xref: /linux/fs/locks.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/locks.c
4  *
5  * We implement four types of file locks: BSD locks, posix locks, open
6  * file description locks, and leases.  For details about BSD locks,
7  * see the flock(2) man page; for details about the other three, see
8  * fcntl(2).
9  *
10  *
11  * Locking conflicts and dependencies:
12  * If multiple threads attempt to lock the same byte (or flock the same file)
13  * only one can be granted the lock, and other must wait their turn.
14  * The first lock has been "applied" or "granted", the others are "waiting"
15  * and are "blocked" by the "applied" lock..
16  *
17  * Waiting and applied locks are all kept in trees whose properties are:
18  *
19  *	- the root of a tree may be an applied or waiting lock.
20  *	- every other node in the tree is a waiting lock that
21  *	  conflicts with every ancestor of that node.
22  *
23  * Every such tree begins life as a waiting singleton which obviously
24  * satisfies the above properties.
25  *
26  * The only ways we modify trees preserve these properties:
27  *
28  *	1. We may add a new leaf node, but only after first verifying that it
29  *	   conflicts with all of its ancestors.
30  *	2. We may remove the root of a tree, creating a new singleton
31  *	   tree from the root and N new trees rooted in the immediate
32  *	   children.
33  *	3. If the root of a tree is not currently an applied lock, we may
34  *	   apply it (if possible).
35  *	4. We may upgrade the root of the tree (either extend its range,
36  *	   or upgrade its entire range from read to write).
37  *
38  * When an applied lock is modified in a way that reduces or downgrades any
39  * part of its range, we remove all its children (2 above).  This particularly
40  * happens when a lock is unlocked.
41  *
42  * For each of those child trees we "wake up" the thread which is
43  * waiting for the lock so it can continue handling as follows: if the
44  * root of the tree applies, we do so (3).  If it doesn't, it must
45  * conflict with some applied lock.  We remove (wake up) all of its children
46  * (2), and add it is a new leaf to the tree rooted in the applied
47  * lock (1).  We then repeat the process recursively with those
48  * children.
49  *
50  */
51 #include <linux/capability.h>
52 #include <linux/file.h>
53 #include <linux/fdtable.h>
54 #include <linux/filelock.h>
55 #include <linux/fs.h>
56 #include <linux/init.h>
57 #include <linux/security.h>
58 #include <linux/slab.h>
59 #include <linux/syscalls.h>
60 #include <linux/time.h>
61 #include <linux/rcupdate.h>
62 #include <linux/pid_namespace.h>
63 #include <linux/hashtable.h>
64 #include <linux/percpu.h>
65 #include <linux/sysctl.h>
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/filelock.h>
69 
70 #include <linux/uaccess.h>
71 
file_lock(struct file_lock_core * flc)72 static struct file_lock *file_lock(struct file_lock_core *flc)
73 {
74 	return container_of(flc, struct file_lock, c);
75 }
76 
file_lease(struct file_lock_core * flc)77 static struct file_lease *file_lease(struct file_lock_core *flc)
78 {
79 	return container_of(flc, struct file_lease, c);
80 }
81 
lease_breaking(struct file_lease * fl)82 static bool lease_breaking(struct file_lease *fl)
83 {
84 	return fl->c.flc_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING);
85 }
86 
target_leasetype(struct file_lease * fl)87 static int target_leasetype(struct file_lease *fl)
88 {
89 	if (fl->c.flc_flags & FL_UNLOCK_PENDING)
90 		return F_UNLCK;
91 	if (fl->c.flc_flags & FL_DOWNGRADE_PENDING)
92 		return F_RDLCK;
93 	return fl->c.flc_type;
94 }
95 
96 static int leases_enable = 1;
97 static int lease_break_time = 45;
98 
99 #ifdef CONFIG_SYSCTL
100 static struct ctl_table locks_sysctls[] = {
101 	{
102 		.procname	= "leases-enable",
103 		.data		= &leases_enable,
104 		.maxlen		= sizeof(int),
105 		.mode		= 0644,
106 		.proc_handler	= proc_dointvec,
107 	},
108 #ifdef CONFIG_MMU
109 	{
110 		.procname	= "lease-break-time",
111 		.data		= &lease_break_time,
112 		.maxlen		= sizeof(int),
113 		.mode		= 0644,
114 		.proc_handler	= proc_dointvec,
115 	},
116 #endif /* CONFIG_MMU */
117 };
118 
init_fs_locks_sysctls(void)119 static int __init init_fs_locks_sysctls(void)
120 {
121 	register_sysctl_init("fs", locks_sysctls);
122 	return 0;
123 }
124 early_initcall(init_fs_locks_sysctls);
125 #endif /* CONFIG_SYSCTL */
126 
127 /*
128  * The global file_lock_list is only used for displaying /proc/locks, so we
129  * keep a list on each CPU, with each list protected by its own spinlock.
130  * Global serialization is done using file_rwsem.
131  *
132  * Note that alterations to the list also require that the relevant flc_lock is
133  * held.
134  */
135 struct file_lock_list_struct {
136 	spinlock_t		lock;
137 	struct hlist_head	hlist;
138 };
139 static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list);
140 DEFINE_STATIC_PERCPU_RWSEM(file_rwsem);
141 
142 
143 /*
144  * The blocked_hash is used to find POSIX lock loops for deadlock detection.
145  * It is protected by blocked_lock_lock.
146  *
147  * We hash locks by lockowner in order to optimize searching for the lock a
148  * particular lockowner is waiting on.
149  *
150  * FIXME: make this value scale via some heuristic? We generally will want more
151  * buckets when we have more lockowners holding locks, but that's a little
152  * difficult to determine without knowing what the workload will look like.
153  */
154 #define BLOCKED_HASH_BITS	7
155 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS);
156 
157 /*
158  * This lock protects the blocked_hash. Generally, if you're accessing it, you
159  * want to be holding this lock.
160  *
161  * In addition, it also protects the fl->fl_blocked_requests list, and the
162  * fl->fl_blocker pointer for file_lock structures that are acting as lock
163  * requests (in contrast to those that are acting as records of acquired locks).
164  *
165  * Note that when we acquire this lock in order to change the above fields,
166  * we often hold the flc_lock as well. In certain cases, when reading the fields
167  * protected by this lock, we can skip acquiring it iff we already hold the
168  * flc_lock.
169  */
170 static DEFINE_SPINLOCK(blocked_lock_lock);
171 
172 static struct kmem_cache *flctx_cache __ro_after_init;
173 static struct kmem_cache *filelock_cache __ro_after_init;
174 static struct kmem_cache *filelease_cache __ro_after_init;
175 
176 static struct file_lock_context *
locks_get_lock_context(struct inode * inode,int type)177 locks_get_lock_context(struct inode *inode, int type)
178 {
179 	struct file_lock_context *ctx;
180 
181 	/* paired with cmpxchg() below */
182 	ctx = locks_inode_context(inode);
183 	if (likely(ctx) || type == F_UNLCK)
184 		goto out;
185 
186 	ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL);
187 	if (!ctx)
188 		goto out;
189 
190 	spin_lock_init(&ctx->flc_lock);
191 	INIT_LIST_HEAD(&ctx->flc_flock);
192 	INIT_LIST_HEAD(&ctx->flc_posix);
193 	INIT_LIST_HEAD(&ctx->flc_lease);
194 
195 	/*
196 	 * Assign the pointer if it's not already assigned. If it is, then
197 	 * free the context we just allocated.
198 	 */
199 	if (cmpxchg(&inode->i_flctx, NULL, ctx)) {
200 		kmem_cache_free(flctx_cache, ctx);
201 		ctx = locks_inode_context(inode);
202 	}
203 out:
204 	trace_locks_get_lock_context(inode, type, ctx);
205 	return ctx;
206 }
207 
208 static void
locks_dump_ctx_list(struct list_head * list,char * list_type)209 locks_dump_ctx_list(struct list_head *list, char *list_type)
210 {
211 	struct file_lock_core *flc;
212 
213 	list_for_each_entry(flc, list, flc_list)
214 		pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
215 			list_type, flc->flc_owner, flc->flc_flags,
216 			flc->flc_type, flc->flc_pid);
217 }
218 
219 static void
locks_check_ctx_lists(struct inode * inode)220 locks_check_ctx_lists(struct inode *inode)
221 {
222 	struct file_lock_context *ctx = inode->i_flctx;
223 
224 	if (unlikely(!list_empty(&ctx->flc_flock) ||
225 		     !list_empty(&ctx->flc_posix) ||
226 		     !list_empty(&ctx->flc_lease))) {
227 		pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n",
228 			MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev),
229 			inode->i_ino);
230 		locks_dump_ctx_list(&ctx->flc_flock, "FLOCK");
231 		locks_dump_ctx_list(&ctx->flc_posix, "POSIX");
232 		locks_dump_ctx_list(&ctx->flc_lease, "LEASE");
233 	}
234 }
235 
236 static void
locks_check_ctx_file_list(struct file * filp,struct list_head * list,char * list_type)237 locks_check_ctx_file_list(struct file *filp, struct list_head *list, char *list_type)
238 {
239 	struct file_lock_core *flc;
240 	struct inode *inode = file_inode(filp);
241 
242 	list_for_each_entry(flc, list, flc_list)
243 		if (flc->flc_file == filp)
244 			pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx "
245 				" fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
246 				list_type, MAJOR(inode->i_sb->s_dev),
247 				MINOR(inode->i_sb->s_dev), inode->i_ino,
248 				flc->flc_owner, flc->flc_flags,
249 				flc->flc_type, flc->flc_pid);
250 }
251 
252 void
locks_free_lock_context(struct inode * inode)253 locks_free_lock_context(struct inode *inode)
254 {
255 	struct file_lock_context *ctx = locks_inode_context(inode);
256 
257 	if (unlikely(ctx)) {
258 		locks_check_ctx_lists(inode);
259 		kmem_cache_free(flctx_cache, ctx);
260 	}
261 }
262 
locks_init_lock_heads(struct file_lock_core * flc)263 static void locks_init_lock_heads(struct file_lock_core *flc)
264 {
265 	INIT_HLIST_NODE(&flc->flc_link);
266 	INIT_LIST_HEAD(&flc->flc_list);
267 	INIT_LIST_HEAD(&flc->flc_blocked_requests);
268 	INIT_LIST_HEAD(&flc->flc_blocked_member);
269 	init_waitqueue_head(&flc->flc_wait);
270 }
271 
272 /* Allocate an empty lock structure. */
locks_alloc_lock(void)273 struct file_lock *locks_alloc_lock(void)
274 {
275 	struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL);
276 
277 	if (fl)
278 		locks_init_lock_heads(&fl->c);
279 
280 	return fl;
281 }
282 EXPORT_SYMBOL_GPL(locks_alloc_lock);
283 
284 /* Allocate an empty lock structure. */
locks_alloc_lease(void)285 struct file_lease *locks_alloc_lease(void)
286 {
287 	struct file_lease *fl = kmem_cache_zalloc(filelease_cache, GFP_KERNEL);
288 
289 	if (fl)
290 		locks_init_lock_heads(&fl->c);
291 
292 	return fl;
293 }
294 EXPORT_SYMBOL_GPL(locks_alloc_lease);
295 
locks_release_private(struct file_lock * fl)296 void locks_release_private(struct file_lock *fl)
297 {
298 	struct file_lock_core *flc = &fl->c;
299 
300 	BUG_ON(waitqueue_active(&flc->flc_wait));
301 	BUG_ON(!list_empty(&flc->flc_list));
302 	BUG_ON(!list_empty(&flc->flc_blocked_requests));
303 	BUG_ON(!list_empty(&flc->flc_blocked_member));
304 	BUG_ON(!hlist_unhashed(&flc->flc_link));
305 
306 	if (fl->fl_ops) {
307 		if (fl->fl_ops->fl_release_private)
308 			fl->fl_ops->fl_release_private(fl);
309 		fl->fl_ops = NULL;
310 	}
311 
312 	if (fl->fl_lmops) {
313 		if (fl->fl_lmops->lm_put_owner) {
314 			fl->fl_lmops->lm_put_owner(flc->flc_owner);
315 			flc->flc_owner = NULL;
316 		}
317 		fl->fl_lmops = NULL;
318 	}
319 }
320 EXPORT_SYMBOL_GPL(locks_release_private);
321 
322 /**
323  * locks_owner_has_blockers - Check for blocking lock requests
324  * @flctx: file lock context
325  * @owner: lock owner
326  *
327  * Return values:
328  *   %true: @owner has at least one blocker
329  *   %false: @owner has no blockers
330  */
locks_owner_has_blockers(struct file_lock_context * flctx,fl_owner_t owner)331 bool locks_owner_has_blockers(struct file_lock_context *flctx, fl_owner_t owner)
332 {
333 	struct file_lock_core *flc;
334 
335 	spin_lock(&flctx->flc_lock);
336 	list_for_each_entry(flc, &flctx->flc_posix, flc_list) {
337 		if (flc->flc_owner != owner)
338 			continue;
339 		if (!list_empty(&flc->flc_blocked_requests)) {
340 			spin_unlock(&flctx->flc_lock);
341 			return true;
342 		}
343 	}
344 	spin_unlock(&flctx->flc_lock);
345 	return false;
346 }
347 EXPORT_SYMBOL_GPL(locks_owner_has_blockers);
348 
349 /* Free a lock which is not in use. */
locks_free_lock(struct file_lock * fl)350 void locks_free_lock(struct file_lock *fl)
351 {
352 	locks_release_private(fl);
353 	kmem_cache_free(filelock_cache, fl);
354 }
355 EXPORT_SYMBOL(locks_free_lock);
356 
357 /* Free a lease which is not in use. */
locks_free_lease(struct file_lease * fl)358 void locks_free_lease(struct file_lease *fl)
359 {
360 	kmem_cache_free(filelease_cache, fl);
361 }
362 EXPORT_SYMBOL(locks_free_lease);
363 
364 static void
locks_dispose_list(struct list_head * dispose)365 locks_dispose_list(struct list_head *dispose)
366 {
367 	struct file_lock_core *flc;
368 
369 	while (!list_empty(dispose)) {
370 		flc = list_first_entry(dispose, struct file_lock_core, flc_list);
371 		list_del_init(&flc->flc_list);
372 		if (flc->flc_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT))
373 			locks_free_lease(file_lease(flc));
374 		else
375 			locks_free_lock(file_lock(flc));
376 	}
377 }
378 
locks_init_lock(struct file_lock * fl)379 void locks_init_lock(struct file_lock *fl)
380 {
381 	memset(fl, 0, sizeof(struct file_lock));
382 	locks_init_lock_heads(&fl->c);
383 }
384 EXPORT_SYMBOL(locks_init_lock);
385 
locks_init_lease(struct file_lease * fl)386 void locks_init_lease(struct file_lease *fl)
387 {
388 	memset(fl, 0, sizeof(*fl));
389 	locks_init_lock_heads(&fl->c);
390 }
391 EXPORT_SYMBOL(locks_init_lease);
392 
393 /*
394  * Initialize a new lock from an existing file_lock structure.
