1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36 #include <linux/bio-integrity.h>
37 #include <linux/module.h>
38 #include <linux/fs.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/rw_hint.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <linux/unaligned.h>
61
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_devinfo.h>
67 #include <scsi/scsi_driver.h>
68 #include <scsi/scsi_eh.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_ioctl.h>
71 #include <scsi/scsicam.h>
72 #include <scsi/scsi_common.h>
73
74 #include "sd.h"
75 #include "scsi_priv.h"
76 #include "scsi_logging.h"
77
78 MODULE_AUTHOR("Eric Youngdale");
79 MODULE_DESCRIPTION("SCSI disk (sd) driver");
80 MODULE_LICENSE("GPL");
81
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
97 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
100 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
101 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
102
103 #define SD_MINORS 16
104
105 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
106 unsigned int mode);
107 static void sd_config_write_same(struct scsi_disk *sdkp,
108 struct queue_limits *lim);
109 static void sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static void sd_shutdown(struct device *);
112 static void scsi_disk_release(struct device *cdev);
113
114 static DEFINE_IDA(sd_index_ida);
115
116 static mempool_t *sd_page_pool;
117 static struct lock_class_key sd_bio_compl_lkclass;
118
119 static const char *sd_cache_types[] = {
120 "write through", "none", "write back",
121 "write back, no read (daft)"
122 };
123
sd_set_flush_flag(struct scsi_disk * sdkp,struct queue_limits * lim)124 static void sd_set_flush_flag(struct scsi_disk *sdkp,
125 struct queue_limits *lim)
126 {
127 if (sdkp->WCE) {
128 lim->features |= BLK_FEAT_WRITE_CACHE;
129 if (sdkp->DPOFUA)
130 lim->features |= BLK_FEAT_FUA;
131 else
132 lim->features &= ~BLK_FEAT_FUA;
133 } else {
134 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
135 }
136 }
137
138 static ssize_t
cache_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)139 cache_type_store(struct device *dev, struct device_attribute *attr,
140 const char *buf, size_t count)
141 {
142 int ct, rcd, wce, sp;
143 struct scsi_disk *sdkp = to_scsi_disk(dev);
144 struct scsi_device *sdp = sdkp->device;
145 char buffer[64];
146 char *buffer_data;
147 struct scsi_mode_data data;
148 struct scsi_sense_hdr sshdr;
149 static const char temp[] = "temporary ";
150 int len, ret;
151
152 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
153 /* no cache control on RBC devices; theoretically they
154 * can do it, but there's probably so many exceptions
155 * it's not worth the risk */
156 return -EINVAL;
157
158 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
159 buf += sizeof(temp) - 1;
160 sdkp->cache_override = 1;
161 } else {
162 sdkp->cache_override = 0;
163 }
164
165 ct = sysfs_match_string(sd_cache_types, buf);
166 if (ct < 0)
167 return -EINVAL;
168
169 rcd = ct & 0x01 ? 1 : 0;
170 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
171
172 if (sdkp->cache_override) {
173 struct queue_limits lim;
174
175 sdkp->WCE = wce;
176 sdkp->RCD = rcd;
177
178 lim = queue_limits_start_update(sdkp->disk->queue);
179 sd_set_flush_flag(sdkp, &lim);
180 ret = queue_limits_commit_update_frozen(sdkp->disk->queue,
181 &lim);
182 if (ret)
183 return ret;
184 return count;
185 }
186
187 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
188 sdkp->max_retries, &data, NULL))
189 return -EINVAL;
190 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
191 data.block_descriptor_length);
192 buffer_data = buffer + data.header_length +
193 data.block_descriptor_length;
194 buffer_data[2] &= ~0x05;
195 buffer_data[2] |= wce << 2 | rcd;
196 sp = buffer_data[0] & 0x80 ? 1 : 0;
197 buffer_data[0] &= ~0x80;
198
199 /*
200 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
201 * received mode parameter buffer before doing MODE SELECT.
202 */
203 data.device_specific = 0;
204
205 ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
206 sdkp->max_retries, &data, &sshdr);
207 if (ret) {
208 if (ret > 0 && scsi_sense_valid(&sshdr))
209 sd_print_sense_hdr(sdkp, &sshdr);
210 return -EINVAL;
211 }
212 sd_revalidate_disk(sdkp->disk);
213 return count;
214 }
215
216 static ssize_t
manage_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)217 manage_start_stop_show(struct device *dev,
218 struct device_attribute *attr, char *buf)
219 {
220 struct scsi_disk *sdkp = to_scsi_disk(dev);
221 struct scsi_device *sdp = sdkp->device;
222
223 return sysfs_emit(buf, "%u\n",
224 sdp->manage_system_start_stop &&
225 sdp->manage_runtime_start_stop &&
226 sdp->manage_shutdown);
227 }
228 static DEVICE_ATTR_RO(manage_start_stop);
229
230 static ssize_t
manage_system_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)231 manage_system_start_stop_show(struct device *dev,
232 struct device_attribute *attr, char *buf)
233 {
234 struct scsi_disk *sdkp = to_scsi_disk(dev);
235 struct scsi_device *sdp = sdkp->device;
236
237 return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
238 }
239
240 static ssize_t
manage_system_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)241 manage_system_start_stop_store(struct device *dev,
242 struct device_attribute *attr,
243 const char *buf, size_t count)
244 {
245 struct scsi_disk *sdkp = to_scsi_disk(dev);
246 struct scsi_device *sdp = sdkp->device;
247 bool v;
248
249 if (!capable(CAP_SYS_ADMIN))
250 return -EACCES;
251
252 if (kstrtobool(buf, &v))
253 return -EINVAL;
254
255 sdp->manage_system_start_stop = v;
256
257 return count;
258 }
259 static DEVICE_ATTR_RW(manage_system_start_stop);
260
261 static ssize_t
manage_runtime_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)262 manage_runtime_start_stop_show(struct device *dev,
263 struct device_attribute *attr, char *buf)
264 {
265 struct scsi_disk *sdkp = to_scsi_disk(dev);
266 struct scsi_device *sdp = sdkp->device;
267
268 return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
269 }
270
271 static ssize_t
manage_runtime_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)272 manage_runtime_start_stop_store(struct device *dev,
273 struct device_attribute *attr,
274 const char *buf, size_t count)
275 {
276 struct scsi_disk *sdkp = to_scsi_disk(dev);
277 struct scsi_device *sdp = sdkp->device;
278 bool v;
279
280 if (!capable(CAP_SYS_ADMIN))
281 return -EACCES;
282
283 if (kstrtobool(buf, &v))
284 return -EINVAL;
285
286 sdp->manage_runtime_start_stop = v;
287
288 return count;
289 }
290 static DEVICE_ATTR_RW(manage_runtime_start_stop);
291
manage_shutdown_show(struct device * dev,struct device_attribute * attr,char * buf)292 static ssize_t manage_shutdown_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
294 {
295 struct scsi_disk *sdkp = to_scsi_disk(dev);
296 struct scsi_device *sdp = sdkp->device;
297
298 return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
299 }
300
manage_shutdown_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)301 static ssize_t manage_shutdown_store(struct device *dev,
302 struct device_attribute *attr,
303 const char *buf, size_t count)
304 {
305 struct scsi_disk *sdkp = to_scsi_disk(dev);
306 struct scsi_device *sdp = sdkp->device;
307 bool v;
308
309 if (!capable(CAP_SYS_ADMIN))
310 return -EACCES;
311
312 if (kstrtobool(buf, &v))
313 return -EINVAL;
314
315 sdp->manage_shutdown = v;
316
317 return count;
318 }
319 static DEVICE_ATTR_RW(manage_shutdown);
320
manage_restart_show(struct device * dev,struct device_attribute * attr,char * buf)321 static ssize_t manage_restart_show(struct device *dev,
322 struct device_attribute *attr, char *buf)
323 {
324 struct scsi_disk *sdkp = to_scsi_disk(dev);
325 struct scsi_device *sdp = sdkp->device;
326
327 return sysfs_emit(buf, "%u\n", sdp->manage_restart);
328 }
329
manage_restart_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)330 static ssize_t manage_restart_store(struct device *dev,
331 struct device_attribute *attr,
332 const char *buf, size_t count)
333 {
334 struct scsi_disk *sdkp = to_scsi_disk(dev);
335 struct scsi_device *sdp = sdkp->device;
336 bool v;
337
338 if (!capable(CAP_SYS_ADMIN))
339 return -EACCES;
340
341 if (kstrtobool(buf, &v))
342 return -EINVAL;
343
344 sdp->manage_restart = v;
345
346 return count;
347 }
348 static DEVICE_ATTR_RW(manage_restart);
349
350 static ssize_t
allow_restart_show(struct device * dev,struct device_attribute * attr,char * buf)351 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
352 {
353 struct scsi_disk *sdkp = to_scsi_disk(dev);
354
355 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
356 }
357
358 static ssize_t
allow_restart_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)359 allow_restart_store(struct device *dev, struct device_attribute *attr,
360 const char *buf, size_t count)
361 {
362 bool v;
363 struct scsi_disk *sdkp = to_scsi_disk(dev);
364 struct scsi_device *sdp = sdkp->device;
365
366 if (!capable(CAP_SYS_ADMIN))
367 return -EACCES;
368
369 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
370 return -EINVAL;
371
372 if (kstrtobool(buf, &v))
373 return -EINVAL;
374
375 sdp->allow_restart = v;
376
377 return count;
378 }
379 static DEVICE_ATTR_RW(allow_restart);
380
381 static ssize_t
cache_type_show(struct device * dev,struct device_attribute * attr,char * buf)382 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
383 {
384 struct scsi_disk *sdkp = to_scsi_disk(dev);
385 int ct = sdkp->RCD + 2*sdkp->WCE;
386
387 return sprintf(buf, "%s\n", sd_cache_types[ct]);
388 }
389 static DEVICE_ATTR_RW(cache_type);
390
391 static ssize_t
FUA_show(struct device * dev,struct device_attribute * attr,char * buf)392 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
393 {
394 struct scsi_disk *sdkp = to_scsi_disk(dev);
395
396 return sprintf(buf, "%u\n", sdkp->DPOFUA);
397 }
398 static DEVICE_ATTR_RO(FUA);
399
400 static ssize_t
protection_type_show(struct device * dev,struct device_attribute * attr,char * buf)401 protection_type_show(struct device *dev, struct device_attribute *attr,
402 char *buf)
403 {
404 struct scsi_disk *sdkp = to_scsi_disk(dev);
405
406 return sprintf(buf, "%u\n", sdkp->protection_type);
407 }
408
409 static ssize_t
protection_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)410 protection_type_store(struct device *dev, struct device_attribute *attr,
411 const char *buf, size_t count)
412 {
413 struct scsi_disk *sdkp = to_scsi_disk(dev);
414 unsigned int val;
415 int err;
416
417 if (!capable(CAP_SYS_ADMIN))
418 return -EACCES;
419
420 err = kstrtouint(buf, 10, &val);
421
422 if (err)
423 return err;
424
425 if (val <= T10_PI_TYPE3_PROTECTION)
426 sdkp->protection_type = val;
427
428 return count;
429 }
430 static DEVICE_ATTR_RW(protection_type);
431
432 static ssize_t
protection_mode_show(struct device * dev,struct device_attribute * attr,char * buf)433 protection_mode_show(struct device *dev, struct device_attribute *attr,
434 char *buf)
435 {
436 struct scsi_disk *sdkp = to_scsi_disk(dev);
437 struct scsi_device *sdp = sdkp->device;
438 unsigned int dif, dix;
439
440 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
441 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
442
443 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
444 dif = 0;
445 dix = 1;
446 }
447
448 if (!dif && !dix)
449 return sprintf(buf, "none\n");
450
451 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
452 }
453 static DEVICE_ATTR_RO(protection_mode);
454
455 static ssize_t
app_tag_own_show(struct device * dev,struct device_attribute * attr,char * buf)456 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
457 {
458 struct scsi_disk *sdkp = to_scsi_disk(dev);
459
460 return sprintf(buf, "%u\n", sdkp->ATO);
461 }
462 static DEVICE_ATTR_RO(app_tag_own);
463
464 static ssize_t
thin_provisioning_show(struct device * dev,struct device_attribute * attr,char * buf)465 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
466 char *buf)
467 {
468 struct scsi_disk *sdkp = to_scsi_disk(dev);
469
470 return sprintf(buf, "%u\n", sdkp->lbpme);
471 }
472 static DEVICE_ATTR_RO(thin_provisioning);
473
474 /* sysfs_match_string() requires dense arrays */
475 static const char *lbp_mode[] = {
476 [SD_LBP_FULL] = "full",
477 [SD_LBP_UNMAP] = "unmap",
478 [SD_LBP_WS16] = "writesame_16",
479 [SD_LBP_WS10] = "writesame_10",
480 [SD_LBP_ZERO] = "writesame_zero",
481 [SD_LBP_DISABLE] = "disabled",
482 };
483
484 static ssize_t
provisioning_mode_show(struct device * dev,struct device_attribute * attr,char * buf)485 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
486 char *buf)
487 {
488 struct scsi_disk *sdkp = to_scsi_disk(dev);
489
490 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
491 }
492
493 static ssize_t
provisioning_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)494 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
495 const char *buf, size_t count)
496 {
497 struct scsi_disk *sdkp = to_scsi_disk(dev);
498 struct scsi_device *sdp = sdkp->device;
499 struct queue_limits lim;
500 int mode, err;
501
502 if (!capable(CAP_SYS_ADMIN))
503 return -EACCES;
504
505 if (sdp->type != TYPE_DISK)
506 return -EINVAL;
507
508 mode = sysfs_match_string(lbp_mode, buf);
509 if (mode < 0)
510 return -EINVAL;
511
512 lim = queue_limits_start_update(sdkp->disk->queue);
513 sd_config_discard(sdkp, &lim, mode);
514 err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
515 if (err)
516 return err;
517 return count;
518 }
519 static DEVICE_ATTR_RW(provisioning_mode);
520
521 /* sysfs_match_string() requires dense arrays */
522 static const char *zeroing_mode[] = {
523 [SD_ZERO_WRITE] = "write",
524 [SD_ZERO_WS] = "writesame",
525 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
526 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
527 };
528
529 static ssize_t
zeroing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)530 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
531 char *buf)
532 {
533 struct scsi_disk *sdkp = to_scsi_disk(dev);
534
535 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
536 }
537
538 static ssize_t
zeroing_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)539 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
540 const char *buf, size_t count)
541 {
542 struct scsi_disk *sdkp = to_scsi_disk(dev);
543 int mode;
544
545 if (!capable(CAP_SYS_ADMIN))
546 return -EACCES;
547
548 mode = sysfs_match_string(zeroing_mode, buf);
549 if (mode < 0)
550 return -EINVAL;
551
552 sdkp->zeroing_mode = mode;
553
554 return count;
555 }
556 static DEVICE_ATTR_RW(zeroing_mode);
557
558 static ssize_t
max_medium_access_timeouts_show(struct device * dev,struct device_attribute * attr,char * buf)559 max_medium_access_timeouts_show(struct device *dev,
560 struct device_attribute *attr, char *buf)
561 {
562 struct scsi_disk *sdkp = to_scsi_disk(dev);
563
564 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
565 }
566
567 static ssize_t
max_medium_access_timeouts_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)568 max_medium_access_timeouts_store(struct device *dev,
569 struct device_attribute *attr, const char *buf,
570 size_t count)
571 {
572 struct scsi_disk *sdkp = to_scsi_disk(dev);
573 int err;
574
575 if (!capable(CAP_SYS_ADMIN))
576 return -EACCES;
577
578 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
579
580 return err ? err : count;
581 }
582 static DEVICE_ATTR_RW(max_medium_access_timeouts);
583
584 static ssize_t
max_write_same_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)585 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
586 char *buf)
587 {
588 struct scsi_disk *sdkp = to_scsi_disk(dev);
589
590 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
591 }
592
593 static ssize_t
max_write_same_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)594 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
595 const char *buf, size_t count)
596 {
597 struct scsi_disk *sdkp = to_scsi_disk(dev);
598 struct scsi_device *sdp = sdkp->device;
599 struct queue_limits lim;
600 unsigned long max;
601 int err;
602
603 if (!capable(CAP_SYS_ADMIN))
604 return -EACCES;
605
606 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
607 return -EINVAL;
608
609 err = kstrtoul(buf, 10, &max);
610
611 if (err)
612 return err;
613
614 if (max == 0)
615 sdp->no_write_same = 1;
616 else if (max <= SD_MAX_WS16_BLOCKS) {
617 sdp->no_write_same = 0;
618 sdkp->max_ws_blocks = max;
619 }
620
621 lim = queue_limits_start_update(sdkp->disk->queue);
622 sd_config_write_same(sdkp, &lim);
623 err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
624 if (err)
625 return err;
626 return count;
627 }
628 static DEVICE_ATTR_RW(max_write_same_blocks);
629
630 static ssize_t
zoned_cap_show(struct device * dev,struct device_attribute * attr,char * buf)631 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
632 {
633 struct scsi_disk *sdkp = to_scsi_disk(dev);
634
635 if (sdkp->device->type == TYPE_ZBC)
636 return sprintf(buf, "host-managed\n");
637 if (sdkp->zoned == 1)
638 return sprintf(buf, "host-aware\n");
639 if (sdkp->zoned == 2)
640 return sprintf(buf, "drive-managed\n");
641 return sprintf(buf, "none\n");
642 }
643 static DEVICE_ATTR_RO(zoned_cap);
644
645 static ssize_t
max_retries_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)646 max_retries_store(struct device *dev, struct device_attribute *attr,
647 const char *buf, size_t count)
648 {
649 struct scsi_disk *sdkp = to_scsi_disk(dev);
650 struct scsi_device *sdev = sdkp->device;
651 int retries, err;
652
653 err = kstrtoint(buf, 10, &retries);
654 if (err)
655 return err;
656
657 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
658 sdkp->max_retries = retries;
659 return count;
660 }
661
662 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
663 SD_MAX_RETRIES);
664 return -EINVAL;
665 }
666
667 static ssize_t
max_retries_show(struct device * dev,struct device_attribute * attr,char * buf)668 max_retries_show(struct device *dev, struct device_attribute *attr,
669 char *buf)
670 {
671 struct scsi_disk *sdkp = to_scsi_disk(dev);
672
673 return sprintf(buf, "%d\n", sdkp->max_retries);
674 }
675
676 static DEVICE_ATTR_RW(max_retries);
677
678 static struct attribute *sd_disk_attrs[] = {
679 &dev_attr_cache_type.attr,
680 &dev_attr_FUA.attr,
681 &dev_attr_allow_restart.attr,
682 &dev_attr_manage_start_stop.attr,
683 &dev_attr_manage_system_start_stop.attr,
684 &dev_attr_manage_runtime_start_stop.attr,
685 &dev_attr_manage_shutdown.attr,
686 &dev_attr_manage_restart.attr,
687 &dev_attr_protection_type.attr,
688 &dev_attr_protection_mode.attr,
689 &dev_attr_app_tag_own.attr,
690 &dev_attr_thin_provisioning.attr,
691 &dev_attr_provisioning_mode.attr,
692 &dev_attr_zeroing_mode.attr,
693 &dev_attr_max_write_same_blocks.attr,
694 &dev_attr_max_medium_access_timeouts.attr,
695 &dev_attr_zoned_cap.attr,
696 &dev_attr_max_retries.attr,
697 NULL,
698 };
699 ATTRIBUTE_GROUPS(sd_disk);
700
701 static struct class sd_disk_class = {
702 .name = "scsi_disk",
703 .dev_release = scsi_disk_release,
704 .dev_groups = sd_disk_groups,
705 };
706
707 /*
708 * Don't request a new module, as that could deadlock in multipath
709 * environment.
