1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the kernel access vector cache (AVC).
4 *
5 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
9 * Replaced the avc_lock spinlock by RCU.
10 *
11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12 */
13 #include <linux/types.h>
14 #include <linux/stddef.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/fs.h>
18 #include <linux/dcache.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/percpu.h>
22 #include <linux/list.h>
23 #include <net/sock.h>
24 #include <linux/un.h>
25 #include <net/af_unix.h>
26 #include <linux/ip.h>
27 #include <linux/audit.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include "avc.h"
31 #include "avc_ss.h"
32 #include "classmap.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/avc.h>
36
37 #define AVC_CACHE_SLOTS 512
38 #define AVC_DEF_CACHE_THRESHOLD 512
39 #define AVC_CACHE_RECLAIM 16
40
41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
43 #else
44 #define avc_cache_stats_incr(field) do {} while (0)
45 #endif
46
47 struct avc_entry {
48 u32 ssid;
49 u32 tsid;
50 u16 tclass;
51 struct av_decision avd;
52 struct avc_xperms_node *xp_node;
53 };
54
55 struct avc_node {
56 struct avc_entry ae;
57 struct hlist_node list; /* anchored in avc_cache->slots[i] */
58 struct rcu_head rhead;
59 };
60
61 struct avc_xperms_decision_node {
62 struct extended_perms_decision xpd;
63 struct list_head xpd_list; /* list of extended_perms_decision */
64 };
65
66 struct avc_xperms_node {
67 struct extended_perms xp;
68 struct list_head xpd_head; /* list head of extended_perms_decision */
69 };
70
71 struct avc_cache {
72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
74 atomic_t lru_hint; /* LRU hint for reclaim scan */
75 atomic_t active_nodes;
76 u32 latest_notif; /* latest revocation notification */
77 };
78
79 struct avc_callback_node {
80 int (*callback) (u32 event);
81 u32 events;
82 struct avc_callback_node *next;
83 };
84
85 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
86 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
87 #endif
88
89 struct selinux_avc {
90 unsigned int avc_cache_threshold;
91 struct avc_cache avc_cache;
92 };
93
94 static struct selinux_avc selinux_avc;
95
selinux_avc_init(void)96 void selinux_avc_init(void)
97 {
98 int i;
99
100 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
101 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
102 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
103 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
104 }
105 atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
106 atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
107 }
108
avc_get_cache_threshold(void)109 unsigned int avc_get_cache_threshold(void)
110 {
111 return selinux_avc.avc_cache_threshold;
112 }
113
avc_set_cache_threshold(unsigned int cache_threshold)114 void avc_set_cache_threshold(unsigned int cache_threshold)
115 {
116 selinux_avc.avc_cache_threshold = cache_threshold;
117 }
118
119 static struct avc_callback_node *avc_callbacks __ro_after_init;
120 static struct kmem_cache *avc_node_cachep __ro_after_init;
121 static struct kmem_cache *avc_xperms_data_cachep __ro_after_init;
122 static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init;
123 static struct kmem_cache *avc_xperms_cachep __ro_after_init;
124
avc_hash(u32 ssid,u32 tsid,u16 tclass)125 static inline u32 avc_hash(u32 ssid, u32 tsid, u16 tclass)
126 {
127 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
128 }
129
130 /**
131 * avc_init - Initialize the AVC.
132 *
133 * Initialize the access vector cache.
134 */
avc_init(void)135 void __init avc_init(void)
136 {
137 avc_node_cachep = KMEM_CACHE(avc_node, SLAB_PANIC);
138 avc_xperms_cachep = KMEM_CACHE(avc_xperms_node, SLAB_PANIC);
139 avc_xperms_decision_cachep = KMEM_CACHE(avc_xperms_decision_node, SLAB_PANIC);
140 avc_xperms_data_cachep = KMEM_CACHE(extended_perms_data, SLAB_PANIC);
141 }
142
avc_get_hash_stats(char * page)143 int avc_get_hash_stats(char *page)
144 {
145 int i, chain_len, max_chain_len, slots_used;
146 struct avc_node *node;
147 struct hlist_head *head;
148
149 rcu_read_lock();
150
151 slots_used = 0;
152 max_chain_len = 0;
153 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
154 head = &selinux_avc.avc_cache.slots[i];
155 if (!hlist_empty(head)) {
156 slots_used++;
157 chain_len = 0;
158 hlist_for_each_entry_rcu(node, head, list)
159 chain_len++;
160 if (chain_len > max_chain_len)
161 max_chain_len = chain_len;
162 }
163 }
164
