xref: /linux/fs/xfs/xfs_iomap.c (revision c148bc7535650fbfa95a1f571b9ffa2ab478ea33)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap_btree.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_space.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iomap.h"
25 #include "xfs_trace.h"
26 #include "xfs_quota.h"
27 #include "xfs_rtgroup.h"
28 #include "xfs_dquot_item.h"
29 #include "xfs_dquot.h"
30 #include "xfs_reflink.h"
31 #include "xfs_health.h"
32 #include "xfs_rtbitmap.h"
33 #include "xfs_icache.h"
34 #include "xfs_zone_alloc.h"
35 
36 #define XFS_ALLOC_ALIGN(mp, off) \
37 	(((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
38 
39 static int
xfs_alert_fsblock_zero(xfs_inode_t * ip,xfs_bmbt_irec_t * imap)40 xfs_alert_fsblock_zero(
41 	xfs_inode_t	*ip,
42 	xfs_bmbt_irec_t	*imap)
43 {
44 	xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
45 			"Access to block zero in inode %llu "
46 			"start_block: %llx start_off: %llx "
47 			"blkcnt: %llx extent-state: %x",
48 		(unsigned long long)ip->i_ino,
49 		(unsigned long long)imap->br_startblock,
50 		(unsigned long long)imap->br_startoff,
51 		(unsigned long long)imap->br_blockcount,
52 		imap->br_state);
53 	xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
54 	return -EFSCORRUPTED;
55 }
56 
57 u64
xfs_iomap_inode_sequence(struct xfs_inode * ip,u16 iomap_flags)58 xfs_iomap_inode_sequence(
59 	struct xfs_inode	*ip,
60 	u16			iomap_flags)
61 {
62 	u64			cookie = 0;
63 
64 	if (iomap_flags & IOMAP_F_XATTR)
65 		return READ_ONCE(ip->i_af.if_seq);
66 	if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp)
67 		cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32;
68 	return cookie | READ_ONCE(ip->i_df.if_seq);
69 }
70 
71 /*
72  * Check that the iomap passed to us is still valid for the given offset and
73  * length.
74  */
75 static bool
xfs_iomap_valid(struct inode * inode,const struct iomap * iomap)76 xfs_iomap_valid(
77 	struct inode		*inode,
78 	const struct iomap	*iomap)
79 {
80 	struct xfs_inode	*ip = XFS_I(inode);
81 
82 	if (iomap->validity_cookie !=
83 			xfs_iomap_inode_sequence(ip, iomap->flags)) {
84 		trace_xfs_iomap_invalid(ip, iomap);
85 		return false;
86 	}
87 
88 	XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS);
89 	return true;
90 }
91 
92 static const struct iomap_folio_ops xfs_iomap_folio_ops = {
93 	.iomap_valid		= xfs_iomap_valid,
94 };
95 
96 int
xfs_bmbt_to_iomap(struct xfs_inode * ip,struct iomap * iomap,struct xfs_bmbt_irec * imap,unsigned int mapping_flags,u16 iomap_flags,u64 sequence_cookie)97 xfs_bmbt_to_iomap(
98 	struct xfs_inode	*ip,
99 	struct iomap		*iomap,
100 	struct xfs_bmbt_irec	*imap,
101 	unsigned int		mapping_flags,
102 	u16			iomap_flags,
103 	u64			sequence_cookie)
104 {
105 	struct xfs_mount	*mp = ip->i_mount;
106 	struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
107 
108 	if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
109 		xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
110 		return xfs_alert_fsblock_zero(ip, imap);
111 	}
112 
113 	if (imap->br_startblock == HOLESTARTBLOCK) {
114 		iomap->addr = IOMAP_NULL_ADDR;
115 		iomap->type = IOMAP_HOLE;
116 	} else if (imap->br_startblock == DELAYSTARTBLOCK ||
117 		   isnullstartblock(imap->br_startblock)) {
118 		iomap->addr = IOMAP_NULL_ADDR;
119 		iomap->type = IOMAP_DELALLOC;
120 	} else {
121 		xfs_daddr_t	daddr = xfs_fsb_to_db(ip, imap->br_startblock);
122 
123 		iomap->addr = BBTOB(daddr);
124 		if (mapping_flags & IOMAP_DAX)
125 			iomap->addr += target->bt_dax_part_off;
126 
127 		if (imap->br_state == XFS_EXT_UNWRITTEN)
128 			iomap->type = IOMAP_UNWRITTEN;
129 		else
130 			iomap->type = IOMAP_MAPPED;
131 
132 		/*
133 		 * Mark iomaps starting at the first sector of a RTG as merge
134 		 * boundary so that each I/O completions is contained to a
135 		 * single RTG.
136 		 */
137 		if (XFS_IS_REALTIME_INODE(ip) && xfs_has_rtgroups(mp) &&
138 		    xfs_rtbno_is_group_start(mp, imap->br_startblock))
139 			iomap->flags |= IOMAP_F_BOUNDARY;
140 	}
141 	iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
142 	iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
143 	if (mapping_flags & IOMAP_DAX)
144 		iomap->dax_dev = target->bt_daxdev;
145 	else
146 		iomap->bdev = target->bt_bdev;
147 	iomap->flags = iomap_flags;
148 
149 	if (xfs_ipincount(ip) &&
150 	    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
151 		iomap->flags |= IOMAP_F_DIRTY;
152 
153 	iomap->validity_cookie = sequence_cookie;
154 	iomap->folio_ops = &xfs_iomap_folio_ops;
155 	return 0;
156 }
157 
158 static void
xfs_hole_to_iomap(struct xfs_inode * ip,struct iomap * iomap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)159 xfs_hole_to_iomap(
160 	struct xfs_inode	*ip,
161 	struct iomap		*iomap,
162 	xfs_fileoff_t		offset_fsb,
163 	xfs_fileoff_t		end_fsb)
164 {
165 	struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
166 
167 	iomap->addr = IOMAP_NULL_ADDR;
168 	iomap->type = IOMAP_HOLE;
169 	iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
170 	iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
171 	iomap->bdev = target->bt_bdev;
172 	iomap->dax_dev = target->bt_daxdev;
173 }
174 
175 static inline xfs_fileoff_t
xfs_iomap_end_fsb(struct xfs_mount * mp,loff_t offset,loff_t count)176 xfs_iomap_end_fsb(
177 	struct xfs_mount	*mp,
178 	loff_t			offset,
179 	loff_t			count)
180 {
181 	ASSERT(offset <= mp->m_super->s_maxbytes);
182 	return min(XFS_B_TO_FSB(mp, offset + count),
183 		   XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
184 }
185 
186 static xfs_extlen_t
xfs_eof_alignment(struct xfs_inode * ip)187 xfs_eof_alignment(
188 	struct xfs_inode	*ip)
189 {
190 	struct xfs_mount	*mp = ip->i_mount;
191 	xfs_extlen_t		align = 0;
192 
193 	if (!XFS_IS_REALTIME_INODE(ip)) {
194 		/*
195 		 * Round up the allocation request to a stripe unit
196 		 * (m_dalign) boundary if the file size is >= stripe unit
197 		 * size, and we are allocating past the allocation eof.
198 		 *
199 		 * If mounted with the "-o swalloc" option the alignment is
200 		 * increased from the strip unit size to the stripe width.
201 		 */
202 		if (mp->m_swidth && xfs_has_swalloc(mp))
203 			align = mp->m_swidth;
204 		else if (mp->m_dalign)
205 			align = mp->m_dalign;
206 
207 		if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
208 			align = 0;
209 	}
210 
211 	return align;
212 }
213 
214 /*
215  * Check if last_fsb is outside the last extent, and if so grow it to the next
216  * stripe unit boundary.
217  */
218 xfs_fileoff_t
xfs_iomap_eof_align_last_fsb(struct xfs_inode * ip,xfs_fileoff_t end_fsb)219 xfs_iomap_eof_align_last_fsb(
220 	struct xfs_inode	*ip,
221 	xfs_fileoff_t		end_fsb)
222 {
223 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
224 	xfs_extlen_t		extsz = xfs_get_extsz_hint(ip);
225 	xfs_extlen_t		align = xfs_eof_alignment(ip);
226 	struct xfs_bmbt_irec	irec;
227 	struct xfs_iext_cursor	icur;
228 
229 	ASSERT(!xfs_need_iread_extents(ifp));
230 
231 	/*
232 	 * Always round up the allocation request to the extent hint boundary.
233 	 */
234 	if (extsz) {
235 		if (align)
236 			align = roundup_64(align, extsz);
237 		else
238 			align = extsz;
239 	}
240 
241 	if (align) {
242 		xfs_fileoff_t	aligned_end_fsb = roundup_64(end_fsb, align);
243 
244 		xfs_iext_last(ifp, &icur);
245 		if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
246 		    aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
247 			return aligned_end_fsb;
248 	}
249 
250 	return end_fsb;
251 }
252 
253 int
xfs_iomap_write_direct(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_fileoff_t count_fsb,unsigned int flags,struct xfs_bmbt_irec * imap,u64 * seq)254 xfs_iomap_write_direct(
255 	struct xfs_inode	*ip,
256 	xfs_fileoff_t		offset_fsb,
257 	xfs_fileoff_t		count_fsb,
258 	unsigned int		flags,
259 	struct xfs_bmbt_irec	*imap,
260 	u64			*seq)
261 {
262 	struct xfs_mount	*mp = ip->i_mount;
263 	struct xfs_trans	*tp;
264 	xfs_filblks_t		resaligned;
265 	int			nimaps;
266 	unsigned int		dblocks, rblocks;
267 	bool			force = false;
268 	int			error;
269 	int			bmapi_flags = XFS_BMAPI_PREALLOC;
270 	int			nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
271 
272 	ASSERT(count_fsb > 0);
273 
274 	resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
275 					   xfs_get_extsz_hint(ip));
276 	if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
277 		dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
278 		rblocks = resaligned;
279 	} else {
280 		dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
281 		rblocks = 0;
282 	}
283 
284 	error = xfs_qm_dqattach(ip);
285 	if (error)
286 		return error;
287 
288 	/*
289 	 * For DAX, we do not allocate unwritten extents, but instead we zero
290 	 * the block before we commit the transaction.  Ideally we'd like to do
291 	 * this outside the transaction context, but if we commit and then crash
292 	 * we may not have zeroed the blocks and this will be exposed on
293 	 * recovery of the allocation. Hence we must zero before commit.
