xref: /linux/mm/vmscan.c (revision eeccf287a2a517954b57cf9d733b3cf5d47afa34)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/parser.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 
65 #include <linux/swapops.h>
66 #include <linux/sched/sysctl.h>
67 
68 #include "internal.h"
69 #include "swap.h"
70 
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73 
74 struct scan_control {
75 	/* How many pages shrink_list() should reclaim */
76 	unsigned long nr_to_reclaim;
77 
78 	/*
79 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 	 * are scanned.
81 	 */
82 	nodemask_t	*nodemask;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Scan pressure balancing between anon and file LRUs
92 	 */
93 	unsigned long	anon_cost;
94 	unsigned long	file_cost;
95 
96 	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
97 	int *proactive_swappiness;
98 
99 	/* Can active folios be deactivated as part of reclaim? */
100 #define DEACTIVATE_ANON 1
101 #define DEACTIVATE_FILE 2
102 	unsigned int may_deactivate:2;
103 	unsigned int force_deactivate:1;
104 	unsigned int skipped_deactivate:1;
105 
106 	/* zone_reclaim_mode, boost reclaim */
107 	unsigned int may_writepage:1;
108 
109 	/* zone_reclaim_mode */
110 	unsigned int may_unmap:1;
111 
112 	/* zome_reclaim_mode, boost reclaim, cgroup restrictions */
113 	unsigned int may_swap:1;
114 
115 	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
116 	unsigned int no_cache_trim_mode:1;
117 
118 	/* Has cache_trim_mode failed at least once? */
119 	unsigned int cache_trim_mode_failed:1;
120 
121 	/* Proactive reclaim invoked by userspace */
122 	unsigned int proactive:1;
123 
124 	/*
125 	 * Cgroup memory below memory.low is protected as long as we
126 	 * don't threaten to OOM. If any cgroup is reclaimed at
127 	 * reduced force or passed over entirely due to its memory.low
128 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
129 	 * result, then go back for one more cycle that reclaims the protected
130 	 * memory (memcg_low_reclaim) to avert OOM.
131 	 */
132 	unsigned int memcg_low_reclaim:1;
133 	unsigned int memcg_low_skipped:1;
134 
135 	/* Shared cgroup tree walk failed, rescan the whole tree */
136 	unsigned int memcg_full_walk:1;
137 
138 	unsigned int hibernation_mode:1;
139 
140 	/* One of the zones is ready for compaction */
141 	unsigned int compaction_ready:1;
142 
143 	/* There is easily reclaimable cold cache in the current node */
144 	unsigned int cache_trim_mode:1;
145 
146 	/* The file folios on the current node are dangerously low */
147 	unsigned int file_is_tiny:1;
148 
149 	/* Always discard instead of demoting to lower tier memory */
150 	unsigned int no_demotion:1;
151 
152 	/* Allocation order */
153 	s8 order;
154 
155 	/* Scan (total_size >> priority) pages at once */
156 	s8 priority;
157 
158 	/* The highest zone to isolate folios for reclaim from */
159 	s8 reclaim_idx;
160 
161 	/* This context's GFP mask */
162 	gfp_t gfp_mask;
163 
164 	/* Incremented by the number of inactive pages that were scanned */
165 	unsigned long nr_scanned;
166 
167 	/* Number of pages freed so far during a call to shrink_zones() */
168 	unsigned long nr_reclaimed;
169 
170 	struct {
171 		unsigned int dirty;
172 		unsigned int unqueued_dirty;
173 		unsigned int congested;
174 		unsigned int writeback;
175 		unsigned int immediate;
176 		unsigned int file_taken;
177 		unsigned int taken;
178 	} nr;
179 
180 	/* for recording the reclaimed slab by now */
181 	struct reclaim_state reclaim_state;
182 };
183 
184 #ifdef ARCH_HAS_PREFETCHW
185 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
186 	do {								\
187 		if ((_folio)->lru.prev != _base) {			\
188 			struct folio *prev;				\
189 									\
190 			prev = lru_to_folio(&(_folio->lru));		\
191 			prefetchw(&prev->_field);			\
192 		}							\
193 	} while (0)
194 #else
195 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
196 #endif
197 
198 /*
199  * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
200  */
201 int vm_swappiness = 60;
202 
203 #ifdef CONFIG_MEMCG
204 
205 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)206 static bool cgroup_reclaim(struct scan_control *sc)
207 {
208 	return sc->target_mem_cgroup;
209 }
210 
211 /*
212  * Returns true for reclaim on the root cgroup. This is true for direct
213  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
214  */
root_reclaim(struct scan_control * sc)215 static bool root_reclaim(struct scan_control *sc)
216 {
217 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
218 }
219 
220 /**
221  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
222  * @sc: scan_control in question
223  *
224  * The normal page dirty throttling mechanism in balance_dirty_pages() is
225  * completely broken with the legacy memcg and direct stalling in
226  * shrink_folio_list() is used for throttling instead, which lacks all the
227  * niceties such as fairness, adaptive pausing, bandwidth proportional
228  * allocation and configurability.
229  *
230  * This function tests whether the vmscan currently in progress can assume
231  * that the normal dirty throttling mechanism is operational.
232  */
writeback_throttling_sane(struct scan_control * sc)233 static bool writeback_throttling_sane(struct scan_control *sc)
234 {
235 	if (!cgroup_reclaim(sc))
236 		return true;
237 #ifdef CONFIG_CGROUP_WRITEBACK
238 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
239 		return true;
240 #endif
241 	return false;
242 }
243 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)244 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
245 {
246 	if (sc->proactive && sc->proactive_swappiness)
247 		return *sc->proactive_swappiness;
248 	return mem_cgroup_swappiness(memcg);
249 }
250 #else
cgroup_reclaim(struct scan_control * sc)251 static bool cgroup_reclaim(struct scan_control *sc)
252 {
253 	return false;
254 }
255 
root_reclaim(struct scan_control * sc)256 static bool root_reclaim(struct scan_control *sc)
257 {
258 	return true;
259 }
260 
writeback_throttling_sane(struct scan_control * sc)261 static bool writeback_throttling_sane(struct scan_control *sc)
262 {
263 	return true;
264 }
265 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)266 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
267 {
268 	return READ_ONCE(vm_swappiness);
269 }
270 #endif
271 
272 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to
273  * and including the specified highidx
274  * @zone: The current zone in the iterator
275  * @pgdat: The pgdat which node_zones are being iterated
276  * @idx: The index variable
277  * @highidx: The index of the highest zone to return
278  *
279  * This macro iterates through all managed zones up to and including the specified highidx.
280  * The zone iterator enters an invalid state after macro call and must be reinitialized
281  * before it can be used again.
282  */
283 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx)	\
284 	for ((idx) = 0, (zone) = (pgdat)->node_zones;		\
285 	    (idx) <= (highidx);					\
286 	    (idx)++, (zone)++)					\
287 		if (!managed_zone(zone))			\
288 			continue;				\
289 		else
290 
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)291 static void set_task_reclaim_state(struct task_struct *task,
292 				   struct reclaim_state *rs)
293 {
294 	/* Check for an overwrite */
295 	WARN_ON_ONCE(rs && task->reclaim_state);
296 
297 	/* Check for the nulling of an already-nulled member */
298 	WARN_ON_ONCE(!rs && !task->reclaim_state);
299 
300 	task->reclaim_state = rs;
301 }
302 
303 /*
304  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
305  * scan_control->nr_reclaimed.
306  */
flush_reclaim_state(struct scan_control * sc)307 static void flush_reclaim_state(struct scan_control *sc)
308 {
309 	/*
310 	 * Currently, reclaim_state->reclaimed includes three types of pages
311 	 * freed outside of vmscan:
312 	 * (1) Slab pages.
313 	 * (2) Clean file pages from pruned inodes (on highmem systems).
314 	 * (3) XFS freed buffer pages.
315 	 *
316 	 * For all of these cases, we cannot universally link the pages to a
317 	 * single memcg. For example, a memcg-aware shrinker can free one object
318 	 * charged to the target memcg, causing an entire page to be freed.
319 	 * If we count the entire page as reclaimed from the memcg, we end up
320 	 * overestimating the reclaimed amount (potentially under-reclaiming).
321 	 *
322 	 * Only count such pages for global reclaim to prevent under-reclaiming
323 	 * from the target memcg; preventing unnecessary retries during memcg
324 	 * charging and false positives from proactive reclaim.
325 	 *
326 	 * For uncommon cases where the freed pages were actually mostly
327 	 * charged to the target memcg, we end up underestimating the reclaimed
328 	 * amount. This should be fine. The freed pages will be uncharged
329 	 * anyway, even if they are not counted here properly, and we will be
330 	 * able to make forward progress in charging (which is usually in a
331 	 * retry loop).
332 	 *
333 	 * We can go one step further, and report the uncharged objcg pages in
334 	 * memcg reclaim, to make reporting more accurate and reduce
335 	 * underestimation, but it's probably not worth the complexity for now.
336 	 */
337 	if (current->reclaim_state && root_reclaim(sc)) {
338 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
339 		current->reclaim_state->reclaimed = 0;
340 	}
341 }
342 
can_demote(int nid,struct scan_control * sc,struct mem_cgroup * memcg)343 static bool can_demote(int nid, struct scan_control *sc,
344 		       struct mem_cgroup *memcg)
345 {
346 	struct pglist_data *pgdat = NODE_DATA(nid);
347 	nodemask_t allowed_mask;
348 
349 	if (!pgdat || !numa_demotion_enabled)
350 		return false;
351 	if (sc && sc->no_demotion)
352 		return false;
353 
354 	node_get_allowed_targets(pgdat, &allowed_mask);
355 	if (nodes_empty(allowed_mask))
356 		return false;
357 
358 	/* Filter out nodes that are not in cgroup's mems_allowed. */
359 	mem_cgroup_node_filter_allowed(memcg, &allowed_mask);
360 	return !nodes_empty(allowed_mask);
361 }
362 
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)363 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
364 					  int nid,
365 					  struct scan_control *sc)
366 {
367 	if (memcg == NULL) {
368 		/*
369 		 * For non-memcg reclaim, is there
370 		 * space in any swap device?
371 		 */
372 		if (get_nr_swap_pages() > 0)
373 			return true;
374 	} else {
375 		/* Is the memcg below its swap limit? */
376 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
377 			return true;
378 	}
379 
380 	/*
381 	 * The page can not be swapped.
382 	 *
383 	 * Can it be reclaimed from this node via demotion?
384 	 */
385 	return can_demote(nid, sc, memcg);
386 }
387 
388 /*
389  * This misses isolated folios which are not accounted for to save counters.
390  * As the data only determines if reclaim or compaction continues, it is
391  * not expected that isolated folios will be a dominating factor.
392  */
zone_reclaimable_pages(struct zone * zone)393 unsigned long zone_reclaimable_pages(struct zone *zone)
394 {
395 	unsigned long nr;
396 
397 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
398 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
399 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
400 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
401 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
402 
403 	return nr;
404 }
405 
406 /**
407  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
408  * @lruvec: lru vector
409  * @lru: lru to use
410  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
411  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)412 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
413 				     int zone_idx)
414 {
415 	unsigned long size = 0;
416 	int zid;
417 	struct zone *zone;
418 
419 	for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) {
420 		if (!mem_cgroup_disabled())
421 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
422 		else
423 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
424 	}
425 	return size;
426 }
427 
drop_slab_node(int nid)428 static unsigned long drop_slab_node(int nid)
429 {
430 	unsigned long freed = 0;
431 	struct mem_cgroup *memcg = NULL;
432 
433 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
434 	do {
435 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
436 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
437 
438 	return freed;
439 }
440 
drop_slab(void)441 void drop_slab(void)
442 {
443 	int nid;
444 	int shift = 0;
445 	unsigned long freed;
446 
447 	do {
448 		freed = 0;
449 		for_each_online_node(nid) {
450 			if (fatal_signal_pending(current))
451 				return;
452 
453 			freed += drop_slab_node(nid);
454 		}
455 	} while ((freed >> shift++) > 1);
456 }
457 
458 #define CHECK_RECLAIMER_OFFSET(type)					\
459 	do {								\
460 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
461 			     PGDEMOTE_##type - PGDEMOTE_KSWAPD);	\
462 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
463 			     PGSCAN_##type - PGSCAN_KSWAPD);		\
464 	} while (0)
465 
reclaimer_offset(struct scan_control * sc)466 static int reclaimer_offset(struct scan_control *sc)
467 {
468 	CHECK_RECLAIMER_OFFSET(DIRECT);
469 	CHECK_RECLAIMER_OFFSET(KHUGEPAGED);
470 	CHECK_RECLAIMER_OFFSET(PROACTIVE);
471 
472 	if (current_is_kswapd())
473 		return 0;
474 	if (current_is_khugepaged())
475 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
476 	if (sc->proactive)
477 		return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD;
478 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
479 }
480 
481 /*
482  * We detected a synchronous write error writing a folio out.  Probably
483  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
484  * fsync(), msync() or close().
485  *
486  * The tricky part is that after writepage we cannot touch the mapping: nothing
487  * prevents it from being freed up.  But we have a ref on the folio and once
488  * that folio is locked, the mapping is pinned.
489  *
490  * We're allowed to run sleeping folio_lock() here because we know the caller has
491  * __GFP_FS.
492  */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)493 static void handle_write_error(struct address_space *mapping,
494 				struct folio *folio, int error)
495 {
496 	folio_lock(folio);
497 	if (folio_mapping(folio) == mapping)
498 		mapping_set_error(mapping, error);
499 	folio_unlock(folio);
500 }
501 
skip_throttle_noprogress(pg_data_t * pgdat)502 static bool skip_throttle_noprogress(pg_data_t *pgdat)
503 {
504 	int reclaimable = 0, write_pending = 0;
505 	int i;
506 	struct zone *zone;
507 	/*
508 	 * If kswapd is disabled, reschedule if necessary but do not
509 	 * throttle as the system is likely near OOM.
510 	 */
511 	if (kswapd_test_hopeless(pgdat))
512 		return true;
513 
514 	/*
515 	 * If there are a lot of dirty/writeback folios then do not
516 	 * throttle as throttling will occur when the folios cycle
517 	 * towards the end of the LRU if still under writeback.
518 	 */
519 	for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) {
520 		reclaimable += zone_reclaimable_pages(zone);
521 		write_pending += zone_page_state_snapshot(zone,
522 						  NR_ZONE_WRITE_PENDING);
523 	}
524 	if (2 * write_pending <= reclaimable)
525 		return true;
526 
527 	return false;
528 }
529 
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)530 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
531 {
532 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
533 	long timeout, ret;
534 	DEFINE_WAIT(wait);
535 
536 	/*
537 	 * Do not throttle user workers, kthreads other than kswapd or
538 	 * workqueues. They may be required for reclaim to make
539 	 * forward progress (e.g. journalling workqueues or kthreads).
540 	 */
541 	if (!current_is_kswapd() &&
542 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
543 		cond_resched();
544 		return;
545 	}
546 
547 	/*
548 	 * These figures are pulled out of thin air.
549 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
550 	 * parallel reclaimers which is a short-lived event so the timeout is
551 	 * short. Failing to make progress or waiting on writeback are
552 	 * potentially long-lived events so use a longer timeout. This is shaky
553 	 * logic as a failure to make progress could be due to anything from
554 	 * writeback to a slow device to excessive referenced folios at the tail
555 	 * of the inactive LRU.
556 	 */
557 	switch(reason) {
558 	case VMSCAN_THROTTLE_WRITEBACK:
559 		timeout = HZ/10;
560 
561 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
562 			WRITE_ONCE(pgdat->nr_reclaim_start,
563 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
564 		}
565 
566 		break;
567 	case VMSCAN_THROTTLE_CONGESTED:
568 		fallthrough;
569 	case VMSCAN_THROTTLE_NOPROGRESS:
570 		if (skip_throttle_noprogress(pgdat)) {
571 			cond_resched();
572 			return;
573 		}
574 
575 		timeout = 1;
576 
577 		break;
578 	case VMSCAN_THROTTLE_ISOLATED:
579 		timeout = HZ/50;
580 		break;
581 	default:
582 		WARN_ON_ONCE(1);
583 		timeout = HZ;
584 		break;
585 	}
586 
587 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
588 	ret = schedule_timeout(timeout);
589 	finish_wait(wqh, &wait);
590 
591 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
592 		atomic_dec(&pgdat->nr_writeback_throttled);
593 
594 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
595 				jiffies_to_usecs(timeout - ret),
596 				reason);
597 }
598 
599 /*
600  * Account for folios written if tasks are throttled waiting on dirty
601  * folios to clean. If enough folios have been cleaned since throttling
602  * started then wakeup the throttled tasks.
603  */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)604 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
605 							int nr_throttled)
606 {
607 	unsigned long nr_written;
608 
609 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
610 
611 	/*
612 	 * This is an inaccurate read as the per-cpu deltas may not
613 	 * be synchronised. However, given that the system is
614 	 * writeback throttled, it is not worth taking the penalty
615 	 * of getting an accurate count. At worst, the throttle
616 	 * timeout guarantees forward progress.
617 	 */
618 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
619 		READ_ONCE(pgdat->nr_reclaim_start);
620 
621 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
622 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
623 }
624 
625 /* possible outcome of pageout() */
626 typedef enum {
627 	/* failed to write folio out, folio is locked */
628 	PAGE_KEEP,
629 	/* move folio to the active list, folio is locked */
630 	PAGE_ACTIVATE,
631 	/* folio has been sent to the disk successfully, folio is unlocked */
632 	PAGE_SUCCESS,
633 	/* folio is clean and locked */
634 	PAGE_CLEAN,
635 } pageout_t;
636 
writeout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)637 static pageout_t writeout(struct folio *folio, struct address_space *mapping,
638 		struct swap_iocb **plug, struct list_head *folio_list)
639 {
640 	int res;
641 
642 	folio_set_reclaim(folio);
643 
644 	/*
645 	 * The large shmem folio can be split if CONFIG_THP_SWAP is not enabled
646 	 * or we failed to allocate contiguous swap entries, in which case
647 	 * the split out folios get added back to folio_list.
648 	 */
649 	if (shmem_mapping(mapping))
650 		res = shmem_writeout(folio, plug, folio_list);
651 	else
652 		res = swap_writeout(folio, plug);
653 
654 	if (res < 0)
655 		handle_write_error(mapping, folio, res);
656 	if (res == AOP_WRITEPAGE_ACTIVATE) {
657 		folio_clear_reclaim(folio);
658 		return PAGE_ACTIVATE;
659 	}
660 
661 	/* synchronous write? */
662 	if (!folio_test_writeback(folio))
663 		folio_clear_reclaim(folio);
664 
665 	trace_mm_vmscan_write_folio(folio);
666 	node_stat_add_folio(folio, NR_VMSCAN_WRITE);
667 	return PAGE_SUCCESS;
668 }
669 
670 /*
671  * pageout is called by shrink_folio_list() for each dirty folio.
672  */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)673 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
674 			 struct swap_iocb **plug, struct list_head *folio_list)
675 {
676 	/*
677 	 * We no longer attempt to writeback filesystem folios here, other
678 	 * than tmpfs/shmem.  That's taken care of in page-writeback.
679 	 * If we find a dirty filesystem folio at the end of the LRU list,
680 	 * typically that means the filesystem is saturating the storage
681 	 * with contiguous writes and telling it to write a folio here
682 	 * would only make the situation worse by injecting an element
683 	 * of random access.
684 	 *
685 	 * If the folio is swapcache, write it back even if that would
686 	 * block, for some throttling. This happens by accident, because
687 	 * swap_backing_dev_info is bust: it doesn't reflect the
688 	 * congestion state of the swapdevs.  Easy to fix, if needed.
689 	 *
690 	 * A freeable shmem or swapcache folio is referenced only by the
691 	 * caller that isolated the folio and the page cache.
692 	 */
693 	if (folio_ref_count(folio) != 1 + folio_nr_pages(folio) || !mapping)
694 		return PAGE_KEEP;
695 	if (!shmem_mapping(mapping) && !folio_test_anon(folio))
696 		return PAGE_ACTIVATE;
697 	if (!folio_clear_dirty_for_io(folio))
698 		return PAGE_CLEAN;
699 	return writeout(folio, mapping, plug, folio_list);
700 }
701 
702 /*
703  * Same as remove_mapping, but if the folio is removed from the mapping, it
704  * gets returned with a refcount of 0.
705  */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)706 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
707 			    bool reclaimed, struct mem_cgroup *target_memcg)
708 {
709 	int refcount;
710 	void *shadow = NULL;
711 	struct swap_cluster_info *ci;
712 
713 	BUG_ON(!folio_test_locked(folio));
714 	BUG_ON(mapping != folio_mapping(folio));
715 
716 	if (folio_test_swapcache(folio)) {
717 		ci = swap_cluster_get_and_lock_irq(folio);
718 	} else {
719 		spin_lock(&mapping->host->i_lock);
720 		xa_lock_irq(&mapping->i_pages);
721 	}
722 
723 	/*
724 	 * The non racy check for a busy folio.
725 	 *
726 	 * Must be careful with the order of the tests. When someone has
727 	 * a ref to the folio, it may be possible that they dirty it then
728 	 * drop the reference. So if the dirty flag is tested before the
729 	 * refcount here, then the following race may occur:
730 	 *
731 	 * get_user_pages(&page);
732 	 * [user mapping goes away]
733 	 * write_to(page);
734 	 *				!folio_test_dirty(folio)    [good]
735 	 * folio_set_dirty(folio);
736 	 * folio_put(folio);
737 	 *				!refcount(folio)   [good, discard it]
738 	 *
739 	 * [oops, our write_to data is lost]
740 	 *
741 	 * Reversing the order of the tests ensures such a situation cannot
742 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
743 	 * load is not satisfied before that of folio->_refcount.
744 	 *
745 	 * Note that if the dirty flag is always set via folio_mark_dirty,
746 	 * and thus under the i_pages lock, then this ordering is not required.
747 	 */
748 	refcount = 1 + folio_nr_pages(folio);
749 	if (!folio_ref_freeze(folio, refcount))
750 		goto cannot_free;
751 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
752 	if (unlikely(folio_test_dirty(folio))) {
753 		folio_ref_unfreeze(folio, refcount);
754 		goto cannot_free;
755 	}
756 
757 	if (folio_test_swapcache(folio)) {
758 		swp_entry_t swap = folio->swap;
759 
760 		if (reclaimed && !mapping_exiting(mapping))
761 			shadow = workingset_eviction(folio, target_memcg);
762 		memcg1_swapout(folio, swap);
763 		__swap_cache_del_folio(ci, folio, swap, shadow);
764 		swap_cluster_unlock_irq(ci);
765 	} else {
766 		void (*free_folio)(struct folio *);
767 
768 		free_folio = mapping->a_ops->free_folio;
769 		/*
770 		 * Remember a shadow entry for reclaimed file cache in
771 		 * order to detect refaults, thus thrashing, later on.
772 		 *
773 		 * But don't store shadows in an address space that is
774 		 * already exiting.  This is not just an optimization,
775 		 * inode reclaim needs to empty out the radix tree or
776 		 * the nodes are lost.  Don't plant shadows behind its
777 		 * back.
778 		 *
779 		 * We also don't store shadows for DAX mappings because the
780 		 * only page cache folios found in these are zero pages
781 		 * covering holes, and because we don't want to mix DAX
782 		 * exceptional entries and shadow exceptional entries in the
783 		 * same address_space.
784 		 */
785 		if (reclaimed && folio_is_file_lru(folio) &&
786 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
787 			shadow = workingset_eviction(folio, target_memcg);
788 		__filemap_remove_folio(folio, shadow);
789 		xa_unlock_irq(&mapping->i_pages);
790 		if (mapping_shrinkable(mapping))
791 			inode_lru_list_add(mapping->host);
792 		spin_unlock(&mapping->host->i_lock);
793 
794 		if (free_folio)
795 			free_folio(folio);
796 	}
797 
798 	return 1;
799 
800 cannot_free:
801 	if (folio_test_swapcache(folio)) {
802 		swap_cluster_unlock_irq(ci);
803 	} else {
804 		xa_unlock_irq(&mapping->i_pages);
805 		spin_unlock(&mapping->host->i_lock);
806 	}
807 	return 0;
808 }
809 
810 /**
811  * remove_mapping() - Attempt to remove a folio from its mapping.
812  * @mapping: The address space.
813  * @folio: The folio to remove.
814  *
815  * If the folio is dirty, under writeback or if someone else has a ref
816  * on it, removal will fail.
817  * Return: The number of pages removed from the mapping.  0 if the folio
818  * could not be removed.
819  * Context: The caller should have a single refcount on the folio and
820  * hold its lock.
821  */
remove_mapping(struct address_space * mapping,struct folio * folio)822 long remove_mapping(struct address_space *mapping, struct folio *folio)
823 {
824 	if (__remove_mapping(mapping, folio, false, NULL)) {
825 		/*
826 		 * Unfreezing the refcount with 1 effectively
827 		 * drops the pagecache ref for us without requiring another
828 		 * atomic operation.
829 		 */
830 		folio_ref_unfreeze(folio, 1);
831 		return folio_nr_pages(folio);
832 	}
833 	return 0;
834 }
835 
836 /**
837  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
838  * @folio: Folio to be returned to an LRU list.
839  *
840  * Add previously isolated @folio to appropriate LRU list.
841  * The folio may still be unevictable for other reasons.
842  *
843  * Context: lru_lock must not be held, interrupts must be enabled.
844  */
folio_putback_lru(struct folio * folio)845 void folio_putback_lru(struct folio *folio)
846 {
847 	folio_add_lru(folio);
848 	folio_put(folio);		/* drop ref from isolate */
849 }
850 
851 enum folio_references {
852 	FOLIOREF_RECLAIM,
853 	FOLIOREF_RECLAIM_CLEAN,
854 	FOLIOREF_KEEP,
855 	FOLIOREF_ACTIVATE,
856 };
857 
858 #ifdef CONFIG_LRU_GEN
859 /*
860  * Only used on a mapped folio in the eviction (rmap walk) path, where promotion
861  * needs to be done by taking the folio off the LRU list and then adding it back
862  * with PG_active set. In contrast, the aging (page table walk) path uses
863  * folio_update_gen().
864  */
lru_gen_set_refs(struct folio * folio)865 static bool lru_gen_set_refs(struct folio *folio)
866 {
867 	/* see the comment on LRU_REFS_FLAGS */
868 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
869 		set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced));
870 		return false;
871 	}
872 
873 	set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_workingset));
874 	return true;
875 }
876 #else
lru_gen_set_refs(struct folio * folio)877 static bool lru_gen_set_refs(struct folio *folio)
878 {
879 	return false;
880 }
881 #endif /* CONFIG_LRU_GEN */
882 
folio_check_references(struct folio * folio,struct scan_control * sc)883 static enum folio_references folio_check_references(struct folio *folio,
884 						  struct scan_control *sc)
885 {
886 	int referenced_ptes, referenced_folio;
887 	vm_flags_t vm_flags;
888 
889 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
890 					   &vm_flags);
891 
892 	/*
893 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
894 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
895 	 */
896 	if (vm_flags & VM_LOCKED)
897 		return FOLIOREF_ACTIVATE;
898 
899 	/*
900 	 * There are two cases to consider.
901 	 * 1) Rmap lock contention: rotate.
902 	 * 2) Skip the non-shared swapbacked folio mapped solely by
903 	 *    the exiting or OOM-reaped process.
904 	 */
905 	if (referenced_ptes == -1)
906 		return FOLIOREF_KEEP;
907 
908 	if (lru_gen_enabled()) {
909 		if (!referenced_ptes)
910 			return FOLIOREF_RECLAIM;
911 
912 		return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP;
913 	}
914 
915 	referenced_folio = folio_test_clear_referenced(folio);
916 
917 	if (referenced_ptes) {
918 		/*
919 		 * All mapped folios start out with page table
920 		 * references from the instantiating fault, so we need
921 		 * to look twice if a mapped file/anon folio is used more
922 		 * than once.
923 		 *
924 		 * Mark it and spare it for another trip around the
925 		 * inactive list.  Another page table reference will
926 		 * lead to its activation.
927 		 *
928 		 * Note: the mark is set for activated folios as well
929 		 * so that recently deactivated but used folios are
930 		 * quickly recovered.
931 		 */
932 		folio_set_referenced(folio);
933 
934 		if (referenced_folio || referenced_ptes > 1)
935 			return FOLIOREF_ACTIVATE;
936 
937 		/*
938 		 * Activate file-backed executable folios after first usage.
939 		 */
940 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
941 			return FOLIOREF_ACTIVATE;
942 
943 		return FOLIOREF_KEEP;
944 	}
945 
946 	/* Reclaim if clean, defer dirty folios to writeback */
947 	if (referenced_folio && folio_is_file_lru(folio))
948 		return FOLIOREF_RECLAIM_CLEAN;
949 
950 	return FOLIOREF_RECLAIM;
951 }
952 
953 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)954 static void folio_check_dirty_writeback(struct folio *folio,
955 				       bool *dirty, bool *writeback)
956 {
957 	struct address_space *mapping;
958 
959 	/*
960 	 * Anonymous folios are not handled by flushers and must be written
961 	 * from reclaim context. Do not stall reclaim based on them.
962 	 * MADV_FREE anonymous folios are put into inactive file list too.
963 	 * They could be mistakenly treated as file lru. So further anon
964 	 * test is needed.
965 	 */
966 	if (!folio_is_file_lru(folio) ||
967 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
968 		*dirty = false;
969 		*writeback = false;
970 		return;
971 	}
972 
973 	/* By default assume that the folio flags are accurate */
974 	*dirty = folio_test_dirty(folio);
975 	*writeback = folio_test_writeback(folio);
976 
977 	/* Verify dirty/writeback state if the filesystem supports it */
978 	if (!folio_test_private(folio))
979 		return;
980 
981 	mapping = folio_mapping(folio);
982 	if (mapping && mapping->a_ops->is_dirty_writeback)
983 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
984 }
985 
alloc_demote_folio(struct folio * src,unsigned long private)986 static struct folio *alloc_demote_folio(struct folio *src,
987 		unsigned long private)
988 {
989 	struct folio *dst;
990 	nodemask_t *allowed_mask;
991 	struct migration_target_control *mtc;
992 
993 	mtc = (struct migration_target_control *)private;
994 
995 	allowed_mask = mtc->nmask;
996 	/*
997 	 * make sure we allocate from the target node first also trying to
998 	 * demote or reclaim pages from the target node via kswapd if we are
999 	 * low on free memory on target node. If we don't do this and if
1000 	 * we have free memory on the slower(lower) memtier, we would start
1001 	 * allocating pages from slower(lower) memory tiers without even forcing
1002 	 * a demotion of cold pages from the target memtier. This can result
1003 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1004 	 */
1005 	mtc->nmask = NULL;
1006 	mtc->gfp_mask |= __GFP_THISNODE;
1007 	dst = alloc_migration_target(src, (unsigned long)mtc);
1008 	if (dst)
1009 		return dst;
1010 
1011 	mtc->gfp_mask &= ~__GFP_THISNODE;
1012 	mtc->nmask = allowed_mask;
1013 
1014 	return alloc_migration_target(src, (unsigned long)mtc);
1015 }
1016 
1017 /*
1018  * Take folios on @demote_folios and attempt to demote them to another node.