395  */
locks_copy_conflock(struct file_lock * new,struct file_lock * fl)396 void locks_copy_conflock(struct file_lock *new, struct file_lock *fl)
397 {
398 	new->c.flc_owner = fl->c.flc_owner;
399 	new->c.flc_pid = fl->c.flc_pid;
400 	new->c.flc_file = NULL;
401 	new->c.flc_flags = fl->c.flc_flags;
402 	new->c.flc_type = fl->c.flc_type;
403 	new->fl_start = fl->fl_start;
404 	new->fl_end = fl->fl_end;
405 	new->fl_lmops = fl->fl_lmops;
406 	new->fl_ops = NULL;
407 
408 	if (fl->fl_lmops) {
409 		if (fl->fl_lmops->lm_get_owner)
410 			fl->fl_lmops->lm_get_owner(fl->c.flc_owner);
411 	}
412 }
413 EXPORT_SYMBOL(locks_copy_conflock);
414 
locks_copy_lock(struct file_lock * new,struct file_lock * fl)415 void locks_copy_lock(struct file_lock *new, struct file_lock *fl)
416 {
417 	/* "new" must be a freshly-initialized lock */
418 	WARN_ON_ONCE(new->fl_ops);
419 
420 	locks_copy_conflock(new, fl);
421 
422 	new->c.flc_file = fl->c.flc_file;
423 	new->fl_ops = fl->fl_ops;
424 
425 	if (fl->fl_ops) {
426 		if (fl->fl_ops->fl_copy_lock)
427 			fl->fl_ops->fl_copy_lock(new, fl);
428 	}
429 }
430 EXPORT_SYMBOL(locks_copy_lock);
431 
locks_move_blocks(struct file_lock * new,struct file_lock * fl)432 static void locks_move_blocks(struct file_lock *new, struct file_lock *fl)
433 {
434 	struct file_lock *f;
435 
436 	/*
437 	 * As ctx->flc_lock is held, new requests cannot be added to
438 	 * ->flc_blocked_requests, so we don't need a lock to check if it
439 	 * is empty.
440 	 */
441 	if (list_empty(&fl->c.flc_blocked_requests))
442 		return;
443 	spin_lock(&blocked_lock_lock);
444 	list_splice_init(&fl->c.flc_blocked_requests,
445 			 &new->c.flc_blocked_requests);
446 	list_for_each_entry(f, &new->c.flc_blocked_requests,
447 			    c.flc_blocked_member)
448 		f->c.flc_blocker = &new->c;
449 	spin_unlock(&blocked_lock_lock);
450 }
451 
flock_translate_cmd(int cmd)452 static inline int flock_translate_cmd(int cmd) {
453 	switch (cmd) {
454 	case LOCK_SH:
455 		return F_RDLCK;
456 	case LOCK_EX:
457 		return F_WRLCK;
458 	case LOCK_UN:
459 		return F_UNLCK;
460 	}
461 	return -EINVAL;
462 }
463 
464 /* Fill in a file_lock structure with an appropriate FLOCK lock. */
flock_make_lock(struct file * filp,struct file_lock * fl,int type)465 static void flock_make_lock(struct file *filp, struct file_lock *fl, int type)
466 {
467 	locks_init_lock(fl);
468 
469 	fl->c.flc_file = filp;
470 	fl->c.flc_owner = filp;
471 	fl->c.flc_pid = current->tgid;
472 	fl->c.flc_flags = FL_FLOCK;
473 	fl->c.flc_type = type;
474 	fl->fl_end = OFFSET_MAX;
475 }
476 
assign_type(struct file_lock_core * flc,int type)477 static int assign_type(struct file_lock_core *flc, int type)
478 {
479 	switch (type) {
480 	case F_RDLCK:
481 	case F_WRLCK:
482 	case F_UNLCK:
483 		flc->flc_type = type;
484 		break;
485 	default:
486 		return -EINVAL;
487 	}
488 	return 0;
489 }
490 
flock64_to_posix_lock(struct file * filp,struct file_lock * fl,struct flock64 * l)491 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl,
492 				 struct flock64 *l)
493 {
494 	switch (l->l_whence) {
495 	case SEEK_SET:
496 		fl->fl_start = 0;
497 		break;
498 	case SEEK_CUR:
499 		fl->fl_start = filp->f_pos;
500 		break;
501 	case SEEK_END:
502 		fl->fl_start = i_size_read(file_inode(filp));
503 		break;
504 	default:
505 		return -EINVAL;
506 	}
507 	if (l->l_start > OFFSET_MAX - fl->fl_start)
508 		return -EOVERFLOW;
509 	fl->fl_start += l->l_start;
510 	if (fl->fl_start < 0)
511 		return -EINVAL;
512 
513 	/* POSIX-1996 leaves the case l->l_len < 0 undefined;
514 	   POSIX-2001 defines it. */
515 	if (l->l_len > 0) {
516 		if (l->l_len - 1 > OFFSET_MAX - fl->fl_start)
517 			return -EOVERFLOW;
518 		fl->fl_end = fl->fl_start + (l->l_len - 1);
519 
520 	} else if (l->l_len < 0) {
521 		if (fl->fl_start + l->l_len < 0)
522 			return -EINVAL;
523 		fl->fl_end = fl->fl_start - 1;
524 		fl->fl_start += l->l_len;
525 	} else
526 		fl->fl_end = OFFSET_MAX;
527 
528 	fl->c.flc_owner = current->files;
529 	fl->c.flc_pid = current->tgid;
530 	fl->c.flc_file = filp;
531 	fl->c.flc_flags = FL_POSIX;
532 	fl->fl_ops = NULL;
533 	fl->fl_lmops = NULL;
534 
535 	return assign_type(&fl->c, l->l_type);
536 }
537 
538 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX
539  * style lock.
540  */
flock_to_posix_lock(struct file * filp,struct file_lock * fl,struct flock * l)541 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl,
542 			       struct flock *l)
543 {
544 	struct flock64 ll = {
545 		.l_type = l->l_type,
546 		.l_whence = l->l_whence,
547 		.l_start = l->l_start,
548 		.l_len = l->l_len,
549 	};
550 
551 	return flock64_to_posix_lock(filp, fl, &ll);
552 }
553 
554 /* default lease lock manager operations */
555 static bool
lease_break_callback(struct file_lease * fl)556 lease_break_callback(struct file_lease *fl)
557 {
558 	kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG);
559 	return false;
560 }
561 
562 static void
lease_setup(struct file_lease * fl,void ** priv)563 lease_setup(struct file_lease *fl, void **priv)
564 {
565 	struct file *filp = fl->c.flc_file;
566 	struct fasync_struct *fa = *priv;
567 
568 	/*
569 	 * fasync_insert_entry() returns the old entry if any. If there was no
570 	 * old entry, then it used "priv" and inserted it into the fasync list.
571 	 * Clear the pointer to indicate that it shouldn't be freed.
572 	 */
573 	if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa))
574 		*priv = NULL;
575 
576 	__f_setown(filp, task_pid(current), PIDTYPE_TGID, 0);
577 }
578 
579 static const struct lease_manager_operations lease_manager_ops = {
580 	.lm_break = lease_break_callback,
581 	.lm_change = lease_modify,
582 	.lm_setup = lease_setup,
583 };
584 
585 /*
586  * Initialize a lease, use the default lock manager operations
587  */
lease_init(struct file * filp,int type,struct file_lease * fl)588 static int lease_init(struct file *filp, int type, struct file_lease *fl)
589 {
590 	if (assign_type(&fl->c, type) != 0)
591 		return -EINVAL;
592 
593 	fl->c.flc_owner = filp;
594 	fl->c.flc_pid = current->tgid;
595 
596 	fl->c.flc_file = filp;
597 	fl->c.flc_flags = FL_LEASE;
598 	fl->fl_lmops = &lease_manager_ops;
599 	return 0;
600 }
601 
602 /* Allocate a file_lock initialised to this type of lease */
lease_alloc(struct file * filp,int type)603 static struct file_lease *lease_alloc(struct file *filp, int type)
604 {
605 	struct file_lease *fl = locks_alloc_lease();
606 	int error = -ENOMEM;
607 
608 	if (fl == NULL)
609 		return ERR_PTR(error);
610 
611 	error = lease_init(filp, type, fl);
612 	if (error) {
613 		locks_free_lease(fl);
614 		return ERR_PTR(error);
615 	}
616 	return fl;
617 }
618 
619 /* Check if two locks overlap each other.
620  */
locks_overlap(struct file_lock * fl1,struct file_lock * fl2)621 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2)
622 {
623 	return ((fl1->fl_end >= fl2->fl_start) &&
624 		(fl2->fl_end >= fl1->fl_start));
625 }
626 
627 /*
628  * Check whether two locks have the same owner.
629  */
posix_same_owner(struct file_lock_core * fl1,struct file_lock_core * fl2)630 static int posix_same_owner(struct file_lock_core *fl1, struct file_lock_core *fl2)
631 {
632 	return fl1->flc_owner == fl2->flc_owner;
633 }
634 
635 /* Must be called with the flc_lock held! */
locks_insert_global_locks(struct file_lock_core * flc)636 static void locks_insert_global_locks(struct file_lock_core *flc)
637 {
638 	struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list);
639 
640 	percpu_rwsem_assert_held(&file_rwsem);
641 
642 	spin_lock(&fll->lock);
643 	flc->flc_link_cpu = smp_processor_id();
644 	hlist_add_head(&flc->flc_link, &fll->hlist);
645 	spin_unlock(&fll->lock);
646 }
647 
648 /* Must be called with the flc_lock held! */
locks_delete_global_locks(struct file_lock_core * flc)649 static void locks_delete_global_locks(struct file_lock_core *flc)
650 {
651 	struct file_lock_list_struct *fll;
652 
653 	percpu_rwsem_assert_held(&file_rwsem);
654 
655 	/*
656 	 * Avoid taking lock if already unhashed. This is safe since this check
657 	 * is done while holding the flc_lock, and new insertions into the list
658 	 * also require that it be held.
659 	 */
660 	if (hlist_unhashed(&flc->flc_link))
661 		return;
662 
663 	fll = per_cpu_ptr(&file_lock_list, flc->flc_link_cpu);
664 	spin_lock(&fll->lock);
665 	hlist_del_init(&flc->flc_link);
666 	spin_unlock(&fll->lock);
667 }
668 
669 static unsigned long
posix_owner_key(struct file_lock_core * flc)670 posix_owner_key(struct file_lock_core *flc)
671 {
672 	return (unsigned long) flc->flc_owner;
673 }
674 
locks_insert_global_blocked(struct file_lock_core * waiter)675 static void locks_insert_global_blocked(struct file_lock_core *waiter)
676 {
677 	lockdep_assert_held(&blocked_lock_lock);
678 
679 	hash_add(blocked_hash, &waiter->flc_link, posix_owner_key(waiter));
680 }
681 
locks_delete_global_blocked(struct file_lock_core * waiter)682 static void locks_delete_global_blocked(struct file_lock_core *waiter)
683 {
684 	lockdep_assert_held(&blocked_lock_lock);
685 
686 	hash_del(&waiter->flc_link);
687 }
688 
689 /* Remove waiter from blocker's block list.
690  * When blocker ends up pointing to itself then the list is empty.
691  *
692  * Must be called with blocked_lock_lock held.
693  */
__locks_unlink_block(struct file_lock_core * waiter)694 static void __locks_unlink_block(struct file_lock_core *waiter)
695 {
696 	locks_delete_global_blocked(waiter);
697 	list_del_init(&waiter->flc_blocked_member);
698 }
699 
__locks_wake_up_blocks(struct file_lock_core * blocker)700 static void __locks_wake_up_blocks(struct file_lock_core *blocker)
701 {
702 	while (!list_empty(&blocker->flc_blocked_requests)) {
703 		struct file_lock_core *waiter;
704 		struct file_lock *fl;
705 
706 		waiter = list_first_entry(&blocker->flc_blocked_requests,
707 					  struct file_lock_core, flc_blocked_member);
708 
709 		fl = file_lock(waiter);
710 		__locks_unlink_block(waiter);
711 		if ((waiter->flc_flags & (FL_POSIX | FL_FLOCK)) &&
712 		    fl->fl_lmops && fl->fl_lmops->lm_notify)
713 			fl->fl_lmops->lm_notify(fl);
714 		else
715 			locks_wake_up(fl);
716 
717 		/*
718 		 * The setting of flc_blocker to NULL marks the "done"
719 		 * point in deleting a block. Paired with acquire at the top
720 		 * of locks_delete_block().
721 		 */
722 		smp_store_release(&waiter->flc_blocker, NULL);
723 	}
724 }
725 
__locks_delete_block(struct file_lock_core * waiter)726 static int __locks_delete_block(struct file_lock_core *waiter)
727 {
728 	int status = -ENOENT;
729 
730 	/*
731 	 * If fl_blocker is NULL, it won't be set again as this thread "owns"
732 	 * the lock and is the only one that might try to claim the lock.
733 	 *
734 	 * We use acquire/release to manage fl_blocker so that we can
735 	 * optimize away taking the blocked_lock_lock in many cases.
736 	 *
737 	 * The smp_load_acquire guarantees two things:
738 	 *
739 	 * 1/ that fl_blocked_requests can be tested locklessly. If something
740 	 * was recently added to that list it must have been in a locked region
741 	 * *before* the locked region when fl_blocker was set to NULL.
742 	 *
743 	 * 2/ that no other thread is accessing 'waiter', so it is safe to free
744 	 * it.  __locks_wake_up_blocks is careful not to touch waiter after
745 	 * fl_blocker is released.
746 	 *
747 	 * If a lockless check of fl_blocker shows it to be NULL, we know that
748 	 * no new locks can be inserted into its fl_blocked_requests list, and
749 	 * can avoid doing anything further if the list is empty.
750 	 */
751 	if (!smp_load_acquire(&waiter->flc_blocker) &&
752 	    list_empty(&waiter->flc_blocked_requests))
753 		return status;
754 
755 	spin_lock(&blocked_lock_lock);
756 	if (waiter->flc_blocker)
757 		status = 0;
758 	__locks_wake_up_blocks(waiter);
759 	__locks_unlink_block(waiter);
760 
761 	/*
762 	 * The setting of fl_blocker to NULL marks the "done" point in deleting
763 	 * a block. Paired with acquire at the top of this function.
