1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/cpu.h>
9 #include <linux/prctl.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/sched/idle.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/pm.h>
19 #include <linux/tick.h>
20 #include <linux/random.h>
21 #include <linux/user-return-notifier.h>
22 #include <linux/dmi.h>
23 #include <linux/utsname.h>
24 #include <linux/stackprotector.h>
25 #include <linux/cpuidle.h>
26 #include <linux/acpi.h>
27 #include <linux/elf-randomize.h>
28 #include <linux/static_call.h>
29 #include <trace/events/power.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/entry-common.h>
32 #include <asm/cpu.h>
33 #include <asm/cpuid/api.h>
34 #include <asm/apic.h>
35 #include <linux/uaccess.h>
36 #include <asm/mwait.h>
37 #include <asm/fpu/api.h>
38 #include <asm/fpu/sched.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/debugreg.h>
41 #include <asm/nmi.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mce.h>
44 #include <asm/vm86.h>
45 #include <asm/switch_to.h>
46 #include <asm/desc.h>
47 #include <asm/prctl.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/io_bitmap.h>
50 #include <asm/proto.h>
51 #include <asm/frame.h>
52 #include <asm/unwind.h>
53 #include <asm/tdx.h>
54 #include <asm/mmu_context.h>
55 #include <asm/msr.h>
56 #include <asm/shstk.h>
57
58 #include "process.h"
59
60 /*
61 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
62 * no more per-task TSS's. The TSS size is kept cacheline-aligned
63 * so they are allowed to end up in the .data..cacheline_aligned
64 * section. Since TSS's are completely CPU-local, we want them
65 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
66 */
67 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
68 .x86_tss = {
69 /*
70 * .sp0 is only used when entering ring 0 from a lower
71 * privilege level. Since the init task never runs anything
72 * but ring 0 code, there is no need for a valid value here.
73 * Poison it.
74 */
75 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
76
77 #ifdef CONFIG_X86_32
78 .sp1 = TOP_OF_INIT_STACK,
79
80 .ss0 = __KERNEL_DS,
81 .ss1 = __KERNEL_CS,
82 #endif
83 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
84 },
85 };
86 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
87
88 DEFINE_PER_CPU(bool, __tss_limit_invalid);
89 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
90
91 /*
92 * this gets called so that we can store lazy state into memory and copy the
93 * current task into the new thread.
94 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)95 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
96 {
97 /* fpu_clone() will initialize the "dst_fpu" memory */
98 memcpy_and_pad(dst, arch_task_struct_size, src, sizeof(*dst), 0);
99
100 #ifdef CONFIG_VM86
101 dst->thread.vm86 = NULL;
102 #endif
103
104 return 0;
105 }
106
107 #ifdef CONFIG_X86_64
arch_release_task_struct(struct task_struct * tsk)108 void arch_release_task_struct(struct task_struct *tsk)
109 {
110 if (fpu_state_size_dynamic() && !(tsk->flags & (PF_KTHREAD | PF_USER_WORKER)))
111 fpstate_free(x86_task_fpu(tsk));
112 }
113 #endif
114
115 /*
116 * Free thread data structures etc..
117 */
exit_thread(struct task_struct * tsk)118 void exit_thread(struct task_struct *tsk)
119 {
120 struct thread_struct *t = &tsk->thread;
121
122 if (test_thread_flag(TIF_IO_BITMAP))
123 io_bitmap_exit(tsk);
124
125 free_vm86(t);
126
127 shstk_free(tsk);
128 fpu__drop(tsk);
129 }
130
set_new_tls(struct task_struct * p,unsigned long tls)131 static int set_new_tls(struct task_struct *p, unsigned long tls)
132 {
133 struct user_desc __user *utls = (struct user_desc __user *)tls;
134
135 if (in_ia32_syscall())
136 return do_set_thread_area(p, -1, utls, 0);
137 else
138 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
139 }
140
ret_from_fork(struct task_struct * prev,struct pt_regs * regs,int (* fn)(void *),void * fn_arg)141 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
142 int (*fn)(void *), void *fn_arg)
143 {
144 schedule_tail(prev);
145
146 /* Is this a kernel thread? */
147 if (unlikely(fn)) {
148 fn(fn_arg);
149 /*
150 * A kernel thread is allowed to return here after successfully
151 * calling kernel_execve(). Exit to userspace to complete the
152 * execve() syscall.
