdr *sshdr)
2979 {
2980 	/*
2981 	 * If we must use MODE SENSE(10), make sure that the buffer length
2982 	 * is at least 8 bytes so that the mode sense header fits.
2983 	 */
2984 	if (sdkp->device->use_10_for_ms && len < 8)
2985 		len = 8;
2986 
2987 	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2988 			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2989 }
2990 
2991 /*
2992  * read write protect setting, if possible - called only in sd_revalidate_disk()
2993  * called with buffer of length SD_BUF_SIZE
2994  */
2995 static void
2996 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2997 {
2998 	int res;
2999 	struct scsi_device *sdp = sdkp->device;
3000 	struct scsi_mode_data data;
3001 	int old_wp = sdkp->write_prot;
3002 
3003 	set_disk_ro(sdkp->disk, 0);
3004 	if (sdp->skip_ms_page_3f) {
3005 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
3006 		return;
3007 	}
3008 
3009 	if (sdp->use_192_bytes_for_3f) {
3010 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
3011 	} else {
3012 		/*
3013 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
3014 		 * We have to start carefully: some devices hang if we ask
3015 		 * for more than is available.
3016 		 */
3017 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
3018 
3019 		/*
3020 		 * Second attempt: ask for page 0 When only page 0 is
3021 		 * implemented, a request for page 3F may return Sense Key
3022 		 * 5: Illegal Request, Sense Code 24: Invalid field in
3023 		 * CDB.
3024 		 */
3025 		if (res < 0)
3026 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
3027 
3028 		/*
3029 		 * Third attempt: ask 255 bytes, as we did earlier.
3030 		 */
3031 		if (res < 0)
3032 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
3033 					       &data, NULL);
3034 	}
3035 
3036 	if (res < 0) {
3037 		sd_first_printk(KERN_WARNING, sdkp,
3038 			  "Test WP failed, assume Write Enabled\n");
3039 	} else {
3040 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
3041 		set_disk_ro(sdkp->disk, sdkp->write_prot);
3042 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
3043 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
3044 				  sdkp->write_prot ? "on" : "off");
3045 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
3046 		}
3047 	}
3048 }
3049 
3050 /*
3051  * sd_read_cache_type - called only from sd_revalidate_disk()
3052  * called with buffer of length SD_BUF_SIZE
3053  */
3054 static void
3055 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
3056 {
3057 	int len = 0, res;
3058 	struct scsi_device *sdp = sdkp->device;
3059 
3060 	int dbd;
3061 	int modepage;
3062 	int first_len;
3063 	struct scsi_mode_data data;
3064 	struct scsi_sense_hdr sshdr;
3065 	int old_wce = sdkp->WCE;
3066 	int old_rcd = sdkp->RCD;
3067 	int old_dpofua = sdkp->DPOFUA;
3068 
3069 
3070 	if (sdkp->cache_override)
3071 		return;
3072 
3073 	first_len = 4;
3074 	if (sdp->skip_ms_page_8) {
3075 		if (sdp->type == TYPE_RBC)
3076 			goto defaults;
3077 		else {
3078 			if (sdp->skip_ms_page_3f)
3079 				goto defaults;
3080 			modepage = 0x3F;
3081 			if (sdp->use_192_bytes_for_3f)
3082 				first_len = 192;
3083 			dbd = 0;
3084 		}
3085 	} else if (sdp->type == TYPE_RBC) {
3086 		modepage = 6;
3087 		dbd = 8;
3088 	} else {
3089 		modepage = 8;
3090 		dbd = 0;
3091 	}
3092 
3093 	/* cautiously ask */
3094 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
3095 			&data, &sshdr);
3096 
3097 	if (res < 0)
3098 		goto bad_sense;
3099 
3100 	if (!data.header_length) {
3101 		modepage = 6;
3102 		first_len = 0;
3103 		sd_first_printk(KERN_ERR, sdkp,
3104 				"Missing header in MODE_SENSE response\n");
3105 	}
3106 
3107 	/* that went OK, now ask for the proper length */
3108 	len = data.length;
3109 
3110 	/*
3111 	 * We're only interested in the first three bytes, actually.
3112 	 * But the data cache page is defined for the first 20.
3113 	 */
3114 	if (len < 3)
3115 		goto bad_sense;
3116 	else if (len > SD_BUF_SIZE) {
3117 		sd_first_printk(KERN_NOTICE, sdkp,
3118 				"Truncating mode parameter data from %d to %d bytes\n",
3119 				len, SD_BUF_SIZE);
3120 		len = SD_BUF_SIZE;
3121 	}
3122 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
3123 		len = 192;
3124 
3125 	/* Get the data */
3126 	if (len > first_len)
3127 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
3128 				&data, &sshdr);
3129 
3130 	if (!res) {
3131 		int offset = data.header_length + data.block_descriptor_length;
3132 
3133 		while (offset < len) {
3134 			u8 page_code = buffer[offset] & 0x3F;
3135 			u8 spf       = buffer[offset] & 0x40;
3136 
3137 			if (page_code == 8 || page_code == 6) {
3138 				/* We're interested only in the first 3 bytes.