764 	 */
765 	smp_store_release(&waiter->flc_blocker, NULL);
766 	spin_unlock(&blocked_lock_lock);
767 	return status;
768 }
769 
770 /**
771  *	locks_delete_block - stop waiting for a file lock
772  *	@waiter: the lock which was waiting
773  *
774  *	lockd/nfsd need to disconnect the lock while working on it.
775  */
locks_delete_block(struct file_lock * waiter)776 int locks_delete_block(struct file_lock *waiter)
777 {
778 	return __locks_delete_block(&waiter->c);
779 }
780 EXPORT_SYMBOL(locks_delete_block);
781 
782 /* Insert waiter into blocker's block list.
783  * We use a circular list so that processes can be easily woken up in
784  * the order they blocked. The documentation doesn't require this but
785  * it seems like the reasonable thing to do.
786  *
787  * Must be called with both the flc_lock and blocked_lock_lock held. The
788  * fl_blocked_requests list itself is protected by the blocked_lock_lock,
789  * but by ensuring that the flc_lock is also held on insertions we can avoid
790  * taking the blocked_lock_lock in some cases when we see that the
791  * fl_blocked_requests list is empty.
792  *
793  * Rather than just adding to the list, we check for conflicts with any existing
794  * waiters, and add beneath any waiter that blocks the new waiter.
795  * Thus wakeups don't happen until needed.
796  */
__locks_insert_block(struct file_lock_core * blocker,struct file_lock_core * waiter,bool conflict (struct file_lock_core *,struct file_lock_core *))797 static void __locks_insert_block(struct file_lock_core *blocker,
798 				 struct file_lock_core *waiter,
799 				 bool conflict(struct file_lock_core *,
800 					       struct file_lock_core *))
801 {
802 	struct file_lock_core *flc;
803 
804 	BUG_ON(!list_empty(&waiter->flc_blocked_member));
805 new_blocker:
806 	list_for_each_entry(flc, &blocker->flc_blocked_requests, flc_blocked_member)
807 		if (conflict(flc, waiter)) {
808 			blocker =  flc;
809 			goto new_blocker;
810 		}
811 	waiter->flc_blocker = blocker;
812 	list_add_tail(&waiter->flc_blocked_member,
813 		      &blocker->flc_blocked_requests);
814 
815 	if ((blocker->flc_flags & (FL_POSIX|FL_OFDLCK)) == FL_POSIX)
816 		locks_insert_global_blocked(waiter);
817 
818 	/* The requests in waiter->flc_blocked are known to conflict with
819 	 * waiter, but might not conflict with blocker, or the requests
820 	 * and lock which block it.  So they all need to be woken.
821 	 */
822 	__locks_wake_up_blocks(waiter);
823 }
824 
825 /* Must be called with flc_lock held. */
locks_insert_block(struct file_lock_core * blocker,struct file_lock_core * waiter,bool conflict (struct file_lock_core *,struct file_lock_core *))826 static void locks_insert_block(struct file_lock_core *blocker,
827 			       struct file_lock_core *waiter,
828 			       bool conflict(struct file_lock_core *,
829 					     struct file_lock_core *))
830 {
831 	spin_lock(&blocked_lock_lock);
832 	__locks_insert_block(blocker, waiter, conflict);
833 	spin_unlock(&blocked_lock_lock);
834 }
835 
836 /*
837  * Wake up processes blocked waiting for blocker.
838  *
839  * Must be called with the inode->flc_lock held!
840  */
locks_wake_up_blocks(struct file_lock_core * blocker)841 static void locks_wake_up_blocks(struct file_lock_core *blocker)
842 {
843 	/*
844 	 * Avoid taking global lock if list is empty. This is safe since new
845 	 * blocked requests are only added to the list under the flc_lock, and
846 	 * the flc_lock is always held here. Note that removal from the
847 	 * fl_blocked_requests list does not require the flc_lock, so we must
848 	 * recheck list_empty() after acquiring the blocked_lock_lock.
849 	 */
850 	if (list_empty(&blocker->flc_blocked_requests))
851 		return;
852 
853 	spin_lock(&blocked_lock_lock);
854 	__locks_wake_up_blocks(blocker);
855 	spin_unlock(&blocked_lock_lock);
856 }
857 
858 static void
locks_insert_lock_ctx(struct file_lock_core * fl,struct list_head * before)859 locks_insert_lock_ctx(struct file_lock_core *fl, struct list_head *before)
860 {
861 	list_add_tail(&fl->flc_list, before);
862 	locks_insert_global_locks(fl);
863 }
864 
865 static void
locks_unlink_lock_ctx(struct file_lock_core * fl)866 locks_unlink_lock_ctx(struct file_lock_core *fl)
867 {
868 	locks_delete_global_locks(fl);
869 	list_del_init(&fl->flc_list);
870 	locks_wake_up_blocks(fl);
871 }
872 
873 static void
locks_delete_lock_ctx(struct file_lock_core * fl,struct list_head * dispose)874 locks_delete_lock_ctx(struct file_lock_core *fl, struct list_head *dispose)
875 {
876 	locks_unlink_lock_ctx(fl);
877 	if (dispose)
878 		list_add(&fl->flc_list, dispose);
879 	else
880 		locks_free_lock(file_lock(fl));
881 }
882 
883 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality
884  * checks for shared/exclusive status of overlapping locks.
885  */
locks_conflict(struct file_lock_core * caller_flc,struct file_lock_core * sys_flc)886 static bool locks_conflict(struct file_lock_core *caller_flc,
887 			   struct file_lock_core *sys_flc)
888 {
889 	if (sys_flc->flc_type == F_WRLCK)
890 		return true;
891 	if (caller_flc->flc_type == F_WRLCK)
892 		return true;
893 	return false;
894 }
895 
896 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific
897  * checking before calling the locks_conflict().
898  */
posix_locks_conflict(struct file_lock_core * caller_flc,struct file_lock_core * sys_flc)899 static bool posix_locks_conflict(struct file_lock_core *caller_flc,
900 				 struct file_lock_core *sys_flc)
901 {
902 	struct file_lock *caller_fl = file_lock(caller_flc);
903 	struct file_lock *sys_fl = file_lock(sys_flc);
904 
905 	/* POSIX locks owned by the same process do not conflict with
906 	 * each other.
907 	 */
908 	if (posix_same_owner(caller_flc, sys_flc))
909 		return false;
910 
911 	/* Check whether they overlap */
912 	if (!locks_overlap(caller_fl, sys_fl))
913 		return false;
914 
915 	return locks_conflict(caller_flc, sys_flc);
916 }
917 
918 /* Determine if lock sys_fl blocks lock caller_fl. Used on xx_GETLK
919  * path so checks for additional GETLK-specific things like F_UNLCK.
920  */
posix_test_locks_conflict(struct file_lock * caller_fl,struct file_lock * sys_fl)921 static bool posix_test_locks_conflict(struct file_lock *caller_fl,
922 				      struct file_lock *sys_fl)
923 {
924 	struct file_lock_core *caller = &caller_fl->c;
925 	struct file_lock_core *sys = &sys_fl->c;
926 
927 	/* F_UNLCK checks any locks on the same fd. */
928 	if (lock_is_unlock(caller_fl)) {
929 		if (!posix_same_owner(caller, sys))
930 			return false;
931 		return locks_overlap(caller_fl, sys_fl);
932 	}
933 	return posix_locks_conflict(caller, sys);
934 }
935 
936 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific
937  * checking before calling the locks_conflict().
938  */
flock_locks_conflict(struct file_lock_core * caller_flc,struct file_lock_core * sys_flc)939 static bool flock_locks_conflict(struct file_lock_core *caller_flc,
940 				 struct file_lock_core *sys_flc)
941 {
942 	/* FLOCK locks referring to the same filp do not conflict with
943 	 * each other.
944 	 */
945 	if (caller_flc->flc_file == sys_flc->flc_file)
946 		return false;
947 
948 	return locks_conflict(caller_flc, sys_flc);
949 }
950 
951 void
posix_test_lock(struct file * filp,struct file_lock * fl)952 posix_test_lock(struct file *filp, struct file_lock *fl)
953 {
954 	struct file_lock *cfl;
955 	struct file_lock_context *ctx;
956 	struct inode *inode = file_inode(filp);
957 	void *owner;
958 	void (*func)(void);
959 
960 	ctx = locks_inode_context(inode);
961 	if (!ctx || list_empty_careful(&ctx->flc_posix)) {
962 		fl->c.flc_type = F_UNLCK;
963 		return;
964 	}
965 
966 retry:
967 	spin_lock(&ctx->flc_lock);
968 	list_for_each_entry(cfl, &ctx->flc_posix, c.flc_list) {
969 		if (!posix_test_locks_conflict(fl, cfl))
970 			continue;
971 		if (cfl->fl_lmops && cfl->fl_lmops->lm_lock_expirable
972 			&& (*cfl->fl_lmops->lm_lock_expirable)(cfl)) {
973 			owner = cfl->fl_lmops->lm_mod_owner;
974 			func = cfl->fl_lmops->lm_expire_lock;
975 			__module_get(owner);
976 			spin_unlock(&ctx->flc_lock);
977 			(*func)();
978 			module_put(owner);
979 			goto retry;
980 		}
981 		locks_copy_conflock(fl, cfl);
982 		goto out;
983 	}
984 	fl->c.flc_type = F_UNLCK;
985 out:
986 	spin_unlock(&ctx->flc_lock);
987 	return;
988 }
989 EXPORT_SYMBOL(posix_test_lock);
990 
991 /*
992  * Deadlock detection:
993  *
994  * We attempt to detect deadlocks that are due purely to posix file
995  * locks.
996  *
997  * We assume that a task can be waiting for at most one lock at a time.
998  * So for any acquired lock, the process holding that lock may be
999  * waiting on at most one other lock.  That lock in turns may be held by
1000  * someone waiting for at most one other lock.  Given a requested lock
1001  * caller_fl which is about to wait for a conflicting lock block_fl, we
1002  * follow this chain of waiters to ensure we are not about to create a
1003  * cycle.
1004  *
1005  * Since we do this before we ever put a process to sleep on a lock, we
1006  * are ensured that there is never a cycle; that is what guarantees that
1007  * the while() loop in posix_locks_deadlock() eventually completes.
1008  *
1009  * Note: the above assumption may not be true when handling lock
1010  * requests from a broken NFS client. It may also fail in the presence
1011  * of tasks (such as posix threads) sharing the same open file table.
1012  * To handle those cases, we just bail out after a few iterations.
1013  *
1014  * For FL_OFDLCK locks, the owner is the filp, not the files_struct.
1015  * Because the owner is not even nominally tied to a thread of
1016  * execution, the deadlock detection below can't reasonably work well. Just
1017  * skip it for those.
1018  *
1019  * In principle, we could do a more limited deadlock detection on FL_OFDLCK
1020  * locks that just checks for the case where two tasks are attempting to
1021  * upgrade from read to write locks on the same inode.
1022  */
1023 
1024 #define MAX_DEADLK_ITERATIONS 10
1025 
1026 /* Find a lock that the owner of the given @blocker is blocking on. */
what_owner_is_waiting_for(struct file_lock_core * blocker)1027 static struct file_lock_core *what_owner_is_waiting_for(struct file_lock_core *blocker)
1028 {
1029 	struct file_lock_core *flc;
1030 
1031 	hash_for_each_possible(blocked_hash, flc, flc_link, posix_owner_key(blocker)) {
1032 		if (posix_same_owner(flc, blocker)) {
1033 			while (flc->flc_blocker)
1034 				flc = flc->flc_blocker;
1035 			return flc;
1036 		}
1037 	}
1038 	return NULL;
1039 }
1040 
1041 /* Must be called with the blocked_lock_lock held! */
posix_locks_deadlock(struct file_lock * caller_fl,struct file_lock * block_fl)1042 static bool posix_locks_deadlock(struct file_lock *caller_fl,
1043 				 struct file_lock *block_fl)
1044 {
1045 	struct file_lock_core *caller = &caller_fl->c;
1046 	struct file_lock_core *blocker = &block_fl->c;
1047 	int i = 0;
1048 
1049 	lockdep_assert_held(&blocked_lock_lock);
1050 
1051 	/*
1052 	 * This deadlock detector can't reasonably detect deadlocks with
1053 	 * FL_OFDLCK locks, since they aren't owned by a process, per-se.
1054 	 */
1055 	if (caller->flc_flags & FL_OFDLCK)
1056 		return false;
1057 
1058 	while ((blocker = what_owner_is_waiting_for(blocker))) {
1059 		if (i++ > MAX_DEADLK_ITERATIONS)
1060 			return false;
1061 		if (posix_same_owner(caller, blocker))
1062 			return true;
1063 	}
1064 	return false;
1065 }
1066 
1067 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks
1068  * after any leases, but before any posix locks.
1069  *
1070  * Note that if called with an FL_EXISTS argument, the caller may determine
1071  * whether or not a lock was successfully freed by testing the return
1072  * value for -ENOENT.
