1 /*
2 * OpenPIC emulation
3 *
4 * Copyright (c) 2004 Jocelyn Mayer
5 * 2011 Alexander Graf
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 #include <linux/slab.h>
27 #include <linux/mutex.h>
28 #include <linux/kvm_host.h>
29 #include <linux/errno.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/uaccess.h>
33 #include <asm/mpic.h>
34 #include <asm/kvm_para.h>
35 #include <asm/kvm_ppc.h>
36 #include <kvm/iodev.h>
37
38 #define MAX_CPU 32
39 #define MAX_SRC 256
40 #define MAX_TMR 4
41 #define MAX_IPI 4
42 #define MAX_MSI 8
43 #define MAX_IRQ (MAX_SRC + MAX_IPI + MAX_TMR)
44 #define VID 0x03 /* MPIC version ID */
45
46 /* OpenPIC capability flags */
47 #define OPENPIC_FLAG_IDR_CRIT (1 << 0)
48 #define OPENPIC_FLAG_ILR (2 << 0)
49
50 /* OpenPIC address map */
51 #define OPENPIC_REG_SIZE 0x40000
52 #define OPENPIC_GLB_REG_START 0x0
53 #define OPENPIC_GLB_REG_SIZE 0x10F0
54 #define OPENPIC_TMR_REG_START 0x10F0
55 #define OPENPIC_TMR_REG_SIZE 0x220
56 #define OPENPIC_MSI_REG_START 0x1600
57 #define OPENPIC_MSI_REG_SIZE 0x200
58 #define OPENPIC_SUMMARY_REG_START 0x3800
59 #define OPENPIC_SUMMARY_REG_SIZE 0x800
60 #define OPENPIC_SRC_REG_START 0x10000
61 #define OPENPIC_SRC_REG_SIZE (MAX_SRC * 0x20)
62 #define OPENPIC_CPU_REG_START 0x20000
63 #define OPENPIC_CPU_REG_SIZE (0x100 + ((MAX_CPU - 1) * 0x1000))
64
65 struct fsl_mpic_info {
66 int max_ext;
67 };
68
69 static struct fsl_mpic_info fsl_mpic_20 = {
70 .max_ext = 12,
71 };
72
73 static struct fsl_mpic_info fsl_mpic_42 = {
74 .max_ext = 12,
75 };
76
77 #define FRR_NIRQ_SHIFT 16
78 #define FRR_NCPU_SHIFT 8
79 #define FRR_VID_SHIFT 0
80
81 #define VID_REVISION_1_2 2
82 #define VID_REVISION_1_3 3
83
84 #define VIR_GENERIC 0x00000000 /* Generic Vendor ID */
85
86 #define GCR_RESET 0x80000000
87 #define GCR_MODE_PASS 0x00000000
88 #define GCR_MODE_MIXED 0x20000000
89 #define GCR_MODE_PROXY 0x60000000
90
91 #define TBCR_CI 0x80000000 /* count inhibit */
92 #define TCCR_TOG 0x80000000 /* toggles when decrement to zero */
93
94 #define IDR_EP_SHIFT 31
95 #define IDR_EP_MASK (1 << IDR_EP_SHIFT)
96 #define IDR_CI0_SHIFT 30
97 #define IDR_CI1_SHIFT 29
98 #define IDR_P1_SHIFT 1
99 #define IDR_P0_SHIFT 0
100
101 #define ILR_INTTGT_MASK 0x000000ff
102 #define ILR_INTTGT_INT 0x00
103 #define ILR_INTTGT_CINT 0x01 /* critical */
104 #define ILR_INTTGT_MCP 0x02 /* machine check */
105 #define NUM_OUTPUTS 3
106
107 #define MSIIR_OFFSET 0x140
108 #define MSIIR_SRS_SHIFT 29
109 #define MSIIR_SRS_MASK (0x7 << MSIIR_SRS_SHIFT)
110 #define MSIIR_IBS_SHIFT 24
111 #define MSIIR_IBS_MASK (0x1f << MSIIR_IBS_SHIFT)
112
get_current_cpu(void)113 static int get_current_cpu(void)
114 {
115 #if defined(CONFIG_KVM) && defined(CONFIG_BOOKE)
116 struct kvm_vcpu *vcpu = current->thread.kvm_vcpu;
117 return vcpu ? vcpu->arch.irq_cpu_id : -1;
118 #else
119 /* XXX */
120 return -1;
121 #endif
122 }
123
124 static int openpic_cpu_write_internal(void *opaque, gpa_t addr,
125 u32 val, int idx);
126 static int openpic_cpu_read_internal(void *opaque, gpa_t addr,
127 u32 *ptr, int idx);
128 static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ,
129 uint32_t val);
130
131 enum irq_type {
132 IRQ_TYPE_NORMAL = 0,
133 IRQ_TYPE_FSLINT, /* FSL internal interrupt -- level only */
134 IRQ_TYPE_FSLSPECIAL, /* FSL timer/IPI interrupt, edge, no polarity */
135 };
136
137 struct irq_queue {
138 /* Round up to the nearest 64 IRQs so that the queue length
139 * won't change when moving between 32 and 64 bit hosts.
140 */
141 unsigned long queue[BITS_TO_LONGS((MAX_IRQ + 63) & ~63)];
142 int next;
143 int priority;
144 };
145
146 struct irq_source {
147 uint32_t ivpr; /* IRQ vector/priority register */
148 uint32_t idr; /* IRQ destination register */
149 uint32_t destmask; /* bitmap of CPU destinations */
150 int last_cpu;
151 int output; /* IRQ level, e.g. ILR_INTTGT_INT */
152 int pending; /* TRUE if IRQ is pending */
153 enum irq_type type;
154 bool level:1; /* level-triggered */
155 bool nomask:1; /* critical interrupts ignore mask on some FSL MPICs */
156 };
157
158 #define IVPR_MASK_SHIFT 31
159 #define IVPR_MASK_MASK (1 << IVPR_MASK_SHIFT)
160 #define IVPR_ACTIVITY_SHIFT 30
161 #define IVPR_ACTIVITY_MASK (1 << IVPR_ACTIVITY_SHIFT)
162 #define IVPR_MODE_SHIFT 29
163 #define IVPR_MODE_MASK (1 << IVPR_MODE_SHIFT)
164 #define IVPR_POLARITY_SHIFT 23
165 #define IVPR_POLARITY_MASK (1 << IVPR_POLARITY_SHIFT)
166 #define IVPR_SENSE_SHIFT 22
167 #define IVPR_SENSE_MASK (1 << IVPR_SENSE_SHIFT)
168
169 #define IVPR_PRIORITY_MASK (0xF << 16)
170 #define IVPR_PRIORITY(_ivprr_) ((int)(((_ivprr_) & IVPR_PRIORITY_MASK) >> 16))
171 #define IVPR_VECTOR(opp, _ivprr_) ((_ivprr_) & (opp)->vector_mask)
172
173 /* IDR[EP/CI] are only for FSL MPIC prior to v4.0 */
174 #define IDR_EP 0x80000000 /* external pin */
175 #define IDR_CI 0x40000000 /* critical interrupt */
176
177 struct irq_dest {
178 struct kvm_vcpu *vcpu;
179
180 int32_t ctpr; /* CPU current task priority */
181 struct irq_queue raised;
182 struct irq_queue servicing;
183
184 /* Count of IRQ sources asserting on non-INT outputs */
185 uint32_t outputs_active[NUM_OUTPUTS];
186 };
187
188 #define MAX_MMIO_REGIONS 10
189
190 struct openpic {
191 struct kvm *kvm;
192 struct kvm_device *dev;
193 struct kvm_io_device mmio;
194 const struct mem_reg *mmio_regions[MAX_MMIO_REGIONS];
195 int num_mmio_regions;
196
197 gpa_t reg_base;
198 spinlock_t lock;
199
200 /* Behavior control */
201 struct fsl_mpic_info *fsl;
202 uint32_t model;
203 uint32_t flags;
204 uint32_t nb_irqs;
205 uint32_t vid;
206 uint32_t vir; /* Vendor identification register */
207 uint32_t vector_mask;
208 uint32_t tfrr_reset;
209 uint32_t ivpr_reset;
210 uint32_t idr_reset;
211 uint32_t brr1;
212 uint32_t mpic_mode_mask;
213
214 /* Global registers */
215 uint32_t frr; /* Feature reporting register */
216 uint32_t gcr; /* Global configuration register */
217 uint32_t pir; /* Processor initialization register */
218 uint32_t spve; /* Spurious vector register */
219 uint32_t tfrr; /* Timer frequency reporting register */
220 /* Source registers */
221 struct irq_source src[MAX_IRQ];
222 /* Local registers per output pin */
223 struct irq_dest dst[MAX_CPU];