3139 				 */
3140 				if (len - offset <= 2) {
3141 					sd_first_printk(KERN_ERR, sdkp,
3142 						"Incomplete mode parameter data\n");
3143 					goto defaults;
3144 				} else {
3145 					modepage = page_code;
3146 					goto Page_found;
3147 				}
3148 			} else {
3149 				/* Go to the next page */
3150 				if (spf && len - offset > 3)
3151 					offset += 4 + (buffer[offset+2] << 8) +
3152 						buffer[offset+3];
3153 				else if (!spf && len - offset > 1)
3154 					offset += 2 + buffer[offset+1];
3155 				else {
3156 					sd_first_printk(KERN_ERR, sdkp,
3157 							"Incomplete mode parameter data\n");
3158 					goto defaults;
3159 				}
3160 			}
3161 		}
3162 
3163 		sd_first_printk(KERN_WARNING, sdkp,
3164 				"No Caching mode page found\n");
3165 		goto defaults;
3166 
3167 	Page_found:
3168 		if (modepage == 8) {
3169 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3170 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3171 		} else {
3172 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3173 			sdkp->RCD = 0;
3174 		}
3175 
3176 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3177 		if (sdp->broken_fua) {
3178 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3179 			sdkp->DPOFUA = 0;
3180 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3181 			   !sdkp->device->use_16_for_rw) {
3182 			sd_first_printk(KERN_NOTICE, sdkp,
3183 				  "Uses READ/WRITE(6), disabling FUA\n");
3184 			sdkp->DPOFUA = 0;
3185 		}
3186 
3187 		/* No cache flush allowed for write protected devices */
3188 		if (sdkp->WCE && sdkp->write_prot)
3189 			sdkp->WCE = 0;
3190 
3191 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
3192 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3193 			sd_printk(KERN_NOTICE, sdkp,
3194 				  "Write cache: %s, read cache: %s, %s\n",
3195 				  sdkp->WCE ? "enabled" : "disabled",
3196 				  sdkp->RCD ? "disabled" : "enabled",
3197 				  sdkp->DPOFUA ? "supports DPO and FUA"
3198 				  : "doesn't support DPO or FUA");
3199 
3200 		return;
3201 	}
3202 
3203 bad_sense:
3204 	if (res == -EIO && scsi_sense_valid(&sshdr) &&
3205 	    sshdr.sense_key == ILLEGAL_REQUEST &&
3206 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3207 		/* Invalid field in CDB */
3208 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3209 	else
3210 		sd_first_printk(KERN_ERR, sdkp,
3211 				"Asking for cache data failed\n");
3212 
3213 defaults:
3214 	if (sdp->wce_default_on) {
3215 		sd_first_printk(KERN_NOTICE, sdkp,
3216 				"Assuming drive cache: write back\n");
3217 		sdkp->WCE = 1;
3218 	} else {
3219 		sd_first_printk(KERN_WARNING, sdkp,
3220 				"Assuming drive cache: write through\n");
3221 		sdkp->WCE = 0;
3222 	}
3223 	sdkp->RCD = 0;
3224 	sdkp->DPOFUA = 0;
3225 }
3226 
3227 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
3228 {
3229 	u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
3230 	struct {
3231 		struct scsi_stream_status_header h;
3232 		struct scsi_stream_status s;
3233 	} buf;
3234 	struct scsi_device *sdev = sdkp->device;
3235 	struct scsi_sense_hdr sshdr;
3236 	const struct scsi_exec_args exec_args = {
3237 		.sshdr = &sshdr,
3238 	};
3239 	int res;
3240 
3241 	put_unaligned_be16(stream_id, &cdb[4]);
3242 	put_unaligned_be32(sizeof(buf), &cdb[10]);
3243 
3244 	res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
3245 			       SD_TIMEOUT, sdkp->max_retries, &exec_args);
3246 	if (res < 0)
3247 		return false;
3248 	if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
3249 		sd_print_sense_hdr(sdkp, &sshdr);
3250 	if (res)
3251 		return false;
3252 	if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
3253 		return false;
3254 	return buf.s.perm;
3255 }
3256 
3257 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
3258 {
3259 	struct scsi_device *sdp = sdkp->device;
3260 	const struct scsi_io_group_descriptor *desc, *start, *end;
3261 	u16 permanent_stream_count_old;
3262 	struct scsi_sense_hdr sshdr;
3263 	struct scsi_mode_data data;
3264 	int res;
3265 
3266 	if (sdp->sdev_bflags & BLIST_SKIP_IO_HINTS)
3267 		return;
3268 
3269 	res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
3270 			      /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
3271 			      sdkp->max_retries, &data, &sshdr);
3272 	if (res < 0)
3273 		return;
3274 	start = (void *)buffer + data.header_length + 16;
3275 	end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
3276 					  sizeof(*end));
3277 	/*
3278 	 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
3279 	 * should assign the lowest numbered stream identifiers to permanent
3280 	 * streams.
3281 	 */
3282 	for (desc = start; desc < end; desc++)
3283 		if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
3284 			break;
3285 	permanent_stream_count_old = sdkp->permanent_stream_count;
3286 	sdkp->permanent_stream_count = desc - start;
3287 	if (sdkp->rscs && sdkp->permanent_stream_count < 2)
3288 		sd_printk(KERN_INFO, sdkp,
3289 			  "Unexpected: RSCS has been set and the permanent stream count is %u\n",
3290 			  sdkp->permanent_stream_count);
3291 	else if (sdkp->permanent_stream_count != permanent_stream_count_old)
3292 		sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
3293 			  sdkp->permanent_stream_count);
3294 }
3295 
3296 /*
3297  * The ATO bit indicates whether the DIF application tag is available
3298  * for use by the operating system.
3299  */
3300 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3301 {
3302 	int res, offset;
3303 	struct scsi_device *sdp = sdkp->device;
3304 	struct scsi_mode_data data;
3305 	struct scsi_sense_hdr sshdr;
3306 
3307 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3308 		return;
3309 
3310 	if (sdkp->protection_type == 0)
3311 		return;
3312 
3313 	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3314 			      sdkp->max_retries, &data, &sshdr);
3315 
3316 	if (res < 0 || !data.header_length ||
3317 	    data.length < 6) {
3318 		sd_first_printk(KERN_WARNING, sdkp,
3319 			  "getting Control mode page failed, assume no ATO\n");
3320 
3321 		if (res == -EIO && scsi_sense_valid(&sshdr))
3322 			sd_print_sense_hdr(sdkp, &sshdr);
3323 
3324 		return;
3325 	}
3326 
3327 	offset = data.header_length + data.block_descriptor_length;
3328 
3329 	if ((buffer[offset] & 0x3f) != 0x0a) {
3330 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3331 		return;
3332 	}
3333 
3334 	if ((buffer[offset + 5] & 0x80) == 0)
3335 		return;
3336 
3337 	sdkp->ATO = 1;
3338 
3339 	return;
3340 }
3341 
3342 static unsigned int sd_discard_mode(struct scsi_disk *sdkp)
3343 {
3344 	if (!sdkp->lbpme)
3345 		return SD_LBP_FULL;
3346 
3347 	if (!sdkp->lbpvpd) {
3348 		/* LBP VPD page not provided */
3349 		if (sdkp->max_unmap_blocks)
3350 			return SD_LBP_UNMAP;
3351 		return SD_LBP_WS16;
3352 	}
3353 
3354 	/* LBP VPD page tells us what to use */
3355 	if (sdkp->lbpu && sdkp->max_unmap_blocks)
3356 		return SD_LBP_UNMAP;
3357 	if (sdkp->lbpws)
3358 		return SD_LBP_WS16;
3359 	if (sdkp->lbpws10)
3360 		return SD_LBP_WS10;
3361 	return SD_LBP_DISABLE;
3362 }
3363 
3364 /*
3365  * Query disk device for preferred I/O sizes.