153 */
154 regs->ax = 0;
155 }
156
157 syscall_exit_to_user_mode(regs);
158 }
159
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)160 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
161 {
162 unsigned long clone_flags = args->flags;
163 unsigned long sp = args->stack;
164 unsigned long tls = args->tls;
165 struct inactive_task_frame *frame;
166 struct fork_frame *fork_frame;
167 struct pt_regs *childregs;
168 unsigned long new_ssp;
169 int ret = 0;
170
171 childregs = task_pt_regs(p);
172 fork_frame = container_of(childregs, struct fork_frame, regs);
173 frame = &fork_frame->frame;
174
175 frame->bp = encode_frame_pointer(childregs);
176 frame->ret_addr = (unsigned long) ret_from_fork_asm;
177 p->thread.sp = (unsigned long) fork_frame;
178 p->thread.io_bitmap = NULL;
179 clear_tsk_thread_flag(p, TIF_IO_BITMAP);
180 p->thread.iopl_warn = 0;
181 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
182
183 #ifdef CONFIG_X86_64
184 current_save_fsgs();
185 p->thread.fsindex = current->thread.fsindex;
186 p->thread.fsbase = current->thread.fsbase;
187 p->thread.gsindex = current->thread.gsindex;
188 p->thread.gsbase = current->thread.gsbase;
189
190 savesegment(es, p->thread.es);
191 savesegment(ds, p->thread.ds);
192
193 if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
194 set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
195 #else
196 p->thread.sp0 = (unsigned long) (childregs + 1);
197 savesegment(gs, p->thread.gs);
198 /*
199 * Clear all status flags including IF and set fixed bit. 64bit
200 * does not have this initialization as the frame does not contain
201 * flags. The flags consistency (especially vs. AC) is there
202 * ensured via objtool, which lacks 32bit support.
203 */
204 frame->flags = X86_EFLAGS_FIXED;
205 #endif
206
207 /*
208 * Allocate a new shadow stack for thread if needed. If shadow stack,
209 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
210 * update it.
211 */
212 new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
213 if (IS_ERR_VALUE(new_ssp))
214 return PTR_ERR((void *)new_ssp);
215
216 fpu_clone(p, clone_flags, args->fn, new_ssp);
217
218 /* Kernel thread ? */
219 if (unlikely(p->flags & PF_KTHREAD)) {
220 p->thread.pkru = pkru_get_init_value();
221 memset(childregs, 0, sizeof(struct pt_regs));
222 kthread_frame_init(frame, args->fn, args->fn_arg);
223 return 0;
224 }
225
226 /*
227 * Clone current's PKRU value from hardware. tsk->thread.pkru
228 * is only valid when scheduled out.
229 */
230 p->thread.pkru = read_pkru();
231
232 frame->bx = 0;
233 *childregs = *current_pt_regs();
234 childregs->ax = 0;
235 if (sp)
236 childregs->sp = sp;
237
238 if (unlikely(args->fn)) {
239 /*
240 * A user space thread, but it doesn't return to
241 * ret_after_fork().
242 *
243 * In order to indicate that to tools like gdb,
244 * we reset the stack and instruction pointers.
245 *
246 * It does the same kernel frame setup to return to a kernel
247 * function that a kernel thread does.
248 */
249 childregs->sp = 0;
250 childregs->ip = 0;
251 kthread_frame_init(frame, args->fn, args->fn_arg);
252 return 0;
253 }
254
255 /* Set a new TLS for the child thread? */
256 if (clone_flags & CLONE_SETTLS)
257 ret = set_new_tls(p, tls);
258
259 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
260 io_bitmap_share(p);
261
262 return ret;
263 }
264
pkru_flush_thread(void)265 static void pkru_flush_thread(void)
266 {
267 /*
268 * If PKRU is enabled the default PKRU value has to be loaded into
269 * the hardware right here (similar to context switch).
