1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap_btree.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_space.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iomap.h"
25 #include "xfs_trace.h"
26 #include "xfs_quota.h"
27 #include "xfs_rtgroup.h"
28 #include "xfs_dquot_item.h"
29 #include "xfs_dquot.h"
30 #include "xfs_reflink.h"
31 #include "xfs_health.h"
32 #include "xfs_rtbitmap.h"
33 #include "xfs_icache.h"
34 #include "xfs_zone_alloc.h"
35
36 #define XFS_ALLOC_ALIGN(mp, off) \
37 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
38
39 static int
xfs_alert_fsblock_zero(xfs_inode_t * ip,xfs_bmbt_irec_t * imap)40 xfs_alert_fsblock_zero(
41 xfs_inode_t *ip,
42 xfs_bmbt_irec_t *imap)
43 {
44 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
45 "Access to block zero in inode %llu "
46 "start_block: %llx start_off: %llx "
47 "blkcnt: %llx extent-state: %x",
48 (unsigned long long)ip->i_ino,
49 (unsigned long long)imap->br_startblock,
50 (unsigned long long)imap->br_startoff,
51 (unsigned long long)imap->br_blockcount,
52 imap->br_state);
53 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
54 return -EFSCORRUPTED;
55 }
56
57 u64
xfs_iomap_inode_sequence(struct xfs_inode * ip,u16 iomap_flags)58 xfs_iomap_inode_sequence(
59 struct xfs_inode *ip,
60 u16 iomap_flags)
61 {
62 u64 cookie = 0;
63
64 if (iomap_flags & IOMAP_F_XATTR)
65 return READ_ONCE(ip->i_af.if_seq);
66 if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp)
67 cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32;
68 return cookie | READ_ONCE(ip->i_df.if_seq);
69 }
70
71 /*
72 * Check that the iomap passed to us is still valid for the given offset and
73 * length.
74 */
75 static bool
xfs_iomap_valid(struct inode * inode,const struct iomap * iomap)76 xfs_iomap_valid(
77 struct inode *inode,
78 const struct iomap *iomap)
79 {
80 struct xfs_inode *ip = XFS_I(inode);
81
82 if (iomap->validity_cookie !=
83 xfs_iomap_inode_sequence(ip, iomap->flags)) {
84 trace_xfs_iomap_invalid(ip, iomap);
85 return false;
86 }
87
88 XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS);
89 return true;
90 }
91
92 static const struct iomap_folio_ops xfs_iomap_folio_ops = {
93 .iomap_valid = xfs_iomap_valid,
94 };
95
96 int
xfs_bmbt_to_iomap(struct xfs_inode * ip,struct iomap * iomap,struct xfs_bmbt_irec * imap,unsigned int mapping_flags,u16 iomap_flags,u64 sequence_cookie)97 xfs_bmbt_to_iomap(
98 struct xfs_inode *ip,
99 struct iomap *iomap,
100 struct xfs_bmbt_irec *imap,
101 unsigned int mapping_flags,
102 u16 iomap_flags,
103 u64 sequence_cookie)
104 {
105 struct xfs_mount *mp = ip->i_mount;
106 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
107
108 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
109 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
110 return xfs_alert_fsblock_zero(ip, imap);
111 }
112
113 if (imap->br_startblock == HOLESTARTBLOCK) {
114 iomap->addr = IOMAP_NULL_ADDR;
115 iomap->type = IOMAP_HOLE;
116 } else if (imap->br_startblock == DELAYSTARTBLOCK ||
117 isnullstartblock(imap->br_startblock)) {
118 iomap->addr = IOMAP_NULL_ADDR;
119 iomap->type = IOMAP_DELALLOC;
120 } else {
121 xfs_daddr_t daddr = xfs_fsb_to_db(ip, imap->br_startblock);
122
123 iomap->addr = BBTOB(daddr);
124 if (mapping_flags & IOMAP_DAX)
125 iomap->addr += target->bt_dax_part_off;
126
127 if (imap->br_state == XFS_EXT_UNWRITTEN)
128 iomap->type = IOMAP_UNWRITTEN;
129 else
130 iomap->type = IOMAP_MAPPED;
131
132 /*
133 * Mark iomaps starting at the first sector of a RTG as merge
134 * boundary so that each I/O completions is contained to a
135 * single RTG.
136 */
137 if (XFS_IS_REALTIME_INODE(ip) && xfs_has_rtgroups(mp) &&
138 xfs_rtbno_is_group_start(mp, imap->br_startblock))
139 iomap->flags |= IOMAP_F_BOUNDARY;
140 }
141 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
142 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
143 if (mapping_flags & IOMAP_DAX)
144 iomap->dax_dev = target->bt_daxdev;
145 else
146 iomap->bdev = target->bt_bdev;
147 iomap->flags = iomap_flags;
148
149 if (xfs_ipincount(ip) &&
150 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
151 iomap->flags |= IOMAP_F_DIRTY;
152
153 iomap->validity_cookie = sequence_cookie;
154 iomap->folio_ops = &xfs_iomap_folio_ops;
155 return 0;
156 }
157
158 static void
xfs_hole_to_iomap(struct xfs_inode * ip,struct iomap * iomap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)159 xfs_hole_to_iomap(
160 struct xfs_inode *ip,
161 struct iomap *iomap,
162 xfs_fileoff_t offset_fsb,
163 xfs_fileoff_t end_fsb)
164 {
165 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
166
167 iomap->addr = IOMAP_NULL_ADDR;
168 iomap->type = IOMAP_HOLE;
169 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
170 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
171 iomap->bdev = target->bt_bdev;
172 iomap->dax_dev = target->bt_daxdev;
173 }
174
175 static inline xfs_fileoff_t
xfs_iomap_end_fsb(struct xfs_mount * mp,loff_t offset,loff_t count)176 xfs_iomap_end_fsb(
177 struct xfs_mount *mp,
178 loff_t offset,
179 loff_t count)
180 {
181 ASSERT(offset <= mp->m_super->s_maxbytes);
182 return min(XFS_B_TO_FSB(mp, offset + count),
183 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
184 }
185
186 static xfs_extlen_t
xfs_eof_alignment(struct xfs_inode * ip)187 xfs_eof_alignment(
188 struct xfs_inode *ip)
189 {
190 struct xfs_mount *mp = ip->i_mount;
191 xfs_extlen_t align = 0;
192
193 if (!XFS_IS_REALTIME_INODE(ip)) {
194 /*
195 * Round up the allocation request to a stripe unit
196 * (m_dalign) boundary if the file size is >= stripe unit
197 * size, and we are allocating past the allocation eof.
198 *
199 * If mounted with the "-o swalloc" option the alignment is
200 * increased from the strip unit size to the stripe width.
201 */
202 if (mp->m_swidth && xfs_has_swalloc(mp))
203 align = mp->m_swidth;
204 else if (mp->m_dalign)
205 align = mp->m_dalign;
206
207 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
208 align = 0;
209 }
210
211 return align;
212 }
213
214 /*
215 * Check if last_fsb is outside the last extent, and if so grow it to the next
216 * stripe unit boundary.
217 */
218 xfs_fileoff_t
xfs_iomap_eof_align_last_fsb(struct xfs_inode * ip,xfs_fileoff_t end_fsb)219 xfs_iomap_eof_align_last_fsb(
220 struct xfs_inode *ip,
221 xfs_fileoff_t end_fsb)
222 {
223 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
224 xfs_extlen_t extsz = xfs_get_extsz_hint(ip);
225 xfs_extlen_t align = xfs_eof_alignment(ip);
226 struct xfs_bmbt_irec irec;
227 struct xfs_iext_cursor icur;
228
229 ASSERT(!xfs_need_iread_extents(ifp));
230
231 /*
232 * Always round up the allocation request to the extent hint boundary.
233 */
234 if (extsz) {
235 if (align)
236 align = roundup_64(align, extsz);
237 else
238 align = extsz;
239 }
240
241 if (align) {
242 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align);
243
244 xfs_iext_last(ifp, &icur);
245 if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
246 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
247 return aligned_end_fsb;
248 }
249
250 return end_fsb;
251 }
252
253 int
xfs_iomap_write_direct(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_fileoff_t count_fsb,unsigned int flags,struct xfs_bmbt_irec * imap,u64 * seq)254 xfs_iomap_write_direct(
255 struct xfs_inode *ip,
256 xfs_fileoff_t offset_fsb,
257 xfs_fileoff_t count_fsb,
258 unsigned int flags,
259 struct xfs_bmbt_irec *imap,
260 u64 *seq)
261 {
262 struct xfs_mount *mp = ip->i_mount;
263 struct xfs_trans *tp;
264 xfs_filblks_t resaligned;
265 int nimaps;
266 unsigned int dblocks, rblocks;
267 bool force = false;
268 int error;
269 int bmapi_flags = XFS_BMAPI_PREALLOC;
270 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
271
272 ASSERT(count_fsb > 0);
273
274 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
275 xfs_get_extsz_hint(ip));
276 if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
277 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
278 rblocks = resaligned;
279 } else {
280 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
281 rblocks = 0;
282 }
283
284 error = xfs_qm_dqattach(ip);
285 if (error)
286 return error;
287
288 /*
289 * For DAX, we do not allocate unwritten extents, but instead we zero
290 * the block before we commit the transaction. Ideally we'd like to do
291 * this outside the transaction context, but if we commit and then crash
292 * we may not have zeroed the blocks and this will be exposed on
293 * recovery of the allocation. Hence we must zero before commit.
