xref: /linux/include/linux/usb/gadget.h (revision 5d324e5159d9e6a1e6678007ce3f24e569650db6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * <linux/usb/gadget.h>
4  *
5  * We call the USB code inside a Linux-based peripheral device a "gadget"
6  * driver, except for the hardware-specific bus glue.  One USB host can
7  * talk to many USB gadgets, but the gadgets are only able to communicate
8  * to one host.
9  *
10  *
11  * (C) Copyright 2002-2004 by David Brownell
12  * All Rights Reserved.
13  */
14 
15 #ifndef __LINUX_USB_GADGET_H
16 #define __LINUX_USB_GADGET_H
17 
18 #include <linux/cleanup.h>
19 #include <linux/configfs.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/list.h>
24 #include <linux/slab.h>
25 #include <linux/scatterlist.h>
26 #include <linux/types.h>
27 #include <linux/workqueue.h>
28 #include <linux/usb/ch9.h>
29 
30 #define UDC_TRACE_STR_MAX	512
31 
32 struct usb_ep;
33 
34 /**
35  * struct usb_request - describes one i/o request
36  * @ep: The associated endpoint set by usb_ep_alloc_request().
37  * @buf: Buffer used for data.  Always provide this; some controllers
38  *	only use PIO, or don't use DMA for some endpoints.
39  * @dma: DMA address corresponding to 'buf'.  If you don't set this
40  *	field, and the usb controller needs one, it is responsible
41  *	for mapping and unmapping the buffer.
42  * @sg: a scatterlist for SG-capable controllers.
43  * @num_sgs: number of SG entries
44  * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
45  * @length: Length of that data
46  * @stream_id: The stream id, when USB3.0 bulk streams are being used
47  * @is_last: Indicates if this is the last request of a stream_id before
48  *	switching to a different stream (required for DWC3 controllers).
49  * @no_interrupt: If true, hints that no completion irq is needed.
50  *	Helpful sometimes with deep request queues that are handled
51  *	directly by DMA controllers.
52  * @zero: If true, when writing data, makes the last packet be "short"
53  *     by adding a zero length packet as needed;
54  * @short_not_ok: When reading data, makes short packets be
55  *     treated as errors (queue stops advancing till cleanup).
56  * @dma_mapped: Indicates if request has been mapped to DMA (internal)
57  * @sg_was_mapped: Set if the scatterlist has been mapped before the request
58  * @complete: Function called when request completes, so this request and
59  *	its buffer may be re-used.  The function will always be called with
60  *	interrupts disabled, and it must not sleep.
61  *	Reads terminate with a short packet, or when the buffer fills,
62  *	whichever comes first.  When writes terminate, some data bytes
63  *	will usually still be in flight (often in a hardware fifo).
64  *	Errors (for reads or writes) stop the queue from advancing
65  *	until the completion function returns, so that any transfers
66  *	invalidated by the error may first be dequeued.
67  * @context: For use by the completion callback
68  * @list: For use by the gadget driver.
69  * @frame_number: Reports the interval number in (micro)frame in which the
70  *	isochronous transfer was transmitted or received.
71  * @status: Reports completion code, zero or a negative errno.
72  *	Normally, faults block the transfer queue from advancing until
73  *	the completion callback returns.
74  *	Code "-ESHUTDOWN" indicates completion caused by device disconnect,
75  *	or when the driver disabled the endpoint.
76  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
77  *	transfers) this may be less than the requested length.  If the
78  *	short_not_ok flag is set, short reads are treated as errors
79  *	even when status otherwise indicates successful completion.
80  *	Note that for writes (IN transfers) some data bytes may still
81  *	reside in a device-side FIFO when the request is reported as
82  *	complete.
83  *
84  * These are allocated/freed through the endpoint they're used with.  The
85  * hardware's driver can add extra per-request data to the memory it returns,
86  * which often avoids separate memory allocations (potential failures),
87  * later when the request is queued.
88  *
89  * Request flags affect request handling, such as whether a zero length
90  * packet is written (the "zero" flag), whether a short read should be
91  * treated as an error (blocking request queue advance, the "short_not_ok"
92  * flag), or hinting that an interrupt is not required (the "no_interrupt"
93  * flag, for use with deep request queues).
94  *
95  * Bulk endpoints can use any size buffers, and can also be used for interrupt
96  * transfers. interrupt-only endpoints can be much less functional.
97  *
98  * NOTE:  this is analogous to 'struct urb' on the host side, except that
99  * it's thinner and promotes more pre-allocation.
100  */
101 
102 struct usb_request {
103 	struct usb_ep		*ep;
104 	void			*buf;
105 	unsigned		length;
106 	dma_addr_t		dma;
107 
108 	struct scatterlist	*sg;
109 	unsigned		num_sgs;
110 	unsigned		num_mapped_sgs;
111 
112 	unsigned		stream_id:16;
113 	unsigned		is_last:1;
114 	unsigned		no_interrupt:1;
115 	unsigned		zero:1;
116 	unsigned		short_not_ok:1;
117 	unsigned		dma_mapped:1;
118 	unsigned		sg_was_mapped:1;
119 
120 	void			(*complete)(struct usb_ep *ep,
121 					struct usb_request *req);
122 	void			*context;
123 	struct list_head	list;
124 
125 	unsigned		frame_number;		/* ISO ONLY */
126 
127 	int			status;
128 	unsigned		actual;
129 };
130 
131 /*-------------------------------------------------------------------------*/
132 
133 /* endpoint-specific parts of the api to the usb controller hardware.