294 	 *
295 	 * Further, if we are mapping unwritten extents here, we need to zero
296 	 * and convert them to written so that we don't need an unwritten extent
297 	 * callback for DAX. This also means that we need to be able to dip into
298 	 * the reserve block pool for bmbt block allocation if there is no space
299 	 * left but we need to do unwritten extent conversion.
300 	 */
301 	if (flags & IOMAP_DAX) {
302 		bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
303 		if (imap->br_state == XFS_EXT_UNWRITTEN) {
304 			force = true;
305 			nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
306 			dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
307 		}
308 	}
309 
310 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
311 			rblocks, force, &tp);
312 	if (error)
313 		return error;
314 
315 	error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, nr_exts);
316 	if (error)
317 		goto out_trans_cancel;
318 
319 	/*
320 	 * From this point onwards we overwrite the imap pointer that the
321 	 * caller gave to us.
322 	 */
323 	nimaps = 1;
324 	error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
325 				imap, &nimaps);
326 	if (error)
327 		goto out_trans_cancel;
328 
329 	/*
330 	 * Complete the transaction
331 	 */
332 	error = xfs_trans_commit(tp);
333 	if (error)
334 		goto out_unlock;
335 
336 	if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
337 		xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
338 		error = xfs_alert_fsblock_zero(ip, imap);
339 	}
340 
341 out_unlock:
342 	*seq = xfs_iomap_inode_sequence(ip, 0);
343 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
344 	return error;
345 
346 out_trans_cancel:
347 	xfs_trans_cancel(tp);
348 	goto out_unlock;
349 }
350 
351 STATIC bool
xfs_quota_need_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t alloc_blocks)352 xfs_quota_need_throttle(
353 	struct xfs_inode	*ip,
354 	xfs_dqtype_t		type,
355 	xfs_fsblock_t		alloc_blocks)
356 {
357 	struct xfs_dquot	*dq = xfs_inode_dquot(ip, type);
358 	struct xfs_dquot_res	*res;
359 	struct xfs_dquot_pre	*pre;
360 
361 	if (!dq || !xfs_this_quota_on(ip->i_mount, type))
362 		return false;
363 
364 	if (XFS_IS_REALTIME_INODE(ip)) {
365 		res = &dq->q_rtb;
366 		pre = &dq->q_rtb_prealloc;
367 	} else {
368 		res = &dq->q_blk;
369 		pre = &dq->q_blk_prealloc;
370 	}
371 
372 	/* no hi watermark, no throttle */
373 	if (!pre->q_prealloc_hi_wmark)
374 		return false;
375 
376 	/* under the lo watermark, no throttle */
377 	if (res->reserved + alloc_blocks < pre->q_prealloc_lo_wmark)
378 		return false;
379 
380 	return true;
381 }
382 
383 STATIC void
xfs_quota_calc_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t * qblocks,int * qshift,int64_t * qfreesp)384 xfs_quota_calc_throttle(
385 	struct xfs_inode	*ip,
386 	xfs_dqtype_t		type,
387 	xfs_fsblock_t		*qblocks,
388 	int			*qshift,
389 	int64_t			*qfreesp)
390 {
391 	struct xfs_dquot	*dq = xfs_inode_dquot(ip, type);
392 	struct xfs_dquot_res	*res;
393 	struct xfs_dquot_pre	*pre;
394 	int64_t			freesp;
395 	int			shift = 0;
396 
397 	if (!dq) {
398 		res = NULL;
399 		pre = NULL;
400 	} else if (XFS_IS_REALTIME_INODE(ip)) {
401 		res = &dq->q_rtb;
402 		pre = &dq->q_rtb_prealloc;
403 	} else {
404 		res = &dq->q_blk;
405 		pre = &dq->q_blk_prealloc;
406 	}
407 
408 	/* no dq, or over hi wmark, squash the prealloc completely */
409 	if (!res || res->reserved >= pre->q_prealloc_hi_wmark) {
410 		*qblocks = 0;
411 		*qfreesp = 0;
412 		return;
413 	}
414 
415 	freesp = pre->q_prealloc_hi_wmark - res->reserved;
416 	if (freesp < pre->q_low_space[XFS_QLOWSP_5_PCNT]) {
417 		shift = 2;
418 		if (freesp < pre->q_low_space[XFS_QLOWSP_3_PCNT])
419 			shift += 2;
420 		if (freesp < pre->q_low_space[XFS_QLOWSP_1_PCNT])
421 			shift += 2;
422 	}
423 
424 	if (freesp < *qfreesp)
425 		*qfreesp = freesp;
426 
427 	/* only overwrite the throttle values if we are more aggressive */
428 	if ((freesp >> shift) < (*qblocks >> *qshift)) {
429 		*qblocks = freesp;
430 		*qshift = shift;
431 	}
432 }
433 
434 static int64_t
xfs_iomap_freesp(struct xfs_mount * mp,unsigned int idx,uint64_t low_space[XFS_LOWSP_MAX],int * shift)435 xfs_iomap_freesp(
436 	struct xfs_mount	*mp,
437 	unsigned int		idx,
438 	uint64_t		low_space[XFS_LOWSP_MAX],
439 	int			*shift)
440 {
441 	int64_t			freesp;
442 
443 	freesp = xfs_estimate_freecounter(mp, idx);
444 	if (freesp < low_space[XFS_LOWSP_5_PCNT]) {
445 		*shift = 2;
446 		if (freesp < low_space[XFS_LOWSP_4_PCNT])
447 			(*shift)++;
448 		if (freesp < low_space[XFS_LOWSP_3_PCNT])
449 			(*shift)++;
450 		if (freesp < low_space[XFS_LOWSP_2_PCNT])
451 			(*shift)++;
452 		if (freesp < low_space[XFS_LOWSP_1_PCNT])
453 			(*shift)++;
454 	}
455 	return freesp;
456 }
457 
458 /*
459  * If we don't have a user specified preallocation size, dynamically increase
460  * the preallocation size as the size of the file grows.  Cap the maximum size
461  * at a single extent or less if the filesystem is near full. The closer the
462  * filesystem is to being full, the smaller the maximum preallocation.
463  */
464 STATIC xfs_fsblock_t
xfs_iomap_prealloc_size(struct xfs_inode * ip,int whichfork,loff_t offset,loff_t count,struct xfs_iext_cursor * icur)465 xfs_iomap_prealloc_size(
466 	struct xfs_inode	*ip,
467 	int			whichfork,
468 	loff_t			offset,
469 	loff_t			count,
470 	struct xfs_iext_cursor	*icur)
471 {
472 	struct xfs_iext_cursor	ncur = *icur;
473 	struct xfs_bmbt_irec	prev, got;
474 	struct xfs_mount	*mp = ip->i_mount;
475 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
476 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
477 	int64_t			freesp;
478 	xfs_fsblock_t		qblocks;
479 	xfs_fsblock_t		alloc_blocks = 0;
480 	xfs_extlen_t		plen;
481 	int			shift = 0;
482 	int			qshift = 0;
483 
484 	/*
485 	 * As an exception we don't do any preallocation at all if the file is
486 	 * smaller than the minimum preallocation and we are using the default
487 	 * dynamic preallocation scheme, as it is likely this is the only write
488 	 * to the file that is going to be done.
489 	 */
490 	if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
491 		return 0;
492 
493 	/*
494 	 * Use the minimum preallocation size for small files or if we are
495 	 * writing right after a hole.
496 	 */
497 	if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
498 	    !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
499 	    prev.br_startoff + prev.br_blockcount < offset_fsb)
500 		return mp->m_allocsize_blocks;
501 
502 	/*
503 	 * Take the size of the preceding data extents as the basis for the
504 	 * preallocation size. Note that we don't care if the previous extents
505 	 * are written or not.
506 	 */
507 	plen = prev.br_blockcount;
508 	while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
509 		if (plen > XFS_MAX_BMBT_EXTLEN / 2 ||
510 		    isnullstartblock(got.br_startblock) ||
511 		    got.br_startoff + got.br_blockcount != prev.br_startoff ||
512 		    got.br_startblock + got.br_blockcount != prev.br_startblock)
513 			break;
514 		plen += got.br_blockcount;
515 		prev = got;
516 	}
517 
518 	/*
519 	 * If the size of the extents is greater than half the maximum extent
520 	 * length, then use the current offset as the basis.  This ensures that
521 	 * for large files the preallocation size always extends to
522 	 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe
523 	 * unit/width alignment of real extents.
524 	 */
525 	alloc_blocks = plen * 2;
526 	if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
527 		alloc_blocks = XFS_B_TO_FSB(mp, offset);
528 	qblocks = alloc_blocks;
529 
530 	/*
531 	 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc
532 	 * down to the nearest power of two value after throttling. To prevent
533 	 * the round down from unconditionally reducing the maximum supported
534 	 * prealloc size, we round up first, apply appropriate throttling, round
535 	 * down and cap the value to XFS_BMBT_MAX_EXTLEN.