165 rcu_read_unlock();
166
167 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
168 "longest chain: %d\n",
169 atomic_read(&selinux_avc.avc_cache.active_nodes),
170 slots_used, AVC_CACHE_SLOTS, max_chain_len);
171 }
172
173 /*
174 * using a linked list for extended_perms_decision lookup because the list is
175 * always small. i.e. less than 5, typically 1
176 */
avc_xperms_decision_lookup(u8 driver,struct avc_xperms_node * xp_node)177 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
178 struct avc_xperms_node *xp_node)
179 {
180 struct avc_xperms_decision_node *xpd_node;
181
182 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
183 if (xpd_node->xpd.driver == driver)
184 return &xpd_node->xpd;
185 }
186 return NULL;
187 }
188
189 static inline unsigned int
avc_xperms_has_perm(struct extended_perms_decision * xpd,u8 perm,u8 which)190 avc_xperms_has_perm(struct extended_perms_decision *xpd,
191 u8 perm, u8 which)
192 {
193 unsigned int rc = 0;
194
195 if ((which == XPERMS_ALLOWED) &&
196 (xpd->used & XPERMS_ALLOWED))
197 rc = security_xperm_test(xpd->allowed->p, perm);
198 else if ((which == XPERMS_AUDITALLOW) &&
199 (xpd->used & XPERMS_AUDITALLOW))
200 rc = security_xperm_test(xpd->auditallow->p, perm);
201 else if ((which == XPERMS_DONTAUDIT) &&
202 (xpd->used & XPERMS_DONTAUDIT))
203 rc = security_xperm_test(xpd->dontaudit->p, perm);
204 return rc;
205 }
206
avc_xperms_allow_perm(struct avc_xperms_node * xp_node,u8 driver,u8 perm)207 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
208 u8 driver, u8 perm)
209 {
210 struct extended_perms_decision *xpd;
211 security_xperm_set(xp_node->xp.drivers.p, driver);
212 xpd = avc_xperms_decision_lookup(driver, xp_node);
213 if (xpd && xpd->allowed)
214 security_xperm_set(xpd->allowed->p, perm);
215 }
216
avc_xperms_decision_free(struct avc_xperms_decision_node * xpd_node)217 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
218 {
219 struct extended_perms_decision *xpd;
220
221 xpd = &xpd_node->xpd;
222 if (xpd->allowed)
223 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
224 if (xpd->auditallow)
225 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
226 if (xpd->dontaudit)
227 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
228 kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
229 }
230
avc_xperms_free(struct avc_xperms_node * xp_node)231 static void avc_xperms_free(struct avc_xperms_node *xp_node)
232 {
233 struct avc_xperms_decision_node *xpd_node, *tmp;
234
235 if (!xp_node)
236 return;
237
238 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
239 list_del(&xpd_node->xpd_list);
240 avc_xperms_decision_free(xpd_node);
241 }
242 kmem_cache_free(avc_xperms_cachep, xp_node);
243 }
244
avc_copy_xperms_decision(struct extended_perms_decision * dest,struct extended_perms_decision * src)245 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
246 struct extended_perms_decision *src)
247 {
248 dest->driver = src->driver;
249 dest->used = src->used;
250 if (dest->used & XPERMS_ALLOWED)
251 memcpy(dest->allowed->p, src->allowed->p,
252 sizeof(src->allowed->p));
253 if (dest->used & XPERMS_AUDITALLOW)
254 memcpy(dest->auditallow->p, src->auditallow->p,
255 sizeof(src->auditallow->p));
256 if (dest->used & XPERMS_DONTAUDIT)
257 memcpy(dest->dontaudit->p, src->dontaudit->p,
258 sizeof(src->dontaudit->p));
259 }
260
261 /*
262 * similar to avc_copy_xperms_decision, but only copy decision
263 * information relevant to this perm
264 */
avc_quick_copy_xperms_decision(u8 perm,struct extended_perms_decision * dest,struct extended_perms_decision * src)265 static inline void avc_quick_copy_xperms_decision(u8 perm,
266 struct extended_perms_decision *dest,
267 struct extended_perms_decision *src)
268 {
269 /*
270 * compute index of the u32 of the 256 bits (8 u32s) that contain this
271 * command permission
272 */
273 u8 i = perm >> 5;
274
275 dest->used = src->used;
276 if (dest->used & XPERMS_ALLOWED)
277 dest->allowed->p[i] = src->allowed->p[i];
278 if (dest->used & XPERMS_AUDITALLOW)
279 dest->auditallow->p[i] = src->auditallow->p[i];
280 if (dest->used & XPERMS_DONTAUDIT)
281 dest->dontaudit->p[i] = src->dontaudit->p[i];
282 }
283
284 static struct avc_xperms_decision_node
avc_xperms_decision_alloc(u8 which)285 *avc_xperms_decision_alloc(u8 which)
286 {
287 struct avc_xperms_decision_node *xpd_node;
288 struct extended_perms_decision *xpd;
289
290 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
291 GFP_NOWAIT | __GFP_NOWARN);
292 if (!xpd_node)
293 return NULL;
