1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD SVM-SEV Host Support.
4 *
5 * Copyright (C) 2023 Advanced Micro Devices, Inc.
6 *
7 * Author: Ashish Kalra <ashish.kalra@amd.com>
8 *
9 */
10
11 #include <linux/cc_platform.h>
12 #include <linux/printk.h>
13 #include <linux/mm_types.h>
14 #include <linux/set_memory.h>
15 #include <linux/memblock.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/cpumask.h>
19 #include <linux/iommu.h>
20 #include <linux/amd-iommu.h>
21 #include <linux/nospec.h>
22
23 #include <asm/sev.h>
24 #include <asm/processor.h>
25 #include <asm/setup.h>
26 #include <asm/svm.h>
27 #include <asm/smp.h>
28 #include <asm/cpu.h>
29 #include <asm/apic.h>
30 #include <asm/cpuid.h>
31 #include <asm/cmdline.h>
32 #include <asm/iommu.h>
33
34 /*
35 * The RMP entry information as returned by the RMPREAD instruction.
36 */
37 struct rmpentry {
38 u64 gpa;
39 u8 assigned :1,
40 rsvd1 :7;
41 u8 pagesize :1,
42 hpage_region_status :1,
43 rsvd2 :6;
44 u8 immutable :1,
45 rsvd3 :7;
46 u8 rsvd4;
47 u32 asid;
48 } __packed;
49
50 /*
51 * The raw RMP entry format is not architectural. The format is defined in PPR
52 * Family 19h Model 01h, Rev B1 processor. This format represents the actual
53 * entry in the RMP table memory. The bitfield definitions are used for machines
54 * without the RMPREAD instruction (Zen3 and Zen4), otherwise the "hi" and "lo"
55 * fields are only used for dumping the raw data.
56 */
57 struct rmpentry_raw {
58 union {
59 struct {
60 u64 assigned : 1,
61 pagesize : 1,
62 immutable : 1,
63 rsvd1 : 9,
64 gpa : 39,
65 asid : 10,
66 vmsa : 1,
67 validated : 1,
68 rsvd2 : 1;
69 };
70 u64 lo;
71 };
72 u64 hi;
73 } __packed;
74
75 /*
76 * The first 16KB from the RMP_BASE is used by the processor for the
77 * bookkeeping, the range needs to be added during the RMP entry lookup.
78 */
79 #define RMPTABLE_CPU_BOOKKEEPING_SZ 0x4000
80
81 /*
82 * For a non-segmented RMP table, use the maximum physical addressing as the
83 * segment size in order to always arrive at index 0 in the table.
84 */
85 #define RMPTABLE_NON_SEGMENTED_SHIFT 52
86
87 struct rmp_segment_desc {
88 struct rmpentry_raw *rmp_entry;
89 u64 max_index;
90 u64 size;
91 };
92
93 /*
94 * Segmented RMP Table support.
95 * - The segment size is used for two purposes:
96 * - Identify the amount of memory covered by an RMP segment
97 * - Quickly locate an RMP segment table entry for a physical address
98 *
99 * - The RMP segment table contains pointers to an RMP table that covers
100 * a specific portion of memory. There can be up to 512 8-byte entries,
101 * one pages worth.
102 */
103 #define RST_ENTRY_MAPPED_SIZE(x) ((x) & GENMASK_ULL(19, 0))
104 #define RST_ENTRY_SEGMENT_BASE(x) ((x) & GENMASK_ULL(51, 20))
105
106 #define RST_SIZE SZ_4K
107 static struct rmp_segment_desc **rmp_segment_table __ro_after_init;
108 static unsigned int rst_max_index __ro_after_init = 512;
109
110 static unsigned int rmp_segment_shift;
111 static u64 rmp_segment_size;
112 static u64 rmp_segment_mask;
113
114 #define RST_ENTRY_INDEX(x) ((x) >> rmp_segment_shift)
115 #define RMP_ENTRY_INDEX(x) ((u64)(PHYS_PFN((x) & rmp_segment_mask)))
116
117 static u64 rmp_cfg;
118
119 /* Mask to apply to a PFN to get the first PFN of a 2MB page */
120 #define PFN_PMD_MASK GENMASK_ULL(63, PMD_SHIFT - PAGE_SHIFT)
121
122 static u64 probed_rmp_base, probed_rmp_size;
123
124 static LIST_HEAD(snp_leaked_pages_list);
125 static DEFINE_SPINLOCK(snp_leaked_pages_list_lock);
126
127 static unsigned long snp_nr_leaked_pages;
128
129 #undef pr_fmt
130 #define pr_fmt(fmt) "SEV-SNP: " fmt
131
__mfd_enable(unsigned int cpu)132 static int __mfd_enable(unsigned int cpu)
133 {
134 u64 val;
135
136 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
137 return 0;
138
139 rdmsrl(MSR_AMD64_SYSCFG, val);
140
141 val |= MSR_AMD64_SYSCFG_MFDM;
142
143 wrmsrl(MSR_AMD64_SYSCFG, val);
144
145 return 0;
146 }
147
mfd_enable(void * arg)148 static __init void mfd_enable(void *arg)
149 {
150 __mfd_enable(smp_processor_id());
151 }
152
__snp_enable(unsigned int cpu)153 static int __snp_enable(unsigned int cpu)
154 {
155 u64 val;
156
157 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
158 return 0;
159
160 rdmsrl(MSR_AMD64_SYSCFG, val);
161
162 val |= MSR_AMD64_SYSCFG_SNP_EN;
163 val |= MSR_AMD64_SYSCFG_SNP_VMPL_EN;
164
165 wrmsrl(MSR_AMD64_SYSCFG, val);
166
167 return 0;
168 }
169
snp_enable(void * arg)170 static __init void snp_enable(void *arg)
171 {
172 __snp_enable(smp_processor_id());
173 }
174
__snp_fixup_e820_tables(u64 pa)175 static void __init __snp_fixup_e820_tables(u64 pa)
176 {
177 if (IS_ALIGNED(pa, PMD_SIZE))
178 return;
179
180 /*
181 * Handle cases where the RMP table placement by the BIOS is not
182 * 2M aligned and the kexec kernel could try to allocate
183 * from within that chunk which then causes a fatal RMP fault.