1019  * Folios which are not demoted are left on @demote_folios.
1020  */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat,struct mem_cgroup * memcg)1021 static unsigned int demote_folio_list(struct list_head *demote_folios,
1022 				      struct pglist_data *pgdat,
1023 				      struct mem_cgroup *memcg)
1024 {
1025 	int target_nid;
1026 	unsigned int nr_succeeded;
1027 	nodemask_t allowed_mask;
1028 
1029 	struct migration_target_control mtc = {
1030 		/*
1031 		 * Allocate from 'node', or fail quickly and quietly.
1032 		 * When this happens, 'page' will likely just be discarded
1033 		 * instead of migrated.
1034 		 */
1035 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1036 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1037 		.nmask = &allowed_mask,
1038 		.reason = MR_DEMOTION,
1039 	};
1040 
1041 	if (list_empty(demote_folios))
1042 		return 0;
1043 
1044 	node_get_allowed_targets(pgdat, &allowed_mask);
1045 	mem_cgroup_node_filter_allowed(memcg, &allowed_mask);
1046 	if (nodes_empty(allowed_mask))
1047 		return 0;
1048 
1049 	target_nid = next_demotion_node(pgdat->node_id, &allowed_mask);
1050 	if (target_nid == NUMA_NO_NODE)
1051 		/* No lower-tier nodes or nodes were hot-unplugged. */
1052 		return 0;
1053 
1054 	mtc.nid = target_nid;
1055 
1056 	/* Demotion ignores all cpuset and mempolicy settings */
1057 	migrate_pages(demote_folios, alloc_demote_folio, NULL,
1058 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1059 		      &nr_succeeded);
1060 
1061 	return nr_succeeded;
1062 }
1063 
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1064 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1065 {
1066 	if (gfp_mask & __GFP_FS)
1067 		return true;
1068 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1069 		return false;
1070 	/*
1071 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1072 	 * providing this isn't SWP_FS_OPS.
1073 	 * ->flags can be updated non-atomically (scan_swap_map_slots),
1074 	 * but that will never affect SWP_FS_OPS, so the data_race
1075 	 * is safe.
1076 	 */
1077 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1078 }
1079 
1080 /*
1081  * shrink_folio_list() returns the number of reclaimed pages
1082  */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references,struct mem_cgroup * memcg)1083 static unsigned int shrink_folio_list(struct list_head *folio_list,
1084 		struct pglist_data *pgdat, struct scan_control *sc,
1085 		struct reclaim_stat *stat, bool ignore_references,
1086 		struct mem_cgroup *memcg)
1087 {
1088 	struct folio_batch free_folios;
1089 	LIST_HEAD(ret_folios);
1090 	LIST_HEAD(demote_folios);
1091 	unsigned int nr_reclaimed = 0, nr_demoted = 0;
1092 	unsigned int pgactivate = 0;
1093 	bool do_demote_pass;
1094 	struct swap_iocb *plug = NULL;
1095 
1096 	folio_batch_init(&free_folios);
1097 	memset(stat, 0, sizeof(*stat));
1098 	cond_resched();
1099 	do_demote_pass = can_demote(pgdat->node_id, sc, memcg);
1100 
1101 retry:
1102 	while (!list_empty(folio_list)) {
1103 		struct address_space *mapping;
1104 		struct folio *folio;
1105 		enum folio_references references = FOLIOREF_RECLAIM;
1106 		bool dirty, writeback;
1107 		unsigned int nr_pages;
1108 
1109 		cond_resched();
1110 
1111 		folio = lru_to_folio(folio_list);
1112 		list_del(&folio->lru);
1113 
1114 		if (!folio_trylock(folio))
1115 			goto keep;
1116 
1117 		if (folio_contain_hwpoisoned_page(folio)) {
1118 			/*
1119 			 * unmap_poisoned_folio() can't handle large
1120 			 * folio, just skip it. memory_failure() will
1121 			 * handle it if the UCE is triggered again.
1122 			 */
1123 			if (folio_test_large(folio))
1124 				goto keep_locked;
1125 
1126 			unmap_poisoned_folio(folio, folio_pfn(folio), false);
1127 			folio_unlock(folio);
1128 			folio_put(folio);
1129 			continue;
1130 		}
1131 
1132 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1133 
1134 		nr_pages = folio_nr_pages(folio);
1135 
1136 		/* Account the number of base pages */
1137 		sc->nr_scanned += nr_pages;
1138 
1139 		if (unlikely(!folio_evictable(folio)))
1140 			goto activate_locked;
1141 
1142 		if (!sc->may_unmap && folio_mapped(folio))
1143 			goto keep_locked;
1144 
1145 		/*
1146 		 * The number of dirty pages determines if a node is marked
1147 		 * reclaim_congested. kswapd will stall and start writing
1148 		 * folios if the tail of the LRU is all dirty unqueued folios.
1149 		 */
1150 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1151 		if (dirty || writeback)
1152 			stat->nr_dirty += nr_pages;
1153 
1154 		if (dirty && !writeback)
1155 			stat->nr_unqueued_dirty += nr_pages;
1156 
1157 		/*
1158 		 * Treat this folio as congested if folios are cycling
1159 		 * through the LRU so quickly that the folios marked
1160 		 * for immediate reclaim are making it to the end of
1161 		 * the LRU a second time.
1162 		 */
1163 		if (writeback && folio_test_reclaim(folio))
1164 			stat->nr_congested += nr_pages;
1165 
1166 		/*
1167 		 * If a folio at the tail of the LRU is under writeback, there
1168 		 * are three cases to consider.
1169 		 *
1170 		 * 1) If reclaim is encountering an excessive number
1171 		 *    of folios under writeback and this folio has both
1172 		 *    the writeback and reclaim flags set, then it
1173 		 *    indicates that folios are being queued for I/O but
1174 		 *    are being recycled through the LRU before the I/O
1175 		 *    can complete. Waiting on the folio itself risks an
1176 		 *    indefinite stall if it is impossible to writeback
1177 		 *    the folio due to I/O error or disconnected storage
1178 		 *    so instead note that the LRU is being scanned too
1179 		 *    quickly and the caller can stall after the folio
1180 		 *    list has been processed.
1181 		 *
1182 		 * 2) Global or new memcg reclaim encounters a folio that is
1183 		 *    not marked for immediate reclaim, or the caller does not
1184 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1185 		 *    not to fs), or the folio belongs to a mapping where
1186 		 *    waiting on writeback during reclaim may lead to a deadlock.
1187 		 *    In this case mark the folio for immediate reclaim and
1188 		 *    continue scanning.
1189 		 *
1190 		 *    Require may_enter_fs() because we would wait on fs, which
1191 		 *    may not have submitted I/O yet. And the loop driver might
1192 		 *    enter reclaim, and deadlock if it waits on a folio for
1193 		 *    which it is needed to do the write (loop masks off
1194 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1195 		 *    would probably show more reasons.
1196 		 *
1197 		 * 3) Legacy memcg encounters a folio that already has the
1198 		 *    reclaim flag set. memcg does not have any dirty folio
1199 		 *    throttling so we could easily OOM just because too many
1200 		 *    folios are in writeback and there is nothing else to
1201 		 *    reclaim. Wait for the writeback to complete.
1202 		 *
1203 		 * In cases 1) and 2) we activate the folios to get them out of
1204 		 * the way while we continue scanning for clean folios on the
1205 		 * inactive list and refilling from the active list. The
1206 		 * observation here is that waiting for disk writes is more
1207 		 * expensive than potentially causing reloads down the line.
1208 		 * Since they're marked for immediate reclaim, they won't put
1209 		 * memory pressure on the cache working set any longer than it
1210 		 * takes to write them to disk.
1211 		 */
1212 		if (folio_test_writeback(folio)) {
1213 			mapping = folio_mapping(folio);
1214 
1215 			/* Case 1 above */
1216 			if (current_is_kswapd() &&
1217 			    folio_test_reclaim(folio) &&
1218 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1219 				stat->nr_immediate += nr_pages;
1220 				goto activate_locked;
1221 
1222 			/* Case 2 above */
1223 			} else if (writeback_throttling_sane(sc) ||
1224 			    !folio_test_reclaim(folio) ||
1225 			    !may_enter_fs(folio, sc->gfp_mask) ||
1226 			    (mapping &&
1227 			     mapping_writeback_may_deadlock_on_reclaim(mapping))) {
1228 				/*
1229 				 * This is slightly racy -
1230 				 * folio_end_writeback() might have
1231 				 * just cleared the reclaim flag, then
1232 				 * setting the reclaim flag here ends up
1233 				 * interpreted as the readahead flag - but
1234 				 * that does not matter enough to care.
1235 				 * What we do want is for this folio to
1236 				 * have the reclaim flag set next time
1237 				 * memcg reclaim reaches the tests above,
1238 				 * so it will then wait for writeback to
1239 				 * avoid OOM; and it's also appropriate
1240 				 * in global reclaim.
1241 				 */
1242 				folio_set_reclaim(folio);
1243 				stat->nr_writeback += nr_pages;
1244 				goto activate_locked;
1245 
1246 			/* Case 3 above */
1247 			} else {
1248 				folio_unlock(folio);
1249 				folio_wait_writeback(folio);
1250 				/* then go back and try same folio again */
1251 				list_add_tail(&folio->lru, folio_list);
1252 				continue;
1253 			}
1254 		}
1255 
1256 		if (!ignore_references)
1257 			references = folio_check_references(folio, sc);
1258 
1259 		switch (references) {
1260 		case FOLIOREF_ACTIVATE:
1261 			goto activate_locked;
1262 		case FOLIOREF_KEEP:
1263 			stat->nr_ref_keep += nr_pages;
1264 			goto keep_locked;
1265 		case FOLIOREF_RECLAIM:
1266 		case FOLIOREF_RECLAIM_CLEAN:
1267 			; /* try to reclaim the folio below */
1268 		}
1269 
1270 		/*
1271 		 * Before reclaiming the folio, try to relocate
1272 		 * its contents to another node.
1273 		 */
1274 		if (do_demote_pass &&
1275 		    (thp_migration_supported() || !folio_test_large(folio))) {
1276 			list_add(&folio->lru, &demote_folios);
1277 			folio_unlock(folio);
1278 			continue;
1279 		}
1280 
1281 		/*
1282 		 * Anonymous process memory has backing store?
1283 		 * Try to allocate it some swap space here.
1284 		 * Lazyfree folio could be freed directly
1285 		 */
1286 		if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
1287 				!folio_test_swapcache(folio)) {
1288 			if (!(sc->gfp_mask & __GFP_IO))
1289 				goto keep_locked;
1290 			if (folio_maybe_dma_pinned(folio))
1291 				goto keep_locked;
1292 			if (folio_test_large(folio)) {
1293 				/* cannot split folio, skip it */
1294 				if (folio_expected_ref_count(folio) !=
1295 				    folio_ref_count(folio) - 1)
1296 					goto activate_locked;
1297 				/*
1298 				 * Split partially mapped folios right away.
1299 				 * We can free the unmapped pages without IO.
1300 				 */
1301 				if (data_race(!list_empty(&folio->_deferred_list) &&
1302 				    folio_test_partially_mapped(folio)) &&
1303 				    split_folio_to_list(folio, folio_list))
1304 					goto activate_locked;
1305 			}
1306 			if (folio_alloc_swap(folio)) {
1307 				int __maybe_unused order = folio_order(folio);
1308 
1309 				if (!folio_test_large(folio))
1310 					goto activate_locked_split;
1311 				/* Fallback to swap normal pages */
1312 				if (split_folio_to_list(folio, folio_list))
1313 					goto activate_locked;
1314 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1315 				if (nr_pages >= HPAGE_PMD_NR) {
1316 					count_memcg_folio_events(folio,
1317 						THP_SWPOUT_FALLBACK, 1);
1318 					count_vm_event(THP_SWPOUT_FALLBACK);
1319 				}
1320 #endif
1321 				count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1322 				if (folio_alloc_swap(folio))
1323 					goto activate_locked_split;
1324 			}
1325 			/*
1326 			 * Normally the folio will be dirtied in unmap because
1327 			 * its pte should be dirty. A special case is MADV_FREE
1328 			 * page. The page's pte could have dirty bit cleared but
1329 			 * the folio's SwapBacked flag is still set because
1330 			 * clearing the dirty bit and SwapBacked flag has no
1331 			 * lock protected. For such folio, unmap will not set
1332 			 * dirty bit for it, so folio reclaim will not write the
1333 			 * folio out. This can cause data corruption when the
1334 			 * folio is swapped in later. Always setting the dirty
1335 			 * flag for the folio solves the problem.
1336 			 */
1337 			folio_mark_dirty(folio);
1338 		}
1339 
1340 		/*
1341 		 * If the folio was split above, the tail pages will make
1342 		 * their own pass through this function and be accounted
1343 		 * then.
1344 		 */
1345 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1346 			sc->nr_scanned -= (nr_pages - 1);
1347 			nr_pages = 1;
1348 		}
1349 
1350 		/*
1351 		 * The folio is mapped into the page tables of one or more
1352 		 * processes. Try to unmap it here.
1353 		 */
1354 		if (folio_mapped(folio)) {
1355 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1356 			bool was_swapbacked = folio_test_swapbacked(folio);
1357 
1358 			if (folio_test_pmd_mappable(folio))
1359 				flags |= TTU_SPLIT_HUGE_PMD;
1360 			/*
1361 			 * Without TTU_SYNC, try_to_unmap will only begin to
1362 			 * hold PTL from the first present PTE within a large
1363 			 * folio. Some initial PTEs might be skipped due to
1364 			 * races with parallel PTE writes in which PTEs can be
1365 			 * cleared temporarily before being written new present
1366 			 * values. This will lead to a large folio is still
1367 			 * mapped while some subpages have been partially
1368 			 * unmapped after try_to_unmap; TTU_SYNC helps
1369 			 * try_to_unmap acquire PTL from the first PTE,
1370 			 * eliminating the influence of temporary PTE values.
1371 			 */
1372 			if (folio_test_large(folio))
1373 				flags |= TTU_SYNC;
1374 
1375 			try_to_unmap(folio, flags);
1376 			if (folio_mapped(folio)) {
1377 				stat->nr_unmap_fail += nr_pages;
1378 				if (!was_swapbacked &&
1379 				    folio_test_swapbacked(folio))
1380 					stat->nr_lazyfree_fail += nr_pages;
1381 				goto activate_locked;
1382 			}
1383 		}
1384 
1385 		/*
1386 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1387 		 * No point in trying to reclaim folio if it is pinned.
1388 		 * Furthermore we don't want to reclaim underlying fs metadata
1389 		 * if the folio is pinned and thus potentially modified by the
1390 		 * pinning process as that may upset the filesystem.
1391 		 */
1392 		if (folio_maybe_dma_pinned(folio))
1393 			goto activate_locked;
1394 
1395 		mapping = folio_mapping(folio);
1396 		if (folio_test_dirty(folio)) {
1397 			if (folio_is_file_lru(folio)) {
1398 				/*
1399 				 * Immediately reclaim when written back.
1400 				 * Similar in principle to folio_deactivate()
1401 				 * except we already have the folio isolated
1402 				 * and know it's dirty
1403 				 */
1404 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1405 						nr_pages);
1406 				if (!folio_test_reclaim(folio))
1407 					folio_set_reclaim(folio);
1408 
1409 				goto activate_locked;
1410 			}
1411 
1412 			if (references == FOLIOREF_RECLAIM_CLEAN)
1413 				goto keep_locked;
1414 			if (!may_enter_fs(folio, sc->gfp_mask))
1415 				goto keep_locked;
1416 			if (!sc->may_writepage)
1417 				goto keep_locked;
1418 
1419 			/*
1420 			 * Folio is dirty. Flush the TLB if a writable entry
1421 			 * potentially exists to avoid CPU writes after I/O
1422 			 * starts and then write it out here.
1423 			 */
1424 			try_to_unmap_flush_dirty();
1425 			switch (pageout(folio, mapping, &plug, folio_list)) {
1426 			case PAGE_KEEP:
1427 				goto keep_locked;
1428 			case PAGE_ACTIVATE:
1429 				/*
1430 				 * If shmem folio is split when writeback to swap,
1431 				 * the tail pages will make their own pass through
1432 				 * this function and be accounted then.
1433 				 */
1434 				if (nr_pages > 1 && !folio_test_large(folio)) {
1435 					sc->nr_scanned -= (nr_pages - 1);
1436 					nr_pages = 1;
1437 				}
1438 				goto activate_locked;
1439 			case PAGE_SUCCESS:
1440 				if (nr_pages > 1 && !folio_test_large(folio)) {
1441 					sc->nr_scanned -= (nr_pages - 1);
1442 					nr_pages = 1;
1443 				}
1444 				stat->nr_pageout += nr_pages;
1445 
1446 				if (folio_test_writeback(folio))
1447 					goto keep;
1448 				if (folio_test_dirty(folio))
1449 					goto keep;
1450 
1451 				/*
1452 				 * A synchronous write - probably a ramdisk.  Go
1453 				 * ahead and try to reclaim the folio.
1454 				 */
1455 				if (!folio_trylock(folio))
1456 					goto keep;
1457 				if (folio_test_dirty(folio) ||
1458 				    folio_test_writeback(folio))
1459 					goto keep_locked;
1460 				mapping = folio_mapping(folio);
1461 				fallthrough;
1462 			case PAGE_CLEAN:
1463 				; /* try to free the folio below */
1464 			}
1465 		}
1466 
1467 		/*
1468 		 * If the folio has buffers, try to free the buffer
1469 		 * mappings associated with this folio. If we succeed
1470 		 * we try to free the folio as well.
1471 		 *
1472 		 * We do this even if the folio is dirty.
1473 		 * filemap_release_folio() does not perform I/O, but it
1474 		 * is possible for a folio to have the dirty flag set,
1475 		 * but it is actually clean (all its buffers are clean).
1476 		 * This happens if the buffers were written out directly,
1477 		 * with submit_bh(). ext3 will do this, as well as
1478 		 * the blockdev mapping.  filemap_release_folio() will
1479 		 * discover that cleanness and will drop the buffers
1480 		 * and mark the folio clean - it can be freed.
1481 		 *
1482 		 * Rarely, folios can have buffers and no ->mapping.
1483 		 * These are the folios which were not successfully
1484 		 * invalidated in truncate_cleanup_folio().  We try to
1485 		 * drop those buffers here and if that worked, and the
1486 		 * folio is no longer mapped into process address space
1487 		 * (refcount == 1) it can be freed.  Otherwise, leave
1488 		 * the folio on the LRU so it is swappable.
1489 		 */
1490 		if (folio_needs_release(folio)) {
1491 			if (!filemap_release_folio(folio, sc->gfp_mask))
1492 				goto activate_locked;
1493 			if (!mapping && folio_ref_count(folio) == 1) {
1494 				folio_unlock(folio);
1495 				if (folio_put_testzero(folio))
1496 					goto free_it;
1497 				else {
1498 					/*
1499 					 * rare race with speculative reference.
1500 					 * the speculative reference will free
1501 					 * this folio shortly, so we may
1502 					 * increment nr_reclaimed here (and
1503 					 * leave it off the LRU).
1504 					 */
1505 					nr_reclaimed += nr_pages;
1506 					continue;
1507 				}
1508 			}
1509 		}
1510 
1511 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1512 			/* follow __remove_mapping for reference */
1513 			if (!folio_ref_freeze(folio, 1))
1514 				goto keep_locked;
1515 			/*
1516 			 * The folio has only one reference left, which is
1517 			 * from the isolation. After the caller puts the
1518 			 * folio back on the lru and drops the reference, the
1519 			 * folio will be freed anyway. It doesn't matter
1520 			 * which lru it goes on. So we don't bother checking
1521 			 * the dirty flag here.
1522 			 */
1523 			count_vm_events(PGLAZYFREED, nr_pages);
1524 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1525 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1526 							 sc->target_mem_cgroup))
1527 			goto keep_locked;
1528 
1529 		folio_unlock(folio);
1530 free_it:
1531 		/*
1532 		 * Folio may get swapped out as a whole, need to account
1533 		 * all pages in it.
1534 		 */
1535 		nr_reclaimed += nr_pages;
1536 
1537 		folio_unqueue_deferred_split(folio);
1538 		if (folio_batch_add(&free_folios, folio) == 0) {
1539 			mem_cgroup_uncharge_folios(&free_folios);
1540 			try_to_unmap_flush();
1541 			free_unref_folios(&free_folios);
1542 		}
1543 		continue;
1544 
1545 activate_locked_split:
1546 		/*
1547 		 * The tail pages that are failed to add into swap cache
1548 		 * reach here.  Fixup nr_scanned and nr_pages.
1549 		 */
1550 		if (nr_pages > 1) {
1551 			sc->nr_scanned -= (nr_pages - 1);
1552 			nr_pages = 1;
1553 		}
1554 activate_locked:
1555 		/* Not a candidate for swapping, so reclaim swap space. */
1556 		if (folio_test_swapcache(folio) &&
1557 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1558 			folio_free_swap(folio);
1559 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1560 		if (!folio_test_mlocked(folio)) {
1561 			int type = folio_is_file_lru(folio);
1562 			folio_set_active(folio);
1563 			stat->nr_activate[type] += nr_pages;
1564 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1565 		}
1566 keep_locked:
1567 		folio_unlock(folio);
1568 keep:
1569 		list_add(&folio->lru, &ret_folios);
1570 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1571 				folio_test_unevictable(folio), folio);
1572 	}
1573 	/* 'folio_list' is always empty here */
1574 
1575 	/* Migrate folios selected for demotion */
1576 	nr_demoted = demote_folio_list(&demote_folios, pgdat, memcg);
1577 	nr_reclaimed += nr_demoted;
1578 	stat->nr_demoted += nr_demoted;
1579 	/* Folios that could not be demoted are still in @demote_folios */
1580 	if (!list_empty(&demote_folios)) {
1581 		/* Folios which weren't demoted go back on @folio_list */
1582 		list_splice_init(&demote_folios, folio_list);
1583 
1584 		/*
1585 		 * goto retry to reclaim the undemoted folios in folio_list if
1586 		 * desired.
1587 		 *
1588 		 * Reclaiming directly from top tier nodes is not often desired
1589 		 * due to it breaking the LRU ordering: in general memory
1590 		 * should be reclaimed from lower tier nodes and demoted from
1591 		 * top tier nodes.
1592 		 *
1593 		 * However, disabling reclaim from top tier nodes entirely
1594 		 * would cause ooms in edge scenarios where lower tier memory
1595 		 * is unreclaimable for whatever reason, eg memory being
1596 		 * mlocked or too hot to reclaim. We can disable reclaim
1597 		 * from top tier nodes in proactive reclaim though as that is
1598 		 * not real memory pressure.
1599 		 */
1600 		if (!sc->proactive) {
1601 			do_demote_pass = false;
1602 			goto retry;
1603 		}
1604 	}
1605 
1606 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1607 
1608 	mem_cgroup_uncharge_folios(&free_folios);
1609 	try_to_unmap_flush();
1610 	free_unref_folios(&free_folios);
1611 
1612 	list_splice(&ret_folios, folio_list);
1613 	count_vm_events(PGACTIVATE, pgactivate);
1614 
1615 	if (plug)
1616 		swap_write_unplug(plug);
1617 	return nr_reclaimed;
1618 }
1619 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)1620 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1621 					   struct list_head *folio_list)
1622 {
1623 	struct scan_control sc = {
1624 		.gfp_mask = GFP_KERNEL,
1625 		.may_unmap = 1,
1626 	};
1627 	struct reclaim_stat stat;
1628 	unsigned int nr_reclaimed;
1629 	struct folio *folio, *next;
1630 	LIST_HEAD(clean_folios);
1631 	unsigned int noreclaim_flag;
1632 
1633 	list_for_each_entry_safe(folio, next, folio_list, lru) {
1634 		/* TODO: these pages should not even appear in this list. */
1635 		if (page_has_movable_ops(&folio->page))
1636 			continue;
1637 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1638 		    !folio_test_dirty(folio) && !folio_test_unevictable(folio)) {
1639 			folio_clear_active(folio);
1640 			list_move(&folio->lru, &clean_folios);
1641 		}
1642 	}
1643 
1644 	/*
1645 	 * We should be safe here since we are only dealing with file pages and
1646 	 * we are not kswapd and therefore cannot write dirty file pages. But
1647 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1648 	 * change in the future.
1649 	 */
1650 	noreclaim_flag = memalloc_noreclaim_save();
1651 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1652 					&stat, true, NULL);
1653 	memalloc_noreclaim_restore(noreclaim_flag);
1654 
1655 	list_splice(&clean_folios, folio_list);
1656 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1657 			    -(long)nr_reclaimed);
1658 	/*
1659 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1660 	 * they will rotate back to anonymous LRU in the end if it failed to
1661 	 * discard so isolated count will be mismatched.
1662 	 * Compensate the isolated count for both LRU lists.
1663 	 */
1664 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1665 			    stat.nr_lazyfree_fail);
1666 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1667 			    -(long)stat.nr_lazyfree_fail);
1668 	return nr_reclaimed;
1669 }
1670 
1671 /*
1672  * Update LRU sizes after isolating pages. The LRU size updates must
1673  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1674  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1675 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1676 			enum lru_list lru, unsigned long *nr_zone_taken)
1677 {
1678 	int zid;
1679 
1680 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1681 		if (!nr_zone_taken[zid])
1682 			continue;
1683 
1684 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1685 	}
1686 
1687 }
1688 
1689 /*
1690  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1691  *
1692  * lruvec->lru_lock is heavily contended.  Some of the functions that
1693  * shrink the lists perform better by taking out a batch of pages
1694  * and working on them outside the LRU lock.
1695  *
1696  * For pagecache intensive workloads, this function is the hottest
1697  * spot in the kernel (apart from copy_*_user functions).
1698  *
1699  * Lru_lock must be held before calling this function.
1700  *
1701  * @nr_to_scan:	The number of eligible pages to look through on the list.
1702  * @lruvec:	The LRU vector to pull pages from.
1703  * @dst:	The temp list to put pages on to.
1704  * @nr_scanned:	The number of pages that were scanned.
1705  * @sc:		The scan_control struct for this reclaim session
1706  * @lru:	LRU list id for isolating
1707  *
1708  * returns how many pages were moved onto *@dst.
1709  */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1710 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1711 		struct lruvec *lruvec, struct list_head *dst,
1712 		unsigned long *nr_scanned, struct scan_control *sc,
1713 		enum lru_list lru)
1714 {
1715 	struct list_head *src = &lruvec->lists[lru];
1716 	unsigned long nr_taken = 0;
1717 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1718 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1719 	unsigned long skipped = 0, total_scan = 0, scan = 0;
1720 	unsigned long nr_pages;
1721 	unsigned long max_nr_skipped = 0;
1722 	LIST_HEAD(folios_skipped);
1723 
1724 	while (scan < nr_to_scan && !list_empty(src)) {
1725 		struct list_head *move_to = src;
1726 		struct folio *folio;
1727 
1728 		folio = lru_to_folio(src);
1729 		prefetchw_prev_lru_folio(folio, src, flags);
1730 
1731 		nr_pages = folio_nr_pages(folio);
1732 		total_scan += nr_pages;
1733 
1734 		/* Using max_nr_skipped to prevent hard LOCKUP*/
1735 		if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED &&
1736 		    (folio_zonenum(folio) > sc->reclaim_idx)) {
1737 			nr_skipped[folio_zonenum(folio)] += nr_pages;
1738 			move_to = &folios_skipped;
1739 			max_nr_skipped++;
1740 			goto move;
1741 		}
1742 
1743 		/*
1744 		 * Do not count skipped folios because that makes the function
1745 		 * return with no isolated folios if the LRU mostly contains
1746 		 * ineligible folios.  This causes the VM to not reclaim any
1747 		 * folios, triggering a premature OOM.
1748 		 * Account all pages in a folio.
1749 		 */
1750 		scan += nr_pages;
1751 
1752 		if (!folio_test_lru(folio))
1753 			goto move;
1754 		if (!sc->may_unmap && folio_mapped(folio))
1755 			goto move;
1756 
1757 		/*
1758 		 * Be careful not to clear the lru flag until after we're
1759 		 * sure the folio is not being freed elsewhere -- the
1760 		 * folio release code relies on it.
1761 		 */
1762 		if (unlikely(!folio_try_get(folio)))
1763 			goto move;
1764 
1765 		if (!folio_test_clear_lru(folio)) {
1766 			/* Another thread is already isolating this folio */
1767 			folio_put(folio);
1768 			goto move;
1769 		}
1770 
1771 		nr_taken += nr_pages;
1772 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1773 		move_to = dst;
1774 move:
1775 		list_move(&folio->lru, move_to);
1776 	}
1777 
1778 	/*
1779 	 * Splice any skipped folios to the start of the LRU list. Note that
1780 	 * this disrupts the LRU order when reclaiming for lower zones but
1781 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1782 	 * scanning would soon rescan the same folios to skip and waste lots
1783 	 * of cpu cycles.
1784 	 */
1785 	if (!list_empty(&folios_skipped)) {
1786 		int zid;
1787 
1788 		list_splice(&folios_skipped, src);
1789 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1790 			if (!nr_skipped[zid])
1791 				continue;
1792 
1793 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1794 			skipped += nr_skipped[zid];
1795 		}
1796 	}
1797 	*nr_scanned = total_scan;
1798 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1799 				    total_scan, skipped, nr_taken, lru);
1800 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1801 	return nr_taken;
1802 }
1803 
1804 /**
1805  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1806  * @folio: Folio to isolate from its LRU list.
1807  *
1808  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1809  * corresponding to whatever LRU list the folio was on.
1810  *
1811  * The folio will have its LRU flag cleared.  If it was found on the
1812  * active list, it will have the Active flag set.  If it was found on the
1813  * unevictable list, it will have the Unevictable flag set.  These flags
1814  * may need to be cleared by the caller before letting the page go.
1815  *
1816  * Context:
1817  *
1818  * (1) Must be called with an elevated refcount on the folio. This is a
1819  *     fundamental difference from isolate_lru_folios() (which is called
1820  *     without a stable reference).
1821  * (2) The lru_lock must not be held.
1822  * (3) Interrupts must be enabled.
1823  *
1824  * Return: true if the folio was removed from an LRU list.
1825  * false if the folio was not on an LRU list.
1826  */
folio_isolate_lru(struct folio * folio)1827 bool folio_isolate_lru(struct folio *folio)
1828 {
1829 	bool ret = false;
1830 
1831 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1832 
1833 	if (folio_test_clear_lru(folio)) {
1834 		struct lruvec *lruvec;
1835 
1836 		folio_get(folio);
1837 		lruvec = folio_lruvec_lock_irq(folio);
1838 		lruvec_del_folio(lruvec, folio);
1839 		unlock_page_lruvec_irq(lruvec);
1840 		ret = true;
1841 	}
1842 
1843 	return ret;
1844 }
1845 
1846 /*
1847  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1848  * then get rescheduled. When there are massive number of tasks doing page
1849  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1850  * the LRU list will go small and be scanned faster than necessary, leading to
1851  * unnecessary swapping, thrashing and OOM.