710 */
sd_default_probe(dev_t devt)711 static void sd_default_probe(dev_t devt)
712 {
713 }
714
715 /*
716 * Device no to disk mapping:
717 *
718 * major disc2 disc p1
719 * |............|.............|....|....| <- dev_t
720 * 31 20 19 8 7 4 3 0
721 *
722 * Inside a major, we have 16k disks, however mapped non-
723 * contiguously. The first 16 disks are for major0, the next
724 * ones with major1, ... Disk 256 is for major0 again, disk 272
725 * for major1, ...
726 * As we stay compatible with our numbering scheme, we can reuse
727 * the well-know SCSI majors 8, 65--71, 136--143.
728 */
sd_major(int major_idx)729 static int sd_major(int major_idx)
730 {
731 switch (major_idx) {
732 case 0:
733 return SCSI_DISK0_MAJOR;
734 case 1 ... 7:
735 return SCSI_DISK1_MAJOR + major_idx - 1;
736 case 8 ... 15:
737 return SCSI_DISK8_MAJOR + major_idx - 8;
738 default:
739 BUG();
740 return 0; /* shut up gcc */
741 }
742 }
743
744 #ifdef CONFIG_BLK_SED_OPAL
sd_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)745 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
746 size_t len, bool send)
747 {
748 struct scsi_disk *sdkp = data;
749 struct scsi_device *sdev = sdkp->device;
750 u8 cdb[12] = { 0, };
751 const struct scsi_exec_args exec_args = {
752 .req_flags = BLK_MQ_REQ_PM,
753 };
754 int ret;
755
756 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
757 cdb[1] = secp;
758 put_unaligned_be16(spsp, &cdb[2]);
759 put_unaligned_be32(len, &cdb[6]);
760
761 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
762 buffer, len, SD_TIMEOUT, sdkp->max_retries,
763 &exec_args);
764 return ret <= 0 ? ret : -EIO;
765 }
766 #endif /* CONFIG_BLK_SED_OPAL */
767
768 /*
769 * Look up the DIX operation based on whether the command is read or
770 * write and whether dix and dif are enabled.
771 */
sd_prot_op(bool write,bool dix,bool dif)772 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
773 {
774 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
775 static const unsigned int ops[] = { /* wrt dix dif */
776 SCSI_PROT_NORMAL, /* 0 0 0 */
777 SCSI_PROT_READ_STRIP, /* 0 0 1 */
778 SCSI_PROT_READ_INSERT, /* 0 1 0 */
779 SCSI_PROT_READ_PASS, /* 0 1 1 */
780 SCSI_PROT_NORMAL, /* 1 0 0 */
781 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
782 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
783 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
784 };
785
786 return ops[write << 2 | dix << 1 | dif];
787 }
788
789 /*
790 * Returns a mask of the protection flags that are valid for a given DIX
791 * operation.
792 */
sd_prot_flag_mask(unsigned int prot_op)793 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
794 {
795 static const unsigned int flag_mask[] = {
796 [SCSI_PROT_NORMAL] = 0,
797
798 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
799 SCSI_PROT_GUARD_CHECK |
800 SCSI_PROT_REF_CHECK |
801 SCSI_PROT_REF_INCREMENT,
802
803 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
804 SCSI_PROT_IP_CHECKSUM,
805
806 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
807 SCSI_PROT_GUARD_CHECK |
808 SCSI_PROT_REF_CHECK |
809 SCSI_PROT_REF_INCREMENT |
810 SCSI_PROT_IP_CHECKSUM,
811
812 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
813 SCSI_PROT_REF_INCREMENT,
814
815 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
816 SCSI_PROT_REF_CHECK |
817 SCSI_PROT_REF_INCREMENT |
818 SCSI_PROT_IP_CHECKSUM,
819
820 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
821 SCSI_PROT_GUARD_CHECK |
822 SCSI_PROT_REF_CHECK |
823 SCSI_PROT_REF_INCREMENT |
824 SCSI_PROT_IP_CHECKSUM,
825 };
826
827 return flag_mask[prot_op];
828 }
829
sd_setup_protect_cmnd(struct scsi_cmnd * scmd,unsigned int dix,unsigned int dif)830 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
831 unsigned int dix, unsigned int dif)
832 {
833 struct request *rq = scsi_cmd_to_rq(scmd);
834 struct bio *bio = rq->bio;
835 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
836 unsigned int protect = 0;
837
838 if (dix) { /* DIX Type 0, 1, 2, 3 */
839 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
840 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
841
842 if (bio_integrity_flagged(bio, BIP_CHECK_GUARD))
843 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
844 }
845
846 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
847 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
848
849 if (bio_integrity_flagged(bio, BIP_CHECK_REFTAG))
850 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
851 }
852
853 if (dif) { /* DIX/DIF Type 1, 2, 3 */
854 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
855
856 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
857 protect = 3 << 5; /* Disable target PI checking */
858 else
859 protect = 1 << 5; /* Enable target PI checking */
860 }
861
862 scsi_set_prot_op(scmd, prot_op);
863 scsi_set_prot_type(scmd, dif);
864 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
865
866 return protect;
867 }
868
sd_disable_discard(struct scsi_disk * sdkp)869 static void sd_disable_discard(struct scsi_disk *sdkp)
870 {
871 sdkp->provisioning_mode = SD_LBP_DISABLE;
872 blk_queue_disable_discard(sdkp->disk->queue);
873 }
874
sd_config_discard(struct scsi_disk * sdkp,struct queue_limits * lim,unsigned int mode)875 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
876 unsigned int mode)
877 {
878 unsigned int logical_block_size = sdkp->device->sector_size;
879 unsigned int max_blocks = 0;
880
881 lim->discard_alignment = sdkp->unmap_alignment * logical_block_size;
882 lim->discard_granularity = max(sdkp->physical_block_size,
883 sdkp->unmap_granularity * logical_block_size);
884 sdkp->provisioning_mode = mode;
885
886 switch (mode) {
887
888 case SD_LBP_FULL:
889 case SD_LBP_DISABLE:
890 break;
891
892 case SD_LBP_UNMAP:
893 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
894 (u32)SD_MAX_WS16_BLOCKS);
895 break;
896
897 case SD_LBP_WS16:
898 if (sdkp->device->unmap_limit_for_ws)
899 max_blocks = sdkp->max_unmap_blocks;
900 else
901 max_blocks = sdkp->max_ws_blocks;
902
903 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
904 break;
905
906 case SD_LBP_WS10:
907 if (sdkp->device->unmap_limit_for_ws)
908 max_blocks = sdkp->max_unmap_blocks;
909 else
910 max_blocks = sdkp->max_ws_blocks;
911
912 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
913 break;
914
915 case SD_LBP_ZERO:
916 max_blocks = min_not_zero(sdkp->max_ws_blocks,
917 (u32)SD_MAX_WS10_BLOCKS);
918 break;
919 }
920
921 lim->max_hw_discard_sectors = max_blocks *
922 (logical_block_size >> SECTOR_SHIFT);
923 }
924
sd_set_special_bvec(struct request * rq,unsigned int data_len)925 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
926 {
927 struct page *page;
928
929 page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
930 if (!page)
931 return NULL;
932 clear_highpage(page);
933 bvec_set_page(&rq->special_vec, page, data_len, 0);
934 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
935 return bvec_virt(&rq->special_vec);
936 }
937
sd_setup_unmap_cmnd(struct scsi_cmnd * cmd)938 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
939 {
940 struct scsi_device *sdp = cmd->device;
941 struct request *rq = scsi_cmd_to_rq(cmd);
942 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
943 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
944 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
945 unsigned int data_len = 24;
946 char *buf;
947
948 buf = sd_set_special_bvec(rq, data_len);
949 if (!buf)
950 return BLK_STS_RESOURCE;
951
952 cmd->cmd_len = 10;
953 cmd->cmnd[0] = UNMAP;
954 cmd->cmnd[8] = 24;
955
956 put_unaligned_be16(6 + 16, &buf[0]);
957 put_unaligned_be16(16, &buf[2]);
958 put_unaligned_be64(lba, &buf[8]);
959 put_unaligned_be32(nr_blocks, &buf[16]);
960
961 cmd->allowed = sdkp->max_retries;
962 cmd->transfersize = data_len;
963 rq->timeout = SD_TIMEOUT;
964
965 return scsi_alloc_sgtables(cmd);
966 }
967
sd_config_atomic(struct scsi_disk * sdkp,struct queue_limits * lim)968 static void sd_config_atomic(struct scsi_disk *sdkp, struct queue_limits *lim)
969 {
970 unsigned int logical_block_size = sdkp->device->sector_size,
971 physical_block_size_sectors, max_atomic, unit_min, unit_max;
972
973 if ((!sdkp->max_atomic && !sdkp->max_atomic_with_boundary) ||
974 sdkp->protection_type == T10_PI_TYPE2_PROTECTION)
975 return;
976
977 physical_block_size_sectors = sdkp->physical_block_size /
978 sdkp->device->sector_size;
979
980 unit_min = rounddown_pow_of_two(sdkp->atomic_granularity ?
981 sdkp->atomic_granularity :
982 physical_block_size_sectors);
983
984 /*
985 * Only use atomic boundary when we have the odd scenario of
986 * sdkp->max_atomic == 0, which the spec does permit.
987 */
988 if (sdkp->max_atomic) {
989 max_atomic = sdkp->max_atomic;
990 unit_max = rounddown_pow_of_two(sdkp->max_atomic);
991 sdkp->use_atomic_write_boundary = 0;
992 } else {
993 max_atomic = sdkp->max_atomic_with_boundary;
994 unit_max = rounddown_pow_of_two(sdkp->max_atomic_boundary);
995 sdkp->use_atomic_write_boundary = 1;
996 }
997
998 /*
999 * Ensure compliance with granularity and alignment. For now, keep it
1000 * simple and just don't support atomic writes for values mismatched
1001 * with max_{boundary}atomic, physical block size, and
1002 * atomic_granularity itself.
1003 *
1004 * We're really being distrustful by checking unit_max also...
1005 */
1006 if (sdkp->atomic_granularity > 1) {
1007 if (unit_min > 1 && unit_min % sdkp->atomic_granularity)
1008 return;
1009 if (unit_max > 1 && unit_max % sdkp->atomic_granularity)
1010 return;
1011 }
1012
1013 if (sdkp->atomic_alignment > 1) {
1014 if (unit_min > 1 && unit_min % sdkp->atomic_alignment)
1015 return;
1016 if (unit_max > 1 && unit_max % sdkp->atomic_alignment)
1017 return;
1018 }
1019
1020 lim->atomic_write_hw_max = max_atomic * logical_block_size;
1021 lim->atomic_write_hw_boundary = 0;
1022 lim->atomic_write_hw_unit_min = unit_min * logical_block_size;
1023 lim->atomic_write_hw_unit_max = unit_max * logical_block_size;
1024 lim->features |= BLK_FEAT_ATOMIC_WRITES;
1025 }
1026
sd_setup_write_same16_cmnd(struct scsi_cmnd * cmd,bool unmap)1027 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
1028 bool unmap)
1029 {
1030 struct scsi_device *sdp = cmd->device;
1031 struct request *rq = scsi_cmd_to_rq(cmd);
1032 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1033 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1034 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1035 u32 data_len = sdp->sector_size;
1036
1037 if (!sd_set_special_bvec(rq, data_len))
1038 return BLK_STS_RESOURCE;
1039
1040 cmd->cmd_len = 16;
1041 cmd->cmnd[0] = WRITE_SAME_16;
1042 if (unmap)
1043 cmd->cmnd[1] = 0x8; /* UNMAP */
1044 put_unaligned_be64(lba, &cmd->cmnd[2]);
1045 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1046
1047 cmd->allowed = sdkp->max_retries;
1048 cmd->transfersize = data_len;
1049 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
1050
1051 return scsi_alloc_sgtables(cmd);
1052 }
1053
sd_setup_write_same10_cmnd(struct scsi_cmnd * cmd,bool unmap)1054 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
1055 bool unmap)
1056 {
1057 struct scsi_device *sdp = cmd->device;
1058 struct request *rq = scsi_cmd_to_rq(cmd);
1059 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1060 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1061 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1062 u32 data_len = sdp->sector_size;
1063
1064 if (!sd_set_special_bvec(rq, data_len))
1065 return BLK_STS_RESOURCE;
1066
1067 cmd->cmd_len = 10;
1068 cmd->cmnd[0] = WRITE_SAME;
1069 if (unmap)
1070 cmd->cmnd[1] = 0x8; /* UNMAP */
1071 put_unaligned_be32(lba, &cmd->cmnd[2]);
1072 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1073
1074 cmd->allowed = sdkp->max_retries;
1075 cmd->transfersize = data_len;
1076 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
1077
1078 return scsi_alloc_sgtables(cmd);
1079 }
1080
sd_setup_write_zeroes_cmnd(struct scsi_cmnd * cmd)1081 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
1082 {
1083 struct request *rq = scsi_cmd_to_rq(cmd);
1084 struct scsi_device *sdp = cmd->device;
1085 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1086 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1087 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1088
1089 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
1090 switch (sdkp->zeroing_mode) {
1091 case SD_ZERO_WS16_UNMAP:
1092 return sd_setup_write_same16_cmnd(cmd, true);
1093 case SD_ZERO_WS10_UNMAP:
1094 return sd_setup_write_same10_cmnd(cmd, true);
1095 }
1096 }
1097
1098 if (sdp->no_write_same) {
1099 rq->rq_flags |= RQF_QUIET;
1100 return BLK_STS_TARGET;
1101 }
1102
1103 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
1104 return sd_setup_write_same16_cmnd(cmd, false);
1105
1106 return sd_setup_write_same10_cmnd(cmd, false);
1107 }
1108
sd_disable_write_same(struct scsi_disk * sdkp)1109 static void sd_disable_write_same(struct scsi_disk *sdkp)
1110 {
1111 sdkp->device->no_write_same = 1;
1112 sdkp->max_ws_blocks = 0;
1113 blk_queue_disable_write_zeroes(sdkp->disk->queue);
1114 }
1115
sd_config_write_same(struct scsi_disk * sdkp,struct queue_limits * lim)1116 static void sd_config_write_same(struct scsi_disk *sdkp,
1117 struct queue_limits *lim)
1118 {
1119 unsigned int logical_block_size = sdkp->device->sector_size;
1120
1121 if (sdkp->device->no_write_same) {
1122 sdkp->max_ws_blocks = 0;
1123 goto out;
1124 }
1125
1126 /* Some devices can not handle block counts above 0xffff despite
1127 * supporting WRITE SAME(16). Consequently we default to 64k
1128 * blocks per I/O unless the device explicitly advertises a
1129 * bigger limit.
1130 */
1131 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1132 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1133 (u32)SD_MAX_WS16_BLOCKS);
1134 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1135 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1136 (u32)SD_MAX_WS10_BLOCKS);
1137 else {
1138 sdkp->device->no_write_same = 1;
1139 sdkp->max_ws_blocks = 0;
1140 }
1141
1142 if (sdkp->lbprz && sdkp->lbpws)
1143 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1144 else if (sdkp->lbprz && sdkp->lbpws10)
1145 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1146 else if (sdkp->max_ws_blocks)
1147 sdkp->zeroing_mode = SD_ZERO_WS;
1148 else
1149 sdkp->zeroing_mode = SD_ZERO_WRITE;
1150
1151 if (sdkp->max_ws_blocks &&
1152 sdkp->physical_block_size > logical_block_size) {
1153 /*
1154 * Reporting a maximum number of blocks that is not aligned
1155 * on the device physical size would cause a large write same
1156 * request to be split into physically unaligned chunks by
1157 * __blkdev_issue_write_zeroes() even if the caller of this
1158 * functions took care to align the large request. So make sure
1159 * the maximum reported is aligned to the device physical block
1160 * size. This is only an optional optimization for regular
1161 * disks, but this is mandatory to avoid failure of large write
1162 * same requests directed at sequential write required zones of
1163 * host-managed ZBC disks.