224 uint32_t nb_cpus;
225 /* Timer registers */
226 struct {
227 uint32_t tccr; /* Global timer current count register */
228 uint32_t tbcr; /* Global timer base count register */
229 } timers[MAX_TMR];
230 /* Shared MSI registers */
231 struct {
232 uint32_t msir; /* Shared Message Signaled Interrupt Register */
233 } msi[MAX_MSI];
234 uint32_t max_irq;
235 uint32_t irq_ipi0;
236 uint32_t irq_tim0;
237 uint32_t irq_msi;
238 };
239
240
mpic_irq_raise(struct openpic * opp,struct irq_dest * dst,int output)241 static void mpic_irq_raise(struct openpic *opp, struct irq_dest *dst,
242 int output)
243 {
244 struct kvm_interrupt irq = {
245 .irq = KVM_INTERRUPT_SET_LEVEL,
246 };
247
248 if (!dst->vcpu) {
249 pr_debug("%s: destination cpu %d does not exist\n",
250 __func__, (int)(dst - &opp->dst[0]));
251 return;
252 }
253
254 pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id,
255 output);
256
257 if (output != ILR_INTTGT_INT) /* TODO */
258 return;
259
260 kvm_vcpu_ioctl_interrupt(dst->vcpu, &irq);
261 }
262
mpic_irq_lower(struct openpic * opp,struct irq_dest * dst,int output)263 static void mpic_irq_lower(struct openpic *opp, struct irq_dest *dst,
264 int output)
265 {
266 if (!dst->vcpu) {
267 pr_debug("%s: destination cpu %d does not exist\n",
268 __func__, (int)(dst - &opp->dst[0]));
269 return;
270 }
271
272 pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id,
273 output);
274
275 if (output != ILR_INTTGT_INT) /* TODO */
276 return;
277
278 kvmppc_core_dequeue_external(dst->vcpu);
279 }
280
IRQ_setbit(struct irq_queue * q,int n_IRQ)281 static inline void IRQ_setbit(struct irq_queue *q, int n_IRQ)
282 {
283 set_bit(n_IRQ, q->queue);
284 }
285
IRQ_resetbit(struct irq_queue * q,int n_IRQ)286 static inline void IRQ_resetbit(struct irq_queue *q, int n_IRQ)
287 {
288 clear_bit(n_IRQ, q->queue);
289 }
290
IRQ_check(struct openpic * opp,struct irq_queue * q)291 static void IRQ_check(struct openpic *opp, struct irq_queue *q)
292 {
293 int irq = -1;
294 int next = -1;
295 int priority = -1;
296
297 for (;;) {
298 irq = find_next_bit(q->queue, opp->max_irq, irq + 1);
299 if (irq == opp->max_irq)
300 break;
301
302 pr_debug("IRQ_check: irq %d set ivpr_pr=%d pr=%d\n",
303 irq, IVPR_PRIORITY(opp->src[irq].ivpr), priority);
304
305 if (IVPR_PRIORITY(opp->src[irq].ivpr) > priority) {
306 next = irq;
307 priority = IVPR_PRIORITY(opp->src[irq].ivpr);
308 }
309 }
310
311 q->next = next;
312 q->priority = priority;
313 }
314
IRQ_get_next(struct openpic * opp,struct irq_queue * q)315 static int IRQ_get_next(struct openpic *opp, struct irq_queue *q)
316 {
317 /* XXX: optimize */
318 IRQ_check(opp, q);
319
320 return q->next;
321 }
322
IRQ_local_pipe(struct openpic * opp,int n_CPU,int n_IRQ,bool active,bool was_active)323 static void IRQ_local_pipe(struct openpic *opp, int n_CPU, int n_IRQ,
324 bool active, bool was_active)
325 {
326 struct irq_dest *dst;
327 struct irq_source *src;
328 int priority;
329
330 dst = &opp->dst[n_CPU];
331 src = &opp->src[n_IRQ];
332
333 pr_debug("%s: IRQ %d active %d was %d\n",
334 __func__, n_IRQ, active, was_active);
335
336 if (src->output != ILR_INTTGT_INT) {
337 pr_debug("%s: output %d irq %d active %d was %d count %d\n",
338 __func__, src->output, n_IRQ, active, was_active,
339 dst->outputs_active[src->output]);
340
341 /* On Freescale MPIC, critical interrupts ignore priority,
342 * IACK, EOI, etc. Before MPIC v4.1 they also ignore
343 * masking.
344 */
345 if (active) {
346 if (!was_active &&
347 dst->outputs_active[src->output]++ == 0) {
348 pr_debug("%s: Raise OpenPIC output %d cpu %d irq %d\n",
349 __func__, src->output, n_CPU, n_IRQ);
350 mpic_irq_raise(opp, dst, src->output);
351 }
352 } else {
353 if (was_active &&
354 --dst->outputs_active[src->output] == 0) {
355 pr_debug("%s: Lower OpenPIC output %d cpu %d irq %d\n",
356 __func__, src->output, n_CPU, n_IRQ);
357 mpic_irq_lower(opp, dst, src->output);
358 }
359 }
360
361 return;
362 }
363
364 priority = IVPR_PRIORITY(src->ivpr);
365
366 /* Even if the interrupt doesn't have enough priority,
367 * it is still raised, in case ctpr is lowered later.
368 */
369 if (active)
370 IRQ_setbit(&dst->raised, n_IRQ);
371 else
372 IRQ_resetbit(&dst->raised, n_IRQ);
373
374 IRQ_check(opp, &dst->raised);
375
376 if (active && priority <= dst->ctpr) {
377 pr_debug("%s: IRQ %d priority %d too low for ctpr %d on CPU %d\n",
378 __func__, n_IRQ, priority, dst->ctpr, n_CPU);
379 active = 0;
380 }
381
382 if (active) {
383 if (IRQ_get_next(opp, &dst->servicing) >= 0 &&
384 priority <= dst->servicing.priority) {
385 pr_debug("%s: IRQ %d is hidden by servicing IRQ %d on CPU %d\n",
386 __func__, n_IRQ, dst->servicing.next, n_CPU);
387 } else {
388 pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d/%d\n",
389 __func__, n_CPU, n_IRQ, dst->raised.next);
390 mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
391 }
392 } else {
393 IRQ_get_next(opp, &dst->servicing);
394 if (dst->raised.priority > dst->ctpr &&
395 dst->raised.priority > dst->servicing.priority) {
396 pr_debug("%s: IRQ %d inactive, IRQ %d prio %d above %d/%d, CPU %d\n",
397 __func__, n_IRQ, dst->raised.next,
398 dst->raised.priority, dst->ctpr,
399 dst->servicing.priority, n_CPU);
400 /* IRQ line stays asserted */
401 } else {
402 pr_debug("%s: IRQ %d inactive, current prio %d/%d, CPU %d\n",
403 __func__, n_IRQ, dst->ctpr,
404 dst->servicing.priority, n_CPU);
405 mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
406 }
407 }
408 }
409
410 /* update pic state because registers for n_IRQ have changed value */
openpic_update_irq(struct openpic * opp,int n_IRQ)411 static void openpic_update_irq(struct openpic *opp, int n_IRQ)
412 {
413 struct irq_source *src;
414 bool active, was_active;
415 int i;
416
417 src = &opp->src[n_IRQ];
418 active = src->pending;
419
420 if ((src->ivpr & IVPR_MASK_MASK) && !src->nomask) {
421 /* Interrupt source is disabled */
422 pr_debug("%s: IRQ %d is disabled\n", __func__, n_IRQ);
423 active = false;
424 }
425
426 was_active = !!(src->ivpr & IVPR_ACTIVITY_MASK);
427
428 /*
429 * We don't have a similar check for already-active because
430 * ctpr may have changed and we need to withdraw the interrupt.