536 	 */
537 	alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN),
538 				       alloc_blocks);
539 
540 	if (unlikely(XFS_IS_REALTIME_INODE(ip)))
541 		freesp = xfs_rtbxlen_to_blen(mp,
542 				xfs_iomap_freesp(mp, XC_FREE_RTEXTENTS,
543 					mp->m_low_rtexts, &shift));
544 	else
545 		freesp = xfs_iomap_freesp(mp, XC_FREE_BLOCKS, mp->m_low_space,
546 				&shift);
547 
548 	/*
549 	 * Check each quota to cap the prealloc size, provide a shift value to
550 	 * throttle with and adjust amount of available space.
551 	 */
552 	if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
553 		xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
554 					&freesp);
555 	if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
556 		xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
557 					&freesp);
558 	if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
559 		xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
560 					&freesp);
561 
562 	/*
563 	 * The final prealloc size is set to the minimum of free space available
564 	 * in each of the quotas and the overall filesystem.
565 	 *
566 	 * The shift throttle value is set to the maximum value as determined by
567 	 * the global low free space values and per-quota low free space values.
568 	 */
569 	alloc_blocks = min(alloc_blocks, qblocks);
570 	shift = max(shift, qshift);
571 
572 	if (shift)
573 		alloc_blocks >>= shift;
574 	/*
575 	 * rounddown_pow_of_two() returns an undefined result if we pass in
576 	 * alloc_blocks = 0.
577 	 */
578 	if (alloc_blocks)
579 		alloc_blocks = rounddown_pow_of_two(alloc_blocks);
580 	if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
581 		alloc_blocks = XFS_MAX_BMBT_EXTLEN;
582 
583 	/*
584 	 * If we are still trying to allocate more space than is
585 	 * available, squash the prealloc hard. This can happen if we
586 	 * have a large file on a small filesystem and the above
587 	 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN.
588 	 */
589 	while (alloc_blocks && alloc_blocks >= freesp)
590 		alloc_blocks >>= 4;
591 	if (alloc_blocks < mp->m_allocsize_blocks)
592 		alloc_blocks = mp->m_allocsize_blocks;
593 	trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
594 				      mp->m_allocsize_blocks);
595 	return alloc_blocks;
596 }
597 
598 int
xfs_iomap_write_unwritten(xfs_inode_t * ip,xfs_off_t offset,xfs_off_t count,bool update_isize)599 xfs_iomap_write_unwritten(
600 	xfs_inode_t	*ip,
601 	xfs_off_t	offset,
602 	xfs_off_t	count,
603 	bool		update_isize)
604 {
605 	xfs_mount_t	*mp = ip->i_mount;
606 	xfs_fileoff_t	offset_fsb;
607 	xfs_filblks_t	count_fsb;
608 	xfs_filblks_t	numblks_fsb;
609 	int		nimaps;
610 	xfs_trans_t	*tp;
611 	xfs_bmbt_irec_t imap;
612 	struct inode	*inode = VFS_I(ip);
613 	xfs_fsize_t	i_size;
614 	uint		resblks;
615 	int		error;
616 
617 	trace_xfs_unwritten_convert(ip, offset, count);
618 
619 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
620 	count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
621 	count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
622 
623 	/*
624 	 * Reserve enough blocks in this transaction for two complete extent
625 	 * btree splits.  We may be converting the middle part of an unwritten
626 	 * extent and in this case we will insert two new extents in the btree
627 	 * each of which could cause a full split.
628 	 *
629 	 * This reservation amount will be used in the first call to
630 	 * xfs_bmbt_split() to select an AG with enough space to satisfy the
631 	 * rest of the operation.
632 	 */
633 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
634 
635 	/* Attach dquots so that bmbt splits are accounted correctly. */
636 	error = xfs_qm_dqattach(ip);
637 	if (error)
638 		return error;
639 
640 	do {
641 		/*
642 		 * Set up a transaction to convert the range of extents
643 		 * from unwritten to real. Do allocations in a loop until
644 		 * we have covered the range passed in.
645 		 *
646 		 * Note that we can't risk to recursing back into the filesystem
647 		 * here as we might be asked to write out the same inode that we
648 		 * complete here and might deadlock on the iolock.
649 		 */
650 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
651 				0, true, &tp);
652 		if (error)
653 			return error;
654 
655 		error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
656 				XFS_IEXT_WRITE_UNWRITTEN_CNT);
657 		if (error)
658 			goto error_on_bmapi_transaction;
659 
660 		/*
661 		 * Modify the unwritten extent state of the buffer.
662 		 */
663 		nimaps = 1;
664 		error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
665 					XFS_BMAPI_CONVERT, resblks, &imap,
666 					&nimaps);
667 		if (error)
668 			goto error_on_bmapi_transaction;
669 
670 		/*
671 		 * Log the updated inode size as we go.  We have to be careful
672 		 * to only log it up to the actual write offset if it is
673 		 * halfway into a block.
674 		 */
675 		i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
676 		if (i_size > offset + count)
677 			i_size = offset + count;
678 		if (update_isize && i_size > i_size_read(inode))
679 			i_size_write(inode, i_size);
680 		i_size = xfs_new_eof(ip, i_size);
681 		if (i_size) {
682 			ip->i_disk_size = i_size;
683 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
684 		}
685 
686 		error = xfs_trans_commit(tp);
687 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
688 		if (error)
689 			return error;
690 
691 		if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) {
692 			xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
693 			return xfs_alert_fsblock_zero(ip, &imap);
694 		}
695 
696 		if ((numblks_fsb = imap.br_blockcount) == 0) {
697 			/*
698 			 * The numblks_fsb value should always get
699 			 * smaller, otherwise the loop is stuck.
700 			 */
701 			ASSERT(imap.br_blockcount);
702 			break;
703 		}
704 		offset_fsb += numblks_fsb;
705 		count_fsb -= numblks_fsb;
706 	} while (count_fsb > 0);
707 
708 	return 0;
709 
710 error_on_bmapi_transaction:
711 	xfs_trans_cancel(tp);
712 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
713 	return error;
714 }
715 
716 static inline bool
imap_needs_alloc(struct inode * inode,unsigned flags,struct xfs_bmbt_irec * imap,int nimaps)717 imap_needs_alloc(
718 	struct inode		*inode,
719 	unsigned		flags,
720 	struct xfs_bmbt_irec	*imap,
721 	int			nimaps)
722 {
723 	/* don't allocate blocks when just zeroing */
724 	if (flags & IOMAP_ZERO)
725 		return false;
726 	if (!nimaps ||
727 	    imap->br_startblock == HOLESTARTBLOCK ||
728 	    imap->br_startblock == DELAYSTARTBLOCK)
729 		return true;
730 	/* we convert unwritten extents before copying the data for DAX */
731 	if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN)
732 		return true;
733 	return false;
734 }
735 
736 static inline bool
imap_needs_cow(struct xfs_inode * ip,unsigned int flags,struct xfs_bmbt_irec * imap,int nimaps)737 imap_needs_cow(
738 	struct xfs_inode	*ip,
739 	unsigned int		flags,
740 	struct xfs_bmbt_irec	*imap,
741 	int			nimaps)
742 {
743 	if (!xfs_is_cow_inode(ip))
744 		return false;
745 
746 	/* when zeroing we don't have to COW holes or unwritten extents */
747 	if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
748 		if (!nimaps ||
749 		    imap->br_startblock == HOLESTARTBLOCK ||
750 		    imap->br_state == XFS_EXT_UNWRITTEN)
751 			return false;
752 	}
753 
754 	return true;
755 }
756 
757 /*
758  * Extents not yet cached requires exclusive access, don't block for
759  * IOMAP_NOWAIT.
760  *
761  * This is basically an opencoded xfs_ilock_data_map_shared() call, but with
762  * support for IOMAP_NOWAIT.
763  */
764 static int
xfs_ilock_for_iomap(struct xfs_inode * ip,unsigned flags,unsigned * lockmode)765 xfs_ilock_for_iomap(
766 	struct xfs_inode	*ip,
767 	unsigned		flags,
768 	unsigned		*lockmode)
769 {
770 	if (flags & IOMAP_NOWAIT) {
771 		if (xfs_need_iread_extents(&ip->i_df))
772 			return -EAGAIN;
773 		if (!xfs_ilock_nowait(ip, *lockmode))
774 			return -EAGAIN;
775 	} else {
776 		if (xfs_need_iread_extents(&ip->i_df))
777 			*lockmode = XFS_ILOCK_EXCL;
778 		xfs_ilock(ip, *lockmode);
779 	}
780 
781 	return 0;
782 }
783 
784 /*
785  * Check that the imap we are going to return to the caller spans the entire
786  * range that the caller requested for the IO.
787  */
788 static bool
imap_spans_range(struct xfs_bmbt_irec * imap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)789 imap_spans_range(
790 	struct xfs_bmbt_irec	*imap,
791 	xfs_fileoff_t		offset_fsb,
792 	xfs_fileoff_t		end_fsb)
793 {
794 	if (imap->br_startoff > offset_fsb)
795 		return false;
796 	if (imap->br_startoff + imap->br_blockcount < end_fsb)
797 		return false;
798 	return true;
799 }
800 
801 static int
xfs_direct_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)802 xfs_direct_write_iomap_begin(
803 	struct inode		*inode,
804 	loff_t			offset,
805 	loff_t			length,
806 	unsigned		flags,
807 	struct iomap		*iomap,
808 	struct iomap		*srcmap)
809 {
810 	struct xfs_inode	*ip = XFS_I(inode);
811 	struct xfs_mount	*mp = ip->i_mount;
812 	struct xfs_bmbt_irec	imap, cmap;
813 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
814 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, length);
815 	int			nimaps = 1, error = 0;
816 	bool			shared = false;
817 	u16			iomap_flags = 0;
818 	unsigned int		lockmode;
819 	u64			seq;
820 
821 	ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
822 
823 	if (xfs_is_shutdown(mp))
824 		return -EIO;
825 
826 	/*
827 	 * Writes that span EOF might trigger an IO size update on completion,
828 	 * so consider them to be dirty for the purposes of O_DSYNC even if
829 	 * there is no other metadata changes pending or have been made here.