1073  */
flock_lock_inode(struct inode * inode,struct file_lock * request)1074 static int flock_lock_inode(struct inode *inode, struct file_lock *request)
1075 {
1076 	struct file_lock *new_fl = NULL;
1077 	struct file_lock *fl;
1078 	struct file_lock_context *ctx;
1079 	int error = 0;
1080 	bool found = false;
1081 	LIST_HEAD(dispose);
1082 
1083 	ctx = locks_get_lock_context(inode, request->c.flc_type);
1084 	if (!ctx) {
1085 		if (request->c.flc_type != F_UNLCK)
1086 			return -ENOMEM;
1087 		return (request->c.flc_flags & FL_EXISTS) ? -ENOENT : 0;
1088 	}
1089 
1090 	if (!(request->c.flc_flags & FL_ACCESS) && (request->c.flc_type != F_UNLCK)) {
1091 		new_fl = locks_alloc_lock();
1092 		if (!new_fl)
1093 			return -ENOMEM;
1094 	}
1095 
1096 	percpu_down_read(&file_rwsem);
1097 	spin_lock(&ctx->flc_lock);
1098 	if (request->c.flc_flags & FL_ACCESS)
1099 		goto find_conflict;
1100 
1101 	list_for_each_entry(fl, &ctx->flc_flock, c.flc_list) {
1102 		if (request->c.flc_file != fl->c.flc_file)
1103 			continue;
1104 		if (request->c.flc_type == fl->c.flc_type)
1105 			goto out;
1106 		found = true;
1107 		locks_delete_lock_ctx(&fl->c, &dispose);
1108 		break;
1109 	}
1110 
1111 	if (lock_is_unlock(request)) {
1112 		if ((request->c.flc_flags & FL_EXISTS) && !found)
1113 			error = -ENOENT;
1114 		goto out;
1115 	}
1116 
1117 find_conflict:
1118 	list_for_each_entry(fl, &ctx->flc_flock, c.flc_list) {
1119 		if (!flock_locks_conflict(&request->c, &fl->c))
1120 			continue;
1121 		error = -EAGAIN;
1122 		if (!(request->c.flc_flags & FL_SLEEP))
1123 			goto out;
1124 		error = FILE_LOCK_DEFERRED;
1125 		locks_insert_block(&fl->c, &request->c, flock_locks_conflict);
1126 		goto out;
1127 	}
1128 	if (request->c.flc_flags & FL_ACCESS)
1129 		goto out;
1130 	locks_copy_lock(new_fl, request);
1131 	locks_move_blocks(new_fl, request);
1132 	locks_insert_lock_ctx(&new_fl->c, &ctx->flc_flock);
1133 	new_fl = NULL;
1134 	error = 0;
1135 
1136 out:
1137 	spin_unlock(&ctx->flc_lock);
1138 	percpu_up_read(&file_rwsem);
1139 	if (new_fl)
1140 		locks_free_lock(new_fl);
1141 	locks_dispose_list(&dispose);
1142 	trace_flock_lock_inode(inode, request, error);
1143 	return error;
1144 }
1145 
posix_lock_inode(struct inode * inode,struct file_lock * request,struct file_lock * conflock)1146 static int posix_lock_inode(struct inode *inode, struct file_lock *request,
1147 			    struct file_lock *conflock)
1148 {
1149 	struct file_lock *fl, *tmp;
1150 	struct file_lock *new_fl = NULL;
1151 	struct file_lock *new_fl2 = NULL;
1152 	struct file_lock *left = NULL;
1153 	struct file_lock *right = NULL;
1154 	struct file_lock_context *ctx;
1155 	int error;
1156 	bool added = false;
1157 	LIST_HEAD(dispose);
1158 	void *owner;
1159 	void (*func)(void);
1160 
1161 	ctx = locks_get_lock_context(inode, request->c.flc_type);
1162 	if (!ctx)
1163 		return lock_is_unlock(request) ? 0 : -ENOMEM;
1164 
1165 	/*
1166 	 * We may need two file_lock structures for this operation,
1167 	 * so we get them in advance to avoid races.
1168 	 *
1169 	 * In some cases we can be sure, that no new locks will be needed
1170 	 */
1171 	if (!(request->c.flc_flags & FL_ACCESS) &&
1172 	    (request->c.flc_type != F_UNLCK ||
1173 	     request->fl_start != 0 || request->fl_end != OFFSET_MAX)) {
1174 		new_fl = locks_alloc_lock();
1175 		new_fl2 = locks_alloc_lock();
1176 	}
1177 
1178 retry:
1179 	percpu_down_read(&file_rwsem);
1180 	spin_lock(&ctx->flc_lock);
1181 	/*
1182 	 * New lock request. Walk all POSIX locks and look for conflicts. If
1183 	 * there are any, either return error or put the request on the
1184 	 * blocker's list of waiters and the global blocked_hash.
1185 	 */
1186 	if (request->c.flc_type != F_UNLCK) {
1187 		list_for_each_entry(fl, &ctx->flc_posix, c.flc_list) {
1188 			if (!posix_locks_conflict(&request->c, &fl->c))
1189 				continue;
1190 			if (fl->fl_lmops && fl->fl_lmops->lm_lock_expirable
1191 				&& (*fl->fl_lmops->lm_lock_expirable)(fl)) {
1192 				owner = fl->fl_lmops->lm_mod_owner;
1193 				func = fl->fl_lmops->lm_expire_lock;
1194 				__module_get(owner);
1195 				spin_unlock(&ctx->flc_lock);
1196 				percpu_up_read(&file_rwsem);
1197 				(*func)();
1198 				module_put(owner);
1199 				goto retry;
1200 			}
1201 			if (conflock)
1202 				locks_copy_conflock(conflock, fl);
1203 			error = -EAGAIN;
1204 			if (!(request->c.flc_flags & FL_SLEEP))
1205 				goto out;
1206 			/*
1207 			 * Deadlock detection and insertion into the blocked
1208 			 * locks list must be done while holding the same lock!
1209 			 */
1210 			error = -EDEADLK;
1211 			spin_lock(&blocked_lock_lock);
1212 			/*
1213 			 * Ensure that we don't find any locks blocked on this
1214 			 * request during deadlock detection.
1215 			 */
1216 			__locks_wake_up_blocks(&request->c);
1217 			if (likely(!posix_locks_deadlock(request, fl))) {
1218 				error = FILE_LOCK_DEFERRED;
1219 				__locks_insert_block(&fl->c, &request->c,
1220 						     posix_locks_conflict);
1221 			}
1222 			spin_unlock(&blocked_lock_lock);
1223 			goto out;
1224 		}
1225 	}
1226 
1227 	/* If we're just looking for a conflict, we're done. */
1228 	error = 0;
1229 	if (request->c.flc_flags & FL_ACCESS)
1230 		goto out;
1231 
1232 	/* Find the first old lock with the same owner as the new lock */
1233 	list_for_each_entry(fl, &ctx->flc_posix, c.flc_list) {
1234 		if (posix_same_owner(&request->c, &fl->c))
1235 			break;
1236 	}
1237 
1238 	/* Process locks with this owner. */
1239 	list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, c.flc_list) {
1240 		if (!posix_same_owner(&request->c, &fl->c))
1241 			break;
1242 
1243 		/* Detect adjacent or overlapping regions (if same lock type) */
1244 		if (request->c.flc_type == fl->c.flc_type) {
1245 			/* In all comparisons of start vs end, use
1246 			 * "start - 1" rather than "end + 1". If end
1247 			 * is OFFSET_MAX, end + 1 will become negative.
1248 			 */
1249 			if (fl->fl_end < request->fl_start - 1)
1250 				continue;
1251 			/* If the next lock in the list has entirely bigger
1252 			 * addresses than the new one, insert the lock here.
1253 			 */
1254 			if (fl->fl_start - 1 > request->fl_end)
1255 				break;
1256 
1257 			/* If we come here, the new and old lock are of the
1258 			 * same type and adjacent or overlapping. Make one
1259 			 * lock yielding from the lower start address of both
1260 			 * locks to the higher end address.
1261 			 */
1262 			if (fl->fl_start > request->fl_start)
1263 				fl->fl_start = request->fl_start;
1264 			else
1265 				request->fl_start = fl->fl_start;
1266 			if (fl->fl_end < request->fl_end)
1267 				fl->fl_end = request->fl_end;
1268 			else
1269 				request->fl_end = fl->fl_end;
1270 			if (added) {
1271 				locks_delete_lock_ctx(&fl->c, &dispose);
1272 				continue;
1273 			}
1274 			request = fl;
1275 			added = true;
1276 		} else {
1277 			/* Processing for different lock types is a bit
1278 			 * more complex.
1279 			 */
1280 			if (fl->fl_end < request->fl_start)
1281 				continue;
1282 			if (fl->fl_start > request->fl_end)
1283 				break;
1284 			if (lock_is_unlock(request))
1285 				added = true;
1286 			if (fl->fl_start < request->fl_start)
1287 				left = fl;
1288 			/* If the next lock in the list has a higher end
1289 			 * address than the new one, insert the new one here.
1290 			 */
1291 			if (fl->fl_end > request->fl_end) {
1292 				right = fl;
1293 				break;
1294 			}
1295 			if (fl->fl_start >= request->fl_start) {
1296 				/* The new lock completely replaces an old
1297 				 * one (This may happen several times).
1298 				 */
1299 				if (added) {
1300 					locks_delete_lock_ctx(&fl->c, &dispose);
1301 					continue;
1302 				}
1303 				/*
1304 				 * Replace the old lock with new_fl, and
1305 				 * remove the old one. It's safe to do the
1306 				 * insert here since we know that we won't be
1307 				 * using new_fl later, and that the lock is
1308 				 * just replacing an existing lock.
1309 				 */
1310 				error = -ENOLCK;
1311 				if (!new_fl)
1312 					goto out;
1313 				locks_copy_lock(new_fl, request);
1314 				locks_move_blocks(new_fl, request);
1315 				request = new_fl;
1316 				new_fl = NULL;
1317 				locks_insert_lock_ctx(&request->c,
1318 						      &fl->c.flc_list);
1319 				locks_delete_lock_ctx(&fl->c, &dispose);
1320 				added = true;
1321 			}
1322 		}
1323 	}
1324 
1325 	/*
1326 	 * The above code only modifies existing locks in case of merging or
1327 	 * replacing. If new lock(s) need to be inserted all modifications are
1328 	 * done below this, so it's safe yet to bail out.
1329 	 */
1330 	error = -ENOLCK; /* "no luck" */
1331 	if (right && left == right && !new_fl2)
1332 		goto out;
1333 
1334 	error = 0;
1335 	if (!added) {
1336 		if (lock_is_unlock(request)) {
1337 			if (request->c.flc_flags & FL_EXISTS)
1338 				error = -ENOENT;
1339 			goto out;
1340 		}
1341 
1342 		if (!new_fl) {
1343 			error = -ENOLCK;
1344 			goto out;
1345 		}
1346 		locks_copy_lock(new_fl, request);
1347 		locks_move_blocks(new_fl, request);
1348 		locks_insert_lock_ctx(&new_fl->c, &fl->c.flc_list);
1349 		fl = new_fl;
1350 		new_fl = NULL;
1351 	}
1352 	if (right) {
1353 		if (left == right) {
1354 			/* The new lock breaks the old one in two pieces,
1355 			 * so we have to use the second new lock.
1356 			 */
1357 			left = new_fl2;
1358 			new_fl2 = NULL;
1359 			locks_copy_lock(left, right);
1360 			locks_insert_lock_ctx(&left->c, &fl->c.flc_list);
1361 		}
1362 		right->fl_start = request->fl_end + 1;
1363 		locks_wake_up_blocks(&right->c);
1364 	}
1365 	if (left) {
1366 		left->fl_end = request->fl_start - 1;
1367 		locks_wake_up_blocks(&left->c);
1368 	}
1369  out:
1370 	trace_posix_lock_inode(inode, request, error);
1371 	spin_unlock(&ctx->flc_lock);
1372 	percpu_up_read(&file_rwsem);
1373 	/*
1374 	 * Free any unused locks.
1375 	 */
1376 	if (new_fl)
1377 		locks_free_lock(new_fl);
1378 	if (new_fl2)
1379 		locks_free_lock(new_fl2);
1380 	locks_dispose_list(&dispose);
1381 
1382 	return error;
1383 }
1384 
1385 /**
1386  * posix_lock_file - Apply a POSIX-style lock to a file
1387  * @filp: The file to apply the lock to
1388  * @fl: The lock to be applied
1389  * @conflock: Place to return a copy of the conflicting lock, if found.
1390  *
1391  * Add a POSIX style lock to a file.
1392  * We merge adjacent & overlapping locks whenever possible.
1393  * POSIX locks are sorted by owner task, then by starting address
1394  *
1395  * Note that if called with an FL_EXISTS argument, the caller may determine
1396  * whether or not a lock was successfully freed by testing the return
1397  * value for -ENOENT.
1398  */
posix_lock_file(struct file * filp,struct file_lock * fl,struct file_lock * conflock)1399 int posix_lock_file(struct file *filp, struct file_lock *fl,
1400 			struct file_lock *conflock)
1401 {
1402 	return posix_lock_inode(file_inode(filp), fl, conflock);
1403 }
1404 EXPORT_SYMBOL(posix_lock_file);
1405 
1406 /**
1407  * posix_lock_inode_wait - Apply a POSIX-style lock to a file
1408  * @inode: inode of file to which lock request should be applied
1409  * @fl: The lock to be applied
1410  *
1411  * Apply a POSIX style lock request to an inode.
1412  */
posix_lock_inode_wait(struct inode * inode,struct file_lock * fl)1413 static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1414 {
1415 	int error;
1416 	might_sleep ();
1417 	for (;;) {
1418 		error = posix_lock_inode(inode, fl, NULL);
1419 		if (error != FILE_LOCK_DEFERRED)
1420 			break;
1421 		error = wait_event_interruptible(fl->c.flc_wait,
1422 						 list_empty(&fl->c.flc_blocked_member));
1423 		if (error)
1424 			break;
1425 	}
1426 	locks_delete_block(fl);
1427 	return error;
1428 }
1429 
lease_clear_pending(struct file_lease * fl,int arg)1430 static void lease_clear_pending(struct file_lease *fl, int arg)
1431 {
1432 	switch (arg) {
1433 	case F_UNLCK:
1434 		fl->c.flc_flags &= ~FL_UNLOCK_PENDING;
1435 		fallthrough;
1436 	case F_RDLCK:
1437 		fl->c.flc_flags &= ~FL_DOWNGRADE_PENDING;
1438 	}
1439 }
1440 
1441 /* We already had a lease on this file; just change its type */
lease_modify(struct file_lease * fl,int arg,struct list_head * dispose)1442 int lease_modify(struct file_lease *fl, int arg, struct list_head *dispose)
1443 {
1444 	int error = assign_type(&fl->c, arg);
1445 
1446 	if (error)
1447 		return error;
1448 	lease_clear_pending(fl, arg);
1449 	locks_wake_up_blocks(&fl->c);
1450 	if (arg == F_UNLCK) {
1451 		struct file *filp = fl->c.flc_file;
1452 
1453 		f_delown(filp);
1454 		file_f_owner(filp)->signum = 0;
1455 		fasync_helper(0, fl->c.flc_file, 0, &fl->fl_fasync);
1456 		if (fl->fl_fasync != NULL) {
1457 			printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
1458 			fl->fl_fasync = NULL;
1459 		}
1460 		locks_delete_lock_ctx(&fl->c, dispose);
1461 	}
1462 	return 0;
1463 }
1464 EXPORT_SYMBOL(lease_modify);
1465 
past_time(unsigned long then)1466 static bool past_time(unsigned long then)
1467 {
1468 	if (!then)
1469 		/* 0 is a special value meaning "this never expires": */
1470 		return false;
1471 	return time_after(jiffies, then);
1472 }
1473 
time_out_leases(struct inode * inode,struct list_head * dispose)1474 static void time_out_leases(struct inode *inode, struct list_head *dispose)
1475 {
1476 	struct file_lock_context *ctx = inode->i_flctx;
1477 	struct file_lease *fl, *tmp;
1478 
1479 	lockdep_assert_held(&ctx->flc_lock);
1480 
1481 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list) {
1482 		trace_time_out_leases(inode, fl);
1483 		if (past_time(fl->fl_downgrade_time))
1484 			lease_modify(fl, F_RDLCK, dispose);
1485 		if (past_time(fl->fl_break_time))
1486 			lease_modify(fl, F_UNLCK, dispose);
1487 	}
1488 }
1489 
leases_conflict(struct file_lock_core * lc,struct file_lock_core * bc)1490 static bool leases_conflict(struct file_lock_core *lc, struct file_lock_core *bc)
1491 {
1492 	bool rc;
1493 	struct file_lease *lease = file_lease(lc);
1494 	struct file_lease *breaker = file_lease(bc);
1495 
1496 	if (lease->fl_lmops->lm_breaker_owns_lease
1497 			&& lease->fl_lmops->lm_breaker_owns_lease(lease))
1498 		return false;
1499 	if ((bc->flc_flags & FL_LAYOUT) != (lc->flc_flags & FL_LAYOUT)) {
1500 		rc = false;
1501 		goto trace;
1502 	}
1503 	if ((bc->flc_flags & FL_DELEG) && (lc->flc_flags & FL_LEASE)) {
1504 		rc = false;
1505 		goto trace;
1506 	}
1507 
1508 	rc = locks_conflict(bc, lc);
1509 trace:
1510 	trace_leases_conflict(rc, lease, breaker);
1511 	return rc;
1512 }
1513 
1514 static bool
any_leases_conflict(struct inode * inode,struct file_lease * breaker)1515 any_leases_conflict(struct inode *inode, struct file_lease *breaker)
1516 {
1517 	struct file_lock_context *ctx = inode->i_flctx;
1518 	struct file_lock_core *flc;
1519 
1520 	lockdep_assert_held(&ctx->flc_lock);
1521 
1522 	list_for_each_entry(flc, &ctx->flc_lease, flc_list) {
1523 		if (leases_conflict(flc, &breaker->c))
1524 			return true;
1525 	}
1526 	return false;
1527 }
1528 
1529 /**
1530  *	__break_lease	-	revoke all outstanding leases on file
1531  *	@inode: the inode of the file to return
1532  *	@mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR:
1533  *	    break all leases
1534  *	@type: FL_LEASE: break leases and delegations; FL_DELEG: break
1535  *	    only delegations
1536  *
1537  *	break_lease (inlined for speed) has checked there already is at least
1538  *	some kind of lock (maybe a lease) on this file.  Leases are broken on
1539  *	a call to open() or truncate().  This function can sleep unless you
1540  *	specified %O_NONBLOCK to your open().