431 */
432 if (!active && !was_active) {
433 pr_debug("%s: IRQ %d is already inactive\n", __func__, n_IRQ);
434 return;
435 }
436
437 if (active)
438 src->ivpr |= IVPR_ACTIVITY_MASK;
439 else
440 src->ivpr &= ~IVPR_ACTIVITY_MASK;
441
442 if (src->destmask == 0) {
443 /* No target */
444 pr_debug("%s: IRQ %d has no target\n", __func__, n_IRQ);
445 return;
446 }
447
448 if (src->destmask == (1 << src->last_cpu)) {
449 /* Only one CPU is allowed to receive this IRQ */
450 IRQ_local_pipe(opp, src->last_cpu, n_IRQ, active, was_active);
451 } else if (!(src->ivpr & IVPR_MODE_MASK)) {
452 /* Directed delivery mode */
453 for (i = 0; i < opp->nb_cpus; i++) {
454 if (src->destmask & (1 << i)) {
455 IRQ_local_pipe(opp, i, n_IRQ, active,
456 was_active);
457 }
458 }
459 } else {
460 /* Distributed delivery mode */
461 for (i = src->last_cpu + 1; i != src->last_cpu; i++) {
462 if (i == opp->nb_cpus)
463 i = 0;
464
465 if (src->destmask & (1 << i)) {
466 IRQ_local_pipe(opp, i, n_IRQ, active,
467 was_active);
468 src->last_cpu = i;
469 break;
470 }
471 }
472 }
473 }
474
openpic_set_irq(void * opaque,int n_IRQ,int level)475 static void openpic_set_irq(void *opaque, int n_IRQ, int level)
476 {
477 struct openpic *opp = opaque;
478 struct irq_source *src;
479
480 if (n_IRQ >= MAX_IRQ) {
481 WARN_ONCE(1, "%s: IRQ %d out of range\n", __func__, n_IRQ);
482 return;
483 }
484
485 src = &opp->src[n_IRQ];
486 pr_debug("openpic: set irq %d = %d ivpr=0x%08x\n",
487 n_IRQ, level, src->ivpr);
488 if (src->level) {
489 /* level-sensitive irq */
490 src->pending = level;
491 openpic_update_irq(opp, n_IRQ);
492 } else {
493 /* edge-sensitive irq */
494 if (level) {
495 src->pending = 1;
496 openpic_update_irq(opp, n_IRQ);
497 }
498
499 if (src->output != ILR_INTTGT_INT) {
500 /* Edge-triggered interrupts shouldn't be used
501 * with non-INT delivery, but just in case,
502 * try to make it do something sane rather than
503 * cause an interrupt storm. This is close to
504 * what you'd probably see happen in real hardware.
505 */
506 src->pending = 0;
507 openpic_update_irq(opp, n_IRQ);
508 }
509 }
510 }
511
openpic_reset(struct openpic * opp)512 static void openpic_reset(struct openpic *opp)
513 {
514 int i;
515
516 opp->gcr = GCR_RESET;
517 /* Initialise controller registers */
518 opp->frr = ((opp->nb_irqs - 1) << FRR_NIRQ_SHIFT) |
519 (opp->vid << FRR_VID_SHIFT);
520
521 opp->pir = 0;
522 opp->spve = -1 & opp->vector_mask;
523 opp->tfrr = opp->tfrr_reset;
524 /* Initialise IRQ sources */
525 for (i = 0; i < opp->max_irq; i++) {
526 opp->src[i].ivpr = opp->ivpr_reset;
527
528 switch (opp->src[i].type) {
529 case IRQ_TYPE_NORMAL:
530 opp->src[i].level =
531 !!(opp->ivpr_reset & IVPR_SENSE_MASK);
532 break;
533
534 case IRQ_TYPE_FSLINT:
535 opp->src[i].ivpr |= IVPR_POLARITY_MASK;
536 break;
537
538 case IRQ_TYPE_FSLSPECIAL:
539 break;
540 }
541
542 write_IRQreg_idr(opp, i, opp->idr_reset);
543 }
544 /* Initialise IRQ destinations */
545 for (i = 0; i < MAX_CPU; i++) {
546 opp->dst[i].ctpr = 15;
547 memset(&opp->dst[i].raised, 0, sizeof(struct irq_queue));
548 opp->dst[i].raised.next = -1;
549 memset(&opp->dst[i].servicing, 0, sizeof(struct irq_queue));
550 opp->dst[i].servicing.next = -1;
551 }
552 /* Initialise timers */
553 for (i = 0; i < MAX_TMR; i++) {
554 opp->timers[i].tccr = 0;
555 opp->timers[i].tbcr = TBCR_CI;
556 }
557 /* Go out of RESET state */
558 opp->gcr = 0;
559 }
560
read_IRQreg_idr(struct openpic * opp,int n_IRQ)561 static inline uint32_t read_IRQreg_idr(struct openpic *opp, int n_IRQ)
562 {
563 return opp->src[n_IRQ].idr;
564 }
565
read_IRQreg_ilr(struct openpic * opp,int n_IRQ)566 static inline uint32_t read_IRQreg_ilr(struct openpic *opp, int n_IRQ)
567 {
568 if (opp->flags & OPENPIC_FLAG_ILR)
569 return opp->src[n_IRQ].output;
570
571 return 0xffffffff;
572 }
573
read_IRQreg_ivpr(struct openpic * opp,int n_IRQ)574 static inline uint32_t read_IRQreg_ivpr(struct openpic *opp, int n_IRQ)
575 {
576 return opp->src[n_IRQ].ivpr;
577 }
578
write_IRQreg_idr(struct openpic * opp,int n_IRQ,uint32_t val)579 static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ,
580 uint32_t val)
581 {
582 struct irq_source *src = &opp->src[n_IRQ];
583 uint32_t normal_mask = (1UL << opp->nb_cpus) - 1;
584 uint32_t crit_mask = 0;
585 uint32_t mask = normal_mask;
586 int crit_shift = IDR_EP_SHIFT - opp->nb_cpus;
587 int i;
588
589 if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
590 crit_mask = mask << crit_shift;
591 mask |= crit_mask | IDR_EP;
592 }
593
594 src->idr = val & mask;
595 pr_debug("Set IDR %d to 0x%08x\n", n_IRQ, src->idr);
596
597 if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
598 if (src->idr & crit_mask) {
599 if (src->idr & normal_mask) {
600 pr_debug("%s: IRQ configured for multiple output types, using critical\n",
601 __func__);
602 }
603
604 src->output = ILR_INTTGT_CINT;
605 src->nomask = true;
606 src->destmask = 0;
607
608 for (i = 0; i < opp->nb_cpus; i++) {
609 int n_ci = IDR_CI0_SHIFT - i;
610
611 if (src->idr & (1UL << n_ci))
612 src->destmask |= 1UL << i;
613 }
614 } else {
615 src->output = ILR_INTTGT_INT;
616 src->nomask = false;
617 src->destmask = src->idr & normal_mask;
618 }
619 } else {
620 src->destmask = src->idr;
621 }
622 }
623
write_IRQreg_ilr(struct openpic * opp,int n_IRQ,uint32_t val)624 static inline void write_IRQreg_ilr(struct openpic *opp, int n_IRQ,
625 uint32_t val)
626 {
627 if (opp->flags & OPENPIC_FLAG_ILR) {
628 struct irq_source *src = &opp->src[n_IRQ];
629
630 src->output = val & ILR_INTTGT_MASK;
631 pr_debug("Set ILR %d to 0x%08x, output %d\n", n_IRQ, src->idr,
632 src->output);
633
634 /* TODO: on MPIC v4.0 only, set nomask for non-INT */
635 }
636 }
637
write_IRQreg_ivpr(struct openpic * opp,int n_IRQ,uint32_t val)638 static inline void write_IRQreg_ivpr(struct openpic *opp, int n_IRQ,
639 uint32_t val)
640 {
641 uint32_t mask;
642
643 /* NOTE when implementing newer FSL MPIC models: starting with v4.0,
644 * the polarity bit is read-only on internal interrupts.
645 */
646 mask = IVPR_MASK_MASK | IVPR_PRIORITY_MASK | IVPR_SENSE_MASK |
647 IVPR_POLARITY_MASK | opp->vector_mask;
648
649 /* ACTIVITY bit is read-only */
650 opp->src[n_IRQ].ivpr =
651 (opp->src[n_IRQ].ivpr & IVPR_ACTIVITY_MASK) | (val & mask);
652
653 /* For FSL internal interrupts, The sense bit is reserved and zero,
654 * and the interrupt is always level-triggered. Timers and IPIs
655 * have no sense or polarity bits, and are edge-triggered.