830 	 */
831 	if (offset + length > i_size_read(inode))
832 		iomap_flags |= IOMAP_F_DIRTY;
833 
834 	/* HW-offload atomics are always used in this path */
835 	if (flags & IOMAP_ATOMIC)
836 		iomap_flags |= IOMAP_F_ATOMIC_BIO;
837 
838 	/*
839 	 * COW writes may allocate delalloc space or convert unwritten COW
840 	 * extents, so we need to make sure to take the lock exclusively here.
841 	 */
842 	if (xfs_is_cow_inode(ip))
843 		lockmode = XFS_ILOCK_EXCL;
844 	else
845 		lockmode = XFS_ILOCK_SHARED;
846 
847 relock:
848 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
849 	if (error)
850 		return error;
851 
852 	/*
853 	 * The reflink iflag could have changed since the earlier unlocked
854 	 * check, check if it again and relock if needed.
855 	 */
856 	if (xfs_is_cow_inode(ip) && lockmode == XFS_ILOCK_SHARED) {
857 		xfs_iunlock(ip, lockmode);
858 		lockmode = XFS_ILOCK_EXCL;
859 		goto relock;
860 	}
861 
862 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
863 			       &nimaps, 0);
864 	if (error)
865 		goto out_unlock;
866 
867 	if (imap_needs_cow(ip, flags, &imap, nimaps)) {
868 		error = -EAGAIN;
869 		if (flags & IOMAP_NOWAIT)
870 			goto out_unlock;
871 
872 		/* may drop and re-acquire the ilock */
873 		error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
874 				&lockmode,
875 				(flags & IOMAP_DIRECT) || IS_DAX(inode));
876 		if (error)
877 			goto out_unlock;
878 		if (shared)
879 			goto out_found_cow;
880 		end_fsb = imap.br_startoff + imap.br_blockcount;
881 		length = XFS_FSB_TO_B(mp, end_fsb) - offset;
882 	}
883 
884 	if (imap_needs_alloc(inode, flags, &imap, nimaps))
885 		goto allocate_blocks;
886 
887 	/*
888 	 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
889 	 * a single map so that we avoid partial IO failures due to the rest of
890 	 * the I/O range not covered by this map triggering an EAGAIN condition
891 	 * when it is subsequently mapped and aborting the I/O.
892 	 */
893 	if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
894 		error = -EAGAIN;
895 		if (!imap_spans_range(&imap, offset_fsb, end_fsb))
896 			goto out_unlock;
897 	}
898 
899 	/*
900 	 * For overwrite only I/O, we cannot convert unwritten extents without
901 	 * requiring sub-block zeroing.  This can only be done under an
902 	 * exclusive IOLOCK, hence return -EAGAIN if this is not a written
903 	 * extent to tell the caller to try again.
904 	 */
905 	if (flags & IOMAP_OVERWRITE_ONLY) {
906 		error = -EAGAIN;
907 		if (imap.br_state != XFS_EXT_NORM &&
908 	            ((offset | length) & mp->m_blockmask))
909 			goto out_unlock;
910 	}
911 
912 	seq = xfs_iomap_inode_sequence(ip, iomap_flags);
913 	xfs_iunlock(ip, lockmode);
914 	trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
915 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
916 
917 allocate_blocks:
918 	error = -EAGAIN;
919 	if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
920 		goto out_unlock;
921 
922 	/*
923 	 * We cap the maximum length we map to a sane size  to keep the chunks
924 	 * of work done where somewhat symmetric with the work writeback does.
925 	 * This is a completely arbitrary number pulled out of thin air as a
926 	 * best guess for initial testing.
927 	 *
928 	 * Note that the values needs to be less than 32-bits wide until the
929 	 * lower level functions are updated.
930 	 */
931 	length = min_t(loff_t, length, 1024 * PAGE_SIZE);
932 	end_fsb = xfs_iomap_end_fsb(mp, offset, length);
933 
934 	if (offset + length > XFS_ISIZE(ip))
935 		end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
936 	else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
937 		end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
938 	xfs_iunlock(ip, lockmode);
939 
940 	error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
941 			flags, &imap, &seq);
942 	if (error)
943 		return error;
944 
945 	trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
946 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
947 				 iomap_flags | IOMAP_F_NEW, seq);
948 
949 out_found_cow:
950 	length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
951 	trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
952 	if (imap.br_startblock != HOLESTARTBLOCK) {
953 		seq = xfs_iomap_inode_sequence(ip, 0);
954 		error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
955 		if (error)
956 			goto out_unlock;
957 	}
958 	seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
959 	xfs_iunlock(ip, lockmode);
960 	return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq);
961 
962 out_unlock:
963 	if (lockmode)
964 		xfs_iunlock(ip, lockmode);
965 	return error;
966 }
967 
968 const struct iomap_ops xfs_direct_write_iomap_ops = {
969 	.iomap_begin		= xfs_direct_write_iomap_begin,
970 };
971 
972 #ifdef CONFIG_XFS_RT
973 /*
974  * This is really simple.  The space has already been reserved before taking the
975  * IOLOCK, the actual block allocation is done just before submitting the bio
976  * and only recorded in the extent map on I/O completion.
977  */
978 static int
xfs_zoned_direct_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)979 xfs_zoned_direct_write_iomap_begin(
980 	struct inode		*inode,
981 	loff_t			offset,
982 	loff_t			length,
983 	unsigned		flags,
984 	struct iomap		*iomap,
985 	struct iomap		*srcmap)
986 {
987 	struct xfs_inode	*ip = XFS_I(inode);
988 	int			error;
989 
990 	ASSERT(!(flags & IOMAP_OVERWRITE_ONLY));
991 
992 	/*
993 	 * Needs to be pushed down into the allocator so that only writes into
994 	 * a single zone can be supported.
995 	 */
996 	if (flags & IOMAP_NOWAIT)
997 		return -EAGAIN;
998 
999 	/*
1000 	 * Ensure the extent list is in memory in so that we don't have to do
1001 	 * read it from the I/O completion handler.
1002 	 */
1003 	if (xfs_need_iread_extents(&ip->i_df)) {
1004 		xfs_ilock(ip, XFS_ILOCK_EXCL);
1005 		error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1006 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1007 		if (error)
1008 			return error;
1009 	}
1010 
1011 	iomap->type = IOMAP_MAPPED;
1012 	iomap->flags = IOMAP_F_DIRTY;
1013 	iomap->bdev = ip->i_mount->m_rtdev_targp->bt_bdev;
1014 	iomap->offset = offset;
1015 	iomap->length = length;
1016 	iomap->flags = IOMAP_F_ANON_WRITE;
1017 	return 0;
1018 }
1019 
1020 const struct iomap_ops xfs_zoned_direct_write_iomap_ops = {
1021 	.iomap_begin		= xfs_zoned_direct_write_iomap_begin,
1022 };
1023 #endif /* CONFIG_XFS_RT */
1024 
1025 static int
xfs_dax_write_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1026 xfs_dax_write_iomap_end(
1027 	struct inode		*inode,
1028 	loff_t			pos,
1029 	loff_t			length,
1030 	ssize_t			written,
1031 	unsigned		flags,
1032 	struct iomap		*iomap)
1033 {
1034 	struct xfs_inode	*ip = XFS_I(inode);
1035 
1036 	if (!xfs_is_cow_inode(ip))
1037 		return 0;
1038 
1039 	if (!written)
1040 		return xfs_reflink_cancel_cow_range(ip, pos, length, true);
1041 
1042 	return xfs_reflink_end_cow(ip, pos, written);
1043 }
1044 
1045 const struct iomap_ops xfs_dax_write_iomap_ops = {
1046 	.iomap_begin	= xfs_direct_write_iomap_begin,
1047 	.iomap_end	= xfs_dax_write_iomap_end,
1048 };
1049 
1050 /*
1051  * Convert a hole to a delayed allocation.
1052  */
1053 static void
xfs_bmap_add_extent_hole_delay(struct xfs_inode * ip,int whichfork,struct xfs_iext_cursor * icur,struct xfs_bmbt_irec * new)1054 xfs_bmap_add_extent_hole_delay(
1055 	struct xfs_inode	*ip,	/* incore inode pointer */
1056 	int			whichfork,
1057 	struct xfs_iext_cursor	*icur,
1058 	struct xfs_bmbt_irec	*new)	/* new data to add to file extents */
1059 {
1060 	struct xfs_ifork	*ifp;	/* inode fork pointer */
1061 	xfs_bmbt_irec_t		left;	/* left neighbor extent entry */
1062 	xfs_filblks_t		newlen=0;	/* new indirect size */
1063 	xfs_filblks_t		oldlen=0;	/* old indirect size */
1064 	xfs_bmbt_irec_t		right;	/* right neighbor extent entry */
1065 	uint32_t		state = xfs_bmap_fork_to_state(whichfork);
1066 	xfs_filblks_t		temp;	 /* temp for indirect calculations */
1067 
1068 	ifp = xfs_ifork_ptr(ip, whichfork);
1069 	ASSERT(isnullstartblock(new->br_startblock));
1070 
1071 	/*
1072 	 * Check and set flags if this segment has a left neighbor
1073 	 */
1074 	if (xfs_iext_peek_prev_extent(ifp, icur, &left)) {
1075 		state |= BMAP_LEFT_VALID;
1076 		if (isnullstartblock(left.br_startblock))
1077 			state |= BMAP_LEFT_DELAY;
1078 	}
1079 
1080 	/*
1081 	 * Check and set flags if the current (right) segment exists.