270 */
271 pkru_write_default();
272 }
273
flush_thread(void)274 void flush_thread(void)
275 {
276 struct task_struct *tsk = current;
277
278 flush_ptrace_hw_breakpoint(tsk);
279 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
280
281 fpu_flush_thread();
282 pkru_flush_thread();
283 }
284
disable_TSC(void)285 void disable_TSC(void)
286 {
287 preempt_disable();
288 if (!test_and_set_thread_flag(TIF_NOTSC))
289 /*
290 * Must flip the CPU state synchronously with
291 * TIF_NOTSC in the current running context.
292 */
293 cr4_set_bits(X86_CR4_TSD);
294 preempt_enable();
295 }
296
enable_TSC(void)297 static void enable_TSC(void)
298 {
299 preempt_disable();
300 if (test_and_clear_thread_flag(TIF_NOTSC))
301 /*
302 * Must flip the CPU state synchronously with
303 * TIF_NOTSC in the current running context.
304 */
305 cr4_clear_bits(X86_CR4_TSD);
306 preempt_enable();
307 }
308
get_tsc_mode(unsigned long adr)309 int get_tsc_mode(unsigned long adr)
310 {
311 unsigned int val;
312
313 if (test_thread_flag(TIF_NOTSC))
314 val = PR_TSC_SIGSEGV;
315 else
316 val = PR_TSC_ENABLE;
317
318 return put_user(val, (unsigned int __user *)adr);
319 }
320
set_tsc_mode(unsigned int val)321 int set_tsc_mode(unsigned int val)
322 {
323 if (val == PR_TSC_SIGSEGV)
324 disable_TSC();
325 else if (val == PR_TSC_ENABLE)
326 enable_TSC();
327 else
328 return -EINVAL;
329
330 return 0;
331 }
332
333 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
334
set_cpuid_faulting(bool on)335 static void set_cpuid_faulting(bool on)
336 {
337 u64 msrval;
338
339 msrval = this_cpu_read(msr_misc_features_shadow);
340 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
341 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
342 this_cpu_write(msr_misc_features_shadow, msrval);
343 wrmsrq(MSR_MISC_FEATURES_ENABLES, msrval);
344 }
345
disable_cpuid(void)346 static void disable_cpuid(void)
347 {
348 preempt_disable();
349 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
350 /*
351 * Must flip the CPU state synchronously with
352 * TIF_NOCPUID in the current running context.
353 */
354 set_cpuid_faulting(true);
355 }
356 preempt_enable();
357 }
358
enable_cpuid(void)359 static void enable_cpuid(void)
360 {
361 preempt_disable();
362 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
363 /*
364 * Must flip the CPU state synchronously with
365 * TIF_NOCPUID in the current running context.
366 */
367 set_cpuid_faulting(false);
368 }
369 preempt_enable();
370 }
371
get_cpuid_mode(void)372 static int get_cpuid_mode(void)
373 {
374 return !test_thread_flag(TIF_NOCPUID);
375 }
376
set_cpuid_mode(unsigned long cpuid_enabled)377 static int set_cpuid_mode(unsigned long cpuid_enabled)
378 {
379 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
380 return -ENODEV;
381
382 if (cpuid_enabled)
383 enable_cpuid();
384 else
385 disable_cpuid();
386
387 return 0;
388 }
389
390 /*
391 * Called immediately after a successful exec.
392 */
arch_setup_new_exec(void)393 void arch_setup_new_exec(void)
394 {
395 /* If cpuid was previously disabled for this task, re-enable it. */
396 if (test_thread_flag(TIF_NOCPUID))
397 enable_cpuid();
398
399 /*
400 * Don't inherit TIF_SSBD across exec boundary when
401 * PR_SPEC_DISABLE_NOEXEC is used.
402 */
403 if (test_thread_flag(TIF_SSBD) &&
404 task_spec_ssb_noexec(current)) {
405 clear_thread_flag(TIF_SSBD);
406 task_clear_spec_ssb_disable(current);
407 task_clear_spec_ssb_noexec(current);
408 speculation_ctrl_update(read_thread_flags());
409 }
410
411 mm_reset_untag_mask(current->mm);
412 }
413
414 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)415 static inline void switch_to_bitmap(unsigned long tifp)
416 {
417 /*
418 * Invalidate I/O bitmap if the previous task used it. This prevents
419 * any possible leakage of an active I/O bitmap.
