1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 * Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 * Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 * Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 * Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/parser.h>
50 #include <linux/vmalloc.h>
51 #include <linux/lsm_hooks.h>
52 #include <net/netlabel.h>
53
54 #include "flask.h"
55 #include "avc.h"
56 #include "avc_ss.h"
57 #include "security.h"
58 #include "context.h"
59 #include "policydb.h"
60 #include "sidtab.h"
61 #include "services.h"
62 #include "conditional.h"
63 #include "mls.h"
64 #include "objsec.h"
65 #include "netlabel.h"
66 #include "xfrm.h"
67 #include "ebitmap.h"
68 #include "audit.h"
69 #include "policycap_names.h"
70 #include "ima.h"
71
72 struct selinux_policy_convert_data {
73 struct convert_context_args args;
74 struct sidtab_convert_params sidtab_params;
75 };
76
77 /* Forward declaration. */
78 static int context_struct_to_string(struct policydb *policydb,
79 struct context *context,
80 char **scontext,
81 u32 *scontext_len);
82
83 static int sidtab_entry_to_string(struct policydb *policydb,
84 struct sidtab *sidtab,
85 struct sidtab_entry *entry,
86 char **scontext,
87 u32 *scontext_len);
88
89 static void context_struct_compute_av(struct policydb *policydb,
90 struct context *scontext,
91 struct context *tcontext,
92 u16 tclass,
93 struct av_decision *avd,
94 struct extended_perms *xperms);
95
selinux_set_mapping(struct policydb * pol,const struct security_class_mapping * map,struct selinux_map * out_map)96 static int selinux_set_mapping(struct policydb *pol,
97 const struct security_class_mapping *map,
98 struct selinux_map *out_map)
99 {
100 u16 i, j;
101 bool print_unknown_handle = false;
102
103 /* Find number of classes in the input mapping */
104 if (!map)
105 return -EINVAL;
106 i = 0;
107 while (map[i].name)
108 i++;
109
110 /* Allocate space for the class records, plus one for class zero */
111 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
112 if (!out_map->mapping)
113 return -ENOMEM;
114
115 /* Store the raw class and permission values */
116 j = 0;
117 while (map[j].name) {
118 const struct security_class_mapping *p_in = map + (j++);
119 struct selinux_mapping *p_out = out_map->mapping + j;
120 u16 k;
121
122 /* An empty class string skips ahead */
123 if (!strcmp(p_in->name, "")) {
124 p_out->num_perms = 0;
125 continue;
126 }
127
128 p_out->value = string_to_security_class(pol, p_in->name);
129 if (!p_out->value) {
130 pr_info("SELinux: Class %s not defined in policy.\n",
131 p_in->name);
132 if (pol->reject_unknown)
133 goto err;
134 p_out->num_perms = 0;
135 print_unknown_handle = true;
136 continue;
137 }
138
139 k = 0;
140 while (p_in->perms[k]) {
141 /* An empty permission string skips ahead */
142 if (!*p_in->perms[k]) {
143 k++;
144 continue;
145 }
146 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
147 p_in->perms[k]);
148 if (!p_out->perms[k]) {
149 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
150 p_in->perms[k], p_in->name);
151 if (pol->reject_unknown)
152 goto err;
153 print_unknown_handle = true;
154 }
155
156 k++;
157 }
158 p_out->num_perms = k;
159 }
160
161 if (print_unknown_handle)
162 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
163 pol->allow_unknown ? "allowed" : "denied");
164
165 out_map->size = i;
166 return 0;
167 err:
168 kfree(out_map->mapping);
169 out_map->mapping = NULL;
170 return -EINVAL;
171 }
172
173 /*
174 * Get real, policy values from mapped values
175 */
176
unmap_class(struct selinux_map * map,u16 tclass)177 static u16 unmap_class(struct selinux_map *map, u16 tclass)
178 {
179 if (tclass < map->size)
180 return map->mapping[tclass].value;
181
182 return tclass;
183 }
184
185 /*
186 * Get kernel value for class from its policy value
187 */
map_class(struct selinux_map * map,u16 pol_value)188 static u16 map_class(struct selinux_map *map, u16 pol_value)
189 {
190 u16 i;
191
192 for (i = 1; i < map->size; i++) {
193 if (map->mapping[i].value == pol_value)
194 return i;
195 }
196
197 return SECCLASS_NULL;
198 }
199
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)200 static void map_decision(struct selinux_map *map,
201 u16 tclass, struct av_decision *avd,
202 int allow_unknown)
203 {
204 if (tclass < map->size) {
205 struct selinux_mapping *mapping = &map->mapping[tclass];
206 unsigned int i, n = mapping->num_perms;
207 u32 result;
208
209 for (i = 0, result = 0; i < n; i++) {
210 if (avd->allowed & mapping->perms[i])
211 result |= (u32)1<<i;
212 if (allow_unknown && !mapping->perms[i])
213 result |= (u32)1<<i;
214 }
215 avd->allowed = result;
216
217 for (i = 0, result = 0; i < n; i++)
218 if (avd->auditallow & mapping->perms[i])
219 result |= (u32)1<<i;
220 avd->auditallow = result;
221
222 for (i = 0, result = 0; i < n; i++) {
223 if (avd->auditdeny & mapping->perms[i])
224 result |= (u32)1<<i;
225 if (!allow_unknown && !mapping->perms[i])
226 result |= (u32)1<<i;
227 }
228 /*
229 * In case the kernel has a bug and requests a permission
230 * between num_perms and the maximum permission number, we
231 * should audit that denial
232 */
233 for (; i < (sizeof(u32)*8); i++)
234 result |= (u32)1<<i;
235 avd->auditdeny = result;
236 }
237 }
238
security_mls_enabled(void)239 int security_mls_enabled(void)
240 {
241 int mls_enabled;
242 struct selinux_policy *policy;
243
244 if (!selinux_initialized())
245 return 0;
246
247 rcu_read_lock();
248 policy = rcu_dereference(selinux_state.policy);
249 mls_enabled = policy->policydb.mls_enabled;
250 rcu_read_unlock();
251 return mls_enabled;
252 }
253
254 /*
255 * Return the boolean value of a constraint expression
256 * when it is applied to the specified source and target
257 * security contexts.
258 *
259 * xcontext is a special beast... It is used by the validatetrans rules
260 * only. For these rules, scontext is the context before the transition,
261 * tcontext is the context after the transition, and xcontext is the context
262 * of the process performing the transition. All other callers of
263 * constraint_expr_eval should pass in NULL for xcontext.
264 */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)265 static int constraint_expr_eval(struct policydb *policydb,
266 struct context *scontext,
267 struct context *tcontext,
268 struct context *xcontext,
269 struct constraint_expr *cexpr)
270 {
271 u32 val1, val2;
272 struct context *c;
273 struct role_datum *r1, *r2;
274 struct mls_level *l1, *l2;
275 struct constraint_expr *e;
276 int s[CEXPR_MAXDEPTH];
277 int sp = -1;
278
279 for (e = cexpr; e; e = e->next) {
280 switch (e->expr_type) {
281 case CEXPR_NOT:
282 BUG_ON(sp < 0);
283 s[sp] = !s[sp];
284 break;
285 case CEXPR_AND:
286 BUG_ON(sp < 1);
287 sp--;
288 s[sp] &= s[sp + 1];
289 break;
290 case CEXPR_OR:
291 BUG_ON(sp < 1);
292 sp--;
293 s[sp] |= s[sp + 1];
294 break;
295 case CEXPR_ATTR:
296 if (sp == (CEXPR_MAXDEPTH - 1))
297 return 0;
298 switch (e->attr) {
299 case CEXPR_USER:
300 val1 = scontext->user;
301 val2 = tcontext->user;
302 break;
303 case CEXPR_TYPE:
304 val1 = scontext->type;
305 val2 = tcontext->type;
306 break;
307 case CEXPR_ROLE:
308 val1 = scontext->role;
309 val2 = tcontext->role;
310 r1 = policydb->role_val_to_struct[val1 - 1];
311 r2 = policydb->role_val_to_struct[val2 - 1];
312 switch (e->op) {
313 case CEXPR_DOM:
314 s[++sp] = ebitmap_get_bit(&r1->dominates,
315 val2 - 1);
316 continue;
317 case CEXPR_DOMBY:
318 s[++sp] = ebitmap_get_bit(&r2->dominates,
319 val1 - 1);
320 continue;
321 case CEXPR_INCOMP:
322 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
323 val2 - 1) &&
324 !ebitmap_get_bit(&r2->dominates,
325 val1 - 1));
326 continue;
327 default:
328 break;
329 }
330 break;
331 case CEXPR_L1L2:
332 l1 = &(scontext->range.level[0]);
333 l2 = &(tcontext->range.level[0]);
334 goto mls_ops;
335 case CEXPR_L1H2:
336 l1 = &(scontext->range.level[0]);
337 l2 = &(tcontext->range.level[1]);
338 goto mls_ops;
339 case CEXPR_H1L2:
340 l1 = &(scontext->range.level[1]);
341 l2 = &(tcontext->range.level[0]);
342 goto mls_ops;
343 case CEXPR_H1H2:
344 l1 = &(scontext->range.level[1]);
345 l2 = &(tcontext->range.level[1]);
346 goto mls_ops;
347 case CEXPR_L1H1:
348 l1 = &(scontext->range.level[0]);
349 l2 = &(scontext->range.level[1]);
350 goto mls_ops;
351 case CEXPR_L2H2:
352 l1 = &(tcontext->range.level[0]);
353 l2 = &(tcontext->range.level[1]);
354 goto mls_ops;
355 mls_ops:
356 switch (e->op) {
357 case CEXPR_EQ:
358 s[++sp] = mls_level_eq(l1, l2);
359 continue;
360 case CEXPR_NEQ:
361 s[++sp] = !mls_level_eq(l1, l2);
362 continue;
363 case CEXPR_DOM:
364 s[++sp] = mls_level_dom(l1, l2);
365 continue;
366 case CEXPR_DOMBY:
367 s[++sp] = mls_level_dom(l2, l1);
368 continue;
369 case CEXPR_INCOMP:
370 s[++sp] = mls_level_incomp(l2, l1);
371 continue;
372 default:
373 BUG();
374 return 0;
375 }
376 break;
377 default:
378 BUG();
379 return 0;
380 }
381
382 switch (e->op) {
383 case CEXPR_EQ:
384 s[++sp] = (val1 == val2);
385 break;
386 case CEXPR_NEQ:
387 s[++sp] = (val1 != val2);
388 break;
389 default:
390 BUG();
391 return 0;
392 }
393 break;
394 case CEXPR_NAMES:
395 if (sp == (CEXPR_MAXDEPTH-1))
396 return 0;
397 c = scontext;
398 if (e->attr & CEXPR_TARGET)
399 c = tcontext;
400 else if (e->attr & CEXPR_XTARGET) {
401 c = xcontext;
402 if (!c) {
403 BUG();
404 return 0;
405 }
406 }
407 if (e->attr & CEXPR_USER)
408 val1 = c->user;
409 else if (e->attr & CEXPR_ROLE)
410 val1 = c->role;
411 else if (e->attr & CEXPR_TYPE)
412 val1 = c->type;
413 else {
414 BUG();
415 return 0;
416 }
417
418 switch (e->op) {
419 case CEXPR_EQ:
420 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
421 break;
422 case CEXPR_NEQ:
423 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
424 break;
425 default:
426 BUG();
427 return 0;
428 }
429 break;
430 default:
431 BUG();
432 return 0;
433 }
434 }
435
436 BUG_ON(sp != 0);
437 return s[0];
438 }
439
440 /*
441 * security_dump_masked_av - dumps masked permissions during
442 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
443 */
dump_masked_av_helper(void * k,void * d,void * args)444 static int dump_masked_av_helper(void *k, void *d, void *args)
445 {
446 struct perm_datum *pdatum = d;
447 char **permission_names = args;
448
449 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
450
451 permission_names[pdatum->value - 1] = (char *)k;
452
453 return 0;
454 }
455
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)456 static void security_dump_masked_av(struct policydb *policydb,
457 struct context *scontext,
458 struct context *tcontext,
459 u16 tclass,
460 u32 permissions,
461 const char *reason)
462 {
463 struct common_datum *common_dat;
464 struct class_datum *tclass_dat;
465 struct audit_buffer *ab;
466 char *tclass_name;
467 char *scontext_name = NULL;
468 char *tcontext_name = NULL;
469 char *permission_names[32];
470 int index;
471 u32 length;
472 bool need_comma = false;
473
474 if (!permissions)
475 return;
476
477 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
478 tclass_dat = policydb->class_val_to_struct[tclass - 1];
479 common_dat = tclass_dat->comdatum;
480
481 /* init permission_names */
482 if (common_dat &&
483 hashtab_map(&common_dat->permissions.table,
484 dump_masked_av_helper, permission_names) < 0)
485 goto out;
486
487 if (hashtab_map(&tclass_dat->permissions.table,
488 dump_masked_av_helper, permission_names) < 0)
489 goto out;
490
491 /* get scontext/tcontext in text form */
492 if (context_struct_to_string(policydb, scontext,
493 &scontext_name, &length) < 0)
494 goto out;
495
496 if (context_struct_to_string(policydb, tcontext,
497 &tcontext_name, &length) < 0)
498 goto out;
499
500 /* audit a message */
501 ab = audit_log_start(audit_context(),
502 GFP_ATOMIC, AUDIT_SELINUX_ERR);
503 if (!ab)
504 goto out;
505
506 audit_log_format(ab, "op=security_compute_av reason=%s "
507 "scontext=%s tcontext=%s tclass=%s perms=",
508 reason, scontext_name, tcontext_name, tclass_name);
509
510 for (index = 0; index < 32; index++) {
511 u32 mask = (1 << index);
512
513 if ((mask & permissions) == 0)
514 continue;
515
516 audit_log_format(ab, "%s%s",
517 need_comma ? "," : "",
518 permission_names[index]
519 ? permission_names[index] : "????");
520 need_comma = true;
521 }
522 audit_log_end(ab);
523 out:
524 /* release scontext/tcontext */
525 kfree(tcontext_name);
526 kfree(scontext_name);
527 }
528
529 /*
530 * security_boundary_permission - drops violated permissions
531 * on boundary constraint.
532 */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)533 static void type_attribute_bounds_av(struct policydb *policydb,
534 struct context *scontext,
535 struct context *tcontext,
536 u16 tclass,
537 struct av_decision *avd)
538 {
539 struct context lo_scontext;
540 struct context lo_tcontext, *tcontextp = tcontext;
541 struct av_decision lo_avd;
542 struct type_datum *source;
543 struct type_datum *target;
544 u32 masked = 0;
545
546 source = policydb->type_val_to_struct[scontext->type - 1];
547 BUG_ON(!source);
548
549 if (!source->bounds)
550 return;
551
552 target = policydb->type_val_to_struct[tcontext->type - 1];
553 BUG_ON(!target);
554
555 memset(&lo_avd, 0, sizeof(lo_avd));
556
557 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
558 lo_scontext.type = source->bounds;
559
560 if (target->bounds) {
561 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
562 lo_tcontext.type = target->bounds;
563 tcontextp = &lo_tcontext;
564 }
565
566 context_struct_compute_av(policydb, &lo_scontext,
567 tcontextp,
568 tclass,
569 &lo_avd,
570 NULL);
571
572 masked = ~lo_avd.allowed & avd->allowed;
573
574 if (likely(!masked))
575 return; /* no masked permission */
576
577 /* mask violated permissions */
578 avd->allowed &= ~masked;
579
580 /* audit masked permissions */
581 security_dump_masked_av(policydb, scontext, tcontext,
582 tclass, masked, "bounds");
583 }
584
585 /*
586 * Flag which drivers have permissions and which base permissions are covered.