1164 */
1165 sdkp->max_ws_blocks =
1166 round_down(sdkp->max_ws_blocks,
1167 bytes_to_logical(sdkp->device,
1168 sdkp->physical_block_size));
1169 }
1170
1171 out:
1172 lim->max_write_zeroes_sectors =
1173 sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT);
1174
1175 if (sdkp->zeroing_mode == SD_ZERO_WS16_UNMAP ||
1176 sdkp->zeroing_mode == SD_ZERO_WS10_UNMAP)
1177 lim->max_hw_wzeroes_unmap_sectors =
1178 lim->max_write_zeroes_sectors;
1179 }
1180
sd_setup_flush_cmnd(struct scsi_cmnd * cmd)1181 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1182 {
1183 struct request *rq = scsi_cmd_to_rq(cmd);
1184 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1185
1186 /* flush requests don't perform I/O, zero the S/G table */
1187 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1188
1189 if (cmd->device->use_16_for_sync) {
1190 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1191 cmd->cmd_len = 16;
1192 } else {
1193 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1194 cmd->cmd_len = 10;
1195 }
1196 cmd->transfersize = 0;
1197 cmd->allowed = sdkp->max_retries;
1198
1199 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1200 return BLK_STS_OK;
1201 }
1202
1203 /**
1204 * sd_group_number() - Compute the GROUP NUMBER field
1205 * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
1206 * field.
1207 *
1208 * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
1209 * 0: no relative lifetime.
1210 * 1: shortest relative lifetime.
1211 * 2: second shortest relative lifetime.
1212 * 3 - 0x3d: intermediate relative lifetimes.
1213 * 0x3e: second longest relative lifetime.
1214 * 0x3f: longest relative lifetime.
1215 */
sd_group_number(struct scsi_cmnd * cmd)1216 static u8 sd_group_number(struct scsi_cmnd *cmd)
1217 {
1218 const struct request *rq = scsi_cmd_to_rq(cmd);
1219 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1220
1221 if (!sdkp->rscs)
1222 return 0;
1223
1224 return min3((u32)rq->bio->bi_write_hint,
1225 (u32)sdkp->permanent_stream_count, 0x3fu);
1226 }
1227
sd_setup_rw32_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags,unsigned int dld)1228 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1229 sector_t lba, unsigned int nr_blocks,
1230 unsigned char flags, unsigned int dld)
1231 {
1232 cmd->cmd_len = SD_EXT_CDB_SIZE;
1233 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1234 cmd->cmnd[6] = sd_group_number(cmd);
1235 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1236 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1237 cmd->cmnd[10] = flags;
1238 cmd->cmnd[11] = dld & 0x07;
1239 put_unaligned_be64(lba, &cmd->cmnd[12]);
1240 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1241 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1242
1243 return BLK_STS_OK;
1244 }
1245
sd_setup_rw16_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags,unsigned int dld)1246 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1247 sector_t lba, unsigned int nr_blocks,
1248 unsigned char flags, unsigned int dld)
1249 {
1250 cmd->cmd_len = 16;
1251 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1252 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01);
1253 cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
1254 cmd->cmnd[15] = 0;
1255 put_unaligned_be64(lba, &cmd->cmnd[2]);
1256 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1257
1258 return BLK_STS_OK;
1259 }
1260
sd_setup_rw10_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1261 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1262 sector_t lba, unsigned int nr_blocks,
1263 unsigned char flags)
1264 {
1265 cmd->cmd_len = 10;
1266 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1267 cmd->cmnd[1] = flags;
1268 cmd->cmnd[6] = sd_group_number(cmd);
1269 cmd->cmnd[9] = 0;
1270 put_unaligned_be32(lba, &cmd->cmnd[2]);
1271 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1272
1273 return BLK_STS_OK;
1274 }
1275
sd_setup_rw6_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1276 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1277 sector_t lba, unsigned int nr_blocks,
1278 unsigned char flags)
1279 {
1280 /* Avoid that 0 blocks gets translated into 256 blocks. */
1281 if (WARN_ON_ONCE(nr_blocks == 0))
1282 return BLK_STS_IOERR;
1283
1284 if (unlikely(flags & 0x8)) {
1285 /*
1286 * This happens only if this drive failed 10byte rw
1287 * command with ILLEGAL_REQUEST during operation and
1288 * thus turned off use_10_for_rw.
1289 */
1290 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1291 return BLK_STS_IOERR;
1292 }
1293
1294 cmd->cmd_len = 6;
1295 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1296 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1297 cmd->cmnd[2] = (lba >> 8) & 0xff;
1298 cmd->cmnd[3] = lba & 0xff;
1299 cmd->cmnd[4] = nr_blocks;
1300 cmd->cmnd[5] = 0;
1301
1302 return BLK_STS_OK;
1303 }
1304
1305 /*
1306 * Check if a command has a duration limit set. If it does, and the target
1307 * device supports CDL and the feature is enabled, return the limit
1308 * descriptor index to use. Return 0 (no limit) otherwise.
1309 */
sd_cdl_dld(struct scsi_disk * sdkp,struct scsi_cmnd * scmd)1310 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1311 {
1312 struct scsi_device *sdp = sdkp->device;
1313 int hint;
1314
1315 if (!sdp->cdl_supported || !sdp->cdl_enable)
1316 return 0;
1317
1318 /*
1319 * Use "no limit" if the request ioprio does not specify a duration
1320 * limit hint.
1321 */
1322 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1323 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1324 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1325 return 0;
1326
1327 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1328 }
1329
sd_setup_atomic_cmnd(struct scsi_cmnd * cmd,sector_t lba,unsigned int nr_blocks,bool boundary,unsigned char flags)1330 static blk_status_t sd_setup_atomic_cmnd(struct scsi_cmnd *cmd,
1331 sector_t lba, unsigned int nr_blocks,
1332 bool boundary, unsigned char flags)
1333 {
1334 cmd->cmd_len = 16;
1335 cmd->cmnd[0] = WRITE_ATOMIC_16;
1336 cmd->cmnd[1] = flags;
1337 put_unaligned_be64(lba, &cmd->cmnd[2]);
1338 put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
1339 if (boundary)
1340 put_unaligned_be16(nr_blocks, &cmd->cmnd[10]);
1341 else
1342 put_unaligned_be16(0, &cmd->cmnd[10]);
1343 put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
1344 cmd->cmnd[14] = 0;
1345 cmd->cmnd[15] = 0;
1346
1347 return BLK_STS_OK;
1348 }
1349
sd_setup_read_write_cmnd(struct scsi_cmnd * cmd)1350 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1351 {
1352 struct request *rq = scsi_cmd_to_rq(cmd);
1353 struct scsi_device *sdp = cmd->device;
1354 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1355 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1356 sector_t threshold;
1357 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1358 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1359 bool write = rq_data_dir(rq) == WRITE;
1360 unsigned char protect, fua;
1361 unsigned int dld;
1362 blk_status_t ret;
1363 unsigned int dif;
1364 bool dix;
1365
1366 ret = scsi_alloc_sgtables(cmd);
1367 if (ret != BLK_STS_OK)
1368 return ret;
1369
1370 ret = BLK_STS_IOERR;
1371 if (!scsi_device_online(sdp) || sdp->changed) {
1372 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1373 goto fail;
1374 }
1375
1376 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1377 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1378 goto fail;
1379 }
1380
1381 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1382 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1383 goto fail;
1384 }
1385
1386 /*
1387 * Some SD card readers can't handle accesses which touch the
1388 * last one or two logical blocks. Split accesses as needed.
1389 */
1390 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1391
1392 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1393 if (lba < threshold) {
1394 /* Access up to the threshold but not beyond */
1395 nr_blocks = threshold - lba;
1396 } else {
1397 /* Access only a single logical block */
1398 nr_blocks = 1;
1399 }
1400 }
1401
1402 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1403 dix = scsi_prot_sg_count(cmd);
1404 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1405 dld = sd_cdl_dld(sdkp, cmd);
1406
1407 if (dif || dix)
1408 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1409 else
1410 protect = 0;
1411
1412 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1413 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1414 protect | fua, dld);
1415 } else if (rq->cmd_flags & REQ_ATOMIC) {
1416 ret = sd_setup_atomic_cmnd(cmd, lba, nr_blocks,
1417 sdkp->use_atomic_write_boundary,
1418 protect | fua);
1419 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1420 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1421 protect | fua, dld);
1422 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1423 sdp->use_10_for_rw || protect || rq->bio->bi_write_hint) {
1424 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1425 protect | fua);
1426 } else {
1427 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1428 protect | fua);
1429 }
1430
1431 if (unlikely(ret != BLK_STS_OK))
1432 goto fail;
1433
1434 /*
1435 * We shouldn't disconnect in the middle of a sector, so with a dumb
1436 * host adapter, it's safe to assume that we can at least transfer
1437 * this many bytes between each connect / disconnect.
1438 */
1439 cmd->transfersize = sdp->sector_size;
1440 cmd->underflow = nr_blocks << 9;
1441 cmd->allowed = sdkp->max_retries;
1442 cmd->sdb.length = nr_blocks * sdp->sector_size;
1443
1444 SCSI_LOG_HLQUEUE(1,
1445 scmd_printk(KERN_INFO, cmd,
1446 "%s: block=%llu, count=%d\n", __func__,
1447 (unsigned long long)blk_rq_pos(rq),
1448 blk_rq_sectors(rq)));
1449 SCSI_LOG_HLQUEUE(2,
1450 scmd_printk(KERN_INFO, cmd,
1451 "%s %d/%u 512 byte blocks.\n",
1452 write ? "writing" : "reading", nr_blocks,
1453 blk_rq_sectors(rq)));
1454
1455 /*
1456 * This indicates that the command is ready from our end to be queued.
1457 */
1458 return BLK_STS_OK;
1459 fail:
1460 scsi_free_sgtables(cmd);
1461 return ret;
1462 }
1463
sd_init_command(struct scsi_cmnd * cmd)1464 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1465 {
1466 struct request *rq = scsi_cmd_to_rq(cmd);
1467
1468 switch (req_op(rq)) {
1469 case REQ_OP_DISCARD:
1470 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1471 case SD_LBP_UNMAP:
1472 return sd_setup_unmap_cmnd(cmd);
1473 case SD_LBP_WS16:
1474 return sd_setup_write_same16_cmnd(cmd, true);
1475 case SD_LBP_WS10:
1476 return sd_setup_write_same10_cmnd(cmd, true);
1477 case SD_LBP_ZERO:
1478 return sd_setup_write_same10_cmnd(cmd, false);
1479 default:
1480 return BLK_STS_TARGET;
1481 }
1482 case REQ_OP_WRITE_ZEROES:
1483 return sd_setup_write_zeroes_cmnd(cmd);
1484 case REQ_OP_FLUSH:
1485 return sd_setup_flush_cmnd(cmd);
1486 case REQ_OP_READ:
1487 case REQ_OP_WRITE:
1488 return sd_setup_read_write_cmnd(cmd);
1489 case REQ_OP_ZONE_RESET:
1490 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1491 false);
1492 case REQ_OP_ZONE_RESET_ALL:
1493 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1494 true);
1495 case REQ_OP_ZONE_OPEN:
1496 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1497 case REQ_OP_ZONE_CLOSE:
1498 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1499 case REQ_OP_ZONE_FINISH:
1500 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1501 default:
1502 WARN_ON_ONCE(1);
1503 return BLK_STS_NOTSUPP;
1504 }
1505 }
1506
sd_uninit_command(struct scsi_cmnd * SCpnt)1507 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1508 {
1509 struct request *rq = scsi_cmd_to_rq(SCpnt);
1510
1511 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1512 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1513 }
1514
sd_need_revalidate(struct gendisk * disk,struct scsi_disk * sdkp)1515 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1516 {
1517 if (sdkp->device->removable || sdkp->write_prot) {
1518 if (disk_check_media_change(disk))
1519 return true;
1520 }
1521
1522 /*
1523 * Force a full rescan after ioctl(BLKRRPART). While the disk state has
1524 * nothing to do with partitions, BLKRRPART is used to force a full
1525 * revalidate after things like a format for historical reasons.
1526 */
1527 return test_bit(GD_NEED_PART_SCAN, &disk->state);
1528 }
1529
1530 /**
1531 * sd_open - open a scsi disk device
1532 * @disk: disk to open
1533 * @mode: open mode
1534 *
1535 * Returns 0 if successful. Returns a negated errno value in case
1536 * of error.
1537 *
1538 * Note: This can be called from a user context (e.g. fsck(1) )
1539 * or from within the kernel (e.g. as a result of a mount(1) ).
1540 * In the latter case @inode and @filp carry an abridged amount
1541 * of information as noted above.
1542 *
1543 * Locking: called with disk->open_mutex held.
1544 **/
sd_open(struct gendisk * disk,blk_mode_t mode)1545 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1546 {
1547 struct scsi_disk *sdkp = scsi_disk(disk);
1548 struct scsi_device *sdev = sdkp->device;
1549 int retval;
1550
1551 if (scsi_device_get(sdev))
1552 return -ENXIO;
1553
1554 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1555
1556 /*
1557 * If the device is in error recovery, wait until it is done.
1558 * If the device is offline, then disallow any access to it.
1559 */
1560 retval = -ENXIO;
1561 if (!scsi_block_when_processing_errors(sdev))
1562 goto error_out;
1563
1564 if (sd_need_revalidate(disk, sdkp))
1565 sd_revalidate_disk(disk);
1566
1567 /*
1568 * If the drive is empty, just let the open fail.
1569 */
1570 retval = -ENOMEDIUM;
1571 if (sdev->removable && !sdkp->media_present &&
1572 !(mode & BLK_OPEN_NDELAY))
1573 goto error_out;
1574
1575 /*
1576 * If the device has the write protect tab set, have the open fail
1577 * if the user expects to be able to write to the thing.
1578 */
1579 retval = -EROFS;
1580 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1581 goto error_out;
1582
1583 /*
1584 * It is possible that the disk changing stuff resulted in
1585 * the device being taken offline. If this is the case,
1586 * report this to the user, and don't pretend that the
1587 * open actually succeeded.
1588 */
1589 retval = -ENXIO;
1590 if (!scsi_device_online(sdev))
1591 goto error_out;
1592
1593 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1594 if (scsi_block_when_processing_errors(sdev))
1595 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1596 }
1597
1598 return 0;
1599
1600 error_out:
1601 scsi_device_put(sdev);
1602 return retval;
1603 }
1604
1605 /**
1606 * sd_release - invoked when the (last) close(2) is called on this
1607 * scsi disk.
1608 * @disk: disk to release
1609 *
1610 * Returns 0.
1611 *
1612 * Note: may block (uninterruptible) if error recovery is underway
1613 * on this disk.
1614 *
1615 * Locking: called with disk->open_mutex held.
1616 **/
sd_release(struct gendisk * disk)1617 static void sd_release(struct gendisk *disk)
1618 {
1619 struct scsi_disk *sdkp = scsi_disk(disk);
1620 struct scsi_device *sdev = sdkp->device;
1621
1622 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1623
1624 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1625 if (scsi_block_when_processing_errors(sdev))
1626 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1627 }
1628
1629 scsi_device_put(sdev);
1630 }
1631
sd_getgeo(struct gendisk * disk,struct hd_geometry * geo)1632 static int sd_getgeo(struct gendisk *disk, struct hd_geometry *geo)
1633 {
1634 struct scsi_disk *sdkp = scsi_disk(disk);
1635 struct scsi_device *sdp = sdkp->device;
1636 struct Scsi_Host *host = sdp->host;
1637 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1638 int diskinfo[4];
1639
1640 /* default to most commonly used values */
1641 diskinfo[0] = 0x40; /* 1 << 6 */
1642 diskinfo[1] = 0x20; /* 1 << 5 */
1643 diskinfo[2] = capacity >> 11;
1644
1645 /* override with calculated, extended default, or driver values */
1646 if (host->hostt->bios_param)
1647 host->hostt->bios_param(sdp, disk, capacity, diskinfo);
1648 else
1649 scsicam_bios_param(disk, capacity, diskinfo);
1650
1651 geo->heads = diskinfo[0];
1652 geo->sectors = diskinfo[1];
1653 geo->cylinders = diskinfo[2];
1654 return 0;
1655 }
1656
1657 /**
1658 * sd_ioctl - process an ioctl
1659 * @bdev: target block device
1660 * @mode: open mode
1661 * @cmd: ioctl command number
1662 * @arg: this is third argument given to ioctl(2) system call.
1663 * Often contains a pointer.
1664 *
1665 * Returns 0 if successful (some ioctls return positive numbers on
1666 * success as well). Returns a negated errno value in case of error.
1667 *
1668 * Note: most ioctls are forward onto the block subsystem or further
1669 * down in the scsi subsystem.
1670 **/
sd_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1671 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1672 unsigned int cmd, unsigned long arg)
1673 {
1674 struct gendisk *disk = bdev->bd_disk;
1675 struct scsi_disk *sdkp = scsi_disk(disk);
1676 struct scsi_device *sdp = sdkp->device;
1677 void __user *p = (void __user *)arg;
1678 int error;
1679
1680 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1681 "cmd=0x%x\n", disk->disk_name, cmd));
1682
1683 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1684 return -ENOIOCTLCMD;
1685
1686 /*
1687 * If we are in the middle of error recovery, don't let anyone
1688 * else try and use this device. Also, if error recovery fails, it
1689 * may try and take the device offline, in which case all further
1690 * access to the device is prohibited.