294
295 xpd = &xpd_node->xpd;
296 if (which & XPERMS_ALLOWED) {
297 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
298 GFP_NOWAIT | __GFP_NOWARN);
299 if (!xpd->allowed)
300 goto error;
301 }
302 if (which & XPERMS_AUDITALLOW) {
303 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
304 GFP_NOWAIT | __GFP_NOWARN);
305 if (!xpd->auditallow)
306 goto error;
307 }
308 if (which & XPERMS_DONTAUDIT) {
309 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
310 GFP_NOWAIT | __GFP_NOWARN);
311 if (!xpd->dontaudit)
312 goto error;
313 }
314 return xpd_node;
315 error:
316 avc_xperms_decision_free(xpd_node);
317 return NULL;
318 }
319
avc_add_xperms_decision(struct avc_node * node,struct extended_perms_decision * src)320 static int avc_add_xperms_decision(struct avc_node *node,
321 struct extended_perms_decision *src)
322 {
323 struct avc_xperms_decision_node *dest_xpd;
324
325 dest_xpd = avc_xperms_decision_alloc(src->used);
326 if (!dest_xpd)
327 return -ENOMEM;
328 avc_copy_xperms_decision(&dest_xpd->xpd, src);
329 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
330 node->ae.xp_node->xp.len++;
331 return 0;
332 }
333
avc_xperms_alloc(void)334 static struct avc_xperms_node *avc_xperms_alloc(void)
335 {
336 struct avc_xperms_node *xp_node;
337
338 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN);
339 if (!xp_node)
340 return xp_node;
341 INIT_LIST_HEAD(&xp_node->xpd_head);
342 return xp_node;
343 }
344
avc_xperms_populate(struct avc_node * node,struct avc_xperms_node * src)345 static int avc_xperms_populate(struct avc_node *node,
346 struct avc_xperms_node *src)
347 {
348 struct avc_xperms_node *dest;
349 struct avc_xperms_decision_node *dest_xpd;
350 struct avc_xperms_decision_node *src_xpd;
351
352 if (src->xp.len == 0)
353 return 0;
354 dest = avc_xperms_alloc();
355 if (!dest)
356 return -ENOMEM;
357
358 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
359 dest->xp.len = src->xp.len;
360
361 /* for each source xpd allocate a destination xpd and copy */
362 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
363 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
364 if (!dest_xpd)
365 goto error;
366 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
367 list_add(&dest_xpd->xpd_list, &dest->xpd_head);
368 }
369 node->ae.xp_node = dest;
370 return 0;
371 error:
372 avc_xperms_free(dest);
373 return -ENOMEM;
374
375 }
376
avc_xperms_audit_required(u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,u32 * deniedp)377 static inline u32 avc_xperms_audit_required(u32 requested,
378 struct av_decision *avd,
379 struct extended_perms_decision *xpd,
380 u8 perm,
381 int result,
382 u32 *deniedp)
383 {
384 u32 denied, audited;
385
386 denied = requested & ~avd->allowed;
387 if (unlikely(denied)) {
388 audited = denied & avd->auditdeny;
389 if (audited && xpd) {
390 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
391 audited = 0;
392 }
393 } else if (result) {
394 audited = denied = requested;
395 } else {
396 audited = requested & avd->auditallow;
397 if (audited && xpd) {
398 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
399 audited = 0;
400 }
401 }
402
403 *deniedp = denied;
404 return audited;
405 }
406
avc_xperms_audit(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,struct common_audit_data * ad)407 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
408 u32 requested, struct av_decision *avd,
409 struct extended_perms_decision *xpd,
410 u8 perm, int result,
411 struct common_audit_data *ad)
412 {
413 u32 audited, denied;
414
415 audited = avc_xperms_audit_required(
416 requested, avd, xpd, perm, result, &denied);
417 if (likely(!audited))
418 return 0;
419 return slow_avc_audit(ssid, tsid, tclass, requested,
420 audited, denied, result, ad);
421 }
422
avc_node_free(struct rcu_head * rhead)423 static void avc_node_free(struct rcu_head *rhead)
424 {
425 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
426 avc_xperms_free(node->ae.xp_node);
427 kmem_cache_free(avc_node_cachep, node);
428 avc_cache_stats_incr(frees);
429 }
430
avc_node_delete(struct avc_node * node)431 static void avc_node_delete(struct avc_node *node)
432 {
433 hlist_del_rcu(&node->list);
434 call_rcu(&node->rhead, avc_node_free);
435 atomic_dec(&selinux_avc.avc_cache.active_nodes);
436 }
437
avc_node_kill(struct avc_node * node)438 static void avc_node_kill(struct avc_node *node)
439 {
440 avc_xperms_free(node->ae.xp_node);
441 kmem_cache_free(avc_node_cachep, node);
442 avc_cache_stats_incr(frees);