587 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)588 void services_compute_xperms_drivers(
589 struct extended_perms *xperms,
590 struct avtab_node *node)
591 {
592 unsigned int i;
593
594 switch (node->datum.u.xperms->specified) {
595 case AVTAB_XPERMS_IOCTLDRIVER:
596 xperms->base_perms |= AVC_EXT_IOCTL;
597 /* if one or more driver has all permissions allowed */
598 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
599 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
600 break;
601 case AVTAB_XPERMS_IOCTLFUNCTION:
602 xperms->base_perms |= AVC_EXT_IOCTL;
603 /* if allowing permissions within a driver */
604 security_xperm_set(xperms->drivers.p,
605 node->datum.u.xperms->driver);
606 break;
607 case AVTAB_XPERMS_NLMSG:
608 xperms->base_perms |= AVC_EXT_NLMSG;
609 /* if allowing permissions within a driver */
610 security_xperm_set(xperms->drivers.p,
611 node->datum.u.xperms->driver);
612 break;
613 }
614
615 xperms->len = 1;
616 }
617
618 /*
619 * Compute access vectors and extended permissions based on a context
620 * structure pair for the permissions in a particular class.
621 */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)622 static void context_struct_compute_av(struct policydb *policydb,
623 struct context *scontext,
624 struct context *tcontext,
625 u16 tclass,
626 struct av_decision *avd,
627 struct extended_perms *xperms)
628 {
629 struct constraint_node *constraint;
630 struct role_allow *ra;
631 struct avtab_key avkey;
632 struct avtab_node *node;
633 struct class_datum *tclass_datum;
634 struct ebitmap *sattr, *tattr;
635 struct ebitmap_node *snode, *tnode;
636 unsigned int i, j;
637
638 avd->allowed = 0;
639 avd->auditallow = 0;
640 avd->auditdeny = 0xffffffff;
641 if (xperms) {
642 memset(xperms, 0, sizeof(*xperms));
643 }
644
645 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
646 pr_warn_ratelimited("SELinux: Invalid class %u\n", tclass);
647 return;
648 }
649
650 tclass_datum = policydb->class_val_to_struct[tclass - 1];
651
652 /*
653 * If a specific type enforcement rule was defined for
654 * this permission check, then use it.
655 */
656 avkey.target_class = tclass;
657 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
658 sattr = &policydb->type_attr_map_array[scontext->type - 1];
659 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
660 ebitmap_for_each_positive_bit(sattr, snode, i) {
661 ebitmap_for_each_positive_bit(tattr, tnode, j) {
662 avkey.source_type = i + 1;
663 avkey.target_type = j + 1;
664 for (node = avtab_search_node(&policydb->te_avtab,
665 &avkey);
666 node;
667 node = avtab_search_node_next(node, avkey.specified)) {
668 if (node->key.specified == AVTAB_ALLOWED)
669 avd->allowed |= node->datum.u.data;
670 else if (node->key.specified == AVTAB_AUDITALLOW)
671 avd->auditallow |= node->datum.u.data;
672 else if (node->key.specified == AVTAB_AUDITDENY)
673 avd->auditdeny &= node->datum.u.data;
674 else if (xperms && (node->key.specified & AVTAB_XPERMS))
675 services_compute_xperms_drivers(xperms, node);
676 }
677
678 /* Check conditional av table for additional permissions */
679 cond_compute_av(&policydb->te_cond_avtab, &avkey,
680 avd, xperms);
681
682 }
683 }
684
685 /*
686 * Remove any permissions prohibited by a constraint (this includes
687 * the MLS policy).
688 */
689 constraint = tclass_datum->constraints;
690 while (constraint) {
691 if ((constraint->permissions & (avd->allowed)) &&
692 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
693 constraint->expr)) {
694 avd->allowed &= ~(constraint->permissions);
695 }
696 constraint = constraint->next;
697 }
698
699 /*
700 * If checking process transition permission and the
701 * role is changing, then check the (current_role, new_role)
702 * pair.
703 */
704 if (tclass == policydb->process_class &&
705 (avd->allowed & policydb->process_trans_perms) &&
706 scontext->role != tcontext->role) {
707 for (ra = policydb->role_allow; ra; ra = ra->next) {
708 if (scontext->role == ra->role &&
709 tcontext->role == ra->new_role)
710 break;
711 }
712 if (!ra)
713 avd->allowed &= ~policydb->process_trans_perms;
714 }
715
716 /*
717 * If the given source and target types have boundary
718 * constraint, lazy checks have to mask any violated
719 * permission and notice it to userspace via audit.
720 */
721 type_attribute_bounds_av(policydb, scontext, tcontext,
722 tclass, avd);
723 }
724
security_validtrans_handle_fail(struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)725 static int security_validtrans_handle_fail(struct selinux_policy *policy,
726 struct sidtab_entry *oentry,
727 struct sidtab_entry *nentry,
728 struct sidtab_entry *tentry,
729 u16 tclass)
730 {
731 struct policydb *p = &policy->policydb;
732 struct sidtab *sidtab = policy->sidtab;
733 char *o = NULL, *n = NULL, *t = NULL;
734 u32 olen, nlen, tlen;
735
736 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
737 goto out;
738 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
739 goto out;
740 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
741 goto out;
742 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
743 "op=security_validate_transition seresult=denied"
744 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
745 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
746 out:
747 kfree(o);
748 kfree(n);
749 kfree(t);
750
751 if (!enforcing_enabled())
752 return 0;
753 return -EPERM;
754 }
755
security_compute_validatetrans(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)756 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
757 u16 orig_tclass, bool user)
758 {
759 struct selinux_policy *policy;
760 struct policydb *policydb;
761 struct sidtab *sidtab;
762 struct sidtab_entry *oentry;
763 struct sidtab_entry *nentry;
764 struct sidtab_entry *tentry;
765 struct class_datum *tclass_datum;
766 struct constraint_node *constraint;
767 u16 tclass;
768 int rc = 0;
769
770
771 if (!selinux_initialized())
772 return 0;
773
774 rcu_read_lock();
775
776 policy = rcu_dereference(selinux_state.policy);
777 policydb = &policy->policydb;
778 sidtab = policy->sidtab;
779
780 if (!user)
781 tclass = unmap_class(&policy->map, orig_tclass);
782 else
783 tclass = orig_tclass;
784
785 if (!tclass || tclass > policydb->p_classes.nprim) {
786 rc = -EINVAL;
787 goto out;
788 }
789 tclass_datum = policydb->class_val_to_struct[tclass - 1];
790
791 oentry = sidtab_search_entry(sidtab, oldsid);
792 if (!oentry) {
793 pr_err("SELinux: %s: unrecognized SID %d\n",
794 __func__, oldsid);
795 rc = -EINVAL;
796 goto out;
797 }
798
799 nentry = sidtab_search_entry(sidtab, newsid);
800 if (!nentry) {
801 pr_err("SELinux: %s: unrecognized SID %d\n",
802 __func__, newsid);
803 rc = -EINVAL;
804 goto out;
805 }
806
807 tentry = sidtab_search_entry(sidtab, tasksid);
808 if (!tentry) {
809 pr_err("SELinux: %s: unrecognized SID %d\n",
810 __func__, tasksid);
811 rc = -EINVAL;
812 goto out;
813 }
814
815 constraint = tclass_datum->validatetrans;
816 while (constraint) {
817 if (!constraint_expr_eval(policydb, &oentry->context,
818 &nentry->context, &tentry->context,
819 constraint->expr)) {
820 if (user)
821 rc = -EPERM;
822 else
823 rc = security_validtrans_handle_fail(policy,
824 oentry,
825 nentry,
826 tentry,
827 tclass);
828 goto out;
829 }
830 constraint = constraint->next;
831 }
832
833 out:
834 rcu_read_unlock();
835 return rc;
836 }
837
security_validate_transition_user(u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)838 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
839 u16 tclass)
840 {
841 return security_compute_validatetrans(oldsid, newsid, tasksid,
842 tclass, true);
843 }
844
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)845 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
846 u16 orig_tclass)
847 {
848 return security_compute_validatetrans(oldsid, newsid, tasksid,
849 orig_tclass, false);
850 }
851
852 /*
853 * security_bounded_transition - check whether the given
854 * transition is directed to bounded, or not.
855 * It returns 0, if @newsid is bounded by @oldsid.
856 * Otherwise, it returns error code.
857 *
858 * @oldsid : current security identifier
859 * @newsid : destinated security identifier
860 */
security_bounded_transition(u32 old_sid,u32 new_sid)861 int security_bounded_transition(u32 old_sid, u32 new_sid)
862 {
863 struct selinux_policy *policy;
864 struct policydb *policydb;
865 struct sidtab *sidtab;
866 struct sidtab_entry *old_entry, *new_entry;
867 struct type_datum *type;
868 u32 index;
869 int rc;
870
871 if (!selinux_initialized())
872 return 0;
873
874 rcu_read_lock();
875 policy = rcu_dereference(selinux_state.policy);
876 policydb = &policy->policydb;
877 sidtab = policy->sidtab;
878
879 rc = -EINVAL;
880 old_entry = sidtab_search_entry(sidtab, old_sid);
881 if (!old_entry) {
882 pr_err("SELinux: %s: unrecognized SID %u\n",
883 __func__, old_sid);
884 goto out;
885 }
886
887 rc = -EINVAL;
888 new_entry = sidtab_search_entry(sidtab, new_sid);
889 if (!new_entry) {
890 pr_err("SELinux: %s: unrecognized SID %u\n",
891 __func__, new_sid);
892 goto out;
893 }
894
895 rc = 0;
896 /* type/domain unchanged */
897 if (old_entry->context.type == new_entry->context.type)
898 goto out;
899
900 index = new_entry->context.type;
901 while (true) {
902 type = policydb->type_val_to_struct[index - 1];
903 BUG_ON(!type);
904
905 /* not bounded anymore */
906 rc = -EPERM;
907 if (!type->bounds)
908 break;
909
910 /* @newsid is bounded by @oldsid */
911 rc = 0;
912 if (type->bounds == old_entry->context.type)
913 break;
914
915 index = type->bounds;
916 }
917
918 if (rc) {
919 char *old_name = NULL;
920 char *new_name = NULL;
921 u32 length;
922
923 if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
924 &old_name, &length) &&
925 !sidtab_entry_to_string(policydb, sidtab, new_entry,
926 &new_name, &length)) {
927 audit_log(audit_context(),
928 GFP_ATOMIC, AUDIT_SELINUX_ERR,
929 "op=security_bounded_transition "
930 "seresult=denied "
931 "oldcontext=%s newcontext=%s",
932 old_name, new_name);
933 }
934 kfree(new_name);
935 kfree(old_name);
936 }
937 out:
938 rcu_read_unlock();
939
940 return rc;
941 }
942
avd_init(struct selinux_policy * policy,struct av_decision * avd)943 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
944 {
945 avd->allowed = 0;
946 avd->auditallow = 0;
947 avd->auditdeny = 0xffffffff;
948 if (policy)
949 avd->seqno = policy->latest_granting;
950 else
951 avd->seqno = 0;
952 avd->flags = 0;
953 }
954
update_xperms_extended_data(u8 specified,const struct extended_perms_data * from,struct extended_perms_data * xp_data)955 static void update_xperms_extended_data(u8 specified,
956 const struct extended_perms_data *from,
957 struct extended_perms_data *xp_data)
958 {
959 unsigned int i;
960
961 switch (specified) {
962 case AVTAB_XPERMS_IOCTLDRIVER:
963 memset(xp_data->p, 0xff, sizeof(xp_data->p));
964 break;
965 case AVTAB_XPERMS_IOCTLFUNCTION:
966 case AVTAB_XPERMS_NLMSG:
967 for (i = 0; i < ARRAY_SIZE(xp_data->p); i++)
968 xp_data->p[i] |= from->p[i];
969 break;
970 }
971
972 }
973
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)974 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
975 struct avtab_node *node)
976 {
977 u16 specified;
978
979 switch (node->datum.u.xperms->specified) {
980 case AVTAB_XPERMS_IOCTLFUNCTION:
981 if (xpermd->base_perm != AVC_EXT_IOCTL ||
982 xpermd->driver != node->datum.u.xperms->driver)
983 return;
984 break;
985 case AVTAB_XPERMS_IOCTLDRIVER:
986 if (xpermd->base_perm != AVC_EXT_IOCTL ||
987 !security_xperm_test(node->datum.u.xperms->perms.p,
988 xpermd->driver))
989 return;
990 break;
991 case AVTAB_XPERMS_NLMSG:
992 if (xpermd->base_perm != AVC_EXT_NLMSG ||
993 xpermd->driver != node->datum.u.xperms->driver)
994 return;
995 break;
996 default:
997 pr_warn_once(
998 "SELinux: unknown extended permission (%u) will be ignored\n",
999 node->datum.u.xperms->specified);
1000 return;
1001 }
1002
1003 specified = node->key.specified & ~(AVTAB_ENABLED | AVTAB_ENABLED_OLD);
1004
1005 if (specified == AVTAB_XPERMS_ALLOWED) {
1006 xpermd->used |= XPERMS_ALLOWED;
1007 update_xperms_extended_data(node->datum.u.xperms->specified,
1008 &node->datum.u.xperms->perms,
1009 xpermd->allowed);
1010 } else if (specified == AVTAB_XPERMS_AUDITALLOW) {
1011 xpermd->used |= XPERMS_AUDITALLOW;
1012 update_xperms_extended_data(node->datum.u.xperms->specified,
1013 &node->datum.u.xperms->perms,
1014 xpermd->auditallow);
1015 } else if (specified == AVTAB_XPERMS_DONTAUDIT) {
1016 xpermd->used |= XPERMS_DONTAUDIT;
1017 update_xperms_extended_data(node->datum.u.xperms->specified,
1018 &node->datum.u.xperms->perms,
1019 xpermd->dontaudit);
1020 } else {
1021 pr_warn_once("SELinux: unknown specified key (%u)\n",
1022 node->key.specified);
1023 }
1024 }
1025
security_compute_xperms_decision(u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,u8 base_perm,struct extended_perms_decision * xpermd)1026 void security_compute_xperms_decision(u32 ssid,
1027 u32 tsid,
1028 u16 orig_tclass,
1029 u8 driver,
1030 u8 base_perm,
1031 struct extended_perms_decision *xpermd)
1032 {
1033 struct selinux_policy *policy;
1034 struct policydb *policydb;
1035 struct sidtab *sidtab;
1036 u16 tclass;
1037 struct context *scontext, *tcontext;
1038 struct avtab_key avkey;
1039 struct avtab_node *node;
1040 struct ebitmap *sattr, *tattr;
1041 struct ebitmap_node *snode, *tnode;
1042 unsigned int i, j;
1043
1044 xpermd->base_perm = base_perm;
1045 xpermd->driver = driver;
1046 xpermd->used = 0;
1047 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1048 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1049 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1050
1051 rcu_read_lock();
1052 if (!selinux_initialized())
1053 goto allow;
1054
1055 policy = rcu_dereference(selinux_state.policy);
1056 policydb = &policy->policydb;
1057 sidtab = policy->sidtab;
1058
1059 scontext = sidtab_search(sidtab, ssid);
1060 if (!scontext) {
1061 pr_err("SELinux: %s: unrecognized SID %d\n",
1062 __func__, ssid);
1063 goto out;
1064 }
1065
1066 tcontext = sidtab_search(sidtab, tsid);
1067 if (!tcontext) {
1068 pr_err("SELinux: %s: unrecognized SID %d\n",
1069 __func__, tsid);
1070 goto out;
1071 }
1072
1073 tclass = unmap_class(&policy->map, orig_tclass);
1074 if (unlikely(orig_tclass && !tclass)) {
1075 if (policydb->allow_unknown)
1076 goto allow;
1077 goto out;
1078 }
1079
1080
1081 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1082 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1083 goto out;
1084 }
1085
1086 avkey.target_class = tclass;
1087 avkey.specified = AVTAB_XPERMS;
1088 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1089 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1090 ebitmap_for_each_positive_bit(sattr, snode, i) {
1091 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1092 avkey.source_type = i + 1;
1093 avkey.target_type = j + 1;
1094 for (node = avtab_search_node(&policydb->te_avtab,
1095 &avkey);
1096 node;
1097 node = avtab_search_node_next(node, avkey.specified))
1098 services_compute_xperms_decision(xpermd, node);
1099
1100 cond_compute_xperms(&policydb->te_cond_avtab,
1101 &avkey, xpermd);
1102 }
1103 }
1104 out:
1105 rcu_read_unlock();
1106 return;
1107 allow:
1108 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1109 goto out;
1110 }
1111
1112 /**
1113 * security_compute_av - Compute access vector decisions.