294 *
295 * Further, if we are mapping unwritten extents here, we need to zero
296 * and convert them to written so that we don't need an unwritten extent
297 * callback for DAX. This also means that we need to be able to dip into
298 * the reserve block pool for bmbt block allocation if there is no space
299 * left but we need to do unwritten extent conversion.
300 */
301 if (flags & IOMAP_DAX) {
302 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
303 if (imap->br_state == XFS_EXT_UNWRITTEN) {
304 force = true;
305 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
306 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
307 }
308 }
309
310 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
311 rblocks, force, &tp);
312 if (error)
313 return error;
314
315 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, nr_exts);
316 if (error)
317 goto out_trans_cancel;
318
319 /*
320 * From this point onwards we overwrite the imap pointer that the
321 * caller gave to us.
322 */
323 nimaps = 1;
324 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
325 imap, &nimaps);
326 if (error)
327 goto out_trans_cancel;
328
329 /*
330 * Complete the transaction
331 */
332 error = xfs_trans_commit(tp);
333 if (error)
334 goto out_unlock;
335
336 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
337 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
338 error = xfs_alert_fsblock_zero(ip, imap);
339 }
340
341 out_unlock:
342 *seq = xfs_iomap_inode_sequence(ip, 0);
343 xfs_iunlock(ip, XFS_ILOCK_EXCL);
344 return error;
345
346 out_trans_cancel:
347 xfs_trans_cancel(tp);
348 goto out_unlock;
349 }
350
351 STATIC bool
xfs_quota_need_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t alloc_blocks)352 xfs_quota_need_throttle(
353 struct xfs_inode *ip,
354 xfs_dqtype_t type,
355 xfs_fsblock_t alloc_blocks)
356 {
357 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
358 struct xfs_dquot_res *res;
359 struct xfs_dquot_pre *pre;
360
361 if (!dq || !xfs_this_quota_on(ip->i_mount, type))
362 return false;
363
364 if (XFS_IS_REALTIME_INODE(ip)) {
365 res = &dq->q_rtb;
366 pre = &dq->q_rtb_prealloc;
367 } else {
368 res = &dq->q_blk;
369 pre = &dq->q_blk_prealloc;
370 }
371
372 /* no hi watermark, no throttle */
373 if (!pre->q_prealloc_hi_wmark)
374 return false;
375
376 /* under the lo watermark, no throttle */
377 if (res->reserved + alloc_blocks < pre->q_prealloc_lo_wmark)
378 return false;
379
380 return true;
381 }
382
383 STATIC void
xfs_quota_calc_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t * qblocks,int * qshift,int64_t * qfreesp)384 xfs_quota_calc_throttle(
385 struct xfs_inode *ip,
386 xfs_dqtype_t type,
387 xfs_fsblock_t *qblocks,
388 int *qshift,
389 int64_t *qfreesp)
390 {
391 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
392 struct xfs_dquot_res *res;
393 struct xfs_dquot_pre *pre;
394 int64_t freesp;
395 int shift = 0;
396
397 if (!dq) {
398 res = NULL;
399 pre = NULL;
400 } else if (XFS_IS_REALTIME_INODE(ip)) {
401 res = &dq->q_rtb;
402 pre = &dq->q_rtb_prealloc;
403 } else {
404 res = &dq->q_blk;
405 pre = &dq->q_blk_prealloc;
406 }
407
408 /* no dq, or over hi wmark, squash the prealloc completely */
409 if (!res || res->reserved >= pre->q_prealloc_hi_wmark) {
410 *qblocks = 0;
411 *qfreesp = 0;
412 return;
413 }
414
415 freesp = pre->q_prealloc_hi_wmark - res->reserved;
416 if (freesp < pre->q_low_space[XFS_QLOWSP_5_PCNT]) {
417 shift = 2;
418 if (freesp < pre->q_low_space[XFS_QLOWSP_3_PCNT])
419 shift += 2;
420 if (freesp < pre->q_low_space[XFS_QLOWSP_1_PCNT])
421 shift += 2;
422 }
423
424 if (freesp < *qfreesp)
425 *qfreesp = freesp;
426
427 /* only overwrite the throttle values if we are more aggressive */
428 if ((freesp >> shift) < (*qblocks >> *qshift)) {
429 *qblocks = freesp;
430 *qshift = shift;
431 }
432 }
433
434 static int64_t
xfs_iomap_freesp(struct xfs_mount * mp,unsigned int idx,uint64_t low_space[XFS_LOWSP_MAX],int * shift)435 xfs_iomap_freesp(
436 struct xfs_mount *mp,
437 unsigned int idx,
438 uint64_t low_space[XFS_LOWSP_MAX],
439 int *shift)
440 {
441 int64_t freesp;
442
443 freesp = xfs_estimate_freecounter(mp, idx);
444 if (freesp < low_space[XFS_LOWSP_5_PCNT]) {
445 *shift = 2;
446 if (freesp < low_space[XFS_LOWSP_4_PCNT])
447 (*shift)++;
448 if (freesp < low_space[XFS_LOWSP_3_PCNT])
449 (*shift)++;
450 if (freesp < low_space[XFS_LOWSP_2_PCNT])
451 (*shift)++;
452 if (freesp < low_space[XFS_LOWSP_1_PCNT])
453 (*shift)++;
454 }
455 return freesp;
456 }
457
458 /*
459 * If we don't have a user specified preallocation size, dynamically increase
460 * the preallocation size as the size of the file grows. Cap the maximum size
461 * at a single extent or less if the filesystem is near full. The closer the
462 * filesystem is to being full, the smaller the maximum preallocation.
463 */
464 STATIC xfs_fsblock_t
xfs_iomap_prealloc_size(struct xfs_inode * ip,int whichfork,loff_t offset,loff_t count,struct xfs_iext_cursor * icur)465 xfs_iomap_prealloc_size(
466 struct xfs_inode *ip,
467 int whichfork,
468 loff_t offset,
469 loff_t count,
470 struct xfs_iext_cursor *icur)
471 {
472 struct xfs_iext_cursor ncur = *icur;
473 struct xfs_bmbt_irec prev, got;
474 struct xfs_mount *mp = ip->i_mount;
475 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
476 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
477 int64_t freesp;
478 xfs_fsblock_t qblocks;
479 xfs_fsblock_t alloc_blocks = 0;
480 xfs_extlen_t plen;
481 int shift = 0;
482 int qshift = 0;
483
484 /*
485 * As an exception we don't do any preallocation at all if the file is
486 * smaller than the minimum preallocation and we are using the default
487 * dynamic preallocation scheme, as it is likely this is the only write
488 * to the file that is going to be done.
489 */
490 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
491 return 0;
492
493 /*
494 * Use the minimum preallocation size for small files or if we are
495 * writing right after a hole.
496 */
497 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
498 !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
499 prev.br_startoff + prev.br_blockcount < offset_fsb)
500 return mp->m_allocsize_blocks;
501
502 /*
503 * Take the size of the preceding data extents as the basis for the
504 * preallocation size. Note that we don't care if the previous extents
505 * are written or not.
506 */
507 plen = prev.br_blockcount;
508 while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
509 if (plen > XFS_MAX_BMBT_EXTLEN / 2 ||
510 isnullstartblock(got.br_startblock) ||
511 got.br_startoff + got.br_blockcount != prev.br_startoff ||
512 got.br_startblock + got.br_blockcount != prev.br_startblock)
513 break;
514 plen += got.br_blockcount;
515 prev = got;
516 }
517
518 /*
519 * If the size of the extents is greater than half the maximum extent
520 * length, then use the current offset as the basis. This ensures that
521 * for large files the preallocation size always extends to
522 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe
523 * unit/width alignment of real extents.
524 */
525 alloc_blocks = plen * 2;
526 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
527 alloc_blocks = XFS_B_TO_FSB(mp, offset);
528 qblocks = alloc_blocks;
529
530 /*
531 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc
532 * down to the nearest power of two value after throttling. To prevent
533 * the round down from unconditionally reducing the maximum supported
534 * prealloc size, we round up first, apply appropriate throttling, round
535 * down and cap the value to XFS_BMBT_MAX_EXTLEN.