1852  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1853 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1854 		struct scan_control *sc)
1855 {
1856 	unsigned long inactive, isolated;
1857 	bool too_many;
1858 
1859 	if (current_is_kswapd())
1860 		return false;
1861 
1862 	if (!writeback_throttling_sane(sc))
1863 		return false;
1864 
1865 	if (file) {
1866 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1867 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1868 	} else {
1869 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1870 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1871 	}
1872 
1873 	/*
1874 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1875 	 * won't get blocked by normal direct-reclaimers, forming a circular
1876 	 * deadlock.
1877 	 */
1878 	if (gfp_has_io_fs(sc->gfp_mask))
1879 		inactive >>= 3;
1880 
1881 	too_many = isolated > inactive;
1882 
1883 	/* Wake up tasks throttled due to too_many_isolated. */
1884 	if (!too_many)
1885 		wake_throttle_isolated(pgdat);
1886 
1887 	return too_many;
1888 }
1889 
1890 /*
1891  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1892  *
1893  * Returns the number of pages moved to the given lruvec.
1894  */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)1895 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1896 		struct list_head *list)
1897 {
1898 	int nr_pages, nr_moved = 0;
1899 	struct folio_batch free_folios;
1900 
1901 	folio_batch_init(&free_folios);
1902 	while (!list_empty(list)) {
1903 		struct folio *folio = lru_to_folio(list);
1904 
1905 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1906 		list_del(&folio->lru);
1907 		if (unlikely(!folio_evictable(folio))) {
1908 			spin_unlock_irq(&lruvec->lru_lock);
1909 			folio_putback_lru(folio);
1910 			spin_lock_irq(&lruvec->lru_lock);
1911 			continue;
1912 		}
1913 
1914 		/*
1915 		 * The folio_set_lru needs to be kept here for list integrity.
1916 		 * Otherwise:
1917 		 *   #0 move_folios_to_lru             #1 release_pages
1918 		 *   if (!folio_put_testzero())
1919 		 *				      if (folio_put_testzero())
1920 		 *				        !lru //skip lru_lock
1921 		 *     folio_set_lru()
1922 		 *     list_add(&folio->lru,)
1923 		 *                                        list_add(&folio->lru,)
1924 		 */
1925 		folio_set_lru(folio);
1926 
1927 		if (unlikely(folio_put_testzero(folio))) {
1928 			__folio_clear_lru_flags(folio);
1929 
1930 			folio_unqueue_deferred_split(folio);
1931 			if (folio_batch_add(&free_folios, folio) == 0) {
1932 				spin_unlock_irq(&lruvec->lru_lock);
1933 				mem_cgroup_uncharge_folios(&free_folios);
1934 				free_unref_folios(&free_folios);
1935 				spin_lock_irq(&lruvec->lru_lock);
1936 			}
1937 
1938 			continue;
1939 		}
1940 
1941 		/*
1942 		 * All pages were isolated from the same lruvec (and isolation
1943 		 * inhibits memcg migration).
1944 		 */
1945 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1946 		lruvec_add_folio(lruvec, folio);
1947 		nr_pages = folio_nr_pages(folio);
1948 		nr_moved += nr_pages;
1949 		if (folio_test_active(folio))
1950 			workingset_age_nonresident(lruvec, nr_pages);
1951 	}
1952 
1953 	if (free_folios.nr) {
1954 		spin_unlock_irq(&lruvec->lru_lock);
1955 		mem_cgroup_uncharge_folios(&free_folios);
1956 		free_unref_folios(&free_folios);
1957 		spin_lock_irq(&lruvec->lru_lock);
1958 	}
1959 
1960 	return nr_moved;
1961 }
1962 
1963 /*
1964  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1965  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1966  * we should not throttle.  Otherwise it is safe to do so.
1967  */
current_may_throttle(void)1968 static int current_may_throttle(void)
1969 {
1970 	return !(current->flags & PF_LOCAL_THROTTLE);
1971 }
1972 
1973 /*
1974  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1975  * of reclaimed pages
1976  */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1977 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1978 		struct lruvec *lruvec, struct scan_control *sc,
1979 		enum lru_list lru)
1980 {
1981 	LIST_HEAD(folio_list);
1982 	unsigned long nr_scanned;
1983 	unsigned int nr_reclaimed = 0;
1984 	unsigned long nr_taken;
1985 	struct reclaim_stat stat;
1986 	bool file = is_file_lru(lru);
1987 	enum vm_event_item item;
1988 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1989 	bool stalled = false;
1990 
1991 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1992 		if (stalled)
1993 			return 0;
1994 
1995 		/* wait a bit for the reclaimer. */
1996 		stalled = true;
1997 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1998 
1999 		/* We are about to die and free our memory. Return now. */
2000 		if (fatal_signal_pending(current))
2001 			return SWAP_CLUSTER_MAX;
2002 	}
2003 
2004 	lru_add_drain();
2005 
2006 	spin_lock_irq(&lruvec->lru_lock);
2007 
2008 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2009 				     &nr_scanned, sc, lru);
2010 
2011 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2012 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
2013 	if (!cgroup_reclaim(sc))
2014 		__count_vm_events(item, nr_scanned);
2015 	count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2016 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2017 
2018 	spin_unlock_irq(&lruvec->lru_lock);
2019 
2020 	if (nr_taken == 0)
2021 		return 0;
2022 
2023 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false,
2024 					 lruvec_memcg(lruvec));
2025 
2026 	spin_lock_irq(&lruvec->lru_lock);
2027 	move_folios_to_lru(lruvec, &folio_list);
2028 
2029 	mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
2030 					stat.nr_demoted);
2031 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2032 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
2033 	if (!cgroup_reclaim(sc))
2034 		__count_vm_events(item, nr_reclaimed);
2035 	count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2036 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2037 
2038 	lru_note_cost_unlock_irq(lruvec, file, stat.nr_pageout,
2039 					nr_scanned - nr_reclaimed);
2040 
2041 	/*
2042 	 * If dirty folios are scanned that are not queued for IO, it
2043 	 * implies that flushers are not doing their job. This can
2044 	 * happen when memory pressure pushes dirty folios to the end of
2045 	 * the LRU before the dirty limits are breached and the dirty
2046 	 * data has expired. It can also happen when the proportion of
2047 	 * dirty folios grows not through writes but through memory
2048 	 * pressure reclaiming all the clean cache. And in some cases,
2049 	 * the flushers simply cannot keep up with the allocation
2050 	 * rate. Nudge the flusher threads in case they are asleep.
2051 	 */
2052 	if (stat.nr_unqueued_dirty == nr_taken) {
2053 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2054 		/*
2055 		 * For cgroupv1 dirty throttling is achieved by waking up
2056 		 * the kernel flusher here and later waiting on folios
2057 		 * which are in writeback to finish (see shrink_folio_list()).
2058 		 *
2059 		 * Flusher may not be able to issue writeback quickly
2060 		 * enough for cgroupv1 writeback throttling to work
2061 		 * on a large system.
2062 		 */
2063 		if (!writeback_throttling_sane(sc))
2064 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2065 	}
2066 
2067 	sc->nr.dirty += stat.nr_dirty;
2068 	sc->nr.congested += stat.nr_congested;
2069 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2070 	sc->nr.writeback += stat.nr_writeback;
2071 	sc->nr.immediate += stat.nr_immediate;
2072 	sc->nr.taken += nr_taken;
2073 	if (file)
2074 		sc->nr.file_taken += nr_taken;
2075 
2076 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2077 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2078 	return nr_reclaimed;
2079 }
2080 
2081 /*
2082  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2083  *
2084  * We move them the other way if the folio is referenced by one or more
2085  * processes.
2086  *
2087  * If the folios are mostly unmapped, the processing is fast and it is
2088  * appropriate to hold lru_lock across the whole operation.  But if
2089  * the folios are mapped, the processing is slow (folio_referenced()), so
2090  * we should drop lru_lock around each folio.  It's impossible to balance
2091  * this, so instead we remove the folios from the LRU while processing them.
2092  * It is safe to rely on the active flag against the non-LRU folios in here
2093  * because nobody will play with that bit on a non-LRU folio.
2094  *
2095  * The downside is that we have to touch folio->_refcount against each folio.
2096  * But we had to alter folio->flags anyway.
2097  */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2098 static void shrink_active_list(unsigned long nr_to_scan,
2099 			       struct lruvec *lruvec,
2100 			       struct scan_control *sc,
2101 			       enum lru_list lru)
2102 {
2103 	unsigned long nr_taken;
2104 	unsigned long nr_scanned;
2105 	vm_flags_t vm_flags;
2106 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2107 	LIST_HEAD(l_active);
2108 	LIST_HEAD(l_inactive);
2109 	unsigned nr_deactivate, nr_activate;
2110 	unsigned nr_rotated = 0;
2111 	bool file = is_file_lru(lru);
2112 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2113 
2114 	lru_add_drain();
2115 
2116 	spin_lock_irq(&lruvec->lru_lock);
2117 
2118 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2119 				     &nr_scanned, sc, lru);
2120 
2121 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2122 
2123 	if (!cgroup_reclaim(sc))
2124 		__count_vm_events(PGREFILL, nr_scanned);
2125 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2126 
2127 	spin_unlock_irq(&lruvec->lru_lock);
2128 
2129 	while (!list_empty(&l_hold)) {
2130 		struct folio *folio;
2131 
2132 		cond_resched();
2133 		folio = lru_to_folio(&l_hold);
2134 		list_del(&folio->lru);
2135 
2136 		if (unlikely(!folio_evictable(folio))) {
2137 			folio_putback_lru(folio);
2138 			continue;
2139 		}
2140 
2141 		if (unlikely(buffer_heads_over_limit)) {
2142 			if (folio_needs_release(folio) &&
2143 			    folio_trylock(folio)) {
2144 				filemap_release_folio(folio, 0);
2145 				folio_unlock(folio);
2146 			}
2147 		}
2148 
2149 		/* Referenced or rmap lock contention: rotate */
2150 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2151 				     &vm_flags) != 0) {
2152 			/*
2153 			 * Identify referenced, file-backed active folios and
2154 			 * give them one more trip around the active list. So
2155 			 * that executable code get better chances to stay in
2156 			 * memory under moderate memory pressure.  Anon folios
2157 			 * are not likely to be evicted by use-once streaming
2158 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2159 			 * so we ignore them here.
2160 			 */
2161 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2162 				nr_rotated += folio_nr_pages(folio);
2163 				list_add(&folio->lru, &l_active);
2164 				continue;
2165 			}
2166 		}
2167 
2168 		folio_clear_active(folio);	/* we are de-activating */
2169 		folio_set_workingset(folio);
2170 		list_add(&folio->lru, &l_inactive);
2171 	}
2172 
2173 	/*
2174 	 * Move folios back to the lru list.
2175 	 */
2176 	spin_lock_irq(&lruvec->lru_lock);
2177 
2178 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2179 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2180 
2181 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2182 	count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2183 
2184 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2185 
2186 	lru_note_cost_unlock_irq(lruvec, file, 0, nr_rotated);
2187 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2188 			nr_deactivate, nr_rotated, sc->priority, file);
2189 }
2190 
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat)2191 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2192 				      struct pglist_data *pgdat)
2193 {
2194 	struct reclaim_stat stat;
2195 	unsigned int nr_reclaimed;
2196 	struct folio *folio;
2197 	struct scan_control sc = {
2198 		.gfp_mask = GFP_KERNEL,
2199 		.may_writepage = 1,
2200 		.may_unmap = 1,
2201 		.may_swap = 1,
2202 		.no_demotion = 1,
2203 	};
2204 
2205 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL);
2206 	while (!list_empty(folio_list)) {
2207 		folio = lru_to_folio(folio_list);
2208 		list_del(&folio->lru);
2209 		folio_putback_lru(folio);
2210 	}
2211 	trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2212 
2213 	return nr_reclaimed;
2214 }
2215 
reclaim_pages(struct list_head * folio_list)2216 unsigned long reclaim_pages(struct list_head *folio_list)
2217 {
2218 	int nid;
2219 	unsigned int nr_reclaimed = 0;
2220 	LIST_HEAD(node_folio_list);
2221 	unsigned int noreclaim_flag;
2222 
2223 	if (list_empty(folio_list))
2224 		return nr_reclaimed;
2225 
2226 	noreclaim_flag = memalloc_noreclaim_save();
2227 
2228 	nid = folio_nid(lru_to_folio(folio_list));
2229 	do {
2230 		struct folio *folio = lru_to_folio(folio_list);
2231 
2232 		if (nid == folio_nid(folio)) {
2233 			folio_clear_active(folio);
2234 			list_move(&folio->lru, &node_folio_list);
2235 			continue;
2236 		}
2237 
2238 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2239 		nid = folio_nid(lru_to_folio(folio_list));
2240 	} while (!list_empty(folio_list));
2241 
2242 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2243 
2244 	memalloc_noreclaim_restore(noreclaim_flag);
2245 
2246 	return nr_reclaimed;
2247 }
2248 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2249 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2250 				 struct lruvec *lruvec, struct scan_control *sc)
2251 {
2252 	if (is_active_lru(lru)) {
2253 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2254 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2255 		else
2256 			sc->skipped_deactivate = 1;
2257 		return 0;
2258 	}
2259 
2260 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2261 }
2262 
2263 /*
2264  * The inactive anon list should be small enough that the VM never has
2265  * to do too much work.
2266  *
2267  * The inactive file list should be small enough to leave most memory
2268  * to the established workingset on the scan-resistant active list,
2269  * but large enough to avoid thrashing the aggregate readahead window.
2270  *
2271  * Both inactive lists should also be large enough that each inactive
2272  * folio has a chance to be referenced again before it is reclaimed.
2273  *
2274  * If that fails and refaulting is observed, the inactive list grows.
2275  *
2276  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2277  * on this LRU, maintained by the pageout code. An inactive_ratio
2278  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2279  *
2280  * total     target    max
2281  * memory    ratio     inactive
2282  * -------------------------------------
2283  *   10MB       1         5MB
2284  *  100MB       1        50MB
2285  *    1GB       3       250MB
2286  *   10GB      10       0.9GB
2287  *  100GB      31         3GB
2288  *    1TB     101        10GB
2289  *   10TB     320        32GB
2290  */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2291 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2292 {
2293 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2294 	unsigned long inactive, active;
2295 	unsigned long inactive_ratio;
2296 	unsigned long gb;
2297 
2298 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2299 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2300 
2301 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2302 	if (gb)
2303 		inactive_ratio = int_sqrt(10 * gb);
2304 	else
2305 		inactive_ratio = 1;
2306 
2307 	return inactive * inactive_ratio < active;
2308 }
2309 
2310 enum scan_balance {
2311 	SCAN_EQUAL,
2312 	SCAN_FRACT,
2313 	SCAN_ANON,
2314 	SCAN_FILE,
2315 };
2316 
prepare_scan_control(pg_data_t * pgdat,struct scan_control * sc)2317 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2318 {
2319 	unsigned long file;
2320 	struct lruvec *target_lruvec;
2321 
2322 	if (lru_gen_enabled())
2323 		return;
2324 
2325 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2326 
2327 	/*
2328 	 * Flush the memory cgroup stats in rate-limited way as we don't need
2329 	 * most accurate stats here. We may switch to regular stats flushing
2330 	 * in the future once it is cheap enough.
2331 	 */
2332 	mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2333 
2334 	/*
2335 	 * Determine the scan balance between anon and file LRUs.
2336 	 */
2337 	spin_lock_irq(&target_lruvec->lru_lock);
2338 	sc->anon_cost = target_lruvec->anon_cost;
2339 	sc->file_cost = target_lruvec->file_cost;
2340 	spin_unlock_irq(&target_lruvec->lru_lock);
2341 
2342 	/*
2343 	 * Target desirable inactive:active list ratios for the anon
2344 	 * and file LRU lists.
2345 	 */
2346 	if (!sc->force_deactivate) {
2347 		unsigned long refaults;
2348 
2349 		/*
2350 		 * When refaults are being observed, it means a new
2351 		 * workingset is being established. Deactivate to get
2352 		 * rid of any stale active pages quickly.
2353 		 */
2354 		refaults = lruvec_page_state(target_lruvec,
2355 				WORKINGSET_ACTIVATE_ANON);
2356 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2357 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2358 			sc->may_deactivate |= DEACTIVATE_ANON;
2359 		else
2360 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2361 
2362 		refaults = lruvec_page_state(target_lruvec,
2363 				WORKINGSET_ACTIVATE_FILE);
2364 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2365 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2366 			sc->may_deactivate |= DEACTIVATE_FILE;
2367 		else
2368 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2369 	} else
2370 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2371 
2372 	/*
2373 	 * If we have plenty of inactive file pages that aren't
2374 	 * thrashing, try to reclaim those first before touching
2375 	 * anonymous pages.
2376 	 */
2377 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2378 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2379 	    !sc->no_cache_trim_mode)
2380 		sc->cache_trim_mode = 1;
2381 	else
2382 		sc->cache_trim_mode = 0;
2383 
2384 	/*
2385 	 * Prevent the reclaimer from falling into the cache trap: as
2386 	 * cache pages start out inactive, every cache fault will tip
2387 	 * the scan balance towards the file LRU.  And as the file LRU
2388 	 * shrinks, so does the window for rotation from references.
2389 	 * This means we have a runaway feedback loop where a tiny
2390 	 * thrashing file LRU becomes infinitely more attractive than
2391 	 * anon pages.  Try to detect this based on file LRU size.
2392 	 */
2393 	if (!cgroup_reclaim(sc)) {
2394 		unsigned long total_high_wmark = 0;
2395 		unsigned long free, anon;
2396 		int z;
2397 		struct zone *zone;
2398 
2399 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2400 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2401 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2402 
2403 		for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) {
2404 			total_high_wmark += high_wmark_pages(zone);
2405 		}
2406 
2407 		/*
2408 		 * Consider anon: if that's low too, this isn't a
2409 		 * runaway file reclaim problem, but rather just
2410 		 * extreme pressure. Reclaim as per usual then.
2411 		 */
2412 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2413 
2414 		sc->file_is_tiny =
2415 			file + free <= total_high_wmark &&
2416 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2417 			anon >> sc->priority;
2418 	}
2419 }
2420 
calculate_pressure_balance(struct scan_control * sc,int swappiness,u64 * fraction,u64 * denominator)2421 static inline void calculate_pressure_balance(struct scan_control *sc,
2422 			int swappiness, u64 *fraction, u64 *denominator)
2423 {
2424 	unsigned long anon_cost, file_cost, total_cost;
2425 	unsigned long ap, fp;
2426 
2427 	/*
2428 	 * Calculate the pressure balance between anon and file pages.
2429 	 *
2430 	 * The amount of pressure we put on each LRU is inversely
2431 	 * proportional to the cost of reclaiming each list, as
2432 	 * determined by the share of pages that are refaulting, times
2433 	 * the relative IO cost of bringing back a swapped out
2434 	 * anonymous page vs reloading a filesystem page (swappiness).
2435 	 *
2436 	 * Although we limit that influence to ensure no list gets
2437 	 * left behind completely: at least a third of the pressure is
2438 	 * applied, before swappiness.
2439 	 *
2440 	 * With swappiness at 100, anon and file have equal IO cost.
2441 	 */
2442 	total_cost = sc->anon_cost + sc->file_cost;
2443 	anon_cost = total_cost + sc->anon_cost;
2444 	file_cost = total_cost + sc->file_cost;
2445 	total_cost = anon_cost + file_cost;
2446 
2447 	ap = swappiness * (total_cost + 1);
2448 	ap /= anon_cost + 1;
2449 
2450 	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2451 	fp /= file_cost + 1;
2452 
2453 	fraction[WORKINGSET_ANON] = ap;
2454 	fraction[WORKINGSET_FILE] = fp;
2455 	*denominator = ap + fp;
2456 }
2457 
apply_proportional_protection(struct mem_cgroup * memcg,struct scan_control * sc,unsigned long scan)2458 static unsigned long apply_proportional_protection(struct mem_cgroup *memcg,
2459 		struct scan_control *sc, unsigned long scan)
2460 {
2461 	unsigned long min, low, usage;
2462 
2463 	mem_cgroup_protection(sc->target_mem_cgroup, memcg, &min, &low, &usage);
2464 
2465 	if (min || low) {
2466 		/*
2467 		 * Scale a cgroup's reclaim pressure by proportioning
2468 		 * its current usage to its memory.low or memory.min
2469 		 * setting.
2470 		 *
2471 		 * This is important, as otherwise scanning aggression
2472 		 * becomes extremely binary -- from nothing as we
2473 		 * approach the memory protection threshold, to totally
2474 		 * nominal as we exceed it.  This results in requiring
2475 		 * setting extremely liberal protection thresholds. It
2476 		 * also means we simply get no protection at all if we
2477 		 * set it too low, which is not ideal.
2478 		 *
2479 		 * If there is any protection in place, we reduce scan
2480 		 * pressure by how much of the total memory used is
2481 		 * within protection thresholds.
2482 		 *
2483 		 * There is one special case: in the first reclaim pass,
2484 		 * we skip over all groups that are within their low
2485 		 * protection. If that fails to reclaim enough pages to
2486 		 * satisfy the reclaim goal, we come back and override
2487 		 * the best-effort low protection. However, we still
2488 		 * ideally want to honor how well-behaved groups are in
2489 		 * that case instead of simply punishing them all
2490 		 * equally. As such, we reclaim them based on how much
2491 		 * memory they are using, reducing the scan pressure
2492 		 * again by how much of the total memory used is under
2493 		 * hard protection.
2494 		 */
2495 		unsigned long protection;
2496 
2497 		/* memory.low scaling, make sure we retry before OOM */
2498 		if (!sc->memcg_low_reclaim && low > min) {
2499 			protection = low;
2500 			sc->memcg_low_skipped = 1;
2501 		} else {
2502 			protection = min;
2503 		}
2504 
2505 		/* Avoid TOCTOU with earlier protection check */
2506 		usage = max(usage, protection);
2507 
2508 		scan -= scan * protection / (usage + 1);
2509 
2510 		/*
2511 		 * Minimally target SWAP_CLUSTER_MAX pages to keep
2512 		 * reclaim moving forwards, avoiding decrementing
2513 		 * sc->priority further than desirable.
2514 		 */
2515 		scan = max(scan, SWAP_CLUSTER_MAX);
2516 	}
2517 	return scan;
2518 }
2519 
2520 /*
2521  * Determine how aggressively the anon and file LRU lists should be
2522  * scanned.
2523  *
2524  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2525  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2526  */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2527 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2528 			   unsigned long *nr)
2529 {
2530 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2531 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2532 	int swappiness = sc_swappiness(sc, memcg);
2533 	u64 fraction[ANON_AND_FILE];
2534 	u64 denominator = 0;	/* gcc */
2535 	enum scan_balance scan_balance;
2536 	enum lru_list lru;
2537 
2538 	/* If we have no swap space, do not bother scanning anon folios. */
2539 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2540 		scan_balance = SCAN_FILE;
2541 		goto out;
2542 	}
2543 
2544 	/*
2545 	 * Global reclaim will swap to prevent OOM even with no
2546 	 * swappiness, but memcg users want to use this knob to
2547 	 * disable swapping for individual groups completely when
2548 	 * using the memory controller's swap limit feature would be
2549 	 * too expensive.
2550 	 */
2551 	if (cgroup_reclaim(sc) && !swappiness) {
2552 		scan_balance = SCAN_FILE;
2553 		goto out;
2554 	}
2555 
2556 	/* Proactive reclaim initiated by userspace for anonymous memory only */
2557 	if (swappiness == SWAPPINESS_ANON_ONLY) {
2558 		WARN_ON_ONCE(!sc->proactive);
2559 		scan_balance = SCAN_ANON;
2560 		goto out;
2561 	}
2562 
2563 	/*
2564 	 * Do not apply any pressure balancing cleverness when the
2565 	 * system is close to OOM, scan both anon and file equally
2566 	 * (unless the swappiness setting disagrees with swapping).
2567 	 */
2568 	if (!sc->priority && swappiness) {
2569 		scan_balance = SCAN_EQUAL;
2570 		goto out;
2571 	}
2572 
2573 	/*
2574 	 * If the system is almost out of file pages, force-scan anon.
2575 	 */
2576 	if (sc->file_is_tiny) {
2577 		scan_balance = SCAN_ANON;
2578 		goto out;
2579 	}
2580 
2581 	/*
2582 	 * If there is enough inactive page cache, we do not reclaim
2583 	 * anything from the anonymous working right now to make sure
2584          * a streaming file access pattern doesn't cause swapping.
2585 	 */
2586 	if (sc->cache_trim_mode) {
2587 		scan_balance = SCAN_FILE;
2588 		goto out;
2589 	}
2590 
2591 	scan_balance = SCAN_FRACT;
2592 	calculate_pressure_balance(sc, swappiness, fraction, &denominator);
2593 
2594 out:
2595 	for_each_evictable_lru(lru) {
2596 		bool file = is_file_lru(lru);
2597 		unsigned long lruvec_size;
2598 		unsigned long scan;
2599 
2600 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2601 		scan = apply_proportional_protection(memcg, sc, lruvec_size);
2602 		scan >>= sc->priority;
2603 
2604 		/*
2605 		 * If the cgroup's already been deleted, make sure to
2606 		 * scrape out the remaining cache.
2607 		 */
2608 		if (!scan && !mem_cgroup_online(memcg))
2609 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2610 
2611 		switch (scan_balance) {
2612 		case SCAN_EQUAL:
2613 			/* Scan lists relative to size */
2614 			break;
2615 		case SCAN_FRACT:
2616 			/*
2617 			 * Scan types proportional to swappiness and
2618 			 * their relative recent reclaim efficiency.
2619 			 * Make sure we don't miss the last page on
2620 			 * the offlined memory cgroups because of a
2621 			 * round-off error.
2622 			 */
2623 			scan = mem_cgroup_online(memcg) ?
2624 			       div64_u64(scan * fraction[file], denominator) :
2625 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2626 						  denominator);
2627 			break;
2628 		case SCAN_FILE:
2629 		case SCAN_ANON:
2630 			/* Scan one type exclusively */
2631 			if ((scan_balance == SCAN_FILE) != file)
2632 				scan = 0;
2633 			break;
2634 		default:
2635 			/* Look ma, no brain */
2636 			BUG();
2637 		}
2638 
2639 		nr[lru] = scan;
2640 	}
2641 }
2642 
2643 /*
2644  * Anonymous LRU management is a waste if there is
2645  * ultimately no way to reclaim the memory.
2646  */
can_age_anon_pages(struct lruvec * lruvec,struct scan_control * sc)2647 static bool can_age_anon_pages(struct lruvec *lruvec,
2648 			       struct scan_control *sc)
2649 {
2650 	/* Aging the anon LRU is valuable if swap is present: */
2651 	if (total_swap_pages > 0)
2652 		return true;
2653 
2654 	/* Also valuable if anon pages can be demoted: */
2655 	return can_demote(lruvec_pgdat(lruvec)->node_id, sc,
2656 			  lruvec_memcg(lruvec));
2657 }
2658 
2659 #ifdef CONFIG_LRU_GEN
2660 
2661 #ifdef CONFIG_LRU_GEN_ENABLED
2662 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2663 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2664 #else
2665 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2666 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2667 #endif
2668 
should_walk_mmu(void)2669 static bool should_walk_mmu(void)
2670 {
2671 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2672 }
2673 
should_clear_pmd_young(void)2674 static bool should_clear_pmd_young(void)
2675 {
2676 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2677 }
2678 
2679 /******************************************************************************
2680  *                          shorthand helpers
2681  ******************************************************************************/
2682 
2683 #define DEFINE_MAX_SEQ(lruvec)						\
2684 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2685 
2686 #define DEFINE_MIN_SEQ(lruvec)						\
2687 	unsigned long min_seq[ANON_AND_FILE] = {			\
2688 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2689 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2690 	}
2691 
2692 /* Get the min/max evictable type based on swappiness */
2693 #define min_type(swappiness) (!(swappiness))
2694 #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY)
2695 
2696 #define evictable_min_seq(min_seq, swappiness)				\
2697 	min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)])
2698 
2699 #define for_each_gen_type_zone(gen, type, zone)				\
2700 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2701 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2702 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2703 
2704 #define for_each_evictable_type(type, swappiness)			\
2705 	for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++)
2706 
2707 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2708 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2709 
get_lruvec(struct mem_cgroup * memcg,int nid)2710 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2711 {
2712 	struct pglist_data *pgdat = NODE_DATA(nid);
2713 
2714 #ifdef CONFIG_MEMCG
2715 	if (memcg) {
2716 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2717 
2718 		/* see the comment in mem_cgroup_lruvec() */
2719 		if (!lruvec->pgdat)
2720 			lruvec->pgdat = pgdat;
2721 
2722 		return lruvec;
2723 	}
2724 #endif
2725 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2726 
2727 	return &pgdat->__lruvec;
2728 }
2729 
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)2730 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2731 {
2732 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2733 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2734 
2735 	if (!sc->may_swap)
2736 		return 0;
2737 
2738 	if (!can_demote(pgdat->node_id, sc, memcg) &&
2739 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2740 		return 0;
2741 
2742 	return sc_swappiness(sc, memcg);
2743 }
2744 
get_nr_gens(struct lruvec * lruvec,int type)2745 static int get_nr_gens(struct lruvec *lruvec, int type)
2746 {
2747 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2748 }
2749 
seq_is_valid(struct lruvec * lruvec)2750 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2751 {
2752 	int type;
2753 
2754 	for (type = 0; type < ANON_AND_FILE; type++) {
2755 		int n = get_nr_gens(lruvec, type);
2756 
2757 		if (n < MIN_NR_GENS || n > MAX_NR_GENS)
2758 			return false;
2759 	}
2760 
2761 	return true;
2762 }
2763 
2764 /******************************************************************************
2765  *                          Bloom filters
2766  ******************************************************************************/
2767 
2768 /*
2769  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2770  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2771  * bits in a bitmap, k is the number of hash functions and n is the number of
2772  * inserted items.
2773  *
2774  * Page table walkers use one of the two filters to reduce their search space.
2775  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2776  * aging uses the double-buffering technique to flip to the other filter each
2777  * time it produces a new generation. For non-leaf entries that have enough
2778  * leaf entries, the aging carries them over to the next generation in
2779  * walk_pmd_range(); the eviction also report them when walking the rmap
2780  * in lru_gen_look_around().
2781  *
2782  * For future optimizations:
2783  * 1. It's not necessary to keep both filters all the time. The spare one can be
2784  *    freed after the RCU grace period and reallocated if needed again.
2785  * 2. And when reallocating, it's worth scaling its size according to the number
2786  *    of inserted entries in the other filter, to reduce the memory overhead on
2787  *    small systems and false positives on large systems.