184 *
185 * The e820_table needs to be updated as it is converted to
186 * kernel memory resources and used by KEXEC_FILE_LOAD syscall
187 * to load kexec segments.
188 *
189 * The e820_table_firmware needs to be updated as it is exposed
190 * to sysfs and used by the KEXEC_LOAD syscall to load kexec
191 * segments.
192 *
193 * The e820_table_kexec needs to be updated as it passed to
194 * the kexec-ed kernel.
195 */
196 pa = ALIGN_DOWN(pa, PMD_SIZE);
197 if (e820__mapped_any(pa, pa + PMD_SIZE, E820_TYPE_RAM)) {
198 pr_info("Reserving start/end of RMP table on a 2MB boundary [0x%016llx]\n", pa);
199 e820__range_update(pa, PMD_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
200 e820__range_update_table(e820_table_kexec, pa, PMD_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
201 if (!memblock_is_region_reserved(pa, PMD_SIZE))
202 memblock_reserve(pa, PMD_SIZE);
203 }
204 }
205
fixup_e820_tables_for_segmented_rmp(void)206 static void __init fixup_e820_tables_for_segmented_rmp(void)
207 {
208 u64 pa, *rst, size, mapped_size;
209 unsigned int i;
210
211 __snp_fixup_e820_tables(probed_rmp_base);
212
213 pa = probed_rmp_base + RMPTABLE_CPU_BOOKKEEPING_SZ;
214
215 __snp_fixup_e820_tables(pa + RST_SIZE);
216
217 rst = early_memremap(pa, RST_SIZE);
218 if (!rst)
219 return;
220
221 for (i = 0; i < rst_max_index; i++) {
222 pa = RST_ENTRY_SEGMENT_BASE(rst[i]);
223 mapped_size = RST_ENTRY_MAPPED_SIZE(rst[i]);
224 if (!mapped_size)
225 continue;
226
227 __snp_fixup_e820_tables(pa);
228
229 /*
230 * Mapped size in GB. Mapped size is allowed to exceed
231 * the segment coverage size, but gets reduced to the
232 * segment coverage size.
233 */
234 mapped_size <<= 30;
235 if (mapped_size > rmp_segment_size)
236 mapped_size = rmp_segment_size;
237
238 /* Calculate the RMP segment size (16 bytes/page mapped) */
239 size = PHYS_PFN(mapped_size) << 4;
240
241 __snp_fixup_e820_tables(pa + size);
242 }
243
244 early_memunmap(rst, RST_SIZE);
245 }
246
fixup_e820_tables_for_contiguous_rmp(void)247 static void __init fixup_e820_tables_for_contiguous_rmp(void)
248 {
249 __snp_fixup_e820_tables(probed_rmp_base);
250 __snp_fixup_e820_tables(probed_rmp_base + probed_rmp_size);
251 }
252
snp_fixup_e820_tables(void)253 void __init snp_fixup_e820_tables(void)
254 {
255 if (rmp_cfg & MSR_AMD64_SEG_RMP_ENABLED) {
256 fixup_e820_tables_for_segmented_rmp();
257 } else {
258 fixup_e820_tables_for_contiguous_rmp();
259 }
260 }
261
clear_rmptable_bookkeeping(void)262 static bool __init clear_rmptable_bookkeeping(void)
263 {
264 void *bk;
265
266 bk = memremap(probed_rmp_base, RMPTABLE_CPU_BOOKKEEPING_SZ, MEMREMAP_WB);
267 if (!bk) {
268 pr_err("Failed to map RMP bookkeeping area\n");
269 return false;
270 }
271
272 memset(bk, 0, RMPTABLE_CPU_BOOKKEEPING_SZ);
273
274 memunmap(bk);
275
276 return true;
277 }
278
alloc_rmp_segment_desc(u64 segment_pa,u64 segment_size,u64 pa)279 static bool __init alloc_rmp_segment_desc(u64 segment_pa, u64 segment_size, u64 pa)
280 {
281 u64 rst_index, rmp_segment_size_max;
282 struct rmp_segment_desc *desc;
283 void *rmp_segment;
284
285 /* Calculate the maximum size an RMP can be (16 bytes/page mapped) */
286 rmp_segment_size_max = PHYS_PFN(rmp_segment_size) << 4;
287
288 /* Validate the RMP segment size */
289 if (segment_size > rmp_segment_size_max) {
290 pr_err("Invalid RMP size 0x%llx for configured segment size 0x%llx\n",
291 segment_size, rmp_segment_size_max);
292 return false;
293 }
294
295 /* Validate the RMP segment table index */
296 rst_index = RST_ENTRY_INDEX(pa);
297 if (rst_index >= rst_max_index) {
298 pr_err("Invalid RMP segment base address 0x%llx for configured segment size 0x%llx\n",
299 pa, rmp_segment_size);
300 return false;