1114 * @ssid: source security identifier
1115 * @tsid: target security identifier
1116 * @orig_tclass: target security class
1117 * @avd: access vector decisions
1118 * @xperms: extended permissions
1119 *
1120 * Compute a set of access vector decisions based on the
1121 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1122 */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1123 void security_compute_av(u32 ssid,
1124 u32 tsid,
1125 u16 orig_tclass,
1126 struct av_decision *avd,
1127 struct extended_perms *xperms)
1128 {
1129 struct selinux_policy *policy;
1130 struct policydb *policydb;
1131 struct sidtab *sidtab;
1132 u16 tclass;
1133 struct context *scontext = NULL, *tcontext = NULL;
1134
1135 rcu_read_lock();
1136 policy = rcu_dereference(selinux_state.policy);
1137 avd_init(policy, avd);
1138 xperms->len = 0;
1139 if (!selinux_initialized())
1140 goto allow;
1141
1142 policydb = &policy->policydb;
1143 sidtab = policy->sidtab;
1144
1145 scontext = sidtab_search(sidtab, ssid);
1146 if (!scontext) {
1147 pr_err("SELinux: %s: unrecognized SID %d\n",
1148 __func__, ssid);
1149 goto out;
1150 }
1151
1152 /* permissive domain? */
1153 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1154 avd->flags |= AVD_FLAGS_PERMISSIVE;
1155
1156 tcontext = sidtab_search(sidtab, tsid);
1157 if (!tcontext) {
1158 pr_err("SELinux: %s: unrecognized SID %d\n",
1159 __func__, tsid);
1160 goto out;
1161 }
1162
1163 tclass = unmap_class(&policy->map, orig_tclass);
1164 if (unlikely(orig_tclass && !tclass)) {
1165 if (policydb->allow_unknown)
1166 goto allow;
1167 goto out;
1168 }
1169 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1170 xperms);
1171 map_decision(&policy->map, orig_tclass, avd,
1172 policydb->allow_unknown);
1173 out:
1174 rcu_read_unlock();
1175 return;
1176 allow:
1177 avd->allowed = 0xffffffff;
1178 goto out;
1179 }
1180
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1181 void security_compute_av_user(u32 ssid,
1182 u32 tsid,
1183 u16 tclass,
1184 struct av_decision *avd)
1185 {
1186 struct selinux_policy *policy;
1187 struct policydb *policydb;
1188 struct sidtab *sidtab;
1189 struct context *scontext = NULL, *tcontext = NULL;
1190
1191 rcu_read_lock();
1192 policy = rcu_dereference(selinux_state.policy);
1193 avd_init(policy, avd);
1194 if (!selinux_initialized())
1195 goto allow;
1196
1197 policydb = &policy->policydb;
1198 sidtab = policy->sidtab;
1199
1200 scontext = sidtab_search(sidtab, ssid);
1201 if (!scontext) {
1202 pr_err("SELinux: %s: unrecognized SID %d\n",
1203 __func__, ssid);
1204 goto out;
1205 }
1206
1207 /* permissive domain? */
1208 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1209 avd->flags |= AVD_FLAGS_PERMISSIVE;
1210
1211 tcontext = sidtab_search(sidtab, tsid);
1212 if (!tcontext) {
1213 pr_err("SELinux: %s: unrecognized SID %d\n",
1214 __func__, tsid);
1215 goto out;
1216 }
1217
1218 if (unlikely(!tclass)) {
1219 if (policydb->allow_unknown)
1220 goto allow;
1221 goto out;
1222 }
1223
1224 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1225 NULL);
1226 out:
1227 rcu_read_unlock();
1228 return;
1229 allow:
1230 avd->allowed = 0xffffffff;
1231 goto out;
1232 }
1233
1234 /*
1235 * Write the security context string representation of
1236 * the context structure `context' into a dynamically
1237 * allocated string of the correct size. Set `*scontext'
1238 * to point to this string and set `*scontext_len' to
1239 * the length of the string.
1240 */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1241 static int context_struct_to_string(struct policydb *p,
1242 struct context *context,
1243 char **scontext, u32 *scontext_len)
1244 {
1245 char *scontextp;
1246
1247 if (scontext)
1248 *scontext = NULL;
1249 *scontext_len = 0;
1250
1251 if (context->len) {
1252 *scontext_len = context->len;
1253 if (scontext) {
1254 *scontext = kstrdup(context->str, GFP_ATOMIC);
1255 if (!(*scontext))
1256 return -ENOMEM;
1257 }
1258 return 0;
1259 }
1260
1261 /* Compute the size of the context. */
1262 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1263 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1264 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1265 *scontext_len += mls_compute_context_len(p, context);
1266
1267 if (!scontext)
1268 return 0;
1269
1270 /* Allocate space for the context; caller must free this space. */
1271 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1272 if (!scontextp)
1273 return -ENOMEM;
1274 *scontext = scontextp;
1275
1276 /*
1277 * Copy the user name, role name and type name into the context.
1278 */
1279 scontextp += sprintf(scontextp, "%s:%s:%s",
1280 sym_name(p, SYM_USERS, context->user - 1),
1281 sym_name(p, SYM_ROLES, context->role - 1),
1282 sym_name(p, SYM_TYPES, context->type - 1));
1283
1284 mls_sid_to_context(p, context, &scontextp);
1285
1286 *scontextp = 0;
1287
1288 return 0;
1289 }
1290
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1291 static int sidtab_entry_to_string(struct policydb *p,
1292 struct sidtab *sidtab,
1293 struct sidtab_entry *entry,
1294 char **scontext, u32 *scontext_len)
1295 {
1296 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1297
1298 if (rc != -ENOENT)
1299 return rc;
1300
1301 rc = context_struct_to_string(p, &entry->context, scontext,
1302 scontext_len);
1303 if (!rc && scontext)
1304 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1305 return rc;
1306 }
1307
1308 #include "initial_sid_to_string.h"
1309
security_sidtab_hash_stats(char * page)1310 int security_sidtab_hash_stats(char *page)
1311 {
1312 struct selinux_policy *policy;
1313 int rc;
1314
1315 if (!selinux_initialized()) {
1316 pr_err("SELinux: %s: called before initial load_policy\n",
1317 __func__);
1318 return -EINVAL;
1319 }
1320
1321 rcu_read_lock();
1322 policy = rcu_dereference(selinux_state.policy);
1323 rc = sidtab_hash_stats(policy->sidtab, page);
1324 rcu_read_unlock();
1325
1326 return rc;
1327 }
1328
security_get_initial_sid_context(u32 sid)1329 const char *security_get_initial_sid_context(u32 sid)
1330 {
1331 if (unlikely(sid > SECINITSID_NUM))
1332 return NULL;
1333 return initial_sid_to_string[sid];
1334 }
1335
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1336 static int security_sid_to_context_core(u32 sid, char **scontext,
1337 u32 *scontext_len, int force,
1338 int only_invalid)
1339 {
1340 struct selinux_policy *policy;
1341 struct policydb *policydb;
1342 struct sidtab *sidtab;
1343 struct sidtab_entry *entry;
1344 int rc = 0;
1345
1346 if (scontext)
1347 *scontext = NULL;
1348 *scontext_len = 0;
1349
1350 if (!selinux_initialized()) {
1351 if (sid <= SECINITSID_NUM) {
1352 char *scontextp;
1353 const char *s;
1354
1355 /*
1356 * Before the policy is loaded, translate
1357 * SECINITSID_INIT to "kernel", because systemd and
1358 * libselinux < 2.6 take a getcon_raw() result that is
1359 * both non-null and not "kernel" to mean that a policy
1360 * is already loaded.
1361 */
1362 if (sid == SECINITSID_INIT)
1363 sid = SECINITSID_KERNEL;
1364
1365 s = initial_sid_to_string[sid];
1366 if (!s)
1367 return -EINVAL;
1368 *scontext_len = strlen(s) + 1;
1369 if (!scontext)
1370 return 0;
1371 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1372 if (!scontextp)
1373 return -ENOMEM;
1374 *scontext = scontextp;
1375 return 0;
1376 }
1377 pr_err("SELinux: %s: called before initial "
1378 "load_policy on unknown SID %d\n", __func__, sid);
1379 return -EINVAL;
1380 }
1381 rcu_read_lock();
1382 policy = rcu_dereference(selinux_state.policy);
1383 policydb = &policy->policydb;
1384 sidtab = policy->sidtab;
1385
1386 if (force)
1387 entry = sidtab_search_entry_force(sidtab, sid);
1388 else
1389 entry = sidtab_search_entry(sidtab, sid);
1390 if (!entry) {
1391 pr_err("SELinux: %s: unrecognized SID %d\n",
1392 __func__, sid);
1393 rc = -EINVAL;
1394 goto out_unlock;
1395 }
1396 if (only_invalid && !entry->context.len)
1397 goto out_unlock;
1398
1399 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1400 scontext_len);
1401
1402 out_unlock:
1403 rcu_read_unlock();
1404 return rc;
1405
1406 }
1407
1408 /**
1409 * security_sid_to_context - Obtain a context for a given SID.
1410 * @sid: security identifier, SID
1411 * @scontext: security context
1412 * @scontext_len: length in bytes
1413 *
1414 * Write the string representation of the context associated with @sid
1415 * into a dynamically allocated string of the correct size. Set @scontext
1416 * to point to this string and set @scontext_len to the length of the string.
1417 */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1418 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1419 {
1420 return security_sid_to_context_core(sid, scontext,
1421 scontext_len, 0, 0);
1422 }
1423
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1424 int security_sid_to_context_force(u32 sid,
1425 char **scontext, u32 *scontext_len)
1426 {
1427 return security_sid_to_context_core(sid, scontext,
1428 scontext_len, 1, 0);
1429 }
1430
1431 /**
1432 * security_sid_to_context_inval - Obtain a context for a given SID if it
1433 * is invalid.
1434 * @sid: security identifier, SID
1435 * @scontext: security context
1436 * @scontext_len: length in bytes
1437 *
1438 * Write the string representation of the context associated with @sid
1439 * into a dynamically allocated string of the correct size, but only if the
1440 * context is invalid in the current policy. Set @scontext to point to
1441 * this string (or NULL if the context is valid) and set @scontext_len to
1442 * the length of the string (or 0 if the context is valid).
1443 */
security_sid_to_context_inval(u32 sid,char ** scontext,u32 * scontext_len)1444 int security_sid_to_context_inval(u32 sid,
1445 char **scontext, u32 *scontext_len)
1446 {
1447 return security_sid_to_context_core(sid, scontext,
1448 scontext_len, 1, 1);
1449 }
1450
1451 /*
1452 * Caveat: Mutates scontext.
1453 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1454 static int string_to_context_struct(struct policydb *pol,
1455 struct sidtab *sidtabp,
1456 char *scontext,
1457 struct context *ctx,
1458 u32 def_sid)
1459 {
1460 struct role_datum *role;
1461 struct type_datum *typdatum;
1462 struct user_datum *usrdatum;
1463 char *scontextp, *p, oldc;
1464 int rc = 0;
1465
1466 context_init(ctx);
1467
1468 /* Parse the security context. */
1469
1470 rc = -EINVAL;
1471 scontextp = scontext;
1472
1473 /* Extract the user. */
1474 p = scontextp;
1475 while (*p && *p != ':')
1476 p++;
1477
1478 if (*p == 0)
1479 goto out;
1480
1481 *p++ = 0;
1482
1483 usrdatum = symtab_search(&pol->p_users, scontextp);
1484 if (!usrdatum)
1485 goto out;
1486
1487 ctx->user = usrdatum->value;
1488
1489 /* Extract role. */
1490 scontextp = p;
1491 while (*p && *p != ':')
1492 p++;
1493
1494 if (*p == 0)
1495 goto out;
1496
1497 *p++ = 0;
1498
1499 role = symtab_search(&pol->p_roles, scontextp);
1500 if (!role)
1501 goto out;
1502 ctx->role = role->value;
1503
1504 /* Extract type. */
1505 scontextp = p;
1506 while (*p && *p != ':')
1507 p++;
1508 oldc = *p;
1509 *p++ = 0;
1510
1511 typdatum = symtab_search(&pol->p_types, scontextp);
1512 if (!typdatum || typdatum->attribute)
1513 goto out;
1514
1515 ctx->type = typdatum->value;
1516
1517 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1518 if (rc)
1519 goto out;
1520
1521 /* Check the validity of the new context. */
1522 rc = -EINVAL;
1523 if (!policydb_context_isvalid(pol, ctx))
1524 goto out;
1525 rc = 0;
1526 out:
1527 if (rc)
1528 context_destroy(ctx);
1529 return rc;
1530 }
1531
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1532 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1533 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1534 int force)
1535 {
1536 struct selinux_policy *policy;
1537 struct policydb *policydb;
1538 struct sidtab *sidtab;
1539 char *scontext2, *str = NULL;
1540 struct context context;
1541 int rc = 0;
1542
1543 /* An empty security context is never valid. */
1544 if (!scontext_len)
1545 return -EINVAL;
1546
1547 /* Copy the string to allow changes and ensure a NUL terminator */
1548 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1549 if (!scontext2)
1550 return -ENOMEM;
1551
1552 if (!selinux_initialized()) {
1553 u32 i;
1554
1555 for (i = 1; i < SECINITSID_NUM; i++) {
1556 const char *s = initial_sid_to_string[i];
1557
1558 if (s && !strcmp(s, scontext2)) {
1559 *sid = i;
1560 goto out;
1561 }
1562 }
1563 *sid = SECINITSID_KERNEL;
1564 goto out;
1565 }
1566 *sid = SECSID_NULL;
1567
1568 if (force) {
1569 /* Save another copy for storing in uninterpreted form */
1570 rc = -ENOMEM;
1571 str = kstrdup(scontext2, gfp_flags);
1572 if (!str)
1573 goto out;
1574 }
1575 retry:
1576 rcu_read_lock();
1577 policy = rcu_dereference(selinux_state.policy);
1578 policydb = &policy->policydb;
1579 sidtab = policy->sidtab;
1580 rc = string_to_context_struct(policydb, sidtab, scontext2,
1581 &context, def_sid);
1582 if (rc == -EINVAL && force) {
1583 context.str = str;
1584 context.len = strlen(str) + 1;
1585 str = NULL;
1586 } else if (rc)
1587 goto out_unlock;
1588 rc = sidtab_context_to_sid(sidtab, &context, sid);
1589 if (rc == -ESTALE) {
1590 rcu_read_unlock();
1591 if (context.str) {
1592 str = context.str;
1593 context.str = NULL;
1594 }
1595 context_destroy(&context);
1596 goto retry;
1597 }
1598 context_destroy(&context);
1599 out_unlock:
1600 rcu_read_unlock();
1601 out:
1602 kfree(scontext2);
1603 kfree(str);
1604 return rc;
1605 }
1606
1607 /**
1608 * security_context_to_sid - Obtain a SID for a given security context.