656 */
657 switch (opp->src[n_IRQ].type) {
658 case IRQ_TYPE_NORMAL:
659 opp->src[n_IRQ].level =
660 !!(opp->src[n_IRQ].ivpr & IVPR_SENSE_MASK);
661 break;
662
663 case IRQ_TYPE_FSLINT:
664 opp->src[n_IRQ].ivpr &= ~IVPR_SENSE_MASK;
665 break;
666
667 case IRQ_TYPE_FSLSPECIAL:
668 opp->src[n_IRQ].ivpr &= ~(IVPR_POLARITY_MASK | IVPR_SENSE_MASK);
669 break;
670 }
671
672 openpic_update_irq(opp, n_IRQ);
673 pr_debug("Set IVPR %d to 0x%08x -> 0x%08x\n", n_IRQ, val,
674 opp->src[n_IRQ].ivpr);
675 }
676
openpic_gcr_write(struct openpic * opp,uint64_t val)677 static void openpic_gcr_write(struct openpic *opp, uint64_t val)
678 {
679 if (val & GCR_RESET) {
680 openpic_reset(opp);
681 return;
682 }
683
684 opp->gcr &= ~opp->mpic_mode_mask;
685 opp->gcr |= val & opp->mpic_mode_mask;
686 }
687
openpic_gbl_write(void * opaque,gpa_t addr,u32 val)688 static int openpic_gbl_write(void *opaque, gpa_t addr, u32 val)
689 {
690 struct openpic *opp = opaque;
691 int err = 0;
692
693 pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
694 if (addr & 0xF)
695 return 0;
696
697 switch (addr) {
698 case 0x00: /* Block Revision Register1 (BRR1) is Readonly */
699 break;
700 case 0x40:
701 case 0x50:
702 case 0x60:
703 case 0x70:
704 case 0x80:
705 case 0x90:
706 case 0xA0:
707 case 0xB0:
708 err = openpic_cpu_write_internal(opp, addr, val,
709 get_current_cpu());
710 break;
711 case 0x1000: /* FRR */
712 break;
713 case 0x1020: /* GCR */
714 openpic_gcr_write(opp, val);
715 break;
716 case 0x1080: /* VIR */
717 break;
718 case 0x1090: /* PIR */
719 /*
720 * This register is used to reset a CPU core --
721 * let userspace handle it.
722 */
723 err = -ENXIO;
724 break;
725 case 0x10A0: /* IPI_IVPR */
726 case 0x10B0:
727 case 0x10C0:
728 case 0x10D0: {
729 int idx;
730 idx = (addr - 0x10A0) >> 4;
731 write_IRQreg_ivpr(opp, opp->irq_ipi0 + idx, val);
732 break;
733 }
734 case 0x10E0: /* SPVE */
735 opp->spve = val & opp->vector_mask;
736 break;
737 default:
738 break;
739 }
740
741 return err;
742 }
743
openpic_gbl_read(void * opaque,gpa_t addr,u32 * ptr)744 static int openpic_gbl_read(void *opaque, gpa_t addr, u32 *ptr)
745 {
746 struct openpic *opp = opaque;
747 u32 retval;
748 int err = 0;
749
750 pr_debug("%s: addr %#llx\n", __func__, addr);
751 retval = 0xFFFFFFFF;
752 if (addr & 0xF)
753 goto out;
754
755 switch (addr) {
756 case 0x1000: /* FRR */
757 retval = opp->frr;
758 retval |= (opp->nb_cpus - 1) << FRR_NCPU_SHIFT;
759 break;
760 case 0x1020: /* GCR */
761 retval = opp->gcr;
762 break;
763 case 0x1080: /* VIR */
764 retval = opp->vir;
765 break;
766 case 0x1090: /* PIR */
767 retval = 0x00000000;
768 break;
769 case 0x00: /* Block Revision Register1 (BRR1) */
770 retval = opp->brr1;
771 break;
772 case 0x40:
773 case 0x50:
774 case 0x60:
775 case 0x70:
776 case 0x80:
777 case 0x90:
778 case 0xA0:
779 case 0xB0:
780 err = openpic_cpu_read_internal(opp, addr,
781 &retval, get_current_cpu());
782 break;
783 case 0x10A0: /* IPI_IVPR */
784 case 0x10B0:
785 case 0x10C0:
786 case 0x10D0:
787 {
788 int idx;
789 idx = (addr - 0x10A0) >> 4;
790 retval = read_IRQreg_ivpr(opp, opp->irq_ipi0 + idx);
791 }
792 break;
793 case 0x10E0: /* SPVE */
794 retval = opp->spve;
795 break;
796 default:
797 break;
798 }
799
800 out:
801 pr_debug("%s: => 0x%08x\n", __func__, retval);
802 *ptr = retval;
803 return err;
804 }
805
openpic_tmr_write(void * opaque,gpa_t addr,u32 val)806 static int openpic_tmr_write(void *opaque, gpa_t addr, u32 val)
807 {
808 struct openpic *opp = opaque;
809 int idx;
810
811 addr += 0x10f0;
812
813 pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
814 if (addr & 0xF)
815 return 0;
816
817 if (addr == 0x10f0) {
818 /* TFRR */
819 opp->tfrr = val;
820 return 0;
821 }
822
823 idx = (addr >> 6) & 0x3;
824 addr = addr & 0x30;
825
826 switch (addr & 0x30) {
827 case 0x00: /* TCCR */
828 break;
829 case 0x10: /* TBCR */
830 if ((opp->timers[idx].tccr & TCCR_TOG) != 0 &&
831 (val & TBCR_CI) == 0 &&
832 (opp->timers[idx].tbcr & TBCR_CI) != 0)
833 opp->timers[idx].tccr &= ~TCCR_TOG;
834
835 opp->timers[idx].tbcr = val;
836 break;
837 case 0x20: /* TVPR */
838 write_IRQreg_ivpr(opp, opp->irq_tim0 + idx, val);
839 break;
840 case 0x30: /* TDR */
841 write_IRQreg_idr(opp, opp->irq_tim0 + idx, val);
842 break;
843 }
844
845 return 0;
846 }
847
openpic_tmr_read(void * opaque,gpa_t addr,u32 * ptr)848 static int openpic_tmr_read(void *opaque, gpa_t addr, u32 *ptr)
849 {
850 struct openpic *opp = opaque;
851 uint32_t retval = -1;
852 int idx;
853
854 pr_debug("%s: addr %#llx\n", __func__, addr);
855 if (addr & 0xF)
856 goto out;
857
858 idx = (addr >> 6) & 0x3;
859 if (addr == 0x0) {
860 /* TFRR */
861 retval = opp->tfrr;
862 goto out;
863 }
864
865 switch (addr & 0x30) {
866 case 0x00: /* TCCR */
867 retval = opp->timers[idx].tccr;
868 break;
869 case 0x10: /* TBCR */
870 retval = opp->timers[idx].tbcr;
871 break;
872 case 0x20: /* TIPV */
873 retval = read_IRQreg_ivpr(opp, opp->irq_tim0 + idx);
874 break;
875 case 0x30: /* TIDE (TIDR) */
876 retval = read_IRQreg_idr(opp, opp->irq_tim0 + idx);
877 break;
878 }
879
880 out:
881 pr_debug("%s: => 0x%08x\n", __func__, retval);
882 *ptr = retval;
883 return 0;
884 }
885
openpic_src_write(void * opaque,gpa_t addr,u32 val)886 static int openpic_src_write(void *opaque, gpa_t addr, u32 val)
887 {
888 struct openpic *opp = opaque;
889 int idx;
890
891 pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
892
893 addr = addr & 0xffff;
894 idx = addr >> 5;
895
896 switch (addr & 0x1f) {
897 case 0x00:
898 write_IRQreg_ivpr(opp, idx, val);
899 break;
900 case 0x10:
901 write_IRQreg_idr(opp, idx, val);
902 break;
903 case 0x18:
904 write_IRQreg_ilr(opp, idx, val);
905 break;
906 }
907
908 return 0;
909 }
910
openpic_src_read(void * opaque,gpa_t addr,u32 * ptr)911 static int openpic_src_read(void *opaque, gpa_t addr, u32 *ptr)
912 {
913 struct openpic *opp = opaque;
914 uint32_t retval;
915 int idx;
916
917 pr_debug("%s: addr %#llx\n", __func__, addr);
918 retval = 0xFFFFFFFF;
919
920 addr = addr & 0xffff;
921 idx = addr >> 5;
922
923 switch (addr & 0x1f) {
924 case 0x00:
925 retval = read_IRQreg_ivpr(opp, idx);
926 break;
927 case 0x10:
928 retval = read_IRQreg_idr(opp, idx);
929 break;
930 case 0x18:
931 retval = read_IRQreg_ilr(opp, idx);
932 break;
933 }
934
935 pr_debug("%s: => 0x%08x\n", __func__, retval);
936 *ptr = retval;
937 return 0;