2788  * 3. Jenkins' hash function is an alternative to Knuth's.
2789  */
2790 #define BLOOM_FILTER_SHIFT	15
2791 
filter_gen_from_seq(unsigned long seq)2792 static inline int filter_gen_from_seq(unsigned long seq)
2793 {
2794 	return seq % NR_BLOOM_FILTERS;
2795 }
2796 
get_item_key(void * item,int * key)2797 static void get_item_key(void *item, int *key)
2798 {
2799 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2800 
2801 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2802 
2803 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2804 	key[1] = hash >> BLOOM_FILTER_SHIFT;
2805 }
2806 
test_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2807 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2808 			      void *item)
2809 {
2810 	int key[2];
2811 	unsigned long *filter;
2812 	int gen = filter_gen_from_seq(seq);
2813 
2814 	filter = READ_ONCE(mm_state->filters[gen]);
2815 	if (!filter)
2816 		return true;
2817 
2818 	get_item_key(item, key);
2819 
2820 	return test_bit(key[0], filter) && test_bit(key[1], filter);
2821 }
2822 
update_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2823 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2824 				void *item)
2825 {
2826 	int key[2];
2827 	unsigned long *filter;
2828 	int gen = filter_gen_from_seq(seq);
2829 
2830 	filter = READ_ONCE(mm_state->filters[gen]);
2831 	if (!filter)
2832 		return;
2833 
2834 	get_item_key(item, key);
2835 
2836 	if (!test_bit(key[0], filter))
2837 		set_bit(key[0], filter);
2838 	if (!test_bit(key[1], filter))
2839 		set_bit(key[1], filter);
2840 }
2841 
reset_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq)2842 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2843 {
2844 	unsigned long *filter;
2845 	int gen = filter_gen_from_seq(seq);
2846 
2847 	filter = mm_state->filters[gen];
2848 	if (filter) {
2849 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2850 		return;
2851 	}
2852 
2853 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2854 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2855 	WRITE_ONCE(mm_state->filters[gen], filter);
2856 }
2857 
2858 /******************************************************************************
2859  *                          mm_struct list
2860  ******************************************************************************/
2861 
2862 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2863 
get_mm_list(struct mem_cgroup * memcg)2864 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2865 {
2866 	static struct lru_gen_mm_list mm_list = {
2867 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2868 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2869 	};
2870 
2871 #ifdef CONFIG_MEMCG
2872 	if (memcg)
2873 		return &memcg->mm_list;
2874 #endif
2875 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2876 
2877 	return &mm_list;
2878 }
2879 
get_mm_state(struct lruvec * lruvec)2880 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2881 {
2882 	return &lruvec->mm_state;
2883 }
2884 
get_next_mm(struct lru_gen_mm_walk * walk)2885 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2886 {
2887 	int key;
2888 	struct mm_struct *mm;
2889 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2890 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2891 
2892 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2893 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2894 
2895 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2896 		return NULL;
2897 
2898 	clear_bit(key, &mm->lru_gen.bitmap);
2899 
2900 	return mmget_not_zero(mm) ? mm : NULL;
2901 }
2902 
lru_gen_add_mm(struct mm_struct * mm)2903 void lru_gen_add_mm(struct mm_struct *mm)
2904 {
2905 	int nid;
2906 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2907 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2908 
2909 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2910 #ifdef CONFIG_MEMCG
2911 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2912 	mm->lru_gen.memcg = memcg;
2913 #endif
2914 	spin_lock(&mm_list->lock);
2915 
2916 	for_each_node_state(nid, N_MEMORY) {
2917 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2918 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2919 
2920 		/* the first addition since the last iteration */
2921 		if (mm_state->tail == &mm_list->fifo)
2922 			mm_state->tail = &mm->lru_gen.list;
2923 	}
2924 
2925 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2926 
2927 	spin_unlock(&mm_list->lock);
2928 }
2929 
lru_gen_del_mm(struct mm_struct * mm)2930 void lru_gen_del_mm(struct mm_struct *mm)
2931 {
2932 	int nid;
2933 	struct lru_gen_mm_list *mm_list;
2934 	struct mem_cgroup *memcg = NULL;
2935 
2936 	if (list_empty(&mm->lru_gen.list))
2937 		return;
2938 
2939 #ifdef CONFIG_MEMCG
2940 	memcg = mm->lru_gen.memcg;
2941 #endif
2942 	mm_list = get_mm_list(memcg);
2943 
2944 	spin_lock(&mm_list->lock);
2945 
2946 	for_each_node(nid) {
2947 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2948 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2949 
2950 		/* where the current iteration continues after */
2951 		if (mm_state->head == &mm->lru_gen.list)
2952 			mm_state->head = mm_state->head->prev;
2953 
2954 		/* where the last iteration ended before */
2955 		if (mm_state->tail == &mm->lru_gen.list)
2956 			mm_state->tail = mm_state->tail->next;
2957 	}
2958 
2959 	list_del_init(&mm->lru_gen.list);
2960 
2961 	spin_unlock(&mm_list->lock);
2962 
2963 #ifdef CONFIG_MEMCG
2964 	mem_cgroup_put(mm->lru_gen.memcg);
2965 	mm->lru_gen.memcg = NULL;
2966 #endif
2967 }
2968 
2969 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)2970 void lru_gen_migrate_mm(struct mm_struct *mm)
2971 {
2972 	struct mem_cgroup *memcg;
2973 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2974 
2975 	VM_WARN_ON_ONCE(task->mm != mm);
2976 	lockdep_assert_held(&task->alloc_lock);
2977 
2978 	/* for mm_update_next_owner() */
2979 	if (mem_cgroup_disabled())
2980 		return;
2981 
2982 	/* migration can happen before addition */
2983 	if (!mm->lru_gen.memcg)
2984 		return;
2985 
2986 	rcu_read_lock();
2987 	memcg = mem_cgroup_from_task(task);
2988 	rcu_read_unlock();
2989 	if (memcg == mm->lru_gen.memcg)
2990 		return;
2991 
2992 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2993 
2994 	lru_gen_del_mm(mm);
2995 	lru_gen_add_mm(mm);
2996 }
2997 #endif
2998 
2999 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
3000 
get_mm_list(struct mem_cgroup * memcg)3001 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3002 {
3003 	return NULL;
3004 }
3005 
get_mm_state(struct lruvec * lruvec)3006 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
3007 {
3008 	return NULL;
3009 }
3010 
get_next_mm(struct lru_gen_mm_walk * walk)3011 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
3012 {
3013 	return NULL;
3014 }
3015 
3016 #endif
3017 
reset_mm_stats(struct lru_gen_mm_walk * walk,bool last)3018 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
3019 {
3020 	int i;
3021 	int hist;
3022 	struct lruvec *lruvec = walk->lruvec;
3023 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3024 
3025 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3026 
3027 	hist = lru_hist_from_seq(walk->seq);
3028 
3029 	for (i = 0; i < NR_MM_STATS; i++) {
3030 		WRITE_ONCE(mm_state->stats[hist][i],
3031 			   mm_state->stats[hist][i] + walk->mm_stats[i]);
3032 		walk->mm_stats[i] = 0;
3033 	}
3034 
3035 	if (NR_HIST_GENS > 1 && last) {
3036 		hist = lru_hist_from_seq(walk->seq + 1);
3037 
3038 		for (i = 0; i < NR_MM_STATS; i++)
3039 			WRITE_ONCE(mm_state->stats[hist][i], 0);
3040 	}
3041 }
3042 
iterate_mm_list(struct lru_gen_mm_walk * walk,struct mm_struct ** iter)3043 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
3044 {
3045 	bool first = false;
3046 	bool last = false;
3047 	struct mm_struct *mm = NULL;
3048 	struct lruvec *lruvec = walk->lruvec;
3049 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3050 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3051 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3052 
3053 	/*
3054 	 * mm_state->seq is incremented after each iteration of mm_list. There
3055 	 * are three interesting cases for this page table walker:
3056 	 * 1. It tries to start a new iteration with a stale max_seq: there is
3057 	 *    nothing left to do.
3058 	 * 2. It started the next iteration: it needs to reset the Bloom filter
3059 	 *    so that a fresh set of PTE tables can be recorded.
3060 	 * 3. It ended the current iteration: it needs to reset the mm stats
3061 	 *    counters and tell its caller to increment max_seq.
3062 	 */
3063 	spin_lock(&mm_list->lock);
3064 
3065 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
3066 
3067 	if (walk->seq <= mm_state->seq)
3068 		goto done;
3069 
3070 	if (!mm_state->head)
3071 		mm_state->head = &mm_list->fifo;
3072 
3073 	if (mm_state->head == &mm_list->fifo)
3074 		first = true;
3075 
3076 	do {
3077 		mm_state->head = mm_state->head->next;
3078 		if (mm_state->head == &mm_list->fifo) {
3079 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3080 			last = true;
3081 			break;
3082 		}
3083 
3084 		/* force scan for those added after the last iteration */
3085 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3086 			mm_state->tail = mm_state->head->next;
3087 			walk->force_scan = true;
3088 		}
3089 	} while (!(mm = get_next_mm(walk)));
3090 done:
3091 	if (*iter || last)
3092 		reset_mm_stats(walk, last);
3093 
3094 	spin_unlock(&mm_list->lock);
3095 
3096 	if (mm && first)
3097 		reset_bloom_filter(mm_state, walk->seq + 1);
3098 
3099 	if (*iter)
3100 		mmput_async(*iter);
3101 
3102 	*iter = mm;
3103 
3104 	return last;
3105 }
3106 
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long seq)3107 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3108 {
3109 	bool success = false;
3110 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3111 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3112 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3113 
3114 	spin_lock(&mm_list->lock);
3115 
3116 	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3117 
3118 	if (seq > mm_state->seq) {
3119 		mm_state->head = NULL;
3120 		mm_state->tail = NULL;
3121 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3122 		success = true;
3123 	}
3124 
3125 	spin_unlock(&mm_list->lock);
3126 
3127 	return success;
3128 }
3129 
3130 /******************************************************************************
3131  *                          PID controller
3132  ******************************************************************************/
3133 
3134 /*
3135  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3136  *
3137  * The P term is refaulted/(evicted+protected) from a tier in the generation
3138  * currently being evicted; the I term is the exponential moving average of the
3139  * P term over the generations previously evicted, using the smoothing factor
3140  * 1/2; the D term isn't supported.
3141  *
3142  * The setpoint (SP) is always the first tier of one type; the process variable
3143  * (PV) is either any tier of the other type or any other tier of the same
3144  * type.
3145  *
3146  * The error is the difference between the SP and the PV; the correction is to
3147  * turn off protection when SP>PV or turn on protection when SP<PV.
3148  *
3149  * For future optimizations:
3150  * 1. The D term may discount the other two terms over time so that long-lived
3151  *    generations can resist stale information.
3152  */
3153 struct ctrl_pos {
3154 	unsigned long refaulted;
3155 	unsigned long total;
3156 	int gain;
3157 };
3158 
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3159 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3160 			  struct ctrl_pos *pos)
3161 {
3162 	int i;
3163 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3164 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3165 
3166 	pos->gain = gain;
3167 	pos->refaulted = pos->total = 0;
3168 
3169 	for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) {
3170 		pos->refaulted += lrugen->avg_refaulted[type][i] +
3171 				  atomic_long_read(&lrugen->refaulted[hist][type][i]);
3172 		pos->total += lrugen->avg_total[type][i] +
3173 			      lrugen->protected[hist][type][i] +
3174 			      atomic_long_read(&lrugen->evicted[hist][type][i]);
3175 	}
3176 }
3177 
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3178 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3179 {
3180 	int hist, tier;
3181 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3182 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3183 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3184 
3185 	lockdep_assert_held(&lruvec->lru_lock);
3186 
3187 	if (!carryover && !clear)
3188 		return;
3189 
3190 	hist = lru_hist_from_seq(seq);
3191 
3192 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3193 		if (carryover) {
3194 			unsigned long sum;
3195 
3196 			sum = lrugen->avg_refaulted[type][tier] +
3197 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3198 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3199 
3200 			sum = lrugen->avg_total[type][tier] +
3201 			      lrugen->protected[hist][type][tier] +
3202 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3203 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3204 		}
3205 
3206 		if (clear) {
3207 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3208 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3209 			WRITE_ONCE(lrugen->protected[hist][type][tier], 0);
3210 		}
3211 	}
3212 }
3213 
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3214 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3215 {
3216 	/*
3217 	 * Return true if the PV has a limited number of refaults or a lower
3218 	 * refaulted/total than the SP.
3219 	 */
3220 	return pv->refaulted < MIN_LRU_BATCH ||
3221 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3222 	       (sp->refaulted + 1) * pv->total * pv->gain;
3223 }
3224 
3225 /******************************************************************************
3226  *                          the aging
3227  ******************************************************************************/
3228 
3229 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3230 static int folio_update_gen(struct folio *folio, int gen)
3231 {
3232 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f);
3233 
3234 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3235 
3236 	/* see the comment on LRU_REFS_FLAGS */
3237 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
3238 		set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced));
3239 		return -1;
3240 	}
3241 
3242 	do {
3243 		/* lru_gen_del_folio() has isolated this page? */
3244 		if (!(old_flags & LRU_GEN_MASK))
3245 			return -1;
3246 
3247 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3248 		new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset);
3249 	} while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags));
3250 
3251 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3252 }
3253 
3254 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3255 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3256 {
3257 	int type = folio_is_file_lru(folio);
3258 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3259 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3260 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f);
3261 
3262 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3263 
3264 	do {
3265 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3266 		/* folio_update_gen() has promoted this page? */
3267 		if (new_gen >= 0 && new_gen != old_gen)
3268 			return new_gen;
3269 
3270 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3271 
3272 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3273 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3274 		/* for folio_end_writeback() */
3275 		if (reclaiming)
3276 			new_flags |= BIT(PG_reclaim);
3277 	} while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags));
3278 
3279 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3280 
3281 	return new_gen;
3282 }
3283 
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3284 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3285 			      int old_gen, int new_gen)
3286 {
3287 	int type = folio_is_file_lru(folio);
3288 	int zone = folio_zonenum(folio);
3289 	int delta = folio_nr_pages(folio);
3290 
3291 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3292 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3293 
3294 	walk->batched++;
3295 
3296 	walk->nr_pages[old_gen][type][zone] -= delta;
3297 	walk->nr_pages[new_gen][type][zone] += delta;
3298 }
3299 
reset_batch_size(struct lru_gen_mm_walk * walk)3300 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3301 {
3302 	int gen, type, zone;
3303 	struct lruvec *lruvec = walk->lruvec;
3304 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3305 
3306 	walk->batched = 0;
3307 
3308 	for_each_gen_type_zone(gen, type, zone) {
3309 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3310 		int delta = walk->nr_pages[gen][type][zone];
3311 
3312 		if (!delta)
3313 			continue;
3314 
3315 		walk->nr_pages[gen][type][zone] = 0;
3316 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3317 			   lrugen->nr_pages[gen][type][zone] + delta);
3318 
3319 		if (lru_gen_is_active(lruvec, gen))
3320 			lru += LRU_ACTIVE;
3321 		__update_lru_size(lruvec, lru, zone, delta);
3322 	}
3323 }
3324 
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3325 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3326 {
3327 	struct address_space *mapping;
3328 	struct vm_area_struct *vma = args->vma;
3329 	struct lru_gen_mm_walk *walk = args->private;
3330 
3331 	if (!vma_is_accessible(vma))
3332 		return true;
3333 
3334 	if (is_vm_hugetlb_page(vma))
3335 		return true;
3336 
3337 	if (!vma_has_recency(vma))
3338 		return true;
3339 
3340 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3341 		return true;
3342 
3343 	if (vma == get_gate_vma(vma->vm_mm))
3344 		return true;
3345 
3346 	if (vma_is_anonymous(vma))
3347 		return !walk->swappiness;
3348 
3349 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3350 		return true;
3351 
3352 	mapping = vma->vm_file->f_mapping;
3353 	if (mapping_unevictable(mapping))
3354 		return true;
3355 
3356 	if (shmem_mapping(mapping))
3357 		return !walk->swappiness;
3358 
3359 	if (walk->swappiness > MAX_SWAPPINESS)
3360 		return true;
3361 
3362 	/* to exclude special mappings like dax, etc. */
3363 	return !mapping->a_ops->read_folio;
3364 }
3365 
3366 /*
3367  * Some userspace memory allocators map many single-page VMAs. Instead of
3368  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3369  * table to reduce zigzags and improve cache performance.
3370  */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3371 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3372 			 unsigned long *vm_start, unsigned long *vm_end)
3373 {
3374 	unsigned long start = round_up(*vm_end, size);
3375 	unsigned long end = (start | ~mask) + 1;
3376 	VMA_ITERATOR(vmi, args->mm, start);
3377 
3378 	VM_WARN_ON_ONCE(mask & size);
3379 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3380 
3381 	for_each_vma(vmi, args->vma) {
3382 		if (end && end <= args->vma->vm_start)
3383 			return false;
3384 
3385 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3386 			continue;
3387 
3388 		*vm_start = max(start, args->vma->vm_start);
3389 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3390 
3391 		return true;
3392 	}
3393 
3394 	return false;
3395 }
3396 
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3397 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3398 				 struct pglist_data *pgdat)
3399 {
3400 	unsigned long pfn = pte_pfn(pte);
3401 
3402 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3403 
3404 	if (!pte_present(pte) || is_zero_pfn(pfn))
3405 		return -1;
3406 
3407 	if (WARN_ON_ONCE(pte_special(pte)))
3408 		return -1;
3409 
3410 	if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3411 		return -1;
3412 
3413 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3414 		return -1;
3415 
3416 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3417 		return -1;
3418 
3419 	return pfn;
3420 }
3421 
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3422 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3423 				 struct pglist_data *pgdat)
3424 {
3425 	unsigned long pfn = pmd_pfn(pmd);
3426 
3427 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3428 
3429 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3430 		return -1;
3431 
3432 	if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3433 		return -1;
3434 
3435 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3436 		return -1;
3437 
3438 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3439 		return -1;
3440 
3441 	return pfn;
3442 }
3443 
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat)3444 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3445 				   struct pglist_data *pgdat)
3446 {
3447 	struct folio *folio = pfn_folio(pfn);
3448 
3449 	if (folio_lru_gen(folio) < 0)
3450 		return NULL;
3451 
3452 	if (folio_nid(folio) != pgdat->node_id)
3453 		return NULL;
3454 
3455 	if (folio_memcg(folio) != memcg)
3456 		return NULL;
3457 
3458 	return folio;
3459 }
3460 
suitable_to_scan(int total,int young)3461 static bool suitable_to_scan(int total, int young)
3462 {
3463 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3464 
3465 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3466 	return young * n >= total;
3467 }
3468 
walk_update_folio(struct lru_gen_mm_walk * walk,struct folio * folio,int new_gen,bool dirty)3469 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio,
3470 			      int new_gen, bool dirty)
3471 {
3472 	int old_gen;
3473 
3474 	if (!folio)
3475 		return;
3476 
3477 	if (dirty && !folio_test_dirty(folio) &&
3478 	    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3479 	      !folio_test_swapcache(folio)))
3480 		folio_mark_dirty(folio);
3481 
3482 	if (walk) {
3483 		old_gen = folio_update_gen(folio, new_gen);
3484 		if (old_gen >= 0 && old_gen != new_gen)
3485 			update_batch_size(walk, folio, old_gen, new_gen);
3486 	} else if (lru_gen_set_refs(folio)) {
3487 		old_gen = folio_lru_gen(folio);
3488 		if (old_gen >= 0 && old_gen != new_gen)
3489 			folio_activate(folio);
3490 	}
3491 }
3492 
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3493 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3494 			   struct mm_walk *args)
3495 {
3496 	int i;
3497 	bool dirty;
3498 	pte_t *pte;
3499 	spinlock_t *ptl;
3500 	unsigned long addr;
3501 	int total = 0;
3502 	int young = 0;
3503 	struct folio *last = NULL;
3504 	struct lru_gen_mm_walk *walk = args->private;
3505 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3506 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3507 	DEFINE_MAX_SEQ(walk->lruvec);
3508 	int gen = lru_gen_from_seq(max_seq);
3509 	pmd_t pmdval;
3510 
3511 	pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl);
3512 	if (!pte)
3513 		return false;
3514 
3515 	if (!spin_trylock(ptl)) {
3516 		pte_unmap(pte);
3517 		return true;
3518 	}
3519 
3520 	if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3521 		pte_unmap_unlock(pte, ptl);
3522 		return false;
3523 	}
3524 
3525 	lazy_mmu_mode_enable();
3526 restart:
3527 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3528 		unsigned long pfn;
3529 		struct folio *folio;
3530 		pte_t ptent = ptep_get(pte + i);
3531 
3532 		total++;
3533 		walk->mm_stats[MM_LEAF_TOTAL]++;
3534 
3535 		pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3536 		if (pfn == -1)
3537 			continue;
3538 
3539 		folio = get_pfn_folio(pfn, memcg, pgdat);
3540 		if (!folio)
3541 			continue;
3542 
3543 		if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3544 			continue;
3545 
3546 		if (last != folio) {
3547 			walk_update_folio(walk, last, gen, dirty);
3548 
3549 			last = folio;
3550 			dirty = false;
3551 		}
3552 
3553 		if (pte_dirty(ptent))
3554 			dirty = true;
3555 
3556 		young++;
3557 		walk->mm_stats[MM_LEAF_YOUNG]++;
3558 	}
3559 
3560 	walk_update_folio(walk, last, gen, dirty);
3561 	last = NULL;
3562 
3563 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3564 		goto restart;
3565 
3566 	lazy_mmu_mode_disable();
3567 	pte_unmap_unlock(pte, ptl);
3568 
3569 	return suitable_to_scan(total, young);
3570 }
3571 
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)3572 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3573 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3574 {
3575 	int i;
3576 	bool dirty;
3577 	pmd_t *pmd;
3578 	spinlock_t *ptl;
3579 	struct folio *last = NULL;
3580 	struct lru_gen_mm_walk *walk = args->private;
3581 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3582 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3583 	DEFINE_MAX_SEQ(walk->lruvec);
3584 	int gen = lru_gen_from_seq(max_seq);
3585 
3586 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3587 
3588 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3589 	if (*first == -1) {
3590 		*first = addr;
3591 		bitmap_zero(bitmap, MIN_LRU_BATCH);
3592 		return;
3593 	}
3594 
3595 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3596 	if (i && i <= MIN_LRU_BATCH) {
3597 		__set_bit(i - 1, bitmap);
3598 		return;
3599 	}
3600 
3601 	pmd = pmd_offset(pud, *first);
3602 
3603 	ptl = pmd_lockptr(args->mm, pmd);
3604 	if (!spin_trylock(ptl))
3605 		goto done;
3606 
3607 	lazy_mmu_mode_enable();
3608 
3609 	do {
3610 		unsigned long pfn;
3611 		struct folio *folio;
3612 
3613 		/* don't round down the first address */
3614 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3615 
3616 		if (!pmd_present(pmd[i]))
3617 			goto next;
3618 
3619 		if (!pmd_trans_huge(pmd[i])) {
3620 			if (!walk->force_scan && should_clear_pmd_young() &&
3621 			    !mm_has_notifiers(args->mm))
3622 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3623 			goto next;
3624 		}
3625 
3626 		pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3627 		if (pfn == -1)
3628 			goto next;
3629 
3630 		folio = get_pfn_folio(pfn, memcg, pgdat);
3631 		if (!folio)
3632 			goto next;
3633 
3634 		if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3635 			goto next;
3636 
3637 		if (last != folio) {
3638 			walk_update_folio(walk, last, gen, dirty);
3639 
3640 			last = folio;
3641 			dirty = false;
3642 		}
3643 
3644 		if (pmd_dirty(pmd[i]))
3645 			dirty = true;
3646 
3647 		walk->mm_stats[MM_LEAF_YOUNG]++;
3648 next:
3649 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3650 	} while (i <= MIN_LRU_BATCH);
3651 
3652 	walk_update_folio(walk, last, gen, dirty);
3653 
3654 	lazy_mmu_mode_disable();
3655 	spin_unlock(ptl);
3656 done:
3657 	*first = -1;
3658 }
3659 
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)3660 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3661 			   struct mm_walk *args)
3662 {
3663 	int i;
3664 	pmd_t *pmd;
3665 	unsigned long next;
3666 	unsigned long addr;
3667 	struct vm_area_struct *vma;
3668 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3669 	unsigned long first = -1;
3670 	struct lru_gen_mm_walk *walk = args->private;
3671 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3672 
3673 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3674 
3675 	/*
3676 	 * Finish an entire PMD in two passes: the first only reaches to PTE
3677 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3678 	 * the PMD lock to clear the accessed bit in PMD entries.
3679 	 */
3680 	pmd = pmd_offset(pud, start & PUD_MASK);
3681 restart:
3682 	/* walk_pte_range() may call get_next_vma() */
3683 	vma = args->vma;
3684 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3685 		pmd_t val = pmdp_get_lockless(pmd + i);
3686 
3687 		next = pmd_addr_end(addr, end);
3688 
3689 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3690 			walk->mm_stats[MM_LEAF_TOTAL]++;
3691 			continue;
3692 		}
3693 
3694 		if (pmd_trans_huge(val)) {
3695 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3696 			unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3697 
3698 			walk->mm_stats[MM_LEAF_TOTAL]++;
3699 
3700 			if (pfn != -1)
3701 				walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3702 			continue;
3703 		}
3704 
3705 		if (!walk->force_scan && should_clear_pmd_young() &&
3706 		    !mm_has_notifiers(args->mm)) {
3707 			if (!pmd_young(val))
3708 				continue;
3709 
3710 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3711 		}
3712 
3713 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3714 			continue;
3715 
3716 		walk->mm_stats[MM_NONLEAF_FOUND]++;
3717 
3718 		if (!walk_pte_range(&val, addr, next, args))
3719 			continue;
3720 
3721 		walk->mm_stats[MM_NONLEAF_ADDED]++;
3722 
3723 		/* carry over to the next generation */
3724 		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3725 	}
3726 
3727 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3728 
3729 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3730 		goto restart;
3731 }
3732 
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)3733 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3734 			  struct mm_walk *args)
3735 {
3736 	int i;
3737 	pud_t *pud;
3738 	unsigned long addr;
3739 	unsigned long next;
3740 	struct lru_gen_mm_walk *walk = args->private;
3741 
3742 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3743 
3744 	pud = pud_offset(p4d, start & P4D_MASK);
3745 restart:
3746 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3747 		pud_t val = pudp_get(pud + i);
3748 
3749 		next = pud_addr_end(addr, end);
3750 
3751 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3752 			continue;
3753 
3754 		walk_pmd_range(&val, addr, next, args);
3755 
3756 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3757 			end = (addr | ~PUD_MASK) + 1;
3758 			goto done;
3759 		}
3760 	}
3761 
3762 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3763 		goto restart;
3764 
3765 	end = round_up(end, P4D_SIZE);
3766 done:
3767 	if (!end || !args->vma)
3768 		return 1;
3769 
3770 	walk->next_addr = max(end, args->vma->vm_start);
3771 
3772 	return -EAGAIN;
3773 }
3774 
walk_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3775 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3776 {
3777 	static const struct mm_walk_ops mm_walk_ops = {
3778 		.test_walk = should_skip_vma,
3779 		.p4d_entry = walk_pud_range,
3780 		.walk_lock = PGWALK_RDLOCK,
3781 	};
3782 	int err;
3783 	struct lruvec *lruvec = walk->lruvec;
3784 
3785 	walk->next_addr = FIRST_USER_ADDRESS;
3786 
3787 	do {
3788 		DEFINE_MAX_SEQ(lruvec);
3789 
3790 		err = -EBUSY;
3791 
3792 		/* another thread might have called inc_max_seq() */
3793 		if (walk->seq != max_seq)
3794 			break;
3795 
3796 		/* the caller might be holding the lock for write */
3797 		if (mmap_read_trylock(mm)) {
3798 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3799 
3800 			mmap_read_unlock(mm);
3801 		}
3802 
3803 		if (walk->batched) {
3804 			spin_lock_irq(&lruvec->lru_lock);
3805 			reset_batch_size(walk);
3806 			spin_unlock_irq(&lruvec->lru_lock);
3807 		}
3808 
3809 		cond_resched();
3810 	} while (err == -EAGAIN);
3811 }
3812 
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)3813 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3814 {
3815 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3816 
3817 	if (pgdat && current_is_kswapd()) {
3818 		VM_WARN_ON_ONCE(walk);
3819 
3820 		walk = &pgdat->mm_walk;
3821 	} else if (!walk && force_alloc) {
3822 		VM_WARN_ON_ONCE(current_is_kswapd());
3823 
3824 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3825 	}
3826 
3827 	current->reclaim_state->mm_walk = walk;
3828 
3829 	return walk;
3830 }
3831 
clear_mm_walk(void)3832 static void clear_mm_walk(void)
3833 {
3834 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3835 
3836 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3837 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3838 
3839 	current->reclaim_state->mm_walk = NULL;
3840 
3841 	if (!current_is_kswapd())
3842 		kfree(walk);
3843 }
3844 
inc_min_seq(struct lruvec * lruvec,int type,int swappiness)3845 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness)
3846 {
3847 	int zone;
3848 	int remaining = MAX_LRU_BATCH;
3849 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3850 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3851 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3852 
3853 	/* For file type, skip the check if swappiness is anon only */
3854 	if (type && (swappiness == SWAPPINESS_ANON_ONLY))
3855 		goto done;
3856 
3857 	/* For anon type, skip the check if swappiness is zero (file only) */
3858 	if (!type && !swappiness)
3859 		goto done;
3860 
3861 	/* prevent cold/hot inversion if the type is evictable */
3862 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3863 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3864 
3865 		while (!list_empty(head)) {
3866 			struct folio *folio = lru_to_folio(head);
3867 			int refs = folio_lru_refs(folio);
3868 			bool workingset = folio_test_workingset(folio);
3869 
3870 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3871 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3872 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3873 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3874 
3875 			new_gen = folio_inc_gen(lruvec, folio, false);
3876 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3877 
3878 			/* don't count the workingset being lazily promoted */
3879 			if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
3880 				int tier = lru_tier_from_refs(refs, workingset);
3881 				int delta = folio_nr_pages(folio);
3882 
3883 				WRITE_ONCE(lrugen->protected[hist][type][tier],
3884 					   lrugen->protected[hist][type][tier] + delta);
3885 			}
3886 
3887 			if (!--remaining)
3888 				return false;
3889 		}
3890 	}
3891 done:
3892 	reset_ctrl_pos(lruvec, type, true);
3893 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3894 
3895 	return true;
3896 }
3897 
try_to_inc_min_seq(struct lruvec * lruvec,int swappiness)3898 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness)
3899 {
3900 	int gen, type, zone;
3901 	bool success = false;
3902 	bool seq_inc_flag = false;
3903 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3904 	DEFINE_MIN_SEQ(lruvec);
3905 
3906 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3907 
3908 	/* find the oldest populated generation */
3909 	for_each_evictable_type(type, swappiness) {
3910 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3911 			gen = lru_gen_from_seq(min_seq[type]);
3912 
3913 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3914 				if (!list_empty(&lrugen->folios[gen][type][zone]))
3915 					goto next;
3916 			}
3917 
3918 			min_seq[type]++;
3919 			seq_inc_flag = true;
3920 		}
3921 next:
3922 		;
3923 	}
3924 
3925 	/*
3926 	 * If min_seq[type] of both anonymous and file is not increased,
3927 	 * we can directly return false to avoid unnecessary checking
3928 	 * overhead later.