443 atomic_dec(&selinux_avc.avc_cache.active_nodes);
444 }
445
avc_node_replace(struct avc_node * new,struct avc_node * old)446 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
447 {
448 hlist_replace_rcu(&old->list, &new->list);
449 call_rcu(&old->rhead, avc_node_free);
450 atomic_dec(&selinux_avc.avc_cache.active_nodes);
451 }
452
avc_reclaim_node(void)453 static inline int avc_reclaim_node(void)
454 {
455 struct avc_node *node;
456 int hvalue, try, ecx;
457 unsigned long flags;
458 struct hlist_head *head;
459 spinlock_t *lock;
460
461 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
462 hvalue = atomic_inc_return(&selinux_avc.avc_cache.lru_hint) &
463 (AVC_CACHE_SLOTS - 1);
464 head = &selinux_avc.avc_cache.slots[hvalue];
465 lock = &selinux_avc.avc_cache.slots_lock[hvalue];
466
467 if (!spin_trylock_irqsave(lock, flags))
468 continue;
469
470 rcu_read_lock();
471 hlist_for_each_entry(node, head, list) {
472 avc_node_delete(node);
473 avc_cache_stats_incr(reclaims);
474 ecx++;
475 if (ecx >= AVC_CACHE_RECLAIM) {
476 rcu_read_unlock();
477 spin_unlock_irqrestore(lock, flags);
478 goto out;
479 }
480 }
481 rcu_read_unlock();
482 spin_unlock_irqrestore(lock, flags);
483 }
484 out:
485 return ecx;
486 }
487
avc_alloc_node(void)488 static struct avc_node *avc_alloc_node(void)
489 {
490 struct avc_node *node;
491
492 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN);
493 if (!node)
494 goto out;
495
496 INIT_HLIST_NODE(&node->list);
497 avc_cache_stats_incr(allocations);
498
499 if (atomic_inc_return(&selinux_avc.avc_cache.active_nodes) >
500 selinux_avc.avc_cache_threshold)
501 avc_reclaim_node();
502
503 out:
504 return node;
505 }
506
avc_node_populate(struct avc_node * node,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)507 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
508 {
509 node->ae.ssid = ssid;
510 node->ae.tsid = tsid;
511 node->ae.tclass = tclass;
512 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
513 }
514
avc_search_node(u32 ssid,u32 tsid,u16 tclass)515 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
516 {
517 struct avc_node *node, *ret = NULL;
518 u32 hvalue;
519 struct hlist_head *head;
520
521 hvalue = avc_hash(ssid, tsid, tclass);
522 head = &selinux_avc.avc_cache.slots[hvalue];
523 hlist_for_each_entry_rcu(node, head, list) {
524 if (ssid == node->ae.ssid &&
525 tclass == node->ae.tclass &&
526 tsid == node->ae.tsid) {
527 ret = node;
528 break;
529 }
530 }
531
532 return ret;
533 }
534
535 /**
536 * avc_lookup - Look up an AVC entry.
537 * @ssid: source security identifier
538 * @tsid: target security identifier
539 * @tclass: target security class
540 *
541 * Look up an AVC entry that is valid for the
542 * (@ssid, @tsid), interpreting the permissions
543 * based on @tclass. If a valid AVC entry exists,
544 * then this function returns the avc_node.
545 * Otherwise, this function returns NULL.
546 */
avc_lookup(u32 ssid,u32 tsid,u16 tclass)547 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
548 {
549 struct avc_node *node;
550
551 avc_cache_stats_incr(lookups);
552 node = avc_search_node(ssid, tsid, tclass);
553
554 if (node)
555 return node;
556
557 avc_cache_stats_incr(misses);
558 return NULL;
559 }
560
avc_latest_notif_update(u32 seqno,int is_insert)561 static int avc_latest_notif_update(u32 seqno, int is_insert)
562 {
563 int ret = 0;
564 static DEFINE_SPINLOCK(notif_lock);
565 unsigned long flag;
566
567 spin_lock_irqsave(¬if_lock, flag);
568 if (is_insert) {
569 if (seqno < selinux_avc.avc_cache.latest_notif) {
570 pr_warn("SELinux: avc: seqno %d < latest_notif %d\n",
571 seqno, selinux_avc.avc_cache.latest_notif);
572 ret = -EAGAIN;
573 }
574 } else {
575 if (seqno > selinux_avc.avc_cache.latest_notif)
576 selinux_avc.avc_cache.latest_notif = seqno;
577 }
578 spin_unlock_irqrestore(¬if_lock, flag);
579
580 return ret;
581 }
582
583 /**
584 * avc_insert - Insert an AVC entry.
585 * @ssid: source security identifier
586 * @tsid: target security identifier
587 * @tclass: target security class
588 * @avd: resulting av decision
589 * @xp_node: resulting extended permissions
590 *
591 * Insert an AVC entry for the SID pair
592 * (@ssid, @tsid) and class @tclass.
593 * The access vectors and the sequence number are
594 * normally provided by the security server in
595 * response to a security_compute_av() call. If the
596 * sequence number @avd->seqno is not less than the latest
597 * revocation notification, then the function copies
598 * the access vectors into a cache entry.