938 }
939
openpic_msi_write(void * opaque,gpa_t addr,u32 val)940 static int openpic_msi_write(void *opaque, gpa_t addr, u32 val)
941 {
942 struct openpic *opp = opaque;
943 int idx = opp->irq_msi;
944 int srs, ibs;
945
946 pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val);
947 if (addr & 0xF)
948 return 0;
949
950 switch (addr) {
951 case MSIIR_OFFSET:
952 srs = val >> MSIIR_SRS_SHIFT;
953 idx += srs;
954 ibs = (val & MSIIR_IBS_MASK) >> MSIIR_IBS_SHIFT;
955 opp->msi[srs].msir |= 1 << ibs;
956 openpic_set_irq(opp, idx, 1);
957 break;
958 default:
959 /* most registers are read-only, thus ignored */
960 break;
961 }
962
963 return 0;
964 }
965
openpic_msi_read(void * opaque,gpa_t addr,u32 * ptr)966 static int openpic_msi_read(void *opaque, gpa_t addr, u32 *ptr)
967 {
968 struct openpic *opp = opaque;
969 uint32_t r = 0;
970 int i, srs;
971
972 pr_debug("%s: addr %#llx\n", __func__, addr);
973 if (addr & 0xF)
974 return -ENXIO;
975
976 srs = addr >> 4;
977
978 switch (addr) {
979 case 0x00:
980 case 0x10:
981 case 0x20:
982 case 0x30:
983 case 0x40:
984 case 0x50:
985 case 0x60:
986 case 0x70: /* MSIRs */
987 r = opp->msi[srs].msir;
988 /* Clear on read */
989 opp->msi[srs].msir = 0;
990 openpic_set_irq(opp, opp->irq_msi + srs, 0);
991 break;
992 case 0x120: /* MSISR */
993 for (i = 0; i < MAX_MSI; i++)
994 r |= (opp->msi[i].msir ? 1 : 0) << i;
995 break;
996 }
997
998 pr_debug("%s: => 0x%08x\n", __func__, r);
999 *ptr = r;
1000 return 0;
1001 }
1002
openpic_summary_read(void * opaque,gpa_t addr,u32 * ptr)1003 static int openpic_summary_read(void *opaque, gpa_t addr, u32 *ptr)
1004 {
1005 uint32_t r = 0;
1006
1007 pr_debug("%s: addr %#llx\n", __func__, addr);
1008
1009 /* TODO: EISR/EIMR */
1010
1011 *ptr = r;
1012 return 0;
1013 }
1014
openpic_summary_write(void * opaque,gpa_t addr,u32 val)1015 static int openpic_summary_write(void *opaque, gpa_t addr, u32 val)
1016 {
1017 pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val);
1018
1019 /* TODO: EISR/EIMR */
1020 return 0;
1021 }
1022
openpic_cpu_write_internal(void * opaque,gpa_t addr,u32 val,int idx)1023 static int openpic_cpu_write_internal(void *opaque, gpa_t addr,
1024 u32 val, int idx)
1025 {
1026 struct openpic *opp = opaque;
1027 struct irq_source *src;
1028 struct irq_dest *dst;
1029 int s_IRQ, n_IRQ;
1030
1031 pr_debug("%s: cpu %d addr %#llx <= 0x%08x\n", __func__, idx,
1032 addr, val);
1033
1034 if (idx < 0)
1035 return 0;
1036
1037 if (addr & 0xF)
1038 return 0;
1039
1040 dst = &opp->dst[idx];
1041 addr &= 0xFF0;
1042 switch (addr) {
1043 case 0x40: /* IPIDR */
1044 case 0x50:
1045 case 0x60:
1046 case 0x70:
1047 idx = (addr - 0x40) >> 4;
1048 /* we use IDE as mask which CPUs to deliver the IPI to still. */
1049 opp->src[opp->irq_ipi0 + idx].destmask |= val;
1050 openpic_set_irq(opp, opp->irq_ipi0 + idx, 1);
1051 openpic_set_irq(opp, opp->irq_ipi0 + idx, 0);
1052 break;
1053 case 0x80: /* CTPR */
1054 dst->ctpr = val & 0x0000000F;
1055
1056 pr_debug("%s: set CPU %d ctpr to %d, raised %d servicing %d\n",
1057 __func__, idx, dst->ctpr, dst->raised.priority,
1058 dst->servicing.priority);
1059
1060 if (dst->raised.priority <= dst->ctpr) {
1061 pr_debug("%s: Lower OpenPIC INT output cpu %d due to ctpr\n",
1062 __func__, idx);
1063 mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
1064 } else if (dst->raised.priority > dst->servicing.priority) {
1065 pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d\n",
1066 __func__, idx, dst->raised.next);
1067 mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
1068 }
1069
1070 break;
1071 case 0x90: /* WHOAMI */
1072 /* Read-only register */
1073 break;
1074 case 0xA0: /* IACK */
1075 /* Read-only register */
1076 break;
1077 case 0xB0: { /* EOI */
1078 int notify_eoi;
1079
1080 pr_debug("EOI\n");
1081 s_IRQ = IRQ_get_next(opp, &dst->servicing);
1082
1083 if (s_IRQ < 0) {
1084 pr_debug("%s: EOI with no interrupt in service\n",
1085 __func__);
1086 break;
1087 }
1088
1089 IRQ_resetbit(&dst->servicing, s_IRQ);
1090 /* Notify listeners that the IRQ is over */
1091 notify_eoi = s_IRQ;
1092 /* Set up next servicing IRQ */
1093 s_IRQ = IRQ_get_next(opp, &dst->servicing);
1094 /* Check queued interrupts. */
1095 n_IRQ = IRQ_get_next(opp, &dst->raised);
1096 src = &opp->src[n_IRQ];
1097 if (n_IRQ != -1 &&
1098 (s_IRQ == -1 ||
1099 IVPR_PRIORITY(src->ivpr) > dst->servicing.priority)) {
1100 pr_debug("Raise OpenPIC INT output cpu %d irq %d\n",
1101 idx, n_IRQ);
1102 mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
1103 }
1104
1105 spin_unlock(&opp->lock);
1106 kvm_notify_acked_irq(opp->kvm, 0, notify_eoi);
1107 spin_lock(&opp->lock);
1108
1109 break;
1110 }
1111 default:
1112 break;
1113 }
1114
1115 return 0;
1116 }
1117
openpic_cpu_write(void * opaque,gpa_t addr,u32 val)1118 static int openpic_cpu_write(void *opaque, gpa_t addr, u32 val)
1119 {
1120 struct openpic *opp = opaque;
1121
1122 return openpic_cpu_write_internal(opp, addr, val,
1123 (addr & 0x1f000) >> 12);
1124 }
1125
openpic_iack(struct openpic * opp,struct irq_dest * dst,int cpu)1126 static uint32_t openpic_iack(struct openpic *opp, struct irq_dest *dst,
1127 int cpu)
1128 {
1129 struct irq_source *src;
1130 int retval, irq;
1131
1132 pr_debug("Lower OpenPIC INT output\n");
1133 mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
1134
1135 irq = IRQ_get_next(opp, &dst->raised);
1136 pr_debug("IACK: irq=%d\n", irq);
1137
1138 if (irq == -1)
1139 /* No more interrupt pending */
1140 return opp->spve;
1141
1142 src = &opp->src[irq];
1143 if (!(src->ivpr & IVPR_ACTIVITY_MASK) ||
1144 !(IVPR_PRIORITY(src->ivpr) > dst->ctpr)) {
1145 pr_err("%s: bad raised IRQ %d ctpr %d ivpr 0x%08x\n",
1146 __func__, irq, dst->ctpr, src->ivpr);
1147 openpic_update_irq(opp, irq);
1148 retval = opp->spve;
1149 } else {
1150 /* IRQ enter servicing state */
1151 IRQ_setbit(&dst->servicing, irq);
1152 retval = IVPR_VECTOR(opp, src->ivpr);
1153 }
1154
1155 if (!src->level) {
1156 /* edge-sensitive IRQ */
1157 src->ivpr &= ~IVPR_ACTIVITY_MASK;
1158 src->pending = 0;
1159 IRQ_resetbit(&dst->raised, irq);
1160 }
1161
1162 if ((irq >= opp->irq_ipi0) && (irq < (opp->irq_ipi0 + MAX_IPI))) {
1163 src->destmask &= ~(1 << cpu);
1164 if (src->destmask && !src->level) {
1165 /* trigger on CPUs that didn't know about it yet */
1166 openpic_set_irq(opp, irq, 1);
1167 openpic_set_irq(opp, irq, 0);