3929 	 */
3930 	if (!seq_inc_flag)
3931 		return success;
3932 
3933 	/* see the comment on lru_gen_folio */
3934 	if (swappiness && swappiness <= MAX_SWAPPINESS) {
3935 		unsigned long seq = lrugen->max_seq - MIN_NR_GENS;
3936 
3937 		if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq)
3938 			min_seq[LRU_GEN_ANON] = seq;
3939 		else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq)
3940 			min_seq[LRU_GEN_FILE] = seq;
3941 	}
3942 
3943 	for_each_evictable_type(type, swappiness) {
3944 		if (min_seq[type] <= lrugen->min_seq[type])
3945 			continue;
3946 
3947 		reset_ctrl_pos(lruvec, type, true);
3948 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3949 		success = true;
3950 	}
3951 
3952 	return success;
3953 }
3954 
inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness)3955 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness)
3956 {
3957 	bool success;
3958 	int prev, next;
3959 	int type, zone;
3960 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3961 restart:
3962 	if (seq < READ_ONCE(lrugen->max_seq))
3963 		return false;
3964 
3965 	spin_lock_irq(&lruvec->lru_lock);
3966 
3967 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3968 
3969 	success = seq == lrugen->max_seq;
3970 	if (!success)
3971 		goto unlock;
3972 
3973 	for (type = 0; type < ANON_AND_FILE; type++) {
3974 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3975 			continue;
3976 
3977 		if (inc_min_seq(lruvec, type, swappiness))
3978 			continue;
3979 
3980 		spin_unlock_irq(&lruvec->lru_lock);
3981 		cond_resched();
3982 		goto restart;
3983 	}
3984 
3985 	/*
3986 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3987 	 * the current max_seq need to be covered, since max_seq+1 can overlap
3988 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3989 	 * overlap, cold/hot inversion happens.
3990 	 */
3991 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3992 	next = lru_gen_from_seq(lrugen->max_seq + 1);
3993 
3994 	for (type = 0; type < ANON_AND_FILE; type++) {
3995 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3996 			enum lru_list lru = type * LRU_INACTIVE_FILE;
3997 			long delta = lrugen->nr_pages[prev][type][zone] -
3998 				     lrugen->nr_pages[next][type][zone];
3999 
4000 			if (!delta)
4001 				continue;
4002 
4003 			__update_lru_size(lruvec, lru, zone, delta);
4004 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4005 		}
4006 	}
4007 
4008 	for (type = 0; type < ANON_AND_FILE; type++)
4009 		reset_ctrl_pos(lruvec, type, false);
4010 
4011 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4012 	/* make sure preceding modifications appear */
4013 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4014 unlock:
4015 	spin_unlock_irq(&lruvec->lru_lock);
4016 
4017 	return success;
4018 }
4019 
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)4020 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
4021 			       int swappiness, bool force_scan)
4022 {
4023 	bool success;
4024 	struct lru_gen_mm_walk *walk;
4025 	struct mm_struct *mm = NULL;
4026 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4027 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4028 
4029 	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
4030 
4031 	if (!mm_state)
4032 		return inc_max_seq(lruvec, seq, swappiness);
4033 
4034 	/* see the comment in iterate_mm_list() */
4035 	if (seq <= READ_ONCE(mm_state->seq))
4036 		return false;
4037 
4038 	/*
4039 	 * If the hardware doesn't automatically set the accessed bit, fallback
4040 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4041 	 * handful of PTEs. Spreading the work out over a period of time usually
4042 	 * is less efficient, but it avoids bursty page faults.
4043 	 */
4044 	if (!should_walk_mmu()) {
4045 		success = iterate_mm_list_nowalk(lruvec, seq);
4046 		goto done;
4047 	}
4048 
4049 	walk = set_mm_walk(NULL, true);
4050 	if (!walk) {
4051 		success = iterate_mm_list_nowalk(lruvec, seq);
4052 		goto done;
4053 	}
4054 
4055 	walk->lruvec = lruvec;
4056 	walk->seq = seq;
4057 	walk->swappiness = swappiness;
4058 	walk->force_scan = force_scan;
4059 
4060 	do {
4061 		success = iterate_mm_list(walk, &mm);
4062 		if (mm)
4063 			walk_mm(mm, walk);
4064 	} while (mm);
4065 done:
4066 	if (success) {
4067 		success = inc_max_seq(lruvec, seq, swappiness);
4068 		WARN_ON_ONCE(!success);
4069 	}
4070 
4071 	return success;
4072 }
4073 
4074 /******************************************************************************
4075  *                          working set protection
4076  ******************************************************************************/
4077 
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)4078 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4079 {
4080 	int priority;
4081 	unsigned long reclaimable;
4082 
4083 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4084 		return;
4085 	/*
4086 	 * Determine the initial priority based on
4087 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4088 	 * where reclaimed_to_scanned_ratio = inactive / total.
4089 	 */
4090 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4091 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4092 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4093 
4094 	/* round down reclaimable and round up sc->nr_to_reclaim */
4095 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4096 
4097 	/*
4098 	 * The estimation is based on LRU pages only, so cap it to prevent
4099 	 * overshoots of shrinker objects by large margins.
4100 	 */
4101 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4102 }
4103 
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)4104 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4105 {
4106 	int gen, type, zone;
4107 	unsigned long total = 0;
4108 	int swappiness = get_swappiness(lruvec, sc);
4109 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4110 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4111 	DEFINE_MAX_SEQ(lruvec);
4112 	DEFINE_MIN_SEQ(lruvec);
4113 
4114 	for_each_evictable_type(type, swappiness) {
4115 		unsigned long seq;
4116 
4117 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4118 			gen = lru_gen_from_seq(seq);
4119 
4120 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4121 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4122 		}
4123 	}
4124 
4125 	/* whether the size is big enough to be helpful */
4126 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4127 }
4128 
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4129 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4130 				  unsigned long min_ttl)
4131 {
4132 	int gen;
4133 	unsigned long birth;
4134 	int swappiness = get_swappiness(lruvec, sc);
4135 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4136 	DEFINE_MIN_SEQ(lruvec);
4137 
4138 	if (mem_cgroup_below_min(NULL, memcg))
4139 		return false;
4140 
4141 	if (!lruvec_is_sizable(lruvec, sc))
4142 		return false;
4143 
4144 	gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness));
4145 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4146 
4147 	return time_is_before_jiffies(birth + min_ttl);
4148 }
4149 
4150 /* to protect the working set of the last N jiffies */
4151 static unsigned long lru_gen_min_ttl __read_mostly;
4152 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4153 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4154 {
4155 	struct mem_cgroup *memcg;
4156 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4157 	bool reclaimable = !min_ttl;
4158 
4159 	VM_WARN_ON_ONCE(!current_is_kswapd());
4160 
4161 	set_initial_priority(pgdat, sc);
4162 
4163 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4164 	do {
4165 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4166 
4167 		mem_cgroup_calculate_protection(NULL, memcg);
4168 
4169 		if (!reclaimable)
4170 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4171 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4172 
4173 	/*
4174 	 * The main goal is to OOM kill if every generation from all memcgs is
4175 	 * younger than min_ttl. However, another possibility is all memcgs are
4176 	 * either too small or below min.
4177 	 */
4178 	if (!reclaimable && mutex_trylock(&oom_lock)) {
4179 		struct oom_control oc = {
4180 			.gfp_mask = sc->gfp_mask,
4181 		};
4182 
4183 		out_of_memory(&oc);
4184 
4185 		mutex_unlock(&oom_lock);
4186 	}
4187 }
4188 
4189 /******************************************************************************
4190  *                          rmap/PT walk feedback
4191  ******************************************************************************/
4192 
4193 /*
4194  * This function exploits spatial locality when shrink_folio_list() walks the
4195  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4196  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4197  * the PTE table to the Bloom filter. This forms a feedback loop between the
4198  * eviction and the aging.
4199  */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4200 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4201 {
4202 	int i;
4203 	bool dirty;
4204 	unsigned long start;
4205 	unsigned long end;
4206 	struct lru_gen_mm_walk *walk;
4207 	struct folio *last = NULL;
4208 	int young = 1;
4209 	pte_t *pte = pvmw->pte;
4210 	unsigned long addr = pvmw->address;
4211 	struct vm_area_struct *vma = pvmw->vma;
4212 	struct folio *folio = pfn_folio(pvmw->pfn);
4213 	struct mem_cgroup *memcg = folio_memcg(folio);
4214 	struct pglist_data *pgdat = folio_pgdat(folio);
4215 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4216 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4217 	DEFINE_MAX_SEQ(lruvec);
4218 	int gen = lru_gen_from_seq(max_seq);
4219 
4220 	lockdep_assert_held(pvmw->ptl);
4221 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4222 
4223 	if (!ptep_clear_young_notify(vma, addr, pte))
4224 		return false;
4225 
4226 	if (spin_is_contended(pvmw->ptl))
4227 		return true;
4228 
4229 	/* exclude special VMAs containing anon pages from COW */
4230 	if (vma->vm_flags & VM_SPECIAL)
4231 		return true;
4232 
4233 	/* avoid taking the LRU lock under the PTL when possible */
4234 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4235 
4236 	start = max(addr & PMD_MASK, vma->vm_start);
4237 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4238 
4239 	if (end - start == PAGE_SIZE)
4240 		return true;
4241 
4242 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4243 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4244 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4245 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4246 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4247 		else {
4248 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4249 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4250 		}
4251 	}
4252 
4253 	lazy_mmu_mode_enable();
4254 
4255 	pte -= (addr - start) / PAGE_SIZE;
4256 
4257 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4258 		unsigned long pfn;
4259 		pte_t ptent = ptep_get(pte + i);
4260 
4261 		pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4262 		if (pfn == -1)
4263 			continue;
4264 
4265 		folio = get_pfn_folio(pfn, memcg, pgdat);
4266 		if (!folio)
4267 			continue;
4268 
4269 		if (!ptep_clear_young_notify(vma, addr, pte + i))
4270 			continue;
4271 
4272 		if (last != folio) {
4273 			walk_update_folio(walk, last, gen, dirty);
4274 
4275 			last = folio;
4276 			dirty = false;
4277 		}
4278 
4279 		if (pte_dirty(ptent))
4280 			dirty = true;
4281 
4282 		young++;
4283 	}
4284 
4285 	walk_update_folio(walk, last, gen, dirty);
4286 
4287 	lazy_mmu_mode_disable();
4288 
4289 	/* feedback from rmap walkers to page table walkers */
4290 	if (mm_state && suitable_to_scan(i, young))
4291 		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4292 
4293 	return true;
4294 }
4295 
4296 /******************************************************************************
4297  *                          memcg LRU
4298  ******************************************************************************/
4299 
4300 /* see the comment on MEMCG_NR_GENS */
4301 enum {
4302 	MEMCG_LRU_NOP,
4303 	MEMCG_LRU_HEAD,
4304 	MEMCG_LRU_TAIL,
4305 	MEMCG_LRU_OLD,
4306 	MEMCG_LRU_YOUNG,
4307 };
4308 
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4309 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4310 {
4311 	int seg;
4312 	int old, new;
4313 	unsigned long flags;
4314 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4315 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4316 
4317 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4318 
4319 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4320 
4321 	seg = 0;
4322 	new = old = lruvec->lrugen.gen;
4323 
4324 	/* see the comment on MEMCG_NR_GENS */
4325 	if (op == MEMCG_LRU_HEAD)
4326 		seg = MEMCG_LRU_HEAD;
4327 	else if (op == MEMCG_LRU_TAIL)
4328 		seg = MEMCG_LRU_TAIL;
4329 	else if (op == MEMCG_LRU_OLD)
4330 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4331 	else if (op == MEMCG_LRU_YOUNG)
4332 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4333 	else
4334 		VM_WARN_ON_ONCE(true);
4335 
4336 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4337 	WRITE_ONCE(lruvec->lrugen.gen, new);
4338 
4339 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4340 
4341 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4342 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4343 	else
4344 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4345 
4346 	pgdat->memcg_lru.nr_memcgs[old]--;
4347 	pgdat->memcg_lru.nr_memcgs[new]++;
4348 
4349 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4350 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4351 
4352 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4353 }
4354 
4355 #ifdef CONFIG_MEMCG
4356 
lru_gen_online_memcg(struct mem_cgroup * memcg)4357 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4358 {
4359 	int gen;
4360 	int nid;
4361 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4362 
4363 	for_each_node(nid) {
4364 		struct pglist_data *pgdat = NODE_DATA(nid);
4365 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4366 
4367 		spin_lock_irq(&pgdat->memcg_lru.lock);
4368 
4369 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4370 
4371 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4372 
4373 		lruvec->lrugen.gen = gen;
4374 
4375 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4376 		pgdat->memcg_lru.nr_memcgs[gen]++;
4377 
4378 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4379 	}
4380 }
4381 
lru_gen_offline_memcg(struct mem_cgroup * memcg)4382 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4383 {
4384 	int nid;
4385 
4386 	for_each_node(nid) {
4387 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4388 
4389 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4390 	}
4391 }
4392 
lru_gen_release_memcg(struct mem_cgroup * memcg)4393 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4394 {
4395 	int gen;
4396 	int nid;
4397 
4398 	for_each_node(nid) {
4399 		struct pglist_data *pgdat = NODE_DATA(nid);
4400 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4401 
4402 		spin_lock_irq(&pgdat->memcg_lru.lock);
4403 
4404 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4405 			goto unlock;
4406 
4407 		gen = lruvec->lrugen.gen;
4408 
4409 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4410 		pgdat->memcg_lru.nr_memcgs[gen]--;
4411 
4412 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4413 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4414 unlock:
4415 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4416 	}
4417 }
4418 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4419 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4420 {
4421 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4422 
4423 	/* see the comment on MEMCG_NR_GENS */
4424 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4425 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4426 }
4427 
4428 #endif /* CONFIG_MEMCG */
4429 
4430 /******************************************************************************
4431  *                          the eviction
4432  ******************************************************************************/
4433 
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4434 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4435 		       int tier_idx)
4436 {
4437 	bool success;
4438 	bool dirty, writeback;
4439 	int gen = folio_lru_gen(folio);
4440 	int type = folio_is_file_lru(folio);
4441 	int zone = folio_zonenum(folio);
4442 	int delta = folio_nr_pages(folio);
4443 	int refs = folio_lru_refs(folio);
4444 	bool workingset = folio_test_workingset(folio);
4445 	int tier = lru_tier_from_refs(refs, workingset);
4446 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4447 
4448 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4449 
4450 	/* unevictable */
4451 	if (!folio_evictable(folio)) {
4452 		success = lru_gen_del_folio(lruvec, folio, true);
4453 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4454 		folio_set_unevictable(folio);
4455 		lruvec_add_folio(lruvec, folio);
4456 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4457 		return true;
4458 	}
4459 
4460 	/* promoted */
4461 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4462 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4463 		return true;
4464 	}
4465 
4466 	/* protected */
4467 	if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) {
4468 		gen = folio_inc_gen(lruvec, folio, false);
4469 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4470 
4471 		/* don't count the workingset being lazily promoted */
4472 		if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
4473 			int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4474 
4475 			WRITE_ONCE(lrugen->protected[hist][type][tier],
4476 				   lrugen->protected[hist][type][tier] + delta);
4477 		}
4478 		return true;
4479 	}
4480 
4481 	/* ineligible */
4482 	if (zone > sc->reclaim_idx) {
4483 		gen = folio_inc_gen(lruvec, folio, false);
4484 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4485 		return true;
4486 	}
4487 
4488 	dirty = folio_test_dirty(folio);
4489 	writeback = folio_test_writeback(folio);
4490 	if (type == LRU_GEN_FILE && dirty) {
4491 		sc->nr.file_taken += delta;
4492 		if (!writeback)
4493 			sc->nr.unqueued_dirty += delta;
4494 	}
4495 
4496 	/* waiting for writeback */
4497 	if (writeback || (type == LRU_GEN_FILE && dirty)) {
4498 		gen = folio_inc_gen(lruvec, folio, true);
4499 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4500 		return true;
4501 	}
4502 
4503 	return false;
4504 }
4505 
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4506 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4507 {
4508 	bool success;
4509 
4510 	/* swap constrained */
4511 	if (!(sc->gfp_mask & __GFP_IO) &&
4512 	    (folio_test_dirty(folio) ||
4513 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4514 		return false;
4515 
4516 	/* raced with release_pages() */
4517 	if (!folio_try_get(folio))
4518 		return false;
4519 
4520 	/* raced with another isolation */
4521 	if (!folio_test_clear_lru(folio)) {
4522 		folio_put(folio);
4523 		return false;
4524 	}
4525 
4526 	/* see the comment on LRU_REFS_FLAGS */
4527 	if (!folio_test_referenced(folio))
4528 		set_mask_bits(&folio->flags.f, LRU_REFS_MASK, 0);
4529 
4530 	/* for shrink_folio_list() */
4531 	folio_clear_reclaim(folio);
4532 
4533 	success = lru_gen_del_folio(lruvec, folio, true);
4534 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4535 
4536 	return true;
4537 }
4538 
scan_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4539 static int scan_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4540 		       struct scan_control *sc, int type, int tier,
4541 		       struct list_head *list)
4542 {
4543 	int i;
4544 	int gen;
4545 	enum vm_event_item item;
4546 	int sorted = 0;
4547 	int scanned = 0;
4548 	int isolated = 0;
4549 	int skipped = 0;
4550 	int scan_batch = min(nr_to_scan, MAX_LRU_BATCH);
4551 	int remaining = scan_batch;
4552 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4553 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4554 
4555 	VM_WARN_ON_ONCE(!list_empty(list));
4556 
4557 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4558 		return 0;
4559 
4560 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4561 
4562 	for (i = MAX_NR_ZONES; i > 0; i--) {
4563 		LIST_HEAD(moved);
4564 		int skipped_zone = 0;
4565 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4566 		struct list_head *head = &lrugen->folios[gen][type][zone];
4567 
4568 		while (!list_empty(head)) {
4569 			struct folio *folio = lru_to_folio(head);
4570 			int delta = folio_nr_pages(folio);
4571 
4572 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4573 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4574 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4575 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4576 
4577 			scanned += delta;
4578 
4579 			if (sort_folio(lruvec, folio, sc, tier))
4580 				sorted += delta;
4581 			else if (isolate_folio(lruvec, folio, sc)) {
4582 				list_add(&folio->lru, list);
4583 				isolated += delta;
4584 			} else {
4585 				list_move(&folio->lru, &moved);
4586 				skipped_zone += delta;
4587 			}
4588 
4589 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4590 				break;
4591 		}
4592 
4593 		if (skipped_zone) {
4594 			list_splice(&moved, head);
4595 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4596 			skipped += skipped_zone;
4597 		}
4598 
4599 		if (!remaining || isolated >= MIN_LRU_BATCH)
4600 			break;
4601 	}
4602 
4603 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
4604 	if (!cgroup_reclaim(sc)) {
4605 		__count_vm_events(item, isolated);
4606 		__count_vm_events(PGREFILL, sorted);
4607 	}
4608 	count_memcg_events(memcg, item, isolated);
4609 	count_memcg_events(memcg, PGREFILL, sorted);
4610 	__count_vm_events(PGSCAN_ANON + type, isolated);
4611 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, scan_batch,
4612 				scanned, skipped, isolated,
4613 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4614 	if (type == LRU_GEN_FILE)
4615 		sc->nr.file_taken += isolated;
4616 	/*
4617 	 * There might not be eligible folios due to reclaim_idx. Check the
4618 	 * remaining to prevent livelock if it's not making progress.
4619 	 */
4620 	return isolated || !remaining ? scanned : 0;
4621 }
4622 
get_tier_idx(struct lruvec * lruvec,int type)4623 static int get_tier_idx(struct lruvec *lruvec, int type)
4624 {
4625 	int tier;
4626 	struct ctrl_pos sp, pv;
4627 
4628 	/*
4629 	 * To leave a margin for fluctuations, use a larger gain factor (2:3).
4630 	 * This value is chosen because any other tier would have at least twice
4631 	 * as many refaults as the first tier.
4632 	 */
4633 	read_ctrl_pos(lruvec, type, 0, 2, &sp);
4634 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4635 		read_ctrl_pos(lruvec, type, tier, 3, &pv);
4636 		if (!positive_ctrl_err(&sp, &pv))
4637 			break;
4638 	}
4639 
4640 	return tier - 1;
4641 }
4642 
get_type_to_scan(struct lruvec * lruvec,int swappiness)4643 static int get_type_to_scan(struct lruvec *lruvec, int swappiness)
4644 {
4645 	struct ctrl_pos sp, pv;
4646 
4647 	if (swappiness <= MIN_SWAPPINESS + 1)
4648 		return LRU_GEN_FILE;
4649 
4650 	if (swappiness >= MAX_SWAPPINESS)
4651 		return LRU_GEN_ANON;
4652 	/*
4653 	 * Compare the sum of all tiers of anon with that of file to determine
4654 	 * which type to scan.
4655 	 */
4656 	read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp);
4657 	read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv);
4658 
4659 	return positive_ctrl_err(&sp, &pv);
4660 }
4661 
isolate_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)4662 static int isolate_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4663 			  struct scan_control *sc, int swappiness,
4664 			  int *type_scanned, struct list_head *list)
4665 {
4666 	int i;
4667 	int type = get_type_to_scan(lruvec, swappiness);
4668 
4669 	for_each_evictable_type(i, swappiness) {
4670 		int scanned;
4671 		int tier = get_tier_idx(lruvec, type);
4672 
4673 		*type_scanned = type;
4674 
4675 		scanned = scan_folios(nr_to_scan, lruvec, sc, type, tier, list);
4676 		if (scanned)
4677 			return scanned;
4678 
4679 		type = !type;
4680 	}
4681 
4682 	return 0;
4683 }
4684 
evict_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int swappiness)4685 static int evict_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4686 			struct scan_control *sc, int swappiness)
4687 {
4688 	int type;
4689 	int scanned;
4690 	int reclaimed;
4691 	LIST_HEAD(list);
4692 	LIST_HEAD(clean);
4693 	struct folio *folio;
4694 	struct folio *next;
4695 	enum vm_event_item item;
4696 	struct reclaim_stat stat;
4697 	struct lru_gen_mm_walk *walk;
4698 	bool skip_retry = false;
4699 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4700 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4701 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4702 
4703 	spin_lock_irq(&lruvec->lru_lock);
4704 
4705 	scanned = isolate_folios(nr_to_scan, lruvec, sc, swappiness, &type, &list);
4706 
4707 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4708 
4709 	if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq)
4710 		scanned = 0;
4711 
4712 	spin_unlock_irq(&lruvec->lru_lock);
4713 
4714 	if (list_empty(&list))
4715 		return scanned;
4716 retry:
4717 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg);
4718 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4719 	sc->nr_reclaimed += reclaimed;
4720 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4721 			scanned, reclaimed, &stat, sc->priority,
4722 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4723 
4724 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4725 		DEFINE_MIN_SEQ(lruvec);
4726 
4727 		if (!folio_evictable(folio)) {
4728 			list_del(&folio->lru);
4729 			folio_putback_lru(folio);
4730 			continue;
4731 		}
4732 
4733 		/* retry folios that may have missed folio_rotate_reclaimable() */
4734 		if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) &&
4735 		    !folio_test_dirty(folio) && !folio_test_writeback(folio)) {
4736 			list_move(&folio->lru, &clean);
4737 			continue;
4738 		}
4739 
4740 		/* don't add rejected folios to the oldest generation */
4741 		if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type])
4742 			set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_active));
4743 	}
4744 
4745 	spin_lock_irq(&lruvec->lru_lock);
4746 
4747 	move_folios_to_lru(lruvec, &list);
4748 
4749 	walk = current->reclaim_state->mm_walk;
4750 	if (walk && walk->batched) {
4751 		walk->lruvec = lruvec;
4752 		reset_batch_size(walk);
4753 	}
4754 
4755 	mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
4756 					stat.nr_demoted);
4757 
4758 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
4759 	if (!cgroup_reclaim(sc))
4760 		__count_vm_events(item, reclaimed);
4761 	count_memcg_events(memcg, item, reclaimed);
4762 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4763 
4764 	spin_unlock_irq(&lruvec->lru_lock);
4765 
4766 	list_splice_init(&clean, &list);
4767 
4768 	if (!list_empty(&list)) {
4769 		skip_retry = true;
4770 		goto retry;
4771 	}
4772 
4773 	return scanned;
4774 }
4775 
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,int swappiness,unsigned long * nr_to_scan)4776 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4777 			     int swappiness, unsigned long *nr_to_scan)
4778 {
4779 	int gen, type, zone;
4780 	unsigned long size = 0;
4781 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4782 	DEFINE_MIN_SEQ(lruvec);
4783 
4784 	*nr_to_scan = 0;
4785 	/* have to run aging, since eviction is not possible anymore */
4786 	if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq)
4787 		return true;
4788 
4789 	for_each_evictable_type(type, swappiness) {
4790 		unsigned long seq;
4791 
4792 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4793 			gen = lru_gen_from_seq(seq);
4794 
4795 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4796 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4797 		}
4798 	}
4799 
4800 	*nr_to_scan = size;
4801 	/* better to run aging even though eviction is still possible */
4802 	return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq;
4803 }
4804 
4805 /*
4806  * For future optimizations:
4807  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4808  *    reclaim.
4809  */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4810 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4811 {
4812 	bool success;
4813 	unsigned long nr_to_scan;
4814 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4815 	DEFINE_MAX_SEQ(lruvec);
4816 
4817 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4818 		return -1;
4819 
4820 	success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan);
4821 
4822 	/* try to scrape all its memory if this memcg was deleted */
4823 	if (nr_to_scan && !mem_cgroup_online(memcg))
4824 		return nr_to_scan;
4825 
4826 	nr_to_scan = apply_proportional_protection(memcg, sc, nr_to_scan);
4827 
4828 	/* try to get away with not aging at the default priority */
4829 	if (!success || sc->priority == DEF_PRIORITY)
4830 		return nr_to_scan >> sc->priority;
4831 
4832 	/* stop scanning this lruvec as it's low on cold folios */
4833 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0;
4834 }
4835 
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)4836 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4837 {
4838 	int i;
4839 	enum zone_watermarks mark;
4840 
4841 	/* don't abort memcg reclaim to ensure fairness */
4842 	if (!root_reclaim(sc))
4843 		return false;
4844 
4845 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4846 		return true;
4847 
4848 	/* check the order to exclude compaction-induced reclaim */
4849 	if (!current_is_kswapd() || sc->order)
4850 		return false;
4851 
4852 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4853 	       WMARK_PROMO : WMARK_HIGH;
4854 
4855 	for (i = 0; i <= sc->reclaim_idx; i++) {
4856 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4857 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4858 
4859 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4860 			return false;
4861 	}
4862 
4863 	/* kswapd should abort if all eligible zones are safe */
4864 	return true;
4865 }
4866 
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4867 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4868 {
4869 	long nr_to_scan;
4870 	unsigned long scanned = 0;
4871 	int swappiness = get_swappiness(lruvec, sc);
4872 
4873 	while (true) {
4874 		int delta;
4875 
4876 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4877 		if (nr_to_scan <= 0)
4878 			break;
4879 
4880 		delta = evict_folios(nr_to_scan, lruvec, sc, swappiness);
4881 		if (!delta)
4882 			break;
4883 
4884 		scanned += delta;
4885 		if (scanned >= nr_to_scan)
4886 			break;
4887 
4888 		if (should_abort_scan(lruvec, sc))
4889 			break;
4890 
4891 		cond_resched();
4892 	}
4893 
4894 	/*
4895 	 * If too many file cache in the coldest generation can't be evicted
4896 	 * due to being dirty, wake up the flusher.
4897 	 */
4898 	if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4899 		wakeup_flusher_threads(WB_REASON_VMSCAN);
4900 
4901 	/* whether this lruvec should be rotated */
4902 	return nr_to_scan < 0;
4903 }
4904 
shrink_one(struct lruvec * lruvec,struct scan_control * sc)4905 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4906 {
4907 	bool success;
4908 	unsigned long scanned = sc->nr_scanned;
4909 	unsigned long reclaimed = sc->nr_reclaimed;
4910 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4911 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4912 
4913 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4914 	if (mem_cgroup_below_min(NULL, memcg))
4915 		return MEMCG_LRU_YOUNG;
4916 
4917 	if (mem_cgroup_below_low(NULL, memcg)) {
4918 		/* see the comment on MEMCG_NR_GENS */
4919 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4920 			return MEMCG_LRU_TAIL;
4921 
4922 		memcg_memory_event(memcg, MEMCG_LOW);
4923 	}
4924 
4925 	success = try_to_shrink_lruvec(lruvec, sc);
4926 
4927 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4928 
4929 	if (!sc->proactive)
4930 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4931 			   sc->nr_reclaimed - reclaimed);
4932 
4933 	flush_reclaim_state(sc);
4934 
4935 	if (success && mem_cgroup_online(memcg))
4936 		return MEMCG_LRU_YOUNG;
4937 
4938 	if (!success && lruvec_is_sizable(lruvec, sc))
4939 		return 0;
4940 
4941 	/* one retry if offlined or too small */
4942 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4943 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4944 }
4945 
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)4946 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4947 {
4948 	int op;
4949 	int gen;
4950 	int bin;
4951 	int first_bin;
4952 	struct lruvec *lruvec;
4953 	struct lru_gen_folio *lrugen;
4954 	struct mem_cgroup *memcg;
4955 	struct hlist_nulls_node *pos;
4956 
4957 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4958 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4959 restart:
4960 	op = 0;
4961 	memcg = NULL;
4962 
4963 	rcu_read_lock();
4964 
4965 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4966 		if (op) {
4967 			lru_gen_rotate_memcg(lruvec, op);
4968 			op = 0;
4969 		}
4970 
4971 		mem_cgroup_put(memcg);
4972 		memcg = NULL;
4973 
4974 		if (gen != READ_ONCE(lrugen->gen))
4975 			continue;
4976 
4977 		lruvec = container_of(lrugen, struct lruvec, lrugen);
4978 		memcg = lruvec_memcg(lruvec);
4979 
4980 		if (!mem_cgroup_tryget(memcg)) {
4981 			lru_gen_release_memcg(memcg);
4982 			memcg = NULL;
4983 			continue;
4984 		}
4985 
4986 		rcu_read_unlock();
4987 
4988 		op = shrink_one(lruvec, sc);
4989 
4990 		rcu_read_lock();
4991 
4992 		if (should_abort_scan(lruvec, sc))
4993 			break;
4994 	}
4995 
4996 	rcu_read_unlock();
4997 
4998 	if (op)
4999 		lru_gen_rotate_memcg(lruvec, op);
5000 
5001 	mem_cgroup_put(memcg);
5002 
5003 	if (!is_a_nulls(pos))
5004 		return;
5005 
5006 	/* restart if raced with lru_gen_rotate_memcg() */
5007 	if (gen != get_nulls_value(pos))
5008 		goto restart;
5009 
5010 	/* try the rest of the bins of the current generation */
5011 	bin = get_memcg_bin(bin + 1);
5012 	if (bin != first_bin)
5013 		goto restart;
5014 }
5015 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5016 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5017 {
5018 	struct blk_plug plug;
5019 
5020 	VM_WARN_ON_ONCE(root_reclaim(sc));
5021 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5022 
5023 	lru_add_drain();
5024 
5025 	blk_start_plug(&plug);
5026 
5027 	set_mm_walk(NULL, sc->proactive);
5028 
5029 	if (try_to_shrink_lruvec(lruvec, sc))
5030 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5031 
5032 	clear_mm_walk();
5033 
5034 	blk_finish_plug(&plug);
5035 }
5036 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5037 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5038 {
5039 	struct blk_plug plug;
5040 	unsigned long reclaimed = sc->nr_reclaimed;
5041 
5042 	VM_WARN_ON_ONCE(!root_reclaim(sc));
5043 
5044 	/*
5045 	 * Unmapped clean folios are already prioritized. Scanning for more of
5046 	 * them is likely futile and can cause high reclaim latency when there
5047 	 * is a large number of memcgs.