301 }
302
303 if (rmp_segment_table[rst_index]) {
304 pr_err("RMP segment descriptor already exists at index %llu\n", rst_index);
305 return false;
306 }
307
308 rmp_segment = memremap(segment_pa, segment_size, MEMREMAP_WB);
309 if (!rmp_segment) {
310 pr_err("Failed to map RMP segment addr 0x%llx size 0x%llx\n",
311 segment_pa, segment_size);
312 return false;
313 }
314
315 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
316 if (!desc) {
317 memunmap(rmp_segment);
318 return false;
319 }
320
321 desc->rmp_entry = rmp_segment;
322 desc->max_index = segment_size / sizeof(*desc->rmp_entry);
323 desc->size = segment_size;
324
325 rmp_segment_table[rst_index] = desc;
326
327 return true;
328 }
329
free_rmp_segment_table(void)330 static void __init free_rmp_segment_table(void)
331 {
332 unsigned int i;
333
334 for (i = 0; i < rst_max_index; i++) {
335 struct rmp_segment_desc *desc;
336
337 desc = rmp_segment_table[i];
338 if (!desc)
339 continue;
340
341 memunmap(desc->rmp_entry);
342
343 kfree(desc);
344 }
345
346 free_page((unsigned long)rmp_segment_table);
347
348 rmp_segment_table = NULL;
349 }
350
351 /* Allocate the table used to index into the RMP segments */
alloc_rmp_segment_table(void)352 static bool __init alloc_rmp_segment_table(void)
353 {
354 struct page *page;
355
356 page = alloc_page(__GFP_ZERO);
357 if (!page)
358 return false;
359
360 rmp_segment_table = page_address(page);
361
362 return true;
363 }
364
setup_contiguous_rmptable(void)365 static bool __init setup_contiguous_rmptable(void)
366 {
367 u64 max_rmp_pfn, calc_rmp_sz, rmptable_segment, rmptable_size, rmp_end;
368
369 if (!probed_rmp_size)
370 return false;
371
372 rmp_end = probed_rmp_base + probed_rmp_size - 1;
373
374 /*
375 * Calculate the amount of memory that must be reserved by the BIOS to
376 * address the whole RAM, including the bookkeeping area. The RMP itself
377 * must also be covered.
378 */
379 max_rmp_pfn = max_pfn;
380 if (PFN_UP(rmp_end) > max_pfn)
381 max_rmp_pfn = PFN_UP(rmp_end);
382
383 calc_rmp_sz = (max_rmp_pfn << 4) + RMPTABLE_CPU_BOOKKEEPING_SZ;
384 if (calc_rmp_sz > probed_rmp_size) {
385 pr_err("Memory reserved for the RMP table does not cover full system RAM (expected 0x%llx got 0x%llx)\n",
386 calc_rmp_sz, probed_rmp_size);
387 return false;
388 }
389
390 if (!alloc_rmp_segment_table())
391 return false;
392
393 /* Map only the RMP entries */
394 rmptable_segment = probed_rmp_base + RMPTABLE_CPU_BOOKKEEPING_SZ;
395 rmptable_size = probed_rmp_size - RMPTABLE_CPU_BOOKKEEPING_SZ;
396
397 if (!alloc_rmp_segment_desc(rmptable_segment, rmptable_size, 0)) {
398 free_rmp_segment_table();
399 return false;
400 }
401
402 return true;
403 }
404
setup_segmented_rmptable(void)405 static bool __init setup_segmented_rmptable(void)
406 {
407 u64 rst_pa, *rst, pa, ram_pa_end, ram_pa_max;
408 unsigned int i, max_index;
409
410 if (!probed_rmp_base)
411 return false;
412
413 if (!alloc_rmp_segment_table())
414 return false;
415
416 rst_pa = probed_rmp_base + RMPTABLE_CPU_BOOKKEEPING_SZ;
417 rst = memremap(rst_pa, RST_SIZE, MEMREMAP_WB);
418 if (!rst) {
419 pr_err("Failed to map RMP segment table addr 0x%llx\n", rst_pa);
420 goto e_free;
421 }
422
423 pr_info("Segmented RMP using %lluGB segments\n", rmp_segment_size >> 30);
424
425 ram_pa_max = max_pfn << PAGE_SHIFT;
426
427 max_index = 0;
428 ram_pa_end = 0;
429 for (i = 0; i < rst_max_index; i++) {
430 u64 rmp_segment, rmp_size, mapped_size;
431
432 mapped_size = RST_ENTRY_MAPPED_SIZE(rst[i]);
433 if (!mapped_size)
434 continue;
435
436 max_index = i;
437
438 /*
439 * Mapped size in GB. Mapped size is allowed to exceed the
440 * segment coverage size, but gets reduced to the segment
441 * coverage size.