1691 */
1692 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1693 (mode & BLK_OPEN_NDELAY));
1694 if (error)
1695 return error;
1696
1697 if (is_sed_ioctl(cmd))
1698 return sed_ioctl(sdkp->opal_dev, cmd, p);
1699 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1700 }
1701
set_media_not_present(struct scsi_disk * sdkp)1702 static void set_media_not_present(struct scsi_disk *sdkp)
1703 {
1704 if (sdkp->media_present)
1705 sdkp->device->changed = 1;
1706
1707 if (sdkp->device->removable) {
1708 sdkp->media_present = 0;
1709 sdkp->capacity = 0;
1710 }
1711 }
1712
media_not_present(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1713 static int media_not_present(struct scsi_disk *sdkp,
1714 struct scsi_sense_hdr *sshdr)
1715 {
1716 if (!scsi_sense_valid(sshdr))
1717 return 0;
1718
1719 /* not invoked for commands that could return deferred errors */
1720 switch (sshdr->sense_key) {
1721 case UNIT_ATTENTION:
1722 case NOT_READY:
1723 /* medium not present */
1724 if (sshdr->asc == 0x3A) {
1725 set_media_not_present(sdkp);
1726 return 1;
1727 }
1728 }
1729 return 0;
1730 }
1731
1732 /**
1733 * sd_check_events - check media events
1734 * @disk: kernel device descriptor
1735 * @clearing: disk events currently being cleared
1736 *
1737 * Returns mask of DISK_EVENT_*.
1738 *
1739 * Note: this function is invoked from the block subsystem.
1740 **/
sd_check_events(struct gendisk * disk,unsigned int clearing)1741 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1742 {
1743 struct scsi_disk *sdkp = disk->private_data;
1744 struct scsi_device *sdp;
1745 int retval;
1746 bool disk_changed;
1747
1748 if (!sdkp)
1749 return 0;
1750
1751 sdp = sdkp->device;
1752 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1753
1754 /*
1755 * If the device is offline, don't send any commands - just pretend as
1756 * if the command failed. If the device ever comes back online, we
1757 * can deal with it then. It is only because of unrecoverable errors
1758 * that we would ever take a device offline in the first place.
1759 */
1760 if (!scsi_device_online(sdp)) {
1761 set_media_not_present(sdkp);
1762 goto out;
1763 }
1764
1765 /*
1766 * Using TEST_UNIT_READY enables differentiation between drive with
1767 * no cartridge loaded - NOT READY, drive with changed cartridge -
1768 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1769 *
1770 * Drives that auto spin down. eg iomega jaz 1G, will be started
1771 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1772 * sd_revalidate() is called.
1773 */
1774 if (scsi_block_when_processing_errors(sdp)) {
1775 struct scsi_sense_hdr sshdr = { 0, };
1776
1777 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1778 &sshdr);
1779
1780 /* failed to execute TUR, assume media not present */
1781 if (retval < 0 || host_byte(retval)) {
1782 set_media_not_present(sdkp);
1783 goto out;
1784 }
1785
1786 if (media_not_present(sdkp, &sshdr))
1787 goto out;
1788 }
1789
1790 /*
1791 * For removable scsi disk we have to recognise the presence
1792 * of a disk in the drive.
1793 */
1794 if (!sdkp->media_present)
1795 sdp->changed = 1;
1796 sdkp->media_present = 1;
1797 out:
1798 /*
1799 * sdp->changed is set under the following conditions:
1800 *
1801 * Medium present state has changed in either direction.
1802 * Device has indicated UNIT_ATTENTION.
1803 */
1804 disk_changed = sdp->changed;
1805 sdp->changed = 0;
1806 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1807 }
1808
sd_sync_cache(struct scsi_disk * sdkp)1809 static int sd_sync_cache(struct scsi_disk *sdkp)
1810 {
1811 int res;
1812 struct scsi_device *sdp = sdkp->device;
1813 const int timeout = sdp->request_queue->rq_timeout
1814 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1815 /* Leave the rest of the command zero to indicate flush everything. */
1816 const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1817 SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1818 struct scsi_sense_hdr sshdr;
1819 struct scsi_failure failure_defs[] = {
1820 {
1821 .allowed = 3,
1822 .result = SCMD_FAILURE_RESULT_ANY,
1823 },
1824 {}
1825 };
1826 struct scsi_failures failures = {
1827 .failure_definitions = failure_defs,
1828 };
1829 const struct scsi_exec_args exec_args = {
1830 .req_flags = BLK_MQ_REQ_PM,
1831 .sshdr = &sshdr,
1832 .failures = &failures,
1833 };
1834
1835 if (!scsi_device_online(sdp))
1836 return -ENODEV;
1837
1838 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1839 sdkp->max_retries, &exec_args);
1840 if (res) {
1841 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1842
1843 if (res < 0)
1844 return res;
1845
1846 if (scsi_status_is_check_condition(res) &&
1847 scsi_sense_valid(&sshdr)) {
1848 sd_print_sense_hdr(sdkp, &sshdr);
1849
1850 /* we need to evaluate the error return */
1851 if (sshdr.asc == 0x3a || /* medium not present */
1852 sshdr.asc == 0x20 || /* invalid command */
1853 (sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */
1854 /* this is no error here */
1855 return 0;
1856
1857 /*
1858 * If a format is in progress or if the drive does not
1859 * support sync, there is not much we can do because
1860 * this is called during shutdown or suspend so just
1861 * return success so those operations can proceed.
1862 */
1863 if ((sshdr.asc == 0x04 && sshdr.ascq == 0x04) ||
1864 sshdr.sense_key == ILLEGAL_REQUEST)
1865 return 0;
1866 }
1867
1868 switch (host_byte(res)) {
1869 /* ignore errors due to racing a disconnection */
1870 case DID_BAD_TARGET:
1871 case DID_NO_CONNECT:
1872 return 0;
1873 /* signal the upper layer it might try again */
1874 case DID_BUS_BUSY:
1875 case DID_IMM_RETRY:
1876 case DID_REQUEUE:
1877 case DID_SOFT_ERROR:
1878 return -EBUSY;
1879 default:
1880 return -EIO;
1881 }
1882 }
1883 return 0;
1884 }
1885
sd_rescan(struct device * dev)1886 static void sd_rescan(struct device *dev)
1887 {
1888 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1889
1890 sd_revalidate_disk(sdkp->disk);
1891 }
1892
sd_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)1893 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1894 enum blk_unique_id type)
1895 {
1896 struct scsi_device *sdev = scsi_disk(disk)->device;
1897 const struct scsi_vpd *vpd;
1898 const unsigned char *d;
1899 int ret = -ENXIO, len;
1900
1901 rcu_read_lock();
1902 vpd = rcu_dereference(sdev->vpd_pg83);
1903 if (!vpd)
1904 goto out_unlock;
1905
1906 ret = -EINVAL;
1907 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1908 /* we only care about designators with LU association */
1909 if (((d[1] >> 4) & 0x3) != 0x00)
1910 continue;
1911 if ((d[1] & 0xf) != type)
1912 continue;
1913
1914 /*
1915 * Only exit early if a 16-byte descriptor was found. Otherwise
1916 * keep looking as one with more entropy might still show up.
1917 */
1918 len = d[3];
1919 if (len != 8 && len != 12 && len != 16)
1920 continue;
1921 ret = len;
1922 memcpy(id, d + 4, len);
1923 if (len == 16)
1924 break;
1925 }
1926 out_unlock:
1927 rcu_read_unlock();
1928 return ret;
1929 }
1930
sd_scsi_to_pr_err(struct scsi_sense_hdr * sshdr,int result)1931 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1932 {
1933 switch (host_byte(result)) {
1934 case DID_TRANSPORT_MARGINAL:
1935 case DID_TRANSPORT_DISRUPTED:
1936 case DID_BUS_BUSY:
1937 return PR_STS_RETRY_PATH_FAILURE;
1938 case DID_NO_CONNECT:
1939 return PR_STS_PATH_FAILED;
1940 case DID_TRANSPORT_FAILFAST:
1941 return PR_STS_PATH_FAST_FAILED;
1942 }
1943
1944 switch (status_byte(result)) {
1945 case SAM_STAT_RESERVATION_CONFLICT:
1946 return PR_STS_RESERVATION_CONFLICT;
1947 case SAM_STAT_CHECK_CONDITION:
1948 if (!scsi_sense_valid(sshdr))
1949 return PR_STS_IOERR;
1950
1951 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1952 (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1953 return -EINVAL;
1954
1955 fallthrough;
1956 default:
1957 return PR_STS_IOERR;
1958 }
1959 }
1960
sd_pr_in_command(struct block_device * bdev,u8 sa,unsigned char * data,int data_len)1961 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1962 unsigned char *data, int data_len)
1963 {
1964 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1965 struct scsi_device *sdev = sdkp->device;
1966 struct scsi_sense_hdr sshdr;
1967 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1968 struct scsi_failure failure_defs[] = {
1969 {
1970 .sense = UNIT_ATTENTION,
1971 .asc = SCMD_FAILURE_ASC_ANY,
1972 .ascq = SCMD_FAILURE_ASCQ_ANY,
1973 .allowed = 5,
1974 .result = SAM_STAT_CHECK_CONDITION,
1975 },
1976 {}
1977 };
1978 struct scsi_failures failures = {
1979 .failure_definitions = failure_defs,
1980 };
1981 const struct scsi_exec_args exec_args = {
1982 .sshdr = &sshdr,
1983 .failures = &failures,
1984 };
1985 int result;
1986
1987 put_unaligned_be16(data_len, &cmd[7]);
1988
1989 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1990 SD_TIMEOUT, sdkp->max_retries, &exec_args);
1991 if (scsi_status_is_check_condition(result) &&
1992 scsi_sense_valid(&sshdr)) {
1993 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1994 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1995 }
1996
1997 if (result <= 0)
1998 return result;
1999
2000 return sd_scsi_to_pr_err(&sshdr, result);
2001 }
2002
sd_pr_read_keys(struct block_device * bdev,struct pr_keys * keys_info)2003 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
2004 {
2005 int result, i, data_offset, num_copy_keys;
2006 u32 num_keys = keys_info->num_keys;
2007 int data_len;
2008 u8 *data;
2009
2010 /*
2011 * Each reservation key takes 8 bytes and there is an 8-byte header
2012 * before the reservation key list. The total size must fit into the
2013 * 16-bit ALLOCATION LENGTH field.
2014 */
2015 if (check_mul_overflow(num_keys, 8, &data_len) ||
2016 check_add_overflow(data_len, 8, &data_len) ||
2017 data_len > USHRT_MAX)
2018 return -EINVAL;
2019
2020 data = kzalloc(data_len, GFP_KERNEL);
2021 if (!data)
2022 return -ENOMEM;
2023
2024 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
2025 if (result)
2026 goto free_data;
2027
2028 keys_info->generation = get_unaligned_be32(&data[0]);
2029 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
2030
2031 data_offset = 8;
2032 num_copy_keys = min(num_keys, keys_info->num_keys);
2033
2034 for (i = 0; i < num_copy_keys; i++) {
2035 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
2036 data_offset += 8;
2037 }
2038
2039 free_data:
2040 kfree(data);
2041 return result;
2042 }
2043
sd_pr_read_reservation(struct block_device * bdev,struct pr_held_reservation * rsv)2044 static int sd_pr_read_reservation(struct block_device *bdev,
2045 struct pr_held_reservation *rsv)
2046 {
2047 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
2048 struct scsi_device *sdev = sdkp->device;
2049 u8 data[24] = { };
2050 int result, len;
2051
2052 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
2053 if (result)
2054 return result;
2055
2056 len = get_unaligned_be32(&data[4]);
2057 if (!len)
2058 return 0;
2059
2060 /* Make sure we have at least the key and type */
2061 if (len < 14) {
2062 sdev_printk(KERN_INFO, sdev,
2063 "READ RESERVATION failed due to short return buffer of %d bytes\n",
2064 len);
2065 return -EINVAL;
2066 }
2067
2068 rsv->generation = get_unaligned_be32(&data[0]);
2069 rsv->key = get_unaligned_be64(&data[8]);
2070 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
2071 return 0;
2072 }
2073
sd_pr_out_command(struct block_device * bdev,u8 sa,u64 key,u64 sa_key,enum scsi_pr_type type,u8 flags)2074 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
2075 u64 sa_key, enum scsi_pr_type type, u8 flags)
2076 {
2077 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
2078 struct scsi_device *sdev = sdkp->device;
2079 struct scsi_sense_hdr sshdr;
2080 struct scsi_failure failure_defs[] = {
2081 {
2082 .sense = UNIT_ATTENTION,
2083 .asc = SCMD_FAILURE_ASC_ANY,
2084 .ascq = SCMD_FAILURE_ASCQ_ANY,
2085 .allowed = 5,
2086 .result = SAM_STAT_CHECK_CONDITION,
2087 },
2088 {}
2089 };
2090 struct scsi_failures failures = {
2091 .failure_definitions = failure_defs,
2092 };
2093 const struct scsi_exec_args exec_args = {
2094 .sshdr = &sshdr,
2095 .failures = &failures,
2096 };
2097 int result;
2098 u8 cmd[16] = { 0, };
2099 u8 data[24] = { 0, };
2100
2101 cmd[0] = PERSISTENT_RESERVE_OUT;
2102 cmd[1] = sa;
2103 cmd[2] = type;
2104 put_unaligned_be32(sizeof(data), &cmd[5]);
2105
2106 put_unaligned_be64(key, &data[0]);
2107 put_unaligned_be64(sa_key, &data[8]);
2108 data[20] = flags;
2109
2110 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
2111 sizeof(data), SD_TIMEOUT, sdkp->max_retries,
2112 &exec_args);
2113
2114 if (scsi_status_is_check_condition(result) &&
2115 scsi_sense_valid(&sshdr)) {
2116 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
2117 scsi_print_sense_hdr(sdev, NULL, &sshdr);
2118 }
2119
2120 if (result <= 0)
2121 return result;
2122
2123 return sd_scsi_to_pr_err(&sshdr, result);
2124 }
2125
sd_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)2126 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2127 u32 flags)
2128 {
2129 if (flags & ~PR_FL_IGNORE_KEY)
2130 return -EOPNOTSUPP;
2131 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
2132 old_key, new_key, 0,
2133 (1 << 0) /* APTPL */);
2134 }
2135
sd_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)2136 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2137 u32 flags)
2138 {
2139 if (flags)
2140 return -EOPNOTSUPP;
2141 return sd_pr_out_command(bdev, 0x01, key, 0,
2142 block_pr_type_to_scsi(type), 0);
2143 }
2144
sd_pr_release(struct block_device * bdev,u64 key,enum pr_type type)2145 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2146 {
2147 return sd_pr_out_command(bdev, 0x02, key, 0,
2148 block_pr_type_to_scsi(type), 0);
2149 }
2150
sd_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)2151 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2152 enum pr_type type, bool abort)
2153 {
2154 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
2155 block_pr_type_to_scsi(type), 0);
2156 }
2157
sd_pr_clear(struct block_device * bdev,u64 key)2158 static int sd_pr_clear(struct block_device *bdev, u64 key)
2159 {
2160 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
2161 }
2162
2163 static const struct pr_ops sd_pr_ops = {
2164 .pr_register = sd_pr_register,
2165 .pr_reserve = sd_pr_reserve,
2166 .pr_release = sd_pr_release,
2167 .pr_preempt = sd_pr_preempt,
2168 .pr_clear = sd_pr_clear,
2169 .pr_read_keys = sd_pr_read_keys,
2170 .pr_read_reservation = sd_pr_read_reservation,
2171 };
2172
scsi_disk_free_disk(struct gendisk * disk)2173 static void scsi_disk_free_disk(struct gendisk *disk)
2174 {
2175 struct scsi_disk *sdkp = scsi_disk(disk);
2176
2177 put_device(&sdkp->disk_dev);
2178 }
2179
2180 static const struct block_device_operations sd_fops = {
2181 .owner = THIS_MODULE,
2182 .open = sd_open,
2183 .release = sd_release,
2184 .ioctl = sd_ioctl,
2185 .getgeo = sd_getgeo,
2186 .compat_ioctl = blkdev_compat_ptr_ioctl,
2187 .check_events = sd_check_events,
2188 .unlock_native_capacity = sd_unlock_native_capacity,
2189 .report_zones = sd_zbc_report_zones,
2190 .get_unique_id = sd_get_unique_id,
2191 .free_disk = scsi_disk_free_disk,
2192 .pr_ops = &sd_pr_ops,
2193 };
2194
2195 /**
2196 * sd_eh_reset - reset error handling callback
2197 * @scmd: sd-issued command that has failed
2198 *
2199 * This function is called by the SCSI midlayer before starting
2200 * SCSI EH. When counting medium access failures we have to be
2201 * careful to register it only only once per device and SCSI EH run;
2202 * there might be several timed out commands which will cause the
2203 * 'max_medium_access_timeouts' counter to trigger after the first
2204 * SCSI EH run already and set the device to offline.
2205 * So this function resets the internal counter before starting SCSI EH.
2206 **/
sd_eh_reset(struct scsi_cmnd * scmd)2207 static void sd_eh_reset(struct scsi_cmnd *scmd)
2208 {
2209 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2210
2211 /* New SCSI EH run, reset gate variable */
2212 sdkp->ignore_medium_access_errors = false;
2213 }
2214
2215 /**
2216 * sd_eh_action - error handling callback
2217 * @scmd: sd-issued command that has failed
2218 * @eh_disp: The recovery disposition suggested by the midlayer
2219 *
2220 * This function is called by the SCSI midlayer upon completion of an
2221 * error test command (currently TEST UNIT READY). The result of sending
2222 * the eh command is passed in eh_disp. We're looking for devices that
2223 * fail medium access commands but are OK with non access commands like
2224 * test unit ready (so wrongly see the device as having a successful
2225 * recovery)
2226 **/
sd_eh_action(struct scsi_cmnd * scmd,int eh_disp)2227 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2228 {
2229 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2230 struct scsi_device *sdev = scmd->device;
2231
2232 if (!scsi_device_online(sdev) ||
2233 !scsi_medium_access_command(scmd) ||
2234 host_byte(scmd->result) != DID_TIME_OUT ||
2235 eh_disp != SUCCESS)
2236 return eh_disp;
2237
2238 /*
2239 * The device has timed out executing a medium access command.
2240 * However, the TEST UNIT READY command sent during error
2241 * handling completed successfully. Either the device is in the
2242 * process of recovering or has it suffered an internal failure
2243 * that prevents access to the storage medium.