5048 	 */
5049 	if (!sc->may_writepage || !sc->may_unmap)
5050 		goto done;
5051 
5052 	lru_add_drain();
5053 
5054 	blk_start_plug(&plug);
5055 
5056 	set_mm_walk(pgdat, sc->proactive);
5057 
5058 	set_initial_priority(pgdat, sc);
5059 
5060 	if (current_is_kswapd())
5061 		sc->nr_reclaimed = 0;
5062 
5063 	if (mem_cgroup_disabled())
5064 		shrink_one(&pgdat->__lruvec, sc);
5065 	else
5066 		shrink_many(pgdat, sc);
5067 
5068 	if (current_is_kswapd())
5069 		sc->nr_reclaimed += reclaimed;
5070 
5071 	clear_mm_walk();
5072 
5073 	blk_finish_plug(&plug);
5074 done:
5075 	if (sc->nr_reclaimed > reclaimed)
5076 		kswapd_try_clear_hopeless(pgdat, sc->order, sc->reclaim_idx);
5077 }
5078 
5079 /******************************************************************************
5080  *                          state change
5081  ******************************************************************************/
5082 
state_is_valid(struct lruvec * lruvec)5083 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5084 {
5085 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5086 
5087 	if (lrugen->enabled) {
5088 		enum lru_list lru;
5089 
5090 		for_each_evictable_lru(lru) {
5091 			if (!list_empty(&lruvec->lists[lru]))
5092 				return false;
5093 		}
5094 	} else {
5095 		int gen, type, zone;
5096 
5097 		for_each_gen_type_zone(gen, type, zone) {
5098 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5099 				return false;
5100 		}
5101 	}
5102 
5103 	return true;
5104 }
5105 
fill_evictable(struct lruvec * lruvec)5106 static bool fill_evictable(struct lruvec *lruvec)
5107 {
5108 	enum lru_list lru;
5109 	int remaining = MAX_LRU_BATCH;
5110 
5111 	for_each_evictable_lru(lru) {
5112 		int type = is_file_lru(lru);
5113 		bool active = is_active_lru(lru);
5114 		struct list_head *head = &lruvec->lists[lru];
5115 
5116 		while (!list_empty(head)) {
5117 			bool success;
5118 			struct folio *folio = lru_to_folio(head);
5119 
5120 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5121 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5122 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5123 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5124 
5125 			lruvec_del_folio(lruvec, folio);
5126 			success = lru_gen_add_folio(lruvec, folio, false);
5127 			VM_WARN_ON_ONCE(!success);
5128 
5129 			if (!--remaining)
5130 				return false;
5131 		}
5132 	}
5133 
5134 	return true;
5135 }
5136 
drain_evictable(struct lruvec * lruvec)5137 static bool drain_evictable(struct lruvec *lruvec)
5138 {
5139 	int gen, type, zone;
5140 	int remaining = MAX_LRU_BATCH;
5141 
5142 	for_each_gen_type_zone(gen, type, zone) {
5143 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5144 
5145 		while (!list_empty(head)) {
5146 			bool success;
5147 			struct folio *folio = lru_to_folio(head);
5148 
5149 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5150 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5151 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5152 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5153 
5154 			success = lru_gen_del_folio(lruvec, folio, false);
5155 			VM_WARN_ON_ONCE(!success);
5156 			lruvec_add_folio(lruvec, folio);
5157 
5158 			if (!--remaining)
5159 				return false;
5160 		}
5161 	}
5162 
5163 	return true;
5164 }
5165 
lru_gen_change_state(bool enabled)5166 static void lru_gen_change_state(bool enabled)
5167 {
5168 	static DEFINE_MUTEX(state_mutex);
5169 
5170 	struct mem_cgroup *memcg;
5171 
5172 	cgroup_lock();
5173 	cpus_read_lock();
5174 	get_online_mems();
5175 	mutex_lock(&state_mutex);
5176 
5177 	if (enabled == lru_gen_enabled())
5178 		goto unlock;
5179 
5180 	if (enabled)
5181 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5182 	else
5183 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5184 
5185 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5186 	do {
5187 		int nid;
5188 
5189 		for_each_node(nid) {
5190 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5191 
5192 			spin_lock_irq(&lruvec->lru_lock);
5193 
5194 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5195 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5196 
5197 			lruvec->lrugen.enabled = enabled;
5198 
5199 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5200 				spin_unlock_irq(&lruvec->lru_lock);
5201 				cond_resched();
5202 				spin_lock_irq(&lruvec->lru_lock);
5203 			}
5204 
5205 			spin_unlock_irq(&lruvec->lru_lock);
5206 		}
5207 
5208 		cond_resched();
5209 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5210 unlock:
5211 	mutex_unlock(&state_mutex);
5212 	put_online_mems();
5213 	cpus_read_unlock();
5214 	cgroup_unlock();
5215 }
5216 
5217 /******************************************************************************
5218  *                          sysfs interface
5219  ******************************************************************************/
5220 
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5221 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5222 {
5223 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5224 }
5225 
5226 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5227 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5228 				const char *buf, size_t len)
5229 {
5230 	unsigned int msecs;
5231 
5232 	if (kstrtouint(buf, 0, &msecs))
5233 		return -EINVAL;
5234 
5235 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5236 
5237 	return len;
5238 }
5239 
5240 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5241 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5242 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5243 {
5244 	unsigned int caps = 0;
5245 
5246 	if (get_cap(LRU_GEN_CORE))
5247 		caps |= BIT(LRU_GEN_CORE);
5248 
5249 	if (should_walk_mmu())
5250 		caps |= BIT(LRU_GEN_MM_WALK);
5251 
5252 	if (should_clear_pmd_young())
5253 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5254 
5255 	return sysfs_emit(buf, "0x%04x\n", caps);
5256 }
5257 
5258 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5259 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5260 			     const char *buf, size_t len)
5261 {
5262 	int i;
5263 	unsigned int caps;
5264 
5265 	if (tolower(*buf) == 'n')
5266 		caps = 0;
5267 	else if (tolower(*buf) == 'y')
5268 		caps = -1;
5269 	else if (kstrtouint(buf, 0, &caps))
5270 		return -EINVAL;
5271 
5272 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5273 		bool enabled = caps & BIT(i);
5274 
5275 		if (i == LRU_GEN_CORE)
5276 			lru_gen_change_state(enabled);
5277 		else if (enabled)
5278 			static_branch_enable(&lru_gen_caps[i]);
5279 		else
5280 			static_branch_disable(&lru_gen_caps[i]);
5281 	}
5282 
5283 	return len;
5284 }
5285 
5286 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5287 
5288 static struct attribute *lru_gen_attrs[] = {
5289 	&lru_gen_min_ttl_attr.attr,
5290 	&lru_gen_enabled_attr.attr,
5291 	NULL
5292 };
5293 
5294 static const struct attribute_group lru_gen_attr_group = {
5295 	.name = "lru_gen",
5296 	.attrs = lru_gen_attrs,
5297 };
5298 
5299 /******************************************************************************
5300  *                          debugfs interface
5301  ******************************************************************************/
5302 
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5303 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5304 {
5305 	struct mem_cgroup *memcg;
5306 	loff_t nr_to_skip = *pos;
5307 
5308 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5309 	if (!m->private)
5310 		return ERR_PTR(-ENOMEM);
5311 
5312 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5313 	do {
5314 		int nid;
5315 
5316 		for_each_node_state(nid, N_MEMORY) {
5317 			if (!nr_to_skip--)
5318 				return get_lruvec(memcg, nid);
5319 		}
5320 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5321 
5322 	return NULL;
5323 }
5324 
lru_gen_seq_stop(struct seq_file * m,void * v)5325 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5326 {
5327 	if (!IS_ERR_OR_NULL(v))
5328 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5329 
5330 	kvfree(m->private);
5331 	m->private = NULL;
5332 }
5333 
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5334 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5335 {
5336 	int nid = lruvec_pgdat(v)->node_id;
5337 	struct mem_cgroup *memcg = lruvec_memcg(v);
5338 
5339 	++*pos;
5340 
5341 	nid = next_memory_node(nid);
5342 	if (nid == MAX_NUMNODES) {
5343 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5344 		if (!memcg)
5345 			return NULL;
5346 
5347 		nid = first_memory_node;
5348 	}
5349 
5350 	return get_lruvec(memcg, nid);
5351 }
5352 
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5353 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5354 				  unsigned long max_seq, unsigned long *min_seq,
5355 				  unsigned long seq)
5356 {
5357 	int i;
5358 	int type, tier;
5359 	int hist = lru_hist_from_seq(seq);
5360 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5361 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5362 
5363 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5364 		seq_printf(m, "            %10d", tier);
5365 		for (type = 0; type < ANON_AND_FILE; type++) {
5366 			const char *s = "xxx";
5367 			unsigned long n[3] = {};
5368 
5369 			if (seq == max_seq) {
5370 				s = "RTx";
5371 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5372 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5373 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5374 				s = "rep";
5375 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5376 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5377 				n[2] = READ_ONCE(lrugen->protected[hist][type][tier]);
5378 			}
5379 
5380 			for (i = 0; i < 3; i++)
5381 				seq_printf(m, " %10lu%c", n[i], s[i]);
5382 		}
5383 		seq_putc(m, '\n');
5384 	}
5385 
5386 	if (!mm_state)
5387 		return;
5388 
5389 	seq_puts(m, "                      ");
5390 	for (i = 0; i < NR_MM_STATS; i++) {
5391 		const char *s = "xxxx";
5392 		unsigned long n = 0;
5393 
5394 		if (seq == max_seq && NR_HIST_GENS == 1) {
5395 			s = "TYFA";
5396 			n = READ_ONCE(mm_state->stats[hist][i]);
5397 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5398 			s = "tyfa";
5399 			n = READ_ONCE(mm_state->stats[hist][i]);
5400 		}
5401 
5402 		seq_printf(m, " %10lu%c", n, s[i]);
5403 	}
5404 	seq_putc(m, '\n');
5405 }
5406 
5407 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5408 static int lru_gen_seq_show(struct seq_file *m, void *v)
5409 {
5410 	unsigned long seq;
5411 	bool full = debugfs_get_aux_num(m->file);
5412 	struct lruvec *lruvec = v;
5413 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5414 	int nid = lruvec_pgdat(lruvec)->node_id;
5415 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5416 	DEFINE_MAX_SEQ(lruvec);
5417 	DEFINE_MIN_SEQ(lruvec);
5418 
5419 	if (nid == first_memory_node) {
5420 		const char *path = memcg ? m->private : "";
5421 
5422 #ifdef CONFIG_MEMCG
5423 		if (memcg)
5424 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5425 #endif
5426 		seq_printf(m, "memcg %llu %s\n", mem_cgroup_id(memcg), path);
5427 	}
5428 
5429 	seq_printf(m, " node %5d\n", nid);
5430 
5431 	if (!full)
5432 		seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2);
5433 	else if (max_seq >= MAX_NR_GENS)
5434 		seq = max_seq - MAX_NR_GENS + 1;
5435 	else
5436 		seq = 0;
5437 
5438 	for (; seq <= max_seq; seq++) {
5439 		int type, zone;
5440 		int gen = lru_gen_from_seq(seq);
5441 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5442 
5443 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5444 
5445 		for (type = 0; type < ANON_AND_FILE; type++) {
5446 			unsigned long size = 0;
5447 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5448 
5449 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5450 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5451 
5452 			seq_printf(m, " %10lu%c", size, mark);
5453 		}
5454 
5455 		seq_putc(m, '\n');
5456 
5457 		if (full)
5458 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5459 	}
5460 
5461 	return 0;
5462 }
5463 
5464 static const struct seq_operations lru_gen_seq_ops = {
5465 	.start = lru_gen_seq_start,
5466 	.stop = lru_gen_seq_stop,
5467 	.next = lru_gen_seq_next,
5468 	.show = lru_gen_seq_show,
5469 };
5470 
run_aging(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)5471 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5472 		     int swappiness, bool force_scan)
5473 {
5474 	DEFINE_MAX_SEQ(lruvec);
5475 
5476 	if (seq > max_seq)
5477 		return -EINVAL;
5478 
5479 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST;
5480 }
5481 
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5482 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5483 			int swappiness, unsigned long nr_to_reclaim)
5484 {
5485 	DEFINE_MAX_SEQ(lruvec);
5486 
5487 	if (seq + MIN_NR_GENS > max_seq)
5488 		return -EINVAL;
5489 
5490 	sc->nr_reclaimed = 0;
5491 
5492 	while (!signal_pending(current)) {
5493 		DEFINE_MIN_SEQ(lruvec);
5494 
5495 		if (seq < evictable_min_seq(min_seq, swappiness))
5496 			return 0;
5497 
5498 		if (sc->nr_reclaimed >= nr_to_reclaim)
5499 			return 0;
5500 
5501 		if (!evict_folios(nr_to_reclaim - sc->nr_reclaimed, lruvec, sc,
5502 				  swappiness))
5503 			return 0;
5504 
5505 		cond_resched();
5506 	}
5507 
5508 	return -EINTR;
5509 }
5510 
run_cmd(char cmd,u64 memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)5511 static int run_cmd(char cmd, u64 memcg_id, int nid, unsigned long seq,
5512 		   struct scan_control *sc, int swappiness, unsigned long opt)
5513 {
5514 	struct lruvec *lruvec;
5515 	int err = -EINVAL;
5516 	struct mem_cgroup *memcg = NULL;
5517 
5518 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5519 		return -EINVAL;
5520 
5521 	if (!mem_cgroup_disabled()) {
5522 		memcg = mem_cgroup_get_from_id(memcg_id);
5523 		if (!memcg)
5524 			return -EINVAL;
5525 	}
5526 
5527 	if (memcg_id != mem_cgroup_id(memcg))
5528 		goto done;
5529 
5530 	sc->target_mem_cgroup = memcg;
5531 	lruvec = get_lruvec(memcg, nid);
5532 
5533 	if (swappiness < MIN_SWAPPINESS)
5534 		swappiness = get_swappiness(lruvec, sc);
5535 	else if (swappiness > SWAPPINESS_ANON_ONLY)
5536 		goto done;
5537 
5538 	switch (cmd) {
5539 	case '+':
5540 		err = run_aging(lruvec, seq, swappiness, opt);
5541 		break;
5542 	case '-':
5543 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5544 		break;
5545 	}
5546 done:
5547 	mem_cgroup_put(memcg);
5548 
5549 	return err;
5550 }
5551 
5552 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)5553 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5554 				 size_t len, loff_t *pos)
5555 {
5556 	void *buf;
5557 	char *cur, *next;
5558 	unsigned int flags;
5559 	struct blk_plug plug;
5560 	int err = -EINVAL;
5561 	struct scan_control sc = {
5562 		.may_writepage = true,
5563 		.may_unmap = true,
5564 		.may_swap = true,
5565 		.reclaim_idx = MAX_NR_ZONES - 1,
5566 		.gfp_mask = GFP_KERNEL,
5567 		.proactive = true,
5568 	};
5569 
5570 	buf = kvmalloc(len + 1, GFP_KERNEL);
5571 	if (!buf)
5572 		return -ENOMEM;
5573 
5574 	if (copy_from_user(buf, src, len)) {
5575 		kvfree(buf);
5576 		return -EFAULT;
5577 	}
5578 
5579 	set_task_reclaim_state(current, &sc.reclaim_state);
5580 	flags = memalloc_noreclaim_save();
5581 	blk_start_plug(&plug);
5582 	if (!set_mm_walk(NULL, true)) {
5583 		err = -ENOMEM;
5584 		goto done;
5585 	}
5586 
5587 	next = buf;
5588 	next[len] = '\0';
5589 
5590 	while ((cur = strsep(&next, ",;\n"))) {
5591 		int n;
5592 		int end;
5593 		char cmd, swap_string[5];
5594 		u64 memcg_id;
5595 		unsigned int nid;
5596 		unsigned long seq;
5597 		unsigned int swappiness;
5598 		unsigned long opt = -1;
5599 
5600 		cur = skip_spaces(cur);
5601 		if (!*cur)
5602 			continue;
5603 
5604 		n = sscanf(cur, "%c %llu %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid,
5605 			   &seq, &end, swap_string, &end, &opt, &end);
5606 		if (n < 4 || cur[end]) {
5607 			err = -EINVAL;
5608 			break;
5609 		}
5610 
5611 		if (n == 4) {
5612 			swappiness = -1;
5613 		} else if (!strcmp("max", swap_string)) {
5614 			/* set by userspace for anonymous memory only */
5615 			swappiness = SWAPPINESS_ANON_ONLY;
5616 		} else {
5617 			err = kstrtouint(swap_string, 0, &swappiness);
5618 			if (err)
5619 				break;
5620 		}
5621 
5622 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5623 		if (err)
5624 			break;
5625 	}
5626 done:
5627 	clear_mm_walk();
5628 	blk_finish_plug(&plug);
5629 	memalloc_noreclaim_restore(flags);
5630 	set_task_reclaim_state(current, NULL);
5631 
5632 	kvfree(buf);
5633 
5634 	return err ? : len;
5635 }
5636 
lru_gen_seq_open(struct inode * inode,struct file * file)5637 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5638 {
5639 	return seq_open(file, &lru_gen_seq_ops);
5640 }
5641 
5642 static const struct file_operations lru_gen_rw_fops = {
5643 	.open = lru_gen_seq_open,
5644 	.read = seq_read,
5645 	.write = lru_gen_seq_write,
5646 	.llseek = seq_lseek,
5647 	.release = seq_release,
5648 };
5649 
5650 static const struct file_operations lru_gen_ro_fops = {
5651 	.open = lru_gen_seq_open,
5652 	.read = seq_read,
5653 	.llseek = seq_lseek,
5654 	.release = seq_release,
5655 };
5656 
5657 /******************************************************************************
5658  *                          initialization
5659  ******************************************************************************/
5660 
lru_gen_init_pgdat(struct pglist_data * pgdat)5661 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5662 {
5663 	int i, j;
5664 
5665 	spin_lock_init(&pgdat->memcg_lru.lock);
5666 
5667 	for (i = 0; i < MEMCG_NR_GENS; i++) {
5668 		for (j = 0; j < MEMCG_NR_BINS; j++)
5669 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5670 	}
5671 }
5672 
lru_gen_init_lruvec(struct lruvec * lruvec)5673 void lru_gen_init_lruvec(struct lruvec *lruvec)
5674 {
5675 	int i;
5676 	int gen, type, zone;
5677 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5678 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5679 
5680 	lrugen->max_seq = MIN_NR_GENS + 1;
5681 	lrugen->enabled = lru_gen_enabled();
5682 
5683 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5684 		lrugen->timestamps[i] = jiffies;
5685 
5686 	for_each_gen_type_zone(gen, type, zone)
5687 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5688 
5689 	if (mm_state)
5690 		mm_state->seq = MIN_NR_GENS;
5691 }
5692 
5693 #ifdef CONFIG_MEMCG
5694 
lru_gen_init_memcg(struct mem_cgroup * memcg)5695 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5696 {
5697 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5698 
5699 	if (!mm_list)
5700 		return;
5701 
5702 	INIT_LIST_HEAD(&mm_list->fifo);
5703 	spin_lock_init(&mm_list->lock);
5704 }
5705 
lru_gen_exit_memcg(struct mem_cgroup * memcg)5706 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5707 {
5708 	int i;
5709 	int nid;
5710 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5711 
5712 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5713 
5714 	for_each_node(nid) {
5715 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5716 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5717 
5718 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5719 					   sizeof(lruvec->lrugen.nr_pages)));
5720 
5721 		lruvec->lrugen.list.next = LIST_POISON1;
5722 
5723 		if (!mm_state)
5724 			continue;
5725 
5726 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5727 			bitmap_free(mm_state->filters[i]);
5728 			mm_state->filters[i] = NULL;
5729 		}
5730 	}
5731 }
5732 
5733 #endif /* CONFIG_MEMCG */
5734 
init_lru_gen(void)5735 static int __init init_lru_gen(void)
5736 {
5737 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5738 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5739 
5740 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5741 		pr_err("lru_gen: failed to create sysfs group\n");
5742 
5743 	debugfs_create_file_aux_num("lru_gen", 0644, NULL, NULL, false,
5744 				    &lru_gen_rw_fops);
5745 	debugfs_create_file_aux_num("lru_gen_full", 0444, NULL, NULL, true,
5746 				    &lru_gen_ro_fops);
5747 
5748 	return 0;
5749 };
5750 late_initcall(init_lru_gen);
5751 
5752 #else /* !CONFIG_LRU_GEN */
5753 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)5754 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5755 {
5756 	BUILD_BUG();
5757 }
5758 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5759 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5760 {
5761 	BUILD_BUG();
5762 }
5763 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5764 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5765 {
5766 	BUILD_BUG();
5767 }
5768 
5769 #endif /* CONFIG_LRU_GEN */
5770 
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5771 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5772 {
5773 	unsigned long nr[NR_LRU_LISTS];
5774 	unsigned long targets[NR_LRU_LISTS];
5775 	unsigned long nr_to_scan;
5776 	enum lru_list lru;
5777 	unsigned long nr_reclaimed = 0;
5778 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5779 	bool proportional_reclaim;
5780 	struct blk_plug plug;
5781 
5782 	if (lru_gen_enabled() && !root_reclaim(sc)) {
5783 		lru_gen_shrink_lruvec(lruvec, sc);
5784 		return;
5785 	}
5786 
5787 	get_scan_count(lruvec, sc, nr);
5788 
5789 	/* Record the original scan target for proportional adjustments later */
5790 	memcpy(targets, nr, sizeof(nr));
5791 
5792 	/*
5793 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5794 	 * event that can occur when there is little memory pressure e.g.
5795 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5796 	 * when the requested number of pages are reclaimed when scanning at
5797 	 * DEF_PRIORITY on the assumption that the fact we are direct
5798 	 * reclaiming implies that kswapd is not keeping up and it is best to
5799 	 * do a batch of work at once. For memcg reclaim one check is made to
5800 	 * abort proportional reclaim if either the file or anon lru has already
5801 	 * dropped to zero at the first pass.
5802 	 */
5803 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5804 				sc->priority == DEF_PRIORITY);
5805 
5806 	blk_start_plug(&plug);
5807 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5808 					nr[LRU_INACTIVE_FILE]) {
5809 		unsigned long nr_anon, nr_file, percentage;
5810 		unsigned long nr_scanned;
5811 
5812 		for_each_evictable_lru(lru) {
5813 			if (nr[lru]) {
5814 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5815 				nr[lru] -= nr_to_scan;
5816 
5817 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5818 							    lruvec, sc);
5819 			}
5820 		}
5821 
5822 		cond_resched();
5823 
5824 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5825 			continue;
5826 
5827 		/*
5828 		 * For kswapd and memcg, reclaim at least the number of pages
5829 		 * requested. Ensure that the anon and file LRUs are scanned
5830 		 * proportionally what was requested by get_scan_count(). We
5831 		 * stop reclaiming one LRU and reduce the amount scanning
5832 		 * proportional to the original scan target.
5833 		 */
5834 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5835 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5836 
5837 		/*
5838 		 * It's just vindictive to attack the larger once the smaller
5839 		 * has gone to zero.  And given the way we stop scanning the
5840 		 * smaller below, this makes sure that we only make one nudge
5841 		 * towards proportionality once we've got nr_to_reclaim.
5842 		 */
5843 		if (!nr_file || !nr_anon)
5844 			break;
5845 
5846 		if (nr_file > nr_anon) {
5847 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5848 						targets[LRU_ACTIVE_ANON] + 1;
5849 			lru = LRU_BASE;
5850 			percentage = nr_anon * 100 / scan_target;
5851 		} else {
5852 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5853 						targets[LRU_ACTIVE_FILE] + 1;
5854 			lru = LRU_FILE;
5855 			percentage = nr_file * 100 / scan_target;
5856 		}
5857 
5858 		/* Stop scanning the smaller of the LRU */
5859 		nr[lru] = 0;
5860 		nr[lru + LRU_ACTIVE] = 0;
5861 
5862 		/*
5863 		 * Recalculate the other LRU scan count based on its original
5864 		 * scan target and the percentage scanning already complete
5865 		 */
5866 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5867 		nr_scanned = targets[lru] - nr[lru];
5868 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5869 		nr[lru] -= min(nr[lru], nr_scanned);
5870 
5871 		lru += LRU_ACTIVE;
5872 		nr_scanned = targets[lru] - nr[lru];
5873 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5874 		nr[lru] -= min(nr[lru], nr_scanned);
5875 	}
5876 	blk_finish_plug(&plug);
5877 	sc->nr_reclaimed += nr_reclaimed;
5878 
5879 	/*
5880 	 * Even if we did not try to evict anon pages at all, we want to
5881 	 * rebalance the anon lru active/inactive ratio.
5882 	 */
5883 	if (can_age_anon_pages(lruvec, sc) &&
5884 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5885 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5886 				   sc, LRU_ACTIVE_ANON);
5887 }
5888 
5889 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)5890 static bool in_reclaim_compaction(struct scan_control *sc)
5891 {
5892 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5893 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5894 			 sc->priority < DEF_PRIORITY - 2))
5895 		return true;
5896 
5897 	return false;
5898 }
5899 
5900 /*
5901  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5902  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5903  * true if more pages should be reclaimed such that when the page allocator
5904  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5905  * It will give up earlier than that if there is difficulty reclaiming pages.
5906  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)5907 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5908 					unsigned long nr_reclaimed,
5909 					struct scan_control *sc)
5910 {
5911 	unsigned long pages_for_compaction;
5912 	unsigned long inactive_lru_pages;
5913 	int z;
5914 	struct zone *zone;
5915 
5916 	/* If not in reclaim/compaction mode, stop */
5917 	if (!in_reclaim_compaction(sc))
5918 		return false;
5919 
5920 	/*
5921 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5922 	 * number of pages that were scanned. This will return to the caller
5923 	 * with the risk reclaim/compaction and the resulting allocation attempt
5924 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5925 	 * allocations through requiring that the full LRU list has been scanned
5926 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5927 	 * scan, but that approximation was wrong, and there were corner cases
5928 	 * where always a non-zero amount of pages were scanned.
5929 	 */
5930 	if (!nr_reclaimed)
5931 		return false;
5932 
5933 	/* If compaction would go ahead or the allocation would succeed, stop */
5934 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
5935 		unsigned long watermark = min_wmark_pages(zone);
5936 
5937 		/* Allocation can already succeed, nothing to do */
5938 		if (zone_watermark_ok(zone, sc->order, watermark,
5939 				      sc->reclaim_idx, 0))
5940 			return false;
5941 
5942 		if (compaction_suitable(zone, sc->order, watermark,
5943 					sc->reclaim_idx))
5944 			return false;
5945 	}
5946 
5947 	/*
5948 	 * If we have not reclaimed enough pages for compaction and the
5949 	 * inactive lists are large enough, continue reclaiming
5950 	 */
5951 	pages_for_compaction = compact_gap(sc->order);
5952 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5953 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5954 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5955 
5956 	return inactive_lru_pages > pages_for_compaction;
5957 }
5958 
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)5959 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5960 {
5961 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5962 	struct mem_cgroup_reclaim_cookie reclaim = {
5963 		.pgdat = pgdat,
5964 	};
5965 	struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5966 	struct mem_cgroup *memcg;
5967 
5968 	/*
5969 	 * In most cases, direct reclaimers can do partial walks
5970 	 * through the cgroup tree, using an iterator state that
5971 	 * persists across invocations. This strikes a balance between
5972 	 * fairness and allocation latency.
5973 	 *
5974 	 * For kswapd, reliable forward progress is more important
5975 	 * than a quick return to idle. Always do full walks.
5976 	 */
5977 	if (current_is_kswapd() || sc->memcg_full_walk)
5978 		partial = NULL;
5979 
5980 	memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5981 	do {
5982 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5983 		unsigned long reclaimed;
5984 		unsigned long scanned;
5985 
5986 		/*
5987 		 * This loop can become CPU-bound when target memcgs
5988 		 * aren't eligible for reclaim - either because they
5989 		 * don't have any reclaimable pages, or because their
5990 		 * memory is explicitly protected. Avoid soft lockups.
5991 		 */
5992 		cond_resched();
5993 
5994 		mem_cgroup_calculate_protection(target_memcg, memcg);
5995 
5996 		if (mem_cgroup_below_min(target_memcg, memcg)) {
5997 			/*
5998 			 * Hard protection.
5999 			 * If there is no reclaimable memory, OOM.
6000 			 */
6001 			continue;
6002 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6003 			/*
6004 			 * Soft protection.
6005 			 * Respect the protection only as long as
6006 			 * there is an unprotected supply
6007 			 * of reclaimable memory from other cgroups.