420 *
421 * If the next task has an I/O bitmap it will handle it on exit to
422 * user mode.
423 */
424 if (tifp & _TIF_IO_BITMAP)
425 tss_invalidate_io_bitmap();
426 }
427
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)428 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
429 {
430 /*
431 * Copy at least the byte range of the incoming tasks bitmap which
432 * covers the permitted I/O ports.
433 *
434 * If the previous task which used an I/O bitmap had more bits
435 * permitted, then the copy needs to cover those as well so they
436 * get turned off.
437 */
438 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
439 max(tss->io_bitmap.prev_max, iobm->max));
440
441 /*
442 * Store the new max and the sequence number of this bitmap
443 * and a pointer to the bitmap itself.
444 */
445 tss->io_bitmap.prev_max = iobm->max;
446 tss->io_bitmap.prev_sequence = iobm->sequence;
447 }
448
449 /**
450 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
451 */
native_tss_update_io_bitmap(void)452 void native_tss_update_io_bitmap(void)
453 {
454 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
455 struct thread_struct *t = ¤t->thread;
456 u16 *base = &tss->x86_tss.io_bitmap_base;
457
458 if (!test_thread_flag(TIF_IO_BITMAP)) {
459 native_tss_invalidate_io_bitmap();
460 return;
461 }
462
463 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
464 *base = IO_BITMAP_OFFSET_VALID_ALL;
465 } else {
466 struct io_bitmap *iobm = t->io_bitmap;
467
468 if (WARN_ON_ONCE(!iobm)) {
469 clear_thread_flag(TIF_IO_BITMAP);
470 native_tss_invalidate_io_bitmap();
471 }
472
473 /*
474 * Only copy bitmap data when the sequence number differs. The
475 * update time is accounted to the incoming task.
476 */
477 if (tss->io_bitmap.prev_sequence != iobm->sequence)
478 tss_copy_io_bitmap(tss, iobm);
479
480 /* Enable the bitmap */
481 *base = IO_BITMAP_OFFSET_VALID_MAP;
482 }
483
484 /*
485 * Make sure that the TSS limit is covering the IO bitmap. It might have
486 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
487 * access from user space to trigger a #GP because the bitmap is outside
488 * the TSS limit.
489 */
490 refresh_tss_limit();
491 }
492 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)493 static inline void switch_to_bitmap(unsigned long tifp) { }
494 #endif
495
496 #ifdef CONFIG_SMP
497
498 struct ssb_state {
499 struct ssb_state *shared_state;
500 raw_spinlock_t lock;
501 unsigned int disable_state;
502 unsigned long local_state;
503 };
504
505 #define LSTATE_SSB 0
506
507 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
508
speculative_store_bypass_ht_init(void)509 void speculative_store_bypass_ht_init(void)
510 {
511 struct ssb_state *st = this_cpu_ptr(&ssb_state);
512 unsigned int this_cpu = smp_processor_id();
513 unsigned int cpu;
514
515 st->local_state = 0;
516
517 /*
518 * Shared state setup happens once on the first bringup
519 * of the CPU. It's not destroyed on CPU hotunplug.
520 */
521 if (st->shared_state)
522 return;
523
524 raw_spin_lock_init(&st->lock);
525
526 /*
527 * Go over HT siblings and check whether one of them has set up the
528 * shared state pointer already.
529 */
530 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
531 if (cpu == this_cpu)
532 continue;
533
534 if (!per_cpu(ssb_state, cpu).shared_state)
535 continue;
536
537 /* Link it to the state of the sibling: */
538 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
539 return;
540 }
541
542 /*
543 * First HT sibling to come up on the core. Link shared state of
544 * the first HT sibling to itself. The siblings on the same core
545 * which come up later will see the shared state pointer and link
546 * themselves to the state of this CPU.