2244 */
2245 if (!sdkp->ignore_medium_access_errors) {
2246 sdkp->medium_access_timed_out++;
2247 sdkp->ignore_medium_access_errors = true;
2248 }
2249
2250 /*
2251 * If the device keeps failing read/write commands but TEST UNIT
2252 * READY always completes successfully we assume that medium
2253 * access is no longer possible and take the device offline.
2254 */
2255 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2256 scmd_printk(KERN_ERR, scmd,
2257 "Medium access timeout failure. Offlining disk!\n");
2258 mutex_lock(&sdev->state_mutex);
2259 scsi_device_set_state(sdev, SDEV_OFFLINE);
2260 mutex_unlock(&sdev->state_mutex);
2261
2262 return SUCCESS;
2263 }
2264
2265 return eh_disp;
2266 }
2267
sd_completed_bytes(struct scsi_cmnd * scmd)2268 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2269 {
2270 struct request *req = scsi_cmd_to_rq(scmd);
2271 struct scsi_device *sdev = scmd->device;
2272 unsigned int transferred, good_bytes;
2273 u64 start_lba, end_lba, bad_lba;
2274
2275 /*
2276 * Some commands have a payload smaller than the device logical
2277 * block size (e.g. INQUIRY on a 4K disk).
2278 */
2279 if (scsi_bufflen(scmd) <= sdev->sector_size)
2280 return 0;
2281
2282 /* Check if we have a 'bad_lba' information */
2283 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2284 SCSI_SENSE_BUFFERSIZE,
2285 &bad_lba))
2286 return 0;
2287
2288 /*
2289 * If the bad lba was reported incorrectly, we have no idea where
2290 * the error is.
2291 */
2292 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2293 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2294 if (bad_lba < start_lba || bad_lba >= end_lba)
2295 return 0;
2296
2297 /*
2298 * resid is optional but mostly filled in. When it's unused,
2299 * its value is zero, so we assume the whole buffer transferred
2300 */
2301 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2302
2303 /* This computation should always be done in terms of the
2304 * resolution of the device's medium.
2305 */
2306 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2307
2308 return min(good_bytes, transferred);
2309 }
2310
2311 /**
2312 * sd_done - bottom half handler: called when the lower level
2313 * driver has completed (successfully or otherwise) a scsi command.
2314 * @SCpnt: mid-level's per command structure.
2315 *
2316 * Note: potentially run from within an ISR. Must not block.
2317 **/
sd_done(struct scsi_cmnd * SCpnt)2318 static int sd_done(struct scsi_cmnd *SCpnt)
2319 {
2320 int result = SCpnt->result;
2321 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2322 unsigned int sector_size = SCpnt->device->sector_size;
2323 unsigned int resid;
2324 struct scsi_sense_hdr sshdr;
2325 struct request *req = scsi_cmd_to_rq(SCpnt);
2326 struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2327 int sense_valid = 0;
2328 int sense_deferred = 0;
2329
2330 switch (req_op(req)) {
2331 case REQ_OP_DISCARD:
2332 case REQ_OP_WRITE_ZEROES:
2333 case REQ_OP_ZONE_RESET:
2334 case REQ_OP_ZONE_RESET_ALL:
2335 case REQ_OP_ZONE_OPEN:
2336 case REQ_OP_ZONE_CLOSE:
2337 case REQ_OP_ZONE_FINISH:
2338 if (!result) {
2339 good_bytes = blk_rq_bytes(req);
2340 scsi_set_resid(SCpnt, 0);
2341 } else {
2342 good_bytes = 0;
2343 scsi_set_resid(SCpnt, blk_rq_bytes(req));
2344 }
2345 break;
2346 default:
2347 /*
2348 * In case of bogus fw or device, we could end up having
2349 * an unaligned partial completion. Check this here and force
2350 * alignment.
2351 */
2352 resid = scsi_get_resid(SCpnt);
2353 if (resid & (sector_size - 1)) {
2354 sd_printk(KERN_INFO, sdkp,
2355 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2356 resid, sector_size);
2357 scsi_print_command(SCpnt);
2358 resid = min(scsi_bufflen(SCpnt),
2359 round_up(resid, sector_size));
2360 scsi_set_resid(SCpnt, resid);
2361 }
2362 }
2363
2364 if (result) {
2365 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2366 if (sense_valid)
2367 sense_deferred = scsi_sense_is_deferred(&sshdr);
2368 }
2369 sdkp->medium_access_timed_out = 0;
2370
2371 if (!scsi_status_is_check_condition(result) &&
2372 (!sense_valid || sense_deferred))
2373 goto out;
2374
2375 switch (sshdr.sense_key) {
2376 case HARDWARE_ERROR:
2377 case MEDIUM_ERROR:
2378 good_bytes = sd_completed_bytes(SCpnt);
2379 break;
2380 case RECOVERED_ERROR:
2381 good_bytes = scsi_bufflen(SCpnt);
2382 break;
2383 case NO_SENSE:
2384 /* This indicates a false check condition, so ignore it. An
2385 * unknown amount of data was transferred so treat it as an
2386 * error.
2387 */
2388 SCpnt->result = 0;
2389 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2390 break;
2391 case ABORTED_COMMAND:
2392 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2393 good_bytes = sd_completed_bytes(SCpnt);
2394 break;
2395 case ILLEGAL_REQUEST:
2396 switch (sshdr.asc) {
2397 case 0x10: /* DIX: Host detected corruption */
2398 good_bytes = sd_completed_bytes(SCpnt);
2399 break;
2400 case 0x20: /* INVALID COMMAND OPCODE */
2401 case 0x24: /* INVALID FIELD IN CDB */
2402 switch (SCpnt->cmnd[0]) {
2403 case UNMAP:
2404 sd_disable_discard(sdkp);
2405 break;
2406 case WRITE_SAME_16:
2407 case WRITE_SAME:
2408 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2409 sd_disable_discard(sdkp);
2410 } else {
2411 sd_disable_write_same(sdkp);
2412 req->rq_flags |= RQF_QUIET;
2413 }
2414 break;
2415 }
2416 }
2417 break;
2418 default:
2419 break;
2420 }
2421
2422 out:
2423 if (sdkp->device->type == TYPE_ZBC)
2424 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2425
2426 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2427 "sd_done: completed %d of %d bytes\n",
2428 good_bytes, scsi_bufflen(SCpnt)));
2429
2430 return good_bytes;
2431 }
2432
2433 /*
2434 * spinup disk - called only in sd_revalidate_disk()
2435 */
2436 static void
sd_spinup_disk(struct scsi_disk * sdkp)2437 sd_spinup_disk(struct scsi_disk *sdkp)
2438 {
2439 static const u8 cmd[10] = { TEST_UNIT_READY };
2440 unsigned long spintime_expire = 0;
2441 int spintime, sense_valid = 0;
2442 unsigned int the_result;
2443 struct scsi_sense_hdr sshdr;
2444 struct scsi_failure failure_defs[] = {
2445 /* Do not retry Medium Not Present */
2446 {
2447 .sense = UNIT_ATTENTION,
2448 .asc = 0x3A,
2449 .ascq = SCMD_FAILURE_ASCQ_ANY,
2450 .result = SAM_STAT_CHECK_CONDITION,
2451 },
2452 {
2453 .sense = NOT_READY,
2454 .asc = 0x3A,
2455 .ascq = SCMD_FAILURE_ASCQ_ANY,
2456 .result = SAM_STAT_CHECK_CONDITION,
2457 },
2458 /* Retry when scsi_status_is_good would return false 3 times */
2459 {
2460 .result = SCMD_FAILURE_STAT_ANY,
2461 .allowed = 3,
2462 },
2463 {}
2464 };
2465 struct scsi_failures failures = {
2466 .failure_definitions = failure_defs,
2467 };
2468 const struct scsi_exec_args exec_args = {
2469 .sshdr = &sshdr,
2470 .failures = &failures,
2471 };
2472
2473 spintime = 0;
2474
2475 /* Spin up drives, as required. Only do this at boot time */
2476 /* Spinup needs to be done for module loads too. */
2477 do {
2478 bool media_was_present = sdkp->media_present;
2479
2480 scsi_failures_reset_retries(&failures);
2481
2482 the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2483 NULL, 0, SD_TIMEOUT,
2484 sdkp->max_retries, &exec_args);
2485
2486
2487 if (the_result > 0) {
2488 /*
2489 * If the drive has indicated to us that it doesn't
2490 * have any media in it, don't bother with any more
2491 * polling.
2492 */
2493 if (media_not_present(sdkp, &sshdr)) {
2494 if (media_was_present)
2495 sd_printk(KERN_NOTICE, sdkp,
2496 "Media removed, stopped polling\n");
2497 return;
2498 }
2499 sense_valid = scsi_sense_valid(&sshdr);
2500 }
2501
2502 if (!scsi_status_is_check_condition(the_result)) {
2503 /* no sense, TUR either succeeded or failed
2504 * with a status error */
2505 if(!spintime && !scsi_status_is_good(the_result)) {
2506 sd_print_result(sdkp, "Test Unit Ready failed",
2507 the_result);
2508 }
2509 break;
2510 }
2511
2512 /*
2513 * The device does not want the automatic start to be issued.
2514 */
2515 if (sdkp->device->no_start_on_add)
2516 break;
2517
2518 if (sense_valid && sshdr.sense_key == NOT_READY) {
2519 if (sshdr.asc == 4 && sshdr.ascq == 3)
2520 break; /* manual intervention required */
2521 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2522 break; /* standby */
2523 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2524 break; /* unavailable */
2525 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2526 break; /* sanitize in progress */
2527 if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2528 break; /* depopulation in progress */
2529 if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2530 break; /* depopulation restoration in progress */
2531 /*
2532 * Issue command to spin up drive when not ready
2533 */
2534 if (!spintime) {
2535 /* Return immediately and start spin cycle */
2536 const u8 start_cmd[10] = {
2537 [0] = START_STOP,
2538 [1] = 1,
2539 [4] = sdkp->device->start_stop_pwr_cond ?
2540 0x11 : 1,
2541 };
2542
2543 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2544 scsi_execute_cmd(sdkp->device, start_cmd,
2545 REQ_OP_DRV_IN, NULL, 0,
2546 SD_TIMEOUT, sdkp->max_retries,
2547 &exec_args);
2548 spintime_expire = jiffies + 100 * HZ;
2549 spintime = 1;
2550 }
2551 /* Wait 1 second for next try */
2552 msleep(1000);
2553 printk(KERN_CONT ".");
2554
2555 /*
2556 * Wait for USB flash devices with slow firmware.
2557 * Yes, this sense key/ASC combination shouldn't
2558 * occur here. It's characteristic of these devices.
2559 */
2560 } else if (sense_valid &&
2561 sshdr.sense_key == UNIT_ATTENTION &&
2562 sshdr.asc == 0x28) {
2563 if (!spintime) {
2564 spintime_expire = jiffies + 5 * HZ;
2565 spintime = 1;
2566 }
2567 /* Wait 1 second for next try */
2568 msleep(1000);
2569 } else {
2570 /* we don't understand the sense code, so it's
2571 * probably pointless to loop */
2572 if(!spintime) {
2573 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2574 sd_print_sense_hdr(sdkp, &sshdr);
2575 }
2576 break;
2577 }
2578
2579 } while (spintime && time_before_eq(jiffies, spintime_expire));
2580
2581 if (spintime) {
2582 if (scsi_status_is_good(the_result))
2583 printk(KERN_CONT "ready\n");
2584 else
2585 printk(KERN_CONT "not responding...\n");
2586 }
2587 }
2588
2589 /*
2590 * Determine whether disk supports Data Integrity Field.
2591 */
sd_read_protection_type(struct scsi_disk * sdkp,unsigned char * buffer)2592 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2593 {
2594 struct scsi_device *sdp = sdkp->device;
2595 u8 type;
2596
2597 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2598 sdkp->protection_type = 0;
2599 return 0;
2600 }
2601
2602 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2603
2604 if (type > T10_PI_TYPE3_PROTECTION) {
2605 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2606 " protection type %u. Disabling disk!\n",
2607 type);
2608 sdkp->protection_type = 0;
2609 return -ENODEV;
2610 }
2611
2612 sdkp->protection_type = type;
2613
2614 return 0;
2615 }
2616
sd_config_protection(struct scsi_disk * sdkp,struct queue_limits * lim)2617 static void sd_config_protection(struct scsi_disk *sdkp,
2618 struct queue_limits *lim)
2619 {
2620 struct scsi_device *sdp = sdkp->device;
2621
2622 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
2623 sd_dif_config_host(sdkp, lim);
2624
2625 if (!sdkp->protection_type)
2626 return;
2627
2628 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2629 sd_first_printk(KERN_NOTICE, sdkp,
2630 "Disabling DIF Type %u protection\n",
2631 sdkp->protection_type);
2632 sdkp->protection_type = 0;
2633 }
2634
2635 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2636 sdkp->protection_type);
2637 }
2638
read_capacity_error(struct scsi_disk * sdkp,struct scsi_device * sdp,struct scsi_sense_hdr * sshdr,int sense_valid,int the_result)2639 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2640 struct scsi_sense_hdr *sshdr, int sense_valid,
2641 int the_result)
2642 {
2643 if (sense_valid)
2644 sd_print_sense_hdr(sdkp, sshdr);
2645 else
2646 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2647
2648 /*
2649 * Set dirty bit for removable devices if not ready -
2650 * sometimes drives will not report this properly.
2651 */
2652 if (sdp->removable &&
2653 sense_valid && sshdr->sense_key == NOT_READY)
2654 set_media_not_present(sdkp);
2655
2656 /*
2657 * We used to set media_present to 0 here to indicate no media
2658 * in the drive, but some drives fail read capacity even with
2659 * media present, so we can't do that.
2660 */
2661 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2662 }
2663
2664 #define RC16_LEN 32
2665 #if RC16_LEN > SD_BUF_SIZE
2666 #error RC16_LEN must not be more than SD_BUF_SIZE
2667 #endif
2668
2669 #define READ_CAPACITY_RETRIES_ON_RESET 10
2670
read_capacity_16(struct scsi_disk * sdkp,struct scsi_device * sdp,struct queue_limits * lim,unsigned char * buffer)2671 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2672 struct queue_limits *lim, unsigned char *buffer)
2673 {
2674 unsigned char cmd[16];
2675 struct scsi_sense_hdr sshdr;
2676 const struct scsi_exec_args exec_args = {
2677 .sshdr = &sshdr,
2678 };
2679 int sense_valid = 0;
2680 int the_result;
2681 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2682 unsigned int alignment;
2683 unsigned long long lba;
2684 unsigned sector_size;
2685
2686 if (sdp->no_read_capacity_16)
2687 return -EINVAL;
2688
2689 do {
2690 memset(cmd, 0, 16);
2691 cmd[0] = SERVICE_ACTION_IN_16;
2692 cmd[1] = SAI_READ_CAPACITY_16;
2693 cmd[13] = RC16_LEN;
2694 memset(buffer, 0, RC16_LEN);
2695
2696 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2697 buffer, RC16_LEN, SD_TIMEOUT,
2698 sdkp->max_retries, &exec_args);
2699 if (the_result > 0) {
2700 if (media_not_present(sdkp, &sshdr))
2701 return -ENODEV;
2702
2703 sense_valid = scsi_sense_valid(&sshdr);
2704 if (sense_valid &&
2705 sshdr.sense_key == ILLEGAL_REQUEST &&
2706 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2707 sshdr.ascq == 0x00)
2708 /* Invalid Command Operation Code or
2709 * Invalid Field in CDB, just retry
2710 * silently with RC10 */
2711 return -EINVAL;
2712 if (sense_valid &&
2713 sshdr.sense_key == UNIT_ATTENTION &&
2714 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2715 /* Device reset might occur several times,
2716 * give it one more chance */
2717 if (--reset_retries > 0)
2718 continue;
2719 }
2720 retries--;
2721
2722 } while (the_result && retries);
2723
2724 if (the_result) {
2725 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2726 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2727 return -EINVAL;
2728 }
2729
2730 sector_size = get_unaligned_be32(&buffer[8]);
2731 lba = get_unaligned_be64(&buffer[0]);
2732
2733 if (sd_read_protection_type(sdkp, buffer) < 0) {
2734 sdkp->capacity = 0;
2735 return -ENODEV;
2736 }
2737
2738 /* Logical blocks per physical block exponent */
2739 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2740
2741 /* RC basis */
2742 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2743
2744 /* Lowest aligned logical block */
2745 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2746 lim->alignment_offset = alignment;
2747 if (alignment && sdkp->first_scan)
2748 sd_printk(KERN_NOTICE, sdkp,
2749 "physical block alignment offset: %u\n", alignment);
2750
2751 if (buffer[14] & 0x80) { /* LBPME */
2752 sdkp->lbpme = 1;
2753
2754 if (buffer[14] & 0x40) /* LBPRZ */
2755 sdkp->lbprz = 1;
2756 }
2757
2758 sdkp->capacity = lba + 1;
2759 return sector_size;
2760 }
2761
read_capacity_10(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2762 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2763 unsigned char *buffer)
2764 {
2765 static const u8 cmd[10] = { READ_CAPACITY };
2766 struct scsi_sense_hdr sshdr;
2767 struct scsi_failure failure_defs[] = {
2768 /* Do not retry Medium Not Present */
2769 {
2770 .sense = UNIT_ATTENTION,
2771 .asc = 0x3A,
2772 .result = SAM_STAT_CHECK_CONDITION,
2773 },
2774 {
2775 .sense = NOT_READY,
2776 .asc = 0x3A,
2777 .result = SAM_STAT_CHECK_CONDITION,
2778 },
2779 /* Device reset might occur several times so retry a lot */
2780 {
2781 .sense = UNIT_ATTENTION,
2782 .asc = 0x29,
2783 .allowed = READ_CAPACITY_RETRIES_ON_RESET,
2784 .result = SAM_STAT_CHECK_CONDITION,
2785 },
2786 /* Any other error not listed above retry 3 times */
2787 {
2788 .result = SCMD_FAILURE_RESULT_ANY,
2789 .allowed = 3,
2790 },
2791 {}
2792 };
2793 struct scsi_failures failures = {
2794 .failure_definitions = failure_defs,
2795 };
2796 const struct scsi_exec_args exec_args = {
2797 .sshdr = &sshdr,
2798 .failures = &failures,
2799 };
2800 int sense_valid = 0;
2801 int the_result;
2802 sector_t lba;
2803 unsigned sector_size;
2804
2805 memset(buffer, 0, 8);
2806
2807 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2808 8, SD_TIMEOUT, sdkp->max_retries,
2809 &exec_args);
2810
2811 if (the_result > 0) {
2812 sense_valid = scsi_sense_valid(&sshdr);
2813
2814 if (media_not_present(sdkp, &sshdr))
2815 return -ENODEV;
2816 }
2817
2818 if (the_result) {
2819 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2820 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2821 return -EINVAL;
2822 }
2823
2824 sector_size = get_unaligned_be32(&buffer[4]);
2825 lba = get_unaligned_be32(&buffer[0]);
2826
2827 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2828 /* Some buggy (usb cardreader) devices return an lba of
2829 0xffffffff when the want to report a size of 0 (with
2830 which they really mean no media is present) */
2831 sdkp->capacity = 0;
2832 sdkp->physical_block_size = sector_size;
2833 return sector_size;
2834 }
2835
2836 sdkp->capacity = lba + 1;
2837 sdkp->physical_block_size = sector_size;
2838 return sector_size;
2839 }
2840
sd_try_rc16_first(struct scsi_device * sdp)2841 static int sd_try_rc16_first(struct scsi_device *sdp)
2842 {
2843 if (sdp->host->max_cmd_len < 16)
2844 return 0;
2845 if (sdp->try_rc_10_first)
2846 return 0;
2847 if (sdp->scsi_level > SCSI_SPC_2)
2848 return 1;
2849 if (scsi_device_protection(sdp))
2850 return 1;
2851 return 0;
2852 }
2853
2854 /*
2855 * read disk capacity
2856 */
2857 static void
sd_read_capacity(struct scsi_disk * sdkp,struct queue_limits * lim,unsigned char * buffer)2858 sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim,
2859 unsigned char *buffer)
2860 {
2861 int sector_size;
2862 struct scsi_device *sdp = sdkp->device;
2863
2864 if (sd_try_rc16_first(sdp)) {
2865 sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2866 if (sector_size == -EOVERFLOW)
2867 goto got_data;
2868 if (sector_size == -ENODEV)
2869 return;
2870 if (sector_size < 0)
2871 sector_size = read_capacity_10(sdkp, sdp, buffer);
2872 if (sector_size < 0)
2873 return;
2874 } else {
2875 sector_size = read_capacity_10(sdkp, sdp, buffer);
2876 if (sector_size == -EOVERFLOW)
2877 goto got_data;
2878 if (sector_size < 0)
2879 return;
2880 if ((sizeof(sdkp->capacity) > 4) &&
2881 (sdkp->capacity > 0xffffffffULL)) {
2882 int old_sector_size = sector_size;
2883 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2884 "Trying to use READ CAPACITY(16).\n");
2885 sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2886 if (sector_size < 0) {
2887 sd_printk(KERN_NOTICE, sdkp,
2888 "Using 0xffffffff as device size\n");
2889 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2890 sector_size = old_sector_size;
2891 goto got_data;
2892 }
2893 /* Remember that READ CAPACITY(16) succeeded */
2894 sdp->try_rc_10_first = 0;
2895 }
2896 }
2897
2898 /* Some devices are known to return the total number of blocks,
2899 * not the highest block number. Some devices have versions
2900 * which do this and others which do not. Some devices we might
2901 * suspect of doing this but we don't know for certain.