134  * unlike the urb model, (de)multiplexing layers are not required.
135  * (so this api could slash overhead if used on the host side...)
136  *
137  * note that device side usb controllers commonly differ in how many
138  * endpoints they support, as well as their capabilities.
139  */
140 struct usb_ep_ops {
141 	int (*enable) (struct usb_ep *ep,
142 		const struct usb_endpoint_descriptor *desc);
143 	int (*disable) (struct usb_ep *ep);
144 	void (*dispose) (struct usb_ep *ep);
145 
146 	struct usb_request *(*alloc_request) (struct usb_ep *ep,
147 		gfp_t gfp_flags);
148 	void (*free_request) (struct usb_ep *ep, struct usb_request *req);
149 
150 	int (*queue) (struct usb_ep *ep, struct usb_request *req,
151 		gfp_t gfp_flags);
152 	int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
153 
154 	int (*set_halt) (struct usb_ep *ep, int value);
155 	int (*set_wedge) (struct usb_ep *ep);
156 
157 	int (*fifo_status) (struct usb_ep *ep);
158 	void (*fifo_flush) (struct usb_ep *ep);
159 };
160 
161 /**
162  * struct usb_ep_caps - endpoint capabilities description
163  * @type_control:Endpoint supports control type (reserved for ep0).
164  * @type_iso:Endpoint supports isochronous transfers.
165  * @type_bulk:Endpoint supports bulk transfers.
166  * @type_int:Endpoint supports interrupt transfers.
167  * @dir_in:Endpoint supports IN direction.
168  * @dir_out:Endpoint supports OUT direction.
169  */
170 struct usb_ep_caps {
171 	unsigned type_control:1;
172 	unsigned type_iso:1;
173 	unsigned type_bulk:1;
174 	unsigned type_int:1;
175 	unsigned dir_in:1;
176 	unsigned dir_out:1;
177 };
178 
179 #define USB_EP_CAPS_TYPE_CONTROL     0x01
180 #define USB_EP_CAPS_TYPE_ISO         0x02
181 #define USB_EP_CAPS_TYPE_BULK        0x04
182 #define USB_EP_CAPS_TYPE_INT         0x08
183 #define USB_EP_CAPS_TYPE_ALL \
184 	(USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
185 #define USB_EP_CAPS_DIR_IN           0x01
186 #define USB_EP_CAPS_DIR_OUT          0x02
187 #define USB_EP_CAPS_DIR_ALL  (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
188 
189 #define USB_EP_CAPS(_type, _dir) \
190 	{ \
191 		.type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
192 		.type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
193 		.type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
194 		.type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
195 		.dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
196 		.dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
197 	}
198 
199 /**
200  * struct usb_ep - device side representation of USB endpoint
201  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
202  * @ops: Function pointers used to access hardware-specific operations.
203  * @ep_list:the gadget's ep_list holds all of its endpoints
204  * @caps:The structure describing types and directions supported by endpoint.
205  * @enabled: The current endpoint enabled/disabled state.
206  * @claimed: True if this endpoint is claimed by a function.
207  * @maxpacket:The maximum packet size used on this endpoint.  The initial
208  *	value can sometimes be reduced (hardware allowing), according to
209  *	the endpoint descriptor used to configure the endpoint.
210  * @maxpacket_limit:The maximum packet size value which can be handled by this
211  *	endpoint. It's set once by UDC driver when endpoint is initialized, and
212  *	should not be changed. Should not be confused with maxpacket.
213  * @max_streams: The maximum number of streams supported
214  *	by this EP (0 - 16, actual number is 2^n)
215  * @mult: multiplier, 'mult' value for SS Isoc EPs
216  * @maxburst: the maximum number of bursts supported by this EP (for usb3)
217  * @driver_data:for use by the gadget driver.
218  * @address: used to identify the endpoint when finding descriptor that
219  *	matches connection speed
220  * @desc: endpoint descriptor.  This pointer is set before the endpoint is
221  *	enabled and remains valid until the endpoint is disabled.
222  * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
223  *	descriptor that is used to configure the endpoint
224  *
225  * the bus controller driver lists all the general purpose endpoints in
226  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
227  * and is accessed only in response to a driver setup() callback.