547 */
548 st->shared_state = st;
549 }
550
551 /*
552 * Logic is: First HT sibling enables SSBD for both siblings in the core
553 * and last sibling to disable it, disables it for the whole core. This how
554 * MSR_SPEC_CTRL works in "hardware":
555 *
556 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
557 */
amd_set_core_ssb_state(unsigned long tifn)558 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
559 {
560 struct ssb_state *st = this_cpu_ptr(&ssb_state);
561 u64 msr = x86_amd_ls_cfg_base;
562
563 if (!static_cpu_has(X86_FEATURE_ZEN)) {
564 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
565 wrmsrq(MSR_AMD64_LS_CFG, msr);
566 return;
567 }
568
569 if (tifn & _TIF_SSBD) {
570 /*
571 * Since this can race with prctl(), block reentry on the
572 * same CPU.
573 */
574 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
575 return;
576
577 msr |= x86_amd_ls_cfg_ssbd_mask;
578
579 raw_spin_lock(&st->shared_state->lock);
580 /* First sibling enables SSBD: */
581 if (!st->shared_state->disable_state)
582 wrmsrq(MSR_AMD64_LS_CFG, msr);
583 st->shared_state->disable_state++;
584 raw_spin_unlock(&st->shared_state->lock);
585 } else {
586 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
587 return;
588
589 raw_spin_lock(&st->shared_state->lock);
590 st->shared_state->disable_state--;
591 if (!st->shared_state->disable_state)
592 wrmsrq(MSR_AMD64_LS_CFG, msr);
593 raw_spin_unlock(&st->shared_state->lock);
594 }
595 }
596 #else
amd_set_core_ssb_state(unsigned long tifn)597 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
598 {
599 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
600
601 wrmsrq(MSR_AMD64_LS_CFG, msr);
602 }
603 #endif
604
amd_set_ssb_virt_state(unsigned long tifn)605 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
606 {
607 /*
608 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
609 * so ssbd_tif_to_spec_ctrl() just works.
610 */
611 wrmsrq(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
612 }
613
614 /*
615 * Update the MSRs managing speculation control, during context switch.
616 *
617 * tifp: Previous task's thread flags
618 * tifn: Next task's thread flags
619 */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)620 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
621 unsigned long tifn)
622 {
623 unsigned long tif_diff = tifp ^ tifn;
624 u64 msr = x86_spec_ctrl_base;
625 bool updmsr = false;
626
627 lockdep_assert_irqs_disabled();
628
629 /* Handle change of TIF_SSBD depending on the mitigation method. */
630 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
631 if (tif_diff & _TIF_SSBD)
632 amd_set_ssb_virt_state(tifn);
633 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
634 if (tif_diff & _TIF_SSBD)
635 amd_set_core_ssb_state(tifn);
636 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
637 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
638 updmsr |= !!(tif_diff & _TIF_SSBD);
639 msr |= ssbd_tif_to_spec_ctrl(tifn);
640 }
641
642 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
643 if (IS_ENABLED(CONFIG_SMP) &&
644 static_branch_unlikely(&switch_to_cond_stibp)) {
645 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
646 msr |= stibp_tif_to_spec_ctrl(tifn);
647 }
648
649 if (updmsr)
650 update_spec_ctrl_cond(msr);
651 }
652
speculation_ctrl_update_tif(struct task_struct * tsk)653 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
654 {
655 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
656 if (task_spec_ssb_disable(tsk))
657 set_tsk_thread_flag(tsk, TIF_SSBD);
658 else
659 clear_tsk_thread_flag(tsk, TIF_SSBD);
660
661 if (task_spec_ib_disable(tsk))
662 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
663 else
664 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
665 }
666 /* Return the updated threadinfo flags*/
667 return read_task_thread_flags(tsk);
668 }
669
speculation_ctrl_update(unsigned long tif)670 void speculation_ctrl_update(unsigned long tif)
671 {
672 unsigned long flags;
673
674 /* Forced update. Make sure all relevant TIF flags are different */
675 local_irq_save(flags);
676 __speculation_ctrl_update(~tif, tif);
677 local_irq_restore(flags);
678 }
679