2902 *
2903 * If we know the reported capacity is wrong, decrement it. If
2904 * we can only guess, then assume the number of blocks is even
2905 * (usually true but not always) and err on the side of lowering
2906 * the capacity.
2907 */
2908 if (sdp->fix_capacity ||
2909 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2910 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2911 "from its reported value: %llu\n",
2912 (unsigned long long) sdkp->capacity);
2913 --sdkp->capacity;
2914 }
2915
2916 got_data:
2917 if (sector_size == 0) {
2918 sector_size = 512;
2919 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2920 "assuming 512.\n");
2921 }
2922
2923 if (sector_size != 512 &&
2924 sector_size != 1024 &&
2925 sector_size != 2048 &&
2926 sector_size != 4096) {
2927 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2928 sector_size);
2929 /*
2930 * The user might want to re-format the drive with
2931 * a supported sectorsize. Once this happens, it
2932 * would be relatively trivial to set the thing up.
2933 * For this reason, we leave the thing in the table.
2934 */
2935 sdkp->capacity = 0;
2936 /*
2937 * set a bogus sector size so the normal read/write
2938 * logic in the block layer will eventually refuse any
2939 * request on this device without tripping over power
2940 * of two sector size assumptions
2941 */
2942 sector_size = 512;
2943 }
2944 lim->logical_block_size = sector_size;
2945 lim->physical_block_size = sdkp->physical_block_size;
2946 sdkp->device->sector_size = sector_size;
2947
2948 if (sdkp->capacity > 0xffffffff)
2949 sdp->use_16_for_rw = 1;
2950
2951 }
2952
2953 /*
2954 * Print disk capacity
2955 */
2956 static void
sd_print_capacity(struct scsi_disk * sdkp,sector_t old_capacity)2957 sd_print_capacity(struct scsi_disk *sdkp,
2958 sector_t old_capacity)
2959 {
2960 int sector_size = sdkp->device->sector_size;
2961 char cap_str_2[10], cap_str_10[10];
2962
2963 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2964 return;
2965
2966 string_get_size(sdkp->capacity, sector_size,
2967 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2968 string_get_size(sdkp->capacity, sector_size,
2969 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2970
2971 sd_printk(KERN_NOTICE, sdkp,
2972 "%llu %d-byte logical blocks: (%s/%s)\n",
2973 (unsigned long long)sdkp->capacity,
2974 sector_size, cap_str_10, cap_str_2);
2975
2976 if (sdkp->physical_block_size != sector_size)
2977 sd_printk(KERN_NOTICE, sdkp,
2978 "%u-byte physical blocks\n",
2979 sdkp->physical_block_size);
2980 }
2981
2982 /* called with buffer of length 512 */
2983 static inline int
sd_do_mode_sense(struct scsi_disk * sdkp,int dbd,int modepage,unsigned char * buffer,int len,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2984 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2985 unsigned char *buffer, int len, struct scsi_mode_data *data,
2986 struct scsi_sense_hdr *sshdr)
2987 {
2988 /*
2989 * If we must use MODE SENSE(10), make sure that the buffer length
2990 * is at least 8 bytes so that the mode sense header fits.
2991 */
2992 if (sdkp->device->use_10_for_ms && len < 8)
2993 len = 8;
2994
2995 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2996 SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2997 }
2998
2999 /*
3000 * read write protect setting, if possible - called only in sd_revalidate_disk()
3001 * called with buffer of length SD_BUF_SIZE
3002 */
3003 static void
sd_read_write_protect_flag(struct scsi_disk * sdkp,unsigned char * buffer)3004 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
3005 {
3006 int res;
3007 struct scsi_device *sdp = sdkp->device;
3008 struct scsi_mode_data data;
3009 int old_wp = sdkp->write_prot;
3010
3011 set_disk_ro(sdkp->disk, 0);
3012 if (sdp->skip_ms_page_3f) {
3013 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
3014 return;
3015 }
3016
3017 if (sdp->use_192_bytes_for_3f) {
3018 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
3019 } else {
3020 /*
3021 * First attempt: ask for all pages (0x3F), but only 4 bytes.
3022 * We have to start carefully: some devices hang if we ask
3023 * for more than is available.
3024 */
3025 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
3026
3027 /*
3028 * Second attempt: ask for page 0 When only page 0 is
3029 * implemented, a request for page 3F may return Sense Key
3030 * 5: Illegal Request, Sense Code 24: Invalid field in
3031 * CDB.
3032 */
3033 if (res < 0)
3034 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
3035
3036 /*
3037 * Third attempt: ask 255 bytes, as we did earlier.
3038 */
3039 if (res < 0)
3040 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
3041 &data, NULL);
3042 }
3043
3044 if (res < 0) {
3045 sd_first_printk(KERN_WARNING, sdkp,
3046 "Test WP failed, assume Write Enabled\n");
3047 } else {
3048 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
3049 set_disk_ro(sdkp->disk, sdkp->write_prot);
3050 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
3051 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
3052 sdkp->write_prot ? "on" : "off");
3053 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
3054 }
3055 }
3056 }
3057
3058 /*
3059 * sd_read_cache_type - called only from sd_revalidate_disk()
3060 * called with buffer of length SD_BUF_SIZE
3061 */
3062 static void
sd_read_cache_type(struct scsi_disk * sdkp,unsigned char * buffer)3063 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
3064 {
3065 int len = 0, res;
3066 struct scsi_device *sdp = sdkp->device;
3067
3068 int dbd;
3069 int modepage;
3070 int first_len;
3071 struct scsi_mode_data data;
3072 struct scsi_sense_hdr sshdr;
3073 int old_wce = sdkp->WCE;
3074 int old_rcd = sdkp->RCD;
3075 int old_dpofua = sdkp->DPOFUA;
3076
3077
3078 if (sdkp->cache_override)
3079 return;
3080
3081 first_len = 4;
3082 if (sdp->skip_ms_page_8) {
3083 if (sdp->type == TYPE_RBC)
3084 goto defaults;
3085 else {
3086 if (sdp->skip_ms_page_3f)
3087 goto defaults;
3088 modepage = 0x3F;
3089 if (sdp->use_192_bytes_for_3f)
3090 first_len = 192;
3091 dbd = 0;
3092 }
3093 } else if (sdp->type == TYPE_RBC) {
3094 modepage = 6;
3095 dbd = 8;
3096 } else {
3097 modepage = 8;
3098 dbd = 0;
3099 }
3100
3101 /* cautiously ask */
3102 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
3103 &data, &sshdr);
3104
3105 if (res < 0)
3106 goto bad_sense;
3107
3108 if (!data.header_length) {
3109 modepage = 6;
3110 first_len = 0;
3111 sd_first_printk(KERN_ERR, sdkp,
3112 "Missing header in MODE_SENSE response\n");
3113 }
3114
3115 /* that went OK, now ask for the proper length */
3116 len = data.length;
3117
3118 /*
3119 * We're only interested in the first three bytes, actually.
3120 * But the data cache page is defined for the first 20.
3121 */
3122 if (len < 3)
3123 goto bad_sense;
3124 else if (len > SD_BUF_SIZE) {
3125 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
3126 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
3127 len = SD_BUF_SIZE;
3128 }
3129 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
3130 len = 192;
3131
3132 /* Get the data */
3133 if (len > first_len)
3134 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
3135 &data, &sshdr);
3136
3137 if (!res) {
3138 int offset = data.header_length + data.block_descriptor_length;
3139
3140 while (offset < len) {
3141 u8 page_code = buffer[offset] & 0x3F;
3142 u8 spf = buffer[offset] & 0x40;
3143
3144 if (page_code == 8 || page_code == 6) {
3145 /* We're interested only in the first 3 bytes.
3146 */
3147 if (len - offset <= 2) {
3148 sd_first_printk(KERN_ERR, sdkp,
3149 "Incomplete mode parameter "
3150 "data\n");
3151 goto defaults;
3152 } else {
3153 modepage = page_code;
3154 goto Page_found;
3155 }
3156 } else {
3157 /* Go to the next page */
3158 if (spf && len - offset > 3)
3159 offset += 4 + (buffer[offset+2] << 8) +
3160 buffer[offset+3];
3161 else if (!spf && len - offset > 1)
3162 offset += 2 + buffer[offset+1];
3163 else {
3164 sd_first_printk(KERN_ERR, sdkp,
3165 "Incomplete mode "
3166 "parameter data\n");
3167 goto defaults;
3168 }
3169 }
3170 }
3171
3172 sd_first_printk(KERN_WARNING, sdkp,
3173 "No Caching mode page found\n");
3174 goto defaults;
3175
3176 Page_found:
3177 if (modepage == 8) {
3178 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3179 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3180 } else {
3181 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3182 sdkp->RCD = 0;
3183 }
3184
3185 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3186 if (sdp->broken_fua) {
3187 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3188 sdkp->DPOFUA = 0;
3189 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3190 !sdkp->device->use_16_for_rw) {
3191 sd_first_printk(KERN_NOTICE, sdkp,
3192 "Uses READ/WRITE(6), disabling FUA\n");
3193 sdkp->DPOFUA = 0;
3194 }
3195
3196 /* No cache flush allowed for write protected devices */
3197 if (sdkp->WCE && sdkp->write_prot)
3198 sdkp->WCE = 0;
3199
3200 if (sdkp->first_scan || old_wce != sdkp->WCE ||
3201 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3202 sd_printk(KERN_NOTICE, sdkp,
3203 "Write cache: %s, read cache: %s, %s\n",
3204 sdkp->WCE ? "enabled" : "disabled",
3205 sdkp->RCD ? "disabled" : "enabled",
3206 sdkp->DPOFUA ? "supports DPO and FUA"
3207 : "doesn't support DPO or FUA");
3208
3209 return;
3210 }
3211
3212 bad_sense:
3213 if (res == -EIO && scsi_sense_valid(&sshdr) &&
3214 sshdr.sense_key == ILLEGAL_REQUEST &&
3215 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3216 /* Invalid field in CDB */
3217 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3218 else
3219 sd_first_printk(KERN_ERR, sdkp,
3220 "Asking for cache data failed\n");
3221
3222 defaults:
3223 if (sdp->wce_default_on) {
3224 sd_first_printk(KERN_NOTICE, sdkp,
3225 "Assuming drive cache: write back\n");
3226 sdkp->WCE = 1;
3227 } else {
3228 sd_first_printk(KERN_WARNING, sdkp,
3229 "Assuming drive cache: write through\n");
3230 sdkp->WCE = 0;
3231 }
3232 sdkp->RCD = 0;
3233 sdkp->DPOFUA = 0;
3234 }
3235
sd_is_perm_stream(struct scsi_disk * sdkp,unsigned int stream_id)3236 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
3237 {
3238 u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
3239 struct {
3240 struct scsi_stream_status_header h;
3241 struct scsi_stream_status s;
3242 } buf;
3243 struct scsi_device *sdev = sdkp->device;
3244 struct scsi_sense_hdr sshdr;
3245 const struct scsi_exec_args exec_args = {
3246 .sshdr = &sshdr,
3247 };
3248 int res;
3249
3250 put_unaligned_be16(stream_id, &cdb[4]);
3251 put_unaligned_be32(sizeof(buf), &cdb[10]);
3252
3253 res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
3254 SD_TIMEOUT, sdkp->max_retries, &exec_args);
3255 if (res < 0)
3256 return false;
3257 if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
3258 sd_print_sense_hdr(sdkp, &sshdr);
3259 if (res)
3260 return false;
3261 if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
3262 return false;
3263 return buf.s.perm;
3264 }
3265
sd_read_io_hints(struct scsi_disk * sdkp,unsigned char * buffer)3266 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
3267 {
3268 struct scsi_device *sdp = sdkp->device;
3269 const struct scsi_io_group_descriptor *desc, *start, *end;
3270 u16 permanent_stream_count_old;
3271 struct scsi_sense_hdr sshdr;
3272 struct scsi_mode_data data;
3273 int res;
3274
3275 if (sdp->sdev_bflags & BLIST_SKIP_IO_HINTS)
3276 return;
3277
3278 res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
3279 /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
3280 sdkp->max_retries, &data, &sshdr);
3281 if (res < 0)
3282 return;
3283 start = (void *)buffer + data.header_length + 16;
3284 end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
3285 sizeof(*end));
3286 /*
3287 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
3288 * should assign the lowest numbered stream identifiers to permanent
3289 * streams.
3290 */
3291 for (desc = start; desc < end; desc++)
3292 if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
3293 break;
3294 permanent_stream_count_old = sdkp->permanent_stream_count;
3295 sdkp->permanent_stream_count = desc - start;
3296 if (sdkp->rscs && sdkp->permanent_stream_count < 2)
3297 sd_printk(KERN_INFO, sdkp,
3298 "Unexpected: RSCS has been set and the permanent stream count is %u\n",
3299 sdkp->permanent_stream_count);
3300 else if (sdkp->permanent_stream_count != permanent_stream_count_old)
3301 sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
3302 sdkp->permanent_stream_count);
3303 }
3304
3305 /*
3306 * The ATO bit indicates whether the DIF application tag is available
3307 * for use by the operating system.
3308 */
sd_read_app_tag_own(struct scsi_disk * sdkp,unsigned char * buffer)3309 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3310 {
3311 int res, offset;
3312 struct scsi_device *sdp = sdkp->device;
3313 struct scsi_mode_data data;
3314 struct scsi_sense_hdr sshdr;
3315
3316 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3317 return;
3318
3319 if (sdkp->protection_type == 0)
3320 return;
3321
3322 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3323 sdkp->max_retries, &data, &sshdr);
3324
3325 if (res < 0 || !data.header_length ||
3326 data.length < 6) {
3327 sd_first_printk(KERN_WARNING, sdkp,
3328 "getting Control mode page failed, assume no ATO\n");
3329
3330 if (res == -EIO && scsi_sense_valid(&sshdr))
3331 sd_print_sense_hdr(sdkp, &sshdr);
3332
3333 return;
3334 }
3335
3336 offset = data.header_length + data.block_descriptor_length;
3337
3338 if ((buffer[offset] & 0x3f) != 0x0a) {
3339 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3340 return;
3341 }
3342
3343 if ((buffer[offset + 5] & 0x80) == 0)
3344 return;
3345
3346 sdkp->ATO = 1;
3347
3348 return;
3349 }
3350
sd_discard_mode(struct scsi_disk * sdkp)3351 static unsigned int sd_discard_mode(struct scsi_disk *sdkp)
3352 {
3353 if (!sdkp->lbpme)
3354 return SD_LBP_FULL;
3355
3356 if (!sdkp->lbpvpd) {
3357 /* LBP VPD page not provided */
3358 if (sdkp->max_unmap_blocks)
3359 return SD_LBP_UNMAP;
3360 return SD_LBP_WS16;
3361 }
3362
3363 /* LBP VPD page tells us what to use */
3364 if (sdkp->lbpu && sdkp->max_unmap_blocks)
3365 return SD_LBP_UNMAP;
3366 if (sdkp->lbpws)
3367 return SD_LBP_WS16;
3368 if (sdkp->lbpws10)
3369 return SD_LBP_WS10;
3370 return SD_LBP_DISABLE;
3371 }
3372
3373 /*
3374 * Query disk device for preferred I/O sizes.