1609 * @scontext: security context
1610 * @scontext_len: length in bytes
1611 * @sid: security identifier, SID
1612 * @gfp: context for the allocation
1613 *
1614 * Obtains a SID associated with the security context that
1615 * has the string representation specified by @scontext.
1616 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1617 * memory is available, or 0 on success.
1618 */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1619 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1620 gfp_t gfp)
1621 {
1622 return security_context_to_sid_core(scontext, scontext_len,
1623 sid, SECSID_NULL, gfp, 0);
1624 }
1625
security_context_str_to_sid(const char * scontext,u32 * sid,gfp_t gfp)1626 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1627 {
1628 return security_context_to_sid(scontext, strlen(scontext),
1629 sid, gfp);
1630 }
1631
1632 /**
1633 * security_context_to_sid_default - Obtain a SID for a given security context,
1634 * falling back to specified default if needed.
1635 *
1636 * @scontext: security context
1637 * @scontext_len: length in bytes
1638 * @sid: security identifier, SID
1639 * @def_sid: default SID to assign on error
1640 * @gfp_flags: the allocator get-free-page (GFP) flags
1641 *
1642 * Obtains a SID associated with the security context that
1643 * has the string representation specified by @scontext.
1644 * The default SID is passed to the MLS layer to be used to allow
1645 * kernel labeling of the MLS field if the MLS field is not present
1646 * (for upgrading to MLS without full relabel).
1647 * Implicitly forces adding of the context even if it cannot be mapped yet.
1648 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1649 * memory is available, or 0 on success.
1650 */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1651 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1652 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1653 {
1654 return security_context_to_sid_core(scontext, scontext_len,
1655 sid, def_sid, gfp_flags, 1);
1656 }
1657
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1658 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1659 u32 *sid)
1660 {
1661 return security_context_to_sid_core(scontext, scontext_len,
1662 sid, SECSID_NULL, GFP_KERNEL, 1);
1663 }
1664
compute_sid_handle_invalid_context(struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1665 static int compute_sid_handle_invalid_context(
1666 struct selinux_policy *policy,
1667 struct sidtab_entry *sentry,
1668 struct sidtab_entry *tentry,
1669 u16 tclass,
1670 struct context *newcontext)
1671 {
1672 struct policydb *policydb = &policy->policydb;
1673 struct sidtab *sidtab = policy->sidtab;
1674 char *s = NULL, *t = NULL, *n = NULL;
1675 u32 slen, tlen, nlen;
1676 struct audit_buffer *ab;
1677
1678 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1679 goto out;
1680 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1681 goto out;
1682 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1683 goto out;
1684 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1685 if (!ab)
1686 goto out;
1687 audit_log_format(ab,
1688 "op=security_compute_sid invalid_context=");
1689 /* no need to record the NUL with untrusted strings */
1690 audit_log_n_untrustedstring(ab, n, nlen - 1);
1691 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1692 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1693 audit_log_end(ab);
1694 out:
1695 kfree(s);
1696 kfree(t);
1697 kfree(n);
1698 if (!enforcing_enabled())
1699 return 0;
1700 return -EACCES;
1701 }
1702
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1703 static void filename_compute_type(struct policydb *policydb,
1704 struct context *newcontext,
1705 u32 stype, u32 ttype, u16 tclass,
1706 const char *objname)
1707 {
1708 struct filename_trans_key ft;
1709 struct filename_trans_datum *datum;
1710
1711 /*
1712 * Most filename trans rules are going to live in specific directories
1713 * like /dev or /var/run. This bitmap will quickly skip rule searches
1714 * if the ttype does not contain any rules.
1715 */
1716 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1717 return;
1718
1719 ft.ttype = ttype;
1720 ft.tclass = tclass;
1721 ft.name = objname;
1722
1723 datum = policydb_filenametr_search(policydb, &ft);
1724 while (datum) {
1725 if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1726 newcontext->type = datum->otype;
1727 return;
1728 }
1729 datum = datum->next;
1730 }
1731 }
1732
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u16 specified,const char * objname,u32 * out_sid,bool kern)1733 static int security_compute_sid(u32 ssid,
1734 u32 tsid,
1735 u16 orig_tclass,
1736 u16 specified,
1737 const char *objname,
1738 u32 *out_sid,
1739 bool kern)
1740 {
1741 struct selinux_policy *policy;
1742 struct policydb *policydb;
1743 struct sidtab *sidtab;
1744 struct class_datum *cladatum;
1745 struct context *scontext, *tcontext, newcontext;
1746 struct sidtab_entry *sentry, *tentry;
1747 struct avtab_key avkey;
1748 struct avtab_node *avnode, *node;
1749 u16 tclass;
1750 int rc = 0;
1751 bool sock;
1752
1753 if (!selinux_initialized()) {
1754 switch (orig_tclass) {
1755 case SECCLASS_PROCESS: /* kernel value */
1756 *out_sid = ssid;
1757 break;
1758 default:
1759 *out_sid = tsid;
1760 break;
1761 }
1762 goto out;
1763 }
1764
1765 retry:
1766 cladatum = NULL;
1767 context_init(&newcontext);
1768
1769 rcu_read_lock();
1770
1771 policy = rcu_dereference(selinux_state.policy);
1772
1773 if (kern) {
1774 tclass = unmap_class(&policy->map, orig_tclass);
1775 sock = security_is_socket_class(orig_tclass);
1776 } else {
1777 tclass = orig_tclass;
1778 sock = security_is_socket_class(map_class(&policy->map,
1779 tclass));
1780 }
1781
1782 policydb = &policy->policydb;
1783 sidtab = policy->sidtab;
1784
1785 sentry = sidtab_search_entry(sidtab, ssid);
1786 if (!sentry) {
1787 pr_err("SELinux: %s: unrecognized SID %d\n",
1788 __func__, ssid);
1789 rc = -EINVAL;
1790 goto out_unlock;
1791 }
1792 tentry = sidtab_search_entry(sidtab, tsid);
1793 if (!tentry) {
1794 pr_err("SELinux: %s: unrecognized SID %d\n",
1795 __func__, tsid);
1796 rc = -EINVAL;
1797 goto out_unlock;
1798 }
1799
1800 scontext = &sentry->context;
1801 tcontext = &tentry->context;
1802
1803 if (tclass && tclass <= policydb->p_classes.nprim)
1804 cladatum = policydb->class_val_to_struct[tclass - 1];
1805
1806 /* Set the user identity. */
1807 switch (specified) {
1808 case AVTAB_TRANSITION:
1809 case AVTAB_CHANGE:
1810 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1811 newcontext.user = tcontext->user;
1812 } else {
1813 /* notice this gets both DEFAULT_SOURCE and unset */
1814 /* Use the process user identity. */
1815 newcontext.user = scontext->user;
1816 }
1817 break;
1818 case AVTAB_MEMBER:
1819 /* Use the related object owner. */
1820 newcontext.user = tcontext->user;
1821 break;
1822 }
1823
1824 /* Set the role to default values. */
1825 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1826 newcontext.role = scontext->role;
1827 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1828 newcontext.role = tcontext->role;
1829 } else {
1830 if ((tclass == policydb->process_class) || sock)
1831 newcontext.role = scontext->role;
1832 else
1833 newcontext.role = OBJECT_R_VAL;
1834 }
1835
1836 /* Set the type.
1837 * Look for a type transition/member/change rule.
1838 */
1839 avkey.source_type = scontext->type;
1840 avkey.target_type = tcontext->type;
1841 avkey.target_class = tclass;
1842 avkey.specified = specified;
1843 avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1844
1845 /* If no permanent rule, also check for enabled conditional rules */
1846 if (!avnode) {
1847 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1848 for (; node; node = avtab_search_node_next(node, specified)) {
1849 if (node->key.specified & AVTAB_ENABLED) {
1850 avnode = node;
1851 break;
1852 }
1853 }
1854 }
1855
1856 /* If a permanent rule is found, use the type from
1857 * the type transition/member/change rule. Otherwise,
1858 * set the type to its default values.
1859 */
1860 if (avnode) {
1861 newcontext.type = avnode->datum.u.data;
1862 } else if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1863 newcontext.type = scontext->type;
1864 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1865 newcontext.type = tcontext->type;
1866 } else {
1867 if ((tclass == policydb->process_class) || sock) {
1868 /* Use the type of process. */
1869 newcontext.type = scontext->type;
1870 } else {
1871 /* Use the type of the related object. */
1872 newcontext.type = tcontext->type;
1873 }
1874 }
1875
1876 /* if we have a objname this is a file trans check so check those rules */
1877 if (objname)
1878 filename_compute_type(policydb, &newcontext, scontext->type,
1879 tcontext->type, tclass, objname);
1880
1881 /* Check for class-specific changes. */
1882 if (specified & AVTAB_TRANSITION) {
1883 /* Look for a role transition rule. */
1884 struct role_trans_datum *rtd;
1885 struct role_trans_key rtk = {
1886 .role = scontext->role,
1887 .type = tcontext->type,
1888 .tclass = tclass,
1889 };
1890
1891 rtd = policydb_roletr_search(policydb, &rtk);
1892 if (rtd)
1893 newcontext.role = rtd->new_role;
1894 }
1895
1896 /* Set the MLS attributes.
1897 This is done last because it may allocate memory. */
1898 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1899 &newcontext, sock);
1900 if (rc)
1901 goto out_unlock;
1902
1903 /* Check the validity of the context. */
1904 if (!policydb_context_isvalid(policydb, &newcontext)) {
1905 rc = compute_sid_handle_invalid_context(policy, sentry,
1906 tentry, tclass,
1907 &newcontext);
1908 if (rc)
1909 goto out_unlock;
1910 }
1911 /* Obtain the sid for the context. */
1912 if (context_equal(scontext, &newcontext))
1913 *out_sid = ssid;
1914 else if (context_equal(tcontext, &newcontext))
1915 *out_sid = tsid;
1916 else {
1917 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1918 if (rc == -ESTALE) {
1919 rcu_read_unlock();
1920 context_destroy(&newcontext);
1921 goto retry;
1922 }
1923 }
1924 out_unlock:
1925 rcu_read_unlock();
1926 context_destroy(&newcontext);
1927 out:
1928 return rc;
1929 }
1930
1931 /**
1932 * security_transition_sid - Compute the SID for a new subject/object.
1933 * @ssid: source security identifier
1934 * @tsid: target security identifier
1935 * @tclass: target security class
1936 * @qstr: object name
1937 * @out_sid: security identifier for new subject/object
1938 *
1939 * Compute a SID to use for labeling a new subject or object in the
1940 * class @tclass based on a SID pair (@ssid, @tsid).
1941 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1942 * if insufficient memory is available, or %0 if the new SID was
1943 * computed successfully.
1944 */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1945 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1946 const struct qstr *qstr, u32 *out_sid)
1947 {
1948 return security_compute_sid(ssid, tsid, tclass,
1949 AVTAB_TRANSITION,
1950 qstr ? qstr->name : NULL, out_sid, true);
1951 }
1952
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1953 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1954 const char *objname, u32 *out_sid)
1955 {
1956 return security_compute_sid(ssid, tsid, tclass,
1957 AVTAB_TRANSITION,
1958 objname, out_sid, false);
1959 }
1960
1961 /**
1962 * security_member_sid - Compute the SID for member selection.
1963 * @ssid: source security identifier
1964 * @tsid: target security identifier
1965 * @tclass: target security class
1966 * @out_sid: security identifier for selected member
1967 *
1968 * Compute a SID to use when selecting a member of a polyinstantiated
1969 * object of class @tclass based on a SID pair (@ssid, @tsid).
1970 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1971 * if insufficient memory is available, or %0 if the SID was
1972 * computed successfully.
1973 */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1974 int security_member_sid(u32 ssid,
1975 u32 tsid,
1976 u16 tclass,
1977 u32 *out_sid)
1978 {
1979 return security_compute_sid(ssid, tsid, tclass,
1980 AVTAB_MEMBER, NULL,
1981 out_sid, false);
1982 }
1983
1984 /**
1985 * security_change_sid - Compute the SID for object relabeling.
1986 * @ssid: source security identifier
1987 * @tsid: target security identifier
1988 * @tclass: target security class
1989 * @out_sid: security identifier for selected member
1990 *
1991 * Compute a SID to use for relabeling an object of class @tclass
1992 * based on a SID pair (@ssid, @tsid).
1993 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1994 * if insufficient memory is available, or %0 if the SID was
1995 * computed successfully.
1996 */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1997 int security_change_sid(u32 ssid,
1998 u32 tsid,
1999 u16 tclass,
2000 u32 *out_sid)
2001 {
2002 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
2003 out_sid, false);
2004 }
2005
convert_context_handle_invalid_context(struct policydb * policydb,struct context * context)2006 static inline int convert_context_handle_invalid_context(
2007 struct policydb *policydb,
2008 struct context *context)
2009 {
2010 char *s;
2011 u32 len;
2012
2013 if (enforcing_enabled())
2014 return -EINVAL;
2015
2016 if (!context_struct_to_string(policydb, context, &s, &len)) {
2017 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
2018 s);
2019 kfree(s);
2020 }
2021 return 0;
2022 }
2023
2024 /**
2025 * services_convert_context - Convert a security context across policies.
2026 * @args: populated convert_context_args struct
2027 * @oldc: original context
2028 * @newc: converted context
2029 * @gfp_flags: allocation flags
2030 *
2031 * Convert the values in the security context structure @oldc from the values
2032 * specified in the policy @args->oldp to the values specified in the policy
2033 * @args->newp, storing the new context in @newc, and verifying that the
2034 * context is valid under the new policy.