442 */
443 mapped_size <<= 30;
444 if (mapped_size > rmp_segment_size) {
445 pr_info("RMP segment %u mapped size (0x%llx) reduced to 0x%llx\n",
446 i, mapped_size, rmp_segment_size);
447 mapped_size = rmp_segment_size;
448 }
449
450 rmp_segment = RST_ENTRY_SEGMENT_BASE(rst[i]);
451
452 /* Calculate the RMP segment size (16 bytes/page mapped) */
453 rmp_size = PHYS_PFN(mapped_size) << 4;
454
455 pa = (u64)i << rmp_segment_shift;
456
457 /*
458 * Some segments may be for MMIO mapped above system RAM. These
459 * segments are used for Trusted I/O.
460 */
461 if (pa < ram_pa_max)
462 ram_pa_end = pa + mapped_size;
463
464 if (!alloc_rmp_segment_desc(rmp_segment, rmp_size, pa))
465 goto e_unmap;
466
467 pr_info("RMP segment %u physical address [0x%llx - 0x%llx] covering [0x%llx - 0x%llx]\n",
468 i, rmp_segment, rmp_segment + rmp_size - 1, pa, pa + mapped_size - 1);
469 }
470
471 if (ram_pa_max > ram_pa_end) {
472 pr_err("Segmented RMP does not cover full system RAM (expected 0x%llx got 0x%llx)\n",
473 ram_pa_max, ram_pa_end);
474 goto e_unmap;
475 }
476
477 /* Adjust the maximum index based on the found segments */
478 rst_max_index = max_index + 1;
479
480 memunmap(rst);
481
482 return true;
483
484 e_unmap:
485 memunmap(rst);
486
487 e_free:
488 free_rmp_segment_table();
489
490 return false;
491 }
492
setup_rmptable(void)493 static bool __init setup_rmptable(void)
494 {
495 if (rmp_cfg & MSR_AMD64_SEG_RMP_ENABLED) {
496 return setup_segmented_rmptable();
497 } else {
498 return setup_contiguous_rmptable();
499 }
500 }
501
502 /*
503 * Do the necessary preparations which are verified by the firmware as
504 * described in the SNP_INIT_EX firmware command description in the SNP
505 * firmware ABI spec.
506 */
snp_rmptable_init(void)507 int __init snp_rmptable_init(void)
508 {
509 unsigned int i;
510 u64 val;
511
512 if (WARN_ON_ONCE(!cc_platform_has(CC_ATTR_HOST_SEV_SNP)))
513 return -ENOSYS;
514
515 if (WARN_ON_ONCE(!amd_iommu_snp_en))
516 return -ENOSYS;
517
518 if (!setup_rmptable())
519 return -ENOSYS;
520
521 /*
522 * Check if SEV-SNP is already enabled, this can happen in case of
523 * kexec boot.
524 */
525 rdmsrl(MSR_AMD64_SYSCFG, val);
526 if (val & MSR_AMD64_SYSCFG_SNP_EN)
527 goto skip_enable;
528
529 /* Zero out the RMP bookkeeping area */
530 if (!clear_rmptable_bookkeeping()) {
531 free_rmp_segment_table();
532 return -ENOSYS;
533 }
534
535 /* Zero out the RMP entries */
536 for (i = 0; i < rst_max_index; i++) {
537 struct rmp_segment_desc *desc;
538
539 desc = rmp_segment_table[i];
540 if (!desc)
541 continue;
542
543 memset(desc->rmp_entry, 0, desc->size);
544 }
545
546 /* Flush the caches to ensure that data is written before SNP is enabled. */
547 wbinvd_on_all_cpus();
548
549 /* MtrrFixDramModEn must be enabled on all the CPUs prior to enabling SNP. */
550 on_each_cpu(mfd_enable, NULL, 1);
551
552 on_each_cpu(snp_enable, NULL, 1);
553
554 skip_enable:
555 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/rmptable_init:online", __snp_enable, NULL);
556
557 /*
558 * Setting crash_kexec_post_notifiers to 'true' to ensure that SNP panic
559 * notifier is invoked to do SNP IOMMU shutdown before kdump.