536 */
537 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN),
538 alloc_blocks);
539
540 if (unlikely(XFS_IS_REALTIME_INODE(ip)))
541 freesp = xfs_rtbxlen_to_blen(mp,
542 xfs_iomap_freesp(mp, XC_FREE_RTEXTENTS,
543 mp->m_low_rtexts, &shift));
544 else
545 freesp = xfs_iomap_freesp(mp, XC_FREE_BLOCKS, mp->m_low_space,
546 &shift);
547
548 /*
549 * Check each quota to cap the prealloc size, provide a shift value to
550 * throttle with and adjust amount of available space.
551 */
552 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
553 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
554 &freesp);
555 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
556 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
557 &freesp);
558 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
559 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
560 &freesp);
561
562 /*
563 * The final prealloc size is set to the minimum of free space available
564 * in each of the quotas and the overall filesystem.
565 *
566 * The shift throttle value is set to the maximum value as determined by
567 * the global low free space values and per-quota low free space values.
568 */
569 alloc_blocks = min(alloc_blocks, qblocks);
570 shift = max(shift, qshift);
571
572 if (shift)
573 alloc_blocks >>= shift;
574 /*
575 * rounddown_pow_of_two() returns an undefined result if we pass in
576 * alloc_blocks = 0.
577 */
578 if (alloc_blocks)
579 alloc_blocks = rounddown_pow_of_two(alloc_blocks);
580 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
581 alloc_blocks = XFS_MAX_BMBT_EXTLEN;
582
583 /*
584 * If we are still trying to allocate more space than is
585 * available, squash the prealloc hard. This can happen if we
586 * have a large file on a small filesystem and the above
587 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN.
588 */
589 while (alloc_blocks && alloc_blocks >= freesp)
590 alloc_blocks >>= 4;
591 if (alloc_blocks < mp->m_allocsize_blocks)
592 alloc_blocks = mp->m_allocsize_blocks;
593 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
594 mp->m_allocsize_blocks);
595 return alloc_blocks;
596 }
597
598 int
xfs_iomap_write_unwritten(xfs_inode_t * ip,xfs_off_t offset,xfs_off_t count,bool update_isize)599 xfs_iomap_write_unwritten(
600 xfs_inode_t *ip,
601 xfs_off_t offset,
602 xfs_off_t count,
603 bool update_isize)
604 {
605 xfs_mount_t *mp = ip->i_mount;
606 xfs_fileoff_t offset_fsb;
607 xfs_filblks_t count_fsb;
608 xfs_filblks_t numblks_fsb;
609 int nimaps;
610 xfs_trans_t *tp;
611 xfs_bmbt_irec_t imap;
612 struct inode *inode = VFS_I(ip);
613 xfs_fsize_t i_size;
614 uint resblks;
615 int error;
616
617 trace_xfs_unwritten_convert(ip, offset, count);
618
619 offset_fsb = XFS_B_TO_FSBT(mp, offset);
620 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
621 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
622
623 /*
624 * Reserve enough blocks in this transaction for two complete extent
625 * btree splits. We may be converting the middle part of an unwritten
626 * extent and in this case we will insert two new extents in the btree
627 * each of which could cause a full split.
628 *
629 * This reservation amount will be used in the first call to
630 * xfs_bmbt_split() to select an AG with enough space to satisfy the
631 * rest of the operation.
632 */
633 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
634
635 /* Attach dquots so that bmbt splits are accounted correctly. */
636 error = xfs_qm_dqattach(ip);
637 if (error)
638 return error;
639
640 do {
641 /*
642 * Set up a transaction to convert the range of extents
643 * from unwritten to real. Do allocations in a loop until
644 * we have covered the range passed in.
645 *
646 * Note that we can't risk to recursing back into the filesystem
647 * here as we might be asked to write out the same inode that we
648 * complete here and might deadlock on the iolock.
649 */
650 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
651 0, true, &tp);
652 if (error)
653 return error;
654
655 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
656 XFS_IEXT_WRITE_UNWRITTEN_CNT);
657 if (error)
658 goto error_on_bmapi_transaction;
659
660 /*
661 * Modify the unwritten extent state of the buffer.
662 */
663 nimaps = 1;
664 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
665 XFS_BMAPI_CONVERT, resblks, &imap,
666 &nimaps);
667 if (error)
668 goto error_on_bmapi_transaction;
669
670 /*
671 * Log the updated inode size as we go. We have to be careful
672 * to only log it up to the actual write offset if it is
673 * halfway into a block.
674 */
675 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
676 if (i_size > offset + count)
677 i_size = offset + count;
678 if (update_isize && i_size > i_size_read(inode))
679 i_size_write(inode, i_size);
680 i_size = xfs_new_eof(ip, i_size);
681 if (i_size) {
682 ip->i_disk_size = i_size;
683 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
684 }
685
686 error = xfs_trans_commit(tp);
687 xfs_iunlock(ip, XFS_ILOCK_EXCL);
688 if (error)
689 return error;
690
691 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) {
692 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
693 return xfs_alert_fsblock_zero(ip, &imap);
694 }
695
696 if ((numblks_fsb = imap.br_blockcount) == 0) {
697 /*
698 * The numblks_fsb value should always get
699 * smaller, otherwise the loop is stuck.
700 */
701 ASSERT(imap.br_blockcount);
702 break;
703 }
704 offset_fsb += numblks_fsb;
705 count_fsb -= numblks_fsb;
706 } while (count_fsb > 0);
707
708 return 0;
709
710 error_on_bmapi_transaction:
711 xfs_trans_cancel(tp);
712 xfs_iunlock(ip, XFS_ILOCK_EXCL);
713 return error;
714 }
715
716 static inline bool
imap_needs_alloc(struct inode * inode,unsigned flags,struct xfs_bmbt_irec * imap,int nimaps)717 imap_needs_alloc(
718 struct inode *inode,
719 unsigned flags,
720 struct xfs_bmbt_irec *imap,
721 int nimaps)
722 {
723 /* don't allocate blocks when just zeroing */
724 if (flags & IOMAP_ZERO)
725 return false;
726 if (!nimaps ||
727 imap->br_startblock == HOLESTARTBLOCK ||
728 imap->br_startblock == DELAYSTARTBLOCK)
729 return true;
730 /* we convert unwritten extents before copying the data for DAX */
731 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN)
732 return true;
733 return false;
734 }
735
736 static inline bool
imap_needs_cow(struct xfs_inode * ip,unsigned int flags,struct xfs_bmbt_irec * imap,int nimaps)737 imap_needs_cow(
738 struct xfs_inode *ip,
739 unsigned int flags,
740 struct xfs_bmbt_irec *imap,
741 int nimaps)
742 {
743 if (!xfs_is_cow_inode(ip))
744 return false;
745
746 /* when zeroing we don't have to COW holes or unwritten extents */
747 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
748 if (!nimaps ||
749 imap->br_startblock == HOLESTARTBLOCK ||
750 imap->br_state == XFS_EXT_UNWRITTEN)
751 return false;
752 }
753
754 return true;
755 }
756
757 /*
758 * Extents not yet cached requires exclusive access, don't block for
759 * IOMAP_NOWAIT.
760 *
761 * This is basically an opencoded xfs_ilock_data_map_shared() call, but with
762 * support for IOMAP_NOWAIT.
763 */
764 static int
xfs_ilock_for_iomap(struct xfs_inode * ip,unsigned flags,unsigned * lockmode)765 xfs_ilock_for_iomap(
766 struct xfs_inode *ip,
767 unsigned flags,
768 unsigned *lockmode)
769 {
770 if (flags & IOMAP_NOWAIT) {
771 if (xfs_need_iread_extents(&ip->i_df))
772 return -EAGAIN;
773 if (!xfs_ilock_nowait(ip, *lockmode))
774 return -EAGAIN;
775 } else {
776 if (xfs_need_iread_extents(&ip->i_df))
777 *lockmode = XFS_ILOCK_EXCL;
778 xfs_ilock(ip, *lockmode);
779 }
780
781 return 0;
782 }
783
784 /*
785 * Check that the imap we are going to return to the caller spans the entire
786 * range that the caller requested for the IO.
787 */
788 static bool
imap_spans_range(struct xfs_bmbt_irec * imap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)789 imap_spans_range(
790 struct xfs_bmbt_irec *imap,
791 xfs_fileoff_t offset_fsb,
792 xfs_fileoff_t end_fsb)
793 {
794 if (imap->br_startoff > offset_fsb)
795 return false;
796 if (imap->br_startoff + imap->br_blockcount < end_fsb)
797 return false;
798 return true;
799 }
800
801 static int
xfs_direct_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)802 xfs_direct_write_iomap_begin(
803 struct inode *inode,
804 loff_t offset,
805 loff_t length,
806 unsigned flags,
807 struct iomap *iomap,
808 struct iomap *srcmap)
809 {
810 struct xfs_inode *ip = XFS_I(inode);
811 struct xfs_mount *mp = ip->i_mount;
812 struct xfs_bmbt_irec imap, cmap;
813 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
814 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
815 int nimaps = 1, error = 0;
816 bool shared = false;
817 u16 iomap_flags = 0;
818 unsigned int lockmode;
819 u64 seq;
820
821 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
822
823 if (xfs_is_shutdown(mp))
824 return -EIO;
825
826 /*
827 * Writes that span EOF might trigger an IO size update on completion,
828 * so consider them to be dirty for the purposes of O_DSYNC even if
829 * there is no other metadata changes pending or have been made here.