1168 /* if all CPUs knew about it, set active bit again */
1169 src->ivpr |= IVPR_ACTIVITY_MASK;
1170 }
1171 }
1172
1173 return retval;
1174 }
1175
kvmppc_mpic_set_epr(struct kvm_vcpu * vcpu)1176 void kvmppc_mpic_set_epr(struct kvm_vcpu *vcpu)
1177 {
1178 struct openpic *opp = vcpu->arch.mpic;
1179 int cpu = vcpu->arch.irq_cpu_id;
1180 unsigned long flags;
1181
1182 spin_lock_irqsave(&opp->lock, flags);
1183
1184 if ((opp->gcr & opp->mpic_mode_mask) == GCR_MODE_PROXY)
1185 kvmppc_set_epr(vcpu, openpic_iack(opp, &opp->dst[cpu], cpu));
1186
1187 spin_unlock_irqrestore(&opp->lock, flags);
1188 }
1189
openpic_cpu_read_internal(void * opaque,gpa_t addr,u32 * ptr,int idx)1190 static int openpic_cpu_read_internal(void *opaque, gpa_t addr,
1191 u32 *ptr, int idx)
1192 {
1193 struct openpic *opp = opaque;
1194 struct irq_dest *dst;
1195 uint32_t retval;
1196
1197 pr_debug("%s: cpu %d addr %#llx\n", __func__, idx, addr);
1198 retval = 0xFFFFFFFF;
1199
1200 if (idx < 0)
1201 goto out;
1202
1203 if (addr & 0xF)
1204 goto out;
1205
1206 dst = &opp->dst[idx];
1207 addr &= 0xFF0;
1208 switch (addr) {
1209 case 0x80: /* CTPR */
1210 retval = dst->ctpr;
1211 break;
1212 case 0x90: /* WHOAMI */
1213 retval = idx;
1214 break;
1215 case 0xA0: /* IACK */
1216 retval = openpic_iack(opp, dst, idx);
1217 break;
1218 case 0xB0: /* EOI */
1219 retval = 0;
1220 break;
1221 default:
1222 break;
1223 }
1224 pr_debug("%s: => 0x%08x\n", __func__, retval);
1225
1226 out:
1227 *ptr = retval;
1228 return 0;
1229 }
1230
openpic_cpu_read(void * opaque,gpa_t addr,u32 * ptr)1231 static int openpic_cpu_read(void *opaque, gpa_t addr, u32 *ptr)
1232 {
1233 struct openpic *opp = opaque;
1234
1235 return openpic_cpu_read_internal(opp, addr, ptr,
1236 (addr & 0x1f000) >> 12);
1237 }
1238
1239 struct mem_reg {
1240 int (*read)(void *opaque, gpa_t addr, u32 *ptr);
1241 int (*write)(void *opaque, gpa_t addr, u32 val);
1242 gpa_t start_addr;
1243 int size;
1244 };
1245
1246 static const struct mem_reg openpic_gbl_mmio = {
1247 .write = openpic_gbl_write,
1248 .read = openpic_gbl_read,
1249 .start_addr = OPENPIC_GLB_REG_START,
1250 .size = OPENPIC_GLB_REG_SIZE,
1251 };
1252
1253 static const struct mem_reg openpic_tmr_mmio = {
1254 .write = openpic_tmr_write,
1255 .read = openpic_tmr_read,
1256 .start_addr = OPENPIC_TMR_REG_START,
1257 .size = OPENPIC_TMR_REG_SIZE,
1258 };
1259
1260 static const struct mem_reg openpic_cpu_mmio = {
1261 .write = openpic_cpu_write,
1262 .read = openpic_cpu_read,
1263 .start_addr = OPENPIC_CPU_REG_START,
1264 .size = OPENPIC_CPU_REG_SIZE,
1265 };
1266
1267 static const struct mem_reg openpic_src_mmio = {
1268 .write = openpic_src_write,
1269 .read = openpic_src_read,
1270 .start_addr = OPENPIC_SRC_REG_START,
1271 .size = OPENPIC_SRC_REG_SIZE,
1272 };
1273
1274 static const struct mem_reg openpic_msi_mmio = {
1275 .read = openpic_msi_read,
1276 .write = openpic_msi_write,
1277 .start_addr = OPENPIC_MSI_REG_START,
1278 .size = OPENPIC_MSI_REG_SIZE,
1279 };
1280
1281 static const struct mem_reg openpic_summary_mmio = {
1282 .read = openpic_summary_read,
1283 .write = openpic_summary_write,
1284 .start_addr = OPENPIC_SUMMARY_REG_START,
1285 .size = OPENPIC_SUMMARY_REG_SIZE,
1286 };
1287
add_mmio_region(struct openpic * opp,const struct mem_reg * mr)1288 static void add_mmio_region(struct openpic *opp, const struct mem_reg *mr)
1289 {
1290 if (opp->num_mmio_regions >= MAX_MMIO_REGIONS) {
1291 WARN(1, "kvm mpic: too many mmio regions\n");
1292 return;
1293 }
1294
1295 opp->mmio_regions[opp->num_mmio_regions++] = mr;
1296 }
1297
fsl_common_init(struct openpic * opp)1298 static void fsl_common_init(struct openpic *opp)
1299 {
1300 int i;
1301 int virq = MAX_SRC;
1302
1303 add_mmio_region(opp, &openpic_msi_mmio);
1304 add_mmio_region(opp, &openpic_summary_mmio);
1305
1306 opp->vid = VID_REVISION_1_2;
1307 opp->vir = VIR_GENERIC;
1308 opp->vector_mask = 0xFFFF;
1309 opp->tfrr_reset = 0;
1310 opp->ivpr_reset = IVPR_MASK_MASK;
1311 opp->idr_reset = 1 << 0;
1312 opp->max_irq = MAX_IRQ;
1313
1314 opp->irq_ipi0 = virq;
1315 virq += MAX_IPI;
1316 opp->irq_tim0 = virq;
1317 virq += MAX_TMR;
1318
1319 BUG_ON(virq > MAX_IRQ);
1320
1321 opp->irq_msi = 224;
1322
1323 for (i = 0; i < opp->fsl->max_ext; i++)
1324 opp->src[i].level = false;
1325
1326 /* Internal interrupts, including message and MSI */
1327 for (i = 16; i < MAX_SRC; i++) {
1328 opp->src[i].type = IRQ_TYPE_FSLINT;
1329 opp->src[i].level = true;
1330 }
1331
1332 /* timers and IPIs */
1333 for (i = MAX_SRC; i < virq; i++) {
1334 opp->src[i].type = IRQ_TYPE_FSLSPECIAL;
1335 opp->src[i].level = false;
1336 }
1337 }
1338
kvm_mpic_read_internal(struct openpic * opp,gpa_t addr,u32 * ptr)1339 static int kvm_mpic_read_internal(struct openpic *opp, gpa_t addr, u32 *ptr)
1340 {
1341 int i;
1342
1343 for (i = 0; i < opp->num_mmio_regions; i++) {
1344 const struct mem_reg *mr = opp->mmio_regions[i];
1345
1346 if (mr->start_addr > addr || addr >= mr->start_addr + mr->size)
1347 continue;
1348
1349 return mr->read(opp, addr - mr->start_addr, ptr);
1350 }
1351
1352 return -ENXIO;
1353 }
1354
kvm_mpic_write_internal(struct openpic * opp,gpa_t addr,u32 val)1355 static int kvm_mpic_write_internal(struct openpic *opp, gpa_t addr, u32 val)
1356 {
1357 int i;
1358
1359 for (i = 0; i < opp->num_mmio_regions; i++) {
1360 const struct mem_reg *mr = opp->mmio_regions[i];
1361
1362 if (mr->start_addr > addr || addr >= mr->start_addr + mr->size)
1363 continue;
1364
1365 return mr->write(opp, addr - mr->start_addr, val);
1366 }
1367
1368 return -ENXIO;
1369 }
1370
kvm_mpic_read(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t addr,int len,void * ptr)1371 static int kvm_mpic_read(struct kvm_vcpu *vcpu,
1372 struct kvm_io_device *this,
1373 gpa_t addr, int len, void *ptr)
1374 {
1375 struct openpic *opp = container_of(this, struct openpic, mmio);
1376 int ret;
1377 union {
1378 u32 val;
1379 u8 bytes[4];
1380 } u;
1381
1382 if (addr & (len - 1)) {
1383 pr_debug("%s: bad alignment %llx/%d\n",
1384 __func__, addr, len);
1385 return -EINVAL;
1386 }
1387
1388 spin_lock_irq(&opp->lock);
1389 ret = kvm_mpic_read_internal(opp, addr - opp->reg_base, &u.val);
1390 spin_unlock_irq(&opp->lock);
1391
1392 /*
1393 * Technically only 32-bit accesses are allowed, but be nice to
1394 * people dumping registers a byte at a time -- it works in real
1395 * hardware (reads only, not writes).