1082 	 * If it doesn't exist, we're converting the hole at end-of-file.
1083 	 */
1084 	if (xfs_iext_get_extent(ifp, icur, &right)) {
1085 		state |= BMAP_RIGHT_VALID;
1086 		if (isnullstartblock(right.br_startblock))
1087 			state |= BMAP_RIGHT_DELAY;
1088 	}
1089 
1090 	/*
1091 	 * Set contiguity flags on the left and right neighbors.
1092 	 * Don't let extents get too large, even if the pieces are contiguous.
1093 	 */
1094 	if ((state & BMAP_LEFT_VALID) && (state & BMAP_LEFT_DELAY) &&
1095 	    left.br_startoff + left.br_blockcount == new->br_startoff &&
1096 	    left.br_blockcount + new->br_blockcount <= XFS_MAX_BMBT_EXTLEN)
1097 		state |= BMAP_LEFT_CONTIG;
1098 
1099 	if ((state & BMAP_RIGHT_VALID) && (state & BMAP_RIGHT_DELAY) &&
1100 	    new->br_startoff + new->br_blockcount == right.br_startoff &&
1101 	    new->br_blockcount + right.br_blockcount <= XFS_MAX_BMBT_EXTLEN &&
1102 	    (!(state & BMAP_LEFT_CONTIG) ||
1103 	     (left.br_blockcount + new->br_blockcount +
1104 	      right.br_blockcount <= XFS_MAX_BMBT_EXTLEN)))
1105 		state |= BMAP_RIGHT_CONTIG;
1106 
1107 	/*
1108 	 * Switch out based on the contiguity flags.
1109 	 */
1110 	switch (state & (BMAP_LEFT_CONTIG | BMAP_RIGHT_CONTIG)) {
1111 	case BMAP_LEFT_CONTIG | BMAP_RIGHT_CONTIG:
1112 		/*
1113 		 * New allocation is contiguous with delayed allocations
1114 		 * on the left and on the right.
1115 		 * Merge all three into a single extent record.
1116 		 */
1117 		temp = left.br_blockcount + new->br_blockcount +
1118 			right.br_blockcount;
1119 
1120 		oldlen = startblockval(left.br_startblock) +
1121 			startblockval(new->br_startblock) +
1122 			startblockval(right.br_startblock);
1123 		newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp),
1124 					 oldlen);
1125 		left.br_startblock = nullstartblock(newlen);
1126 		left.br_blockcount = temp;
1127 
1128 		xfs_iext_remove(ip, icur, state);
1129 		xfs_iext_prev(ifp, icur);
1130 		xfs_iext_update_extent(ip, state, icur, &left);
1131 		break;
1132 
1133 	case BMAP_LEFT_CONTIG:
1134 		/*
1135 		 * New allocation is contiguous with a delayed allocation
1136 		 * on the left.
1137 		 * Merge the new allocation with the left neighbor.
1138 		 */
1139 		temp = left.br_blockcount + new->br_blockcount;
1140 
1141 		oldlen = startblockval(left.br_startblock) +
1142 			startblockval(new->br_startblock);
1143 		newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp),
1144 					 oldlen);
1145 		left.br_blockcount = temp;
1146 		left.br_startblock = nullstartblock(newlen);
1147 
1148 		xfs_iext_prev(ifp, icur);
1149 		xfs_iext_update_extent(ip, state, icur, &left);
1150 		break;
1151 
1152 	case BMAP_RIGHT_CONTIG:
1153 		/*
1154 		 * New allocation is contiguous with a delayed allocation
1155 		 * on the right.
1156 		 * Merge the new allocation with the right neighbor.
1157 		 */
1158 		temp = new->br_blockcount + right.br_blockcount;
1159 		oldlen = startblockval(new->br_startblock) +
1160 			startblockval(right.br_startblock);
1161 		newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp),
1162 					 oldlen);
1163 		right.br_startoff = new->br_startoff;
1164 		right.br_startblock = nullstartblock(newlen);
1165 		right.br_blockcount = temp;
1166 		xfs_iext_update_extent(ip, state, icur, &right);
1167 		break;
1168 
1169 	case 0:
1170 		/*
1171 		 * New allocation is not contiguous with another
1172 		 * delayed allocation.
1173 		 * Insert a new entry.
1174 		 */
1175 		oldlen = newlen = 0;
1176 		xfs_iext_insert(ip, icur, new, state);
1177 		break;
1178 	}
1179 	if (oldlen != newlen) {
1180 		ASSERT(oldlen > newlen);
1181 		xfs_add_fdblocks(ip->i_mount, oldlen - newlen);
1182 
1183 		/*
1184 		 * Nothing to do for disk quota accounting here.
1185 		 */
1186 		xfs_mod_delalloc(ip, 0, (int64_t)newlen - oldlen);
1187 	}
1188 }
1189 
1190 /*
1191  * Add a delayed allocation extent to an inode. Blocks are reserved from the
1192  * global pool and the extent inserted into the inode in-core extent tree.
1193  *
1194  * On entry, got refers to the first extent beyond the offset of the extent to
1195  * allocate or eof is specified if no such extent exists. On return, got refers
1196  * to the extent record that was inserted to the inode fork.
1197  *
1198  * Note that the allocated extent may have been merged with contiguous extents
1199  * during insertion into the inode fork. Thus, got does not reflect the current
1200  * state of the inode fork on return. If necessary, the caller can use lastx to
1201  * look up the updated record in the inode fork.
1202  */
1203 static int
xfs_bmapi_reserve_delalloc(struct xfs_inode * ip,int whichfork,xfs_fileoff_t off,xfs_filblks_t len,xfs_filblks_t prealloc,struct xfs_bmbt_irec * got,struct xfs_iext_cursor * icur,int eof)1204 xfs_bmapi_reserve_delalloc(
1205 	struct xfs_inode	*ip,
1206 	int			whichfork,
1207 	xfs_fileoff_t		off,
1208 	xfs_filblks_t		len,
1209 	xfs_filblks_t		prealloc,
1210 	struct xfs_bmbt_irec	*got,
1211 	struct xfs_iext_cursor	*icur,
1212 	int			eof)
1213 {
1214 	struct xfs_mount	*mp = ip->i_mount;
1215 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
1216 	xfs_extlen_t		alen;
1217 	xfs_extlen_t		indlen;
1218 	uint64_t		fdblocks;
1219 	int			error;
1220 	xfs_fileoff_t		aoff;
1221 	bool			use_cowextszhint =
1222 					whichfork == XFS_COW_FORK && !prealloc;
1223 
1224 retry:
1225 	/*
1226 	 * Cap the alloc length. Keep track of prealloc so we know whether to
1227 	 * tag the inode before we return.
1228 	 */
1229 	aoff = off;
1230 	alen = XFS_FILBLKS_MIN(len + prealloc, XFS_MAX_BMBT_EXTLEN);
1231 	if (!eof)
1232 		alen = XFS_FILBLKS_MIN(alen, got->br_startoff - aoff);
1233 	if (prealloc && alen >= len)
1234 		prealloc = alen - len;
1235 
1236 	/*
1237 	 * If we're targetting the COW fork but aren't creating a speculative
1238 	 * posteof preallocation, try to expand the reservation to align with
1239 	 * the COW extent size hint if there's sufficient free space.
1240 	 *
1241 	 * Unlike the data fork, the CoW cancellation functions will free all
1242 	 * the reservations at inactivation, so we don't require that every
1243 	 * delalloc reservation have a dirty pagecache.
1244 	 */
1245 	if (use_cowextszhint) {
1246 		struct xfs_bmbt_irec	prev;
1247 		xfs_extlen_t		extsz = xfs_get_cowextsz_hint(ip);
1248 
1249 		if (!xfs_iext_peek_prev_extent(ifp, icur, &prev))
1250 			prev.br_startoff = NULLFILEOFF;
1251 
1252 		error = xfs_bmap_extsize_align(mp, got, &prev, extsz, 0, eof,
1253 					       1, 0, &aoff, &alen);
1254 		ASSERT(!error);
1255 	}
1256 
1257 	/*
1258 	 * Make a transaction-less quota reservation for delayed allocation
1259 	 * blocks.  This number gets adjusted later.  We return if we haven't
1260 	 * allocated blocks already inside this loop.
1261 	 */
1262 	error = xfs_quota_reserve_blkres(ip, alen);
1263 	if (error)
1264 		goto out;
1265 
1266 	/*
1267 	 * Split changing sb for alen and indlen since they could be coming
1268 	 * from different places.