830 */
831 if (offset + length > i_size_read(inode))
832 iomap_flags |= IOMAP_F_DIRTY;
833
834 /* HW-offload atomics are always used in this path */
835 if (flags & IOMAP_ATOMIC)
836 iomap_flags |= IOMAP_F_ATOMIC_BIO;
837
838 /*
839 * COW writes may allocate delalloc space or convert unwritten COW
840 * extents, so we need to make sure to take the lock exclusively here.
841 */
842 if (xfs_is_cow_inode(ip))
843 lockmode = XFS_ILOCK_EXCL;
844 else
845 lockmode = XFS_ILOCK_SHARED;
846
847 relock:
848 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
849 if (error)
850 return error;
851
852 /*
853 * The reflink iflag could have changed since the earlier unlocked
854 * check, check if it again and relock if needed.
855 */
856 if (xfs_is_cow_inode(ip) && lockmode == XFS_ILOCK_SHARED) {
857 xfs_iunlock(ip, lockmode);
858 lockmode = XFS_ILOCK_EXCL;
859 goto relock;
860 }
861
862 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
863 &nimaps, 0);
864 if (error)
865 goto out_unlock;
866
867 if (imap_needs_cow(ip, flags, &imap, nimaps)) {
868 error = -EAGAIN;
869 if (flags & IOMAP_NOWAIT)
870 goto out_unlock;
871
872 /* may drop and re-acquire the ilock */
873 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
874 &lockmode,
875 (flags & IOMAP_DIRECT) || IS_DAX(inode));
876 if (error)
877 goto out_unlock;
878 if (shared)
879 goto out_found_cow;
880 end_fsb = imap.br_startoff + imap.br_blockcount;
881 length = XFS_FSB_TO_B(mp, end_fsb) - offset;
882 }
883
884 if (imap_needs_alloc(inode, flags, &imap, nimaps))
885 goto allocate_blocks;
886
887 /*
888 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
889 * a single map so that we avoid partial IO failures due to the rest of
890 * the I/O range not covered by this map triggering an EAGAIN condition
891 * when it is subsequently mapped and aborting the I/O.
892 */
893 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
894 error = -EAGAIN;
895 if (!imap_spans_range(&imap, offset_fsb, end_fsb))
896 goto out_unlock;
897 }
898
899 /*
900 * For overwrite only I/O, we cannot convert unwritten extents without
901 * requiring sub-block zeroing. This can only be done under an
902 * exclusive IOLOCK, hence return -EAGAIN if this is not a written
903 * extent to tell the caller to try again.
904 */
905 if (flags & IOMAP_OVERWRITE_ONLY) {
906 error = -EAGAIN;
907 if (imap.br_state != XFS_EXT_NORM &&
908 ((offset | length) & mp->m_blockmask))
909 goto out_unlock;
910 }
911
912 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
913 xfs_iunlock(ip, lockmode);
914 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
915 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
916
917 allocate_blocks:
918 error = -EAGAIN;
919 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
920 goto out_unlock;
921
922 /*
923 * We cap the maximum length we map to a sane size to keep the chunks
924 * of work done where somewhat symmetric with the work writeback does.
925 * This is a completely arbitrary number pulled out of thin air as a
926 * best guess for initial testing.
927 *
928 * Note that the values needs to be less than 32-bits wide until the
929 * lower level functions are updated.
930 */
931 length = min_t(loff_t, length, 1024 * PAGE_SIZE);
932 end_fsb = xfs_iomap_end_fsb(mp, offset, length);
933
934 if (offset + length > XFS_ISIZE(ip))
935 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
936 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
937 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
938 xfs_iunlock(ip, lockmode);
939
940 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
941 flags, &imap, &seq);
942 if (error)
943 return error;
944
945 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
946 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
947 iomap_flags | IOMAP_F_NEW, seq);
948
949 out_found_cow:
950 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
951 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
952 if (imap.br_startblock != HOLESTARTBLOCK) {
953 seq = xfs_iomap_inode_sequence(ip, 0);
954 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
955 if (error)
956 goto out_unlock;
957 }
958 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
959 xfs_iunlock(ip, lockmode);
960 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq);
961
962 out_unlock:
963 if (lockmode)
964 xfs_iunlock(ip, lockmode);
965 return error;
966 }
967
968 const struct iomap_ops xfs_direct_write_iomap_ops = {
969 .iomap_begin = xfs_direct_write_iomap_begin,
970 };
971
972 #ifdef CONFIG_XFS_RT
973 /*
974 * This is really simple. The space has already been reserved before taking the
975 * IOLOCK, the actual block allocation is done just before submitting the bio
976 * and only recorded in the extent map on I/O completion.
977 */
978 static int
xfs_zoned_direct_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)979 xfs_zoned_direct_write_iomap_begin(
980 struct inode *inode,
981 loff_t offset,
982 loff_t length,
983 unsigned flags,
984 struct iomap *iomap,
985 struct iomap *srcmap)
986 {
987 struct xfs_inode *ip = XFS_I(inode);
988 int error;
989
990 ASSERT(!(flags & IOMAP_OVERWRITE_ONLY));
991
992 /*
993 * Needs to be pushed down into the allocator so that only writes into
994 * a single zone can be supported.
995 */
996 if (flags & IOMAP_NOWAIT)
997 return -EAGAIN;
998
999 /*
1000 * Ensure the extent list is in memory in so that we don't have to do
1001 * read it from the I/O completion handler.
1002 */
1003 if (xfs_need_iread_extents(&ip->i_df)) {
1004 xfs_ilock(ip, XFS_ILOCK_EXCL);
1005 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1006 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1007 if (error)
1008 return error;
1009 }
1010
1011 iomap->type = IOMAP_MAPPED;
1012 iomap->flags = IOMAP_F_DIRTY;
1013 iomap->bdev = ip->i_mount->m_rtdev_targp->bt_bdev;
1014 iomap->offset = offset;
1015 iomap->length = length;
1016 iomap->flags = IOMAP_F_ANON_WRITE;
1017 return 0;
1018 }
1019
1020 const struct iomap_ops xfs_zoned_direct_write_iomap_ops = {
1021 .iomap_begin = xfs_zoned_direct_write_iomap_begin,
1022 };
1023 #endif /* CONFIG_XFS_RT */
1024
1025 static int
xfs_dax_write_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1026 xfs_dax_write_iomap_end(
1027 struct inode *inode,
1028 loff_t pos,
1029 loff_t length,
1030 ssize_t written,
1031 unsigned flags,
1032 struct iomap *iomap)
1033 {
1034 struct xfs_inode *ip = XFS_I(inode);
1035
1036 if (!xfs_is_cow_inode(ip))
1037 return 0;
1038
1039 if (!written)
1040 return xfs_reflink_cancel_cow_range(ip, pos, length, true);
1041
1042 return xfs_reflink_end_cow(ip, pos, written);
1043 }
1044
1045 const struct iomap_ops xfs_dax_write_iomap_ops = {
1046 .iomap_begin = xfs_direct_write_iomap_begin,
1047 .iomap_end = xfs_dax_write_iomap_end,
1048 };
1049
1050 /*
1051 * Convert a hole to a delayed allocation.
1052 */
1053 static void
xfs_bmap_add_extent_hole_delay(struct xfs_inode * ip,int whichfork,struct xfs_iext_cursor * icur,struct xfs_bmbt_irec * new)1054 xfs_bmap_add_extent_hole_delay(
1055 struct xfs_inode *ip, /* incore inode pointer */
1056 int whichfork,
1057 struct xfs_iext_cursor *icur,
1058 struct xfs_bmbt_irec *new) /* new data to add to file extents */
1059 {
1060 struct xfs_ifork *ifp; /* inode fork pointer */
1061 xfs_bmbt_irec_t left; /* left neighbor extent entry */
1062 xfs_filblks_t newlen=0; /* new indirect size */
1063 xfs_filblks_t oldlen=0; /* old indirect size */
1064 xfs_bmbt_irec_t right; /* right neighbor extent entry */
1065 uint32_t state = xfs_bmap_fork_to_state(whichfork);
1066 xfs_filblks_t temp; /* temp for indirect calculations */
1067
1068 ifp = xfs_ifork_ptr(ip, whichfork);
1069 ASSERT(isnullstartblock(new->br_startblock));
1070
1071 /*
1072 * Check and set flags if this segment has a left neighbor
1073 */
1074 if (xfs_iext_peek_prev_extent(ifp, icur, &left)) {
1075 state |= BMAP_LEFT_VALID;
1076 if (isnullstartblock(left.br_startblock))
1077 state |= BMAP_LEFT_DELAY;
1078 }
1079
1080 /*
1081 * Check and set flags if the current (right) segment exists.