3366  */
3367 static void sd_read_block_limits(struct scsi_disk *sdkp,
3368 		struct queue_limits *lim)
3369 {
3370 	struct scsi_vpd *vpd;
3371 
3372 	rcu_read_lock();
3373 
3374 	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3375 	if (!vpd || vpd->len < 16)
3376 		goto out;
3377 
3378 	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3379 	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3380 	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3381 
3382 	if (vpd->len >= 64) {
3383 		unsigned int lba_count, desc_count;
3384 
3385 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3386 
3387 		if (!sdkp->lbpme)
3388 			goto config_atomic;
3389 
3390 		lba_count = get_unaligned_be32(&vpd->data[20]);
3391 		desc_count = get_unaligned_be32(&vpd->data[24]);
3392 
3393 		if (lba_count && desc_count)
3394 			sdkp->max_unmap_blocks = lba_count;
3395 
3396 		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3397 
3398 		if (vpd->data[32] & 0x80)
3399 			sdkp->unmap_alignment =
3400 				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3401 
3402 config_atomic:
3403 		sdkp->max_atomic = get_unaligned_be32(&vpd->data[44]);
3404 		sdkp->atomic_alignment = get_unaligned_be32(&vpd->data[48]);
3405 		sdkp->atomic_granularity = get_unaligned_be32(&vpd->data[52]);
3406 		sdkp->max_atomic_with_boundary = get_unaligned_be32(&vpd->data[56]);
3407 		sdkp->max_atomic_boundary = get_unaligned_be32(&vpd->data[60]);
3408 
3409 		sd_config_atomic(sdkp, lim);
3410 	}
3411 
3412  out:
3413 	rcu_read_unlock();
3414 }
3415 
3416 /* Parse the Block Limits Extension VPD page (0xb7) */
3417 static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
3418 {
3419 	struct scsi_vpd *vpd;
3420 
3421 	rcu_read_lock();
3422 	vpd = rcu_dereference(sdkp->device->vpd_pgb7);
3423 	if (vpd && vpd->len >= 6)
3424 		sdkp->rscs = vpd->data[5] & 1;
3425 	rcu_read_unlock();
3426 }
3427 
3428 /* Query block device characteristics */
3429 static void sd_read_block_characteristics(struct scsi_disk *sdkp,
3430 		struct queue_limits *lim)
3431 {
3432 	struct scsi_vpd *vpd;
3433 	u16 rot;
3434 
3435 	rcu_read_lock();
3436 	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3437 
3438 	if (!vpd || vpd->len <= 8) {
3439 		rcu_read_unlock();
3440 	        return;
3441 	}
3442 
3443 	rot = get_unaligned_be16(&vpd->data[4]);
3444 	sdkp->zoned = (vpd->data[8] >> 4) & 3;
3445 	rcu_read_unlock();
3446 
3447 	if (rot == 1)
3448 		lim->features &= ~(BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
3449 
3450 	if (!sdkp->first_scan)
3451 		return;
3452 
3453 	if (sdkp->device->type == TYPE_ZBC)
3454 		sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3455 	else if (sdkp->zoned == 1)
3456 		sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3457 	else if (sdkp->zoned == 2)
3458 		sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3459 }
3460 
3461 /**
3462  * sd_read_block_provisioning - Query provisioning VPD page
3463  * @sdkp: disk to query
3464  */
3465 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3466 {
3467 	struct scsi_vpd *vpd;
3468 
3469 	if (sdkp->lbpme == 0)
3470 		return;
3471 
3472 	rcu_read_lock();
3473 	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3474 
3475 	if (!vpd || vpd->len < 8) {
3476 		rcu_read_unlock();
3477 		return;
3478 	}
3479 
3480 	sdkp->lbpvpd	= 1;
3481 	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3482 	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3483 	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3484 	rcu_read_unlock();
3485 }
3486 
3487 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3488 {
3489 	struct scsi_device *sdev = sdkp->device;
3490 
3491 	if (sdev->host->no_write_same) {
3492 		sdev->no_write_same = 1;
3493 
3494 		return;
3495 	}
3496 
3497 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3498 		sdev->no_report_opcodes = 1;
3499 
3500 		/*
3501 		 * Disable WRITE SAME if REPORT SUPPORTED OPERATION CODES is
3502 		 * unsupported and this is an ATA device.
3503 		 */
3504 		if (sdev->is_ata)
3505 			sdev->no_write_same = 1;
3506 	}
3507 
3508 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3509 		sdkp->ws16 = 1;
3510 
3511 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3512 		sdkp->ws10 = 1;
3513 }
3514 
3515 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3516 {
3517 	struct scsi_device *sdev = sdkp->device;
3518 
3519 	if (!sdev->security_supported)
3520 		return;
3521 
3522 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3523 			SECURITY_PROTOCOL_IN, 0) == 1 &&
3524 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3525 			SECURITY_PROTOCOL_OUT, 0) == 1)
3526 		sdkp->security = 1;
3527 }
3528 
3529 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3530 {
3531 	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3532 }
3533 
3534 /**
3535  * sd_read_cpr - Query concurrent positioning ranges
3536  * @sdkp:	disk to query
3537  */
3538 static void sd_read_cpr(struct scsi_disk *sdkp)
3539 {
3540 	struct blk_independent_access_ranges *iars = NULL;
3541 	unsigned char *buffer = NULL;
3542 	unsigned int nr_cpr = 0;
3543 	int i, vpd_len, buf_len = SD_BUF_SIZE;
3544 	u8 *desc;
3545 
3546 	/*
3547 	 * We need to have the capacity set first for the block layer to be
3548 	 * able to check the ranges.