1269 	 */
1270 	indlen = (xfs_extlen_t)xfs_bmap_worst_indlen(ip, alen);
1271 	ASSERT(indlen > 0);
1272 
1273 	fdblocks = indlen;
1274 	if (XFS_IS_REALTIME_INODE(ip)) {
1275 		ASSERT(!xfs_is_zoned_inode(ip));
1276 		error = xfs_dec_frextents(mp, xfs_blen_to_rtbxlen(mp, alen));
1277 		if (error)
1278 			goto out_unreserve_quota;
1279 	} else {
1280 		fdblocks += alen;
1281 	}
1282 
1283 	error = xfs_dec_fdblocks(mp, fdblocks, false);
1284 	if (error)
1285 		goto out_unreserve_frextents;
1286 
1287 	ip->i_delayed_blks += alen;
1288 	xfs_mod_delalloc(ip, alen, indlen);
1289 
1290 	got->br_startoff = aoff;
1291 	got->br_startblock = nullstartblock(indlen);
1292 	got->br_blockcount = alen;
1293 	got->br_state = XFS_EXT_NORM;
1294 
1295 	xfs_bmap_add_extent_hole_delay(ip, whichfork, icur, got);
1296 
1297 	/*
1298 	 * Tag the inode if blocks were preallocated. Note that COW fork
1299 	 * preallocation can occur at the start or end of the extent, even when
1300 	 * prealloc == 0, so we must also check the aligned offset and length.
1301 	 */
1302 	if (whichfork == XFS_DATA_FORK && prealloc)
1303 		xfs_inode_set_eofblocks_tag(ip);
1304 	if (whichfork == XFS_COW_FORK && (prealloc || aoff < off || alen > len))
1305 		xfs_inode_set_cowblocks_tag(ip);
1306 
1307 	return 0;
1308 
1309 out_unreserve_frextents:
1310 	if (XFS_IS_REALTIME_INODE(ip))
1311 		xfs_add_frextents(mp, xfs_blen_to_rtbxlen(mp, alen));
1312 out_unreserve_quota:
1313 	if (XFS_IS_QUOTA_ON(mp))
1314 		xfs_quota_unreserve_blkres(ip, alen);
1315 out:
1316 	if (error == -ENOSPC || error == -EDQUOT) {
1317 		trace_xfs_delalloc_enospc(ip, off, len);
1318 
1319 		if (prealloc || use_cowextszhint) {
1320 			/* retry without any preallocation */
1321 			use_cowextszhint = false;
1322 			prealloc = 0;
1323 			goto retry;
1324 		}
1325 	}
1326 	return error;
1327 }
1328 
1329 static int
xfs_zoned_buffered_write_iomap_begin(struct inode * inode,loff_t offset,loff_t count,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1330 xfs_zoned_buffered_write_iomap_begin(
1331 	struct inode		*inode,
1332 	loff_t			offset,
1333 	loff_t			count,
1334 	unsigned		flags,
1335 	struct iomap		*iomap,
1336 	struct iomap		*srcmap)
1337 {
1338 	struct iomap_iter	*iter =
1339 		container_of(iomap, struct iomap_iter, iomap);
1340 	struct xfs_zone_alloc_ctx *ac = iter->private;
1341 	struct xfs_inode	*ip = XFS_I(inode);
1342 	struct xfs_mount	*mp = ip->i_mount;
1343 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1344 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1345 	u16			iomap_flags = IOMAP_F_SHARED;
1346 	unsigned int		lockmode = XFS_ILOCK_EXCL;
1347 	xfs_filblks_t		count_fsb;
1348 	xfs_extlen_t		indlen;
1349 	struct xfs_bmbt_irec	got;
1350 	struct xfs_iext_cursor	icur;
1351 	int			error = 0;
1352 
1353 	ASSERT(!xfs_get_extsz_hint(ip));
1354 	ASSERT(!(flags & IOMAP_UNSHARE));
1355 	ASSERT(ac);
1356 
1357 	if (xfs_is_shutdown(mp))
1358 		return -EIO;
1359 
1360 	error = xfs_qm_dqattach(ip);
1361 	if (error)
1362 		return error;
1363 
1364 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1365 	if (error)
1366 		return error;
1367 
1368 	if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
1369 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
1370 		xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
1371 		error = -EFSCORRUPTED;
1372 		goto out_unlock;
1373 	}
1374 
1375 	XFS_STATS_INC(mp, xs_blk_mapw);
1376 
1377 	error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1378 	if (error)
1379 		goto out_unlock;
1380 
1381 	/*
1382 	 * For zeroing operations check if there is any data to zero first.
1383 	 *
1384 	 * For regular writes we always need to allocate new blocks, but need to
1385 	 * provide the source mapping when the range is unaligned to support
1386 	 * read-modify-write of the whole block in the page cache.
1387 	 *
1388 	 * In either case we need to limit the reported range to the boundaries
1389 	 * of the source map in the data fork.
1390 	 */
1391 	if (!IS_ALIGNED(offset, mp->m_sb.sb_blocksize) ||
1392 	    !IS_ALIGNED(offset + count, mp->m_sb.sb_blocksize) ||
1393 	    (flags & IOMAP_ZERO)) {
1394 		struct xfs_bmbt_irec	smap;
1395 		struct xfs_iext_cursor	scur;
1396 
1397 		if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &scur,
1398 				&smap))
1399 			smap.br_startoff = end_fsb; /* fake hole until EOF */
1400 		if (smap.br_startoff > offset_fsb) {
1401 			/*
1402 			 * We never need to allocate blocks for zeroing a hole.
1403 			 */
1404 			if (flags & IOMAP_ZERO) {
1405 				xfs_hole_to_iomap(ip, iomap, offset_fsb,
1406 						smap.br_startoff);
1407 				goto out_unlock;
1408 			}
1409 			end_fsb = min(end_fsb, smap.br_startoff);
1410 		} else {
1411 			end_fsb = min(end_fsb,
1412 				smap.br_startoff + smap.br_blockcount);
1413 			xfs_trim_extent(&smap, offset_fsb,
1414 					end_fsb - offset_fsb);
1415 			error = xfs_bmbt_to_iomap(ip, srcmap, &smap, flags, 0,
1416 					xfs_iomap_inode_sequence(ip, 0));
1417 			if (error)
1418 				goto out_unlock;
1419 		}
1420 	}
1421 
1422 	if (!ip->i_cowfp)
1423 		xfs_ifork_init_cow(ip);
1424 
1425 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
1426 		got.br_startoff = end_fsb;
1427 	if (got.br_startoff <= offset_fsb) {
1428 		trace_xfs_reflink_cow_found(ip, &got);
1429 		goto done;
1430 	}
1431 
1432 	/*
1433 	 * Cap the maximum length to keep the chunks of work done here somewhat
1434 	 * symmetric with the work writeback does.
1435 	 */
1436 	end_fsb = min(end_fsb, got.br_startoff);
1437 	count_fsb = min3(end_fsb - offset_fsb, XFS_MAX_BMBT_EXTLEN,
1438 			 XFS_B_TO_FSB(mp, 1024 * PAGE_SIZE));
1439 
1440 	/*
1441 	 * The block reservation is supposed to cover all blocks that the
1442 	 * operation could possible write, but there is a nasty corner case
1443 	 * where blocks could be stolen from underneath us:
1444 	 *
1445 	 *  1) while this thread iterates over a larger buffered write,
1446 	 *  2) another thread is causing a write fault that calls into
1447 	 *     ->page_mkwrite in range this thread writes to, using up the
1448 	 *     delalloc reservation created by a previous call to this function.
1449 	 *  3) another thread does direct I/O on the range that the write fault
1450 	 *     happened on, which causes writeback of the dirty data.
1451 	 *  4) this then set the stale flag, which cuts the current iomap
1452 	 *     iteration short, causing the new call to ->iomap_begin that gets
1453 	 *     us here again, but now without a sufficient reservation.
1454 	 *
1455 	 * This is a very unusual I/O pattern, and nothing but generic/095 is
1456 	 * known to hit it. There's not really much we can do here, so turn this
1457 	 * into a short write.