1396 */
1397 if (len == 4) {
1398 *(u32 *)ptr = u.val;
1399 pr_debug("%s: addr %llx ret %d len 4 val %x\n",
1400 __func__, addr, ret, u.val);
1401 } else if (len == 1) {
1402 *(u8 *)ptr = u.bytes[addr & 3];
1403 pr_debug("%s: addr %llx ret %d len 1 val %x\n",
1404 __func__, addr, ret, u.bytes[addr & 3]);
1405 } else {
1406 pr_debug("%s: bad length %d\n", __func__, len);
1407 return -EINVAL;
1408 }
1409
1410 return ret;
1411 }
1412
kvm_mpic_write(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t addr,int len,const void * ptr)1413 static int kvm_mpic_write(struct kvm_vcpu *vcpu,
1414 struct kvm_io_device *this,
1415 gpa_t addr, int len, const void *ptr)
1416 {
1417 struct openpic *opp = container_of(this, struct openpic, mmio);
1418 int ret;
1419
1420 if (len != 4) {
1421 pr_debug("%s: bad length %d\n", __func__, len);
1422 return -EOPNOTSUPP;
1423 }
1424 if (addr & 3) {
1425 pr_debug("%s: bad alignment %llx/%d\n", __func__, addr, len);
1426 return -EOPNOTSUPP;
1427 }
1428
1429 spin_lock_irq(&opp->lock);
1430 ret = kvm_mpic_write_internal(opp, addr - opp->reg_base,
1431 *(const u32 *)ptr);
1432 spin_unlock_irq(&opp->lock);
1433
1434 pr_debug("%s: addr %llx ret %d val %x\n",
1435 __func__, addr, ret, *(const u32 *)ptr);
1436
1437 return ret;
1438 }
1439
1440 static const struct kvm_io_device_ops mpic_mmio_ops = {
1441 .read = kvm_mpic_read,
1442 .write = kvm_mpic_write,
1443 };
1444
map_mmio(struct openpic * opp)1445 static void map_mmio(struct openpic *opp)
1446 {
1447 kvm_iodevice_init(&opp->mmio, &mpic_mmio_ops);
1448
1449 kvm_io_bus_register_dev(opp->kvm, KVM_MMIO_BUS,
1450 opp->reg_base, OPENPIC_REG_SIZE,
1451 &opp->mmio);
1452 }
1453
unmap_mmio(struct openpic * opp)1454 static void unmap_mmio(struct openpic *opp)
1455 {
1456 kvm_io_bus_unregister_dev(opp->kvm, KVM_MMIO_BUS, &opp->mmio);
1457 }
1458
set_base_addr(struct openpic * opp,struct kvm_device_attr * attr)1459 static int set_base_addr(struct openpic *opp, struct kvm_device_attr *attr)
1460 {
1461 u64 base;
1462
1463 if (copy_from_user(&base, (u64 __user *)(long)attr->addr, sizeof(u64)))
1464 return -EFAULT;
1465
1466 if (base & 0x3ffff) {
1467 pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx not aligned\n",
1468 __func__, base);
1469 return -EINVAL;
1470 }
1471
1472 if (base == opp->reg_base)
1473 return 0;
1474
1475 mutex_lock(&opp->kvm->slots_lock);
1476
1477 unmap_mmio(opp);
1478 opp->reg_base = base;
1479
1480 pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx\n",
1481 __func__, base);
1482
1483 if (base == 0)
1484 goto out;
1485
1486 map_mmio(opp);
1487
1488 out:
1489 mutex_unlock(&opp->kvm->slots_lock);
1490 return 0;
1491 }
1492
1493 #define ATTR_SET 0
1494 #define ATTR_GET 1
1495
access_reg(struct openpic * opp,gpa_t addr,u32 * val,int type)1496 static int access_reg(struct openpic *opp, gpa_t addr, u32 *val, int type)
1497 {
1498 int ret;
1499
1500 if (addr & 3)
1501 return -ENXIO;
1502
1503 spin_lock_irq(&opp->lock);
1504
1505 if (type == ATTR_SET)
1506 ret = kvm_mpic_write_internal(opp, addr, *val);
1507 else
1508 ret = kvm_mpic_read_internal(opp, addr, val);
1509
1510 spin_unlock_irq(&opp->lock);
1511
1512 pr_debug("%s: type %d addr %llx val %x\n", __func__, type, addr, *val);
1513
1514 return ret;
1515 }
1516
mpic_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)1517 static int mpic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1518 {
1519 struct openpic *opp = dev->private;
1520 u32 attr32;
1521
1522 switch (attr->group) {
1523 case KVM_DEV_MPIC_GRP_MISC:
1524 switch (attr->attr) {
1525 case KVM_DEV_MPIC_BASE_ADDR:
1526 return set_base_addr(opp, attr);
1527 }
1528
1529 break;
1530
1531 case KVM_DEV_MPIC_GRP_REGISTER:
1532 if (get_user(attr32, (u32 __user *)(long)attr->addr))
1533 return -EFAULT;
1534
1535 return access_reg(opp, attr->attr, &attr32, ATTR_SET);
1536
1537 case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1538 if (attr->attr > MAX_SRC)
1539 return -EINVAL;
1540
1541 if (get_user(attr32, (u32 __user *)(long)attr->addr))
1542 return -EFAULT;
1543
1544 if (attr32 != 0 && attr32 != 1)
1545 return -EINVAL;
1546
1547 spin_lock_irq(&opp->lock);
1548 openpic_set_irq(opp, attr->attr, attr32);
1549 spin_unlock_irq(&opp->lock);
1550 return 0;
1551 }
1552
1553 return -ENXIO;
1554 }
1555
mpic_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)1556 static int mpic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1557 {
1558 struct openpic *opp = dev->private;
1559 u64 attr64;
1560 u32 attr32;
1561 int ret;
1562
1563 switch (attr->group) {
1564 case KVM_DEV_MPIC_GRP_MISC:
1565 switch (attr->attr) {
1566 case KVM_DEV_MPIC_BASE_ADDR:
1567 mutex_lock(&opp->kvm->slots_lock);
1568 attr64 = opp->reg_base;
1569 mutex_unlock(&opp->kvm->slots_lock);
1570
1571 if (copy_to_user((u64 __user *)(long)attr->addr,
1572 &attr64, sizeof(u64)))
1573 return -EFAULT;
1574
1575 return 0;
1576 }
1577
1578 break;
1579
1580 case KVM_DEV_MPIC_GRP_REGISTER:
1581 ret = access_reg(opp, attr->attr, &attr32, ATTR_GET);
1582 if (ret)
1583 return ret;
1584
1585 if (put_user(attr32, (u32 __user *)(long)attr->addr))
1586 return -EFAULT;
1587
1588 return 0;
1589
1590 case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1591 if (attr->attr > MAX_SRC)
1592 return -EINVAL;
1593
1594 spin_lock_irq(&opp->lock);
1595 attr32 = opp->src[attr->attr].pending;
1596 spin_unlock_irq(&opp->lock);
1597
1598 if (put_user(attr32, (u32 __user *)(long)attr->addr))
1599 return -EFAULT;
1600
1601 return 0;
1602 }
1603
1604 return -ENXIO;
1605 }
1606
mpic_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)1607 static int mpic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1608 {
1609 switch (attr->group) {
1610 case KVM_DEV_MPIC_GRP_MISC:
1611 switch (attr->attr) {
1612 case KVM_DEV_MPIC_BASE_ADDR:
1613 return 0;
1614 }
1615
1616 break;
1617
1618 case KVM_DEV_MPIC_GRP_REGISTER:
1619 return 0;
1620
1621 case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1622 if (attr->attr > MAX_SRC)
1623 break;
1624
1625 return 0;
1626 }
1627
1628 return -ENXIO;
1629 }
1630
mpic_destroy(struct kvm_device * dev)1631 static void mpic_destroy(struct kvm_device *dev)