2035 */
services_convert_context(struct convert_context_args * args,struct context * oldc,struct context * newc,gfp_t gfp_flags)2036 int services_convert_context(struct convert_context_args *args,
2037 struct context *oldc, struct context *newc,
2038 gfp_t gfp_flags)
2039 {
2040 struct ocontext *oc;
2041 struct role_datum *role;
2042 struct type_datum *typdatum;
2043 struct user_datum *usrdatum;
2044 char *s;
2045 u32 len;
2046 int rc;
2047
2048 if (oldc->str) {
2049 s = kstrdup(oldc->str, gfp_flags);
2050 if (!s)
2051 return -ENOMEM;
2052
2053 rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2054 if (rc == -EINVAL) {
2055 /*
2056 * Retain string representation for later mapping.
2057 *
2058 * IMPORTANT: We need to copy the contents of oldc->str
2059 * back into s again because string_to_context_struct()
2060 * may have garbled it.
2061 */
2062 memcpy(s, oldc->str, oldc->len);
2063 context_init(newc);
2064 newc->str = s;
2065 newc->len = oldc->len;
2066 return 0;
2067 }
2068 kfree(s);
2069 if (rc) {
2070 /* Other error condition, e.g. ENOMEM. */
2071 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2072 oldc->str, -rc);
2073 return rc;
2074 }
2075 pr_info("SELinux: Context %s became valid (mapped).\n",
2076 oldc->str);
2077 return 0;
2078 }
2079
2080 context_init(newc);
2081
2082 /* Convert the user. */
2083 usrdatum = symtab_search(&args->newp->p_users,
2084 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2085 if (!usrdatum)
2086 goto bad;
2087 newc->user = usrdatum->value;
2088
2089 /* Convert the role. */
2090 role = symtab_search(&args->newp->p_roles,
2091 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2092 if (!role)
2093 goto bad;
2094 newc->role = role->value;
2095
2096 /* Convert the type. */
2097 typdatum = symtab_search(&args->newp->p_types,
2098 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2099 if (!typdatum)
2100 goto bad;
2101 newc->type = typdatum->value;
2102
2103 /* Convert the MLS fields if dealing with MLS policies */
2104 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2105 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2106 if (rc)
2107 goto bad;
2108 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2109 /*
2110 * Switching between non-MLS and MLS policy:
2111 * ensure that the MLS fields of the context for all
2112 * existing entries in the sidtab are filled in with a
2113 * suitable default value, likely taken from one of the
2114 * initial SIDs.
2115 */
2116 oc = args->newp->ocontexts[OCON_ISID];
2117 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2118 oc = oc->next;
2119 if (!oc) {
2120 pr_err("SELinux: unable to look up"
2121 " the initial SIDs list\n");
2122 goto bad;
2123 }
2124 rc = mls_range_set(newc, &oc->context[0].range);
2125 if (rc)
2126 goto bad;
2127 }
2128
2129 /* Check the validity of the new context. */
2130 if (!policydb_context_isvalid(args->newp, newc)) {
2131 rc = convert_context_handle_invalid_context(args->oldp, oldc);
2132 if (rc)
2133 goto bad;
2134 }
2135
2136 return 0;
2137 bad:
2138 /* Map old representation to string and save it. */
2139 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2140 if (rc)
2141 return rc;
2142 context_destroy(newc);
2143 newc->str = s;
2144 newc->len = len;
2145 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2146 newc->str);
2147 return 0;
2148 }
2149
security_load_policycaps(struct selinux_policy * policy)2150 static void security_load_policycaps(struct selinux_policy *policy)
2151 {
2152 struct policydb *p;
2153 unsigned int i;
2154 struct ebitmap_node *node;
2155
2156 p = &policy->policydb;
2157
2158 for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2159 WRITE_ONCE(selinux_state.policycap[i],
2160 ebitmap_get_bit(&p->policycaps, i));
2161
2162 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2163 pr_info("SELinux: policy capability %s=%d\n",
2164 selinux_policycap_names[i],
2165 ebitmap_get_bit(&p->policycaps, i));
2166
2167 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2168 if (i >= ARRAY_SIZE(selinux_policycap_names))
2169 pr_info("SELinux: unknown policy capability %u\n",
2170 i);
2171 }
2172 }
2173
2174 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2175 struct selinux_policy *newpolicy);
2176
selinux_policy_free(struct selinux_policy * policy)2177 static void selinux_policy_free(struct selinux_policy *policy)
2178 {
2179 if (!policy)
2180 return;
2181
2182 sidtab_destroy(policy->sidtab);
2183 kfree(policy->map.mapping);
2184 policydb_destroy(&policy->policydb);
2185 kfree(policy->sidtab);
2186 kfree(policy);
2187 }
2188
selinux_policy_cond_free(struct selinux_policy * policy)2189 static void selinux_policy_cond_free(struct selinux_policy *policy)
2190 {
2191 cond_policydb_destroy_dup(&policy->policydb);
2192 kfree(policy);
2193 }
2194
selinux_policy_cancel(struct selinux_load_state * load_state)2195 void selinux_policy_cancel(struct selinux_load_state *load_state)
2196 {
2197 struct selinux_state *state = &selinux_state;
2198 struct selinux_policy *oldpolicy;
2199
2200 oldpolicy = rcu_dereference_protected(state->policy,
2201 lockdep_is_held(&state->policy_mutex));
2202
2203 sidtab_cancel_convert(oldpolicy->sidtab);
2204 selinux_policy_free(load_state->policy);
2205 kfree(load_state->convert_data);
2206 }
2207
selinux_notify_policy_change(u32 seqno)2208 static void selinux_notify_policy_change(u32 seqno)
2209 {
2210 /* Flush external caches and notify userspace of policy load */
2211 avc_ss_reset(seqno);
2212 selnl_notify_policyload(seqno);
2213 selinux_status_update_policyload(seqno);
2214 selinux_netlbl_cache_invalidate();
2215 selinux_xfrm_notify_policyload();
2216 selinux_ima_measure_state_locked();
2217 }
2218
selinux_policy_commit(struct selinux_load_state * load_state)2219 void selinux_policy_commit(struct selinux_load_state *load_state)
2220 {
2221 struct selinux_state *state = &selinux_state;
2222 struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2223 unsigned long flags;
2224 u32 seqno;
2225
2226 oldpolicy = rcu_dereference_protected(state->policy,
2227 lockdep_is_held(&state->policy_mutex));
2228
2229 /* If switching between different policy types, log MLS status */
2230 if (oldpolicy) {
2231 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2232 pr_info("SELinux: Disabling MLS support...\n");
2233 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2234 pr_info("SELinux: Enabling MLS support...\n");
2235 }
2236
2237 /* Set latest granting seqno for new policy. */
2238 if (oldpolicy)
2239 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2240 else
2241 newpolicy->latest_granting = 1;
2242 seqno = newpolicy->latest_granting;
2243
2244 /* Install the new policy. */
2245 if (oldpolicy) {
2246 sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2247 rcu_assign_pointer(state->policy, newpolicy);
2248 sidtab_freeze_end(oldpolicy->sidtab, &flags);
2249 } else {
2250 rcu_assign_pointer(state->policy, newpolicy);
2251 }
2252
2253 /* Load the policycaps from the new policy */
2254 security_load_policycaps(newpolicy);
2255
2256 if (!selinux_initialized()) {
2257 /*
2258 * After first policy load, the security server is
2259 * marked as initialized and ready to handle requests and
2260 * any objects created prior to policy load are then labeled.
2261 */
2262 selinux_mark_initialized();
2263 selinux_complete_init();
2264 }
2265
2266 /* Free the old policy */
2267 synchronize_rcu();
2268 selinux_policy_free(oldpolicy);
2269 kfree(load_state->convert_data);
2270
2271 /* Notify others of the policy change */
2272 selinux_notify_policy_change(seqno);
2273 }
2274
2275 /**
2276 * security_load_policy - Load a security policy configuration.
2277 * @data: binary policy data
2278 * @len: length of data in bytes
2279 * @load_state: policy load state
2280 *
2281 * Load a new set of security policy configuration data,
2282 * validate it and convert the SID table as necessary.
2283 * This function will flush the access vector cache after
2284 * loading the new policy.
2285 */
security_load_policy(void * data,size_t len,struct selinux_load_state * load_state)2286 int security_load_policy(void *data, size_t len,
2287 struct selinux_load_state *load_state)
2288 {
2289 struct selinux_state *state = &selinux_state;
2290 struct selinux_policy *newpolicy, *oldpolicy;
2291 struct selinux_policy_convert_data *convert_data;
2292 int rc = 0;
2293 struct policy_file file = { data, len }, *fp = &file;
2294
2295 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2296 if (!newpolicy)
2297 return -ENOMEM;
2298
2299 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2300 if (!newpolicy->sidtab) {
2301 rc = -ENOMEM;
2302 goto err_policy;
2303 }
2304
2305 rc = policydb_read(&newpolicy->policydb, fp);
2306 if (rc)
2307 goto err_sidtab;
2308
2309 newpolicy->policydb.len = len;
2310 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2311 &newpolicy->map);
2312 if (rc)
2313 goto err_policydb;
2314
2315 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2316 if (rc) {
2317 pr_err("SELinux: unable to load the initial SIDs\n");
2318 goto err_mapping;
2319 }
2320
2321 if (!selinux_initialized()) {
2322 /* First policy load, so no need to preserve state from old policy */
2323 load_state->policy = newpolicy;
2324 load_state->convert_data = NULL;
2325 return 0;
2326 }
2327
2328 oldpolicy = rcu_dereference_protected(state->policy,
2329 lockdep_is_held(&state->policy_mutex));
2330
2331 /* Preserve active boolean values from the old policy */
2332 rc = security_preserve_bools(oldpolicy, newpolicy);
2333 if (rc) {
2334 pr_err("SELinux: unable to preserve booleans\n");
2335 goto err_free_isids;
2336 }
2337
2338 /*
2339 * Convert the internal representations of contexts
2340 * in the new SID table.
2341 */
2342
2343 convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2344 if (!convert_data) {
2345 rc = -ENOMEM;
2346 goto err_free_isids;
2347 }
2348
2349 convert_data->args.oldp = &oldpolicy->policydb;
2350 convert_data->args.newp = &newpolicy->policydb;
2351
2352 convert_data->sidtab_params.args = &convert_data->args;
2353 convert_data->sidtab_params.target = newpolicy->sidtab;
2354
2355 rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2356 if (rc) {
2357 pr_err("SELinux: unable to convert the internal"
2358 " representation of contexts in the new SID"
2359 " table\n");
2360 goto err_free_convert_data;
2361 }
2362
2363 load_state->policy = newpolicy;
2364 load_state->convert_data = convert_data;
2365 return 0;
2366
2367 err_free_convert_data:
2368 kfree(convert_data);
2369 err_free_isids:
2370 sidtab_destroy(newpolicy->sidtab);
2371 err_mapping:
2372 kfree(newpolicy->map.mapping);
2373 err_policydb:
2374 policydb_destroy(&newpolicy->policydb);
2375 err_sidtab:
2376 kfree(newpolicy->sidtab);
2377 err_policy:
2378 kfree(newpolicy);
2379
2380 return rc;
2381 }
2382
2383 /**
2384 * ocontext_to_sid - Helper to safely get sid for an ocontext
2385 * @sidtab: SID table
2386 * @c: ocontext structure
2387 * @index: index of the context entry (0 or 1)
2388 * @out_sid: pointer to the resulting SID value
2389 *
2390 * For all ocontexts except OCON_ISID the SID fields are populated
2391 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2392 * operation, this helper must be used to do that safely.
2393 *
2394 * WARNING: This function may return -ESTALE, indicating that the caller
2395 * must retry the operation after re-acquiring the policy pointer!
2396 */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2397 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2398 size_t index, u32 *out_sid)
2399 {
2400 int rc;
2401 u32 sid;
2402
2403 /* Ensure the associated sidtab entry is visible to this thread. */
2404 sid = smp_load_acquire(&c->sid[index]);
2405 if (!sid) {
2406 rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2407 if (rc)
2408 return rc;
2409
2410 /*
2411 * Ensure the new sidtab entry is visible to other threads
2412 * when they see the SID.
2413 */
2414 smp_store_release(&c->sid[index], sid);
2415 }
2416 *out_sid = sid;
2417 return 0;
2418 }
2419
2420 /**
2421 * security_port_sid - Obtain the SID for a port.
2422 * @protocol: protocol number
2423 * @port: port number
2424 * @out_sid: security identifier
2425 */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)2426 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2427 {
2428 struct selinux_policy *policy;
2429 struct policydb *policydb;
2430 struct sidtab *sidtab;
2431 struct ocontext *c;
2432 int rc;
2433
2434 if (!selinux_initialized()) {
2435 *out_sid = SECINITSID_PORT;
2436 return 0;
2437 }
2438
2439 retry:
2440 rc = 0;
2441 rcu_read_lock();
2442 policy = rcu_dereference(selinux_state.policy);
2443 policydb = &policy->policydb;
2444 sidtab = policy->sidtab;
2445
2446 c = policydb->ocontexts[OCON_PORT];
2447 while (c) {
2448 if (c->u.port.protocol == protocol &&
2449 c->u.port.low_port <= port &&
2450 c->u.port.high_port >= port)
2451 break;
2452 c = c->next;
2453 }
2454
2455 if (c) {
2456 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2457 if (rc == -ESTALE) {
2458 rcu_read_unlock();
2459 goto retry;
2460 }
2461 if (rc)
2462 goto out;
2463 } else {
2464 *out_sid = SECINITSID_PORT;
2465 }
2466
2467 out:
2468 rcu_read_unlock();
2469 return rc;
2470 }
2471
2472 /**
2473 * security_ib_pkey_sid - Obtain the SID for a pkey.
2474 * @subnet_prefix: Subnet Prefix
2475 * @pkey_num: pkey number
2476 * @out_sid: security identifier
2477 */
security_ib_pkey_sid(u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2478 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2479 {
2480 struct selinux_policy *policy;
2481 struct policydb *policydb;
2482 struct sidtab *sidtab;
2483 struct ocontext *c;
2484 int rc;
2485
2486 if (!selinux_initialized()) {
2487 *out_sid = SECINITSID_UNLABELED;
2488 return 0;
2489 }
2490
2491 retry:
2492 rc = 0;
2493 rcu_read_lock();
2494 policy = rcu_dereference(selinux_state.policy);
2495 policydb = &policy->policydb;
2496 sidtab = policy->sidtab;
2497
2498 c = policydb->ocontexts[OCON_IBPKEY];
2499 while (c) {
2500 if (c->u.ibpkey.low_pkey <= pkey_num &&
2501 c->u.ibpkey.high_pkey >= pkey_num &&
2502 c->u.ibpkey.subnet_prefix == subnet_prefix)
2503 break;
2504
2505 c = c->next;
2506 }
2507
2508 if (c) {
2509 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2510 if (rc == -ESTALE) {
2511 rcu_read_unlock();
2512 goto retry;
2513 }
2514 if (rc)
2515 goto out;
2516 } else
2517 *out_sid = SECINITSID_UNLABELED;
2518
2519 out:
2520 rcu_read_unlock();
2521 return rc;
2522 }
2523
2524 /**
2525 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2526 * @dev_name: device name
2527 * @port_num: port number
2528 * @out_sid: security identifier
2529 */
security_ib_endport_sid(const char * dev_name,u8 port_num,u32 * out_sid)2530 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2531 {
2532 struct selinux_policy *policy;
2533 struct policydb *policydb;
2534 struct sidtab *sidtab;
2535 struct ocontext *c;
2536 int rc;
2537
2538 if (!selinux_initialized()) {
2539 *out_sid = SECINITSID_UNLABELED;
2540 return 0;
2541 }
2542
2543 retry:
2544 rc = 0;
2545 rcu_read_lock();
2546 policy = rcu_dereference(selinux_state.policy);
2547 policydb = &policy->policydb;
2548 sidtab = policy->sidtab;
2549
2550 c = policydb->ocontexts[OCON_IBENDPORT];
2551 while (c) {
2552 if (c->u.ibendport.port == port_num &&
2553 !strncmp(c->u.ibendport.dev_name,
2554 dev_name,
2555 IB_DEVICE_NAME_MAX))
2556 break;
2557
2558 c = c->next;
2559 }
2560
2561 if (c) {
2562 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2563 if (rc == -ESTALE) {
2564 rcu_read_unlock();
2565 goto retry;
2566 }
2567 if (rc)
2568 goto out;
2569 } else
2570 *out_sid = SECINITSID_UNLABELED;
2571
2572 out:
2573 rcu_read_unlock();
2574 return rc;
2575 }
2576
2577 /**
2578 * security_netif_sid - Obtain the SID for a network interface.