3375 */
sd_read_block_limits(struct scsi_disk * sdkp,struct queue_limits * lim)3376 static void sd_read_block_limits(struct scsi_disk *sdkp,
3377 struct queue_limits *lim)
3378 {
3379 struct scsi_vpd *vpd;
3380
3381 rcu_read_lock();
3382
3383 vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3384 if (!vpd || vpd->len < 16)
3385 goto out;
3386
3387 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3388 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3389 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3390
3391 if (vpd->len >= 64) {
3392 unsigned int lba_count, desc_count;
3393
3394 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3395
3396 if (!sdkp->lbpme)
3397 goto config_atomic;
3398
3399 lba_count = get_unaligned_be32(&vpd->data[20]);
3400 desc_count = get_unaligned_be32(&vpd->data[24]);
3401
3402 if (lba_count && desc_count)
3403 sdkp->max_unmap_blocks = lba_count;
3404
3405 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3406
3407 if (vpd->data[32] & 0x80)
3408 sdkp->unmap_alignment =
3409 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3410
3411 config_atomic:
3412 sdkp->max_atomic = get_unaligned_be32(&vpd->data[44]);
3413 sdkp->atomic_alignment = get_unaligned_be32(&vpd->data[48]);
3414 sdkp->atomic_granularity = get_unaligned_be32(&vpd->data[52]);
3415 sdkp->max_atomic_with_boundary = get_unaligned_be32(&vpd->data[56]);
3416 sdkp->max_atomic_boundary = get_unaligned_be32(&vpd->data[60]);
3417
3418 sd_config_atomic(sdkp, lim);
3419 }
3420
3421 out:
3422 rcu_read_unlock();
3423 }
3424
3425 /* Parse the Block Limits Extension VPD page (0xb7) */
sd_read_block_limits_ext(struct scsi_disk * sdkp)3426 static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
3427 {
3428 struct scsi_vpd *vpd;
3429
3430 rcu_read_lock();
3431 vpd = rcu_dereference(sdkp->device->vpd_pgb7);
3432 if (vpd && vpd->len >= 6)
3433 sdkp->rscs = vpd->data[5] & 1;
3434 rcu_read_unlock();
3435 }
3436
3437 /* Query block device characteristics */
sd_read_block_characteristics(struct scsi_disk * sdkp,struct queue_limits * lim)3438 static void sd_read_block_characteristics(struct scsi_disk *sdkp,
3439 struct queue_limits *lim)
3440 {
3441 struct scsi_vpd *vpd;
3442 u16 rot;
3443
3444 rcu_read_lock();
3445 vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3446
3447 if (!vpd || vpd->len <= 8) {
3448 rcu_read_unlock();
3449 return;
3450 }
3451
3452 rot = get_unaligned_be16(&vpd->data[4]);
3453 sdkp->zoned = (vpd->data[8] >> 4) & 3;
3454 rcu_read_unlock();
3455
3456 if (rot == 1)
3457 lim->features &= ~(BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
3458
3459 if (!sdkp->first_scan)
3460 return;
3461
3462 if (sdkp->device->type == TYPE_ZBC)
3463 sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3464 else if (sdkp->zoned == 1)
3465 sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3466 else if (sdkp->zoned == 2)
3467 sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3468 }
3469
3470 /**
3471 * sd_read_block_provisioning - Query provisioning VPD page
3472 * @sdkp: disk to query
3473 */
sd_read_block_provisioning(struct scsi_disk * sdkp)3474 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3475 {
3476 struct scsi_vpd *vpd;
3477
3478 if (sdkp->lbpme == 0)
3479 return;
3480
3481 rcu_read_lock();
3482 vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3483
3484 if (!vpd || vpd->len < 8) {
3485 rcu_read_unlock();
3486 return;
3487 }
3488
3489 sdkp->lbpvpd = 1;
3490 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */
3491 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3492 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3493 rcu_read_unlock();
3494 }
3495
sd_read_write_same(struct scsi_disk * sdkp,unsigned char * buffer)3496 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3497 {
3498 struct scsi_device *sdev = sdkp->device;
3499
3500 if (sdev->host->no_write_same) {
3501 sdev->no_write_same = 1;
3502
3503 return;
3504 }
3505
3506 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3507 sdev->no_report_opcodes = 1;
3508
3509 /*
3510 * Disable WRITE SAME if REPORT SUPPORTED OPERATION CODES is
3511 * unsupported and this is an ATA device.
3512 */
3513 if (sdev->is_ata)
3514 sdev->no_write_same = 1;
3515 }
3516
3517 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3518 sdkp->ws16 = 1;
3519
3520 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3521 sdkp->ws10 = 1;
3522 }
3523
sd_read_security(struct scsi_disk * sdkp,unsigned char * buffer)3524 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3525 {
3526 struct scsi_device *sdev = sdkp->device;
3527
3528 if (!sdev->security_supported)
3529 return;
3530
3531 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3532 SECURITY_PROTOCOL_IN, 0) == 1 &&
3533 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3534 SECURITY_PROTOCOL_OUT, 0) == 1)
3535 sdkp->security = 1;
3536 }
3537
sd64_to_sectors(struct scsi_disk * sdkp,u8 * buf)3538 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3539 {
3540 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3541 }
3542
3543 /**
3544 * sd_read_cpr - Query concurrent positioning ranges
3545 * @sdkp: disk to query
3546 */
sd_read_cpr(struct scsi_disk * sdkp)3547 static void sd_read_cpr(struct scsi_disk *sdkp)
3548 {
3549 struct blk_independent_access_ranges *iars = NULL;
3550 unsigned char *buffer = NULL;
3551 unsigned int nr_cpr = 0;
3552 int i, vpd_len, buf_len = SD_BUF_SIZE;
3553 u8 *desc;
3554
3555 /*
3556 * We need to have the capacity set first for the block layer to be
3557 * able to check the ranges.
3558 */
3559 if (sdkp->first_scan)
3560 return;
3561
3562 if (!sdkp->capacity)
3563 goto out;
3564
3565 /*
3566 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3567 * leading to a maximum page size of 64 + 256*32 bytes.
3568 */
3569 buf_len = 64 + 256*32;
3570 buffer = kmalloc(buf_len, GFP_KERNEL);
3571 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3572 goto out;
3573
3574 /* We must have at least a 64B header and one 32B range descriptor */
3575 vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3576 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3577 sd_printk(KERN_ERR, sdkp,
3578 "Invalid Concurrent Positioning Ranges VPD page\n");
3579 goto out;
3580 }
3581
3582 nr_cpr = (vpd_len - 64) / 32;
3583 if (nr_cpr == 1) {
3584 nr_cpr = 0;
3585 goto out;
3586 }
3587
3588 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3589 if (!iars) {
3590 nr_cpr = 0;
3591 goto out;
3592 }
3593
3594 desc = &buffer[64];
3595 for (i = 0; i < nr_cpr; i++, desc += 32) {
3596 if (desc[0] != i) {
3597 sd_printk(KERN_ERR, sdkp,
3598 "Invalid Concurrent Positioning Range number\n");
3599 nr_cpr = 0;
3600 break;
3601 }
3602
3603 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3604 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3605 }
3606
3607 out:
3608 disk_set_independent_access_ranges(sdkp->disk, iars);
3609 if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3610 sd_printk(KERN_NOTICE, sdkp,
3611 "%u concurrent positioning ranges\n", nr_cpr);
3612 sdkp->nr_actuators = nr_cpr;
3613 }
3614
3615 kfree(buffer);
3616 }
3617
sd_validate_min_xfer_size(struct scsi_disk * sdkp)3618 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3619 {
3620 struct scsi_device *sdp = sdkp->device;
3621 unsigned int min_xfer_bytes =
3622 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3623
3624 if (sdkp->min_xfer_blocks == 0)
3625 return false;
3626
3627 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3628 sd_first_printk(KERN_WARNING, sdkp,
3629 "Preferred minimum I/O size %u bytes not a " \
3630 "multiple of physical block size (%u bytes)\n",
3631 min_xfer_bytes, sdkp->physical_block_size);
3632 sdkp->min_xfer_blocks = 0;
3633 return false;
3634 }
3635
3636 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3637 min_xfer_bytes);
3638 return true;
3639 }
3640
3641 /*
3642 * Determine the device's preferred I/O size for reads and writes
3643 * unless the reported value is unreasonably small, large, not a
3644 * multiple of the physical block size, or simply garbage.
3645 */
sd_validate_opt_xfer_size(struct scsi_disk * sdkp,unsigned int dev_max)3646 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3647 unsigned int dev_max)
3648 {
3649 struct scsi_device *sdp = sdkp->device;
3650 unsigned int opt_xfer_bytes =
3651 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3652 unsigned int min_xfer_bytes =
3653 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3654
3655 if (sdkp->opt_xfer_blocks == 0)
3656 return false;
3657
3658 if (sdkp->opt_xfer_blocks > dev_max) {
3659 sd_first_printk(KERN_WARNING, sdkp,
3660 "Optimal transfer size %u logical blocks " \
3661 "> dev_max (%u logical blocks)\n",
3662 sdkp->opt_xfer_blocks, dev_max);
3663 return false;
3664 }
3665
3666 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3667 sd_first_printk(KERN_WARNING, sdkp,
3668 "Optimal transfer size %u logical blocks " \
3669 "> sd driver limit (%u logical blocks)\n",
3670 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3671 return false;
3672 }
3673
3674 if (opt_xfer_bytes < PAGE_SIZE) {
3675 sd_first_printk(KERN_WARNING, sdkp,
3676 "Optimal transfer size %u bytes < " \
3677 "PAGE_SIZE (%u bytes)\n",
3678 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3679 return false;
3680 }
3681
3682 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3683 sd_first_printk(KERN_WARNING, sdkp,
3684 "Optimal transfer size %u bytes not a " \
3685 "multiple of preferred minimum block " \
3686 "size (%u bytes)\n",
3687 opt_xfer_bytes, min_xfer_bytes);
3688 return false;
3689 }
3690
3691 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3692 sd_first_printk(KERN_WARNING, sdkp,
3693 "Optimal transfer size %u bytes not a " \
3694 "multiple of physical block size (%u bytes)\n",
3695 opt_xfer_bytes, sdkp->physical_block_size);
3696 return false;
3697 }
3698
3699 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3700 opt_xfer_bytes);
3701 return true;
3702 }
3703
sd_read_block_zero(struct scsi_disk * sdkp)3704 static void sd_read_block_zero(struct scsi_disk *sdkp)
3705 {
3706 struct scsi_device *sdev = sdkp->device;
3707 unsigned int buf_len = sdev->sector_size;
3708 u8 *buffer, cmd[16] = { };
3709
3710 buffer = kmalloc(buf_len, GFP_KERNEL);
3711 if (!buffer)
3712 return;
3713
3714 if (sdev->use_16_for_rw) {
3715 cmd[0] = READ_16;
3716 put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */
3717 put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */
3718 } else {
3719 cmd[0] = READ_10;
3720 put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3721 put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */
3722 }
3723
3724 scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3725 SD_TIMEOUT, sdkp->max_retries, NULL);
3726 kfree(buffer);
3727 }
3728
3729 /**
3730 * sd_revalidate_disk - called the first time a new disk is seen,
3731 * performs disk spin up, read_capacity, etc.
3732 * @disk: struct gendisk we care about
3733 **/
sd_revalidate_disk(struct gendisk * disk)3734 static void sd_revalidate_disk(struct gendisk *disk)
3735 {
3736 struct scsi_disk *sdkp = scsi_disk(disk);
3737 struct scsi_device *sdp = sdkp->device;
3738 sector_t old_capacity = sdkp->capacity;
3739 struct queue_limits *lim = NULL;
3740 unsigned char *buffer = NULL;
3741 unsigned int dev_max;
3742 int err;
3743
3744 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3745 "sd_revalidate_disk\n"));
3746
3747 /*
3748 * If the device is offline, don't try and read capacity or any
3749 * of the other niceties.
3750 */
3751 if (!scsi_device_online(sdp))
3752 return;
3753
3754 lim = kmalloc(sizeof(*lim), GFP_KERNEL);
3755 if (!lim)
3756 return;
3757
3758 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3759 if (!buffer)
3760 goto out;
3761
3762 sd_spinup_disk(sdkp);
3763
3764 *lim = queue_limits_start_update(sdkp->disk->queue);
3765
3766 /*
3767 * Without media there is no reason to ask; moreover, some devices
3768 * react badly if we do.
3769 */
3770 if (sdkp->media_present) {
3771 sd_read_capacity(sdkp, lim, buffer);
3772 /*
3773 * Some USB/UAS devices return generic values for mode pages
3774 * until the media has been accessed. Trigger a READ operation
3775 * to force the device to populate mode pages.
3776 */
3777 if (sdp->read_before_ms)
3778 sd_read_block_zero(sdkp);
3779 /*
3780 * set the default to rotational. All non-rotational devices
3781 * support the block characteristics VPD page, which will
3782 * cause this to be updated correctly and any device which
3783 * doesn't support it should be treated as rotational.
3784 */
3785 lim->features |= (BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
3786
3787 if (scsi_device_supports_vpd(sdp)) {
3788 sd_read_block_provisioning(sdkp);
3789 sd_read_block_limits(sdkp, lim);
3790 sd_read_block_limits_ext(sdkp);
3791 sd_read_block_characteristics(sdkp, lim);
3792 sd_zbc_read_zones(sdkp, lim, buffer);
3793 }
3794
3795 sd_config_discard(sdkp, lim, sd_discard_mode(sdkp));
3796
3797 sd_print_capacity(sdkp, old_capacity);
3798
3799 sd_read_write_protect_flag(sdkp, buffer);
3800 sd_read_cache_type(sdkp, buffer);
3801 sd_read_io_hints(sdkp, buffer);
3802 sd_read_app_tag_own(sdkp, buffer);
3803 sd_read_write_same(sdkp, buffer);
3804 sd_read_security(sdkp, buffer);
3805 sd_config_protection(sdkp, lim);
3806 }
3807
3808 /*
3809 * We now have all cache related info, determine how we deal
3810 * with flush requests.
3811 */
3812 sd_set_flush_flag(sdkp, lim);
3813
3814 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3815 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3816
3817 /* Some devices report a maximum block count for READ/WRITE requests. */
3818 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3819 lim->max_dev_sectors = logical_to_sectors(sdp, dev_max);
3820
3821 if (sd_validate_min_xfer_size(sdkp))
3822 lim->io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3823 else
3824 lim->io_min = 0;
3825
3826 /*
3827 * Limit default to SCSI host optimal sector limit if set. There may be
3828 * an impact on performance for when the size of a request exceeds this
3829 * host limit.
3830 */
3831 lim->io_opt = sdp->host->opt_sectors << SECTOR_SHIFT;
3832 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3833 lim->io_opt = min_not_zero(lim->io_opt,
3834 logical_to_bytes(sdp, sdkp->opt_xfer_blocks));
3835 }
3836
3837 sdkp->first_scan = 0;
3838
3839 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3840 sd_config_write_same(sdkp, lim);
3841
3842 err = queue_limits_commit_update_frozen(sdkp->disk->queue, lim);
3843 if (err)
3844 goto out;
3845
3846 /*
3847 * Query concurrent positioning ranges after
3848 * queue_limits_commit_update() unlocked q->limits_lock to avoid
3849 * deadlock with q->sysfs_dir_lock and q->sysfs_lock.
3850 */
3851 if (sdkp->media_present && scsi_device_supports_vpd(sdp))
3852 sd_read_cpr(sdkp);
3853
3854 /*
3855 * For a zoned drive, revalidating the zones can be done only once
3856 * the gendisk capacity is set. So if this fails, set back the gendisk
3857 * capacity to 0.
3858 */
3859 if (sd_zbc_revalidate_zones(sdkp))
3860 set_capacity_and_notify(disk, 0);
3861
3862 out:
3863 kfree(buffer);
3864 kfree(lim);
3865
3866 }
3867
3868 /**
3869 * sd_unlock_native_capacity - unlock native capacity
3870 * @disk: struct gendisk to set capacity for
3871 *
3872 * Block layer calls this function if it detects that partitions
3873 * on @disk reach beyond the end of the device. If the SCSI host
3874 * implements ->unlock_native_capacity() method, it's invoked to
3875 * give it a chance to adjust the device capacity.
3876 *
3877 * CONTEXT:
3878 * Defined by block layer. Might sleep.
3879 */
sd_unlock_native_capacity(struct gendisk * disk)3880 static void sd_unlock_native_capacity(struct gendisk *disk)
3881 {
3882 struct scsi_device *sdev = scsi_disk(disk)->device;
3883
3884 if (sdev->host->hostt->unlock_native_capacity)
3885 sdev->host->hostt->unlock_native_capacity(sdev);
3886 }
3887
3888 /**
3889 * sd_format_disk_name - format disk name
3890 * @prefix: name prefix - ie. "sd" for SCSI disks
3891 * @index: index of the disk to format name for
3892 * @buf: output buffer
3893 * @buflen: length of the output buffer
3894 *
3895 * SCSI disk names starts at sda. The 26th device is sdz and the
3896 * 27th is sdaa. The last one for two lettered suffix is sdzz
3897 * which is followed by sdaaa.