560 */
561 crash_kexec_post_notifiers = true;
562
563 return 0;
564 }
565
set_rmp_segment_info(unsigned int segment_shift)566 static void set_rmp_segment_info(unsigned int segment_shift)
567 {
568 rmp_segment_shift = segment_shift;
569 rmp_segment_size = 1ULL << rmp_segment_shift;
570 rmp_segment_mask = rmp_segment_size - 1;
571 }
572
573 #define RMP_ADDR_MASK GENMASK_ULL(51, 13)
574
probe_contiguous_rmptable_info(void)575 static bool probe_contiguous_rmptable_info(void)
576 {
577 u64 rmp_sz, rmp_base, rmp_end;
578
579 rdmsrl(MSR_AMD64_RMP_BASE, rmp_base);
580 rdmsrl(MSR_AMD64_RMP_END, rmp_end);
581
582 if (!(rmp_base & RMP_ADDR_MASK) || !(rmp_end & RMP_ADDR_MASK)) {
583 pr_err("Memory for the RMP table has not been reserved by BIOS\n");
584 return false;
585 }
586
587 if (rmp_base > rmp_end) {
588 pr_err("RMP configuration not valid: base=%#llx, end=%#llx\n", rmp_base, rmp_end);
589 return false;
590 }
591
592 rmp_sz = rmp_end - rmp_base + 1;
593
594 /* Treat the contiguous RMP table as a single segment */
595 rst_max_index = 1;
596
597 set_rmp_segment_info(RMPTABLE_NON_SEGMENTED_SHIFT);
598
599 probed_rmp_base = rmp_base;
600 probed_rmp_size = rmp_sz;
601
602 pr_info("RMP table physical range [0x%016llx - 0x%016llx]\n",
603 rmp_base, rmp_end);
604
605 return true;
606 }
607
probe_segmented_rmptable_info(void)608 static bool probe_segmented_rmptable_info(void)
609 {
610 unsigned int eax, ebx, segment_shift, segment_shift_min, segment_shift_max;
611 u64 rmp_base, rmp_end;
612
613 rdmsrl(MSR_AMD64_RMP_BASE, rmp_base);
614 if (!(rmp_base & RMP_ADDR_MASK)) {
615 pr_err("Memory for the RMP table has not been reserved by BIOS\n");
616 return false;
617 }
618
619 rdmsrl(MSR_AMD64_RMP_END, rmp_end);
620 WARN_ONCE(rmp_end & RMP_ADDR_MASK,
621 "Segmented RMP enabled but RMP_END MSR is non-zero\n");
622
623 /* Obtain the min and max supported RMP segment size */
624 eax = cpuid_eax(0x80000025);
625 segment_shift_min = eax & GENMASK(5, 0);
626 segment_shift_max = (eax & GENMASK(11, 6)) >> 6;
627
628 /* Verify the segment size is within the supported limits */
629 segment_shift = MSR_AMD64_RMP_SEGMENT_SHIFT(rmp_cfg);
630 if (segment_shift > segment_shift_max || segment_shift < segment_shift_min) {
631 pr_err("RMP segment size (%u) is not within advertised bounds (min=%u, max=%u)\n",
632 segment_shift, segment_shift_min, segment_shift_max);
633 return false;
634 }
635
636 /* Override the max supported RST index if a hardware limit exists */
637 ebx = cpuid_ebx(0x80000025);
638 if (ebx & BIT(10))
639 rst_max_index = ebx & GENMASK(9, 0);
640
641 set_rmp_segment_info(segment_shift);
642
643 probed_rmp_base = rmp_base;
644 probed_rmp_size = 0;
645
646 pr_info("Segmented RMP base table physical range [0x%016llx - 0x%016llx]\n",
647 rmp_base, rmp_base + RMPTABLE_CPU_BOOKKEEPING_SZ + RST_SIZE);
648
649 return true;
650 }
651
snp_probe_rmptable_info(void)652 bool snp_probe_rmptable_info(void)
653 {
654 if (cpu_feature_enabled(X86_FEATURE_SEGMENTED_RMP))
655 rdmsrl(MSR_AMD64_RMP_CFG, rmp_cfg);
656
657 if (rmp_cfg & MSR_AMD64_SEG_RMP_ENABLED)
658 return probe_segmented_rmptable_info();
659 else
660 return probe_contiguous_rmptable_info();
661 }
662
663 /*
664 * About the array_index_nospec() usage below:
665 *
666 * This function can get called by exported functions like
667 * snp_lookup_rmpentry(), which is used by the KVM #PF handler, among
668 * others, and since the @pfn passed in cannot always be trusted,
669 * speculation should be stopped as a protective measure.