1082 * If it doesn't exist, we're converting the hole at end-of-file.
1083 */
1084 if (xfs_iext_get_extent(ifp, icur, &right)) {
1085 state |= BMAP_RIGHT_VALID;
1086 if (isnullstartblock(right.br_startblock))
1087 state |= BMAP_RIGHT_DELAY;
1088 }
1089
1090 /*
1091 * Set contiguity flags on the left and right neighbors.
1092 * Don't let extents get too large, even if the pieces are contiguous.
1093 */
1094 if ((state & BMAP_LEFT_VALID) && (state & BMAP_LEFT_DELAY) &&
1095 left.br_startoff + left.br_blockcount == new->br_startoff &&
1096 left.br_blockcount + new->br_blockcount <= XFS_MAX_BMBT_EXTLEN)
1097 state |= BMAP_LEFT_CONTIG;
1098
1099 if ((state & BMAP_RIGHT_VALID) && (state & BMAP_RIGHT_DELAY) &&
1100 new->br_startoff + new->br_blockcount == right.br_startoff &&
1101 new->br_blockcount + right.br_blockcount <= XFS_MAX_BMBT_EXTLEN &&
1102 (!(state & BMAP_LEFT_CONTIG) ||
1103 (left.br_blockcount + new->br_blockcount +
1104 right.br_blockcount <= XFS_MAX_BMBT_EXTLEN)))
1105 state |= BMAP_RIGHT_CONTIG;
1106
1107 /*
1108 * Switch out based on the contiguity flags.
1109 */
1110 switch (state & (BMAP_LEFT_CONTIG | BMAP_RIGHT_CONTIG)) {
1111 case BMAP_LEFT_CONTIG | BMAP_RIGHT_CONTIG:
1112 /*
1113 * New allocation is contiguous with delayed allocations
1114 * on the left and on the right.
1115 * Merge all three into a single extent record.
1116 */
1117 temp = left.br_blockcount + new->br_blockcount +
1118 right.br_blockcount;
1119
1120 oldlen = startblockval(left.br_startblock) +
1121 startblockval(new->br_startblock) +
1122 startblockval(right.br_startblock);
1123 newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp),
1124 oldlen);
1125 left.br_startblock = nullstartblock(newlen);
1126 left.br_blockcount = temp;
1127
1128 xfs_iext_remove(ip, icur, state);
1129 xfs_iext_prev(ifp, icur);
1130 xfs_iext_update_extent(ip, state, icur, &left);
1131 break;
1132
1133 case BMAP_LEFT_CONTIG:
1134 /*
1135 * New allocation is contiguous with a delayed allocation
1136 * on the left.
1137 * Merge the new allocation with the left neighbor.
1138 */
1139 temp = left.br_blockcount + new->br_blockcount;
1140
1141 oldlen = startblockval(left.br_startblock) +
1142 startblockval(new->br_startblock);
1143 newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp),
1144 oldlen);
1145 left.br_blockcount = temp;
1146 left.br_startblock = nullstartblock(newlen);
1147
1148 xfs_iext_prev(ifp, icur);
1149 xfs_iext_update_extent(ip, state, icur, &left);
1150 break;
1151
1152 case BMAP_RIGHT_CONTIG:
1153 /*
1154 * New allocation is contiguous with a delayed allocation
1155 * on the right.
1156 * Merge the new allocation with the right neighbor.
1157 */
1158 temp = new->br_blockcount + right.br_blockcount;
1159 oldlen = startblockval(new->br_startblock) +
1160 startblockval(right.br_startblock);
1161 newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp),
1162 oldlen);
1163 right.br_startoff = new->br_startoff;
1164 right.br_startblock = nullstartblock(newlen);
1165 right.br_blockcount = temp;
1166 xfs_iext_update_extent(ip, state, icur, &right);
1167 break;
1168
1169 case 0:
1170 /*
1171 * New allocation is not contiguous with another
1172 * delayed allocation.
1173 * Insert a new entry.
1174 */
1175 oldlen = newlen = 0;
1176 xfs_iext_insert(ip, icur, new, state);
1177 break;
1178 }
1179 if (oldlen != newlen) {
1180 ASSERT(oldlen > newlen);
1181 xfs_add_fdblocks(ip->i_mount, oldlen - newlen);
1182
1183 /*
1184 * Nothing to do for disk quota accounting here.
1185 */
1186 xfs_mod_delalloc(ip, 0, (int64_t)newlen - oldlen);
1187 }
1188 }
1189
1190 /*
1191 * Add a delayed allocation extent to an inode. Blocks are reserved from the
1192 * global pool and the extent inserted into the inode in-core extent tree.
1193 *
1194 * On entry, got refers to the first extent beyond the offset of the extent to
1195 * allocate or eof is specified if no such extent exists. On return, got refers
1196 * to the extent record that was inserted to the inode fork.
1197 *
1198 * Note that the allocated extent may have been merged with contiguous extents
1199 * during insertion into the inode fork. Thus, got does not reflect the current
1200 * state of the inode fork on return. If necessary, the caller can use lastx to
1201 * look up the updated record in the inode fork.
1202 */
1203 static int
xfs_bmapi_reserve_delalloc(struct xfs_inode * ip,int whichfork,xfs_fileoff_t off,xfs_filblks_t len,xfs_filblks_t prealloc,struct xfs_bmbt_irec * got,struct xfs_iext_cursor * icur,int eof)1204 xfs_bmapi_reserve_delalloc(
1205 struct xfs_inode *ip,
1206 int whichfork,
1207 xfs_fileoff_t off,
1208 xfs_filblks_t len,
1209 xfs_filblks_t prealloc,
1210 struct xfs_bmbt_irec *got,
1211 struct xfs_iext_cursor *icur,
1212 int eof)
1213 {
1214 struct xfs_mount *mp = ip->i_mount;
1215 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
1216 xfs_extlen_t alen;
1217 xfs_extlen_t indlen;
1218 uint64_t fdblocks;
1219 int error;
1220 xfs_fileoff_t aoff;
1221 bool use_cowextszhint =
1222 whichfork == XFS_COW_FORK && !prealloc;
1223
1224 retry:
1225 /*
1226 * Cap the alloc length. Keep track of prealloc so we know whether to
1227 * tag the inode before we return.
1228 */
1229 aoff = off;
1230 alen = XFS_FILBLKS_MIN(len + prealloc, XFS_MAX_BMBT_EXTLEN);
1231 if (!eof)
1232 alen = XFS_FILBLKS_MIN(alen, got->br_startoff - aoff);
1233 if (prealloc && alen >= len)
1234 prealloc = alen - len;
1235
1236 /*
1237 * If we're targetting the COW fork but aren't creating a speculative
1238 * posteof preallocation, try to expand the reservation to align with
1239 * the COW extent size hint if there's sufficient free space.
1240 *
1241 * Unlike the data fork, the CoW cancellation functions will free all
1242 * the reservations at inactivation, so we don't require that every
1243 * delalloc reservation have a dirty pagecache.
1244 */
1245 if (use_cowextszhint) {
1246 struct xfs_bmbt_irec prev;
1247 xfs_extlen_t extsz = xfs_get_cowextsz_hint(ip);
1248
1249 if (!xfs_iext_peek_prev_extent(ifp, icur, &prev))
1250 prev.br_startoff = NULLFILEOFF;
1251
1252 error = xfs_bmap_extsize_align(mp, got, &prev, extsz, 0, eof,
1253 1, 0, &aoff, &alen);
1254 ASSERT(!error);
1255 }
1256
1257 /*
1258 * Make a transaction-less quota reservation for delayed allocation
1259 * blocks. This number gets adjusted later. We return if we haven't
1260 * allocated blocks already inside this loop.
1261 */
1262 error = xfs_quota_reserve_blkres(ip, alen);
1263 if (error)
1264 goto out;
1265
1266 /*
1267 * Split changing sb for alen and indlen since they could be coming
1268 * from different places.