2579 * @name: interface name
2580 * @if_sid: interface SID
2581 */
security_netif_sid(const char * name,u32 * if_sid)2582 int security_netif_sid(const char *name, u32 *if_sid)
2583 {
2584 struct selinux_policy *policy;
2585 struct policydb *policydb;
2586 struct sidtab *sidtab;
2587 int rc;
2588 struct ocontext *c;
2589 bool wildcard_support;
2590
2591 if (!selinux_initialized()) {
2592 *if_sid = SECINITSID_NETIF;
2593 return 0;
2594 }
2595
2596 retry:
2597 rc = 0;
2598 rcu_read_lock();
2599 policy = rcu_dereference(selinux_state.policy);
2600 policydb = &policy->policydb;
2601 sidtab = policy->sidtab;
2602 wildcard_support = ebitmap_get_bit(&policydb->policycaps, POLICYDB_CAP_NETIF_WILDCARD);
2603
2604 c = policydb->ocontexts[OCON_NETIF];
2605 while (c) {
2606 if (wildcard_support) {
2607 if (match_wildcard(c->u.name, name))
2608 break;
2609 } else {
2610 if (strcmp(c->u.name, name) == 0)
2611 break;
2612 }
2613
2614 c = c->next;
2615 }
2616
2617 if (c) {
2618 rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2619 if (rc == -ESTALE) {
2620 rcu_read_unlock();
2621 goto retry;
2622 }
2623 if (rc)
2624 goto out;
2625 } else
2626 *if_sid = SECINITSID_NETIF;
2627
2628 out:
2629 rcu_read_unlock();
2630 return rc;
2631 }
2632
match_ipv6_addrmask(const u32 input[4],const u32 addr[4],const u32 mask[4])2633 static bool match_ipv6_addrmask(const u32 input[4], const u32 addr[4], const u32 mask[4])
2634 {
2635 int i;
2636
2637 for (i = 0; i < 4; i++)
2638 if (addr[i] != (input[i] & mask[i]))
2639 return false;
2640
2641 return true;
2642 }
2643
2644 /**
2645 * security_node_sid - Obtain the SID for a node (host).
2646 * @domain: communication domain aka address family
2647 * @addrp: address
2648 * @addrlen: address length in bytes
2649 * @out_sid: security identifier
2650 */
security_node_sid(u16 domain,const void * addrp,u32 addrlen,u32 * out_sid)2651 int security_node_sid(u16 domain,
2652 const void *addrp,
2653 u32 addrlen,
2654 u32 *out_sid)
2655 {
2656 struct selinux_policy *policy;
2657 struct policydb *policydb;
2658 struct sidtab *sidtab;
2659 int rc;
2660 struct ocontext *c;
2661
2662 if (!selinux_initialized()) {
2663 *out_sid = SECINITSID_NODE;
2664 return 0;
2665 }
2666
2667 retry:
2668 rcu_read_lock();
2669 policy = rcu_dereference(selinux_state.policy);
2670 policydb = &policy->policydb;
2671 sidtab = policy->sidtab;
2672
2673 switch (domain) {
2674 case AF_INET: {
2675 u32 addr;
2676
2677 rc = -EINVAL;
2678 if (addrlen != sizeof(u32))
2679 goto out;
2680
2681 addr = *((const u32 *)addrp);
2682
2683 c = policydb->ocontexts[OCON_NODE];
2684 while (c) {
2685 if (c->u.node.addr == (addr & c->u.node.mask))
2686 break;
2687 c = c->next;
2688 }
2689 break;
2690 }
2691
2692 case AF_INET6:
2693 rc = -EINVAL;
2694 if (addrlen != sizeof(u64) * 2)
2695 goto out;
2696 c = policydb->ocontexts[OCON_NODE6];
2697 while (c) {
2698 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2699 c->u.node6.mask))
2700 break;
2701 c = c->next;
2702 }
2703 break;
2704
2705 default:
2706 rc = 0;
2707 *out_sid = SECINITSID_NODE;
2708 goto out;
2709 }
2710
2711 if (c) {
2712 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2713 if (rc == -ESTALE) {
2714 rcu_read_unlock();
2715 goto retry;
2716 }
2717 if (rc)
2718 goto out;
2719 } else {
2720 *out_sid = SECINITSID_NODE;
2721 }
2722
2723 rc = 0;
2724 out:
2725 rcu_read_unlock();
2726 return rc;
2727 }
2728
2729 #define SIDS_NEL 25
2730
2731 /**
2732 * security_get_user_sids - Obtain reachable SIDs for a user.
2733 * @fromsid: starting SID
2734 * @username: username
2735 * @sids: array of reachable SIDs for user
2736 * @nel: number of elements in @sids
2737 *
2738 * Generate the set of SIDs for legal security contexts
2739 * for a given user that can be reached by @fromsid.
2740 * Set *@sids to point to a dynamically allocated
2741 * array containing the set of SIDs. Set *@nel to the
2742 * number of elements in the array.
2743 */
2744
security_get_user_sids(u32 fromsid,const char * username,u32 ** sids,u32 * nel)2745 int security_get_user_sids(u32 fromsid,
2746 const char *username,
2747 u32 **sids,
2748 u32 *nel)
2749 {
2750 struct selinux_policy *policy;
2751 struct policydb *policydb;
2752 struct sidtab *sidtab;
2753 struct context *fromcon, usercon;
2754 u32 *mysids = NULL, *mysids2, sid;
2755 u32 i, j, mynel, maxnel = SIDS_NEL;
2756 struct user_datum *user;
2757 struct role_datum *role;
2758 struct ebitmap_node *rnode, *tnode;
2759 int rc;
2760
2761 *sids = NULL;
2762 *nel = 0;
2763
2764 if (!selinux_initialized())
2765 return 0;
2766
2767 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2768 if (!mysids)
2769 return -ENOMEM;
2770
2771 retry:
2772 mynel = 0;
2773 rcu_read_lock();
2774 policy = rcu_dereference(selinux_state.policy);
2775 policydb = &policy->policydb;
2776 sidtab = policy->sidtab;
2777
2778 context_init(&usercon);
2779
2780 rc = -EINVAL;
2781 fromcon = sidtab_search(sidtab, fromsid);
2782 if (!fromcon)
2783 goto out_unlock;
2784
2785 rc = -EINVAL;
2786 user = symtab_search(&policydb->p_users, username);
2787 if (!user)
2788 goto out_unlock;
2789
2790 usercon.user = user->value;
2791
2792 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2793 role = policydb->role_val_to_struct[i];
2794 usercon.role = i + 1;
2795 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2796 usercon.type = j + 1;
2797
2798 if (mls_setup_user_range(policydb, fromcon, user,
2799 &usercon))
2800 continue;
2801
2802 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2803 if (rc == -ESTALE) {
2804 rcu_read_unlock();
2805 goto retry;
2806 }
2807 if (rc)
2808 goto out_unlock;
2809 if (mynel < maxnel) {
2810 mysids[mynel++] = sid;
2811 } else {
2812 rc = -ENOMEM;
2813 maxnel += SIDS_NEL;
2814 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2815 if (!mysids2)
2816 goto out_unlock;
2817 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2818 kfree(mysids);
2819 mysids = mysids2;
2820 mysids[mynel++] = sid;
2821 }
2822 }
2823 }
2824 rc = 0;
2825 out_unlock:
2826 rcu_read_unlock();
2827 if (rc || !mynel) {
2828 kfree(mysids);
2829 return rc;
2830 }
2831
2832 rc = -ENOMEM;
2833 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2834 if (!mysids2) {
2835 kfree(mysids);
2836 return rc;
2837 }
2838 for (i = 0, j = 0; i < mynel; i++) {
2839 struct av_decision dummy_avd;
2840 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2841 SECCLASS_PROCESS, /* kernel value */
2842 PROCESS__TRANSITION, AVC_STRICT,
2843 &dummy_avd);
2844 if (!rc)
2845 mysids2[j++] = mysids[i];
2846 cond_resched();
2847 }
2848 kfree(mysids);
2849 *sids = mysids2;
2850 *nel = j;
2851 return 0;
2852 }
2853
2854 /**
2855 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2856 * @policy: policy
2857 * @fstype: filesystem type
2858 * @path: path from root of mount
2859 * @orig_sclass: file security class
2860 * @sid: SID for path
2861 *
2862 * Obtain a SID to use for a file in a filesystem that
2863 * cannot support xattr or use a fixed labeling behavior like
2864 * transition SIDs or task SIDs.
2865 *
2866 * WARNING: This function may return -ESTALE, indicating that the caller
2867 * must retry the operation after re-acquiring the policy pointer!
2868 */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2869 static inline int __security_genfs_sid(struct selinux_policy *policy,
2870 const char *fstype,
2871 const char *path,
2872 u16 orig_sclass,
2873 u32 *sid)
2874 {
2875 struct policydb *policydb = &policy->policydb;
2876 struct sidtab *sidtab = policy->sidtab;
2877 u16 sclass;
2878 struct genfs *genfs;
2879 struct ocontext *c;
2880 int cmp = 0;
2881 bool wildcard;
2882
2883 while (path[0] == '/' && path[1] == '/')
2884 path++;
2885
2886 sclass = unmap_class(&policy->map, orig_sclass);
2887 *sid = SECINITSID_UNLABELED;
2888
2889 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2890 cmp = strcmp(fstype, genfs->fstype);
2891 if (cmp <= 0)
2892 break;
2893 }
2894
2895 if (!genfs || cmp)
2896 return -ENOENT;
2897
2898 wildcard = ebitmap_get_bit(&policy->policydb.policycaps,
2899 POLICYDB_CAP_GENFS_SECLABEL_WILDCARD);
2900 for (c = genfs->head; c; c = c->next) {
2901 if (!c->v.sclass || sclass == c->v.sclass) {
2902 if (wildcard) {
2903 if (match_wildcard(c->u.name, path))
2904 break;
2905 } else {
2906 size_t len = strlen(c->u.name);
2907
2908 if ((strncmp(c->u.name, path, len)) == 0)
2909 break;
2910 }
2911 }
2912 }
2913
2914 if (!c)
2915 return -ENOENT;
2916
2917 return ocontext_to_sid(sidtab, c, 0, sid);
2918 }
2919
2920 /**
2921 * security_genfs_sid - Obtain a SID for a file in a filesystem
2922 * @fstype: filesystem type
2923 * @path: path from root of mount
2924 * @orig_sclass: file security class
2925 * @sid: SID for path
2926 *
2927 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2928 * it afterward.
2929 */
security_genfs_sid(const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2930 int security_genfs_sid(const char *fstype,
2931 const char *path,
2932 u16 orig_sclass,
2933 u32 *sid)
2934 {
2935 struct selinux_policy *policy;
2936 int retval;
2937
2938 if (!selinux_initialized()) {
2939 *sid = SECINITSID_UNLABELED;
2940 return 0;
2941 }
2942
2943 do {
2944 rcu_read_lock();
2945 policy = rcu_dereference(selinux_state.policy);
2946 retval = __security_genfs_sid(policy, fstype, path,
2947 orig_sclass, sid);
2948 rcu_read_unlock();
2949 } while (retval == -ESTALE);
2950 return retval;
2951 }
2952
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2953 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2954 const char *fstype,
2955 const char *path,
2956 u16 orig_sclass,
2957 u32 *sid)
2958 {
2959 /* no lock required, policy is not yet accessible by other threads */
2960 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2961 }
2962
2963 /**
2964 * security_fs_use - Determine how to handle labeling for a filesystem.
2965 * @sb: superblock in question
2966 */
security_fs_use(struct super_block * sb)2967 int security_fs_use(struct super_block *sb)
2968 {
2969 struct selinux_policy *policy;
2970 struct policydb *policydb;
2971 struct sidtab *sidtab;
2972 int rc;
2973 struct ocontext *c;
2974 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2975 const char *fstype = sb->s_type->name;
2976
2977 if (!selinux_initialized()) {
2978 sbsec->behavior = SECURITY_FS_USE_NONE;
2979 sbsec->sid = SECINITSID_UNLABELED;
2980 return 0;
2981 }
2982
2983 retry:
2984 rcu_read_lock();
2985 policy = rcu_dereference(selinux_state.policy);
2986 policydb = &policy->policydb;
2987 sidtab = policy->sidtab;
2988
2989 c = policydb->ocontexts[OCON_FSUSE];
2990 while (c) {
2991 if (strcmp(fstype, c->u.name) == 0)
2992 break;
2993 c = c->next;
2994 }
2995
2996 if (c) {
2997 sbsec->behavior = c->v.behavior;
2998 rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2999 if (rc == -ESTALE) {
3000 rcu_read_unlock();
3001 goto retry;
3002 }
3003 if (rc)
3004 goto out;
3005 } else {
3006 rc = __security_genfs_sid(policy, fstype, "/",
3007 SECCLASS_DIR, &sbsec->sid);
3008 if (rc == -ESTALE) {
3009 rcu_read_unlock();
3010 goto retry;
3011 }
3012 if (rc) {
3013 sbsec->behavior = SECURITY_FS_USE_NONE;
3014 rc = 0;
3015 } else {
3016 sbsec->behavior = SECURITY_FS_USE_GENFS;
3017 }
3018 }
3019
3020 out:
3021 rcu_read_unlock();
3022 return rc;
3023 }
3024
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)3025 int security_get_bools(struct selinux_policy *policy,
3026 u32 *len, char ***names, int **values)
3027 {
3028 struct policydb *policydb;
3029 u32 i;
3030 int rc;
3031
3032 policydb = &policy->policydb;
3033
3034 *names = NULL;
3035 *values = NULL;
3036
3037 rc = 0;
3038 *len = policydb->p_bools.nprim;
3039 if (!*len)
3040 goto out;
3041
3042 rc = -ENOMEM;
3043 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3044 if (!*names)
3045 goto err;
3046
3047 rc = -ENOMEM;
3048 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3049 if (!*values)
3050 goto err;
3051
3052 for (i = 0; i < *len; i++) {
3053 (*values)[i] = policydb->bool_val_to_struct[i]->state;
3054
3055 rc = -ENOMEM;
3056 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3057 GFP_ATOMIC);
3058 if (!(*names)[i])
3059 goto err;
3060 }
3061 rc = 0;
3062 out:
3063 return rc;
3064 err:
3065 if (*names) {
3066 for (i = 0; i < *len; i++)
3067 kfree((*names)[i]);
3068 kfree(*names);
3069 }
3070 kfree(*values);
3071 *len = 0;
3072 *names = NULL;
3073 *values = NULL;
3074 goto out;
3075 }
3076
3077
security_set_bools(u32 len,const int * values)3078 int security_set_bools(u32 len, const int *values)
3079 {
3080 struct selinux_state *state = &selinux_state;
3081 struct selinux_policy *newpolicy, *oldpolicy;
3082 int rc;
3083 u32 i, seqno = 0;
3084
3085 if (!selinux_initialized())
3086 return -EINVAL;
3087
3088 oldpolicy = rcu_dereference_protected(state->policy,
3089 lockdep_is_held(&state->policy_mutex));
3090
3091 /* Consistency check on number of booleans, should never fail */
3092 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3093 return -EINVAL;
3094
3095 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3096 if (!newpolicy)
3097 return -ENOMEM;
3098
3099 /*
3100 * Deep copy only the parts of the policydb that might be
3101 * modified as a result of changing booleans.