599 */
avc_insert(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)600 static void avc_insert(u32 ssid, u32 tsid, u16 tclass,
601 struct av_decision *avd, struct avc_xperms_node *xp_node)
602 {
603 struct avc_node *pos, *node = NULL;
604 u32 hvalue;
605 unsigned long flag;
606 spinlock_t *lock;
607 struct hlist_head *head;
608
609 if (avc_latest_notif_update(avd->seqno, 1))
610 return;
611
612 node = avc_alloc_node();
613 if (!node)
614 return;
615
616 avc_node_populate(node, ssid, tsid, tclass, avd);
617 if (avc_xperms_populate(node, xp_node)) {
618 avc_node_kill(node);
619 return;
620 }
621
622 hvalue = avc_hash(ssid, tsid, tclass);
623 head = &selinux_avc.avc_cache.slots[hvalue];
624 lock = &selinux_avc.avc_cache.slots_lock[hvalue];
625 spin_lock_irqsave(lock, flag);
626 hlist_for_each_entry(pos, head, list) {
627 if (pos->ae.ssid == ssid &&
628 pos->ae.tsid == tsid &&
629 pos->ae.tclass == tclass) {
630 avc_node_replace(node, pos);
631 goto found;
632 }
633 }
634 hlist_add_head_rcu(&node->list, head);
635 found:
636 spin_unlock_irqrestore(lock, flag);
637 }
638
639 /**
640 * avc_audit_pre_callback - SELinux specific information
641 * will be called by generic audit code
642 * @ab: the audit buffer
643 * @a: audit_data
644 */
avc_audit_pre_callback(struct audit_buffer * ab,void * a)645 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
646 {
647 struct common_audit_data *ad = a;
648 struct selinux_audit_data *sad = ad->selinux_audit_data;
649 u32 av = sad->audited, perm;
650 const char *const *perms;
651 u32 i;
652
653 audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted");
654
655 if (av == 0) {
656 audit_log_format(ab, " null");
657 return;
658 }
659
660 perms = secclass_map[sad->tclass-1].perms;
661
662 audit_log_format(ab, " {");
663 i = 0;
664 perm = 1;
665 while (i < (sizeof(av) * 8)) {
666 if ((perm & av) && perms[i]) {
667 audit_log_format(ab, " %s", perms[i]);
668 av &= ~perm;
669 }
670 i++;
671 perm <<= 1;
672 }
673
674 if (av)
675 audit_log_format(ab, " 0x%x", av);
676
677 audit_log_format(ab, " } for ");
678 }
679
680 /**
681 * avc_audit_post_callback - SELinux specific information
682 * will be called by generic audit code
683 * @ab: the audit buffer
684 * @a: audit_data
685 */
avc_audit_post_callback(struct audit_buffer * ab,void * a)686 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
687 {
688 struct common_audit_data *ad = a;
689 struct selinux_audit_data *sad = ad->selinux_audit_data;
690 char *scontext = NULL;
691 char *tcontext = NULL;
692 const char *tclass = NULL;
693 u32 scontext_len;
694 u32 tcontext_len;
695 int rc;
696
697 rc = security_sid_to_context(sad->ssid, &scontext,
698 &scontext_len);
699 if (rc)
700 audit_log_format(ab, " ssid=%d", sad->ssid);
701 else
702 audit_log_format(ab, " scontext=%s", scontext);
703
704 rc = security_sid_to_context(sad->tsid, &tcontext,
705 &tcontext_len);
706 if (rc)
707 audit_log_format(ab, " tsid=%d", sad->tsid);
708 else
709 audit_log_format(ab, " tcontext=%s", tcontext);
710
711 tclass = secclass_map[sad->tclass-1].name;
712 audit_log_format(ab, " tclass=%s", tclass);
713
714 if (sad->denied)
715 audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
716
717 trace_selinux_audited(sad, scontext, tcontext, tclass);
718 kfree(tcontext);
719 kfree(scontext);
720
721 /* in case of invalid context report also the actual context string */
722 rc = security_sid_to_context_inval(sad->ssid, &scontext,
723 &scontext_len);
724 if (!rc && scontext) {
725 if (scontext_len && scontext[scontext_len - 1] == '\0')
726 scontext_len--;
727 audit_log_format(ab, " srawcon=");
728 audit_log_n_untrustedstring(ab, scontext, scontext_len);
729 kfree(scontext);
730 }
731
732 rc = security_sid_to_context_inval(sad->tsid, &scontext,
733 &scontext_len);
734 if (!rc && scontext) {
735 if (scontext_len && scontext[scontext_len - 1] == '\0')
736 scontext_len--;
737 audit_log_format(ab, " trawcon=");
738 audit_log_n_untrustedstring(ab, scontext, scontext_len);
739 kfree(scontext);
740 }
741 }
742
743 /*
744 * This is the slow part of avc audit with big stack footprint.
745 * Note that it is non-blocking and can be called from under
746 * rcu_read_lock().
747 */
slow_avc_audit(u32 ssid,u32 tsid,u16 tclass,u32 requested,u32 audited,u32 denied,int result,struct common_audit_data * a)748 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
749 u32 requested, u32 audited, u32 denied, int result,
750 struct common_audit_data *a)
751 {
752 struct common_audit_data stack_data;
753 struct selinux_audit_data sad;
754
755 if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
756 return -EINVAL;
757
758 if (!a) {
759 a = &stack_data;
760 a->type = LSM_AUDIT_DATA_NONE;
761 }
762
763 sad.tclass = tclass;
764 sad.requested = requested;
765 sad.ssid = ssid;
766 sad.tsid = tsid;
767 sad.audited = audited;
768 sad.denied = denied;
769 sad.result = result;
770
771 a->selinux_audit_data = &sad;
772
773 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
774 return 0;
775 }
776
777 /**
778 * avc_add_callback - Register a callback for security events.