1269 */
1270 indlen = (xfs_extlen_t)xfs_bmap_worst_indlen(ip, alen);
1271 ASSERT(indlen > 0);
1272
1273 fdblocks = indlen;
1274 if (XFS_IS_REALTIME_INODE(ip)) {
1275 ASSERT(!xfs_is_zoned_inode(ip));
1276 error = xfs_dec_frextents(mp, xfs_blen_to_rtbxlen(mp, alen));
1277 if (error)
1278 goto out_unreserve_quota;
1279 } else {
1280 fdblocks += alen;
1281 }
1282
1283 error = xfs_dec_fdblocks(mp, fdblocks, false);
1284 if (error)
1285 goto out_unreserve_frextents;
1286
1287 ip->i_delayed_blks += alen;
1288 xfs_mod_delalloc(ip, alen, indlen);
1289
1290 got->br_startoff = aoff;
1291 got->br_startblock = nullstartblock(indlen);
1292 got->br_blockcount = alen;
1293 got->br_state = XFS_EXT_NORM;
1294
1295 xfs_bmap_add_extent_hole_delay(ip, whichfork, icur, got);
1296
1297 /*
1298 * Tag the inode if blocks were preallocated. Note that COW fork
1299 * preallocation can occur at the start or end of the extent, even when
1300 * prealloc == 0, so we must also check the aligned offset and length.
1301 */
1302 if (whichfork == XFS_DATA_FORK && prealloc)
1303 xfs_inode_set_eofblocks_tag(ip);
1304 if (whichfork == XFS_COW_FORK && (prealloc || aoff < off || alen > len))
1305 xfs_inode_set_cowblocks_tag(ip);
1306
1307 return 0;
1308
1309 out_unreserve_frextents:
1310 if (XFS_IS_REALTIME_INODE(ip))
1311 xfs_add_frextents(mp, xfs_blen_to_rtbxlen(mp, alen));
1312 out_unreserve_quota:
1313 if (XFS_IS_QUOTA_ON(mp))
1314 xfs_quota_unreserve_blkres(ip, alen);
1315 out:
1316 if (error == -ENOSPC || error == -EDQUOT) {
1317 trace_xfs_delalloc_enospc(ip, off, len);
1318
1319 if (prealloc || use_cowextszhint) {
1320 /* retry without any preallocation */
1321 use_cowextszhint = false;
1322 prealloc = 0;
1323 goto retry;
1324 }
1325 }
1326 return error;
1327 }
1328
1329 static int
xfs_zoned_buffered_write_iomap_begin(struct inode * inode,loff_t offset,loff_t count,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1330 xfs_zoned_buffered_write_iomap_begin(
1331 struct inode *inode,
1332 loff_t offset,
1333 loff_t count,
1334 unsigned flags,
1335 struct iomap *iomap,
1336 struct iomap *srcmap)
1337 {
1338 struct iomap_iter *iter =
1339 container_of(iomap, struct iomap_iter, iomap);
1340 struct xfs_zone_alloc_ctx *ac = iter->private;
1341 struct xfs_inode *ip = XFS_I(inode);
1342 struct xfs_mount *mp = ip->i_mount;
1343 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1344 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1345 u16 iomap_flags = IOMAP_F_SHARED;
1346 unsigned int lockmode = XFS_ILOCK_EXCL;
1347 xfs_filblks_t count_fsb;
1348 xfs_extlen_t indlen;
1349 struct xfs_bmbt_irec got;
1350 struct xfs_iext_cursor icur;
1351 int error = 0;
1352
1353 ASSERT(!xfs_get_extsz_hint(ip));
1354 ASSERT(!(flags & IOMAP_UNSHARE));
1355 ASSERT(ac);
1356
1357 if (xfs_is_shutdown(mp))
1358 return -EIO;
1359
1360 error = xfs_qm_dqattach(ip);
1361 if (error)
1362 return error;
1363
1364 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1365 if (error)
1366 return error;
1367
1368 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
1369 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
1370 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
1371 error = -EFSCORRUPTED;
1372 goto out_unlock;
1373 }
1374
1375 XFS_STATS_INC(mp, xs_blk_mapw);
1376
1377 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1378 if (error)
1379 goto out_unlock;
1380
1381 /*
1382 * For zeroing operations check if there is any data to zero first.
1383 *
1384 * For regular writes we always need to allocate new blocks, but need to
1385 * provide the source mapping when the range is unaligned to support
1386 * read-modify-write of the whole block in the page cache.
1387 *
1388 * In either case we need to limit the reported range to the boundaries
1389 * of the source map in the data fork.
1390 */
1391 if (!IS_ALIGNED(offset, mp->m_sb.sb_blocksize) ||
1392 !IS_ALIGNED(offset + count, mp->m_sb.sb_blocksize) ||
1393 (flags & IOMAP_ZERO)) {
1394 struct xfs_bmbt_irec smap;
1395 struct xfs_iext_cursor scur;
1396
1397 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &scur,
1398 &smap))
1399 smap.br_startoff = end_fsb; /* fake hole until EOF */
1400 if (smap.br_startoff > offset_fsb) {
1401 /*
1402 * We never need to allocate blocks for zeroing a hole.
1403 */
1404 if (flags & IOMAP_ZERO) {
1405 xfs_hole_to_iomap(ip, iomap, offset_fsb,
1406 smap.br_startoff);
1407 goto out_unlock;
1408 }
1409 end_fsb = min(end_fsb, smap.br_startoff);
1410 } else {
1411 end_fsb = min(end_fsb,
1412 smap.br_startoff + smap.br_blockcount);
1413 xfs_trim_extent(&smap, offset_fsb,
1414 end_fsb - offset_fsb);
1415 error = xfs_bmbt_to_iomap(ip, srcmap, &smap, flags, 0,
1416 xfs_iomap_inode_sequence(ip, 0));
1417 if (error)
1418 goto out_unlock;
1419 }
1420 }
1421
1422 if (!ip->i_cowfp)
1423 xfs_ifork_init_cow(ip);
1424
1425 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
1426 got.br_startoff = end_fsb;
1427 if (got.br_startoff <= offset_fsb) {
1428 trace_xfs_reflink_cow_found(ip, &got);
1429 goto done;
1430 }
1431
1432 /*
1433 * Cap the maximum length to keep the chunks of work done here somewhat
1434 * symmetric with the work writeback does.
1435 */
1436 end_fsb = min(end_fsb, got.br_startoff);
1437 count_fsb = min3(end_fsb - offset_fsb, XFS_MAX_BMBT_EXTLEN,
1438 XFS_B_TO_FSB(mp, 1024 * PAGE_SIZE));
1439
1440 /*
1441 * The block reservation is supposed to cover all blocks that the
1442 * operation could possible write, but there is a nasty corner case
1443 * where blocks could be stolen from underneath us:
1444 *
1445 * 1) while this thread iterates over a larger buffered write,
1446 * 2) another thread is causing a write fault that calls into
1447 * ->page_mkwrite in range this thread writes to, using up the
1448 * delalloc reservation created by a previous call to this function.
1449 * 3) another thread does direct I/O on the range that the write fault
1450 * happened on, which causes writeback of the dirty data.
1451 * 4) this then set the stale flag, which cuts the current iomap
1452 * iteration short, causing the new call to ->iomap_begin that gets
1453 * us here again, but now without a sufficient reservation.
1454 *
1455 * This is a very unusual I/O pattern, and nothing but generic/095 is
1456 * known to hit it. There's not really much we can do here, so turn this
1457 * into a short write.