3549 	 */
3550 	if (sdkp->first_scan)
3551 		return;
3552 
3553 	if (!sdkp->capacity)
3554 		goto out;
3555 
3556 	/*
3557 	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3558 	 * leading to a maximum page size of 64 + 256*32 bytes.
3559 	 */
3560 	buf_len = 64 + 256*32;
3561 	buffer = kmalloc(buf_len, GFP_KERNEL);
3562 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3563 		goto out;
3564 
3565 	/* We must have at least a 64B header and one 32B range descriptor */
3566 	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3567 	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3568 		sd_printk(KERN_ERR, sdkp,
3569 			  "Invalid Concurrent Positioning Ranges VPD page\n");
3570 		goto out;
3571 	}
3572 
3573 	nr_cpr = (vpd_len - 64) / 32;
3574 	if (nr_cpr == 1) {
3575 		nr_cpr = 0;
3576 		goto out;
3577 	}
3578 
3579 	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3580 	if (!iars) {
3581 		nr_cpr = 0;
3582 		goto out;
3583 	}
3584 
3585 	desc = &buffer[64];
3586 	for (i = 0; i < nr_cpr; i++, desc += 32) {
3587 		if (desc[0] != i) {
3588 			sd_printk(KERN_ERR, sdkp,
3589 				"Invalid Concurrent Positioning Range number\n");
3590 			nr_cpr = 0;
3591 			break;
3592 		}
3593 
3594 		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3595 		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3596 	}
3597 
3598 out:
3599 	disk_set_independent_access_ranges(sdkp->disk, iars);
3600 	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3601 		sd_printk(KERN_NOTICE, sdkp,
3602 			  "%u concurrent positioning ranges\n", nr_cpr);
3603 		sdkp->nr_actuators = nr_cpr;
3604 	}
3605 
3606 	kfree(buffer);
3607 }
3608 
3609 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3610 {
3611 	struct scsi_device *sdp = sdkp->device;
3612 	unsigned int min_xfer_bytes =
3613 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3614 
3615 	if (sdkp->min_xfer_blocks == 0)
3616 		return false;
3617 
3618 	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3619 		sd_first_printk(KERN_WARNING, sdkp,
3620 				"Preferred minimum I/O size %u bytes not a multiple of physical block size (%u bytes)\n",
3621 				min_xfer_bytes, sdkp->physical_block_size);
3622 		sdkp->min_xfer_blocks = 0;
3623 		return false;
3624 	}
3625 
3626 	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3627 			min_xfer_bytes);
3628 	return true;
3629 }
3630 
3631 /*
3632  * Determine the device's preferred I/O size for reads and writes
3633  * unless the reported value is unreasonably small, large, not a
3634  * multiple of the physical block size, or simply garbage.
3635  */
3636 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3637 				      unsigned int dev_max)
3638 {
3639 	struct scsi_device *sdp = sdkp->device;
3640 	unsigned int opt_xfer_bytes =
3641 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3642 	unsigned int min_xfer_bytes =
3643 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3644 
3645 	if (sdkp->opt_xfer_blocks == 0)
3646 		return false;
3647 
3648 	if (sdkp->opt_xfer_blocks > dev_max) {
3649 		sd_first_printk(KERN_WARNING, sdkp,
3650 				"Optimal transfer size %u logical blocks > dev_max (%u logical blocks)\n",
3651 				sdkp->opt_xfer_blocks, dev_max);
3652 		return false;
3653 	}
3654 
3655 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3656 		sd_first_printk(KERN_WARNING, sdkp,
3657 				"Optimal transfer size %u logical blocks > sd driver limit (%u logical blocks)\n",
3658 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3659 		return false;
3660 	}
3661 
3662 	if (opt_xfer_bytes < PAGE_SIZE) {
3663 		sd_first_printk(KERN_WARNING, sdkp,
3664 				"Optimal transfer size %u bytes < PAGE_SIZE (%u bytes)\n",
3665 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3666 		return false;
3667 	}
3668 
3669 	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3670 		sd_first_printk(KERN_WARNING, sdkp,
3671 				"Optimal transfer size %u bytes not a multiple of preferred minimum block size (%u bytes)\n",
3672 				opt_xfer_bytes, min_xfer_bytes);
3673 		return false;
3674 	}
3675 
3676 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3677 		sd_first_printk(KERN_WARNING, sdkp,
3678 				"Optimal transfer size %u bytes not a multiple of physical block size (%u bytes)\n",
3679 				opt_xfer_bytes, sdkp->physical_block_size);
3680 		return false;
3681 	}
3682 
3683 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3684 			opt_xfer_bytes);
3685 	return true;
3686 }
3687 
3688 static void sd_read_block_zero(struct scsi_disk *sdkp)
3689 {
3690 	struct scsi_device *sdev = sdkp->device;
3691 	unsigned int buf_len = sdev->sector_size;
3692 	u8 *buffer, cmd[16] = { };
3693 
3694 	buffer = kmalloc(buf_len, GFP_KERNEL);
3695 	if (!buffer)
3696 		return;
3697 
3698 	if (sdev->use_16_for_rw) {
3699 		cmd[0] = READ_16;
3700 		put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */
3701 		put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */
3702 	} else {
3703 		cmd[0] = READ_10;
3704 		put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3705 		put_unaligned_be16(1, &cmd[7]);	/* Transfer 1 logical block */
3706 	}
3707 
3708 	scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3709 			 SD_TIMEOUT, sdkp->max_retries, NULL);
3710 	kfree(buffer);
3711 }
3712 
3713 /**
3714  *	sd_revalidate_disk - called the first time a new disk is seen,
3715  *	performs disk spin up, read_capacity, etc.
3716  *	@disk: struct gendisk we care about
3717  **/
3718 static void sd_revalidate_disk(struct gendisk *disk)
3719 {
3720 	struct scsi_disk *sdkp = scsi_disk(disk);
3721 	struct scsi_device *sdp = sdkp->device;
3722 	sector_t old_capacity = sdkp->capacity;
3723 	struct queue_limits *lim = NULL;
3724 	unsigned char *buffer = NULL;
3725 	unsigned int dev_max;
3726 	int err;
3727 
3728 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3729 				      "sd_revalidate_disk\n"));
3730 
3731 	/*
3732 	 * If the device is offline, don't try and read capacity or any
3733 	 * of the other niceties.