1541  */
__break_lease(struct inode * inode,unsigned int mode,unsigned int type)1542 int __break_lease(struct inode *inode, unsigned int mode, unsigned int type)
1543 {
1544 	int error = 0;
1545 	struct file_lock_context *ctx;
1546 	struct file_lease *new_fl, *fl, *tmp;
1547 	unsigned long break_time;
1548 	int want_write = (mode & O_ACCMODE) != O_RDONLY;
1549 	LIST_HEAD(dispose);
1550 
1551 	new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK);
1552 	if (IS_ERR(new_fl))
1553 		return PTR_ERR(new_fl);
1554 	new_fl->c.flc_flags = type;
1555 
1556 	/* typically we will check that ctx is non-NULL before calling */
1557 	ctx = locks_inode_context(inode);
1558 	if (!ctx) {
1559 		WARN_ON_ONCE(1);
1560 		goto free_lock;
1561 	}
1562 
1563 	percpu_down_read(&file_rwsem);
1564 	spin_lock(&ctx->flc_lock);
1565 
1566 	time_out_leases(inode, &dispose);
1567 
1568 	if (!any_leases_conflict(inode, new_fl))
1569 		goto out;
1570 
1571 	break_time = 0;
1572 	if (lease_break_time > 0) {
1573 		break_time = jiffies + lease_break_time * HZ;
1574 		if (break_time == 0)
1575 			break_time++;	/* so that 0 means no break time */
1576 	}
1577 
1578 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list) {
1579 		if (!leases_conflict(&fl->c, &new_fl->c))
1580 			continue;
1581 		if (want_write) {
1582 			if (fl->c.flc_flags & FL_UNLOCK_PENDING)
1583 				continue;
1584 			fl->c.flc_flags |= FL_UNLOCK_PENDING;
1585 			fl->fl_break_time = break_time;
1586 		} else {
1587 			if (lease_breaking(fl))
1588 				continue;
1589 			fl->c.flc_flags |= FL_DOWNGRADE_PENDING;
1590 			fl->fl_downgrade_time = break_time;
1591 		}
1592 		if (fl->fl_lmops->lm_break(fl))
1593 			locks_delete_lock_ctx(&fl->c, &dispose);
1594 	}
1595 
1596 	if (list_empty(&ctx->flc_lease))
1597 		goto out;
1598 
1599 	if (mode & O_NONBLOCK) {
1600 		trace_break_lease_noblock(inode, new_fl);
1601 		error = -EWOULDBLOCK;
1602 		goto out;
1603 	}
1604 
1605 restart:
1606 	fl = list_first_entry(&ctx->flc_lease, struct file_lease, c.flc_list);
1607 	break_time = fl->fl_break_time;
1608 	if (break_time != 0)
1609 		break_time -= jiffies;
1610 	if (break_time == 0)
1611 		break_time++;
1612 	locks_insert_block(&fl->c, &new_fl->c, leases_conflict);
1613 	trace_break_lease_block(inode, new_fl);
1614 	spin_unlock(&ctx->flc_lock);
1615 	percpu_up_read(&file_rwsem);
1616 
1617 	locks_dispose_list(&dispose);
1618 	error = wait_event_interruptible_timeout(new_fl->c.flc_wait,
1619 						 list_empty(&new_fl->c.flc_blocked_member),
1620 						 break_time);
1621 
1622 	percpu_down_read(&file_rwsem);
1623 	spin_lock(&ctx->flc_lock);
1624 	trace_break_lease_unblock(inode, new_fl);
1625 	__locks_delete_block(&new_fl->c);
1626 	if (error >= 0) {
1627 		/*
1628 		 * Wait for the next conflicting lease that has not been
1629 		 * broken yet
1630 		 */
1631 		if (error == 0)
1632 			time_out_leases(inode, &dispose);
1633 		if (any_leases_conflict(inode, new_fl))
1634 			goto restart;
1635 		error = 0;
1636 	}
1637 out:
1638 	spin_unlock(&ctx->flc_lock);
1639 	percpu_up_read(&file_rwsem);
1640 	locks_dispose_list(&dispose);
1641 free_lock:
1642 	locks_free_lease(new_fl);
1643 	return error;
1644 }
1645 EXPORT_SYMBOL(__break_lease);
1646 
1647 /**
1648  *	lease_get_mtime - update modified time of an inode with exclusive lease
1649  *	@inode: the inode
1650  *      @time:  pointer to a timespec which contains the last modified time
1651  *
1652  * This is to force NFS clients to flush their caches for files with
1653  * exclusive leases.  The justification is that if someone has an
1654  * exclusive lease, then they could be modifying it.
1655  */
lease_get_mtime(struct inode * inode,struct timespec64 * time)1656 void lease_get_mtime(struct inode *inode, struct timespec64 *time)
1657 {
1658 	bool has_lease = false;
1659 	struct file_lock_context *ctx;
1660 	struct file_lock_core *flc;
1661 
1662 	ctx = locks_inode_context(inode);
1663 	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1664 		spin_lock(&ctx->flc_lock);
1665 		flc = list_first_entry_or_null(&ctx->flc_lease,
1666 					       struct file_lock_core, flc_list);
1667 		if (flc && flc->flc_type == F_WRLCK)
1668 			has_lease = true;
1669 		spin_unlock(&ctx->flc_lock);
1670 	}
1671 
1672 	if (has_lease)
1673 		*time = current_time(inode);
1674 }
1675 EXPORT_SYMBOL(lease_get_mtime);
1676 
1677 /**
1678  *	fcntl_getlease - Enquire what lease is currently active
1679  *	@filp: the file
1680  *
1681  *	The value returned by this function will be one of
1682  *	(if no lease break is pending):
1683  *
1684  *	%F_RDLCK to indicate a shared lease is held.
1685  *
1686  *	%F_WRLCK to indicate an exclusive lease is held.
1687  *
1688  *	%F_UNLCK to indicate no lease is held.
1689  *
1690  *	(if a lease break is pending):
1691  *
1692  *	%F_RDLCK to indicate an exclusive lease needs to be
1693  *		changed to a shared lease (or removed).
1694  *
1695  *	%F_UNLCK to indicate the lease needs to be removed.
1696  *
1697  *	XXX: sfr & willy disagree over whether F_INPROGRESS
1698  *	should be returned to userspace.
1699  */
fcntl_getlease(struct file * filp)1700 int fcntl_getlease(struct file *filp)
1701 {
1702 	struct file_lease *fl;
1703 	struct inode *inode = file_inode(filp);
1704 	struct file_lock_context *ctx;
1705 	int type = F_UNLCK;
1706 	LIST_HEAD(dispose);
1707 
1708 	ctx = locks_inode_context(inode);
1709 	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1710 		percpu_down_read(&file_rwsem);
1711 		spin_lock(&ctx->flc_lock);
1712 		time_out_leases(inode, &dispose);
1713 		list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) {
1714 			if (fl->c.flc_file != filp)
1715 				continue;
1716 			type = target_leasetype(fl);
1717 			break;
1718 		}
1719 		spin_unlock(&ctx->flc_lock);
1720 		percpu_up_read(&file_rwsem);
1721 
1722 		locks_dispose_list(&dispose);
1723 	}
1724 	return type;
1725 }
1726 
1727 /**
1728  * check_conflicting_open - see if the given file points to an inode that has
1729  *			    an existing open that would conflict with the
1730  *			    desired lease.
1731  * @filp:	file to check
1732  * @arg:	type of lease that we're trying to acquire
1733  * @flags:	current lock flags
1734  *
1735  * Check to see if there's an existing open fd on this file that would
1736  * conflict with the lease we're trying to set.
1737  */
1738 static int
check_conflicting_open(struct file * filp,const int arg,int flags)1739 check_conflicting_open(struct file *filp, const int arg, int flags)
1740 {
1741 	struct inode *inode = file_inode(filp);
1742 	int self_wcount = 0, self_rcount = 0;
1743 
1744 	if (flags & FL_LAYOUT)
1745 		return 0;
1746 	if (flags & FL_DELEG)
1747 		/* We leave these checks to the caller */
1748 		return 0;
1749 
1750 	if (arg == F_RDLCK)
1751 		return inode_is_open_for_write(inode) ? -EAGAIN : 0;
1752 	else if (arg != F_WRLCK)
1753 		return 0;
1754 
1755 	/*
1756 	 * Make sure that only read/write count is from lease requestor.
1757 	 * Note that this will result in denying write leases when i_writecount
1758 	 * is negative, which is what we want.  (We shouldn't grant write leases
1759 	 * on files open for execution.)
1760 	 */
1761 	if (filp->f_mode & FMODE_WRITE)
1762 		self_wcount = 1;
1763 	else if (filp->f_mode & FMODE_READ)
1764 		self_rcount = 1;
1765 
1766 	if (atomic_read(&inode->i_writecount) != self_wcount ||
1767 	    atomic_read(&inode->i_readcount) != self_rcount)
1768 		return -EAGAIN;
1769 
1770 	return 0;
1771 }
1772 
1773 static int
generic_add_lease(struct file * filp,int arg,struct file_lease ** flp,void ** priv)1774 generic_add_lease(struct file *filp, int arg, struct file_lease **flp, void **priv)
1775 {
1776 	struct file_lease *fl, *my_fl = NULL, *lease;
1777 	struct inode *inode = file_inode(filp);
1778 	struct file_lock_context *ctx;
1779 	bool is_deleg = (*flp)->c.flc_flags & FL_DELEG;
1780 	int error;
1781 	LIST_HEAD(dispose);
1782 
1783 	lease = *flp;
1784 	trace_generic_add_lease(inode, lease);
1785 
1786 	error = file_f_owner_allocate(filp);
1787 	if (error)
1788 		return error;
1789 
1790 	/* Note that arg is never F_UNLCK here */
1791 	ctx = locks_get_lock_context(inode, arg);
1792 	if (!ctx)
1793 		return -ENOMEM;
1794 
1795 	/*
1796 	 * In the delegation case we need mutual exclusion with
1797 	 * a number of operations that take the i_mutex.  We trylock
1798 	 * because delegations are an optional optimization, and if
1799 	 * there's some chance of a conflict--we'd rather not
1800 	 * bother, maybe that's a sign this just isn't a good file to
1801 	 * hand out a delegation on.
1802 	 */
1803 	if (is_deleg && !inode_trylock(inode))
1804 		return -EAGAIN;
1805 
1806 	percpu_down_read(&file_rwsem);
1807 	spin_lock(&ctx->flc_lock);
1808 	time_out_leases(inode, &dispose);
1809 	error = check_conflicting_open(filp, arg, lease->c.flc_flags);
1810 	if (error)
1811 		goto out;
1812 
1813 	/*
1814 	 * At this point, we know that if there is an exclusive
1815 	 * lease on this file, then we hold it on this filp
1816 	 * (otherwise our open of this file would have blocked).
1817 	 * And if we are trying to acquire an exclusive lease,
1818 	 * then the file is not open by anyone (including us)
1819 	 * except for this filp.
1820 	 */
1821 	error = -EAGAIN;
1822 	list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) {
1823 		if (fl->c.flc_file == filp &&
1824 		    fl->c.flc_owner == lease->c.flc_owner) {
1825 			my_fl = fl;
1826 			continue;
1827 		}
1828 
1829 		/*
1830 		 * No exclusive leases if someone else has a lease on
1831 		 * this file:
1832 		 */
1833 		if (arg == F_WRLCK)
1834 			goto out;
1835 		/*
1836 		 * Modifying our existing lease is OK, but no getting a
1837 		 * new lease if someone else is opening for write:
1838 		 */
1839 		if (fl->c.flc_flags & FL_UNLOCK_PENDING)
1840 			goto out;
1841 	}
1842 
1843 	if (my_fl != NULL) {
1844 		lease = my_fl;
1845 		error = lease->fl_lmops->lm_change(lease, arg, &dispose);
1846 		if (error)
1847 			goto out;
1848 		goto out_setup;
1849 	}
1850 
1851 	error = -EINVAL;
1852 	if (!leases_enable)
1853 		goto out;
1854 
1855 	locks_insert_lock_ctx(&lease->c, &ctx->flc_lease);
1856 	/*
1857 	 * The check in break_lease() is lockless. It's possible for another
1858 	 * open to race in after we did the earlier check for a conflicting
1859 	 * open but before the lease was inserted. Check again for a
1860 	 * conflicting open and cancel the lease if there is one.
1861 	 *
1862 	 * We also add a barrier here to ensure that the insertion of the lock
1863 	 * precedes these checks.