1458 */
1459 if (count_fsb > ac->reserved_blocks) {
1460 xfs_warn_ratelimited(mp,
1461 "Short write on ino 0x%llx comm %.20s due to three-way race with write fault and direct I/O",
1462 ip->i_ino, current->comm);
1463 count_fsb = ac->reserved_blocks;
1464 if (!count_fsb) {
1465 error = -EIO;
1466 goto out_unlock;
1467 }
1468 }
1469
1470 error = xfs_quota_reserve_blkres(ip, count_fsb);
1471 if (error)
1472 goto out_unlock;
1473
1474 indlen = xfs_bmap_worst_indlen(ip, count_fsb);
1475 error = xfs_dec_fdblocks(mp, indlen, false);
1476 if (error)
1477 goto out_unlock;
1478 ip->i_delayed_blks += count_fsb;
1479 xfs_mod_delalloc(ip, count_fsb, indlen);
1480
1481 got.br_startoff = offset_fsb;
1482 got.br_startblock = nullstartblock(indlen);
1483 got.br_blockcount = count_fsb;
1484 got.br_state = XFS_EXT_NORM;
1485 xfs_bmap_add_extent_hole_delay(ip, XFS_COW_FORK, &icur, &got);
1486 ac->reserved_blocks -= count_fsb;
1487 iomap_flags |= IOMAP_F_NEW;
1488
1489 trace_xfs_iomap_alloc(ip, offset, XFS_FSB_TO_B(mp, count_fsb),
1490 XFS_COW_FORK, &got);
1491 done:
1492 error = xfs_bmbt_to_iomap(ip, iomap, &got, flags, iomap_flags,
1493 xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED));
1494 out_unlock:
1495 xfs_iunlock(ip, lockmode);
1496 return error;
1497 }
1498
1499 static int
xfs_buffered_write_iomap_begin(struct inode * inode,loff_t offset,loff_t count,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1500 xfs_buffered_write_iomap_begin(
1501 struct inode *inode,
1502 loff_t offset,
1503 loff_t count,
1504 unsigned flags,
1505 struct iomap *iomap,
1506 struct iomap *srcmap)
1507 {
1508 struct xfs_inode *ip = XFS_I(inode);
1509 struct xfs_mount *mp = ip->i_mount;
1510 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1511 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1512 struct xfs_bmbt_irec imap, cmap;
1513 struct xfs_iext_cursor icur, ccur;
1514 xfs_fsblock_t prealloc_blocks = 0;
1515 bool eof = false, cow_eof = false, shared = false;
1516 int allocfork = XFS_DATA_FORK;
1517 int error = 0;
1518 unsigned int lockmode = XFS_ILOCK_EXCL;
1519 unsigned int iomap_flags = 0;
1520 u64 seq;
1521
1522 if (xfs_is_shutdown(mp))
1523 return -EIO;
1524
1525 if (xfs_is_zoned_inode(ip))
1526 return xfs_zoned_buffered_write_iomap_begin(inode, offset,
1527 count, flags, iomap, srcmap);
1528
1529 /* we can't use delayed allocations when using extent size hints */
1530 if (xfs_get_extsz_hint(ip))
1531 return xfs_direct_write_iomap_begin(inode, offset, count,
1532 flags, iomap, srcmap);
1533
1534 error = xfs_qm_dqattach(ip);
1535 if (error)
1536 return error;
1537
1538 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1539 if (error)
1540 return error;
1541
1542 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
1543 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
1544 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
1545 error = -EFSCORRUPTED;
1546 goto out_unlock;
1547 }
1548
1549 XFS_STATS_INC(mp, xs_blk_mapw);
1550
1551 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1552 if (error)
1553 goto out_unlock;
1554
1555 /*
1556 * Search the data fork first to look up our source mapping. We
1557 * always need the data fork map, as we have to return it to the
1558 * iomap code so that the higher level write code can read data in to
1559 * perform read-modify-write cycles for unaligned writes.
1560 */
1561 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
1562 if (eof)
1563 imap.br_startoff = end_fsb; /* fake hole until the end */
1564
1565 /* We never need to allocate blocks for zeroing or unsharing a hole. */
1566 if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) &&
1567 imap.br_startoff > offset_fsb) {
1568 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
1569 goto out_unlock;
1570 }
1571
1572 /*
1573 * For zeroing, trim a delalloc extent that extends beyond the EOF
1574 * block. If it starts beyond the EOF block, convert it to an
1575 * unwritten extent.
1576 */
1577 if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb &&
1578 isnullstartblock(imap.br_startblock)) {
1579 xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
1580
1581 if (offset_fsb >= eof_fsb)
1582 goto convert_delay;
1583 if (end_fsb > eof_fsb) {
1584 end_fsb = eof_fsb;
1585 xfs_trim_extent(&imap, offset_fsb,
1586 end_fsb - offset_fsb);
1587 }
1588 }
1589
1590 /*
1591 * Search the COW fork extent list even if we did not find a data fork
1592 * extent. This serves two purposes: first this implements the
1593 * speculative preallocation using cowextsize, so that we also unshare
1594 * block adjacent to shared blocks instead of just the shared blocks
1595 * themselves. Second the lookup in the extent list is generally faster
1596 * than going out to the shared extent tree.
1597 */
1598 if (xfs_is_cow_inode(ip)) {
1599 if (!ip->i_cowfp) {
1600 ASSERT(!xfs_is_reflink_inode(ip));
1601 xfs_ifork_init_cow(ip);
1602 }
1603 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
1604 &ccur, &cmap);
1605 if (!cow_eof && cmap.br_startoff <= offset_fsb) {
1606 trace_xfs_reflink_cow_found(ip, &cmap);
1607 goto found_cow;
1608 }
1609 }
1610
1611 if (imap.br_startoff <= offset_fsb) {
1612 /*
1613 * For reflink files we may need a delalloc reservation when
1614 * overwriting shared extents. This includes zeroing of
1615 * existing extents that contain data.
1616 */
1617 if (!xfs_is_cow_inode(ip) ||
1618 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
1619 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1620 &imap);
1621 goto found_imap;
1622 }
1623
1624 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1625
1626 /* Trim the mapping to the nearest shared extent boundary. */
1627 error = xfs_bmap_trim_cow(ip, &imap, &shared);
1628 if (error)
1629 goto out_unlock;
1630
1631 /* Not shared? Just report the (potentially capped) extent. */
1632 if (!shared) {
1633 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1634 &imap);
1635 goto found_imap;
1636 }
1637
1638 /*
1639 * Fork all the shared blocks from our write offset until the
1640 * end of the extent.
1641 */
1642 allocfork = XFS_COW_FORK;
1643 end_fsb = imap.br_startoff + imap.br_blockcount;
1644 } else {
1645 /*
1646 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
1647 * pages to keep the chunks of work done where somewhat
1648 * symmetric with the work writeback does. This is a completely
1649 * arbitrary number pulled out of thin air.
1650 *
1651 * Note that the values needs to be less than 32-bits wide until
1652 * the lower level functions are updated.
1653 */
1654 count = min_t(loff_t, count, 1024 * PAGE_SIZE);
1655 end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1656
1657 if (xfs_is_always_cow_inode(ip))
1658 allocfork = XFS_COW_FORK;
1659 }
1660
1661 if (eof && offset + count > XFS_ISIZE(ip)) {
1662 /*
1663 * Determine the initial size of the preallocation.
1664 * We clean up any extra preallocation when the file is closed.
1665 */
1666 if (xfs_has_allocsize(mp))
1667 prealloc_blocks = mp->m_allocsize_blocks;
1668 else if (allocfork == XFS_DATA_FORK)
1669 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1670 offset, count, &icur);
1671 else
1672 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1673 offset, count, &ccur);
1674 if (prealloc_blocks) {
1675 xfs_extlen_t align;
1676 xfs_off_t end_offset;
1677 xfs_fileoff_t p_end_fsb;
1678
1679 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
1680 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
1681 prealloc_blocks;
1682
1683 align = xfs_eof_alignment(ip);
1684 if (align)
1685 p_end_fsb = roundup_64(p_end_fsb, align);
1686
1687 p_end_fsb = min(p_end_fsb,
1688 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1689 ASSERT(p_end_fsb > offset_fsb);
1690 prealloc_blocks = p_end_fsb - end_fsb;
1691 }
1692 }
1693
1694 /*
1695 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
1696 * them out if the write happens to fail.
1697 */
1698 iomap_flags |= IOMAP_F_NEW;
1699 if (allocfork == XFS_COW_FORK) {
1700 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1701 end_fsb - offset_fsb, prealloc_blocks, &cmap,
1702 &ccur, cow_eof);
1703 if (error)
1704 goto out_unlock;
1705
1706 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
1707 goto found_cow;
1708 }
1709
1710 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1711 end_fsb - offset_fsb, prealloc_blocks, &imap, &icur,
1712 eof);
1713 if (error)
1714 goto out_unlock;
1715
1716 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
1717 found_imap:
1718 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
1719 xfs_iunlock(ip, lockmode);
1720 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
1721
1722 convert_delay:
1723 xfs_iunlock(ip, lockmode);
1724 truncate_pagecache(inode, offset);
1725 error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset,
1726 iomap, NULL);
1727 if (error)
1728 return error;
1729
1730 trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap);
1731 return 0;
1732
1733 found_cow:
1734 if (imap.br_startoff <= offset_fsb) {
1735 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0,
1736 xfs_iomap_inode_sequence(ip, 0));
1737 if (error)
1738 goto out_unlock;
1739 } else {
1740 xfs_trim_extent(&cmap, offset_fsb,
1741 imap.br_startoff - offset_fsb);
1742 }
1743
1744 iomap_flags |= IOMAP_F_SHARED;
1745 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
1746 xfs_iunlock(ip, lockmode);
1747 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, iomap_flags, seq);
1748
1749 out_unlock:
1750 xfs_iunlock(ip, lockmode);
1751 return error;
1752 }
1753
1754 static void
xfs_buffered_write_delalloc_punch(struct inode * inode,loff_t offset,loff_t length,struct iomap * iomap)1755 xfs_buffered_write_delalloc_punch(
1756 struct inode *inode,
1757 loff_t offset,
1758 loff_t length,
1759 struct iomap *iomap)
1760 {
1761 struct iomap_iter *iter =
1762 container_of(iomap, struct iomap_iter, iomap);
1763
1764 xfs_bmap_punch_delalloc_range(XFS_I(inode),
1765 (iomap->flags & IOMAP_F_SHARED) ?