779 * @callback: callback function
780 * @events: security events
781 *
782 * Register a callback function for events in the set @events.
783 * Returns %0 on success or -%ENOMEM if insufficient memory
784 * exists to add the callback.
785 */
avc_add_callback(int (* callback)(u32 event),u32 events)786 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
787 {
788 struct avc_callback_node *c;
789 int rc = 0;
790
791 c = kmalloc(sizeof(*c), GFP_KERNEL);
792 if (!c) {
793 rc = -ENOMEM;
794 goto out;
795 }
796
797 c->callback = callback;
798 c->events = events;
799 c->next = avc_callbacks;
800 avc_callbacks = c;
801 out:
802 return rc;
803 }
804
805 /**
806 * avc_update_node - Update an AVC entry
807 * @event : Updating event
808 * @perms : Permission mask bits
809 * @driver: xperm driver information
810 * @xperm: xperm permissions
811 * @ssid: AVC entry source sid
812 * @tsid: AVC entry target sid
813 * @tclass : AVC entry target object class
814 * @seqno : sequence number when decision was made
815 * @xpd: extended_perms_decision to be added to the node
816 * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0.
817 *
818 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
819 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
820 * otherwise, this function updates the AVC entry. The original AVC-entry object
821 * will release later by RCU.
822 */
avc_update_node(u32 event,u32 perms,u8 driver,u8 xperm,u32 ssid,u32 tsid,u16 tclass,u32 seqno,struct extended_perms_decision * xpd,u32 flags)823 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
824 u32 tsid, u16 tclass, u32 seqno,
825 struct extended_perms_decision *xpd,
826 u32 flags)
827 {
828 u32 hvalue;
829 int rc = 0;
830 unsigned long flag;
831 struct avc_node *pos, *node, *orig = NULL;
832 struct hlist_head *head;
833 spinlock_t *lock;
834
835 node = avc_alloc_node();
836 if (!node) {
837 rc = -ENOMEM;
838 goto out;
839 }
840
841 /* Lock the target slot */
842 hvalue = avc_hash(ssid, tsid, tclass);
843
844 head = &selinux_avc.avc_cache.slots[hvalue];
845 lock = &selinux_avc.avc_cache.slots_lock[hvalue];
846
847 spin_lock_irqsave(lock, flag);
848
849 hlist_for_each_entry(pos, head, list) {
850 if (ssid == pos->ae.ssid &&
851 tsid == pos->ae.tsid &&
852 tclass == pos->ae.tclass &&
853 seqno == pos->ae.avd.seqno){
854 orig = pos;
855 break;
856 }
857 }
858
859 if (!orig) {
860 rc = -ENOENT;
861 avc_node_kill(node);
862 goto out_unlock;
863 }
864
865 /*
866 * Copy and replace original node.
867 */
868
869 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
870
871 if (orig->ae.xp_node) {
872 rc = avc_xperms_populate(node, orig->ae.xp_node);
873 if (rc) {
874 avc_node_kill(node);
875 goto out_unlock;
876 }
877 }
878
879 switch (event) {
880 case AVC_CALLBACK_GRANT:
881 node->ae.avd.allowed |= perms;
882 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
883 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
884 break;
885 case AVC_CALLBACK_TRY_REVOKE:
886 case AVC_CALLBACK_REVOKE:
887 node->ae.avd.allowed &= ~perms;
888 break;
889 case AVC_CALLBACK_AUDITALLOW_ENABLE:
890 node->ae.avd.auditallow |= perms;
891 break;
892 case AVC_CALLBACK_AUDITALLOW_DISABLE:
893 node->ae.avd.auditallow &= ~perms;
894 break;
895 case AVC_CALLBACK_AUDITDENY_ENABLE:
896 node->ae.avd.auditdeny |= perms;
897 break;
898 case AVC_CALLBACK_AUDITDENY_DISABLE:
899 node->ae.avd.auditdeny &= ~perms;
900 break;
901 case AVC_CALLBACK_ADD_XPERMS:
902 rc = avc_add_xperms_decision(node, xpd);
903 if (rc) {
904 avc_node_kill(node);
905 goto out_unlock;
906 }
907 break;
908 }
909 avc_node_replace(node, orig);
910 out_unlock:
911 spin_unlock_irqrestore(lock, flag);
912 out:
913 return rc;
914 }
915
916 /**
917 * avc_flush - Flush the cache
918 */
avc_flush(void)919 static void avc_flush(void)
920 {
921 struct hlist_head *head;
922 struct avc_node *node;
923 spinlock_t *lock;
924 unsigned long flag;
925 int i;
926
927 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
928 head = &selinux_avc.avc_cache.slots[i];
929 lock = &selinux_avc.avc_cache.slots_lock[i];
930
931 spin_lock_irqsave(lock, flag);
932 /*
933 * With preemptable RCU, the outer spinlock does not
934 * prevent RCU grace periods from ending.