1458 	 */
1459 	if (count_fsb > ac->reserved_blocks) {
1460 		xfs_warn_ratelimited(mp,
1461 "Short write on ino 0x%llx comm %.20s due to three-way race with write fault and direct I/O",
1462 			ip->i_ino, current->comm);
1463 		count_fsb = ac->reserved_blocks;
1464 		if (!count_fsb) {
1465 			error = -EIO;
1466 			goto out_unlock;
1467 		}
1468 	}
1469 
1470 	error = xfs_quota_reserve_blkres(ip, count_fsb);
1471 	if (error)
1472 		goto out_unlock;
1473 
1474 	indlen = xfs_bmap_worst_indlen(ip, count_fsb);
1475 	error = xfs_dec_fdblocks(mp, indlen, false);
1476 	if (error)
1477 		goto out_unlock;
1478 	ip->i_delayed_blks += count_fsb;
1479 	xfs_mod_delalloc(ip, count_fsb, indlen);
1480 
1481 	got.br_startoff = offset_fsb;
1482 	got.br_startblock = nullstartblock(indlen);
1483 	got.br_blockcount = count_fsb;
1484 	got.br_state = XFS_EXT_NORM;
1485 	xfs_bmap_add_extent_hole_delay(ip, XFS_COW_FORK, &icur, &got);
1486 	ac->reserved_blocks -= count_fsb;
1487 	iomap_flags |= IOMAP_F_NEW;
1488 
1489 	trace_xfs_iomap_alloc(ip, offset, XFS_FSB_TO_B(mp, count_fsb),
1490 			XFS_COW_FORK, &got);
1491 done:
1492 	error = xfs_bmbt_to_iomap(ip, iomap, &got, flags, iomap_flags,
1493 			xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED));
1494 out_unlock:
1495 	xfs_iunlock(ip, lockmode);
1496 	return error;
1497 }
1498 
1499 static int
xfs_buffered_write_iomap_begin(struct inode * inode,loff_t offset,loff_t count,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1500 xfs_buffered_write_iomap_begin(
1501 	struct inode		*inode,
1502 	loff_t			offset,
1503 	loff_t			count,
1504 	unsigned		flags,
1505 	struct iomap		*iomap,
1506 	struct iomap		*srcmap)
1507 {
1508 	struct xfs_inode	*ip = XFS_I(inode);
1509 	struct xfs_mount	*mp = ip->i_mount;
1510 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1511 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1512 	struct xfs_bmbt_irec	imap, cmap;
1513 	struct xfs_iext_cursor	icur, ccur;
1514 	xfs_fsblock_t		prealloc_blocks = 0;
1515 	bool			eof = false, cow_eof = false, shared = false;
1516 	int			allocfork = XFS_DATA_FORK;
1517 	int			error = 0;
1518 	unsigned int		lockmode = XFS_ILOCK_EXCL;
1519 	unsigned int		iomap_flags = 0;
1520 	u64			seq;
1521 
1522 	if (xfs_is_shutdown(mp))
1523 		return -EIO;
1524 
1525 	if (xfs_is_zoned_inode(ip))
1526 		return xfs_zoned_buffered_write_iomap_begin(inode, offset,
1527 				count, flags, iomap, srcmap);
1528 
1529 	/* we can't use delayed allocations when using extent size hints */
1530 	if (xfs_get_extsz_hint(ip))
1531 		return xfs_direct_write_iomap_begin(inode, offset, count,
1532 				flags, iomap, srcmap);
1533 
1534 	error = xfs_qm_dqattach(ip);
1535 	if (error)
1536 		return error;
1537 
1538 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1539 	if (error)
1540 		return error;
1541 
1542 	if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
1543 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
1544 		xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
1545 		error = -EFSCORRUPTED;
1546 		goto out_unlock;
1547 	}
1548 
1549 	XFS_STATS_INC(mp, xs_blk_mapw);
1550 
1551 	error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1552 	if (error)
1553 		goto out_unlock;
1554 
1555 	/*
1556 	 * Search the data fork first to look up our source mapping.  We
1557 	 * always need the data fork map, as we have to return it to the
1558 	 * iomap code so that the higher level write code can read data in to
1559 	 * perform read-modify-write cycles for unaligned writes.
1560 	 */
1561 	eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
1562 	if (eof)
1563 		imap.br_startoff = end_fsb; /* fake hole until the end */
1564 
1565 	/* We never need to allocate blocks for zeroing or unsharing a hole. */
1566 	if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) &&
1567 	    imap.br_startoff > offset_fsb) {
1568 		xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
1569 		goto out_unlock;
1570 	}
1571 
1572 	/*
1573 	 * For zeroing, trim a delalloc extent that extends beyond the EOF
1574 	 * block.  If it starts beyond the EOF block, convert it to an
1575 	 * unwritten extent.
1576 	 */
1577 	if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb &&
1578 	    isnullstartblock(imap.br_startblock)) {
1579 		xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
1580 
1581 		if (offset_fsb >= eof_fsb)
1582 			goto convert_delay;
1583 		if (end_fsb > eof_fsb) {
1584 			end_fsb = eof_fsb;
1585 			xfs_trim_extent(&imap, offset_fsb,
1586 					end_fsb - offset_fsb);
1587 		}
1588 	}
1589 
1590 	/*
1591 	 * Search the COW fork extent list even if we did not find a data fork
1592 	 * extent.  This serves two purposes: first this implements the
1593 	 * speculative preallocation using cowextsize, so that we also unshare
1594 	 * block adjacent to shared blocks instead of just the shared blocks
1595 	 * themselves.  Second the lookup in the extent list is generally faster
1596 	 * than going out to the shared extent tree.
1597 	 */
1598 	if (xfs_is_cow_inode(ip)) {
1599 		if (!ip->i_cowfp) {
1600 			ASSERT(!xfs_is_reflink_inode(ip));
1601 			xfs_ifork_init_cow(ip);
1602 		}
1603 		cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
1604 				&ccur, &cmap);
1605 		if (!cow_eof && cmap.br_startoff <= offset_fsb) {
1606 			trace_xfs_reflink_cow_found(ip, &cmap);
1607 			goto found_cow;
1608 		}
1609 	}
1610 
1611 	if (imap.br_startoff <= offset_fsb) {
1612 		/*
1613 		 * For reflink files we may need a delalloc reservation when
1614 		 * overwriting shared extents.   This includes zeroing of
1615 		 * existing extents that contain data.
1616 		 */
1617 		if (!xfs_is_cow_inode(ip) ||
1618 		    ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
1619 			trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1620 					&imap);
1621 			goto found_imap;
1622 		}
1623 
1624 		xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1625 
1626 		/* Trim the mapping to the nearest shared extent boundary. */
1627 		error = xfs_bmap_trim_cow(ip, &imap, &shared);
1628 		if (error)
1629 			goto out_unlock;
1630 
1631 		/* Not shared?  Just report the (potentially capped) extent. */
1632 		if (!shared) {
1633 			trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1634 					&imap);
1635 			goto found_imap;
1636 		}
1637 
1638 		/*
1639 		 * Fork all the shared blocks from our write offset until the
1640 		 * end of the extent.
1641 		 */
1642 		allocfork = XFS_COW_FORK;
1643 		end_fsb = imap.br_startoff + imap.br_blockcount;
1644 	} else {
1645 		/*
1646 		 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
1647 		 * pages to keep the chunks of work done where somewhat
1648 		 * symmetric with the work writeback does.  This is a completely
1649 		 * arbitrary number pulled out of thin air.
1650 		 *
1651 		 * Note that the values needs to be less than 32-bits wide until
1652 		 * the lower level functions are updated.
1653 		 */
1654 		count = min_t(loff_t, count, 1024 * PAGE_SIZE);
1655 		end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1656 
1657 		if (xfs_is_always_cow_inode(ip))
1658 			allocfork = XFS_COW_FORK;
1659 	}
1660 
1661 	if (eof && offset + count > XFS_ISIZE(ip)) {
1662 		/*
1663 		 * Determine the initial size of the preallocation.
1664 		 * We clean up any extra preallocation when the file is closed.
1665 		 */
1666 		if (xfs_has_allocsize(mp))
1667 			prealloc_blocks = mp->m_allocsize_blocks;
1668 		else if (allocfork == XFS_DATA_FORK)
1669 			prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1670 						offset, count, &icur);
1671 		else
1672 			prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1673 						offset, count, &ccur);
1674 		if (prealloc_blocks) {
1675 			xfs_extlen_t	align;
1676 			xfs_off_t	end_offset;
1677 			xfs_fileoff_t	p_end_fsb;
1678 
1679 			end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
1680 			p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
1681 					prealloc_blocks;
1682 
1683 			align = xfs_eof_alignment(ip);
1684 			if (align)
1685 				p_end_fsb = roundup_64(p_end_fsb, align);
1686 
1687 			p_end_fsb = min(p_end_fsb,
1688 				XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1689 			ASSERT(p_end_fsb > offset_fsb);
1690 			prealloc_blocks = p_end_fsb - end_fsb;
1691 		}
1692 	}
1693 
1694 	/*
1695 	 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
1696 	 * them out if the write happens to fail.
1697 	 */
1698 	iomap_flags |= IOMAP_F_NEW;
1699 	if (allocfork == XFS_COW_FORK) {
1700 		error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1701 				end_fsb - offset_fsb, prealloc_blocks, &cmap,
1702 				&ccur, cow_eof);
1703 		if (error)
1704 			goto out_unlock;
1705 
1706 		trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
1707 		goto found_cow;
1708 	}
1709 
1710 	error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1711 			end_fsb - offset_fsb, prealloc_blocks, &imap, &icur,
1712 			eof);
1713 	if (error)
1714 		goto out_unlock;
1715 
1716 	trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
1717 found_imap:
1718 	seq = xfs_iomap_inode_sequence(ip, iomap_flags);
1719 	xfs_iunlock(ip, lockmode);
1720 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
1721 
1722 convert_delay:
1723 	xfs_iunlock(ip, lockmode);
1724 	truncate_pagecache(inode, offset);
1725 	error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset,
1726 					   iomap, NULL);
1727 	if (error)
1728 		return error;
1729 
1730 	trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap);
1731 	return 0;
1732 
1733 found_cow:
1734 	if (imap.br_startoff <= offset_fsb) {
1735 		error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0,
1736 				xfs_iomap_inode_sequence(ip, 0));
1737 		if (error)
1738 			goto out_unlock;
1739 	} else {
1740 		xfs_trim_extent(&cmap, offset_fsb,
1741 				imap.br_startoff - offset_fsb);
1742 	}
1743 
1744 	iomap_flags |= IOMAP_F_SHARED;
1745 	seq = xfs_iomap_inode_sequence(ip, iomap_flags);
1746 	xfs_iunlock(ip, lockmode);
1747 	return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, iomap_flags, seq);
1748 
1749 out_unlock:
1750 	xfs_iunlock(ip, lockmode);
1751 	return error;
1752 }
1753 
1754 static void
xfs_buffered_write_delalloc_punch(struct inode * inode,loff_t offset,loff_t length,struct iomap * iomap)1755 xfs_buffered_write_delalloc_punch(
1756 	struct inode		*inode,
1757 	loff_t			offset,
1758 	loff_t			length,
1759 	struct iomap		*iomap)
1760 {
1761 	struct iomap_iter	*iter =
1762 		container_of(iomap, struct iomap_iter, iomap);
1763 
1764 	xfs_bmap_punch_delalloc_range(XFS_I(inode),
1765 			(iomap->flags & IOMAP_F_SHARED) ?