670 */
get_raw_rmpentry(u64 pfn)671 static struct rmpentry_raw *get_raw_rmpentry(u64 pfn)
672 {
673 u64 paddr, rst_index, segment_index;
674 struct rmp_segment_desc *desc;
675
676 if (!rmp_segment_table)
677 return ERR_PTR(-ENODEV);
678
679 paddr = pfn << PAGE_SHIFT;
680
681 rst_index = RST_ENTRY_INDEX(paddr);
682 if (unlikely(rst_index >= rst_max_index))
683 return ERR_PTR(-EFAULT);
684
685 rst_index = array_index_nospec(rst_index, rst_max_index);
686
687 desc = rmp_segment_table[rst_index];
688 if (unlikely(!desc))
689 return ERR_PTR(-EFAULT);
690
691 segment_index = RMP_ENTRY_INDEX(paddr);
692 if (unlikely(segment_index >= desc->max_index))
693 return ERR_PTR(-EFAULT);
694
695 segment_index = array_index_nospec(segment_index, desc->max_index);
696
697 return desc->rmp_entry + segment_index;
698 }
699
get_rmpentry(u64 pfn,struct rmpentry * e)700 static int get_rmpentry(u64 pfn, struct rmpentry *e)
701 {
702 struct rmpentry_raw *e_raw;
703
704 if (cpu_feature_enabled(X86_FEATURE_RMPREAD)) {
705 int ret;
706
707 /* Binutils version 2.44 supports the RMPREAD mnemonic. */
708 asm volatile(".byte 0xf2, 0x0f, 0x01, 0xfd"
709 : "=a" (ret)
710 : "a" (pfn << PAGE_SHIFT), "c" (e)
711 : "memory", "cc");
712
713 return ret;
714 }
715
716 e_raw = get_raw_rmpentry(pfn);
717 if (IS_ERR(e_raw))
718 return PTR_ERR(e_raw);
719
720 /*
721 * Map the raw RMP table entry onto the RMPREAD output format.
722 * The 2MB region status indicator (hpage_region_status field) is not
723 * calculated, since the overhead could be significant and the field
724 * is not used.
725 */
726 memset(e, 0, sizeof(*e));
727 e->gpa = e_raw->gpa << PAGE_SHIFT;
728 e->asid = e_raw->asid;
729 e->assigned = e_raw->assigned;
730 e->pagesize = e_raw->pagesize;
731 e->immutable = e_raw->immutable;
732
733 return 0;
734 }
735
__snp_lookup_rmpentry(u64 pfn,struct rmpentry * e,int * level)736 static int __snp_lookup_rmpentry(u64 pfn, struct rmpentry *e, int *level)
737 {
738 struct rmpentry e_large;
739 int ret;
740
741 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
742 return -ENODEV;
743
744 ret = get_rmpentry(pfn, e);
745 if (ret)
746 return ret;
747
748 /*
749 * Find the authoritative RMP entry for a PFN. This can be either a 4K
750 * RMP entry or a special large RMP entry that is authoritative for a
751 * whole 2M area.
752 */
753 ret = get_rmpentry(pfn & PFN_PMD_MASK, &e_large);
754 if (ret)
755 return ret;
756
757 *level = RMP_TO_PG_LEVEL(e_large.pagesize);
758
759 return 0;
760 }
761
snp_lookup_rmpentry(u64 pfn,bool * assigned,int * level)762 int snp_lookup_rmpentry(u64 pfn, bool *assigned, int *level)
763 {
764 struct rmpentry e;
765 int ret;
766
767 ret = __snp_lookup_rmpentry(pfn, &e, level);
768 if (ret)
769 return ret;
770
771 *assigned = !!e.assigned;
772 return 0;
773 }
774 EXPORT_SYMBOL_GPL(snp_lookup_rmpentry);
775
776 /*
777 * Dump the raw RMP entry for a particular PFN. These bits are documented in the
778 * PPR for a particular CPU model and provide useful information about how a
779 * particular PFN is being utilized by the kernel/firmware at the time certain
780 * unexpected events occur, such as RMP faults.
781 */
dump_rmpentry(u64 pfn)782 static void dump_rmpentry(u64 pfn)
783 {
784 struct rmpentry_raw *e_raw;
785 u64 pfn_i, pfn_end;
786 struct rmpentry e;
787 int level, ret;
788
789 ret = __snp_lookup_rmpentry(pfn, &e, &level);
790 if (ret) {
791 pr_err("Failed to read RMP entry for PFN 0x%llx, error %d\n",
792 pfn, ret);
793 return;
794 }
795
796 if (e.assigned) {
797 e_raw = get_raw_rmpentry(pfn);
798 if (IS_ERR(e_raw)) {
799 pr_err("Failed to read RMP contents for PFN 0x%llx, error %ld\n",
800 pfn, PTR_ERR(e_raw));
801 return;
802 }
803
804 pr_info("PFN 0x%llx, RMP entry: [0x%016llx - 0x%016llx]\n",
805 pfn, e_raw->lo, e_raw->hi);
806 return;
807 }
808
809 /*
810 * If the RMP entry for a particular PFN is not in an assigned state,
811 * then it is sometimes useful to get an idea of whether or not any RMP
812 * entries for other PFNs within the same 2MB region are assigned, since
813 * those too can affect the ability to access a particular PFN in
814 * certain situations, such as when the PFN is being accessed via a 2MB
815 * mapping in the host page table.