3898 *
3899 * This is basically 26 base counting with one extra 'nil' entry
3900 * at the beginning from the second digit on and can be
3901 * determined using similar method as 26 base conversion with the
3902 * index shifted -1 after each digit is computed.
3903 *
3904 * CONTEXT:
3905 * Don't care.
3906 *
3907 * RETURNS:
3908 * 0 on success, -errno on failure.
3909 */
sd_format_disk_name(char * prefix,int index,char * buf,int buflen)3910 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3911 {
3912 const int base = 'z' - 'a' + 1;
3913 char *begin = buf + strlen(prefix);
3914 char *end = buf + buflen;
3915 char *p;
3916 int unit;
3917
3918 p = end - 1;
3919 *p = '\0';
3920 unit = base;
3921 do {
3922 if (p == begin)
3923 return -EINVAL;
3924 *--p = 'a' + (index % unit);
3925 index = (index / unit) - 1;
3926 } while (index >= 0);
3927
3928 memmove(begin, p, end - p);
3929 memcpy(buf, prefix, strlen(prefix));
3930
3931 return 0;
3932 }
3933
3934 /**
3935 * sd_probe - called during driver initialization and whenever a
3936 * new scsi device is attached to the system. It is called once
3937 * for each scsi device (not just disks) present.
3938 * @dev: pointer to device object
3939 *
3940 * Returns 0 if successful (or not interested in this scsi device
3941 * (e.g. scanner)); 1 when there is an error.
3942 *
3943 * Note: this function is invoked from the scsi mid-level.
3944 * This function sets up the mapping between a given
3945 * <host,channel,id,lun> (found in sdp) and new device name
3946 * (e.g. /dev/sda). More precisely it is the block device major
3947 * and minor number that is chosen here.
3948 *
3949 * Assume sd_probe is not re-entrant (for time being)
3950 * Also think about sd_probe() and sd_remove() running coincidentally.
3951 **/
sd_probe(struct device * dev)3952 static int sd_probe(struct device *dev)
3953 {
3954 struct scsi_device *sdp = to_scsi_device(dev);
3955 struct scsi_disk *sdkp;
3956 struct gendisk *gd;
3957 int index;
3958 int error;
3959
3960 scsi_autopm_get_device(sdp);
3961 error = -ENODEV;
3962 if (sdp->type != TYPE_DISK &&
3963 sdp->type != TYPE_ZBC &&
3964 sdp->type != TYPE_MOD &&
3965 sdp->type != TYPE_RBC)
3966 goto out;
3967
3968 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3969 sdev_printk(KERN_WARNING, sdp,
3970 "Unsupported ZBC host-managed device.\n");
3971 goto out;
3972 }
3973
3974 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3975 "sd_probe\n"));
3976
3977 error = -ENOMEM;
3978 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3979 if (!sdkp)
3980 goto out;
3981
3982 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3983 &sd_bio_compl_lkclass);
3984 if (!gd)
3985 goto out_free;
3986
3987 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3988 if (index < 0) {
3989 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3990 goto out_put;
3991 }
3992
3993 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3994 if (error) {
3995 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3996 goto out_free_index;
3997 }
3998
3999 sdkp->device = sdp;
4000 sdkp->disk = gd;
4001 sdkp->index = index;
4002 sdkp->max_retries = SD_MAX_RETRIES;
4003 atomic_set(&sdkp->openers, 0);
4004 atomic_set(&sdkp->device->ioerr_cnt, 0);
4005
4006 if (!sdp->request_queue->rq_timeout) {
4007 if (sdp->type != TYPE_MOD)
4008 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
4009 else
4010 blk_queue_rq_timeout(sdp->request_queue,
4011 SD_MOD_TIMEOUT);
4012 }
4013
4014 device_initialize(&sdkp->disk_dev);
4015 sdkp->disk_dev.parent = get_device(dev);
4016 sdkp->disk_dev.class = &sd_disk_class;
4017 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
4018
4019 error = device_add(&sdkp->disk_dev);
4020 if (error) {
4021 put_device(&sdkp->disk_dev);
4022 goto out;
4023 }
4024
4025 dev_set_drvdata(dev, sdkp);
4026
4027 gd->major = sd_major((index & 0xf0) >> 4);
4028 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
4029 gd->minors = SD_MINORS;
4030
4031 gd->fops = &sd_fops;
4032 gd->private_data = sdkp;
4033
4034 /* defaults, until the device tells us otherwise */
4035 sdp->sector_size = 512;
4036 sdkp->capacity = 0;
4037 sdkp->media_present = 1;
4038 sdkp->write_prot = 0;
4039 sdkp->cache_override = 0;
4040 sdkp->WCE = 0;
4041 sdkp->RCD = 0;
4042 sdkp->ATO = 0;
4043 sdkp->first_scan = 1;
4044 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
4045
4046 sd_revalidate_disk(gd);
4047
4048 if (sdp->removable) {
4049 gd->flags |= GENHD_FL_REMOVABLE;
4050 gd->events |= DISK_EVENT_MEDIA_CHANGE;
4051 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
4052 }
4053
4054 blk_pm_runtime_init(sdp->request_queue, dev);
4055 if (sdp->rpm_autosuspend) {
4056 pm_runtime_set_autosuspend_delay(dev,
4057 sdp->host->rpm_autosuspend_delay);
4058 }
4059
4060 error = device_add_disk(dev, gd, NULL);
4061 if (error) {
4062 device_unregister(&sdkp->disk_dev);
4063 put_disk(gd);
4064 goto out;
4065 }
4066
4067 if (sdkp->security) {
4068 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
4069 if (sdkp->opal_dev)
4070 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
4071 }
4072
4073 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
4074 sdp->removable ? "removable " : "");
4075 scsi_autopm_put_device(sdp);
4076
4077 return 0;
4078
4079 out_free_index:
4080 ida_free(&sd_index_ida, index);
4081 out_put:
4082 put_disk(gd);
4083 out_free:
4084 kfree(sdkp);
4085 out:
4086 scsi_autopm_put_device(sdp);
4087 return error;
4088 }
4089
4090 /**
4091 * sd_remove - called whenever a scsi disk (previously recognized by
4092 * sd_probe) is detached from the system. It is called (potentially
4093 * multiple times) during sd module unload.
4094 * @dev: pointer to device object
4095 *
4096 * Note: this function is invoked from the scsi mid-level.
4097 * This function potentially frees up a device name (e.g. /dev/sdc)
4098 * that could be re-used by a subsequent sd_probe().
4099 * This function is not called when the built-in sd driver is "exit-ed".
4100 **/
sd_remove(struct device * dev)4101 static int sd_remove(struct device *dev)
4102 {
4103 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4104
4105 scsi_autopm_get_device(sdkp->device);
4106
4107 device_del(&sdkp->disk_dev);
4108 del_gendisk(sdkp->disk);
4109 if (!sdkp->suspended)
4110 sd_shutdown(dev);
4111
4112 put_disk(sdkp->disk);
4113 return 0;
4114 }
4115
scsi_disk_release(struct device * dev)4116 static void scsi_disk_release(struct device *dev)
4117 {
4118 struct scsi_disk *sdkp = to_scsi_disk(dev);
4119
4120 ida_free(&sd_index_ida, sdkp->index);
4121 put_device(&sdkp->device->sdev_gendev);
4122 free_opal_dev(sdkp->opal_dev);
4123
4124 kfree(sdkp);
4125 }
4126
sd_start_stop_device(struct scsi_disk * sdkp,int start)4127 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
4128 {
4129 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
4130 struct scsi_sense_hdr sshdr;
4131 struct scsi_failure failure_defs[] = {
4132 {
4133 /* Power on, reset, or bus device reset occurred */
4134 .sense = UNIT_ATTENTION,
4135 .asc = 0x29,
4136 .ascq = 0,
4137 .result = SAM_STAT_CHECK_CONDITION,
4138 },
4139 {
4140 /* Power on occurred */
4141 .sense = UNIT_ATTENTION,
4142 .asc = 0x29,
4143 .ascq = 1,
4144 .result = SAM_STAT_CHECK_CONDITION,
4145 },
4146 {
4147 /* SCSI bus reset */
4148 .sense = UNIT_ATTENTION,
4149 .asc = 0x29,
4150 .ascq = 2,
4151 .result = SAM_STAT_CHECK_CONDITION,
4152 },
4153 {}
4154 };
4155 struct scsi_failures failures = {
4156 .total_allowed = 3,
4157 .failure_definitions = failure_defs,
4158 };
4159 const struct scsi_exec_args exec_args = {
4160 .sshdr = &sshdr,
4161 .req_flags = BLK_MQ_REQ_PM,
4162 .failures = &failures,
4163 };
4164 struct scsi_device *sdp = sdkp->device;
4165 int res;
4166
4167 if (start)
4168 cmd[4] |= 1; /* START */
4169
4170 if (sdp->start_stop_pwr_cond)
4171 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
4172
4173 if (!scsi_device_online(sdp))
4174 return -ENODEV;
4175
4176 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
4177 sdkp->max_retries, &exec_args);
4178 if (res) {
4179 sd_print_result(sdkp, "Start/Stop Unit failed", res);
4180 if (res > 0 && scsi_sense_valid(&sshdr)) {
4181 sd_print_sense_hdr(sdkp, &sshdr);
4182 /* 0x3a is medium not present */
4183 if (sshdr.asc == 0x3a)
4184 res = 0;
4185 }
4186 }
4187
4188 /* SCSI error codes must not go to the generic layer */
4189 if (res)
4190 return -EIO;
4191
4192 return 0;
4193 }
4194
4195 /*
4196 * Send a SYNCHRONIZE CACHE instruction down to the device through
4197 * the normal SCSI command structure. Wait for the command to
4198 * complete.
4199 */
sd_shutdown(struct device * dev)4200 static void sd_shutdown(struct device *dev)
4201 {
4202 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4203
4204 if (!sdkp)
4205 return; /* this can happen */
4206
4207 if (pm_runtime_suspended(dev))
4208 return;
4209
4210 if (sdkp->WCE && sdkp->media_present) {
4211 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4212 sd_sync_cache(sdkp);
4213 }
4214
4215 if ((system_state != SYSTEM_RESTART &&
4216 sdkp->device->manage_system_start_stop) ||
4217 (system_state == SYSTEM_POWER_OFF &&
4218 sdkp->device->manage_shutdown) ||
4219 (system_state == SYSTEM_RUNNING &&
4220 sdkp->device->manage_runtime_start_stop) ||
4221 (system_state == SYSTEM_RESTART &&
4222 sdkp->device->manage_restart)) {
4223 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4224 sd_start_stop_device(sdkp, 0);
4225 }
4226 }
4227
sd_do_start_stop(struct scsi_device * sdev,bool runtime)4228 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
4229 {
4230 return (sdev->manage_system_start_stop && !runtime) ||
4231 (sdev->manage_runtime_start_stop && runtime);
4232 }
4233
sd_suspend_common(struct device * dev,bool runtime)4234 static int sd_suspend_common(struct device *dev, bool runtime)
4235 {
4236 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4237 int ret = 0;
4238
4239 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
4240 return 0;
4241
4242 if (sdkp->WCE && sdkp->media_present) {
4243 if (!sdkp->device->silence_suspend)
4244 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4245 ret = sd_sync_cache(sdkp);
4246 /* ignore OFFLINE device */
4247 if (ret == -ENODEV)
4248 return 0;
4249
4250 if (ret)
4251 return ret;
4252 }
4253
4254 if (sd_do_start_stop(sdkp->device, runtime)) {
4255 if (!sdkp->device->silence_suspend)
4256 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4257 /* an error is not worth aborting a system sleep */
4258 ret = sd_start_stop_device(sdkp, 0);
4259 if (!runtime)
4260 ret = 0;
4261 }
4262
4263 if (!ret)
4264 sdkp->suspended = true;
4265
4266 return ret;
4267 }
4268
sd_suspend_system(struct device * dev)4269 static int sd_suspend_system(struct device *dev)
4270 {
4271 if (pm_runtime_suspended(dev))
4272 return 0;
4273
4274 return sd_suspend_common(dev, false);
4275 }
4276
sd_suspend_runtime(struct device * dev)4277 static int sd_suspend_runtime(struct device *dev)
4278 {
4279 return sd_suspend_common(dev, true);
4280 }
4281
sd_resume(struct device * dev)4282 static int sd_resume(struct device *dev)
4283 {
4284 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4285
4286 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4287
4288 if (opal_unlock_from_suspend(sdkp->opal_dev)) {
4289 sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
4290 return -EIO;
4291 }
4292
4293 return 0;
4294 }
4295
sd_resume_common(struct device * dev,bool runtime)4296 static int sd_resume_common(struct device *dev, bool runtime)
4297 {
4298 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4299 int ret;
4300
4301 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
4302 return 0;
4303
4304 if (!sd_do_start_stop(sdkp->device, runtime)) {
4305 sdkp->suspended = false;
4306 return 0;
4307 }
4308
4309 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4310 ret = sd_start_stop_device(sdkp, 1);
4311 if (!ret) {
4312 sd_resume(dev);
4313 sdkp->suspended = false;
4314 }
4315
4316 return ret;
4317 }
4318
sd_resume_system(struct device * dev)4319 static int sd_resume_system(struct device *dev)
4320 {
4321 if (pm_runtime_suspended(dev)) {
4322 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4323 struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4324
4325 if (sdp && sdp->force_runtime_start_on_system_start)
4326 pm_request_resume(dev);
4327
4328 return 0;
4329 }
4330
4331 return sd_resume_common(dev, false);
4332 }
4333
sd_resume_runtime(struct device * dev)4334 static int sd_resume_runtime(struct device *dev)
4335 {
4336 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4337 struct scsi_device *sdp;
4338
4339 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
4340 return 0;
4341
4342 sdp = sdkp->device;
4343
4344 if (sdp->ignore_media_change) {
4345 /* clear the device's sense data */
4346 static const u8 cmd[10] = { REQUEST_SENSE };
4347 const struct scsi_exec_args exec_args = {
4348 .req_flags = BLK_MQ_REQ_PM,
4349 };
4350
4351 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4352 sdp->request_queue->rq_timeout, 1,
4353 &exec_args))
4354 sd_printk(KERN_NOTICE, sdkp,
4355 "Failed to clear sense data\n");
4356 }
4357
4358 return sd_resume_common(dev, true);
4359 }
4360
4361 static const struct dev_pm_ops sd_pm_ops = {
4362 .suspend = sd_suspend_system,
4363 .resume = sd_resume_system,
4364 .poweroff = sd_suspend_system,
4365 .restore = sd_resume_system,
4366 .runtime_suspend = sd_suspend_runtime,
4367 .runtime_resume = sd_resume_runtime,
4368 };
4369
4370 static struct scsi_driver sd_template = {
4371 .gendrv = {
4372 .name = "sd",
4373 .probe = sd_probe,
4374 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
4375 .remove = sd_remove,
4376 .shutdown = sd_shutdown,
4377 .pm = &sd_pm_ops,
4378 },
4379 .rescan = sd_rescan,
4380 .resume = sd_resume,
4381 .init_command = sd_init_command,
4382 .uninit_command = sd_uninit_command,
4383 .done = sd_done,
4384 .eh_action = sd_eh_action,
4385 .eh_reset = sd_eh_reset,
4386 };
4387
4388 /**
4389 * init_sd - entry point for this driver (both when built in or when
4390 * a module).
4391 *
4392 * Note: this function registers this driver with the scsi mid-level.
4393 **/
init_sd(void)4394 static int __init init_sd(void)
4395 {
4396 int majors = 0, i, err;
4397
4398 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4399
4400 for (i = 0; i < SD_MAJORS; i++) {
4401 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4402 continue;
4403 majors++;
4404 }
4405
4406 if (!majors)
4407 return -ENODEV;
4408
4409 err = class_register(&sd_disk_class);
4410 if (err)
4411 goto err_out;
4412
4413 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4414 if (!sd_page_pool) {
4415 printk(KERN_ERR "sd: can't init discard page pool\n");
4416 err = -ENOMEM;
4417 goto err_out_class;
4418 }
4419
4420 err = scsi_register_driver(&sd_template.gendrv);
4421 if (err)
4422 goto err_out_driver;
4423
4424 return 0;
4425
4426 err_out_driver:
4427 mempool_destroy(sd_page_pool);
4428 err_out_class:
4429 class_unregister(&sd_disk_class);
4430 err_out:
4431 for (i = 0; i < SD_MAJORS; i++)
4432 unregister_blkdev(sd_major(i), "sd");
4433 return err;
4434 }
4435
4436 /**
4437 * exit_sd - exit point for this driver (when it is a module).
4438 *
4439 * Note: this function unregisters this driver from the scsi mid-level.
4440 **/
exit_sd(void)4441 static void __exit exit_sd(void)
4442 {
4443 int i;
4444
4445 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4446
4447 scsi_unregister_driver(&sd_template.gendrv);
4448 mempool_destroy(sd_page_pool);
4449
4450 class_unregister(&sd_disk_class);
4451
4452 for (i = 0; i < SD_MAJORS; i++)
4453 unregister_blkdev(sd_major(i), "sd");
4454 }
4455
4456 module_init(init_sd);
4457 module_exit(exit_sd);
4458
sd_print_sense_hdr(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)4459 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4460 {
4461 scsi_print_sense_hdr(sdkp->device,
4462 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4463 }
4464
sd_print_result(const struct scsi_disk * sdkp,const char * msg,int result)4465 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4466 {
4467 const char *hb_string = scsi_hostbyte_string(result);
4468
4469 if (hb_string)
4470 sd_printk(KERN_INFO, sdkp,
4471 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4472 hb_string ? hb_string : "invalid",
4473 "DRIVER_OK");
4474 else
4475 sd_printk(KERN_INFO, sdkp,
4476 "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4477 msg, host_byte(result), "DRIVER_OK");
4478 }
4479