6008 			 */
6009 			if (!sc->memcg_low_reclaim) {
6010 				sc->memcg_low_skipped = 1;
6011 				continue;
6012 			}
6013 			memcg_memory_event(memcg, MEMCG_LOW);
6014 		}
6015 
6016 		reclaimed = sc->nr_reclaimed;
6017 		scanned = sc->nr_scanned;
6018 
6019 		shrink_lruvec(lruvec, sc);
6020 
6021 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6022 			    sc->priority);
6023 
6024 		/* Record the group's reclaim efficiency */
6025 		if (!sc->proactive)
6026 			vmpressure(sc->gfp_mask, memcg, false,
6027 				   sc->nr_scanned - scanned,
6028 				   sc->nr_reclaimed - reclaimed);
6029 
6030 		/* If partial walks are allowed, bail once goal is reached */
6031 		if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
6032 			mem_cgroup_iter_break(target_memcg, memcg);
6033 			break;
6034 		}
6035 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
6036 }
6037 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)6038 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6039 {
6040 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6041 	struct lruvec *target_lruvec;
6042 	bool reclaimable = false;
6043 
6044 	if (lru_gen_enabled() && root_reclaim(sc)) {
6045 		memset(&sc->nr, 0, sizeof(sc->nr));
6046 		lru_gen_shrink_node(pgdat, sc);
6047 		return;
6048 	}
6049 
6050 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6051 
6052 again:
6053 	memset(&sc->nr, 0, sizeof(sc->nr));
6054 
6055 	nr_reclaimed = sc->nr_reclaimed;
6056 	nr_scanned = sc->nr_scanned;
6057 
6058 	prepare_scan_control(pgdat, sc);
6059 
6060 	shrink_node_memcgs(pgdat, sc);
6061 
6062 	flush_reclaim_state(sc);
6063 
6064 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6065 
6066 	/* Record the subtree's reclaim efficiency */
6067 	if (!sc->proactive)
6068 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6069 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6070 
6071 	if (nr_node_reclaimed)
6072 		reclaimable = true;
6073 
6074 	if (current_is_kswapd()) {
6075 		/*
6076 		 * If reclaim is isolating dirty pages under writeback,
6077 		 * it implies that the long-lived page allocation rate
6078 		 * is exceeding the page laundering rate. Either the
6079 		 * global limits are not being effective at throttling
6080 		 * processes due to the page distribution throughout
6081 		 * zones or there is heavy usage of a slow backing
6082 		 * device. The only option is to throttle from reclaim
6083 		 * context which is not ideal as there is no guarantee
6084 		 * the dirtying process is throttled in the same way
6085 		 * balance_dirty_pages() manages.
6086 		 *
6087 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6088 		 * count the number of pages under pages flagged for
6089 		 * immediate reclaim and stall if any are encountered
6090 		 * in the nr_immediate check below.
6091 		 */
6092 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6093 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6094 
6095 		/*
6096 		 * If kswapd scans pages marked for immediate
6097 		 * reclaim and under writeback (nr_immediate), it
6098 		 * implies that pages are cycling through the LRU
6099 		 * faster than they are written so forcibly stall
6100 		 * until some pages complete writeback.
6101 		 */
6102 		if (sc->nr.immediate)
6103 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6104 	}
6105 
6106 	/*
6107 	 * Tag a node/memcg as congested if all the dirty pages were marked
6108 	 * for writeback and immediate reclaim (counted in nr.congested).
6109 	 *
6110 	 * Legacy memcg will stall in page writeback so avoid forcibly
6111 	 * stalling in reclaim_throttle().
6112 	 */
6113 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6114 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6115 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6116 
6117 		if (current_is_kswapd())
6118 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6119 	}
6120 
6121 	/*
6122 	 * Stall direct reclaim for IO completions if the lruvec is
6123 	 * node is congested. Allow kswapd to continue until it
6124 	 * starts encountering unqueued dirty pages or cycling through
6125 	 * the LRU too quickly.
6126 	 */
6127 	if (!current_is_kswapd() && current_may_throttle() &&
6128 	    !sc->hibernation_mode &&
6129 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6130 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6131 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6132 
6133 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6134 		goto again;
6135 
6136 	/*
6137 	 * Kswapd gives up on balancing particular nodes after too
6138 	 * many failures to reclaim anything from them and goes to
6139 	 * sleep. On reclaim progress, reset the failure counter. A
6140 	 * successful direct reclaim run will revive a dormant kswapd.
6141 	 */
6142 	if (reclaimable)
6143 		kswapd_try_clear_hopeless(pgdat, sc->order, sc->reclaim_idx);
6144 	else if (sc->cache_trim_mode)
6145 		sc->cache_trim_mode_failed = 1;
6146 }
6147 
6148 /*
6149  * Returns true if compaction should go ahead for a costly-order request, or
6150  * the allocation would already succeed without compaction. Return false if we
6151  * should reclaim first.
6152  */
compaction_ready(struct zone * zone,struct scan_control * sc)6153 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6154 {
6155 	unsigned long watermark;
6156 
6157 	if (!gfp_compaction_allowed(sc->gfp_mask))
6158 		return false;
6159 
6160 	/* Allocation can already succeed, nothing to do */
6161 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6162 			      sc->reclaim_idx, 0))
6163 		return true;
6164 
6165 	/*
6166 	 * Direct reclaim usually targets the min watermark, but compaction
6167 	 * takes time to run and there are potentially other callers using the
6168 	 * pages just freed. So target a higher buffer to give compaction a
6169 	 * reasonable chance of completing and allocating the pages.
6170 	 *
6171 	 * Note that we won't actually reclaim the whole buffer in one attempt
6172 	 * as the target watermark in should_continue_reclaim() is lower. But if
6173 	 * we are already above the high+gap watermark, don't reclaim at all.
6174 	 */
6175 	watermark = high_wmark_pages(zone);
6176 	if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx))
6177 		return true;
6178 
6179 	return false;
6180 }
6181 
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6182 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6183 {
6184 	/*
6185 	 * If reclaim is making progress greater than 12% efficiency then
6186 	 * wake all the NOPROGRESS throttled tasks.
6187 	 */
6188 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6189 		wait_queue_head_t *wqh;
6190 
6191 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6192 		if (waitqueue_active(wqh))
6193 			wake_up(wqh);
6194 
6195 		return;
6196 	}
6197 
6198 	/*
6199 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6200 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6201 	 * under writeback and marked for immediate reclaim at the tail of the
6202 	 * LRU.
6203 	 */
6204 	if (current_is_kswapd() || cgroup_reclaim(sc))
6205 		return;
6206 
6207 	/* Throttle if making no progress at high prioities. */
6208 	if (sc->priority == 1 && !sc->nr_reclaimed)
6209 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6210 }
6211 
6212 /*
6213  * This is the direct reclaim path, for page-allocating processes.  We only
6214  * try to reclaim pages from zones which will satisfy the caller's allocation
6215  * request.
6216  *
6217  * If a zone is deemed to be full of pinned pages then just give it a light
6218  * scan then give up on it.
6219  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6220 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6221 {
6222 	struct zoneref *z;
6223 	struct zone *zone;
6224 	unsigned long nr_soft_reclaimed;
6225 	unsigned long nr_soft_scanned;
6226 	gfp_t orig_mask;
6227 	pg_data_t *last_pgdat = NULL;
6228 	pg_data_t *first_pgdat = NULL;
6229 
6230 	/*
6231 	 * If the number of buffer_heads in the machine exceeds the maximum
6232 	 * allowed level, force direct reclaim to scan the highmem zone as
6233 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6234 	 */
6235 	orig_mask = sc->gfp_mask;
6236 	if (buffer_heads_over_limit) {
6237 		sc->gfp_mask |= __GFP_HIGHMEM;
6238 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6239 	}
6240 
6241 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6242 					sc->reclaim_idx, sc->nodemask) {
6243 		/*
6244 		 * Take care memory controller reclaiming has small influence
6245 		 * to global LRU.
6246 		 */
6247 		if (!cgroup_reclaim(sc)) {
6248 			if (!cpuset_zone_allowed(zone,
6249 						 GFP_KERNEL | __GFP_HARDWALL))
6250 				continue;
6251 
6252 			/*
6253 			 * If we already have plenty of memory free for
6254 			 * compaction in this zone, don't free any more.
6255 			 * Even though compaction is invoked for any
6256 			 * non-zero order, only frequent costly order
6257 			 * reclamation is disruptive enough to become a
6258 			 * noticeable problem, like transparent huge
6259 			 * page allocations.
6260 			 */
6261 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6262 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6263 			    compaction_ready(zone, sc)) {
6264 				sc->compaction_ready = true;
6265 				continue;
6266 			}
6267 
6268 			/*
6269 			 * Shrink each node in the zonelist once. If the
6270 			 * zonelist is ordered by zone (not the default) then a
6271 			 * node may be shrunk multiple times but in that case
6272 			 * the user prefers lower zones being preserved.
6273 			 */
6274 			if (zone->zone_pgdat == last_pgdat)
6275 				continue;
6276 
6277 			/*
6278 			 * This steals pages from memory cgroups over softlimit
6279 			 * and returns the number of reclaimed pages and
6280 			 * scanned pages. This works for global memory pressure
6281 			 * and balancing, not for a memcg's limit.
6282 			 */
6283 			nr_soft_scanned = 0;
6284 			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6285 								      sc->order, sc->gfp_mask,
6286 								      &nr_soft_scanned);
6287 			sc->nr_reclaimed += nr_soft_reclaimed;
6288 			sc->nr_scanned += nr_soft_scanned;
6289 			/* need some check for avoid more shrink_zone() */
6290 		}
6291 
6292 		if (!first_pgdat)
6293 			first_pgdat = zone->zone_pgdat;
6294 
6295 		/* See comment about same check for global reclaim above */
6296 		if (zone->zone_pgdat == last_pgdat)
6297 			continue;
6298 		last_pgdat = zone->zone_pgdat;
6299 		shrink_node(zone->zone_pgdat, sc);
6300 	}
6301 
6302 	if (first_pgdat)
6303 		consider_reclaim_throttle(first_pgdat, sc);
6304 
6305 	/*
6306 	 * Restore to original mask to avoid the impact on the caller if we
6307 	 * promoted it to __GFP_HIGHMEM.
6308 	 */
6309 	sc->gfp_mask = orig_mask;
6310 }
6311 
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6312 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6313 {
6314 	struct lruvec *target_lruvec;
6315 	unsigned long refaults;
6316 
6317 	if (lru_gen_enabled())
6318 		return;
6319 
6320 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6321 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6322 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6323 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6324 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6325 }
6326 
6327 /*
6328  * This is the main entry point to direct page reclaim.
6329  *
6330  * If a full scan of the inactive list fails to free enough memory then we
6331  * are "out of memory" and something needs to be killed.
6332  *
6333  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6334  * high - the zone may be full of dirty or under-writeback pages, which this
6335  * caller can't do much about.  We kick the writeback threads and take explicit
6336  * naps in the hope that some of these pages can be written.  But if the
6337  * allocating task holds filesystem locks which prevent writeout this might not
6338  * work, and the allocation attempt will fail.
6339  *
6340  * returns:	0, if no pages reclaimed
6341  * 		else, the number of pages reclaimed
6342  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6343 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6344 					  struct scan_control *sc)
6345 {
6346 	int initial_priority = sc->priority;
6347 	pg_data_t *last_pgdat;
6348 	struct zoneref *z;
6349 	struct zone *zone;
6350 retry:
6351 	delayacct_freepages_start();
6352 
6353 	if (!cgroup_reclaim(sc))
6354 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6355 
6356 	do {
6357 		if (!sc->proactive)
6358 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6359 					sc->priority);
6360 		sc->nr_scanned = 0;
6361 		shrink_zones(zonelist, sc);
6362 
6363 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6364 			break;
6365 
6366 		if (sc->compaction_ready)
6367 			break;
6368 	} while (--sc->priority >= 0);
6369 
6370 	last_pgdat = NULL;
6371 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6372 					sc->nodemask) {
6373 		if (zone->zone_pgdat == last_pgdat)
6374 			continue;
6375 		last_pgdat = zone->zone_pgdat;
6376 
6377 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6378 
6379 		if (cgroup_reclaim(sc)) {
6380 			struct lruvec *lruvec;
6381 
6382 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6383 						   zone->zone_pgdat);
6384 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6385 		}
6386 	}
6387 
6388 	delayacct_freepages_end();
6389 
6390 	if (sc->nr_reclaimed)
6391 		return sc->nr_reclaimed;
6392 
6393 	/* Aborted reclaim to try compaction? don't OOM, then */
6394 	if (sc->compaction_ready)
6395 		return 1;
6396 
6397 	/*
6398 	 * In most cases, direct reclaimers can do partial walks
6399 	 * through the cgroup tree to meet the reclaim goal while
6400 	 * keeping latency low. Since the iterator state is shared
6401 	 * among all direct reclaim invocations (to retain fairness
6402 	 * among cgroups), though, high concurrency can result in
6403 	 * individual threads not seeing enough cgroups to make
6404 	 * meaningful forward progress. Avoid false OOMs in this case.
6405 	 */
6406 	if (!sc->memcg_full_walk) {
6407 		sc->priority = initial_priority;
6408 		sc->memcg_full_walk = 1;
6409 		goto retry;
6410 	}
6411 
6412 	/*
6413 	 * We make inactive:active ratio decisions based on the node's
6414 	 * composition of memory, but a restrictive reclaim_idx or a
6415 	 * memory.low cgroup setting can exempt large amounts of
6416 	 * memory from reclaim. Neither of which are very common, so
6417 	 * instead of doing costly eligibility calculations of the
6418 	 * entire cgroup subtree up front, we assume the estimates are
6419 	 * good, and retry with forcible deactivation if that fails.
6420 	 */
6421 	if (sc->skipped_deactivate) {
6422 		sc->priority = initial_priority;
6423 		sc->force_deactivate = 1;
6424 		sc->skipped_deactivate = 0;
6425 		goto retry;
6426 	}
6427 
6428 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6429 	if (sc->memcg_low_skipped) {
6430 		sc->priority = initial_priority;
6431 		sc->force_deactivate = 0;
6432 		sc->memcg_low_reclaim = 1;
6433 		sc->memcg_low_skipped = 0;
6434 		goto retry;
6435 	}
6436 
6437 	return 0;
6438 }
6439 
allow_direct_reclaim(pg_data_t * pgdat)6440 static bool allow_direct_reclaim(pg_data_t *pgdat)
6441 {
6442 	struct zone *zone;
6443 	unsigned long pfmemalloc_reserve = 0;
6444 	unsigned long free_pages = 0;
6445 	int i;
6446 	bool wmark_ok;
6447 
6448 	if (kswapd_test_hopeless(pgdat))
6449 		return true;
6450 
6451 	for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) {
6452 		if (!zone_reclaimable_pages(zone) && zone_page_state_snapshot(zone, NR_FREE_PAGES))
6453 			continue;
6454 
6455 		pfmemalloc_reserve += min_wmark_pages(zone);
6456 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6457 	}
6458 
6459 	/* If there are no reserves (unexpected config) then do not throttle */
6460 	if (!pfmemalloc_reserve)
6461 		return true;
6462 
6463 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6464 
6465 	/* kswapd must be awake if processes are being throttled */
6466 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6467 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6468 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6469 
6470 		wake_up_interruptible(&pgdat->kswapd_wait);
6471 	}
6472 
6473 	return wmark_ok;
6474 }
6475 
6476 /*
6477  * Throttle direct reclaimers if backing storage is backed by the network
6478  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6479  * depleted. kswapd will continue to make progress and wake the processes
6480  * when the low watermark is reached.
6481  *
6482  * Returns true if a fatal signal was delivered during throttling. If this
6483  * happens, the page allocator should not consider triggering the OOM killer.
6484  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6485 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6486 					nodemask_t *nodemask)
6487 {
6488 	struct zoneref *z;
6489 	struct zone *zone;
6490 	pg_data_t *pgdat = NULL;
6491 
6492 	/*
6493 	 * Kernel threads should not be throttled as they may be indirectly
6494 	 * responsible for cleaning pages necessary for reclaim to make forward
6495 	 * progress. kjournald for example may enter direct reclaim while
6496 	 * committing a transaction where throttling it could forcing other
6497 	 * processes to block on log_wait_commit().
6498 	 */
6499 	if (current->flags & PF_KTHREAD)
6500 		goto out;
6501 
6502 	/*
6503 	 * If a fatal signal is pending, this process should not throttle.
6504 	 * It should return quickly so it can exit and free its memory
6505 	 */
6506 	if (fatal_signal_pending(current))
6507 		goto out;
6508 
6509 	/*
6510 	 * Check if the pfmemalloc reserves are ok by finding the first node
6511 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6512 	 * GFP_KERNEL will be required for allocating network buffers when
6513 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6514 	 *
6515 	 * Throttling is based on the first usable node and throttled processes
6516 	 * wait on a queue until kswapd makes progress and wakes them. There
6517 	 * is an affinity then between processes waking up and where reclaim
6518 	 * progress has been made assuming the process wakes on the same node.
6519 	 * More importantly, processes running on remote nodes will not compete
6520 	 * for remote pfmemalloc reserves and processes on different nodes
6521 	 * should make reasonable progress.
6522 	 */
6523 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6524 					gfp_zone(gfp_mask), nodemask) {
6525 		if (zone_idx(zone) > ZONE_NORMAL)
6526 			continue;
6527 
6528 		/* Throttle based on the first usable node */
6529 		pgdat = zone->zone_pgdat;
6530 		if (allow_direct_reclaim(pgdat))
6531 			goto out;
6532 		break;
6533 	}
6534 
6535 	/* If no zone was usable by the allocation flags then do not throttle */
6536 	if (!pgdat)
6537 		goto out;
6538 
6539 	/* Account for the throttling */
6540 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6541 
6542 	/*
6543 	 * If the caller cannot enter the filesystem, it's possible that it
6544 	 * is due to the caller holding an FS lock or performing a journal
6545 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6546 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6547 	 * blocked waiting on the same lock. Instead, throttle for up to a
6548 	 * second before continuing.
6549 	 */
6550 	if (!(gfp_mask & __GFP_FS))
6551 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6552 			allow_direct_reclaim(pgdat), HZ);
6553 	else
6554 		/* Throttle until kswapd wakes the process */
6555 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6556 			allow_direct_reclaim(pgdat));
6557 
6558 	if (fatal_signal_pending(current))
6559 		return true;
6560 
6561 out:
6562 	return false;
6563 }
6564 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)6565 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6566 				gfp_t gfp_mask, nodemask_t *nodemask)
6567 {
6568 	unsigned long nr_reclaimed;
6569 	struct scan_control sc = {
6570 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6571 		.gfp_mask = current_gfp_context(gfp_mask),
6572 		.reclaim_idx = gfp_zone(gfp_mask),
6573 		.order = order,
6574 		.nodemask = nodemask,
6575 		.priority = DEF_PRIORITY,
6576 		.may_writepage = 1,
6577 		.may_unmap = 1,
6578 		.may_swap = 1,
6579 	};
6580 
6581 	/*
6582 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6583 	 * Confirm they are large enough for max values.
6584 	 */
6585 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6586 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6587 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6588 
6589 	/*
6590 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6591 	 * 1 is returned so that the page allocator does not OOM kill at this
6592 	 * point.
6593 	 */
6594 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6595 		return 1;
6596 
6597 	set_task_reclaim_state(current, &sc.reclaim_state);
6598 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6599 
6600 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6601 
6602 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6603 	set_task_reclaim_state(current, NULL);
6604 
6605 	return nr_reclaimed;
6606 }
6607 
6608 #ifdef CONFIG_MEMCG
6609 
6610 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)6611 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6612 						gfp_t gfp_mask, bool noswap,
6613 						pg_data_t *pgdat,
6614 						unsigned long *nr_scanned)
6615 {
6616 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6617 	struct scan_control sc = {
6618 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6619 		.target_mem_cgroup = memcg,
6620 		.may_writepage = 1,
6621 		.may_unmap = 1,
6622 		.reclaim_idx = MAX_NR_ZONES - 1,
6623 		.may_swap = !noswap,
6624 	};
6625 
6626 	WARN_ON_ONCE(!current->reclaim_state);
6627 
6628 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6629 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6630 
6631 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6632 						      sc.gfp_mask);
6633 
6634 	/*
6635 	 * NOTE: Although we can get the priority field, using it
6636 	 * here is not a good idea, since it limits the pages we can scan.
6637 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6638 	 * will pick up pages from other mem cgroup's as well. We hack
6639 	 * the priority and make it zero.
6640 	 */
6641 	shrink_lruvec(lruvec, &sc);
6642 
6643 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6644 
6645 	*nr_scanned = sc.nr_scanned;
6646 
6647 	return sc.nr_reclaimed;
6648 }
6649 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6650 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6651 					   unsigned long nr_pages,
6652 					   gfp_t gfp_mask,
6653 					   unsigned int reclaim_options,
6654 					   int *swappiness)
6655 {
6656 	unsigned long nr_reclaimed;
6657 	unsigned int noreclaim_flag;
6658 	struct scan_control sc = {
6659 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6660 		.proactive_swappiness = swappiness,
6661 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6662 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6663 		.reclaim_idx = MAX_NR_ZONES - 1,
6664 		.target_mem_cgroup = memcg,
6665 		.priority = DEF_PRIORITY,
6666 		.may_writepage = 1,
6667 		.may_unmap = 1,
6668 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6669 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6670 	};
6671 	/*
6672 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6673 	 * equal pressure on all the nodes. This is based on the assumption that
6674 	 * the reclaim does not bail out early.
6675 	 */
6676 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6677 
6678 	set_task_reclaim_state(current, &sc.reclaim_state);
6679 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6680 	noreclaim_flag = memalloc_noreclaim_save();
6681 
6682 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6683 
6684 	memalloc_noreclaim_restore(noreclaim_flag);
6685 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6686 	set_task_reclaim_state(current, NULL);
6687 
6688 	return nr_reclaimed;
6689 }
6690 #else
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6691 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6692 					   unsigned long nr_pages,
6693 					   gfp_t gfp_mask,
6694 					   unsigned int reclaim_options,
6695 					   int *swappiness)
6696 {
6697 	return 0;
6698 }
6699 #endif
6700 
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)6701 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6702 {
6703 	struct mem_cgroup *memcg;
6704 	struct lruvec *lruvec;
6705 
6706 	if (lru_gen_enabled()) {
6707 		lru_gen_age_node(pgdat, sc);
6708 		return;
6709 	}
6710 
6711 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6712 	if (!can_age_anon_pages(lruvec, sc))
6713 		return;
6714 
6715 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6716 		return;
6717 
6718 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6719 	do {
6720 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6721 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6722 				   sc, LRU_ACTIVE_ANON);
6723 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6724 	} while (memcg);
6725 }
6726 
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)6727 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6728 {
6729 	int i;
6730 	struct zone *zone;
6731 
6732 	/*
6733 	 * Check for watermark boosts top-down as the higher zones
6734 	 * are more likely to be boosted. Both watermarks and boosts
6735 	 * should not be checked at the same time as reclaim would
6736 	 * start prematurely when there is no boosting and a lower
6737 	 * zone is balanced.
6738 	 */
6739 	for (i = highest_zoneidx; i >= 0; i--) {
6740 		zone = pgdat->node_zones + i;
6741 		if (!managed_zone(zone))
6742 			continue;
6743 
6744 		if (zone->watermark_boost)
6745 			return true;
6746 	}
6747 
6748 	return false;
6749 }
6750 
6751 /*
6752  * Returns true if there is an eligible zone balanced for the request order
6753  * and highest_zoneidx
6754  */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)6755 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6756 {
6757 	int i;
6758 	unsigned long mark = -1;
6759 	struct zone *zone;
6760 
6761 	/*
6762 	 * Check watermarks bottom-up as lower zones are more likely to
6763 	 * meet watermarks.
6764 	 */
6765 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6766 		enum zone_stat_item item;
6767 		unsigned long free_pages;
6768 
6769 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6770 			mark = promo_wmark_pages(zone);
6771 		else
6772 			mark = high_wmark_pages(zone);
6773 
6774 		/*
6775 		 * In defrag_mode, watermarks must be met in whole
6776 		 * blocks to avoid polluting allocator fallbacks.
6777 		 *
6778 		 * However, kswapd usually cannot accomplish this on
6779 		 * its own and needs kcompactd support. Once it's
6780 		 * reclaimed a compaction gap, and kswapd_shrink_node
6781 		 * has dropped order, simply ensure there are enough
6782 		 * base pages for compaction, wake kcompactd & sleep.
6783 		 */
6784 		if (defrag_mode && order)
6785 			item = NR_FREE_PAGES_BLOCKS;
6786 		else
6787 			item = NR_FREE_PAGES;
6788 
6789 		/*
6790 		 * When there is a high number of CPUs in the system,
6791 		 * the cumulative error from the vmstat per-cpu cache
6792 		 * can blur the line between the watermarks. In that
6793 		 * case, be safe and get an accurate snapshot.
6794 		 *
6795 		 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of
6796 		 * pageblock_nr_pages, while the vmstat pcp threshold
6797 		 * is limited to 125. On many configurations that
6798 		 * counter won't actually be per-cpu cached. But keep
6799 		 * things simple for now; revisit when somebody cares.
6800 		 */
6801 		free_pages = zone_page_state(zone, item);
6802 		if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark)
6803 			free_pages = zone_page_state_snapshot(zone, item);
6804 
6805 		if (__zone_watermark_ok(zone, order, mark, highest_zoneidx,
6806 					0, free_pages))
6807 			return true;
6808 	}
6809 
6810 	/*
6811 	 * If a node has no managed zone within highest_zoneidx, it does not
6812 	 * need balancing by definition. This can happen if a zone-restricted
6813 	 * allocation tries to wake a remote kswapd.
6814 	 */
6815 	if (mark == -1)
6816 		return true;
6817 
6818 	return false;
6819 }
6820 
6821 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)6822 static void clear_pgdat_congested(pg_data_t *pgdat)
6823 {
6824 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6825 
6826 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6827 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6828 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6829 }
6830 
6831 /*
6832  * Prepare kswapd for sleeping. This verifies that there are no processes
6833  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6834  *
6835  * Returns true if kswapd is ready to sleep
6836  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)6837 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6838 				int highest_zoneidx)
6839 {
6840 	/*
6841 	 * The throttled processes are normally woken up in balance_pgdat() as
6842 	 * soon as allow_direct_reclaim() is true. But there is a potential
6843 	 * race between when kswapd checks the watermarks and a process gets
6844 	 * throttled. There is also a potential race if processes get
6845 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6846 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6847 	 * the wake up checks. If kswapd is going to sleep, no process should
6848 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6849 	 * the wake up is premature, processes will wake kswapd and get
6850 	 * throttled again. The difference from wake ups in balance_pgdat() is
6851 	 * that here we are under prepare_to_wait().
6852 	 */
6853 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6854 		wake_up_all(&pgdat->pfmemalloc_wait);
6855 
6856 	/* Hopeless node, leave it to direct reclaim */
6857 	if (kswapd_test_hopeless(pgdat))
6858 		return true;
6859 
6860 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6861 		clear_pgdat_congested(pgdat);
6862 		return true;
6863 	}
6864 
6865 	return false;
6866 }
6867 
6868 /*
6869  * kswapd shrinks a node of pages that are at or below the highest usable
6870  * zone that is currently unbalanced.
6871  *
6872  * Returns true if kswapd scanned at least the requested number of pages to
6873  * reclaim or if the lack of progress was due to pages under writeback.
6874  * This is used to determine if the scanning priority needs to be raised.
6875  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)6876 static bool kswapd_shrink_node(pg_data_t *pgdat,
6877 			       struct scan_control *sc)
6878 {
6879 	struct zone *zone;
6880 	int z;
6881 	unsigned long nr_reclaimed = sc->nr_reclaimed;
6882 
6883 	/* Reclaim a number of pages proportional to the number of zones */
6884 	sc->nr_to_reclaim = 0;
6885 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
6886 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6887 	}
6888 
6889 	/*
6890 	 * Historically care was taken to put equal pressure on all zones but
6891 	 * now pressure is applied based on node LRU order.
6892 	 */
6893 	shrink_node(pgdat, sc);
6894 
6895 	/*
6896 	 * Fragmentation may mean that the system cannot be rebalanced for
6897 	 * high-order allocations. If twice the allocation size has been
6898 	 * reclaimed then recheck watermarks only at order-0 to prevent
6899 	 * excessive reclaim. Assume that a process requested a high-order
6900 	 * can direct reclaim/compact.
6901 	 */
6902 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6903 		sc->order = 0;
6904 
6905 	/* account for progress from mm_account_reclaimed_pages() */
6906 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6907 }
6908 
6909 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6910 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)6911 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6912 {
6913 	int i;
6914 	struct zone *zone;
6915 
6916 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6917 		if (active)
6918 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6919 		else
6920 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6921 	}
6922 }
6923 
6924 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6925 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6926 {
6927 	update_reclaim_active(pgdat, highest_zoneidx, true);
6928 }
6929 
6930 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6931 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6932 {
6933 	update_reclaim_active(pgdat, highest_zoneidx, false);
6934 }
6935 
6936 /*
6937  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6938  * that are eligible for use by the caller until at least one zone is
6939  * balanced.
6940  *
6941  * Returns the order kswapd finished reclaiming at.
6942  *
6943  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6944  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6945  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6946  * or lower is eligible for reclaim until at least one usable zone is
6947  * balanced.
6948  */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)6949 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6950 {
6951 	int i;
6952 	unsigned long nr_soft_reclaimed;
6953 	unsigned long nr_soft_scanned;
6954 	unsigned long pflags;
6955 	unsigned long nr_boost_reclaim;
6956 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6957 	bool boosted;
6958 	struct zone *zone;
6959 	struct scan_control sc = {
6960 		.gfp_mask = GFP_KERNEL,
6961 		.order = order,
6962 		.may_unmap = 1,
6963 	};
6964 
6965 	set_task_reclaim_state(current, &sc.reclaim_state);
6966 	psi_memstall_enter(&pflags);
6967 	__fs_reclaim_acquire(_THIS_IP_);
6968 
6969 	count_vm_event(PAGEOUTRUN);
6970 
6971 	/*
6972 	 * Account for the reclaim boost. Note that the zone boost is left in
6973 	 * place so that parallel allocations that are near the watermark will
6974 	 * stall or direct reclaim until kswapd is finished.
6975 	 */
6976 	nr_boost_reclaim = 0;
6977 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6978 		nr_boost_reclaim += zone->watermark_boost;
6979 		zone_boosts[i] = zone->watermark_boost;
6980 	}
6981 	boosted = nr_boost_reclaim;
6982 
6983 restart:
6984 	set_reclaim_active(pgdat, highest_zoneidx);
6985 	sc.priority = DEF_PRIORITY;
6986 	do {
6987 		unsigned long nr_reclaimed = sc.nr_reclaimed;
6988 		bool raise_priority = true;
6989 		bool balanced;
6990 		bool ret;
6991 		bool was_frozen;
6992 
6993 		sc.reclaim_idx = highest_zoneidx;
6994 
6995 		/*
6996 		 * If the number of buffer_heads exceeds the maximum allowed
6997 		 * then consider reclaiming from all zones. This has a dual
6998 		 * purpose -- on 64-bit systems it is expected that
6999 		 * buffer_heads are stripped during active rotation. On 32-bit
7000 		 * systems, highmem pages can pin lowmem memory and shrinking
7001 		 * buffers can relieve lowmem pressure. Reclaim may still not
7002 		 * go ahead if all eligible zones for the original allocation
7003 		 * request are balanced to avoid excessive reclaim from kswapd.