3734 	 */
3735 	if (!scsi_device_online(sdp))
3736 		return;
3737 
3738 	lim = kmalloc(sizeof(*lim), GFP_KERNEL);
3739 	if (!lim)
3740 		return;
3741 
3742 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3743 	if (!buffer)
3744 		goto out;
3745 
3746 	sd_spinup_disk(sdkp);
3747 
3748 	*lim = queue_limits_start_update(sdkp->disk->queue);
3749 
3750 	/*
3751 	 * Without media there is no reason to ask; moreover, some devices
3752 	 * react badly if we do.
3753 	 */
3754 	if (sdkp->media_present) {
3755 		sd_read_capacity(sdkp, lim, buffer);
3756 		/*
3757 		 * Some USB/UAS devices return generic values for mode pages
3758 		 * until the media has been accessed. Trigger a READ operation
3759 		 * to force the device to populate mode pages.
3760 		 */
3761 		if (sdp->read_before_ms)
3762 			sd_read_block_zero(sdkp);
3763 		/*
3764 		 * set the default to rotational.  All non-rotational devices
3765 		 * support the block characteristics VPD page, which will
3766 		 * cause this to be updated correctly and any device which
3767 		 * doesn't support it should be treated as rotational.
3768 		 */
3769 		lim->features |= (BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
3770 
3771 		if (scsi_device_supports_vpd(sdp)) {
3772 			sd_read_block_provisioning(sdkp);
3773 			sd_read_block_limits(sdkp, lim);
3774 			sd_read_block_limits_ext(sdkp);
3775 			sd_read_block_characteristics(sdkp, lim);
3776 			sd_zbc_read_zones(sdkp, lim, buffer);
3777 		}
3778 
3779 		sd_config_discard(sdkp, lim, sd_discard_mode(sdkp));
3780 
3781 		sd_print_capacity(sdkp, old_capacity);
3782 
3783 		sd_read_write_protect_flag(sdkp, buffer);
3784 		sd_read_cache_type(sdkp, buffer);
3785 		sd_read_io_hints(sdkp, buffer);
3786 		sd_read_app_tag_own(sdkp, buffer);
3787 		sd_read_write_same(sdkp, buffer);
3788 		sd_read_security(sdkp, buffer);
3789 		sd_config_protection(sdkp, lim);
3790 	}
3791 
3792 	/*
3793 	 * We now have all cache related info, determine how we deal
3794 	 * with flush requests.
3795 	 */
3796 	sd_set_flush_flag(sdkp, lim);
3797 
3798 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3799 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3800 
3801 	/* Some devices report a maximum block count for READ/WRITE requests. */
3802 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3803 	lim->max_dev_sectors = logical_to_sectors(sdp, dev_max);
3804 
3805 	if (sd_validate_min_xfer_size(sdkp))
3806 		lim->io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3807 	else
3808 		lim->io_min = 0;
3809 
3810 	/*
3811 	 * Limit default to SCSI host optimal sector limit if set. There may be
3812 	 * an impact on performance for when the size of a request exceeds this
3813 	 * host limit.
3814 	 */
3815 	lim->io_opt = sdp->host->opt_sectors << SECTOR_SHIFT;
3816 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3817 		lim->io_opt = min_not_zero(lim->io_opt,
3818 				logical_to_bytes(sdp, sdkp->opt_xfer_blocks));
3819 	}
3820 
3821 	sdkp->first_scan = 0;
3822 
3823 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3824 	sd_config_write_same(sdkp, lim);
3825 
3826 	err = queue_limits_commit_update_frozen(sdkp->disk->queue, lim);
3827 	if (err)
3828 		goto out;
3829 
3830 	/*
3831 	 * Query concurrent positioning ranges after
3832 	 * queue_limits_commit_update() unlocked q->limits_lock to avoid
3833 	 * deadlock with q->sysfs_dir_lock and q->sysfs_lock.
3834 	 */
3835 	if (sdkp->media_present && scsi_device_supports_vpd(sdp))
3836 		sd_read_cpr(sdkp);
3837 
3838 	/*
3839 	 * For a zoned drive, revalidating the zones can be done only once
3840 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3841 	 * capacity to 0.
3842 	 */
3843 	if (sd_zbc_revalidate_zones(sdkp))
3844 		set_capacity_and_notify(disk, 0);
3845 
3846  out:
3847 	kfree(buffer);
3848 	kfree(lim);
3849 
3850 }
3851 
3852 /**
3853  *	sd_unlock_native_capacity - unlock native capacity
3854  *	@disk: struct gendisk to set capacity for
3855  *
3856  *	Block layer calls this function if it detects that partitions
3857  *	on @disk reach beyond the end of the device.  If the SCSI host
3858  *	implements ->unlock_native_capacity() method, it's invoked to
3859  *	give it a chance to adjust the device capacity.
3860  *
3861  *	CONTEXT:
3862  *	Defined by block layer.  Might sleep.
3863  */
3864 static void sd_unlock_native_capacity(struct gendisk *disk)
3865 {
3866 	struct scsi_device *sdev = scsi_disk(disk)->device;
3867 
3868 	if (sdev->host->hostt->unlock_native_capacity)
3869 		sdev->host->hostt->unlock_native_capacity(sdev);
3870 }
3871 
3872 static const struct block_device_operations sd_fops = {
3873 	.owner			= THIS_MODULE,
3874 	.open			= sd_open,
3875 	.release		= sd_release,
3876 	.ioctl			= sd_ioctl,
3877 	.getgeo			= sd_getgeo,
3878 	.compat_ioctl		= blkdev_compat_ptr_ioctl,
3879 	.check_events		= sd_check_events,
3880 	.unlock_native_capacity	= sd_unlock_native_capacity,
3881 	.report_zones		= sd_zbc_report_zones,
3882 	.get_unique_id		= sd_get_unique_id,
3883 	.free_disk		= scsi_disk_free_disk,
3884 	.pr_ops			= &sd_pr_ops,
3885 };
3886 
3887 /**
3888  *	sd_format_disk_name - format disk name
3889  *	@prefix: name prefix - ie. "sd" for SCSI disks
3890  *	@index: index of the disk to format name for
3891  *	@buf: output buffer
3892  *	@buflen: length of the output buffer
3893  *
3894  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3895  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3896  *	which is followed by sdaaa.