816 */
817 pfn_i = ALIGN_DOWN(pfn, PTRS_PER_PMD);
818 pfn_end = pfn_i + PTRS_PER_PMD;
819
820 pr_info("PFN 0x%llx unassigned, dumping non-zero entries in 2M PFN region: [0x%llx - 0x%llx]\n",
821 pfn, pfn_i, pfn_end);
822
823 while (pfn_i < pfn_end) {
824 e_raw = get_raw_rmpentry(pfn_i);
825 if (IS_ERR(e_raw)) {
826 pr_err("Error %ld reading RMP contents for PFN 0x%llx\n",
827 PTR_ERR(e_raw), pfn_i);
828 pfn_i++;
829 continue;
830 }
831
832 if (e_raw->lo || e_raw->hi)
833 pr_info("PFN: 0x%llx, [0x%016llx - 0x%016llx]\n", pfn_i, e_raw->lo, e_raw->hi);
834 pfn_i++;
835 }
836 }
837
snp_dump_hva_rmpentry(unsigned long hva)838 void snp_dump_hva_rmpentry(unsigned long hva)
839 {
840 unsigned long paddr;
841 unsigned int level;
842 pgd_t *pgd;
843 pte_t *pte;
844
845 pgd = __va(read_cr3_pa());
846 pgd += pgd_index(hva);
847 pte = lookup_address_in_pgd(pgd, hva, &level);
848
849 if (!pte) {
850 pr_err("Can't dump RMP entry for HVA %lx: no PTE/PFN found\n", hva);
851 return;
852 }
853
854 paddr = PFN_PHYS(pte_pfn(*pte)) | (hva & ~page_level_mask(level));
855 dump_rmpentry(PHYS_PFN(paddr));
856 }
857
858 /*
859 * PSMASH a 2MB aligned page into 4K pages in the RMP table while preserving the
860 * Validated bit.
861 */
psmash(u64 pfn)862 int psmash(u64 pfn)
863 {
864 unsigned long paddr = pfn << PAGE_SHIFT;
865 int ret;
866
867 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
868 return -ENODEV;
869
870 if (!pfn_valid(pfn))
871 return -EINVAL;
872
873 /* Binutils version 2.36 supports the PSMASH mnemonic. */
874 asm volatile(".byte 0xF3, 0x0F, 0x01, 0xFF"
875 : "=a" (ret)
876 : "a" (paddr)
877 : "memory", "cc");
878
879 return ret;
880 }
881 EXPORT_SYMBOL_GPL(psmash);
882
883 /*
884 * If the kernel uses a 2MB or larger directmap mapping to write to an address,
885 * and that mapping contains any 4KB pages that are set to private in the RMP
886 * table, an RMP #PF will trigger and cause a host crash. Hypervisor code that
887 * owns the PFNs being transitioned will never attempt such a write, but other
888 * kernel tasks writing to other PFNs in the range may trigger these checks
889 * inadvertently due a large directmap mapping that happens to overlap such a
890 * PFN.
891 *
892 * Prevent this by splitting any 2MB+ mappings that might end up containing a
893 * mix of private/shared PFNs as a result of a subsequent RMPUPDATE for the
894 * PFN/rmp_level passed in.
895 *
896 * Note that there is no attempt here to scan all the RMP entries for the 2MB
897 * physical range, since it would only be worthwhile in determining if a
898 * subsequent RMPUPDATE for a 4KB PFN would result in all the entries being of
899 * the same shared/private state, thus avoiding the need to split the mapping.
900 * But that would mean the entries are currently in a mixed state, and so the
901 * mapping would have already been split as a result of prior transitions.
902 * And since the 4K split is only done if the mapping is 2MB+, and there isn't
903 * currently a mechanism in place to restore 2MB+ mappings, such a check would
904 * not provide any usable benefit.
905 *
906 * More specifics on how these checks are carried out can be found in APM
907 * Volume 2, "RMP and VMPL Access Checks".
908 */
adjust_direct_map(u64 pfn,int rmp_level)909 static int adjust_direct_map(u64 pfn, int rmp_level)
910 {
911 unsigned long vaddr;
912 unsigned int level;
913 int npages, ret;
914 pte_t *pte;
915
916 /*
917 * pfn_to_kaddr() will return a vaddr only within the direct
918 * map range.
919 */
920 vaddr = (unsigned long)pfn_to_kaddr(pfn);
921
922 /* Only 4KB/2MB RMP entries are supported by current hardware. */
923 if (WARN_ON_ONCE(rmp_level > PG_LEVEL_2M))
924 return -EINVAL;
925
926 if (!pfn_valid(pfn))
927 return -EINVAL;
928
929 if (rmp_level == PG_LEVEL_2M &&
930 (!IS_ALIGNED(pfn, PTRS_PER_PMD) || !pfn_valid(pfn + PTRS_PER_PMD - 1)))
931 return -EINVAL;
932
933 /*
934 * If an entire 2MB physical range is being transitioned, then there is
935 * no risk of RMP #PFs due to write accesses from overlapping mappings,
936 * since even accesses from 1GB mappings will be treated as 2MB accesses
937 * as far as RMP table checks are concerned.