228  */
229 
230 struct usb_ep {
231 	void			*driver_data;
232 
233 	const char		*name;
234 	const struct usb_ep_ops	*ops;
235 	const struct usb_endpoint_descriptor	*desc;
236 	const struct usb_ss_ep_comp_descriptor	*comp_desc;
237 	struct list_head	ep_list;
238 	struct usb_ep_caps	caps;
239 	bool			claimed;
240 	bool			enabled;
241 	unsigned		mult:2;
242 	unsigned		maxburst:5;
243 	u8			address;
244 	u16			maxpacket;
245 	u16			maxpacket_limit;
246 	u16			max_streams;
247 };
248 
249 /*-------------------------------------------------------------------------*/
250 
251 #if IS_ENABLED(CONFIG_USB_GADGET)
252 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit);
253 int usb_ep_enable(struct usb_ep *ep);
254 int usb_ep_disable(struct usb_ep *ep);
255 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags);
256 void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req);
257 int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags);
258 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
259 int usb_ep_set_halt(struct usb_ep *ep);
260 int usb_ep_clear_halt(struct usb_ep *ep);
261 int usb_ep_set_wedge(struct usb_ep *ep);
262 int usb_ep_fifo_status(struct usb_ep *ep);
263 void usb_ep_fifo_flush(struct usb_ep *ep);
264 #else
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)265 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
266 		unsigned maxpacket_limit)
267 { }
usb_ep_enable(struct usb_ep * ep)268 static inline int usb_ep_enable(struct usb_ep *ep)
269 { return 0; }
usb_ep_disable(struct usb_ep * ep)270 static inline int usb_ep_disable(struct usb_ep *ep)
271 { return 0; }
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)272 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
273 		gfp_t gfp_flags)
274 { return NULL; }
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)275 static inline void usb_ep_free_request(struct usb_ep *ep,
276 		struct usb_request *req)
277 { }
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)278 static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req,
279 		gfp_t gfp_flags)
280 { return 0; }
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)281 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
282 { return 0; }
usb_ep_set_halt(struct usb_ep * ep)283 static inline int usb_ep_set_halt(struct usb_ep *ep)
284 { return 0; }
usb_ep_clear_halt(struct usb_ep * ep)285 static inline int usb_ep_clear_halt(struct usb_ep *ep)
286 { return 0; }
usb_ep_set_wedge(struct usb_ep * ep)287 static inline int usb_ep_set_wedge(struct usb_ep *ep)
288 { return 0; }
usb_ep_fifo_status(struct usb_ep * ep)289 static inline int usb_ep_fifo_status(struct usb_ep *ep)
290 { return 0; }
usb_ep_fifo_flush(struct usb_ep * ep)291 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
292 { }
293 #endif /* USB_GADGET */
294 
295 /*-------------------------------------------------------------------------*/
296 
297 /**
298  * free_usb_request - frees a usb_request object and its buffer
299  * @req: the request being freed
300  *
301  * This helper function frees both the request's buffer and the request object
302  * itself by calling usb_ep_free_request(). Its signature is designed to be used
303  * with DEFINE_FREE() to enable automatic, scope-based cleanup for usb_request
304  * pointers.
305  */
free_usb_request(struct usb_request * req)306 static inline void free_usb_request(struct usb_request *req)
307 {
308 	if (!req)
309 		return;
310 
311 	kfree(req->buf);
312 	usb_ep_free_request(req->ep, req);
313 }
314 
315 DEFINE_FREE(free_usb_request, struct usb_request *, free_usb_request(_T))
316 
317 /*-------------------------------------------------------------------------*/
318 
319 struct usb_dcd_config_params {
320 	__u8  bU1devExitLat;	/* U1 Device exit Latency */
321 #define USB_DEFAULT_U1_DEV_EXIT_LAT	0x01	/* Less then 1 microsec */
322 	__le16 bU2DevExitLat;	/* U2 Device exit Latency */
323 #define USB_DEFAULT_U2_DEV_EXIT_LAT	0x1F4	/* Less then 500 microsec */
324 	__u8 besl_baseline;	/* Recommended baseline BESL (0-15) */
325 	__u8 besl_deep;		/* Recommended deep BESL (0-15) */
326 #define USB_DEFAULT_BESL_UNSPECIFIED	0xFF	/* No recommended value */
327 };
328 
329 
330 struct usb_gadget;
331 struct usb_gadget_driver;
332 struct usb_udc;
333 
334 /* the rest of the api to the controller hardware: device operations,
335  * which don't involve endpoints (or i/o).
336  */
337 struct usb_gadget_ops {
338 	int	(*get_frame)(struct usb_gadget *);
339 	int	(*wakeup)(struct usb_gadget *);
340 	int	(*func_wakeup)(struct usb_gadget *gadget, int intf_id);
341 	int	(*set_remote_wakeup)(struct usb_gadget *, int set);
342 	int	(*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
343 	int	(*vbus_session) (struct usb_gadget *, int is_active);
344 	int	(*vbus_draw) (struct usb_gadget *, unsigned mA);
345 	int	(*pullup) (struct usb_gadget *, int is_on);
346 	int	(*ioctl)(struct usb_gadget *,
347 				unsigned code, unsigned long param);
348 	void	(*get_config_params)(struct usb_gadget *,
349 				     struct usb_dcd_config_params *);
350 	int	(*udc_start)(struct usb_gadget *,
351 			struct usb_gadget_driver *);
352 	int	(*udc_stop)(struct usb_gadget *);
353 	void	(*udc_set_speed)(struct usb_gadget *, enum usb_device_speed);
354 	void	(*udc_set_ssp_rate)(struct usb_gadget *gadget,
355 			enum usb_ssp_rate rate);
356 	void	(*udc_async_callbacks)(struct usb_gadget *gadget, bool enable);
357 	struct usb_ep *(*match_ep)(struct usb_gadget *,
358 			struct usb_endpoint_descriptor *,
359 			struct usb_ss_ep_comp_descriptor *);
360 	int	(*check_config)(struct usb_gadget *gadget);
361 };
362 
363 /**
364  * struct usb_gadget - represents a usb device
365  * @work: (internal use) Workqueue to be used for sysfs_notify()
366  * @udc: struct usb_udc pointer for this gadget
367  * @ops: Function pointers used to access hardware-specific operations.