3897  *
3898  *	This is basically 26 base counting with one extra 'nil' entry
3899  *	at the beginning from the second digit on and can be
3900  *	determined using similar method as 26 base conversion with the
3901  *	index shifted -1 after each digit is computed.
3902  *
3903  *	CONTEXT:
3904  *	Don't care.
3905  *
3906  *	RETURNS:
3907  *	0 on success, -errno on failure.
3908  */
3909 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3910 {
3911 	const int base = 'z' - 'a' + 1;
3912 	char *begin = buf + strlen(prefix);
3913 	char *end = buf + buflen;
3914 	char *p;
3915 	int unit;
3916 
3917 	p = end - 1;
3918 	*p = '\0';
3919 	unit = base;
3920 	do {
3921 		if (p == begin)
3922 			return -EINVAL;
3923 		*--p = 'a' + (index % unit);
3924 		index = (index / unit) - 1;
3925 	} while (index >= 0);
3926 
3927 	memmove(begin, p, end - p);
3928 	memcpy(buf, prefix, strlen(prefix));
3929 
3930 	return 0;
3931 }
3932 
3933 /**
3934  *	sd_probe - called during driver initialization and whenever a
3935  *	new scsi device is attached to the system. It is called once
3936  *	for each scsi device (not just disks) present.
3937  *	@sdp: pointer to device object
3938  *
3939  *	Returns 0 if successful (or not interested in this scsi device
3940  *	(e.g. scanner)); 1 when there is an error.
3941  *
3942  *	Note: this function is invoked from the scsi mid-level.
3943  *	This function sets up the mapping between a given
3944  *	<host,channel,id,lun> (found in sdp) and new device name
3945  *	(e.g. /dev/sda). More precisely it is the block device major
3946  *	and minor number that is chosen here.
3947  *
3948  *	Assume sd_probe is not re-entrant (for time being)
3949  *	Also think about sd_probe() and sd_remove() running coincidentally.
3950  **/
3951 static int sd_probe(struct scsi_device *sdp)
3952 {
3953 	struct device *dev = &sdp->sdev_gendev;
3954 	struct scsi_disk *sdkp;
3955 	struct gendisk *gd;
3956 	int index;
3957 	int error;
3958 
3959 	scsi_autopm_get_device(sdp);
3960 	error = -ENODEV;
3961 	if (sdp->type != TYPE_DISK &&
3962 	    sdp->type != TYPE_ZBC &&
3963 	    sdp->type != TYPE_MOD &&
3964 	    sdp->type != TYPE_RBC)
3965 		goto out;
3966 
3967 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3968 		sdev_printk(KERN_WARNING, sdp,
3969 			    "Unsupported ZBC host-managed device.\n");
3970 		goto out;
3971 	}
3972 
3973 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3974 					"sd_probe\n"));
3975 
3976 	error = -ENOMEM;
3977 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3978 	if (!sdkp)
3979 		goto out;
3980 
3981 	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3982 					 &sd_bio_compl_lkclass);
3983 	if (!gd)
3984 		goto out_free;
3985 
3986 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3987 	if (index < 0) {
3988 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3989 		goto out_put;
3990 	}
3991 
3992 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3993 	if (error) {
3994 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3995 		goto out_free_index;
3996 	}
3997 
3998 	sdkp->device = sdp;
3999 	sdkp->disk = gd;
4000 	sdkp->index = index;
4001 	sdkp->max_retries = SD_MAX_RETRIES;
4002 	atomic_set(&sdkp->openers, 0);
4003 	atomic_set(&sdkp->device->ioerr_cnt, 0);
4004 
4005 	if (!sdp->request_queue->rq_timeout) {
4006 		if (sdp->type != TYPE_MOD)
4007 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
4008 		else
4009 			blk_queue_rq_timeout(sdp->request_queue,
4010 					     SD_MOD_TIMEOUT);
4011 	}
4012 
4013 	device_initialize(&sdkp->disk_dev);
4014 	sdkp->disk_dev.parent = get_device(dev);
4015 	sdkp->disk_dev.class = &sd_disk_class;
4016 	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
4017 
4018 	error = device_add(&sdkp->disk_dev);
4019 	if (error) {
4020 		put_device(&sdkp->disk_dev);
4021 		goto out;
4022 	}
4023 
4024 	dev_set_drvdata(dev, sdkp);
4025 
4026 	gd->major = sd_major((index & 0xf0) >> 4);
4027 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
4028 	gd->minors = SD_MINORS;
4029 
4030 	gd->fops = &sd_fops;
4031 	gd->private_data = sdkp;
4032 
4033 	/* defaults, until the device tells us otherwise */
4034 	sdp->sector_size = 512;
4035 	sdkp->capacity = 0;
4036 	sdkp->media_present = 1;
4037 	sdkp->write_prot = 0;
4038 	sdkp->cache_override = 0;
4039 	sdkp->WCE = 0;
4040 	sdkp->RCD = 0;
4041 	sdkp->ATO = 0;
4042 	sdkp->first_scan = 1;
4043 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
4044 
4045 	sd_revalidate_disk(gd);
4046 
4047 	if (sdp->removable) {