3102 */
3103 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3104 if (rc) {
3105 kfree(newpolicy);
3106 return -ENOMEM;
3107 }
3108
3109 /* Update the boolean states in the copy */
3110 for (i = 0; i < len; i++) {
3111 int new_state = !!values[i];
3112 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3113
3114 if (new_state != old_state) {
3115 audit_log(audit_context(), GFP_ATOMIC,
3116 AUDIT_MAC_CONFIG_CHANGE,
3117 "bool=%s val=%d old_val=%d auid=%u ses=%u",
3118 sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3119 new_state,
3120 old_state,
3121 from_kuid(&init_user_ns, audit_get_loginuid(current)),
3122 audit_get_sessionid(current));
3123 newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3124 }
3125 }
3126
3127 /* Re-evaluate the conditional rules in the copy */
3128 evaluate_cond_nodes(&newpolicy->policydb);
3129
3130 /* Set latest granting seqno for new policy */
3131 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3132 seqno = newpolicy->latest_granting;
3133
3134 /* Install the new policy */
3135 rcu_assign_pointer(state->policy, newpolicy);
3136
3137 /*
3138 * Free the conditional portions of the old policydb
3139 * that were copied for the new policy, and the oldpolicy
3140 * structure itself but not what it references.
3141 */
3142 synchronize_rcu();
3143 selinux_policy_cond_free(oldpolicy);
3144
3145 /* Notify others of the policy change */
3146 selinux_notify_policy_change(seqno);
3147 return 0;
3148 }
3149
security_get_bool_value(u32 index)3150 int security_get_bool_value(u32 index)
3151 {
3152 struct selinux_policy *policy;
3153 struct policydb *policydb;
3154 int rc;
3155 u32 len;
3156
3157 if (!selinux_initialized())
3158 return 0;
3159
3160 rcu_read_lock();
3161 policy = rcu_dereference(selinux_state.policy);
3162 policydb = &policy->policydb;
3163
3164 rc = -EFAULT;
3165 len = policydb->p_bools.nprim;
3166 if (index >= len)
3167 goto out;
3168
3169 rc = policydb->bool_val_to_struct[index]->state;
3170 out:
3171 rcu_read_unlock();
3172 return rc;
3173 }
3174
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3175 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3176 struct selinux_policy *newpolicy)
3177 {
3178 int rc, *bvalues = NULL;
3179 char **bnames = NULL;
3180 struct cond_bool_datum *booldatum;
3181 u32 i, nbools = 0;
3182
3183 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3184 if (rc)
3185 goto out;
3186 for (i = 0; i < nbools; i++) {
3187 booldatum = symtab_search(&newpolicy->policydb.p_bools,
3188 bnames[i]);
3189 if (booldatum)
3190 booldatum->state = bvalues[i];
3191 }
3192 evaluate_cond_nodes(&newpolicy->policydb);
3193
3194 out:
3195 if (bnames) {
3196 for (i = 0; i < nbools; i++)
3197 kfree(bnames[i]);
3198 }
3199 kfree(bnames);
3200 kfree(bvalues);
3201 return rc;
3202 }
3203
3204 /*
3205 * security_sid_mls_copy() - computes a new sid based on the given
3206 * sid and the mls portion of mls_sid.
3207 */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)3208 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3209 {
3210 struct selinux_policy *policy;
3211 struct policydb *policydb;
3212 struct sidtab *sidtab;
3213 struct context *context1;
3214 struct context *context2;
3215 struct context newcon;
3216 char *s;
3217 u32 len;
3218 int rc;
3219
3220 if (!selinux_initialized()) {
3221 *new_sid = sid;
3222 return 0;
3223 }
3224
3225 retry:
3226 rc = 0;
3227 context_init(&newcon);
3228
3229 rcu_read_lock();
3230 policy = rcu_dereference(selinux_state.policy);
3231 policydb = &policy->policydb;
3232 sidtab = policy->sidtab;
3233
3234 if (!policydb->mls_enabled) {
3235 *new_sid = sid;
3236 goto out_unlock;
3237 }
3238
3239 rc = -EINVAL;
3240 context1 = sidtab_search(sidtab, sid);
3241 if (!context1) {
3242 pr_err("SELinux: %s: unrecognized SID %d\n",
3243 __func__, sid);
3244 goto out_unlock;
3245 }
3246
3247 rc = -EINVAL;
3248 context2 = sidtab_search(sidtab, mls_sid);
3249 if (!context2) {
3250 pr_err("SELinux: %s: unrecognized SID %d\n",
3251 __func__, mls_sid);
3252 goto out_unlock;
3253 }
3254
3255 newcon.user = context1->user;
3256 newcon.role = context1->role;
3257 newcon.type = context1->type;
3258 rc = mls_context_cpy(&newcon, context2);
3259 if (rc)
3260 goto out_unlock;
3261
3262 /* Check the validity of the new context. */
3263 if (!policydb_context_isvalid(policydb, &newcon)) {
3264 rc = convert_context_handle_invalid_context(policydb,
3265 &newcon);
3266 if (rc) {
3267 if (!context_struct_to_string(policydb, &newcon, &s,
3268 &len)) {
3269 struct audit_buffer *ab;
3270
3271 ab = audit_log_start(audit_context(),
3272 GFP_ATOMIC,
3273 AUDIT_SELINUX_ERR);
3274 audit_log_format(ab,
3275 "op=security_sid_mls_copy invalid_context=");
3276 /* don't record NUL with untrusted strings */
3277 audit_log_n_untrustedstring(ab, s, len - 1);
3278 audit_log_end(ab);
3279 kfree(s);
3280 }
3281 goto out_unlock;
3282 }
3283 }
3284 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3285 if (rc == -ESTALE) {
3286 rcu_read_unlock();
3287 context_destroy(&newcon);
3288 goto retry;
3289 }
3290 out_unlock:
3291 rcu_read_unlock();
3292 context_destroy(&newcon);
3293 return rc;
3294 }
3295
3296 /**
3297 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3298 * @nlbl_sid: NetLabel SID
3299 * @nlbl_type: NetLabel labeling protocol type
3300 * @xfrm_sid: XFRM SID
3301 * @peer_sid: network peer sid
3302 *
3303 * Description:
3304 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3305 * resolved into a single SID it is returned via @peer_sid and the function
3306 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3307 * returns a negative value. A table summarizing the behavior is below:
3308 *
3309 * | function return | @sid
3310 * ------------------------------+-----------------+-----------------
3311 * no peer labels | 0 | SECSID_NULL
3312 * single peer label | 0 | <peer_label>
3313 * multiple, consistent labels | 0 | <peer_label>
3314 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3315 *
3316 */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3317 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3318 u32 xfrm_sid,
3319 u32 *peer_sid)
3320 {
3321 struct selinux_policy *policy;
3322 struct policydb *policydb;
3323 struct sidtab *sidtab;
3324 int rc;
3325 struct context *nlbl_ctx;
3326 struct context *xfrm_ctx;
3327
3328 *peer_sid = SECSID_NULL;
3329
3330 /* handle the common (which also happens to be the set of easy) cases
3331 * right away, these two if statements catch everything involving a
3332 * single or absent peer SID/label */
3333 if (xfrm_sid == SECSID_NULL) {
3334 *peer_sid = nlbl_sid;
3335 return 0;
3336 }
3337 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3338 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3339 * is present */
3340 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3341 *peer_sid = xfrm_sid;
3342 return 0;
3343 }
3344
3345 if (!selinux_initialized())
3346 return 0;
3347
3348 rcu_read_lock();
3349 policy = rcu_dereference(selinux_state.policy);
3350 policydb = &policy->policydb;
3351 sidtab = policy->sidtab;
3352
3353 /*
3354 * We don't need to check initialized here since the only way both
3355 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3356 * security server was initialized and state->initialized was true.
3357 */
3358 if (!policydb->mls_enabled) {
3359 rc = 0;
3360 goto out;
3361 }
3362
3363 rc = -EINVAL;
3364 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3365 if (!nlbl_ctx) {
3366 pr_err("SELinux: %s: unrecognized SID %d\n",
3367 __func__, nlbl_sid);
3368 goto out;
3369 }
3370 rc = -EINVAL;
3371 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3372 if (!xfrm_ctx) {
3373 pr_err("SELinux: %s: unrecognized SID %d\n",
3374 __func__, xfrm_sid);
3375 goto out;
3376 }
3377 rc = (mls_context_equal(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3378 if (rc)
3379 goto out;
3380
3381 /* at present NetLabel SIDs/labels really only carry MLS
3382 * information so if the MLS portion of the NetLabel SID
3383 * matches the MLS portion of the labeled XFRM SID/label
3384 * then pass along the XFRM SID as it is the most
3385 * expressive */
3386 *peer_sid = xfrm_sid;
3387 out:
3388 rcu_read_unlock();
3389 return rc;
3390 }
3391
get_classes_callback(void * k,void * d,void * args)3392 static int get_classes_callback(void *k, void *d, void *args)
3393 {
3394 struct class_datum *datum = d;
3395 char *name = k, **classes = args;
3396 u32 value = datum->value - 1;
3397
3398 classes[value] = kstrdup(name, GFP_ATOMIC);
3399 if (!classes[value])
3400 return -ENOMEM;
3401
3402 return 0;
3403 }
3404
security_get_classes(struct selinux_policy * policy,char *** classes,u32 * nclasses)3405 int security_get_classes(struct selinux_policy *policy,
3406 char ***classes, u32 *nclasses)
3407 {
3408 struct policydb *policydb;
3409 int rc;
3410
3411 policydb = &policy->policydb;
3412
3413 rc = -ENOMEM;
3414 *nclasses = policydb->p_classes.nprim;
3415 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3416 if (!*classes)
3417 goto out;
3418
3419 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3420 *classes);
3421 if (rc) {
3422 u32 i;
3423
3424 for (i = 0; i < *nclasses; i++)
3425 kfree((*classes)[i]);
3426 kfree(*classes);
3427 }
3428
3429 out:
3430 return rc;
3431 }
3432
get_permissions_callback(void * k,void * d,void * args)3433 static int get_permissions_callback(void *k, void *d, void *args)
3434 {
3435 struct perm_datum *datum = d;
3436 char *name = k, **perms = args;
3437 u32 value = datum->value - 1;
3438
3439 perms[value] = kstrdup(name, GFP_ATOMIC);
3440 if (!perms[value])
3441 return -ENOMEM;
3442
3443 return 0;
3444 }
3445
security_get_permissions(struct selinux_policy * policy,const char * class,char *** perms,u32 * nperms)3446 int security_get_permissions(struct selinux_policy *policy,
3447 const char *class, char ***perms, u32 *nperms)
3448 {
3449 struct policydb *policydb;
3450 u32 i;
3451 int rc;
3452 struct class_datum *match;
3453
3454 policydb = &policy->policydb;
3455
3456 rc = -EINVAL;
3457 match = symtab_search(&policydb->p_classes, class);
3458 if (!match) {
3459 pr_err("SELinux: %s: unrecognized class %s\n",
3460 __func__, class);
3461 goto out;
3462 }
3463
3464 rc = -ENOMEM;
3465 *nperms = match->permissions.nprim;
3466 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3467 if (!*perms)
3468 goto out;
3469
3470 if (match->comdatum) {
3471 rc = hashtab_map(&match->comdatum->permissions.table,
3472 get_permissions_callback, *perms);
3473 if (rc)
3474 goto err;
3475 }
3476
3477 rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3478 *perms);
3479 if (rc)
3480 goto err;
3481
3482 out:
3483 return rc;
3484
3485 err:
3486 for (i = 0; i < *nperms; i++)
3487 kfree((*perms)[i]);
3488 kfree(*perms);
3489 return rc;
3490 }
3491
security_get_reject_unknown(void)3492 int security_get_reject_unknown(void)
3493 {
3494 struct selinux_policy *policy;
3495 int value;
3496
3497 if (!selinux_initialized())
3498 return 0;
3499
3500 rcu_read_lock();
3501 policy = rcu_dereference(selinux_state.policy);
3502 value = policy->policydb.reject_unknown;
3503 rcu_read_unlock();
3504 return value;
3505 }
3506
security_get_allow_unknown(void)3507 int security_get_allow_unknown(void)
3508 {
3509 struct selinux_policy *policy;
3510 int value;
3511
3512 if (!selinux_initialized())
3513 return 0;
3514
3515 rcu_read_lock();
3516 policy = rcu_dereference(selinux_state.policy);
3517 value = policy->policydb.allow_unknown;
3518 rcu_read_unlock();
3519 return value;
3520 }
3521
3522 /**
3523 * security_policycap_supported - Check for a specific policy capability
3524 * @req_cap: capability
3525 *
3526 * Description:
3527 * This function queries the currently loaded policy to see if it supports the
3528 * capability specified by @req_cap. Returns true (1) if the capability is
3529 * supported, false (0) if it isn't supported.