680 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)681 void speculation_ctrl_update_current(void)
682 {
683 preempt_disable();
684 speculation_ctrl_update(speculation_ctrl_update_tif(current));
685 preempt_enable();
686 }
687
cr4_toggle_bits_irqsoff(unsigned long mask)688 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
689 {
690 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
691
692 newval = cr4 ^ mask;
693 if (newval != cr4) {
694 this_cpu_write(cpu_tlbstate.cr4, newval);
695 __write_cr4(newval);
696 }
697 }
698
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)699 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
700 {
701 unsigned long tifp, tifn;
702
703 tifn = read_task_thread_flags(next_p);
704 tifp = read_task_thread_flags(prev_p);
705
706 switch_to_bitmap(tifp);
707
708 propagate_user_return_notify(prev_p, next_p);
709
710 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
711 arch_has_block_step()) {
712 unsigned long debugctl, msk;
713
714 rdmsrq(MSR_IA32_DEBUGCTLMSR, debugctl);
715 debugctl &= ~DEBUGCTLMSR_BTF;
716 msk = tifn & _TIF_BLOCKSTEP;
717 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
718 wrmsrq(MSR_IA32_DEBUGCTLMSR, debugctl);
719 }
720
721 if ((tifp ^ tifn) & _TIF_NOTSC)
722 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
723
724 if ((tifp ^ tifn) & _TIF_NOCPUID)
725 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
726
727 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
728 __speculation_ctrl_update(tifp, tifn);
729 } else {
730 speculation_ctrl_update_tif(prev_p);
731 tifn = speculation_ctrl_update_tif(next_p);
732
733 /* Enforce MSR update to ensure consistent state */
734 __speculation_ctrl_update(~tifn, tifn);
735 }
736 }
737
738 /*
739 * Idle related variables and functions
740 */
741 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
742 EXPORT_SYMBOL(boot_option_idle_override);
743
744 /*
745 * We use this if we don't have any better idle routine..
746 */
default_idle(void)747 void __cpuidle default_idle(void)
748 {
749 raw_safe_halt();
750 raw_local_irq_disable();
751 }
752 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
753 EXPORT_SYMBOL(default_idle);
754 #endif
755
756 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
757
x86_idle_set(void)758 static bool x86_idle_set(void)
759 {
760 return !!static_call_query(x86_idle);
761 }
762
763 #ifndef CONFIG_SMP
play_dead(void)764 static inline void __noreturn play_dead(void)
765 {
766 BUG();
767 }
768 #endif
769
arch_cpu_idle_enter(void)770 void arch_cpu_idle_enter(void)
771 {
772 tsc_verify_tsc_adjust(false);
773 local_touch_nmi();
774 }
775
arch_cpu_idle_dead(void)776 void __noreturn arch_cpu_idle_dead(void)
777 {
778 play_dead();
779 }
780
781 /*
782 * Called from the generic idle code.
783 */
arch_cpu_idle(void)784 void __cpuidle arch_cpu_idle(void)
785 {
786 static_call(x86_idle)();
787 }
788 EXPORT_SYMBOL_GPL(arch_cpu_idle);
789
790 #ifdef CONFIG_XEN
xen_set_default_idle(void)791 bool xen_set_default_idle(void)
792 {
793 bool ret = x86_idle_set();
794
795 static_call_update(x86_idle, default_idle);
796
797 return ret;
798 }
799 #endif
800
801 struct cpumask cpus_stop_mask;
802
stop_this_cpu(void * dummy)803 void __noreturn stop_this_cpu(void *dummy)
804 {
805 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
806 unsigned int cpu = smp_processor_id();
807
808 local_irq_disable();
809
810 /*
811 * Remove this CPU from the online mask and disable it
812 * unconditionally. This might be redundant in case that the reboot
813 * vector was handled late and stop_other_cpus() sent an NMI.
814 *
815 * According to SDM and APM NMIs can be accepted even after soft
816 * disabling the local APIC.
817 */
818 set_cpu_online(cpu, false);
819 disable_local_APIC();
820 mcheck_cpu_clear(c);
821
822 /*
823 * Use wbinvd on processors that support SME. This provides support
824 * for performing a successful kexec when going from SME inactive
825 * to SME active (or vice-versa). The cache must be cleared so that
826 * if there are entries with the same physical address, both with and
827 * without the encryption bit, they don't race each other when flushed
828 * and potentially end up with the wrong entry being committed to
829 * memory.