4048 		gd->flags |= GENHD_FL_REMOVABLE;
4049 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
4050 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
4051 	}
4052 
4053 	blk_pm_runtime_init(sdp->request_queue, dev);
4054 	if (sdp->rpm_autosuspend) {
4055 		pm_runtime_set_autosuspend_delay(dev,
4056 			sdp->host->rpm_autosuspend_delay);
4057 	}
4058 
4059 	error = device_add_disk(dev, gd, NULL);
4060 	if (error) {
4061 		device_unregister(&sdkp->disk_dev);
4062 		put_disk(gd);
4063 		goto out;
4064 	}
4065 
4066 	if (sdkp->security) {
4067 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
4068 		if (sdkp->opal_dev)
4069 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
4070 	}
4071 
4072 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
4073 		  sdp->removable ? "removable " : "");
4074 	scsi_autopm_put_device(sdp);
4075 
4076 	return 0;
4077 
4078  out_free_index:
4079 	ida_free(&sd_index_ida, index);
4080  out_put:
4081 	put_disk(gd);
4082  out_free:
4083 	kfree(sdkp);
4084  out:
4085 	scsi_autopm_put_device(sdp);
4086 	return error;
4087 }
4088 
4089 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
4090 {
4091 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
4092 	struct scsi_sense_hdr sshdr;
4093 	struct scsi_failure failure_defs[] = {
4094 		{
4095 			/* Power on, reset, or bus device reset occurred */
4096 			.sense = UNIT_ATTENTION,
4097 			.asc = 0x29,
4098 			.ascq = 0,
4099 			.result = SAM_STAT_CHECK_CONDITION,
4100 		},
4101 		{
4102 			/* Power on occurred */
4103 			.sense = UNIT_ATTENTION,
4104 			.asc = 0x29,
4105 			.ascq = 1,
4106 			.result = SAM_STAT_CHECK_CONDITION,
4107 		},
4108 		{
4109 			/* SCSI bus reset */
4110 			.sense = UNIT_ATTENTION,
4111 			.asc = 0x29,
4112 			.ascq = 2,
4113 			.result = SAM_STAT_CHECK_CONDITION,
4114 		},
4115 		{}
4116 	};
4117 	struct scsi_failures failures = {
4118 		.total_allowed = 3,
4119 		.failure_definitions = failure_defs,
4120 	};
4121 	const struct scsi_exec_args exec_args = {
4122 		.sshdr = &sshdr,
4123 		.req_flags = BLK_MQ_REQ_PM,
4124 		.failures = &failures,
4125 	};
4126 	struct scsi_device *sdp = sdkp->device;
4127 	int res;
4128 
4129 	if (start)
4130 		cmd[4] |= 1;	/* START */
4131 
4132 	if (sdp->start_stop_pwr_cond)
4133 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
4134 
4135 	if (!scsi_device_online(sdp))
4136 		return -ENODEV;
4137 
4138 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
4139 			       sdkp->max_retries, &exec_args);
4140 	if (res) {
4141 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
4142 		if (res > 0 && scsi_sense_valid(&sshdr)) {
4143 			sd_print_sense_hdr(sdkp, &sshdr);
4144 			/* 0x3a is medium not present */
4145 			if (sshdr.asc == 0x3a)
4146 				res = 0;
4147 		}
4148 	}
4149 
4150 	/* SCSI error codes must not go to the generic layer */
4151 	if (res)
4152 		return -EIO;
4153 
4154 	return 0;
4155 }
4156 
4157 /*
4158  * Send a SYNCHRONIZE CACHE instruction down to the device through
4159  * the normal SCSI command structure.  Wait for the command to
4160  * complete.
4161  */
4162 static void sd_shutdown(struct scsi_device *sdp)
4163 {
4164 	struct device *dev = &sdp->sdev_gendev;
4165 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4166 
4167 	if (!sdkp)
4168 		return;         /* this can happen */
4169 
4170 	if (pm_runtime_suspended(dev))
4171 		return;
4172 
4173 	if (sdkp->WCE && sdkp->media_present) {
4174 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4175 		sd_sync_cache(sdkp);
4176 	}
4177 
4178 	if ((system_state != SYSTEM_RESTART &&
4179 	     sdkp->device->manage_system_start_stop) ||
4180 	    (system_state == SYSTEM_POWER_OFF &&
4181 	     sdkp->device->manage_shutdown) ||
4182 	    (system_state == SYSTEM_RUNNING &&
4183 	     sdkp->device->manage_runtime_start_stop) ||
4184 	    (system_state == SYSTEM_RESTART &&
4185 	     sdkp->device->manage_restart)) {
4186 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4187 		sd_start_stop_device(sdkp, 0);
4188 	}
4189 }
4190 
4191 /**
4192  *	sd_remove - called whenever a scsi disk (previously recognized by
4193  *	sd_probe) is detached from the system. It is called (potentially
4194  *	multiple times) during sd module unload.
4195  *	@sdp: pointer to device object
4196  *
4197  *	Note: this function is invoked from the scsi mid-level.
4198  *	This function potentially frees up a device name (e.g. /dev/sdc)
4199  *	that could be re-used by a subsequent sd_probe().
4200  *	This function is not called when the built-in sd driver is "exit-ed".