368  * @ep0: Endpoint zero, used when reading or writing responses to
369  *	driver setup() requests
370  * @ep_list: List of other endpoints supported by the device.
371  * @speed: Speed of current connection to USB host.
372  * @max_speed: Maximal speed the UDC can handle.  UDC must support this
373  *      and all slower speeds.
374  * @ssp_rate: Current connected SuperSpeed Plus signaling rate and lane count.
375  * @max_ssp_rate: Maximum SuperSpeed Plus signaling rate and lane count the UDC
376  *	can handle. The UDC must support this and all slower speeds and lower
377  *	number of lanes.
378  * @state: the state we are now (attached, suspended, configured, etc)
379  * @state_lock: Spinlock protecting the `state` and `teardown` members.
380  * @teardown: True if the device is undergoing teardown, used to prevent
381  *	new work from being scheduled during cleanup.
382  * @name: Identifies the controller hardware type.  Used in diagnostics
383  *	and sometimes configuration.
384  * @dev: Driver model state for this abstract device.
385  * @isoch_delay: value from Set Isoch Delay request. Only valid on SS/SSP
386  * @out_epnum: last used out ep number
387  * @in_epnum: last used in ep number
388  * @mA: last set mA value
389  * @otg_caps: OTG capabilities of this gadget.
390  * @sg_supported: true if we can handle scatter-gather
391  * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
392  *	gadget driver must provide a USB OTG descriptor.
393  * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
394  *	is in the Mini-AB jack, and HNP has been used to switch roles
395  *	so that the "A" device currently acts as A-Peripheral, not A-Host.
396  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
397  *	supports HNP at this port.
398  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
399  *	only supports HNP on a different root port.
400  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
401  *	enabled HNP support.
402  * @hnp_polling_support: OTG device feature flag, indicating if the OTG device
403  *	in peripheral mode can support HNP polling.
404  * @host_request_flag: OTG device feature flag, indicating if A-Peripheral
405  *	or B-Peripheral wants to take host role.
406  * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
407  *	MaxPacketSize.
408  * @quirk_altset_not_supp: UDC controller doesn't support alt settings.
409  * @quirk_stall_not_supp: UDC controller doesn't support stalling.
410  * @quirk_zlp_not_supp: UDC controller doesn't support ZLP.
411  * @quirk_avoids_skb_reserve: udc/platform wants to avoid skb_reserve() in
412  *	u_ether.c to improve performance.
413  * @is_selfpowered: if the gadget is self-powered.
414  * @deactivated: True if gadget is deactivated - in deactivated state it cannot
415  *	be connected.
416  * @connected: True if gadget is connected.
417  * @lpm_capable: If the gadget max_speed is FULL or HIGH, this flag
418  *	indicates that it supports LPM as per the LPM ECN & errata.
419  * @wakeup_capable: True if gadget is capable of sending remote wakeup.
420  * @wakeup_armed: True if gadget is armed by the host for remote wakeup.
421  * @irq: the interrupt number for device controller.
422  * @id_number: a unique ID number for ensuring that gadget names are distinct
423  *
424  * Gadgets have a mostly-portable "gadget driver" implementing device
425  * functions, handling all usb configurations and interfaces.  Gadget
426  * drivers talk to hardware-specific code indirectly, through ops vectors.
427  * That insulates the gadget driver from hardware details, and packages
428  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
429  * and "usb_ep" interfaces provide that insulation from the hardware.
430  *
431  * Except for the driver data, all fields in this structure are
432  * read-only to the gadget driver.  That driver data is part of the
433  * "driver model" infrastructure in 2.6 (and later) kernels, and for
434  * earlier systems is grouped in a similar structure that's not known
435  * to the rest of the kernel.
436  *
437  * Values of the three OTG device feature flags are updated before the
438  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
439  * driver suspend() calls.  They are valid only when is_otg, and when the
440  * device is acting as a B-Peripheral (so is_a_peripheral is false).