1632 {
1633 struct openpic *opp = dev->private;
1634
1635 dev->kvm->arch.mpic = NULL;
1636 kfree(opp);
1637 kfree(dev);
1638 }
1639
mpic_set_default_irq_routing(struct openpic * opp)1640 static int mpic_set_default_irq_routing(struct openpic *opp)
1641 {
1642 struct kvm_irq_routing_entry *routing;
1643
1644 /* Create a nop default map, so that dereferencing it still works */
1645 routing = kzalloc((sizeof(*routing)), GFP_KERNEL);
1646 if (!routing)
1647 return -ENOMEM;
1648
1649 kvm_set_irq_routing(opp->kvm, routing, 0, 0);
1650
1651 kfree(routing);
1652 return 0;
1653 }
1654
mpic_create(struct kvm_device * dev,u32 type)1655 static int mpic_create(struct kvm_device *dev, u32 type)
1656 {
1657 struct openpic *opp;
1658 int ret;
1659
1660 /* We only support one MPIC at a time for now */
1661 if (dev->kvm->arch.mpic)
1662 return -EINVAL;
1663
1664 opp = kzalloc(sizeof(struct openpic), GFP_KERNEL);
1665 if (!opp)
1666 return -ENOMEM;
1667
1668 dev->private = opp;
1669 opp->kvm = dev->kvm;
1670 opp->dev = dev;
1671 opp->model = type;
1672 spin_lock_init(&opp->lock);
1673
1674 add_mmio_region(opp, &openpic_gbl_mmio);
1675 add_mmio_region(opp, &openpic_tmr_mmio);
1676 add_mmio_region(opp, &openpic_src_mmio);
1677 add_mmio_region(opp, &openpic_cpu_mmio);
1678
1679 switch (opp->model) {
1680 case KVM_DEV_TYPE_FSL_MPIC_20:
1681 opp->fsl = &fsl_mpic_20;
1682 opp->brr1 = 0x00400200;
1683 opp->flags |= OPENPIC_FLAG_IDR_CRIT;
1684 opp->nb_irqs = 80;
1685 opp->mpic_mode_mask = GCR_MODE_MIXED;
1686
1687 fsl_common_init(opp);
1688
1689 break;
1690
1691 case KVM_DEV_TYPE_FSL_MPIC_42:
1692 opp->fsl = &fsl_mpic_42;
1693 opp->brr1 = 0x00400402;
1694 opp->flags |= OPENPIC_FLAG_ILR;
1695 opp->nb_irqs = 196;
1696 opp->mpic_mode_mask = GCR_MODE_PROXY;
1697
1698 fsl_common_init(opp);
1699
1700 break;
1701
1702 default:
1703 ret = -ENODEV;
1704 goto err;
1705 }
1706
1707 ret = mpic_set_default_irq_routing(opp);
1708 if (ret)
1709 goto err;
1710
1711 openpic_reset(opp);
1712
1713 smp_wmb();
1714 dev->kvm->arch.mpic = opp;
1715
1716 return 0;
1717
1718 err:
1719 kfree(opp);
1720 return ret;
1721 }
1722
1723 struct kvm_device_ops kvm_mpic_ops = {
1724 .name = "kvm-mpic",
1725 .create = mpic_create,
1726 .destroy = mpic_destroy,
1727 .set_attr = mpic_set_attr,
1728 .get_attr = mpic_get_attr,
1729 .has_attr = mpic_has_attr,
1730 };
1731
kvmppc_mpic_connect_vcpu(struct kvm_device * dev,struct kvm_vcpu * vcpu,u32 cpu)1732 int kvmppc_mpic_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu,
1733 u32 cpu)
1734 {
1735 struct openpic *opp = dev->private;
1736 int ret = 0;
1737
1738 if (dev->ops != &kvm_mpic_ops)
1739 return -EPERM;
1740 if (opp->kvm != vcpu->kvm)
1741 return -EPERM;
1742 if (cpu < 0 || cpu >= MAX_CPU)
1743 return -EPERM;
1744
1745 spin_lock_irq(&opp->lock);
1746
1747 if (opp->dst[cpu].vcpu) {
1748 ret = -EEXIST;
1749 goto out;
1750 }
1751 if (vcpu->arch.irq_type) {
1752 ret = -EBUSY;
1753 goto out;
1754 }
1755
1756 opp->dst[cpu].vcpu = vcpu;
1757 opp->nb_cpus = max(opp->nb_cpus, cpu + 1);
1758
1759 vcpu->arch.mpic = opp;
1760 vcpu->arch.irq_cpu_id = cpu;
1761 vcpu->arch.irq_type = KVMPPC_IRQ_MPIC;
1762
1763 /* This might need to be changed if GCR gets extended */
1764 if (opp->mpic_mode_mask == GCR_MODE_PROXY)
1765 vcpu->arch.epr_flags |= KVMPPC_EPR_KERNEL;
1766
1767 out:
1768 spin_unlock_irq(&opp->lock);
1769 return ret;
1770 }
1771
1772 /*
1773 * This should only happen immediately before the mpic is destroyed,
1774 * so we shouldn't need to worry about anything still trying to
1775 * access the vcpu pointer.
1776 */
kvmppc_mpic_disconnect_vcpu(struct openpic * opp,struct kvm_vcpu * vcpu)1777 void kvmppc_mpic_disconnect_vcpu(struct openpic *opp, struct kvm_vcpu *vcpu)
1778 {
1779 BUG_ON(!opp->dst[vcpu->arch.irq_cpu_id].vcpu);
1780
1781 opp->dst[vcpu->arch.irq_cpu_id].vcpu = NULL;
1782 }
1783
1784 /*
1785 * Return value:
1786 * < 0 Interrupt was ignored (masked or not delivered for other reasons)
1787 * = 0 Interrupt was coalesced (previous irq is still pending)
1788 * > 0 Number of CPUs interrupt was delivered to
1789 */
mpic_set_irq(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)1790 static int mpic_set_irq(struct kvm_kernel_irq_routing_entry *e,
1791 struct kvm *kvm, int irq_source_id, int level,
1792 bool line_status)
1793 {
1794 u32 irq = e->irqchip.pin;
1795 struct openpic *opp = kvm->arch.mpic;
1796 unsigned long flags;
1797
1798 spin_lock_irqsave(&opp->lock, flags);
1799 openpic_set_irq(opp, irq, level);
1800 spin_unlock_irqrestore(&opp->lock, flags);
1801
1802 /* All code paths we care about don't check for the return value */
1803 return 0;
1804 }
1805
kvm_set_msi(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)1806 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
1807 struct kvm *kvm, int irq_source_id, int level, bool line_status)
1808 {
1809 struct openpic *opp = kvm->arch.mpic;
1810 unsigned long flags;
1811
1812 spin_lock_irqsave(&opp->lock, flags);
1813
1814 /*
1815 * XXX We ignore the target address for now, as we only support
1816 * a single MSI bank.
1817 */
1818 openpic_msi_write(kvm->arch.mpic, MSIIR_OFFSET, e->msi.data);
1819 spin_unlock_irqrestore(&opp->lock, flags);
1820
1821 /* All code paths we care about don't check for the return value */
1822 return 0;
1823 }
1824
kvm_set_routing_entry(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,const struct kvm_irq_routing_entry * ue)1825 int kvm_set_routing_entry(struct kvm *kvm,
1826 struct kvm_kernel_irq_routing_entry *e,
1827 const struct kvm_irq_routing_entry *ue)
1828 {
1829 int r = -EINVAL;
1830
1831 switch (ue->type) {
1832 case KVM_IRQ_ROUTING_IRQCHIP:
1833 e->set = mpic_set_irq;
1834 e->irqchip.irqchip = ue->u.irqchip.irqchip;
1835 e->irqchip.pin = ue->u.irqchip.pin;
1836 if (e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS)
1837 goto out;
1838 break;
1839 case KVM_IRQ_ROUTING_MSI:
1840 e->set = kvm_set_msi;
1841 e->msi.address_lo = ue->u.msi.address_lo;
1842 e->msi.address_hi = ue->u.msi.address_hi;
1843 e->msi.data = ue->u.msi.data;
1844 break;
1845 default:
1846 goto out;
1847 }
1848
1849 r = 0;
1850 out:
1851 return r;
1852 }
1853