1864 	 */
1865 	smp_mb();
1866 	error = check_conflicting_open(filp, arg, lease->c.flc_flags);
1867 	if (error) {
1868 		locks_unlink_lock_ctx(&lease->c);
1869 		goto out;
1870 	}
1871 
1872 out_setup:
1873 	if (lease->fl_lmops->lm_setup)
1874 		lease->fl_lmops->lm_setup(lease, priv);
1875 out:
1876 	spin_unlock(&ctx->flc_lock);
1877 	percpu_up_read(&file_rwsem);
1878 	locks_dispose_list(&dispose);
1879 	if (is_deleg)
1880 		inode_unlock(inode);
1881 	if (!error && !my_fl)
1882 		*flp = NULL;
1883 	return error;
1884 }
1885 
generic_delete_lease(struct file * filp,void * owner)1886 static int generic_delete_lease(struct file *filp, void *owner)
1887 {
1888 	int error = -EAGAIN;
1889 	struct file_lease *fl, *victim = NULL;
1890 	struct inode *inode = file_inode(filp);
1891 	struct file_lock_context *ctx;
1892 	LIST_HEAD(dispose);
1893 
1894 	ctx = locks_inode_context(inode);
1895 	if (!ctx) {
1896 		trace_generic_delete_lease(inode, NULL);
1897 		return error;
1898 	}
1899 
1900 	percpu_down_read(&file_rwsem);
1901 	spin_lock(&ctx->flc_lock);
1902 	list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) {
1903 		if (fl->c.flc_file == filp &&
1904 		    fl->c.flc_owner == owner) {
1905 			victim = fl;
1906 			break;
1907 		}
1908 	}
1909 	trace_generic_delete_lease(inode, victim);
1910 	if (victim)
1911 		error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose);
1912 	spin_unlock(&ctx->flc_lock);
1913 	percpu_up_read(&file_rwsem);
1914 	locks_dispose_list(&dispose);
1915 	return error;
1916 }
1917 
1918 /**
1919  *	generic_setlease	-	sets a lease on an open file
1920  *	@filp:	file pointer
1921  *	@arg:	type of lease to obtain
1922  *	@flp:	input - file_lock to use, output - file_lock inserted
1923  *	@priv:	private data for lm_setup (may be NULL if lm_setup
1924  *		doesn't require it)
1925  *
1926  *	The (input) flp->fl_lmops->lm_break function is required
1927  *	by break_lease().
1928  */
generic_setlease(struct file * filp,int arg,struct file_lease ** flp,void ** priv)1929 int generic_setlease(struct file *filp, int arg, struct file_lease **flp,
1930 			void **priv)
1931 {
1932 	switch (arg) {
1933 	case F_UNLCK:
1934 		return generic_delete_lease(filp, *priv);
1935 	case F_RDLCK:
1936 	case F_WRLCK:
1937 		if (!(*flp)->fl_lmops->lm_break) {
1938 			WARN_ON_ONCE(1);
1939 			return -ENOLCK;
1940 		}
1941 
1942 		return generic_add_lease(filp, arg, flp, priv);
1943 	default:
1944 		return -EINVAL;
1945 	}
1946 }
1947 EXPORT_SYMBOL(generic_setlease);
1948 
1949 /*
1950  * Kernel subsystems can register to be notified on any attempt to set
1951  * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd
1952  * to close files that it may have cached when there is an attempt to set a
1953  * conflicting lease.
1954  */
1955 static struct srcu_notifier_head lease_notifier_chain;
1956 
1957 static inline void
lease_notifier_chain_init(void)1958 lease_notifier_chain_init(void)
1959 {
1960 	srcu_init_notifier_head(&lease_notifier_chain);
1961 }
1962 
1963 static inline void
setlease_notifier(int arg,struct file_lease * lease)1964 setlease_notifier(int arg, struct file_lease *lease)
1965 {
1966 	if (arg != F_UNLCK)
1967 		srcu_notifier_call_chain(&lease_notifier_chain, arg, lease);
1968 }
1969 
lease_register_notifier(struct notifier_block * nb)1970 int lease_register_notifier(struct notifier_block *nb)
1971 {
1972 	return srcu_notifier_chain_register(&lease_notifier_chain, nb);
1973 }
1974 EXPORT_SYMBOL_GPL(lease_register_notifier);
1975 
lease_unregister_notifier(struct notifier_block * nb)1976 void lease_unregister_notifier(struct notifier_block *nb)
1977 {
1978 	srcu_notifier_chain_unregister(&lease_notifier_chain, nb);
1979 }
1980 EXPORT_SYMBOL_GPL(lease_unregister_notifier);
1981 
1982 
1983 int
kernel_setlease(struct file * filp,int arg,struct file_lease ** lease,void ** priv)1984 kernel_setlease(struct file *filp, int arg, struct file_lease **lease, void **priv)
1985 {
1986 	if (lease)
1987 		setlease_notifier(arg, *lease);
1988 	if (filp->f_op->setlease)
1989 		return filp->f_op->setlease(filp, arg, lease, priv);
1990 	else
1991 		return generic_setlease(filp, arg, lease, priv);
1992 }
1993 EXPORT_SYMBOL_GPL(kernel_setlease);
1994 
1995 /**
1996  * vfs_setlease        -       sets a lease on an open file
1997  * @filp:	file pointer
1998  * @arg:	type of lease to obtain
1999  * @lease:	file_lock to use when adding a lease
2000  * @priv:	private info for lm_setup when adding a lease (may be
2001  *		NULL if lm_setup doesn't require it)
2002  *
2003  * Call this to establish a lease on the file. The "lease" argument is not
2004  * used for F_UNLCK requests and may be NULL. For commands that set or alter
2005  * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be
2006  * set; if not, this function will return -ENOLCK (and generate a scary-looking
2007  * stack trace).
2008  *
2009  * The "priv" pointer is passed directly to the lm_setup function as-is. It
2010  * may be NULL if the lm_setup operation doesn't require it.
2011  */
2012 int
vfs_setlease(struct file * filp,int arg,struct file_lease ** lease,void ** priv)2013 vfs_setlease(struct file *filp, int arg, struct file_lease **lease, void **priv)
2014 {
2015 	struct inode *inode = file_inode(filp);
2016 	vfsuid_t vfsuid = i_uid_into_vfsuid(file_mnt_idmap(filp), inode);
2017 	int error;
2018 
2019 	if ((!vfsuid_eq_kuid(vfsuid, current_fsuid())) && !capable(CAP_LEASE))
2020 		return -EACCES;
2021 	if (!S_ISREG(inode->i_mode))
2022 		return -EINVAL;
2023 	error = security_file_lock(filp, arg);
2024 	if (error)
2025 		return error;
2026 	return kernel_setlease(filp, arg, lease, priv);
2027 }
2028 EXPORT_SYMBOL_GPL(vfs_setlease);
2029 
do_fcntl_add_lease(unsigned int fd,struct file * filp,int arg)2030 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, int arg)
2031 {
2032 	struct file_lease *fl;
2033 	struct fasync_struct *new;
2034 	int error;
2035 
2036 	fl = lease_alloc(filp, arg);
2037 	if (IS_ERR(fl))
2038 		return PTR_ERR(fl);
2039 
2040 	new = fasync_alloc();
2041 	if (!new) {
2042 		locks_free_lease(fl);
2043 		return -ENOMEM;
2044 	}
2045 	new->fa_fd = fd;
2046 
2047 	error = vfs_setlease(filp, arg, &fl, (void **)&new);
2048 	if (fl)
2049 		locks_free_lease(fl);
2050 	if (new)
2051 		fasync_free(new);
2052 	return error;
2053 }
2054 
2055 /**
2056  *	fcntl_setlease	-	sets a lease on an open file
2057  *	@fd: open file descriptor
2058  *	@filp: file pointer
2059  *	@arg: type of lease to obtain
2060  *
2061  *	Call this fcntl to establish a lease on the file.
2062  *	Note that you also need to call %F_SETSIG to
2063  *	receive a signal when the lease is broken.
2064  */
fcntl_setlease(unsigned int fd,struct file * filp,int arg)2065 int fcntl_setlease(unsigned int fd, struct file *filp, int arg)
2066 {
2067 	if (arg == F_UNLCK)
2068 		return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp);
2069 	return do_fcntl_add_lease(fd, filp, arg);
2070 }
2071 
2072 /**
2073  * flock_lock_inode_wait - Apply a FLOCK-style lock to a file
2074  * @inode: inode of the file to apply to
2075  * @fl: The lock to be applied
2076  *
2077  * Apply a FLOCK style lock request to an inode.
2078  */
flock_lock_inode_wait(struct inode * inode,struct file_lock * fl)2079 static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2080 {
2081 	int error;
2082 	might_sleep();
2083 	for (;;) {
2084 		error = flock_lock_inode(inode, fl);
2085 		if (error != FILE_LOCK_DEFERRED)
2086 			break;
2087 		error = wait_event_interruptible(fl->c.flc_wait,
2088 						 list_empty(&fl->c.flc_blocked_member));
2089 		if (error)
2090 			break;
2091 	}
2092 	locks_delete_block(fl);
2093 	return error;
2094 }
2095 
2096 /**
2097  * locks_lock_inode_wait - Apply a lock to an inode
2098  * @inode: inode of the file to apply to
2099  * @fl: The lock to be applied
2100  *
2101  * Apply a POSIX or FLOCK style lock request to an inode.
2102  */
locks_lock_inode_wait(struct inode * inode,struct file_lock * fl)2103 int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2104 {
2105 	int res = 0;
2106 	switch (fl->c.flc_flags & (FL_POSIX|FL_FLOCK)) {
2107 		case FL_POSIX:
2108 			res = posix_lock_inode_wait(inode, fl);
2109 			break;
2110 		case FL_FLOCK:
2111 			res = flock_lock_inode_wait(inode, fl);
2112 			break;
2113 		default:
2114 			BUG();
2115 	}
2116 	return res;
2117 }
2118 EXPORT_SYMBOL(locks_lock_inode_wait);
2119 
2120 /**
2121  *	sys_flock: - flock() system call.
2122  *	@fd: the file descriptor to lock.
2123  *	@cmd: the type of lock to apply.
2124  *
2125  *	Apply a %FL_FLOCK style lock to an open file descriptor.
2126  *	The @cmd can be one of:
2127  *
2128  *	- %LOCK_SH -- a shared lock.
2129  *	- %LOCK_EX -- an exclusive lock.
2130  *	- %LOCK_UN -- remove an existing lock.
2131  *	- %LOCK_MAND -- a 'mandatory' flock. (DEPRECATED)
2132  *
2133  *	%LOCK_MAND support has been removed from the kernel.
2134  */
SYSCALL_DEFINE2(flock,unsigned int,fd,unsigned int,cmd)2135 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd)
2136 {
2137 	int can_sleep, error, type;
2138 	struct file_lock fl;
2139 
2140 	/*
2141 	 * LOCK_MAND locks were broken for a long time in that they never
2142 	 * conflicted with one another and didn't prevent any sort of open,
2143 	 * read or write activity.
2144 	 *
2145 	 * Just ignore these requests now, to preserve legacy behavior, but
2146 	 * throw a warning to let people know that they don't actually work.
2147 	 */
2148 	if (cmd & LOCK_MAND) {
2149 		pr_warn_once("%s(%d): Attempt to set a LOCK_MAND lock via flock(2). This support has been removed and the request ignored.\n", current->comm, current->pid);
2150 		return 0;
2151 	}
2152 
2153 	type = flock_translate_cmd(cmd & ~LOCK_NB);
2154 	if (type < 0)
2155 		return type;
2156 
2157 	CLASS(fd, f)(fd);
2158 	if (fd_empty(f))
2159 		return -EBADF;
2160 
2161 	if (type != F_UNLCK && !(fd_file(f)->f_mode & (FMODE_READ | FMODE_WRITE)))
2162 		return -EBADF;
2163 
2164 	flock_make_lock(fd_file(f), &fl, type);
2165 
2166 	error = security_file_lock(fd_file(f), fl.c.flc_type);
2167 	if (error)
2168 		return error;
2169 
2170 	can_sleep = !(cmd & LOCK_NB);
2171 	if (can_sleep)
2172 		fl.c.flc_flags |= FL_SLEEP;
2173 
2174 	if (fd_file(f)->f_op->flock)
2175 		error = fd_file(f)->f_op->flock(fd_file(f),
2176 					    (can_sleep) ? F_SETLKW : F_SETLK,
2177 					    &fl);
2178 	else
2179 		error = locks_lock_file_wait(fd_file(f), &fl);
2180 
2181 	locks_release_private(&fl);
2182 	return error;
2183 }
2184 
2185 /**
2186  * vfs_test_lock - test file byte range lock
2187  * @filp: The file to test lock for
2188  * @fl: The lock to test; also used to hold result
2189  *
2190  * Returns -ERRNO on failure.  Indicates presence of conflicting lock by
2191  * setting conf->fl_type to something other than F_UNLCK.
2192  */
vfs_test_lock(struct file * filp,struct file_lock * fl)2193 int vfs_test_lock(struct file *filp, struct file_lock *fl)
2194 {
2195 	WARN_ON_ONCE(filp != fl->c.flc_file);
2196 	if (filp->f_op->lock)
2197 		return filp->f_op->lock(filp, F_GETLK, fl);
2198 	posix_test_lock(filp, fl);
2199 	return 0;
2200 }
2201 EXPORT_SYMBOL_GPL(vfs_test_lock);
2202 
2203 /**
2204  * locks_translate_pid - translate a file_lock's fl_pid number into a namespace
2205  * @fl: The file_lock who's fl_pid should be translated
2206  * @ns: The namespace into which the pid should be translated
2207  *
2208  * Used to translate a fl_pid into a namespace virtual pid number
2209  */
locks_translate_pid(struct file_lock_core * fl,struct pid_namespace * ns)2210 static pid_t locks_translate_pid(struct file_lock_core *fl, struct pid_namespace *ns)
2211 {
2212 	pid_t vnr;
2213 	struct pid *pid;
2214 
2215 	if (fl->flc_flags & FL_OFDLCK)
2216 		return -1;
2217 
2218 	/* Remote locks report a negative pid value */
2219 	if (fl->flc_pid <= 0)
2220 		return fl->flc_pid;
2221 
2222 	/*
2223 	 * If the flock owner process is dead and its pid has been already
2224 	 * freed, the translation below won't work, but we still want to show
2225 	 * flock owner pid number in init pidns.
2226 	 */
2227 	if (ns == &init_pid_ns)
2228 		return (pid_t) fl->flc_pid;
2229 
2230 	rcu_read_lock();
2231 	pid = find_pid_ns(fl->flc_pid, &init_pid_ns);
2232 	vnr = pid_nr_ns(pid, ns);
2233 	rcu_read_unlock();
2234 	return vnr;
2235 }
2236 
posix_lock_to_flock(struct flock * flock,struct file_lock * fl)2237 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl)
2238 {
2239 	flock->l_pid = locks_translate_pid(&fl->c, task_active_pid_ns(current));
2240 #if BITS_PER_LONG == 32
2241 	/*
2242 	 * Make sure we can represent the posix lock via
2243 	 * legacy 32bit flock.