4201  **/
4202 static void sd_remove(struct scsi_device *sdp)
4203 {
4204 	struct device *dev = &sdp->sdev_gendev;
4205 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4206 
4207 	scsi_autopm_get_device(sdkp->device);
4208 
4209 	device_del(&sdkp->disk_dev);
4210 	del_gendisk(sdkp->disk);
4211 	if (!sdkp->suspended)
4212 		sd_shutdown(sdp);
4213 
4214 	put_disk(sdkp->disk);
4215 }
4216 
4217 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
4218 {
4219 	return (sdev->manage_system_start_stop && !runtime) ||
4220 		(sdev->manage_runtime_start_stop && runtime);
4221 }
4222 
4223 static int sd_suspend_common(struct device *dev, bool runtime)
4224 {
4225 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4226 	int ret = 0;
4227 
4228 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
4229 		return 0;
4230 
4231 	if (sdkp->WCE && sdkp->media_present) {
4232 		if (!sdkp->device->silence_suspend)
4233 			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4234 		ret = sd_sync_cache(sdkp);
4235 		/* ignore OFFLINE device */
4236 		if (ret == -ENODEV)
4237 			return 0;
4238 
4239 		if (ret)
4240 			return ret;
4241 	}
4242 
4243 	if (sd_do_start_stop(sdkp->device, runtime)) {
4244 		if (!sdkp->device->silence_suspend)
4245 			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4246 		/* an error is not worth aborting a system sleep */
4247 		ret = sd_start_stop_device(sdkp, 0);
4248 		if (!runtime)
4249 			ret = 0;
4250 	}
4251 
4252 	if (!ret)
4253 		sdkp->suspended = true;
4254 
4255 	return ret;
4256 }
4257 
4258 static int sd_suspend_system(struct device *dev)
4259 {
4260 	if (pm_runtime_suspended(dev))
4261 		return 0;
4262 
4263 	return sd_suspend_common(dev, false);
4264 }
4265 
4266 static int sd_suspend_runtime(struct device *dev)
4267 {
4268 	return sd_suspend_common(dev, true);
4269 }
4270 
4271 static int sd_resume(struct device *dev)
4272 {
4273 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4274 
4275 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4276 
4277 	if (opal_unlock_from_suspend(sdkp->opal_dev)) {
4278 		sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
4279 		return -EIO;
4280 	}
4281 
4282 	return 0;
4283 }
4284 
4285 static int sd_resume_common(struct device *dev, bool runtime)
4286 {
4287 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4288 	int ret;
4289 
4290 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4291 		return 0;
4292 
4293 	if (!sd_do_start_stop(sdkp->device, runtime)) {
4294 		sdkp->suspended = false;
4295 		return 0;
4296 	}
4297 
4298 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4299 	ret = sd_start_stop_device(sdkp, 1);
4300 	if (!ret) {
4301 		sd_resume(dev);
4302 		sdkp->suspended = false;
4303 	}
4304 
4305 	return ret;
4306 }
4307 
4308 static int sd_resume_system(struct device *dev)
4309 {
4310 	if (pm_runtime_suspended(dev)) {
4311 		struct scsi_disk *sdkp = dev_get_drvdata(dev);
4312 		struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4313 
4314 		if (sdp && sdp->force_runtime_start_on_system_start)
4315 			pm_request_resume(dev);
4316 
4317 		return 0;
4318 	}
4319 
4320 	return sd_resume_common(dev, false);
4321 }
4322 
4323 static int sd_resume_runtime(struct device *dev)
4324 {
4325 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4326 	struct scsi_device *sdp;
4327 
4328 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4329 		return 0;
4330 
4331 	sdp = sdkp->device;
4332 
4333 	if (sdp->ignore_media_change) {
4334 		/* clear the device's sense data */
4335 		static const u8 cmd[10] = { REQUEST_SENSE };
4336 		const struct scsi_exec_args exec_args = {
4337 			.req_flags = BLK_MQ_REQ_PM,
4338 		};
4339 
4340 		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4341 				     sdp->request_queue->rq_timeout, 1,
4342 				     &exec_args))
4343 			sd_printk(KERN_NOTICE, sdkp,
4344 				  "Failed to clear sense data\n");
4345 	}
4346 
4347 	return sd_resume_common(dev, true);
4348 }
4349 
4350 static const struct dev_pm_ops sd_pm_ops = {
4351 	.suspend		= sd_suspend_system,
4352 	.resume			= sd_resume_system,
4353 	.poweroff		= sd_suspend_system,
4354 	.restore		= sd_resume_system,
4355 	.runtime_suspend	= sd_suspend_runtime,
4356 	.runtime_resume		= sd_resume_runtime,
4357 };
4358 
4359 static struct scsi_driver sd_template = {
4360 	.probe = sd_probe,
4361 	.remove = sd_remove,
4362 	.shutdown = sd_shutdown,
4363 	.gendrv = {
4364 		.name		= "sd",
4365 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4366 		.pm		= &sd_pm_ops,
4367 	},
4368 	.rescan			= sd_rescan,
4369 	.resume			= sd_resume,
4370 	.init_command		= sd_init_command,
4371 	.uninit_command		= sd_uninit_command,
4372 	.done			= sd_done,
4373 	.eh_action		= sd_eh_action,
4374 	.eh_reset		= sd_eh_reset,
4375 };
4376 
4377 /**
4378  *	init_sd - entry point for this driver (both when built in or when
4379  *	a module).
4380  *
4381  *	Note: this function registers this driver with the scsi mid-level.
4382  **/
4383 static int __init init_sd(void)
4384 {
4385 	int majors = 0, i, err;
4386 
4387 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4388 
4389 	for (i = 0; i < SD_MAJORS; i++) {
4390 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4391 			continue;
4392 		majors++;
4393 	}
4394 
4395 	if (!majors)
4396 		return -ENODEV;
4397 
4398 	err = class_register(&sd_disk_class);
4399 	if (err)
4400 		goto err_out;
4401 
4402 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4403 	if (!sd_page_pool) {
4404 		printk(KERN_ERR "sd: can't init discard page pool\n");
4405 		err = -ENOMEM;
4406 		goto err_out_class;
4407 	}
4408 
4409 	err = scsi_register_driver(&sd_template);
4410 	if (err)
4411 		goto err_out_driver;
4412 
4413 	return 0;
4414 
4415 err_out_driver:
4416 	mempool_destroy(sd_page_pool);
4417 err_out_class:
4418 	class_unregister(&sd_disk_class);
4419 err_out:
4420 	for (i = 0; i < SD_MAJORS; i++)
4421 		unregister_blkdev(sd_major(i), "sd");
4422 	return err;
4423 }
4424 
4425 /**
4426  *	exit_sd - exit point for this driver (when it is a module).
4427  *
4428  *	Note: this function unregisters this driver from the scsi mid-level.
4429  **/
4430 static void __exit exit_sd(void)
4431 {
4432 	int i;
4433 
4434 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4435 
4436 	scsi_unregister_driver(&sd_template);
4437 	mempool_destroy(sd_page_pool);
4438 
4439 	class_unregister(&sd_disk_class);
4440 
4441 	for (i = 0; i < SD_MAJORS; i++)
4442 		unregister_blkdev(sd_major(i), "sd");
4443 }
4444 
4445 module_init(init_sd);
4446 module_exit(exit_sd);
4447 
4448 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4449 {
4450 	scsi_print_sense_hdr(sdkp->device,
4451 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4452 }
4453 
4454 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4455 {
4456 	const char *hb_string = scsi_hostbyte_string(result);
4457 
4458 	if (hb_string)
4459 		sd_printk(KERN_INFO, sdkp,
4460 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4461 			  hb_string ? hb_string : "invalid",
4462 			  "DRIVER_OK");
4463 	else
4464 		sd_printk(KERN_INFO, sdkp,
4465 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4466 			  msg, host_byte(result), "DRIVER_OK");
4467 }
4468