1766 				XFS_COW_FORK : XFS_DATA_FORK,
1767 			offset, offset + length, iter->private);
1768 }
1769 
1770 static int
xfs_buffered_write_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1771 xfs_buffered_write_iomap_end(
1772 	struct inode		*inode,
1773 	loff_t			offset,
1774 	loff_t			length,
1775 	ssize_t			written,
1776 	unsigned		flags,
1777 	struct iomap		*iomap)
1778 {
1779 	loff_t			start_byte, end_byte;
1780 
1781 	/* If we didn't reserve the blocks, we're not allowed to punch them. */
1782 	if (iomap->type != IOMAP_DELALLOC || !(iomap->flags & IOMAP_F_NEW))
1783 		return 0;
1784 
1785 	/*
1786 	 * iomap_page_mkwrite() will never fail in a way that requires delalloc
1787 	 * extents that it allocated to be revoked.  Hence never try to release
1788 	 * them here.
1789 	 */
1790 	if (flags & IOMAP_FAULT)
1791 		return 0;
1792 
1793 	/* Nothing to do if we've written the entire delalloc extent */
1794 	start_byte = iomap_last_written_block(inode, offset, written);
1795 	end_byte = round_up(offset + length, i_blocksize(inode));
1796 	if (start_byte >= end_byte)
1797 		return 0;
1798 
1799 	/* For zeroing operations the callers already hold invalidate_lock. */
1800 	if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
1801 		rwsem_assert_held_write(&inode->i_mapping->invalidate_lock);
1802 		iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
1803 				iomap, xfs_buffered_write_delalloc_punch);
1804 	} else {
1805 		filemap_invalidate_lock(inode->i_mapping);
1806 		iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
1807 				iomap, xfs_buffered_write_delalloc_punch);
1808 		filemap_invalidate_unlock(inode->i_mapping);
1809 	}
1810 
1811 	return 0;
1812 }
1813 
1814 const struct iomap_ops xfs_buffered_write_iomap_ops = {
1815 	.iomap_begin		= xfs_buffered_write_iomap_begin,
1816 	.iomap_end		= xfs_buffered_write_iomap_end,
1817 };
1818 
1819 static int
xfs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1820 xfs_read_iomap_begin(
1821 	struct inode		*inode,
1822 	loff_t			offset,
1823 	loff_t			length,
1824 	unsigned		flags,
1825 	struct iomap		*iomap,
1826 	struct iomap		*srcmap)
1827 {
1828 	struct xfs_inode	*ip = XFS_I(inode);
1829 	struct xfs_mount	*mp = ip->i_mount;
1830 	struct xfs_bmbt_irec	imap;
1831 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1832 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, length);
1833 	int			nimaps = 1, error = 0;
1834 	bool			shared = false;
1835 	unsigned int		lockmode = XFS_ILOCK_SHARED;
1836 	u64			seq;
1837 
1838 	ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
1839 
1840 	if (xfs_is_shutdown(mp))
1841 		return -EIO;
1842 
1843 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1844 	if (error)
1845 		return error;
1846 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1847 			       &nimaps, 0);
1848 	if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode)))
1849 		error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
1850 	seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0);
1851 	xfs_iunlock(ip, lockmode);
1852 
1853 	if (error)
1854 		return error;
1855 	trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
1856 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
1857 				 shared ? IOMAP_F_SHARED : 0, seq);
1858 }
1859 
1860 const struct iomap_ops xfs_read_iomap_ops = {
1861 	.iomap_begin		= xfs_read_iomap_begin,
1862 };
1863 
1864 static int
xfs_seek_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1865 xfs_seek_iomap_begin(
1866 	struct inode		*inode,
1867 	loff_t			offset,
1868 	loff_t			length,
1869 	unsigned		flags,
1870 	struct iomap		*iomap,
1871 	struct iomap		*srcmap)
1872 {
1873 	struct xfs_inode	*ip = XFS_I(inode);
1874 	struct xfs_mount	*mp = ip->i_mount;
1875 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1876 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + length);
1877 	xfs_fileoff_t		cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
1878 	struct xfs_iext_cursor	icur;
1879 	struct xfs_bmbt_irec	imap, cmap;
1880 	int			error = 0;
1881 	unsigned		lockmode;
1882 	u64			seq;
1883 
1884 	if (xfs_is_shutdown(mp))
1885 		return -EIO;
1886 
1887 	lockmode = xfs_ilock_data_map_shared(ip);
1888 	error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1889 	if (error)
1890 		goto out_unlock;
1891 
1892 	if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
1893 		/*
1894 		 * If we found a data extent we are done.
1895 		 */
1896 		if (imap.br_startoff <= offset_fsb)
1897 			goto done;
1898 		data_fsb = imap.br_startoff;
1899 	} else {
1900 		/*
1901 		 * Fake a hole until the end of the file.
1902 		 */
1903 		data_fsb = xfs_iomap_end_fsb(mp, offset, length);
1904 	}
1905 
1906 	/*
1907 	 * If a COW fork extent covers the hole, report it - capped to the next
1908 	 * data fork extent:
1909 	 */
1910 	if (xfs_inode_has_cow_data(ip) &&
1911 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1912 		cow_fsb = cmap.br_startoff;
1913 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
1914 		if (data_fsb < cow_fsb + cmap.br_blockcount)
1915 			end_fsb = min(end_fsb, data_fsb);
1916 		xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb);
1917 		seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1918 		error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1919 				IOMAP_F_SHARED, seq);
1920 		/*
1921 		 * This is a COW extent, so we must probe the page cache
1922 		 * because there could be dirty page cache being backed
1923 		 * by this extent.
1924 		 */
1925 		iomap->type = IOMAP_UNWRITTEN;
1926 		goto out_unlock;
1927 	}
1928 
1929 	/*
1930 	 * Else report a hole, capped to the next found data or COW extent.
1931 	 */
1932 	if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
1933 		imap.br_blockcount = cow_fsb - offset_fsb;
1934 	else
1935 		imap.br_blockcount = data_fsb - offset_fsb;
1936 	imap.br_startoff = offset_fsb;
1937 	imap.br_startblock = HOLESTARTBLOCK;
1938 	imap.br_state = XFS_EXT_NORM;
1939 done:
1940 	seq = xfs_iomap_inode_sequence(ip, 0);
1941 	xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1942 	error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
1943 out_unlock:
1944 	xfs_iunlock(ip, lockmode);
1945 	return error;
1946 }
1947 
1948 const struct iomap_ops xfs_seek_iomap_ops = {
1949 	.iomap_begin		= xfs_seek_iomap_begin,
1950 };
1951 
1952 static int
xfs_xattr_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1953 xfs_xattr_iomap_begin(
1954 	struct inode		*inode,
1955 	loff_t			offset,
1956 	loff_t			length,
1957 	unsigned		flags,
1958 	struct iomap		*iomap,
1959 	struct iomap		*srcmap)
1960 {
1961 	struct xfs_inode	*ip = XFS_I(inode);
1962 	struct xfs_mount	*mp = ip->i_mount;
1963 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1964 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + length);
1965 	struct xfs_bmbt_irec	imap;
1966 	int			nimaps = 1, error = 0;
1967 	unsigned		lockmode;
1968 	int			seq;
1969 
1970 	if (xfs_is_shutdown(mp))
1971 		return -EIO;
1972 
1973 	lockmode = xfs_ilock_attr_map_shared(ip);
1974 
1975 	/* if there are no attribute fork or extents, return ENOENT */
1976 	if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) {
1977 		error = -ENOENT;
1978 		goto out_unlock;
1979 	}
1980 
1981 	ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL);
1982 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1983 			       &nimaps, XFS_BMAPI_ATTRFORK);
1984 out_unlock:
1985 
1986 	seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR);
1987 	xfs_iunlock(ip, lockmode);
1988 
1989 	if (error)
1990 		return error;
1991 	ASSERT(nimaps);
1992 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq);
1993 }
1994 
1995 const struct iomap_ops xfs_xattr_iomap_ops = {
1996 	.iomap_begin		= xfs_xattr_iomap_begin,
1997 };
1998 
1999 int
xfs_zero_range(struct xfs_inode * ip,loff_t pos,loff_t len,struct xfs_zone_alloc_ctx * ac,bool * did_zero)2000 xfs_zero_range(
2001 	struct xfs_inode	*ip,
2002 	loff_t			pos,
2003 	loff_t			len,
2004 	struct xfs_zone_alloc_ctx *ac,
2005 	bool			*did_zero)
2006 {
2007 	struct inode		*inode = VFS_I(ip);
2008 
2009 	xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
2010 
2011 	if (IS_DAX(inode))
2012 		return dax_zero_range(inode, pos, len, did_zero,
2013 				      &xfs_dax_write_iomap_ops);
2014 	return iomap_zero_range(inode, pos, len, did_zero,
2015 				&xfs_buffered_write_iomap_ops, ac);
2016 }
2017 
2018 int
xfs_truncate_page(struct xfs_inode * ip,loff_t pos,struct xfs_zone_alloc_ctx * ac,bool * did_zero)2019 xfs_truncate_page(
2020 	struct xfs_inode	*ip,
2021 	loff_t			pos,
2022 	struct xfs_zone_alloc_ctx *ac,
2023 	bool			*did_zero)
2024 {
2025 	struct inode		*inode = VFS_I(ip);
2026 
2027 	if (IS_DAX(inode))
2028 		return dax_truncate_page(inode, pos, did_zero,
2029 					&xfs_dax_write_iomap_ops);
2030 	return iomap_truncate_page(inode, pos, did_zero,
2031 				   &xfs_buffered_write_iomap_ops, ac);
2032 }
2033