2244 	 */
2245 	if (fl->fl_start > OFFT_OFFSET_MAX)
2246 		return -EOVERFLOW;
2247 	if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX)
2248 		return -EOVERFLOW;
2249 #endif
2250 	flock->l_start = fl->fl_start;
2251 	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2252 		fl->fl_end - fl->fl_start + 1;
2253 	flock->l_whence = 0;
2254 	flock->l_type = fl->c.flc_type;
2255 	return 0;
2256 }
2257 
2258 #if BITS_PER_LONG == 32
posix_lock_to_flock64(struct flock64 * flock,struct file_lock * fl)2259 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl)
2260 {
2261 	flock->l_pid = locks_translate_pid(&fl->c, task_active_pid_ns(current));
2262 	flock->l_start = fl->fl_start;
2263 	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2264 		fl->fl_end - fl->fl_start + 1;
2265 	flock->l_whence = 0;
2266 	flock->l_type = fl->c.flc_type;
2267 }
2268 #endif
2269 
2270 /* Report the first existing lock that would conflict with l.
2271  * This implements the F_GETLK command of fcntl().
2272  */
fcntl_getlk(struct file * filp,unsigned int cmd,struct flock * flock)2273 int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock)
2274 {
2275 	struct file_lock *fl;
2276 	int error;
2277 
2278 	fl = locks_alloc_lock();
2279 	if (fl == NULL)
2280 		return -ENOMEM;
2281 	error = -EINVAL;
2282 	if (cmd != F_OFD_GETLK && flock->l_type != F_RDLCK
2283 			&& flock->l_type != F_WRLCK)
2284 		goto out;
2285 
2286 	error = flock_to_posix_lock(filp, fl, flock);
2287 	if (error)
2288 		goto out;
2289 
2290 	if (cmd == F_OFD_GETLK) {
2291 		error = -EINVAL;
2292 		if (flock->l_pid != 0)
2293 			goto out;
2294 
2295 		fl->c.flc_flags |= FL_OFDLCK;
2296 		fl->c.flc_owner = filp;
2297 	}
2298 
2299 	error = vfs_test_lock(filp, fl);
2300 	if (error)
2301 		goto out;
2302 
2303 	flock->l_type = fl->c.flc_type;
2304 	if (fl->c.flc_type != F_UNLCK) {
2305 		error = posix_lock_to_flock(flock, fl);
2306 		if (error)
2307 			goto out;
2308 	}
2309 out:
2310 	locks_free_lock(fl);
2311 	return error;
2312 }
2313 
2314 /**
2315  * vfs_lock_file - file byte range lock
2316  * @filp: The file to apply the lock to
2317  * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.)
2318  * @fl: The lock to be applied
2319  * @conf: Place to return a copy of the conflicting lock, if found.
2320  *
2321  * A caller that doesn't care about the conflicting lock may pass NULL
2322  * as the final argument.
2323  *
2324  * If the filesystem defines a private ->lock() method, then @conf will
2325  * be left unchanged; so a caller that cares should initialize it to
2326  * some acceptable default.
2327  *
2328  * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
2329  * locks, the ->lock() interface may return asynchronously, before the lock has
2330  * been granted or denied by the underlying filesystem, if (and only if)
2331  * lm_grant is set. Additionally EXPORT_OP_ASYNC_LOCK in export_operations
2332  * flags need to be set.
2333  *
2334  * Callers expecting ->lock() to return asynchronously will only use F_SETLK,
2335  * not F_SETLKW; they will set FL_SLEEP if (and only if) the request is for a
2336  * blocking lock. When ->lock() does return asynchronously, it must return
2337  * FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock request completes.
2338  * If the request is for non-blocking lock the file system should return
2339  * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
2340  * with the result. If the request timed out the callback routine will return a
2341  * nonzero return code and the file system should release the lock. The file
2342  * system is also responsible to keep a corresponding posix lock when it
2343  * grants a lock so the VFS can find out which locks are locally held and do
2344  * the correct lock cleanup when required.
2345  * The underlying filesystem must not drop the kernel lock or call
2346  * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED
2347  * return code.
2348  */
vfs_lock_file(struct file * filp,unsigned int cmd,struct file_lock * fl,struct file_lock * conf)2349 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf)
2350 {
2351 	WARN_ON_ONCE(filp != fl->c.flc_file);
2352 	if (filp->f_op->lock)
2353 		return filp->f_op->lock(filp, cmd, fl);
2354 	else
2355 		return posix_lock_file(filp, fl, conf);
2356 }
2357 EXPORT_SYMBOL_GPL(vfs_lock_file);
2358 
do_lock_file_wait(struct file * filp,unsigned int cmd,struct file_lock * fl)2359 static int do_lock_file_wait(struct file *filp, unsigned int cmd,
2360 			     struct file_lock *fl)
2361 {
2362 	int error;
2363 
2364 	error = security_file_lock(filp, fl->c.flc_type);
2365 	if (error)
2366 		return error;
2367 
2368 	for (;;) {
2369 		error = vfs_lock_file(filp, cmd, fl, NULL);
2370 		if (error != FILE_LOCK_DEFERRED)
2371 			break;
2372 		error = wait_event_interruptible(fl->c.flc_wait,
2373 						 list_empty(&fl->c.flc_blocked_member));
2374 		if (error)
2375 			break;
2376 	}
2377 	locks_delete_block(fl);
2378 
2379 	return error;
2380 }
2381 
2382 /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */
2383 static int
check_fmode_for_setlk(struct file_lock * fl)2384 check_fmode_for_setlk(struct file_lock *fl)
2385 {
2386 	switch (fl->c.flc_type) {
2387 	case F_RDLCK:
2388 		if (!(fl->c.flc_file->f_mode & FMODE_READ))
2389 			return -EBADF;
2390 		break;
2391 	case F_WRLCK:
2392 		if (!(fl->c.flc_file->f_mode & FMODE_WRITE))
2393 			return -EBADF;
2394 	}
2395 	return 0;
2396 }
2397 
2398 /* Apply the lock described by l to an open file descriptor.
2399  * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2400  */
fcntl_setlk(unsigned int fd,struct file * filp,unsigned int cmd,struct flock * flock)2401 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
2402 		struct flock *flock)
2403 {
2404 	struct file_lock *file_lock = locks_alloc_lock();
2405 	struct inode *inode = file_inode(filp);
2406 	struct file *f;
2407 	int error;
2408 
2409 	if (file_lock == NULL)
2410 		return -ENOLCK;
2411 
2412 	error = flock_to_posix_lock(filp, file_lock, flock);
2413 	if (error)
2414 		goto out;
2415 
2416 	error = check_fmode_for_setlk(file_lock);
2417 	if (error)
2418 		goto out;
2419 
2420 	/*
2421 	 * If the cmd is requesting file-private locks, then set the
2422 	 * FL_OFDLCK flag and override the owner.
2423 	 */
2424 	switch (cmd) {
2425 	case F_OFD_SETLK:
2426 		error = -EINVAL;
2427 		if (flock->l_pid != 0)
2428 			goto out;
2429 
2430 		cmd = F_SETLK;
2431 		file_lock->c.flc_flags |= FL_OFDLCK;
2432 		file_lock->c.flc_owner = filp;
2433 		break;
2434 	case F_OFD_SETLKW:
2435 		error = -EINVAL;
2436 		if (flock->l_pid != 0)
2437 			goto out;
2438 
2439 		cmd = F_SETLKW;
2440 		file_lock->c.flc_flags |= FL_OFDLCK;
2441 		file_lock->c.flc_owner = filp;
2442 		fallthrough;
2443 	case F_SETLKW:
2444 		file_lock->c.flc_flags |= FL_SLEEP;
2445 	}
2446 
2447 	error = do_lock_file_wait(filp, cmd, file_lock);
2448 
2449 	/*
2450 	 * Detect close/fcntl races and recover by zapping all POSIX locks
2451 	 * associated with this file and our files_struct, just like on
2452 	 * filp_flush(). There is no need to do that when we're
2453 	 * unlocking though, or for OFD locks.
2454 	 */
2455 	if (!error && file_lock->c.flc_type != F_UNLCK &&
2456 	    !(file_lock->c.flc_flags & FL_OFDLCK)) {
2457 		struct files_struct *files = current->files;
2458 		/*
2459 		 * We need that spin_lock here - it prevents reordering between
2460 		 * update of i_flctx->flc_posix and check for it done in
2461 		 * close(). rcu_read_lock() wouldn't do.
2462 		 */
2463 		spin_lock(&files->file_lock);
2464 		f = files_lookup_fd_locked(files, fd);
2465 		spin_unlock(&files->file_lock);
2466 		if (f != filp) {
2467 			locks_remove_posix(filp, files);
2468 			error = -EBADF;
2469 		}
2470 	}
2471 out:
2472 	trace_fcntl_setlk(inode, file_lock, error);
2473 	locks_free_lock(file_lock);
2474 	return error;
2475 }
2476 
2477 #if BITS_PER_LONG == 32
2478 /* Report the first existing lock that would conflict with l.
2479  * This implements the F_GETLK command of fcntl().
2480  */
fcntl_getlk64(struct file * filp,unsigned int cmd,struct flock64 * flock)2481 int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock)
2482 {
2483 	struct file_lock *fl;
2484 	int error;
2485 
2486 	fl = locks_alloc_lock();
2487 	if (fl == NULL)
2488 		return -ENOMEM;
2489 
2490 	error = -EINVAL;
2491 	if (cmd != F_OFD_GETLK && flock->l_type != F_RDLCK
2492 			&& flock->l_type != F_WRLCK)
2493 		goto out;
2494 
2495 	error = flock64_to_posix_lock(filp, fl, flock);
2496 	if (error)
2497 		goto out;
2498 
2499 	if (cmd == F_OFD_GETLK) {
2500 		error = -EINVAL;
2501 		if (flock->l_pid != 0)
2502 			goto out;
2503 
2504 		fl->c.flc_flags |= FL_OFDLCK;
2505 		fl->c.flc_owner = filp;
2506 	}
2507 
2508 	error = vfs_test_lock(filp, fl);
2509 	if (error)
2510 		goto out;
2511 
2512 	flock->l_type = fl->c.flc_type;
2513 	if (fl->c.flc_type != F_UNLCK)
2514 		posix_lock_to_flock64(flock, fl);
2515 
2516 out:
2517 	locks_free_lock(fl);
2518 	return error;
2519 }
2520 
2521 /* Apply the lock described by l to an open file descriptor.
2522  * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2523  */
fcntl_setlk64(unsigned int fd,struct file * filp,unsigned int cmd,struct flock64 * flock)2524 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
2525 		struct flock64 *flock)
2526 {
2527 	struct file_lock *file_lock = locks_alloc_lock();
2528 	struct file *f;
2529 	int error;
2530 
2531 	if (file_lock == NULL)
2532 		return -ENOLCK;
2533 
2534 	error = flock64_to_posix_lock(filp, file_lock, flock);
2535 	if (error)
2536 		goto out;
2537 
2538 	error = check_fmode_for_setlk(file_lock);
2539 	if (error)
2540 		goto out;
2541 
2542 	/*
2543 	 * If the cmd is requesting file-private locks, then set the
2544 	 * FL_OFDLCK flag and override the owner.
2545 	 */
2546 	switch (cmd) {
2547 	case F_OFD_SETLK:
2548 		error = -EINVAL;
2549 		if (flock->l_pid != 0)
2550 			goto out;
2551 
2552 		cmd = F_SETLK64;
2553 		file_lock->c.flc_flags |= FL_OFDLCK;
2554 		file_lock->c.flc_owner = filp;
2555 		break;
2556 	case F_OFD_SETLKW:
2557 		error = -EINVAL;
2558 		if (flock->l_pid != 0)
2559 			goto out;
2560 
2561 		cmd = F_SETLKW64;
2562 		file_lock->c.flc_flags |= FL_OFDLCK;
2563 		file_lock->c.flc_owner = filp;
2564 		fallthrough;
2565 	case F_SETLKW64:
2566 		file_lock->c.flc_flags |= FL_SLEEP;
2567 	}
2568 
2569 	error = do_lock_file_wait(filp, cmd, file_lock);
2570 
2571 	/*
2572 	 * Detect close/fcntl races and recover by zapping all POSIX locks
2573 	 * associated with this file and our files_struct, just like on
2574 	 * filp_flush(). There is no need to do that when we're
2575 	 * unlocking though, or for OFD locks.
2576 	 */
2577 	if (!error && file_lock->c.flc_type != F_UNLCK &&
2578 	    !(file_lock->c.flc_flags & FL_OFDLCK)) {
2579 		struct files_struct *files = current->files;
2580 		/*
2581 		 * We need that spin_lock here - it prevents reordering between
2582 		 * update of i_flctx->flc_posix and check for it done in
2583 		 * close(). rcu_read_lock() wouldn't do.
2584 		 */
2585 		spin_lock(&files->file_lock);
2586 		f = files_lookup_fd_locked(files, fd);
2587 		spin_unlock(&files->file_lock);
2588 		if (f != filp) {
2589 			locks_remove_posix(filp, files);
2590 			error = -EBADF;
2591 		}
2592 	}
2593 out:
2594 	locks_free_lock(file_lock);
2595 	return error;
2596 }
2597 #endif /* BITS_PER_LONG == 32 */
2598 
2599 /*
2600  * This function is called when the file is being removed
2601  * from the task's fd array.  POSIX locks belonging to this task
2602  * are deleted at this time.
2603  */
locks_remove_posix(struct file * filp,fl_owner_t owner)2604 void locks_remove_posix(struct file *filp, fl_owner_t owner)
2605 {
2606 	int error;
2607 	struct inode *inode = file_inode(filp);
2608 	struct file_lock lock;
2609 	struct file_lock_context *ctx;
2610 
2611 	/*
2612 	 * If there are no locks held on this file, we don't need to call
2613 	 * posix_lock_file().  Another process could be setting a lock on this
2614 	 * file at the same time, but we wouldn't remove that lock anyway.