830 *
831 * Test the CPUID bit directly because the machine might've cleared
832 * X86_FEATURE_SME due to cmdline options.
833 */
834 if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
835 wbinvd();
836
837 /*
838 * This brings a cache line back and dirties it, but
839 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
840 * observed that all CPUs reported stop. This write will invalidate
841 * the related cache line on this CPU.
842 */
843 cpumask_clear_cpu(cpu, &cpus_stop_mask);
844
845 #ifdef CONFIG_SMP
846 if (smp_ops.stop_this_cpu) {
847 smp_ops.stop_this_cpu();
848 BUG();
849 }
850 #endif
851
852 for (;;) {
853 /*
854 * Use native_halt() so that memory contents don't change
855 * (stack usage and variables) after possibly issuing the
856 * wbinvd() above.
857 */
858 native_halt();
859 }
860 }
861
862 /*
863 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
864 * exists and whenever MONITOR/MWAIT extensions are present there is at
865 * least one C1 substate.
866 *
867 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
868 * is passed to kernel commandline parameter.
869 */
prefer_mwait_c1_over_halt(void)870 static __init bool prefer_mwait_c1_over_halt(void)
871 {
872 const struct cpuinfo_x86 *c = &boot_cpu_data;
873 u32 eax, ebx, ecx, edx;
874
875 /* If override is enforced on the command line, fall back to HALT. */
876 if (boot_option_idle_override != IDLE_NO_OVERRIDE)
877 return false;
878
879 /* MWAIT is not supported on this platform. Fallback to HALT */
880 if (!cpu_has(c, X86_FEATURE_MWAIT))
881 return false;
882
883 /* Monitor has a bug or APIC stops in C1E. Fallback to HALT */
884 if (boot_cpu_has_bug(X86_BUG_MONITOR) || boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
885 return false;
886
887 cpuid(CPUID_LEAF_MWAIT, &eax, &ebx, &ecx, &edx);
888
889 /*
890 * If MWAIT extensions are not available, it is safe to use MWAIT
891 * with EAX=0, ECX=0.
892 */
893 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
894 return true;
895
896 /*
897 * If MWAIT extensions are available, there should be at least one
898 * MWAIT C1 substate present.
899 */
900 return !!(edx & MWAIT_C1_SUBSTATE_MASK);
901 }
902
903 /*
904 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
905 * with interrupts enabled and no flags, which is backwards compatible with the
906 * original MWAIT implementation.
907 */
mwait_idle(void)908 static __cpuidle void mwait_idle(void)
909 {
910 if (need_resched())
911 return;
912
913 x86_idle_clear_cpu_buffers();
914
915 if (!current_set_polling_and_test()) {
916 const void *addr = ¤t_thread_info()->flags;
917
918 alternative_input("", "clflush (%[addr])", X86_BUG_CLFLUSH_MONITOR, [addr] "a" (addr));
919 __monitor(addr, 0, 0);
920 if (need_resched())
921 goto out;
922
923 __sti_mwait(0, 0);
924 raw_local_irq_disable();
925 }
926
927 out:
928 __current_clr_polling();
929 }
930
select_idle_routine(void)931 void __init select_idle_routine(void)
932 {
933 if (boot_option_idle_override == IDLE_POLL) {
934 if (IS_ENABLED(CONFIG_SMP) && __max_threads_per_core > 1)
935 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
936 return;
937 }
938
939 /* Required to guard against xen_set_default_idle() */
940 if (x86_idle_set())
941 return;
942
943 if (prefer_mwait_c1_over_halt()) {
944 pr_info("using mwait in idle threads\n");
945 static_call_update(x86_idle, mwait_idle);
946 } else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
947 pr_info("using TDX aware idle routine\n");
948 static_call_update(x86_idle, tdx_halt);
949 } else {
950 static_call_update(x86_idle, default_idle);
951 }
952 }
953
amd_e400_c1e_apic_setup(void)954 void amd_e400_c1e_apic_setup(void)
955 {
956 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
957 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
958 local_irq_disable();
959 tick_broadcast_force();
960 local_irq_enable();
961 }
962 }
963
arch_post_acpi_subsys_init(void)964 void __init arch_post_acpi_subsys_init(void)
965 {
966 u32 lo, hi;
967
968 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
969 return;
970
971 /*
972 * AMD E400 detection needs to happen after ACPI has been enabled. If
973 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
974 * MSR_K8_INT_PENDING_MSG.