935 */
936 rcu_read_lock();
937 hlist_for_each_entry(node, head, list)
938 avc_node_delete(node);
939 rcu_read_unlock();
940 spin_unlock_irqrestore(lock, flag);
941 }
942 }
943
944 /**
945 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
946 * @seqno: policy sequence number
947 */
avc_ss_reset(u32 seqno)948 int avc_ss_reset(u32 seqno)
949 {
950 struct avc_callback_node *c;
951 int rc = 0, tmprc;
952
953 avc_flush();
954
955 for (c = avc_callbacks; c; c = c->next) {
956 if (c->events & AVC_CALLBACK_RESET) {
957 tmprc = c->callback(AVC_CALLBACK_RESET);
958 /* save the first error encountered for the return
959 value and continue processing the callbacks */
960 if (!rc)
961 rc = tmprc;
962 }
963 }
964
965 avc_latest_notif_update(seqno, 0);
966 return rc;
967 }
968
969 /**
970 * avc_compute_av - Add an entry to the AVC based on the security policy
971 * @ssid: subject
972 * @tsid: object/target
973 * @tclass: object class
974 * @avd: access vector decision
975 * @xp_node: AVC extended permissions node
976 *
977 * Slow-path helper function for avc_has_perm_noaudit, when the avc_node lookup
978 * fails. Don't inline this, since it's the slow-path and just results in a
979 * bigger stack frame.
980 */
avc_compute_av(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)981 static noinline void avc_compute_av(u32 ssid, u32 tsid, u16 tclass,
982 struct av_decision *avd,
983 struct avc_xperms_node *xp_node)
984 {
985 INIT_LIST_HEAD(&xp_node->xpd_head);
986 security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
987 avc_insert(ssid, tsid, tclass, avd, xp_node);
988 }
989
avc_denied(u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 xperm,unsigned int flags,struct av_decision * avd)990 static noinline int avc_denied(u32 ssid, u32 tsid,
991 u16 tclass, u32 requested,
992 u8 driver, u8 xperm, unsigned int flags,
993 struct av_decision *avd)
994 {
995 if (flags & AVC_STRICT)
996 return -EACCES;
997
998 if (enforcing_enabled() &&
999 !(avd->flags & AVD_FLAGS_PERMISSIVE))
1000 return -EACCES;
1001
1002 avc_update_node(AVC_CALLBACK_GRANT, requested, driver,
1003 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1004 return 0;
1005 }
1006
1007 /*
1008 * The avc extended permissions logic adds an additional 256 bits of
1009 * permissions to an avc node when extended permissions for that node are
1010 * specified in the avtab. If the additional 256 permissions is not adequate,
1011 * as-is the case with ioctls, then multiple may be chained together and the
1012 * driver field is used to specify which set contains the permission.
1013 */
avc_has_extended_perms(u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 xperm,struct common_audit_data * ad)1014 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1015 u8 driver, u8 xperm, struct common_audit_data *ad)
1016 {
1017 struct avc_node *node;
1018 struct av_decision avd;
1019 u32 denied;
1020 struct extended_perms_decision local_xpd;
1021 struct extended_perms_decision *xpd = NULL;
1022 struct extended_perms_data allowed;
1023 struct extended_perms_data auditallow;
1024 struct extended_perms_data dontaudit;
1025 struct avc_xperms_node local_xp_node;
1026 struct avc_xperms_node *xp_node;
1027 int rc = 0, rc2;
1028
1029 xp_node = &local_xp_node;
1030 if (WARN_ON(!requested))
1031 return -EACCES;
1032
1033 rcu_read_lock();
1034
1035 node = avc_lookup(ssid, tsid, tclass);
1036 if (unlikely(!node)) {
1037 avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1038 } else {
1039 memcpy(&avd, &node->ae.avd, sizeof(avd));
1040 xp_node = node->ae.xp_node;
1041 }
1042 /* if extended permissions are not defined, only consider av_decision */
1043 if (!xp_node || !xp_node->xp.len)
1044 goto decision;
1045
1046 local_xpd.allowed = &allowed;
1047 local_xpd.auditallow = &auditallow;
1048 local_xpd.dontaudit = &dontaudit;
1049
1050 xpd = avc_xperms_decision_lookup(driver, xp_node);
1051 if (unlikely(!xpd)) {
1052 /*
1053 * Compute the extended_perms_decision only if the driver
1054 * is flagged
1055 */
1056 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1057 avd.allowed &= ~requested;
1058 goto decision;
1059 }
1060 rcu_read_unlock();
1061 security_compute_xperms_decision(ssid, tsid, tclass,
1062 driver, &local_xpd);
1063 rcu_read_lock();
1064 avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested,
1065 driver, xperm, ssid, tsid, tclass, avd.seqno,
1066 &local_xpd, 0);
1067 } else {
1068 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1069 }
1070 xpd = &local_xpd;
1071
1072 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1073 avd.allowed &= ~requested;
1074
1075 decision:
1076 denied = requested & ~(avd.allowed);
1077 if (unlikely(denied))
1078 rc = avc_denied(ssid, tsid, tclass, requested,
1079 driver, xperm, AVC_EXTENDED_PERMS, &avd);
1080
1081 rcu_read_unlock();
1082
1083 rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1084 &avd, xpd, xperm, rc, ad);
1085 if (rc2)
1086 return rc2;
1087 return rc;
1088 }
1089
1090 /**
1091 * avc_perm_nonode - Add an entry to the AVC
1092 * @ssid: subject
1093 * @tsid: object/target
1094 * @tclass: object class
1095 * @requested: requested permissions
1096 * @flags: AVC flags
1097 * @avd: access vector decision
1098 *
1099 * This is the "we have no node" part of avc_has_perm_noaudit(), which is
1100 * unlikely and needs extra stack space for the new node that we generate, so
1101 * don't inline it.