2615 	 */
2616 	ctx = locks_inode_context(inode);
2617 	if (!ctx || list_empty(&ctx->flc_posix))
2618 		return;
2619 
2620 	locks_init_lock(&lock);
2621 	lock.c.flc_type = F_UNLCK;
2622 	lock.c.flc_flags = FL_POSIX | FL_CLOSE;
2623 	lock.fl_start = 0;
2624 	lock.fl_end = OFFSET_MAX;
2625 	lock.c.flc_owner = owner;
2626 	lock.c.flc_pid = current->tgid;
2627 	lock.c.flc_file = filp;
2628 	lock.fl_ops = NULL;
2629 	lock.fl_lmops = NULL;
2630 
2631 	error = vfs_lock_file(filp, F_SETLK, &lock, NULL);
2632 
2633 	if (lock.fl_ops && lock.fl_ops->fl_release_private)
2634 		lock.fl_ops->fl_release_private(&lock);
2635 	trace_locks_remove_posix(inode, &lock, error);
2636 }
2637 EXPORT_SYMBOL(locks_remove_posix);
2638 
2639 /* The i_flctx must be valid when calling into here */
2640 static void
locks_remove_flock(struct file * filp,struct file_lock_context * flctx)2641 locks_remove_flock(struct file *filp, struct file_lock_context *flctx)
2642 {
2643 	struct file_lock fl;
2644 	struct inode *inode = file_inode(filp);
2645 
2646 	if (list_empty(&flctx->flc_flock))
2647 		return;
2648 
2649 	flock_make_lock(filp, &fl, F_UNLCK);
2650 	fl.c.flc_flags |= FL_CLOSE;
2651 
2652 	if (filp->f_op->flock)
2653 		filp->f_op->flock(filp, F_SETLKW, &fl);
2654 	else
2655 		flock_lock_inode(inode, &fl);
2656 
2657 	if (fl.fl_ops && fl.fl_ops->fl_release_private)
2658 		fl.fl_ops->fl_release_private(&fl);
2659 }
2660 
2661 /* The i_flctx must be valid when calling into here */
2662 static void
locks_remove_lease(struct file * filp,struct file_lock_context * ctx)2663 locks_remove_lease(struct file *filp, struct file_lock_context *ctx)
2664 {
2665 	struct file_lease *fl, *tmp;
2666 	LIST_HEAD(dispose);
2667 
2668 	if (list_empty(&ctx->flc_lease))
2669 		return;
2670 
2671 	percpu_down_read(&file_rwsem);
2672 	spin_lock(&ctx->flc_lock);
2673 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list)
2674 		if (filp == fl->c.flc_file)
2675 			lease_modify(fl, F_UNLCK, &dispose);
2676 	spin_unlock(&ctx->flc_lock);
2677 	percpu_up_read(&file_rwsem);
2678 
2679 	locks_dispose_list(&dispose);
2680 }
2681 
2682 /*
2683  * This function is called on the last close of an open file.
2684  */
locks_remove_file(struct file * filp)2685 void locks_remove_file(struct file *filp)
2686 {
2687 	struct file_lock_context *ctx;
2688 
2689 	ctx = locks_inode_context(file_inode(filp));
2690 	if (!ctx)
2691 		return;
2692 
2693 	/* remove any OFD locks */
2694 	locks_remove_posix(filp, filp);
2695 
2696 	/* remove flock locks */
2697 	locks_remove_flock(filp, ctx);
2698 
2699 	/* remove any leases */
2700 	locks_remove_lease(filp, ctx);
2701 
2702 	spin_lock(&ctx->flc_lock);
2703 	locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX");
2704 	locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK");
2705 	locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE");
2706 	spin_unlock(&ctx->flc_lock);
2707 }
2708 
2709 /**
2710  * vfs_cancel_lock - file byte range unblock lock
2711  * @filp: The file to apply the unblock to
2712  * @fl: The lock to be unblocked
2713  *
2714  * Used by lock managers to cancel blocked requests
2715  */
vfs_cancel_lock(struct file * filp,struct file_lock * fl)2716 int vfs_cancel_lock(struct file *filp, struct file_lock *fl)
2717 {
2718 	WARN_ON_ONCE(filp != fl->c.flc_file);
2719 	if (filp->f_op->lock)
2720 		return filp->f_op->lock(filp, F_CANCELLK, fl);
2721 	return 0;
2722 }
2723 EXPORT_SYMBOL_GPL(vfs_cancel_lock);
2724 
2725 /**
2726  * vfs_inode_has_locks - are any file locks held on @inode?
2727  * @inode: inode to check for locks
2728  *
2729  * Return true if there are any FL_POSIX or FL_FLOCK locks currently
2730  * set on @inode.
2731  */
vfs_inode_has_locks(struct inode * inode)2732 bool vfs_inode_has_locks(struct inode *inode)
2733 {
2734 	struct file_lock_context *ctx;
2735 	bool ret;
2736 
2737 	ctx = locks_inode_context(inode);
2738 	if (!ctx)
2739 		return false;
2740 
2741 	spin_lock(&ctx->flc_lock);
2742 	ret = !list_empty(&ctx->flc_posix) || !list_empty(&ctx->flc_flock);
2743 	spin_unlock(&ctx->flc_lock);
2744 	return ret;
2745 }
2746 EXPORT_SYMBOL_GPL(vfs_inode_has_locks);
2747 
2748 #ifdef CONFIG_PROC_FS
2749 #include <linux/proc_fs.h>
2750 #include <linux/seq_file.h>
2751 
2752 struct locks_iterator {
2753 	int	li_cpu;
2754 	loff_t	li_pos;
2755 };
2756 
lock_get_status(struct seq_file * f,struct file_lock_core * flc,loff_t id,char * pfx,int repeat)2757 static void lock_get_status(struct seq_file *f, struct file_lock_core *flc,
2758 			    loff_t id, char *pfx, int repeat)
2759 {
2760 	struct inode *inode = NULL;
2761 	unsigned int pid;
2762 	struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
2763 	int type = flc->flc_type;
2764 	struct file_lock *fl = file_lock(flc);
2765 
2766 	pid = locks_translate_pid(flc, proc_pidns);
2767 
2768 	/*
2769 	 * If lock owner is dead (and pid is freed) or not visible in current
2770 	 * pidns, zero is shown as a pid value. Check lock info from
2771 	 * init_pid_ns to get saved lock pid value.
2772 	 */
2773 	if (flc->flc_file != NULL)
2774 		inode = file_inode(flc->flc_file);
2775 
2776 	seq_printf(f, "%lld: ", id);
2777 
2778 	if (repeat)
2779 		seq_printf(f, "%*s", repeat - 1 + (int)strlen(pfx), pfx);
2780 
2781 	if (flc->flc_flags & FL_POSIX) {
2782 		if (flc->flc_flags & FL_ACCESS)
2783 			seq_puts(f, "ACCESS");
2784 		else if (flc->flc_flags & FL_OFDLCK)
2785 			seq_puts(f, "OFDLCK");
2786 		else
2787 			seq_puts(f, "POSIX ");
2788 
2789 		seq_printf(f, " %s ",
2790 			     (inode == NULL) ? "*NOINODE*" : "ADVISORY ");
2791 	} else if (flc->flc_flags & FL_FLOCK) {
2792 		seq_puts(f, "FLOCK  ADVISORY  ");
2793 	} else if (flc->flc_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT)) {
2794 		struct file_lease *lease = file_lease(flc);
2795 
2796 		type = target_leasetype(lease);
2797 
2798 		if (flc->flc_flags & FL_DELEG)
2799 			seq_puts(f, "DELEG  ");
2800 		else
2801 			seq_puts(f, "LEASE  ");
2802 
2803 		if (lease_breaking(lease))
2804 			seq_puts(f, "BREAKING  ");
2805 		else if (flc->flc_file)
2806 			seq_puts(f, "ACTIVE    ");
2807 		else
2808 			seq_puts(f, "BREAKER   ");
2809 	} else {
2810 		seq_puts(f, "UNKNOWN UNKNOWN  ");
2811 	}
2812 
2813 	seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" :
2814 			     (type == F_RDLCK) ? "READ" : "UNLCK");
2815 	if (inode) {
2816 		/* userspace relies on this representation of dev_t */
2817 		seq_printf(f, "%d %02x:%02x:%lu ", pid,
2818 				MAJOR(inode->i_sb->s_dev),
2819 				MINOR(inode->i_sb->s_dev), inode->i_ino);
2820 	} else {
2821 		seq_printf(f, "%d <none>:0 ", pid);
2822 	}
2823 	if (flc->flc_flags & FL_POSIX) {
2824 		if (fl->fl_end == OFFSET_MAX)
2825 			seq_printf(f, "%Ld EOF\n", fl->fl_start);
2826 		else
2827 			seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end);
2828 	} else {
2829 		seq_puts(f, "0 EOF\n");
2830 	}
2831 }
2832 
get_next_blocked_member(struct file_lock_core * node)2833 static struct file_lock_core *get_next_blocked_member(struct file_lock_core *node)
2834 {
2835 	struct file_lock_core *tmp;
2836 
2837 	/* NULL node or root node */
2838 	if (node == NULL || node->flc_blocker == NULL)
2839 		return NULL;
2840 
2841 	/* Next member in the linked list could be itself */
2842 	tmp = list_next_entry(node, flc_blocked_member);
2843 	if (list_entry_is_head(tmp, &node->flc_blocker->flc_blocked_requests,
2844 			       flc_blocked_member)
2845 		|| tmp == node) {
2846 		return NULL;
2847 	}
2848 
2849 	return tmp;
2850 }
2851 
locks_show(struct seq_file * f,void * v)2852 static int locks_show(struct seq_file *f, void *v)
2853 {
2854 	struct locks_iterator *iter = f->private;
2855 	struct file_lock_core *cur, *tmp;
2856 	struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
2857 	int level = 0;
2858 
2859 	cur = hlist_entry(v, struct file_lock_core, flc_link);
2860 
2861 	if (locks_translate_pid(cur, proc_pidns) == 0)
2862 		return 0;
2863 
2864 	/* View this crossed linked list as a binary tree, the first member of flc_blocked_requests
2865 	 * is the left child of current node, the next silibing in flc_blocked_member is the
2866 	 * right child, we can alse get the parent of current node from flc_blocker, so this
2867 	 * question becomes traversal of a binary tree
2868 	 */
2869 	while (cur != NULL) {
2870 		if (level)
2871 			lock_get_status(f, cur, iter->li_pos, "-> ", level);
2872 		else
2873 			lock_get_status(f, cur, iter->li_pos, "", level);
2874 
2875 		if (!list_empty(&cur->flc_blocked_requests)) {
2876 			/* Turn left */
2877 			cur = list_first_entry_or_null(&cur->flc_blocked_requests,
2878 						       struct file_lock_core,
2879 						       flc_blocked_member);
2880 			level++;
2881 		} else {
2882 			/* Turn right */
2883 			tmp = get_next_blocked_member(cur);
2884 			/* Fall back to parent node */
2885 			while (tmp == NULL && cur->flc_blocker != NULL) {
2886 				cur = cur->flc_blocker;
2887 				level--;
2888 				tmp = get_next_blocked_member(cur);
2889 			}
2890 			cur = tmp;
2891 		}
2892 	}
2893 
2894 	return 0;
2895 }
2896 
__show_fd_locks(struct seq_file * f,struct list_head * head,int * id,struct file * filp,struct files_struct * files)2897 static void __show_fd_locks(struct seq_file *f,
2898 			struct list_head *head, int *id,
2899 			struct file *filp, struct files_struct *files)
2900 {
2901 	struct file_lock_core *fl;
2902 
2903 	list_for_each_entry(fl, head, flc_list) {
2904 
2905 		if (filp != fl->flc_file)
2906 			continue;
2907 		if (fl->flc_owner != files && fl->flc_owner != filp)
2908 			continue;
2909 
2910 		(*id)++;
2911 		seq_puts(f, "lock:\t");
2912 		lock_get_status(f, fl, *id, "", 0);
2913 	}
2914 }
2915 
show_fd_locks(struct seq_file * f,struct file * filp,struct files_struct * files)2916 void show_fd_locks(struct seq_file *f,
2917 		  struct file *filp, struct files_struct *files)
2918 {
2919 	struct inode *inode = file_inode(filp);
2920 	struct file_lock_context *ctx;
2921 	int id = 0;
2922 
2923 	ctx = locks_inode_context(inode);
2924 	if (!ctx)
2925 		return;
2926 
2927 	spin_lock(&ctx->flc_lock);
2928 	__show_fd_locks(f, &ctx->flc_flock, &id, filp, files);
2929 	__show_fd_locks(f, &ctx->flc_posix, &id, filp, files);
2930 	__show_fd_locks(f, &ctx->flc_lease, &id, filp, files);
2931 	spin_unlock(&ctx->flc_lock);
2932 }
2933 
locks_start(struct seq_file * f,loff_t * pos)2934 static void *locks_start(struct seq_file *f, loff_t *pos)
2935 	__acquires(&blocked_lock_lock)
2936 {
2937 	struct locks_iterator *iter = f->private;
2938 
2939 	iter->li_pos = *pos + 1;
2940 	percpu_down_write(&file_rwsem);
2941 	spin_lock(&blocked_lock_lock);
2942 	return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos);
2943 }
2944 
locks_next(struct seq_file * f,void * v,loff_t * pos)2945 static void *locks_next(struct seq_file *f, void *v, loff_t *pos)
2946 {
2947 	struct locks_iterator *iter = f->private;
2948 
2949 	++iter->li_pos;
2950 	return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos);
2951 }
2952 
locks_stop(struct seq_file * f,void * v)2953 static void locks_stop(struct seq_file *f, void *v)
2954 	__releases(&blocked_lock_lock)
2955 {
2956 	spin_unlock(&blocked_lock_lock);
2957 	percpu_up_write(&file_rwsem);
2958 }
2959 
2960 static const struct seq_operations locks_seq_operations = {
2961 	.start	= locks_start,
2962 	.next	= locks_next,
2963 	.stop	= locks_stop,
2964 	.show	= locks_show,
2965 };
2966 
proc_locks_init(void)2967 static int __init proc_locks_init(void)
2968 {
2969 	proc_create_seq_private("locks", 0, NULL, &locks_seq_operations,
2970 			sizeof(struct locks_iterator), NULL);
2971 	return 0;
2972 }
2973 fs_initcall(proc_locks_init);
2974 #endif
2975 
filelock_init(void)2976 static int __init filelock_init(void)
2977 {
2978 	int i;
2979 
2980 	flctx_cache = kmem_cache_create("file_lock_ctx",
2981 			sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL);
2982 
2983 	filelock_cache = kmem_cache_create("file_lock_cache",
2984 			sizeof(struct file_lock), 0, SLAB_PANIC, NULL);
2985 
2986 	filelease_cache = kmem_cache_create("file_lease_cache",
2987 			sizeof(struct file_lease), 0, SLAB_PANIC, NULL);
2988 
2989 	for_each_possible_cpu(i) {
2990 		struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i);
2991 
2992 		spin_lock_init(&fll->lock);
2993 		INIT_HLIST_HEAD(&fll->hlist);
2994 	}
2995 
2996 	lease_notifier_chain_init();
2997 	return 0;
2998 }
2999 core_initcall(filelock_init);
3000