441  */
442 struct usb_gadget {
443 	struct work_struct		work;
444 	struct usb_udc			*udc;
445 	/* readonly to gadget driver */
446 	const struct usb_gadget_ops	*ops;
447 	struct usb_ep			*ep0;
448 	struct list_head		ep_list;	/* of usb_ep */
449 	enum usb_device_speed		speed;
450 	enum usb_device_speed		max_speed;
451 
452 	/* USB SuperSpeed Plus only */
453 	enum usb_ssp_rate		ssp_rate;
454 	enum usb_ssp_rate		max_ssp_rate;
455 
456 	enum usb_device_state		state;
457 	spinlock_t			state_lock;
458 	bool				teardown;
459 	const char			*name;
460 	struct device			dev;
461 	unsigned			isoch_delay;
462 	unsigned			out_epnum;
463 	unsigned			in_epnum;
464 	unsigned			mA;
465 	struct usb_otg_caps		*otg_caps;
466 
467 	unsigned			sg_supported:1;
468 	unsigned			is_otg:1;
469 	unsigned			is_a_peripheral:1;
470 	unsigned			b_hnp_enable:1;
471 	unsigned			a_hnp_support:1;
472 	unsigned			a_alt_hnp_support:1;
473 	unsigned			hnp_polling_support:1;
474 	unsigned			host_request_flag:1;
475 	unsigned			quirk_ep_out_aligned_size:1;
476 	unsigned			quirk_altset_not_supp:1;
477 	unsigned			quirk_stall_not_supp:1;
478 	unsigned			quirk_zlp_not_supp:1;
479 	unsigned			quirk_avoids_skb_reserve:1;
480 	unsigned			is_selfpowered:1;
481 	unsigned			deactivated:1;
482 	unsigned			connected:1;
483 	unsigned			lpm_capable:1;
484 	unsigned			wakeup_capable:1;
485 	unsigned			wakeup_armed:1;
486 	int				irq;
487 	int				id_number;
488 };
489 #define work_to_gadget(w)	(container_of((w), struct usb_gadget, work))
490 
491 /* Interface to the device model */
set_gadget_data(struct usb_gadget * gadget,void * data)492 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
493 	{ dev_set_drvdata(&gadget->dev, data); }
get_gadget_data(struct usb_gadget * gadget)494 static inline void *get_gadget_data(struct usb_gadget *gadget)
495 	{ return dev_get_drvdata(&gadget->dev); }
dev_to_usb_gadget(struct device * dev)496 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
497 {
498 	return container_of(dev, struct usb_gadget, dev);
499 }
usb_get_gadget(struct usb_gadget * gadget)500 static inline struct usb_gadget *usb_get_gadget(struct usb_gadget *gadget)
501 {
502 	get_device(&gadget->dev);
503 	return gadget;
504 }
usb_put_gadget(struct usb_gadget * gadget)505 static inline void usb_put_gadget(struct usb_gadget *gadget)
506 {
507 	put_device(&gadget->dev);
508 }
509 extern void usb_initialize_gadget(struct device *parent,
510 		struct usb_gadget *gadget, void (*release)(struct device *dev));
511 extern int usb_add_gadget(struct usb_gadget *gadget);
512 extern void usb_del_gadget(struct usb_gadget *gadget);
513 
514 /* Legacy device-model interface */
515 extern int usb_add_gadget_udc_release(struct device *parent,
516 		struct usb_gadget *gadget, void (*release)(struct device *dev));
517 extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
518 extern void usb_del_gadget_udc(struct usb_gadget *gadget);
519 extern char *usb_get_gadget_udc_name(void);
520 
521 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
522 #define gadget_for_each_ep(tmp, gadget) \
523 	list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
524 
525 /**
526  * usb_ep_align - returns @len aligned to ep's maxpacketsize.
527  * @ep: the endpoint whose maxpacketsize is used to align @len
528  * @len: buffer size's length to align to @ep's maxpacketsize
529  *
530  * This helper is used to align buffer's size to an ep's maxpacketsize.
531  */
usb_ep_align(struct usb_ep * ep,size_t len)532 static inline size_t usb_ep_align(struct usb_ep *ep, size_t len)
533 {
534 	int max_packet_size = (size_t)usb_endpoint_maxp(ep->desc);
535 
536 	return round_up(len, max_packet_size);
537 }
538 
539 /**
540  * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
541  *	requires quirk_ep_out_aligned_size, otherwise returns len.
542  * @g: controller to check for quirk
543  * @ep: the endpoint whose maxpacketsize is used to align @len
544  * @len: buffer size's length to align to @ep's maxpacketsize
545  *
546  * This helper is used in case it's required for any reason to check and maybe
547  * align buffer's size to an ep's maxpacketsize.
548  */
549 static inline size_t
usb_ep_align_maybe(struct usb_gadget * g,struct usb_ep * ep,size_t len)550 usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
551 {
552 	return g->quirk_ep_out_aligned_size ? usb_ep_align(ep, len) : len;
553 }
554 
555 /**
556  * gadget_is_altset_supported - return true iff the hardware supports
557  *	altsettings
558  * @g: controller to check for quirk
559  */
gadget_is_altset_supported(struct usb_gadget * g)560 static inline int gadget_is_altset_supported(struct usb_gadget *g)
561 {
562 	return !g->quirk_altset_not_supp;
563 }
564 
565 /**
566  * gadget_is_stall_supported - return true iff the hardware supports stalling
567  * @g: controller to check for quirk
568  */
gadget_is_stall_supported(struct usb_gadget * g)569 static inline int gadget_is_stall_supported(struct usb_gadget *g)
570 {
571 	return !g->quirk_stall_not_supp;
572 }
573 
574 /**
575  * gadget_is_zlp_supported - return true iff the hardware supports zlp
576  * @g: controller to check for quirk
577  */
gadget_is_zlp_supported(struct usb_gadget * g)578 static inline int gadget_is_zlp_supported(struct usb_gadget *g)
579 {
580 	return !g->quirk_zlp_not_supp;
581 }
582 
583 /**
584  * gadget_avoids_skb_reserve - return true iff the hardware would like to avoid
585  *	skb_reserve to improve performance.