3530 *
3531 */
security_policycap_supported(unsigned int req_cap)3532 int security_policycap_supported(unsigned int req_cap)
3533 {
3534 struct selinux_policy *policy;
3535 int rc;
3536
3537 if (!selinux_initialized())
3538 return 0;
3539
3540 rcu_read_lock();
3541 policy = rcu_dereference(selinux_state.policy);
3542 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3543 rcu_read_unlock();
3544
3545 return rc;
3546 }
3547
3548 struct selinux_audit_rule {
3549 u32 au_seqno;
3550 struct context au_ctxt;
3551 };
3552
selinux_audit_rule_free(void * vrule)3553 void selinux_audit_rule_free(void *vrule)
3554 {
3555 struct selinux_audit_rule *rule = vrule;
3556
3557 if (rule) {
3558 context_destroy(&rule->au_ctxt);
3559 kfree(rule);
3560 }
3561 }
3562
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule,gfp_t gfp)3563 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3564 gfp_t gfp)
3565 {
3566 struct selinux_state *state = &selinux_state;
3567 struct selinux_policy *policy;
3568 struct policydb *policydb;
3569 struct selinux_audit_rule *tmprule;
3570 struct role_datum *roledatum;
3571 struct type_datum *typedatum;
3572 struct user_datum *userdatum;
3573 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3574 int rc = 0;
3575
3576 *rule = NULL;
3577
3578 if (!selinux_initialized())
3579 return -EOPNOTSUPP;
3580
3581 switch (field) {
3582 case AUDIT_SUBJ_USER:
3583 case AUDIT_SUBJ_ROLE:
3584 case AUDIT_SUBJ_TYPE:
3585 case AUDIT_OBJ_USER:
3586 case AUDIT_OBJ_ROLE:
3587 case AUDIT_OBJ_TYPE:
3588 /* only 'equals' and 'not equals' fit user, role, and type */
3589 if (op != Audit_equal && op != Audit_not_equal)
3590 return -EINVAL;
3591 break;
3592 case AUDIT_SUBJ_SEN:
3593 case AUDIT_SUBJ_CLR:
3594 case AUDIT_OBJ_LEV_LOW:
3595 case AUDIT_OBJ_LEV_HIGH:
3596 /* we do not allow a range, indicated by the presence of '-' */
3597 if (strchr(rulestr, '-'))
3598 return -EINVAL;
3599 break;
3600 default:
3601 /* only the above fields are valid */
3602 return -EINVAL;
3603 }
3604
3605 tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3606 if (!tmprule)
3607 return -ENOMEM;
3608 context_init(&tmprule->au_ctxt);
3609
3610 rcu_read_lock();
3611 policy = rcu_dereference(state->policy);
3612 policydb = &policy->policydb;
3613 tmprule->au_seqno = policy->latest_granting;
3614 switch (field) {
3615 case AUDIT_SUBJ_USER:
3616 case AUDIT_OBJ_USER:
3617 userdatum = symtab_search(&policydb->p_users, rulestr);
3618 if (!userdatum) {
3619 rc = -EINVAL;
3620 goto err;
3621 }
3622 tmprule->au_ctxt.user = userdatum->value;
3623 break;
3624 case AUDIT_SUBJ_ROLE:
3625 case AUDIT_OBJ_ROLE:
3626 roledatum = symtab_search(&policydb->p_roles, rulestr);
3627 if (!roledatum) {
3628 rc = -EINVAL;
3629 goto err;
3630 }
3631 tmprule->au_ctxt.role = roledatum->value;
3632 break;
3633 case AUDIT_SUBJ_TYPE:
3634 case AUDIT_OBJ_TYPE:
3635 typedatum = symtab_search(&policydb->p_types, rulestr);
3636 if (!typedatum) {
3637 rc = -EINVAL;
3638 goto err;
3639 }
3640 tmprule->au_ctxt.type = typedatum->value;
3641 break;
3642 case AUDIT_SUBJ_SEN:
3643 case AUDIT_SUBJ_CLR:
3644 case AUDIT_OBJ_LEV_LOW:
3645 case AUDIT_OBJ_LEV_HIGH:
3646 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3647 GFP_ATOMIC);
3648 if (rc)
3649 goto err;
3650 break;
3651 }
3652 rcu_read_unlock();
3653
3654 *rule = tmprule;
3655 return 0;
3656
3657 err:
3658 rcu_read_unlock();
3659 selinux_audit_rule_free(tmprule);
3660 *rule = NULL;
3661 return rc;
3662 }
3663
3664 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3665 int selinux_audit_rule_known(struct audit_krule *rule)
3666 {
3667 u32 i;
3668
3669 for (i = 0; i < rule->field_count; i++) {
3670 struct audit_field *f = &rule->fields[i];
3671 switch (f->type) {
3672 case AUDIT_SUBJ_USER:
3673 case AUDIT_SUBJ_ROLE:
3674 case AUDIT_SUBJ_TYPE:
3675 case AUDIT_SUBJ_SEN:
3676 case AUDIT_SUBJ_CLR:
3677 case AUDIT_OBJ_USER:
3678 case AUDIT_OBJ_ROLE:
3679 case AUDIT_OBJ_TYPE:
3680 case AUDIT_OBJ_LEV_LOW:
3681 case AUDIT_OBJ_LEV_HIGH:
3682 return 1;
3683 }
3684 }
3685
3686 return 0;
3687 }
3688
selinux_audit_rule_match(struct lsm_prop * prop,u32 field,u32 op,void * vrule)3689 int selinux_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op, void *vrule)
3690 {
3691 struct selinux_state *state = &selinux_state;
3692 struct selinux_policy *policy;
3693 struct context *ctxt;
3694 struct mls_level *level;
3695 struct selinux_audit_rule *rule = vrule;
3696 int match = 0;
3697
3698 if (unlikely(!rule)) {
3699 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3700 return -ENOENT;
3701 }
3702
3703 if (!selinux_initialized())
3704 return 0;
3705
3706 rcu_read_lock();
3707
3708 policy = rcu_dereference(state->policy);
3709
3710 if (rule->au_seqno < policy->latest_granting) {
3711 match = -ESTALE;
3712 goto out;
3713 }
3714
3715 ctxt = sidtab_search(policy->sidtab, prop->selinux.secid);
3716 if (unlikely(!ctxt)) {
3717 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3718 prop->selinux.secid);
3719 match = -ENOENT;
3720 goto out;
3721 }
3722
3723 /* a field/op pair that is not caught here will simply fall through
3724 without a match */
3725 switch (field) {
3726 case AUDIT_SUBJ_USER:
3727 case AUDIT_OBJ_USER:
3728 switch (op) {
3729 case Audit_equal:
3730 match = (ctxt->user == rule->au_ctxt.user);
3731 break;
3732 case Audit_not_equal:
3733 match = (ctxt->user != rule->au_ctxt.user);
3734 break;
3735 }
3736 break;
3737 case AUDIT_SUBJ_ROLE:
3738 case AUDIT_OBJ_ROLE:
3739 switch (op) {
3740 case Audit_equal:
3741 match = (ctxt->role == rule->au_ctxt.role);
3742 break;
3743 case Audit_not_equal:
3744 match = (ctxt->role != rule->au_ctxt.role);
3745 break;
3746 }
3747 break;
3748 case AUDIT_SUBJ_TYPE:
3749 case AUDIT_OBJ_TYPE:
3750 switch (op) {
3751 case Audit_equal:
3752 match = (ctxt->type == rule->au_ctxt.type);
3753 break;
3754 case Audit_not_equal:
3755 match = (ctxt->type != rule->au_ctxt.type);
3756 break;
3757 }
3758 break;
3759 case AUDIT_SUBJ_SEN:
3760 case AUDIT_SUBJ_CLR:
3761 case AUDIT_OBJ_LEV_LOW:
3762 case AUDIT_OBJ_LEV_HIGH:
3763 level = ((field == AUDIT_SUBJ_SEN ||
3764 field == AUDIT_OBJ_LEV_LOW) ?
3765 &ctxt->range.level[0] : &ctxt->range.level[1]);
3766 switch (op) {
3767 case Audit_equal:
3768 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3769 level);
3770 break;
3771 case Audit_not_equal:
3772 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3773 level);
3774 break;
3775 case Audit_lt:
3776 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3777 level) &&
3778 !mls_level_eq(&rule->au_ctxt.range.level[0],
3779 level));
3780 break;
3781 case Audit_le:
3782 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3783 level);
3784 break;
3785 case Audit_gt:
3786 match = (mls_level_dom(level,
3787 &rule->au_ctxt.range.level[0]) &&
3788 !mls_level_eq(level,
3789 &rule->au_ctxt.range.level[0]));
3790 break;
3791 case Audit_ge:
3792 match = mls_level_dom(level,
3793 &rule->au_ctxt.range.level[0]);
3794 break;
3795 }
3796 }
3797
3798 out:
3799 rcu_read_unlock();
3800 return match;
3801 }
3802
aurule_avc_callback(u32 event)3803 static int aurule_avc_callback(u32 event)
3804 {
3805 if (event == AVC_CALLBACK_RESET)
3806 return audit_update_lsm_rules();
3807 return 0;
3808 }
3809
aurule_init(void)3810 static int __init aurule_init(void)
3811 {
3812 int err;
3813
3814 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3815 if (err)
3816 panic("avc_add_callback() failed, error %d\n", err);
3817
3818 return err;
3819 }
3820 __initcall(aurule_init);
3821
3822 #ifdef CONFIG_NETLABEL
3823 /**
3824 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3825 * @secattr: the NetLabel packet security attributes
3826 * @sid: the SELinux SID
3827 *
3828 * Description:
3829 * Attempt to cache the context in @ctx, which was derived from the packet in
3830 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3831 * already been initialized.
3832 *
3833 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3834 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3835 u32 sid)
3836 {
3837 u32 *sid_cache;
3838
3839 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3840 if (sid_cache == NULL)
3841 return;
3842 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3843 if (secattr->cache == NULL) {
3844 kfree(sid_cache);
3845 return;
3846 }
3847
3848 *sid_cache = sid;
3849 secattr->cache->free = kfree;
3850 secattr->cache->data = sid_cache;
3851 secattr->flags |= NETLBL_SECATTR_CACHE;
3852 }
3853
3854 /**
3855 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3856 * @secattr: the NetLabel packet security attributes
3857 * @sid: the SELinux SID
3858 *
3859 * Description:
3860 * Convert the given NetLabel security attributes in @secattr into a
3861 * SELinux SID. If the @secattr field does not contain a full SELinux
3862 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3863 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3864 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3865 * conversion for future lookups. Returns zero on success, negative values on
3866 * failure.
3867 *
3868 */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3869 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3870 u32 *sid)
3871 {
3872 struct selinux_policy *policy;
3873 struct policydb *policydb;
3874 struct sidtab *sidtab;
3875 int rc;
3876 struct context *ctx;
3877 struct context ctx_new;
3878
3879 if (!selinux_initialized()) {
3880 *sid = SECSID_NULL;
3881 return 0;
3882 }
3883
3884 retry:
3885 rc = 0;
3886 rcu_read_lock();
3887 policy = rcu_dereference(selinux_state.policy);
3888 policydb = &policy->policydb;
3889 sidtab = policy->sidtab;
3890
3891 if (secattr->flags & NETLBL_SECATTR_CACHE)
3892 *sid = *(u32 *)secattr->cache->data;
3893 else if (secattr->flags & NETLBL_SECATTR_SECID)
3894 *sid = secattr->attr.secid;
3895 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3896 rc = -EIDRM;
3897 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3898 if (ctx == NULL)
3899 goto out;
3900
3901 context_init(&ctx_new);
3902 ctx_new.user = ctx->user;
3903 ctx_new.role = ctx->role;
3904 ctx_new.type = ctx->type;
3905 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3906 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3907 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3908 if (rc)
3909 goto out;
3910 }
3911 rc = -EIDRM;
3912 if (!mls_context_isvalid(policydb, &ctx_new)) {
3913 ebitmap_destroy(&ctx_new.range.level[0].cat);
3914 goto out;
3915 }
3916
3917 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3918 ebitmap_destroy(&ctx_new.range.level[0].cat);
3919 if (rc == -ESTALE) {
3920 rcu_read_unlock();
3921 goto retry;
3922 }
3923 if (rc)
3924 goto out;
3925
3926 security_netlbl_cache_add(secattr, *sid);
3927 } else
3928 *sid = SECSID_NULL;
3929
3930 out:
3931 rcu_read_unlock();
3932 return rc;
3933 }
3934
3935 /**
3936 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3937 * @sid: the SELinux SID
3938 * @secattr: the NetLabel packet security attributes
3939 *
3940 * Description:
3941 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3942 * Returns zero on success, negative values on failure.
3943 *
3944 */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3945 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3946 {
3947 struct selinux_policy *policy;
3948 struct policydb *policydb;
3949 int rc;
3950 struct context *ctx;
3951
3952 if (!selinux_initialized())
3953 return 0;
3954
3955 rcu_read_lock();
3956 policy = rcu_dereference(selinux_state.policy);
3957 policydb = &policy->policydb;
3958
3959 rc = -ENOENT;
3960 ctx = sidtab_search(policy->sidtab, sid);
3961 if (ctx == NULL)
3962 goto out;
3963
3964 rc = -ENOMEM;
3965 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3966 GFP_ATOMIC);
3967 if (secattr->domain == NULL)
3968 goto out;
3969
3970 secattr->attr.secid = sid;
3971 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3972 mls_export_netlbl_lvl(policydb, ctx, secattr);
3973 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3974 out:
3975 rcu_read_unlock();
3976 return rc;
3977 }
3978 #endif /* CONFIG_NETLABEL */
3979
3980 /**
3981 * __security_read_policy - read the policy.
3982 * @policy: SELinux policy
3983 * @data: binary policy data
3984 * @len: length of data in bytes
3985 *
3986 */
__security_read_policy(struct selinux_policy * policy,void * data,size_t * len)3987 static int __security_read_policy(struct selinux_policy *policy,
3988 void *data, size_t *len)
3989 {
3990 int rc;
3991 struct policy_file fp;
3992
3993 fp.data = data;
3994 fp.len = *len;
3995
3996 rc = policydb_write(&policy->policydb, &fp);
3997 if (rc)
3998 return rc;
3999
4000 *len = (unsigned long)fp.data - (unsigned long)data;
4001 return 0;
4002 }
4003
4004 /**
4005 * security_read_policy - read the policy.
4006 * @data: binary policy data
4007 * @len: length of data in bytes
4008 *
4009 */
security_read_policy(void ** data,size_t * len)4010 int security_read_policy(void **data, size_t *len)
4011 {
4012 struct selinux_state *state = &selinux_state;
4013 struct selinux_policy *policy;
4014
4015 policy = rcu_dereference_protected(
4016 state->policy, lockdep_is_held(&state->policy_mutex));
4017 if (!policy)
4018 return -EINVAL;
4019
4020 *len = policy->policydb.len;
4021 *data = vmalloc_user(*len);
4022 if (!*data)
4023 return -ENOMEM;
4024
4025 return __security_read_policy(policy, *data, len);
4026 }
4027
4028 /**
4029 * security_read_state_kernel - read the policy.
4030 * @data: binary policy data
4031 * @len: length of data in bytes
4032 *
4033 * Allocates kernel memory for reading SELinux policy.
4034 * This function is for internal use only and should not
4035 * be used for returning data to user space.
4036 *
4037 * This function must be called with policy_mutex held.
4038 */
security_read_state_kernel(void ** data,size_t * len)4039 int security_read_state_kernel(void **data, size_t *len)
4040 {
4041 int err;
4042 struct selinux_state *state = &selinux_state;
4043 struct selinux_policy *policy;
4044
4045 policy = rcu_dereference_protected(
4046 state->policy, lockdep_is_held(&state->policy_mutex));
4047 if (!policy)
4048 return -EINVAL;
4049
4050 *len = policy->policydb.len;
4051 *data = vmalloc(*len);
4052 if (!*data)
4053 return -ENOMEM;
4054
4055 err = __security_read_policy(policy, *data, len);
4056 if (err) {
4057 vfree(*data);
4058 *data = NULL;
4059 *len = 0;
4060 }
4061 return err;
4062 }
4063