7004 		 */
7005 		if (buffer_heads_over_limit) {
7006 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7007 				zone = pgdat->node_zones + i;
7008 				if (!managed_zone(zone))
7009 					continue;
7010 
7011 				sc.reclaim_idx = i;
7012 				break;
7013 			}
7014 		}
7015 
7016 		/*
7017 		 * If the pgdat is imbalanced then ignore boosting and preserve
7018 		 * the watermarks for a later time and restart. Note that the
7019 		 * zone watermarks will be still reset at the end of balancing
7020 		 * on the grounds that the normal reclaim should be enough to
7021 		 * re-evaluate if boosting is required when kswapd next wakes.
7022 		 */
7023 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7024 		if (!balanced && nr_boost_reclaim) {
7025 			nr_boost_reclaim = 0;
7026 			goto restart;
7027 		}
7028 
7029 		/*
7030 		 * If boosting is not active then only reclaim if there are no
7031 		 * eligible zones. Note that sc.reclaim_idx is not used as
7032 		 * buffer_heads_over_limit may have adjusted it.
7033 		 */
7034 		if (!nr_boost_reclaim && balanced)
7035 			goto out;
7036 
7037 		/* Limit the priority of boosting to avoid reclaim writeback */
7038 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7039 			raise_priority = false;
7040 
7041 		/*
7042 		 * Do not writeback or swap pages for boosted reclaim. The
7043 		 * intent is to relieve pressure not issue sub-optimal IO
7044 		 * from reclaim context. If no pages are reclaimed, the
7045 		 * reclaim will be aborted.
7046 		 */
7047 		sc.may_writepage = !nr_boost_reclaim;
7048 		sc.may_swap = !nr_boost_reclaim;
7049 
7050 		/*
7051 		 * Do some background aging, to give pages a chance to be
7052 		 * referenced before reclaiming. All pages are rotated
7053 		 * regardless of classzone as this is about consistent aging.
7054 		 */
7055 		kswapd_age_node(pgdat, &sc);
7056 
7057 		/* Call soft limit reclaim before calling shrink_node. */
7058 		sc.nr_scanned = 0;
7059 		nr_soft_scanned = 0;
7060 		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
7061 							      sc.gfp_mask, &nr_soft_scanned);
7062 		sc.nr_reclaimed += nr_soft_reclaimed;
7063 
7064 		/*
7065 		 * There should be no need to raise the scanning priority if
7066 		 * enough pages are already being scanned that that high
7067 		 * watermark would be met at 100% efficiency.
7068 		 */
7069 		if (kswapd_shrink_node(pgdat, &sc))
7070 			raise_priority = false;
7071 
7072 		/*
7073 		 * If the low watermark is met there is no need for processes
7074 		 * to be throttled on pfmemalloc_wait as they should not be
7075 		 * able to safely make forward progress. Wake them
7076 		 */
7077 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7078 				allow_direct_reclaim(pgdat))
7079 			wake_up_all(&pgdat->pfmemalloc_wait);
7080 
7081 		/* Check if kswapd should be suspending */
7082 		__fs_reclaim_release(_THIS_IP_);
7083 		ret = kthread_freezable_should_stop(&was_frozen);
7084 		__fs_reclaim_acquire(_THIS_IP_);
7085 		if (was_frozen || ret)
7086 			break;
7087 
7088 		/*
7089 		 * Raise priority if scanning rate is too low or there was no
7090 		 * progress in reclaiming pages
7091 		 */
7092 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7093 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7094 
7095 		/*
7096 		 * If reclaim made no progress for a boost, stop reclaim as
7097 		 * IO cannot be queued and it could be an infinite loop in
7098 		 * extreme circumstances.
7099 		 */
7100 		if (nr_boost_reclaim && !nr_reclaimed)
7101 			break;
7102 
7103 		if (raise_priority || !nr_reclaimed)
7104 			sc.priority--;
7105 	} while (sc.priority >= 1);
7106 
7107 	/*
7108 	 * Restart only if it went through the priority loop all the way,
7109 	 * but cache_trim_mode didn't work.
7110 	 */
7111 	if (!sc.nr_reclaimed && sc.priority < 1 &&
7112 	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7113 		sc.no_cache_trim_mode = 1;
7114 		goto restart;
7115 	}
7116 
7117 	/*
7118 	 * If the reclaim was boosted, we might still be far from the
7119 	 * watermark_high at this point. We need to avoid increasing the
7120 	 * failure count to prevent the kswapd thread from stopping.
7121 	 */
7122 	if (!sc.nr_reclaimed && !boosted) {
7123 		int fail_cnt = atomic_inc_return(&pgdat->kswapd_failures);
7124 		/* kswapd context, low overhead to trace every failure */
7125 		trace_mm_vmscan_kswapd_reclaim_fail(pgdat->node_id, fail_cnt);
7126 	}
7127 
7128 out:
7129 	clear_reclaim_active(pgdat, highest_zoneidx);
7130 
7131 	/* If reclaim was boosted, account for the reclaim done in this pass */
7132 	if (boosted) {
7133 		unsigned long flags;
7134 
7135 		for (i = 0; i <= highest_zoneidx; i++) {
7136 			if (!zone_boosts[i])
7137 				continue;
7138 
7139 			/* Increments are under the zone lock */
7140 			zone = pgdat->node_zones + i;
7141 			spin_lock_irqsave(&zone->lock, flags);
7142 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7143 			spin_unlock_irqrestore(&zone->lock, flags);
7144 		}
7145 
7146 		/*
7147 		 * As there is now likely space, wakeup kcompact to defragment
7148 		 * pageblocks.
7149 		 */
7150 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7151 	}
7152 
7153 	snapshot_refaults(NULL, pgdat);
7154 	__fs_reclaim_release(_THIS_IP_);
7155 	psi_memstall_leave(&pflags);
7156 	set_task_reclaim_state(current, NULL);
7157 
7158 	/*
7159 	 * Return the order kswapd stopped reclaiming at as
7160 	 * prepare_kswapd_sleep() takes it into account. If another caller
7161 	 * entered the allocator slow path while kswapd was awake, order will
7162 	 * remain at the higher level.
7163 	 */
7164 	return sc.order;
7165 }
7166 
7167 /*
7168  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7169  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7170  * not a valid index then either kswapd runs for first time or kswapd couldn't
7171  * sleep after previous reclaim attempt (node is still unbalanced). In that
7172  * case return the zone index of the previous kswapd reclaim cycle.
7173  */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7174 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7175 					   enum zone_type prev_highest_zoneidx)
7176 {
7177 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7178 
7179 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7180 }
7181 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7182 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7183 				unsigned int highest_zoneidx)
7184 {
7185 	long remaining = 0;
7186 	DEFINE_WAIT(wait);
7187 
7188 	if (freezing(current) || kthread_should_stop())
7189 		return;
7190 
7191 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7192 
7193 	/*
7194 	 * Try to sleep for a short interval. Note that kcompactd will only be
7195 	 * woken if it is possible to sleep for a short interval. This is
7196 	 * deliberate on the assumption that if reclaim cannot keep an
7197 	 * eligible zone balanced that it's also unlikely that compaction will
7198 	 * succeed.
7199 	 */
7200 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7201 		/*
7202 		 * Compaction records what page blocks it recently failed to
7203 		 * isolate pages from and skips them in the future scanning.
7204 		 * When kswapd is going to sleep, it is reasonable to assume
7205 		 * that pages and compaction may succeed so reset the cache.
7206 		 */
7207 		reset_isolation_suitable(pgdat);
7208 
7209 		/*
7210 		 * We have freed the memory, now we should compact it to make
7211 		 * allocation of the requested order possible.
7212 		 */
7213 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7214 
7215 		remaining = schedule_timeout(HZ/10);
7216 
7217 		/*
7218 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7219 		 * order. The values will either be from a wakeup request or
7220 		 * the previous request that slept prematurely.
7221 		 */
7222 		if (remaining) {
7223 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7224 					kswapd_highest_zoneidx(pgdat,
7225 							highest_zoneidx));
7226 
7227 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7228 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7229 		}
7230 
7231 		finish_wait(&pgdat->kswapd_wait, &wait);
7232 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7233 	}
7234 
7235 	/*
7236 	 * After a short sleep, check if it was a premature sleep. If not, then
7237 	 * go fully to sleep until explicitly woken up.
7238 	 */
7239 	if (!remaining &&
7240 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7241 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7242 
7243 		/*
7244 		 * vmstat counters are not perfectly accurate and the estimated
7245 		 * value for counters such as NR_FREE_PAGES can deviate from the
7246 		 * true value by nr_online_cpus * threshold. To avoid the zone
7247 		 * watermarks being breached while under pressure, we reduce the
7248 		 * per-cpu vmstat threshold while kswapd is awake and restore
7249 		 * them before going back to sleep.
7250 		 */
7251 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7252 
7253 		if (!kthread_should_stop())
7254 			schedule();
7255 
7256 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7257 	} else {
7258 		if (remaining)
7259 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7260 		else
7261 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7262 	}
7263 	finish_wait(&pgdat->kswapd_wait, &wait);
7264 }
7265 
7266 /*
7267  * The background pageout daemon, started as a kernel thread
7268  * from the init process.
7269  *
7270  * This basically trickles out pages so that we have _some_
7271  * free memory available even if there is no other activity
7272  * that frees anything up. This is needed for things like routing
7273  * etc, where we otherwise might have all activity going on in
7274  * asynchronous contexts that cannot page things out.
7275  *
7276  * If there are applications that are active memory-allocators
7277  * (most normal use), this basically shouldn't matter.
7278  */
kswapd(void * p)7279 static int kswapd(void *p)
7280 {
7281 	unsigned int alloc_order, reclaim_order;
7282 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7283 	pg_data_t *pgdat = (pg_data_t *)p;
7284 	struct task_struct *tsk = current;
7285 
7286 	/*
7287 	 * Tell the memory management that we're a "memory allocator",
7288 	 * and that if we need more memory we should get access to it
7289 	 * regardless (see "__alloc_pages()"). "kswapd" should
7290 	 * never get caught in the normal page freeing logic.
7291 	 *
7292 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7293 	 * you need a small amount of memory in order to be able to
7294 	 * page out something else, and this flag essentially protects
7295 	 * us from recursively trying to free more memory as we're
7296 	 * trying to free the first piece of memory in the first place).
7297 	 */
7298 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7299 	set_freezable();
7300 
7301 	WRITE_ONCE(pgdat->kswapd_order, 0);
7302 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7303 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7304 	for ( ; ; ) {
7305 		bool was_frozen;
7306 
7307 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7308 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7309 							highest_zoneidx);
7310 
7311 kswapd_try_sleep:
7312 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7313 					highest_zoneidx);
7314 
7315 		/* Read the new order and highest_zoneidx */
7316 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7317 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7318 							highest_zoneidx);
7319 		WRITE_ONCE(pgdat->kswapd_order, 0);
7320 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7321 
7322 		if (kthread_freezable_should_stop(&was_frozen))
7323 			break;
7324 
7325 		/*
7326 		 * We can speed up thawing tasks if we don't call balance_pgdat
7327 		 * after returning from the refrigerator
7328 		 */
7329 		if (was_frozen)
7330 			continue;
7331 
7332 		/*
7333 		 * Reclaim begins at the requested order but if a high-order
7334 		 * reclaim fails then kswapd falls back to reclaiming for
7335 		 * order-0. If that happens, kswapd will consider sleeping
7336 		 * for the order it finished reclaiming at (reclaim_order)
7337 		 * but kcompactd is woken to compact for the original
7338 		 * request (alloc_order).
7339 		 */
7340 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7341 						alloc_order);
7342 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7343 						highest_zoneidx);
7344 		if (reclaim_order < alloc_order)
7345 			goto kswapd_try_sleep;
7346 	}
7347 
7348 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7349 
7350 	return 0;
7351 }
7352 
7353 /*
7354  * A zone is low on free memory or too fragmented for high-order memory.  If
7355  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7356  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7357  * has failed or is not needed, still wake up kcompactd if only compaction is
7358  * needed.
7359  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7360 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7361 		   enum zone_type highest_zoneidx)
7362 {
7363 	pg_data_t *pgdat;
7364 	enum zone_type curr_idx;
7365 
7366 	if (!managed_zone(zone))
7367 		return;
7368 
7369 	if (!cpuset_zone_allowed(zone, gfp_flags))
7370 		return;
7371 
7372 	pgdat = zone->zone_pgdat;
7373 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7374 
7375 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7376 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7377 
7378 	if (READ_ONCE(pgdat->kswapd_order) < order)
7379 		WRITE_ONCE(pgdat->kswapd_order, order);
7380 
7381 	if (!waitqueue_active(&pgdat->kswapd_wait))
7382 		return;
7383 
7384 	/* Hopeless node, leave it to direct reclaim if possible */
7385 	if (kswapd_test_hopeless(pgdat) ||
7386 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7387 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7388 		/*
7389 		 * There may be plenty of free memory available, but it's too
7390 		 * fragmented for high-order allocations.  Wake up kcompactd
7391 		 * and rely on compaction_suitable() to determine if it's
7392 		 * needed.  If it fails, it will defer subsequent attempts to
7393 		 * ratelimit its work.
7394 		 */
7395 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7396 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7397 		return;
7398 	}
7399 
7400 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7401 				      gfp_flags);
7402 	wake_up_interruptible(&pgdat->kswapd_wait);
7403 }
7404 
kswapd_clear_hopeless(pg_data_t * pgdat,enum kswapd_clear_hopeless_reason reason)7405 void kswapd_clear_hopeless(pg_data_t *pgdat, enum kswapd_clear_hopeless_reason reason)
7406 {
7407 	/* Only trace actual resets, not redundant zero-to-zero */
7408 	if (atomic_xchg(&pgdat->kswapd_failures, 0))
7409 		trace_mm_vmscan_kswapd_clear_hopeless(pgdat->node_id, reason);
7410 }
7411 
7412 /*
7413  * Reset kswapd_failures only when the node is balanced. Without this
7414  * check, successful direct reclaim (e.g., from cgroup memory.high
7415  * throttling) can keep resetting kswapd_failures even when the node
7416  * cannot be balanced, causing kswapd to run endlessly.
7417  */
kswapd_try_clear_hopeless(struct pglist_data * pgdat,unsigned int order,int highest_zoneidx)7418 void kswapd_try_clear_hopeless(struct pglist_data *pgdat,
7419 			       unsigned int order, int highest_zoneidx)
7420 {
7421 	if (pgdat_balanced(pgdat, order, highest_zoneidx))
7422 		kswapd_clear_hopeless(pgdat, current_is_kswapd() ?
7423 			KSWAPD_CLEAR_HOPELESS_KSWAPD : KSWAPD_CLEAR_HOPELESS_DIRECT);
7424 }
7425 
kswapd_test_hopeless(pg_data_t * pgdat)7426 bool kswapd_test_hopeless(pg_data_t *pgdat)
7427 {
7428 	return atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES;
7429 }
7430 
7431 #ifdef CONFIG_HIBERNATION
7432 /*
7433  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7434  * freed pages.
7435  *
7436  * Rather than trying to age LRUs the aim is to preserve the overall
7437  * LRU order by reclaiming preferentially
7438  * inactive > active > active referenced > active mapped
7439  */
shrink_all_memory(unsigned long nr_to_reclaim)7440 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7441 {
7442 	struct scan_control sc = {
7443 		.nr_to_reclaim = nr_to_reclaim,
7444 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7445 		.reclaim_idx = MAX_NR_ZONES - 1,
7446 		.priority = DEF_PRIORITY,
7447 		.may_writepage = 1,
7448 		.may_unmap = 1,
7449 		.may_swap = 1,
7450 		.hibernation_mode = 1,
7451 	};
7452 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7453 	unsigned long nr_reclaimed;
7454 	unsigned int noreclaim_flag;
7455 
7456 	fs_reclaim_acquire(sc.gfp_mask);
7457 	noreclaim_flag = memalloc_noreclaim_save();
7458 	set_task_reclaim_state(current, &sc.reclaim_state);
7459 
7460 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7461 
7462 	set_task_reclaim_state(current, NULL);
7463 	memalloc_noreclaim_restore(noreclaim_flag);
7464 	fs_reclaim_release(sc.gfp_mask);
7465 
7466 	return nr_reclaimed;
7467 }
7468 #endif /* CONFIG_HIBERNATION */
7469 
7470 /*
7471  * This kswapd start function will be called by init and node-hot-add.
7472  */
kswapd_run(int nid)7473 void __meminit kswapd_run(int nid)
7474 {
7475 	pg_data_t *pgdat = NODE_DATA(nid);
7476 
7477 	pgdat_kswapd_lock(pgdat);
7478 	if (!pgdat->kswapd) {
7479 		pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid);
7480 		if (IS_ERR(pgdat->kswapd)) {
7481 			/* failure at boot is fatal */
7482 			pr_err("Failed to start kswapd on node %d, ret=%pe\n",
7483 				   nid, pgdat->kswapd);
7484 			BUG_ON(system_state < SYSTEM_RUNNING);
7485 			pgdat->kswapd = NULL;
7486 		} else {
7487 			wake_up_process(pgdat->kswapd);
7488 		}
7489 	}
7490 	pgdat_kswapd_unlock(pgdat);
7491 }
7492 
7493 /*
7494  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7495  * be holding mem_hotplug_begin/done().
7496  */
kswapd_stop(int nid)7497 void __meminit kswapd_stop(int nid)
7498 {
7499 	pg_data_t *pgdat = NODE_DATA(nid);
7500 	struct task_struct *kswapd;
7501 
7502 	pgdat_kswapd_lock(pgdat);
7503 	kswapd = pgdat->kswapd;
7504 	if (kswapd) {
7505 		kthread_stop(kswapd);
7506 		pgdat->kswapd = NULL;
7507 	}
7508 	pgdat_kswapd_unlock(pgdat);
7509 }
7510 
7511 static const struct ctl_table vmscan_sysctl_table[] = {
7512 	{
7513 		.procname	= "swappiness",
7514 		.data		= &vm_swappiness,
7515 		.maxlen		= sizeof(vm_swappiness),
7516 		.mode		= 0644,
7517 		.proc_handler	= proc_dointvec_minmax,
7518 		.extra1		= SYSCTL_ZERO,
7519 		.extra2		= SYSCTL_TWO_HUNDRED,
7520 	},
7521 #ifdef CONFIG_NUMA
7522 	{
7523 		.procname	= "zone_reclaim_mode",
7524 		.data		= &node_reclaim_mode,
7525 		.maxlen		= sizeof(node_reclaim_mode),
7526 		.mode		= 0644,
7527 		.proc_handler	= proc_dointvec_minmax,
7528 		.extra1		= SYSCTL_ZERO,
7529 	}
7530 #endif
7531 };
7532 
kswapd_init(void)7533 static int __init kswapd_init(void)
7534 {
7535 	int nid;
7536 
7537 	swap_setup();
7538 	for_each_node_state(nid, N_MEMORY)
7539  		kswapd_run(nid);
7540 	register_sysctl_init("vm", vmscan_sysctl_table);
7541 	return 0;
7542 }
7543 
7544 module_init(kswapd_init)
7545 
7546 #ifdef CONFIG_NUMA
7547 /*
7548  * Node reclaim mode
7549  *
7550  * If non-zero call node_reclaim when the number of free pages falls below
7551  * the watermarks.
7552  */
7553 int node_reclaim_mode __read_mostly;
7554 
7555 /*
7556  * Priority for NODE_RECLAIM. This determines the fraction of pages
7557  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7558  * a zone.
7559  */
7560 #define NODE_RECLAIM_PRIORITY 4
7561 
7562 /*
7563  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7564  * occur.
7565  */
7566 int sysctl_min_unmapped_ratio = 1;
7567 
7568 /*
7569  * If the number of slab pages in a zone grows beyond this percentage then
7570  * slab reclaim needs to occur.
7571  */
7572 int sysctl_min_slab_ratio = 5;
7573 
node_unmapped_file_pages(struct pglist_data * pgdat)7574 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7575 {
7576 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7577 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7578 		node_page_state(pgdat, NR_ACTIVE_FILE);
7579 
7580 	/*
7581 	 * It's possible for there to be more file mapped pages than
7582 	 * accounted for by the pages on the file LRU lists because
7583 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7584 	 */
7585 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7586 }
7587 
7588 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7589 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7590 {
7591 	unsigned long nr_pagecache_reclaimable;
7592 	unsigned long delta = 0;
7593 
7594 	/*
7595 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7596 	 * potentially reclaimable. Otherwise, we have to worry about
7597 	 * pages like swapcache and node_unmapped_file_pages() provides
7598 	 * a better estimate
7599 	 */
7600 	if (node_reclaim_mode & RECLAIM_UNMAP)
7601 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7602 	else
7603 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7604 
7605 	/*
7606 	 * Since we can't clean folios through reclaim, remove dirty file
7607 	 * folios from consideration.
7608 	 */
7609 	delta += node_page_state(pgdat, NR_FILE_DIRTY);
7610 
7611 	/* Watch for any possible underflows due to delta */
7612 	if (unlikely(delta > nr_pagecache_reclaimable))
7613 		delta = nr_pagecache_reclaimable;
7614 
7615 	return nr_pagecache_reclaimable - delta;
7616 }
7617 
7618 /*
7619  * Try to free up some pages from this node through reclaim.
7620  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned long nr_pages,struct scan_control * sc)7621 static unsigned long __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask,
7622 				    unsigned long nr_pages,
7623 				    struct scan_control *sc)
7624 {
7625 	struct task_struct *p = current;
7626 	unsigned int noreclaim_flag;
7627 	unsigned long pflags;
7628 
7629 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, sc->order,
7630 					   sc->gfp_mask);
7631 
7632 	cond_resched();
7633 	psi_memstall_enter(&pflags);
7634 	delayacct_freepages_start();
7635 	fs_reclaim_acquire(sc->gfp_mask);
7636 	/*
7637 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7638 	 */
7639 	noreclaim_flag = memalloc_noreclaim_save();
7640 	set_task_reclaim_state(p, &sc->reclaim_state);
7641 
7642 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7643 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7644 		/*
7645 		 * Free memory by calling shrink node with increasing
7646 		 * priorities until we have enough memory freed.
7647 		 */
7648 		do {
7649 			shrink_node(pgdat, sc);
7650 		} while (sc->nr_reclaimed < nr_pages && --sc->priority >= 0);
7651 	}
7652 
7653 	set_task_reclaim_state(p, NULL);
7654 	memalloc_noreclaim_restore(noreclaim_flag);
7655 	fs_reclaim_release(sc->gfp_mask);
7656 	delayacct_freepages_end();
7657 	psi_memstall_leave(&pflags);
7658 
7659 	trace_mm_vmscan_node_reclaim_end(sc->nr_reclaimed);
7660 
7661 	return sc->nr_reclaimed;
7662 }
7663 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7664 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7665 {
7666 	int ret;
7667 	/* Minimum pages needed in order to stay on node */
7668 	const unsigned long nr_pages = 1 << order;
7669 	struct scan_control sc = {
7670 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7671 		.gfp_mask = current_gfp_context(gfp_mask),
7672 		.order = order,
7673 		.priority = NODE_RECLAIM_PRIORITY,
7674 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7675 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7676 		.may_swap = 1,
7677 		.reclaim_idx = gfp_zone(gfp_mask),
7678 	};
7679 
7680 	/*
7681 	 * Node reclaim reclaims unmapped file backed pages and
7682 	 * slab pages if we are over the defined limits.
7683 	 *
7684 	 * A small portion of unmapped file backed pages is needed for
7685 	 * file I/O otherwise pages read by file I/O will be immediately
7686 	 * thrown out if the node is overallocated. So we do not reclaim
7687 	 * if less than a specified percentage of the node is used by
7688 	 * unmapped file backed pages.
7689 	 */
7690 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7691 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7692 	    pgdat->min_slab_pages)
7693 		return NODE_RECLAIM_FULL;
7694 
7695 	/*
7696 	 * Do not scan if the allocation should not be delayed.
7697 	 */
7698 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7699 		return NODE_RECLAIM_NOSCAN;
7700 
7701 	/*
7702 	 * Only run node reclaim on the local node or on nodes that do not
7703 	 * have associated processors. This will favor the local processor
7704 	 * over remote processors and spread off node memory allocations
7705 	 * as wide as possible.
7706 	 */
7707 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7708 		return NODE_RECLAIM_NOSCAN;
7709 
7710 	if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7711 		return NODE_RECLAIM_NOSCAN;
7712 
7713 	ret = __node_reclaim(pgdat, gfp_mask, nr_pages, &sc) >= nr_pages;
7714 	clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7715 
7716 	if (ret)
7717 		count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7718 	else
7719 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7720 
7721 	return ret;
7722 }
7723 
7724 #else
7725 
7726 static unsigned long __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask,
7727 				    unsigned long nr_pages,
7728 				    struct scan_control *sc)
7729 {
7730 	return 0;
7731 }
7732 
7733 #endif
7734 
7735 enum {
7736 	MEMORY_RECLAIM_SWAPPINESS = 0,
7737 	MEMORY_RECLAIM_SWAPPINESS_MAX,
7738 	MEMORY_RECLAIM_NULL,
7739 };
7740 static const match_table_t tokens = {
7741 	{ MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
7742 	{ MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"},
7743 	{ MEMORY_RECLAIM_NULL, NULL },
7744 };
7745 
user_proactive_reclaim(char * buf,struct mem_cgroup * memcg,pg_data_t * pgdat)7746 int user_proactive_reclaim(char *buf,
7747 			   struct mem_cgroup *memcg, pg_data_t *pgdat)
7748 {
7749 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
7750 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
7751 	int swappiness = -1;
7752 	char *old_buf, *start;
7753 	substring_t args[MAX_OPT_ARGS];
7754 	gfp_t gfp_mask = GFP_KERNEL;
7755 
7756 	if (!buf || (!memcg && !pgdat) || (memcg && pgdat))
7757 		return -EINVAL;
7758 
7759 	buf = strstrip(buf);
7760 
7761 	old_buf = buf;
7762 	nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
7763 	if (buf == old_buf)
7764 		return -EINVAL;
7765 
7766 	buf = strstrip(buf);
7767 
7768 	while ((start = strsep(&buf, " ")) != NULL) {
7769 		if (!strlen(start))
7770 			continue;
7771 		switch (match_token(start, tokens, args)) {
7772 		case MEMORY_RECLAIM_SWAPPINESS:
7773 			if (match_int(&args[0], &swappiness))
7774 				return -EINVAL;
7775 			if (swappiness < MIN_SWAPPINESS ||
7776 			    swappiness > MAX_SWAPPINESS)
7777 				return -EINVAL;
7778 			break;
7779 		case MEMORY_RECLAIM_SWAPPINESS_MAX:
7780 			swappiness = SWAPPINESS_ANON_ONLY;
7781 			break;
7782 		default:
7783 			return -EINVAL;
7784 		}
7785 	}
7786 
7787 	while (nr_reclaimed < nr_to_reclaim) {
7788 		/* Will converge on zero, but reclaim enforces a minimum */
7789 		unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
7790 		unsigned long reclaimed;
7791 
7792 		if (signal_pending(current))
7793 			return -EINTR;
7794 
7795 		/*
7796 		 * This is the final attempt, drain percpu lru caches in the
7797 		 * hope of introducing more evictable pages.
7798 		 */
7799 		if (!nr_retries)
7800 			lru_add_drain_all();
7801 
7802 		if (memcg) {
7803 			unsigned int reclaim_options;
7804 
7805 			reclaim_options = MEMCG_RECLAIM_MAY_SWAP |
7806 					  MEMCG_RECLAIM_PROACTIVE;
7807 			reclaimed = try_to_free_mem_cgroup_pages(memcg,
7808 						 batch_size, gfp_mask,
7809 						 reclaim_options,
7810 						 swappiness == -1 ? NULL : &swappiness);
7811 		} else {
7812 			struct scan_control sc = {
7813 				.gfp_mask = current_gfp_context(gfp_mask),
7814 				.reclaim_idx = gfp_zone(gfp_mask),
7815 				.proactive_swappiness = swappiness == -1 ? NULL : &swappiness,
7816 				.priority = DEF_PRIORITY,
7817 				.may_writepage = 1,
7818 				.nr_to_reclaim = max(batch_size, SWAP_CLUSTER_MAX),
7819 				.may_unmap = 1,
7820 				.may_swap = 1,
7821 				.proactive = 1,
7822 			};
7823 
7824 			if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED,
7825 						  &pgdat->flags))
7826 				return -EBUSY;
7827 
7828 			reclaimed = __node_reclaim(pgdat, gfp_mask,
7829 						   batch_size, &sc);
7830 			clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7831 		}
7832 
7833 		if (!reclaimed && !nr_retries--)
7834 			return -EAGAIN;
7835 
7836 		nr_reclaimed += reclaimed;
7837 	}
7838 
7839 	return 0;
7840 }
7841 
7842 /**
7843  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7844  * lru list
7845  * @fbatch: Batch of lru folios to check.
7846  *
7847  * Checks folios for evictability, if an evictable folio is in the unevictable
7848  * lru list, moves it to the appropriate evictable lru list. This function
7849  * should be only used for lru folios.
7850  */
check_move_unevictable_folios(struct folio_batch * fbatch)7851 void check_move_unevictable_folios(struct folio_batch *fbatch)
7852 {
7853 	struct lruvec *lruvec = NULL;
7854 	int pgscanned = 0;
7855 	int pgrescued = 0;
7856 	int i;
7857 
7858 	for (i = 0; i < fbatch->nr; i++) {
7859 		struct folio *folio = fbatch->folios[i];
7860 		int nr_pages = folio_nr_pages(folio);
7861 
7862 		pgscanned += nr_pages;
7863 
7864 		/* block memcg migration while the folio moves between lrus */
7865 		if (!folio_test_clear_lru(folio))
7866 			continue;
7867 
7868 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7869 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7870 			lruvec_del_folio(lruvec, folio);
7871 			folio_clear_unevictable(folio);
7872 			lruvec_add_folio(lruvec, folio);
7873 			pgrescued += nr_pages;
7874 		}
7875 		folio_set_lru(folio);
7876 	}
7877 
7878 	if (lruvec) {
7879 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7880 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7881 		unlock_page_lruvec_irq(lruvec);
7882 	} else if (pgscanned) {
7883 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7884 	}
7885 }
7886 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7887 
7888 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
reclaim_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7889 static ssize_t reclaim_store(struct device *dev,
7890 			     struct device_attribute *attr,
7891 			     const char *buf, size_t count)
7892 {
7893 	int ret, nid = dev->id;
7894 
7895 	ret = user_proactive_reclaim((char *)buf, NULL, NODE_DATA(nid));
7896 	return ret ? -EAGAIN : count;
7897 }
7898 
7899 static DEVICE_ATTR_WO(reclaim);
reclaim_register_node(struct node * node)7900 int reclaim_register_node(struct node *node)
7901 {
7902 	return device_create_file(&node->dev, &dev_attr_reclaim);
7903 }
7904 
reclaim_unregister_node(struct node * node)7905 void reclaim_unregister_node(struct node *node)
7906 {
7907 	return device_remove_file(&node->dev, &dev_attr_reclaim);
7908 }
7909 #endif
7910