586  * @g: controller to check for quirk
587  */
gadget_avoids_skb_reserve(struct usb_gadget * g)588 static inline int gadget_avoids_skb_reserve(struct usb_gadget *g)
589 {
590 	return g->quirk_avoids_skb_reserve;
591 }
592 
593 /**
594  * gadget_is_dualspeed - return true iff the hardware handles high speed
595  * @g: controller that might support both high and full speeds
596  */
gadget_is_dualspeed(struct usb_gadget * g)597 static inline int gadget_is_dualspeed(struct usb_gadget *g)
598 {
599 	return g->max_speed >= USB_SPEED_HIGH;
600 }
601 
602 /**
603  * gadget_is_superspeed() - return true if the hardware handles superspeed
604  * @g: controller that might support superspeed
605  */
gadget_is_superspeed(struct usb_gadget * g)606 static inline int gadget_is_superspeed(struct usb_gadget *g)
607 {
608 	return g->max_speed >= USB_SPEED_SUPER;
609 }
610 
611 /**
612  * gadget_is_superspeed_plus() - return true if the hardware handles
613  *	superspeed plus
614  * @g: controller that might support superspeed plus
615  */
gadget_is_superspeed_plus(struct usb_gadget * g)616 static inline int gadget_is_superspeed_plus(struct usb_gadget *g)
617 {
618 	return g->max_speed >= USB_SPEED_SUPER_PLUS;
619 }
620 
621 /**
622  * gadget_is_otg - return true iff the hardware is OTG-ready
623  * @g: controller that might have a Mini-AB connector
624  *
625  * This is a runtime test, since kernels with a USB-OTG stack sometimes
626  * run on boards which only have a Mini-B (or Mini-A) connector.
627  */
gadget_is_otg(struct usb_gadget * g)628 static inline int gadget_is_otg(struct usb_gadget *g)
629 {
630 #ifdef CONFIG_USB_OTG
631 	return g->is_otg;
632 #else
633 	return 0;
634 #endif
635 }
636 
637 /*-------------------------------------------------------------------------*/
638 
639 #if IS_ENABLED(CONFIG_USB_GADGET)
640 int usb_gadget_frame_number(struct usb_gadget *gadget);
641 int usb_gadget_wakeup(struct usb_gadget *gadget);
642 int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set);
643 int usb_gadget_set_selfpowered(struct usb_gadget *gadget);
644 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget);
645 int usb_gadget_vbus_connect(struct usb_gadget *gadget);
646 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA);
647 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget);
648 int usb_gadget_connect(struct usb_gadget *gadget);
649 int usb_gadget_disconnect(struct usb_gadget *gadget);
650 int usb_gadget_deactivate(struct usb_gadget *gadget);
651 int usb_gadget_activate(struct usb_gadget *gadget);
652 int usb_gadget_check_config(struct usb_gadget *gadget);
653 #else
usb_gadget_frame_number(struct usb_gadget * gadget)654 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
655 { return 0; }
usb_gadget_wakeup(struct usb_gadget * gadget)656 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
657 { return 0; }
usb_gadget_set_remote_wakeup(struct usb_gadget * gadget,int set)658 static inline int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set)
659 { return 0; }
usb_gadget_set_selfpowered(struct usb_gadget * gadget)660 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
661 { return 0; }
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)662 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
663 { return 0; }
usb_gadget_vbus_connect(struct usb_gadget * gadget)664 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
665 { return 0; }
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)666 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
667 { return 0; }
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)668 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
669 { return 0; }
usb_gadget_connect(struct usb_gadget * gadget)670 static inline int usb_gadget_connect(struct usb_gadget *gadget)
671 { return 0; }
usb_gadget_disconnect(struct usb_gadget * gadget)672 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
673 { return 0; }
usb_gadget_deactivate(struct usb_gadget * gadget)674 static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
675 { return 0; }
usb_gadget_activate(struct usb_gadget * gadget)676 static inline int usb_gadget_activate(struct usb_gadget *gadget)
677 { return 0; }
usb_gadget_check_config(struct usb_gadget * gadget)678 static inline int usb_gadget_check_config(struct usb_gadget *gadget)
679 { return 0; }
680 #endif /* CONFIG_USB_GADGET */
681 
682 /*-------------------------------------------------------------------------*/
683 
684 /**
685  * struct usb_gadget_driver - driver for usb gadget devices
686  * @function: String describing the gadget's function
687  * @max_speed: Highest speed the driver handles.
688  * @setup: Invoked for ep0 control requests that aren't handled by
689  *	the hardware level driver. Most calls must be handled by
690  *	the gadget driver, including descriptor and configuration
691  *	management.  The 16 bit members of the setup data are in
692  *	USB byte order. Called in_interrupt; this may not sleep.  Driver
693  *	queues a response to ep0, or returns negative to stall.
694  * @disconnect: Invoked after all transfers have been stopped,
695  *	when the host is disconnected.  May be called in_interrupt; this
696  *	may not sleep.  Some devices can't detect disconnect, so this might
697  *	not be called except as part of controller shutdown.
698  * @bind: the driver's bind callback
699  * @unbind: Invoked when the driver is unbound from a gadget,
700  *	usually from rmmod (after a disconnect is reported).
701  *	Called in a context that permits sleeping.
702  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
703  * @resume: Invoked on USB resume.  May be called in_interrupt.
704  * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
705  *	and should be called in_interrupt.
706  * @driver: Driver model state for this driver.
707  * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
708  *	this driver will be bound to any available UDC.
709  * @match_existing_only: If udc is not found, return an error and fail
710  *	the driver registration
711  * @is_bound: Allow a driver to be bound to only one gadget
712  *
713  * Devices are disabled till a gadget driver successfully bind()s, which
714  * means the driver will handle setup() requests needed to enumerate (and
715  * meet "chapter 9" requirements) then do some useful work.
716  *
717  * If gadget->is_otg is true, the gadget driver must provide an OTG
718  * descriptor during enumeration, or else fail the bind() call.  In such
719  * cases, no USB traffic may flow until both bind() returns without
720  * having called usb_gadget_disconnect(), and the USB host stack has
721  * initialized.