1766 XFS_COW_FORK : XFS_DATA_FORK,
1767 offset, offset + length, iter->private);
1768 }
1769
1770 static int
xfs_buffered_write_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1771 xfs_buffered_write_iomap_end(
1772 struct inode *inode,
1773 loff_t offset,
1774 loff_t length,
1775 ssize_t written,
1776 unsigned flags,
1777 struct iomap *iomap)
1778 {
1779 loff_t start_byte, end_byte;
1780
1781 /* If we didn't reserve the blocks, we're not allowed to punch them. */
1782 if (iomap->type != IOMAP_DELALLOC || !(iomap->flags & IOMAP_F_NEW))
1783 return 0;
1784
1785 /*
1786 * iomap_page_mkwrite() will never fail in a way that requires delalloc
1787 * extents that it allocated to be revoked. Hence never try to release
1788 * them here.
1789 */
1790 if (flags & IOMAP_FAULT)
1791 return 0;
1792
1793 /* Nothing to do if we've written the entire delalloc extent */
1794 start_byte = iomap_last_written_block(inode, offset, written);
1795 end_byte = round_up(offset + length, i_blocksize(inode));
1796 if (start_byte >= end_byte)
1797 return 0;
1798
1799 /* For zeroing operations the callers already hold invalidate_lock. */
1800 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
1801 rwsem_assert_held_write(&inode->i_mapping->invalidate_lock);
1802 iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
1803 iomap, xfs_buffered_write_delalloc_punch);
1804 } else {
1805 filemap_invalidate_lock(inode->i_mapping);
1806 iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
1807 iomap, xfs_buffered_write_delalloc_punch);
1808 filemap_invalidate_unlock(inode->i_mapping);
1809 }
1810
1811 return 0;
1812 }
1813
1814 const struct iomap_ops xfs_buffered_write_iomap_ops = {
1815 .iomap_begin = xfs_buffered_write_iomap_begin,
1816 .iomap_end = xfs_buffered_write_iomap_end,
1817 };
1818
1819 static int
xfs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1820 xfs_read_iomap_begin(
1821 struct inode *inode,
1822 loff_t offset,
1823 loff_t length,
1824 unsigned flags,
1825 struct iomap *iomap,
1826 struct iomap *srcmap)
1827 {
1828 struct xfs_inode *ip = XFS_I(inode);
1829 struct xfs_mount *mp = ip->i_mount;
1830 struct xfs_bmbt_irec imap;
1831 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1832 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
1833 int nimaps = 1, error = 0;
1834 bool shared = false;
1835 unsigned int lockmode = XFS_ILOCK_SHARED;
1836 u64 seq;
1837
1838 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
1839
1840 if (xfs_is_shutdown(mp))
1841 return -EIO;
1842
1843 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1844 if (error)
1845 return error;
1846 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1847 &nimaps, 0);
1848 if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode)))
1849 error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
1850 seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0);
1851 xfs_iunlock(ip, lockmode);
1852
1853 if (error)
1854 return error;
1855 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
1856 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
1857 shared ? IOMAP_F_SHARED : 0, seq);
1858 }
1859
1860 const struct iomap_ops xfs_read_iomap_ops = {
1861 .iomap_begin = xfs_read_iomap_begin,
1862 };
1863
1864 static int
xfs_seek_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1865 xfs_seek_iomap_begin(
1866 struct inode *inode,
1867 loff_t offset,
1868 loff_t length,
1869 unsigned flags,
1870 struct iomap *iomap,
1871 struct iomap *srcmap)
1872 {
1873 struct xfs_inode *ip = XFS_I(inode);
1874 struct xfs_mount *mp = ip->i_mount;
1875 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1876 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1877 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
1878 struct xfs_iext_cursor icur;
1879 struct xfs_bmbt_irec imap, cmap;
1880 int error = 0;
1881 unsigned lockmode;
1882 u64 seq;
1883
1884 if (xfs_is_shutdown(mp))
1885 return -EIO;
1886
1887 lockmode = xfs_ilock_data_map_shared(ip);
1888 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1889 if (error)
1890 goto out_unlock;
1891
1892 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
1893 /*
1894 * If we found a data extent we are done.
1895 */
1896 if (imap.br_startoff <= offset_fsb)
1897 goto done;
1898 data_fsb = imap.br_startoff;
1899 } else {
1900 /*
1901 * Fake a hole until the end of the file.
1902 */
1903 data_fsb = xfs_iomap_end_fsb(mp, offset, length);
1904 }
1905
1906 /*
1907 * If a COW fork extent covers the hole, report it - capped to the next
1908 * data fork extent:
1909 */
1910 if (xfs_inode_has_cow_data(ip) &&
1911 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1912 cow_fsb = cmap.br_startoff;
1913 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
1914 if (data_fsb < cow_fsb + cmap.br_blockcount)
1915 end_fsb = min(end_fsb, data_fsb);
1916 xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb);
1917 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1918 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1919 IOMAP_F_SHARED, seq);
1920 /*
1921 * This is a COW extent, so we must probe the page cache
1922 * because there could be dirty page cache being backed
1923 * by this extent.
1924 */
1925 iomap->type = IOMAP_UNWRITTEN;
1926 goto out_unlock;
1927 }
1928
1929 /*
1930 * Else report a hole, capped to the next found data or COW extent.
1931 */
1932 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
1933 imap.br_blockcount = cow_fsb - offset_fsb;
1934 else
1935 imap.br_blockcount = data_fsb - offset_fsb;
1936 imap.br_startoff = offset_fsb;
1937 imap.br_startblock = HOLESTARTBLOCK;
1938 imap.br_state = XFS_EXT_NORM;
1939 done:
1940 seq = xfs_iomap_inode_sequence(ip, 0);
1941 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1942 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
1943 out_unlock:
1944 xfs_iunlock(ip, lockmode);
1945 return error;
1946 }
1947
1948 const struct iomap_ops xfs_seek_iomap_ops = {
1949 .iomap_begin = xfs_seek_iomap_begin,
1950 };
1951
1952 static int
xfs_xattr_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1953 xfs_xattr_iomap_begin(
1954 struct inode *inode,
1955 loff_t offset,
1956 loff_t length,
1957 unsigned flags,
1958 struct iomap *iomap,
1959 struct iomap *srcmap)
1960 {
1961 struct xfs_inode *ip = XFS_I(inode);
1962 struct xfs_mount *mp = ip->i_mount;
1963 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1964 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1965 struct xfs_bmbt_irec imap;
1966 int nimaps = 1, error = 0;
1967 unsigned lockmode;
1968 int seq;
1969
1970 if (xfs_is_shutdown(mp))
1971 return -EIO;
1972
1973 lockmode = xfs_ilock_attr_map_shared(ip);
1974
1975 /* if there are no attribute fork or extents, return ENOENT */
1976 if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) {
1977 error = -ENOENT;
1978 goto out_unlock;
1979 }
1980
1981 ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL);
1982 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1983 &nimaps, XFS_BMAPI_ATTRFORK);
1984 out_unlock:
1985
1986 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR);
1987 xfs_iunlock(ip, lockmode);
1988
1989 if (error)
1990 return error;
1991 ASSERT(nimaps);
1992 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq);
1993 }
1994
1995 const struct iomap_ops xfs_xattr_iomap_ops = {
1996 .iomap_begin = xfs_xattr_iomap_begin,
1997 };
1998
1999 int
xfs_zero_range(struct xfs_inode * ip,loff_t pos,loff_t len,struct xfs_zone_alloc_ctx * ac,bool * did_zero)2000 xfs_zero_range(
2001 struct xfs_inode *ip,
2002 loff_t pos,
2003 loff_t len,
2004 struct xfs_zone_alloc_ctx *ac,
2005 bool *did_zero)
2006 {
2007 struct inode *inode = VFS_I(ip);
2008
2009 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
2010
2011 if (IS_DAX(inode))
2012 return dax_zero_range(inode, pos, len, did_zero,
2013 &xfs_dax_write_iomap_ops);
2014 return iomap_zero_range(inode, pos, len, did_zero,
2015 &xfs_buffered_write_iomap_ops, ac);
2016 }
2017
2018 int
xfs_truncate_page(struct xfs_inode * ip,loff_t pos,struct xfs_zone_alloc_ctx * ac,bool * did_zero)2019 xfs_truncate_page(
2020 struct xfs_inode *ip,
2021 loff_t pos,
2022 struct xfs_zone_alloc_ctx *ac,
2023 bool *did_zero)
2024 {
2025 struct inode *inode = VFS_I(ip);
2026
2027 if (IS_DAX(inode))
2028 return dax_truncate_page(inode, pos, did_zero,
2029 &xfs_dax_write_iomap_ops);
2030 return iomap_truncate_page(inode, pos, did_zero,
2031 &xfs_buffered_write_iomap_ops, ac);
2032 }
2033