938 */
939 if (rmp_level == PG_LEVEL_2M)
940 return 0;
941
942 pte = lookup_address(vaddr, &level);
943 if (!pte || pte_none(*pte))
944 return 0;
945
946 if (level == PG_LEVEL_4K)
947 return 0;
948
949 npages = page_level_size(rmp_level) / PAGE_SIZE;
950 ret = set_memory_4k(vaddr, npages);
951 if (ret)
952 pr_warn("Failed to split direct map for PFN 0x%llx, ret: %d\n",
953 pfn, ret);
954
955 return ret;
956 }
957
958 /*
959 * It is expected that those operations are seldom enough so that no mutual
960 * exclusion of updaters is needed and thus the overlap error condition below
961 * should happen very rarely and would get resolved relatively quickly by
962 * the firmware.
963 *
964 * If not, one could consider introducing a mutex or so here to sync concurrent
965 * RMP updates and thus diminish the amount of cases where firmware needs to
966 * lock 2M ranges to protect against concurrent updates.
967 *
968 * The optimal solution would be range locking to avoid locking disjoint
969 * regions unnecessarily but there's no support for that yet.
970 */
rmpupdate(u64 pfn,struct rmp_state * state)971 static int rmpupdate(u64 pfn, struct rmp_state *state)
972 {
973 unsigned long paddr = pfn << PAGE_SHIFT;
974 int ret, level;
975
976 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
977 return -ENODEV;
978
979 level = RMP_TO_PG_LEVEL(state->pagesize);
980
981 if (adjust_direct_map(pfn, level))
982 return -EFAULT;
983
984 do {
985 /* Binutils version 2.36 supports the RMPUPDATE mnemonic. */
986 asm volatile(".byte 0xF2, 0x0F, 0x01, 0xFE"
987 : "=a" (ret)
988 : "a" (paddr), "c" ((unsigned long)state)
989 : "memory", "cc");
990 } while (ret == RMPUPDATE_FAIL_OVERLAP);
991
992 if (ret) {
993 pr_err("RMPUPDATE failed for PFN %llx, pg_level: %d, ret: %d\n",
994 pfn, level, ret);
995 dump_rmpentry(pfn);
996 dump_stack();
997 return -EFAULT;
998 }
999
1000 return 0;
1001 }
1002
1003 /* Transition a page to guest-owned/private state in the RMP table. */
rmp_make_private(u64 pfn,u64 gpa,enum pg_level level,u32 asid,bool immutable)1004 int rmp_make_private(u64 pfn, u64 gpa, enum pg_level level, u32 asid, bool immutable)
1005 {
1006 struct rmp_state state;
1007
1008 memset(&state, 0, sizeof(state));
1009 state.assigned = 1;
1010 state.asid = asid;
1011 state.immutable = immutable;
1012 state.gpa = gpa;
1013 state.pagesize = PG_LEVEL_TO_RMP(level);
1014
1015 return rmpupdate(pfn, &state);
1016 }
1017 EXPORT_SYMBOL_GPL(rmp_make_private);
1018
1019 /* Transition a page to hypervisor-owned/shared state in the RMP table. */
rmp_make_shared(u64 pfn,enum pg_level level)1020 int rmp_make_shared(u64 pfn, enum pg_level level)
1021 {
1022 struct rmp_state state;
1023
1024 memset(&state, 0, sizeof(state));
1025 state.pagesize = PG_LEVEL_TO_RMP(level);
1026
1027 return rmpupdate(pfn, &state);
1028 }
1029 EXPORT_SYMBOL_GPL(rmp_make_shared);
1030
snp_leak_pages(u64 pfn,unsigned int npages)1031 void snp_leak_pages(u64 pfn, unsigned int npages)
1032 {
1033 struct page *page = pfn_to_page(pfn);
1034
1035 pr_warn("Leaking PFN range 0x%llx-0x%llx\n", pfn, pfn + npages);
1036
1037 spin_lock(&snp_leaked_pages_list_lock);
1038 while (npages--) {
1039
1040 /*
1041 * Reuse the page's buddy list for chaining into the leaked
1042 * pages list. This page should not be on a free list currently
1043 * and is also unsafe to be added to a free list.
1044 */
1045 if (likely(!PageCompound(page)) ||
1046
1047 /*
1048 * Skip inserting tail pages of compound page as
1049 * page->buddy_list of tail pages is not usable.
1050 */
1051 (PageHead(page) && compound_nr(page) <= npages))
1052 list_add_tail(&page->buddy_list, &snp_leaked_pages_list);
1053
1054 dump_rmpentry(pfn);
1055 snp_nr_leaked_pages++;
1056 pfn++;
1057 page++;
1058 }
1059 spin_unlock(&snp_leaked_pages_list_lock);
1060 }
1061 EXPORT_SYMBOL_GPL(snp_leak_pages);
1062
kdump_sev_callback(void)1063 void kdump_sev_callback(void)
1064 {
1065 /*
1066 * Do wbinvd() on remote CPUs when SNP is enabled in order to
1067 * safely do SNP_SHUTDOWN on the local CPU.
1068 */
1069 if (cc_platform_has(CC_ATTR_HOST_SEV_SNP))
1070 wbinvd();
1071 }
1072