722  *
723  * Drivers use hardware-specific knowledge to configure the usb hardware.
724  * endpoint addressing is only one of several hardware characteristics that
725  * are in descriptors the ep0 implementation returns from setup() calls.
726  *
727  * Except for ep0 implementation, most driver code shouldn't need change to
728  * run on top of different usb controllers.  It'll use endpoints set up by
729  * that ep0 implementation.
730  *
731  * The usb controller driver handles a few standard usb requests.  Those
732  * include set_address, and feature flags for devices, interfaces, and
733  * endpoints (the get_status, set_feature, and clear_feature requests).
734  *
735  * Accordingly, the driver's setup() callback must always implement all
736  * get_descriptor requests, returning at least a device descriptor and
737  * a configuration descriptor.  Drivers must make sure the endpoint
738  * descriptors match any hardware constraints. Some hardware also constrains
739  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
740  *
741  * The driver's setup() callback must also implement set_configuration,
742  * and should also implement set_interface, get_configuration, and
743  * get_interface.  Setting a configuration (or interface) is where
744  * endpoints should be activated or (config 0) shut down.
745  *
746  * The gadget driver's setup() callback does not have to queue a response to
747  * ep0 within the setup() call, the driver can do it after setup() returns.
748  * The UDC driver must wait until such a response is queued before proceeding
749  * with the data/status stages of the control transfer.
750  *
751  * NOTE: Currently, a number of UDC drivers rely on USB_GADGET_DELAYED_STATUS
752  * being returned from the setup() callback, which is a bug. See the comment
753  * next to USB_GADGET_DELAYED_STATUS for details.
754  *
755  * (Note that only the default control endpoint is supported.  Neither
756  * hosts nor devices generally support control traffic except to ep0.)
757  *
758  * Most devices will ignore USB suspend/resume operations, and so will
759  * not provide those callbacks.  However, some may need to change modes
760  * when the host is not longer directing those activities.  For example,
761  * local controls (buttons, dials, etc) may need to be re-enabled since
762  * the (remote) host can't do that any longer; or an error state might
763  * be cleared, to make the device behave identically whether or not
764  * power is maintained.
765  */
766 struct usb_gadget_driver {
767 	char			*function;
768 	enum usb_device_speed	max_speed;
769 	int			(*bind)(struct usb_gadget *gadget,
770 					struct usb_gadget_driver *driver);
771 	void			(*unbind)(struct usb_gadget *);
772 	int			(*setup)(struct usb_gadget *,
773 					const struct usb_ctrlrequest *);
774 	void			(*disconnect)(struct usb_gadget *);
775 	void			(*suspend)(struct usb_gadget *);
776 	void			(*resume)(struct usb_gadget *);
777 	void			(*reset)(struct usb_gadget *);
778 
779 	/* FIXME support safe rmmod */
780 	struct device_driver	driver;
781 
782 	char			*udc_name;
783 	unsigned                match_existing_only:1;
784 	bool			is_bound:1;
785 };
786 
787 
788 
789 /*-------------------------------------------------------------------------*/
790 
791 /* driver modules register and unregister, as usual.
792  * these calls must be made in a context that can sleep.
793  *
794  * A gadget driver can be bound to only one gadget at a time.
795  */
796 
797 /**
798  * usb_gadget_register_driver_owner - register a gadget driver
799  * @driver: the driver being registered
800  * @owner: the driver module
801  * @mod_name: the driver module's build name
802  * Context: can sleep
803  *
804  * Call this in your gadget driver's module initialization function,
805  * to tell the underlying UDC controller driver about your driver.
806  * The @bind() function will be called to bind it to a gadget before this
807  * registration call returns.  It's expected that the @bind() function will
808  * be in init sections.
809  *
810  * Use the macro defined below instead of calling this directly.
811  */
812 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver,
813 		struct module *owner, const char *mod_name);
814 
815 /* use a define to avoid include chaining to get THIS_MODULE & friends */
816 #define usb_gadget_register_driver(driver) \
817 	usb_gadget_register_driver_owner(driver, THIS_MODULE, KBUILD_MODNAME)
818 
819 /**
820  * usb_gadget_unregister_driver - unregister a gadget driver
821  * @driver:the driver being unregistered
822  * Context: can sleep
823  *
824  * Call this in your gadget driver's module cleanup function,
825  * to tell the underlying usb controller that your driver is
826  * going away.  If the controller is connected to a USB host,
827  * it will first disconnect().  The driver is also requested
828  * to unbind() and clean up any device state, before this procedure
829  * finally returns.  It's expected that the unbind() functions
830  * will be in exit sections, so may not be linked in some kernels.
831  */
832 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
833 
834 /*-------------------------------------------------------------------------*/
835 
836 /* utility to simplify dealing with string descriptors */
837 
838 /**
839  * struct usb_string - wraps a C string and its USB id
840  * @id:the (nonzero) ID for this string
841  * @s:the string, in UTF-8 encoding
842  *
843  * If you're using usb_gadget_get_string(), use this to wrap a string
844  * together with its ID.