1102 */
avc_perm_nonode(u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned int flags,struct av_decision * avd)1103 static noinline int avc_perm_nonode(u32 ssid, u32 tsid, u16 tclass,
1104 u32 requested, unsigned int flags,
1105 struct av_decision *avd)
1106 {
1107 u32 denied;
1108 struct avc_xperms_node xp_node;
1109
1110 avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1111 denied = requested & ~(avd->allowed);
1112 if (unlikely(denied))
1113 return avc_denied(ssid, tsid, tclass, requested, 0, 0,
1114 flags, avd);
1115 return 0;
1116 }
1117
1118 /**
1119 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1120 * @ssid: source security identifier
1121 * @tsid: target security identifier
1122 * @tclass: target security class
1123 * @requested: requested permissions, interpreted based on @tclass
1124 * @flags: AVC_STRICT or 0
1125 * @avd: access vector decisions
1126 *
1127 * Check the AVC to determine whether the @requested permissions are granted
1128 * for the SID pair (@ssid, @tsid), interpreting the permissions
1129 * based on @tclass, and call the security server on a cache miss to obtain
1130 * a new decision and add it to the cache. Return a copy of the decisions
1131 * in @avd. Return %0 if all @requested permissions are granted,
1132 * -%EACCES if any permissions are denied, or another -errno upon
1133 * other errors. This function is typically called by avc_has_perm(),
1134 * but may also be called directly to separate permission checking from
1135 * auditing, e.g. in cases where a lock must be held for the check but
1136 * should be released for the auditing.
1137 */
avc_has_perm_noaudit(u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned int flags,struct av_decision * avd)1138 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1139 u16 tclass, u32 requested,
1140 unsigned int flags,
1141 struct av_decision *avd)
1142 {
1143 u32 denied;
1144 struct avc_node *node;
1145
1146 if (WARN_ON(!requested))
1147 return -EACCES;
1148
1149 rcu_read_lock();
1150 node = avc_lookup(ssid, tsid, tclass);
1151 if (unlikely(!node)) {
1152 rcu_read_unlock();
1153 return avc_perm_nonode(ssid, tsid, tclass, requested,
1154 flags, avd);
1155 }
1156 denied = requested & ~node->ae.avd.allowed;
1157 memcpy(avd, &node->ae.avd, sizeof(*avd));
1158 rcu_read_unlock();
1159
1160 if (unlikely(denied))
1161 return avc_denied(ssid, tsid, tclass, requested, 0, 0,
1162 flags, avd);
1163 return 0;
1164 }
1165
1166 /**
1167 * avc_has_perm - Check permissions and perform any appropriate auditing.
1168 * @ssid: source security identifier
1169 * @tsid: target security identifier
1170 * @tclass: target security class
1171 * @requested: requested permissions, interpreted based on @tclass
1172 * @auditdata: auxiliary audit data
1173 *
1174 * Check the AVC to determine whether the @requested permissions are granted
1175 * for the SID pair (@ssid, @tsid), interpreting the permissions
1176 * based on @tclass, and call the security server on a cache miss to obtain
1177 * a new decision and add it to the cache. Audit the granting or denial of
1178 * permissions in accordance with the policy. Return %0 if all @requested
1179 * permissions are granted, -%EACCES if any permissions are denied, or
1180 * another -errno upon other errors.
1181 */
avc_has_perm(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct common_audit_data * auditdata)1182 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1183 u32 requested, struct common_audit_data *auditdata)
1184 {
1185 struct av_decision avd;
1186 int rc, rc2;
1187
1188 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0,
1189 &avd);
1190
1191 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1192 auditdata);
1193 if (rc2)
1194 return rc2;
1195 return rc;
1196 }
1197
avc_policy_seqno(void)1198 u32 avc_policy_seqno(void)
1199 {
1200 return selinux_avc.avc_cache.latest_notif;
1201 }
1202