975 */
976 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
977 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
978 return;
979
980 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
981
982 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
983 mark_tsc_unstable("TSC halt in AMD C1E");
984
985 if (IS_ENABLED(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE))
986 static_branch_enable(&arch_needs_tick_broadcast);
987 pr_info("System has AMD C1E erratum E400. Workaround enabled.\n");
988 }
989
idle_setup(char * str)990 static int __init idle_setup(char *str)
991 {
992 if (!str)
993 return -EINVAL;
994
995 if (!strcmp(str, "poll")) {
996 pr_info("using polling idle threads\n");
997 boot_option_idle_override = IDLE_POLL;
998 cpu_idle_poll_ctrl(true);
999 } else if (!strcmp(str, "halt")) {
1000 /* 'idle=halt' HALT for idle. C-states are disabled. */
1001 boot_option_idle_override = IDLE_HALT;
1002 } else if (!strcmp(str, "nomwait")) {
1003 /* 'idle=nomwait' disables MWAIT for idle */
1004 boot_option_idle_override = IDLE_NOMWAIT;
1005 } else {
1006 return -EINVAL;
1007 }
1008
1009 return 0;
1010 }
1011 early_param("idle", idle_setup);
1012
arch_align_stack(unsigned long sp)1013 unsigned long arch_align_stack(unsigned long sp)
1014 {
1015 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1016 sp -= get_random_u32_below(8192);
1017 return sp & ~0xf;
1018 }
1019
arch_randomize_brk(struct mm_struct * mm)1020 unsigned long arch_randomize_brk(struct mm_struct *mm)
1021 {
1022 if (mmap_is_ia32())
1023 return randomize_page(mm->brk, SZ_32M);
1024
1025 return randomize_page(mm->brk, SZ_1G);
1026 }
1027
1028 /*
1029 * Called from fs/proc with a reference on @p to find the function
1030 * which called into schedule(). This needs to be done carefully
1031 * because the task might wake up and we might look at a stack
1032 * changing under us.
1033 */
__get_wchan(struct task_struct * p)1034 unsigned long __get_wchan(struct task_struct *p)
1035 {
1036 struct unwind_state state;
1037 unsigned long addr = 0;
1038
1039 if (!try_get_task_stack(p))
1040 return 0;
1041
1042 for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1043 unwind_next_frame(&state)) {
1044 addr = unwind_get_return_address(&state);
1045 if (!addr)
1046 break;
1047 if (in_sched_functions(addr))
1048 continue;
1049 break;
1050 }
1051
1052 put_task_stack(p);
1053
1054 return addr;
1055 }
1056
SYSCALL_DEFINE2(arch_prctl,int,option,unsigned long,arg2)1057 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
1058 {
1059 switch (option) {
1060 case ARCH_GET_CPUID:
1061 return get_cpuid_mode();
1062 case ARCH_SET_CPUID:
1063 return set_cpuid_mode(arg2);
1064 case ARCH_GET_XCOMP_SUPP:
1065 case ARCH_GET_XCOMP_PERM:
1066 case ARCH_REQ_XCOMP_PERM:
1067 case ARCH_GET_XCOMP_GUEST_PERM:
1068 case ARCH_REQ_XCOMP_GUEST_PERM:
1069 return fpu_xstate_prctl(option, arg2);
1070 }
1071
1072 if (!in_ia32_syscall())
1073 return do_arch_prctl_64(current, option, arg2);
1074
1075 return -EINVAL;
1076 }
1077
SYSCALL_DEFINE0(ni_syscall)1078 SYSCALL_DEFINE0(ni_syscall)
1079 {
1080 return -ENOSYS;
1081 }
1082