845  */
846 struct usb_string {
847 	u8			id;
848 	const char		*s;
849 };
850 
851 /**
852  * struct usb_gadget_strings - a set of USB strings in a given language
853  * @language:identifies the strings' language (0x0409 for en-us)
854  * @strings:array of strings with their ids
855  *
856  * If you're using usb_gadget_get_string(), use this to wrap all the
857  * strings for a given language.
858  */
859 struct usb_gadget_strings {
860 	u16			language;	/* 0x0409 for en-us */
861 	struct usb_string	*strings;
862 };
863 
864 struct usb_gadget_string_container {
865 	struct list_head        list;
866 	u8                      *stash[];
867 };
868 
869 /* put descriptor for string with that id into buf (buflen >= 256) */
870 int usb_gadget_get_string(const struct usb_gadget_strings *table, int id, u8 *buf);
871 
872 /* check if the given language identifier is valid */
873 bool usb_validate_langid(u16 langid);
874 
875 struct gadget_string {
876 	struct config_item item;
877 	struct list_head list;
878 	char string[USB_MAX_STRING_LEN];
879 	struct usb_string usb_string;
880 };
881 
882 #define to_gadget_string(str_item)\
883 container_of(str_item, struct gadget_string, item)
884 
885 /*-------------------------------------------------------------------------*/
886 
887 /* utility to simplify managing config descriptors */
888 
889 /* write vector of descriptors into buffer */
890 int usb_descriptor_fillbuf(void *, unsigned,
891 		const struct usb_descriptor_header **);
892 
893 /* copy a NULL-terminated vector of descriptors */
894 struct usb_descriptor_header **usb_copy_descriptors(
895 		struct usb_descriptor_header **);
896 
897 /**
898  * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
899  * @v: vector of descriptors
900  */
usb_free_descriptors(struct usb_descriptor_header ** v)901 static inline void usb_free_descriptors(struct usb_descriptor_header **v)
902 {
903 	kfree(v);
904 }
905 
906 struct usb_function;
907 int usb_assign_descriptors(struct usb_function *f,
908 		struct usb_descriptor_header **fs,
909 		struct usb_descriptor_header **hs,
910 		struct usb_descriptor_header **ss,
911 		struct usb_descriptor_header **ssp);
912 void usb_free_all_descriptors(struct usb_function *f);
913 
914 struct usb_descriptor_header *usb_otg_descriptor_alloc(
915 				struct usb_gadget *gadget);
916 int usb_otg_descriptor_init(struct usb_gadget *gadget,
917 		struct usb_descriptor_header *otg_desc);
918 /*-------------------------------------------------------------------------*/
919 
920 /* utility to simplify map/unmap of usb_requests to/from DMA */
921 
922 #ifdef	CONFIG_HAS_DMA
923 extern int usb_gadget_map_request_by_dev(struct device *dev,
924 		struct usb_request *req, int is_in);
925 extern int usb_gadget_map_request(struct usb_gadget *gadget,
926 		struct usb_request *req, int is_in);
927 
928 extern void usb_gadget_unmap_request_by_dev(struct device *dev,
929 		struct usb_request *req, int is_in);
930 extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
931 		struct usb_request *req, int is_in);
932 #else /* !CONFIG_HAS_DMA */
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)933 static inline int usb_gadget_map_request_by_dev(struct device *dev,
934 		struct usb_request *req, int is_in) { return -ENOSYS; }
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)935 static inline int usb_gadget_map_request(struct usb_gadget *gadget,
936 		struct usb_request *req, int is_in) { return -ENOSYS; }
937 
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)938 static inline void usb_gadget_unmap_request_by_dev(struct device *dev,
939 		struct usb_request *req, int is_in) { }
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)940 static inline void usb_gadget_unmap_request(struct usb_gadget *gadget,
941 		struct usb_request *req, int is_in) { }
942 #endif /* !CONFIG_HAS_DMA */
943 
944 /*-------------------------------------------------------------------------*/
945 
946 /* utility to set gadget state properly */
947 
948 extern void usb_gadget_set_state(struct usb_gadget *gadget,
949 		enum usb_device_state state);
950 
951 /*-------------------------------------------------------------------------*/
952 
953 /* utility to tell udc core that the bus reset occurs */
954 extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
955 		struct usb_gadget_driver *driver);
956 
957 /*-------------------------------------------------------------------------*/
958 
959 /* utility to give requests back to the gadget layer */
960 
961 extern void usb_gadget_giveback_request(struct usb_ep *ep,
962 		struct usb_request *req);
963 
964 /*-------------------------------------------------------------------------*/
965 
966 /* utility to find endpoint by name */
967 
968 extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
969 		const char *name);
970 
971 /*-------------------------------------------------------------------------*/
972 
973 /* utility to check if endpoint caps match descriptor needs */
974 
975 extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
976 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
977 		struct usb_ss_ep_comp_descriptor *ep_comp);
978 
979 /*-------------------------------------------------------------------------*/
980 
981 /* utility to update vbus status for udc core, it may be scheduled */
982 extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
983 
984 /*-------------------------------------------------------------------------*/
985 
986 /* utility wrapping a simple endpoint selection policy */
987 
988 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
989 			struct usb_endpoint_descriptor *);
990 
991 
992 extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
993 			struct usb_endpoint_descriptor *,
994 			struct usb_ss_ep_comp_descriptor *);
995 
996 extern void usb_ep_autoconfig_release(struct usb_ep *);
997 
998 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
999 
1000 #endif /* __LINUX_USB_GADGET_H */
1001