xref: /linux/drivers/md/dm-integrity.c (revision 16cd1c2657762c62a00ac78eecaa25868f7e601b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include "dm-bio-record.h"
11 
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <crypto/utils.h>
25 #include <linux/async_tx.h>
26 #include <linux/dm-bufio.h>
27 
28 #include "dm-audit.h"
29 
30 #define DM_MSG_PREFIX "integrity"
31 
32 #define DEFAULT_INTERLEAVE_SECTORS	32768
33 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
34 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
35 #define DEFAULT_BUFFER_SECTORS		128
36 #define DEFAULT_JOURNAL_WATERMARK	50
37 #define DEFAULT_SYNC_MSEC		10000
38 #define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
39 #define MIN_LOG2_INTERLEAVE_SECTORS	3
40 #define MAX_LOG2_INTERLEAVE_SECTORS	31
41 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
42 #define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
43 #define RECALC_WRITE_SUPER		16
44 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
45 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
46 #define DISCARD_FILLER			0xf6
47 #define SALT_SIZE			16
48 #define RECHECK_POOL_SIZE		256
49 
50 /*
51  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
52  * so it should not be enabled in the official kernel
53  */
54 //#define DEBUG_PRINT
55 //#define INTERNAL_VERIFY
56 
57 /*
58  * On disk structures
59  */
60 
61 #define SB_MAGIC			"integrt"
62 #define SB_VERSION_1			1
63 #define SB_VERSION_2			2
64 #define SB_VERSION_3			3
65 #define SB_VERSION_4			4
66 #define SB_VERSION_5			5
67 #define SB_VERSION_6			6
68 #define SB_SECTORS			8
69 #define MAX_SECTORS_PER_BLOCK		8
70 
71 struct superblock {
72 	__u8 magic[8];
73 	__u8 version;
74 	__u8 log2_interleave_sectors;
75 	__le16 integrity_tag_size;
76 	__le32 journal_sections;
77 	__le64 provided_data_sectors;	/* userspace uses this value */
78 	__le32 flags;
79 	__u8 log2_sectors_per_block;
80 	__u8 log2_blocks_per_bitmap_bit;
81 	__u8 pad[2];
82 	__le64 recalc_sector;
83 	__u8 pad2[8];
84 	__u8 salt[SALT_SIZE];
85 };
86 
87 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
88 #define SB_FLAG_RECALCULATING		0x2
89 #define SB_FLAG_DIRTY_BITMAP		0x4
90 #define SB_FLAG_FIXED_PADDING		0x8
91 #define SB_FLAG_FIXED_HMAC		0x10
92 #define SB_FLAG_INLINE			0x20
93 
94 #define	JOURNAL_ENTRY_ROUNDUP		8
95 
96 typedef __le64 commit_id_t;
97 #define JOURNAL_MAC_PER_SECTOR		8
98 
99 struct journal_entry {
100 	union {
101 		struct {
102 			__le32 sector_lo;
103 			__le32 sector_hi;
104 		} s;
105 		__le64 sector;
106 	} u;
107 	commit_id_t last_bytes[];
108 	/* __u8 tag[0]; */
109 };
110 
111 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
112 
113 #if BITS_PER_LONG == 64
114 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
115 #else
116 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
117 #endif
118 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
119 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
120 #define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
121 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
122 #define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
123 
124 #define JOURNAL_BLOCK_SECTORS		8
125 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
126 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
127 
128 struct journal_sector {
129 	struct_group(sectors,
130 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
131 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
132 	);
133 	commit_id_t commit_id;
134 };
135 
136 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
137 
138 #define METADATA_PADDING_SECTORS	8
139 
140 #define N_COMMIT_IDS			4
141 
prev_commit_seq(unsigned char seq)142 static unsigned char prev_commit_seq(unsigned char seq)
143 {
144 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
145 }
146 
next_commit_seq(unsigned char seq)147 static unsigned char next_commit_seq(unsigned char seq)
148 {
149 	return (seq + 1) % N_COMMIT_IDS;
150 }
151 
152 /*
153  * In-memory structures
154  */
155 
156 struct journal_node {
157 	struct rb_node node;
158 	sector_t sector;
159 };
160 
161 struct alg_spec {
162 	char *alg_string;
163 	char *key_string;
164 	__u8 *key;
165 	unsigned int key_size;
166 };
167 
168 struct dm_integrity_c {
169 	struct dm_dev *dev;
170 	struct dm_dev *meta_dev;
171 	unsigned int tag_size;
172 	__s8 log2_tag_size;
173 	unsigned int tuple_size;
174 	sector_t start;
175 	mempool_t journal_io_mempool;
176 	struct dm_io_client *io;
177 	struct dm_bufio_client *bufio;
178 	struct workqueue_struct *metadata_wq;
179 	struct superblock *sb;
180 	unsigned int journal_pages;
181 	unsigned int n_bitmap_blocks;
182 
183 	struct page_list *journal;
184 	struct page_list *journal_io;
185 	struct page_list *journal_xor;
186 	struct page_list *recalc_bitmap;
187 	struct page_list *may_write_bitmap;
188 	struct bitmap_block_status *bbs;
189 	unsigned int bitmap_flush_interval;
190 	int synchronous_mode;
191 	struct bio_list synchronous_bios;
192 	struct delayed_work bitmap_flush_work;
193 
194 	struct crypto_skcipher *journal_crypt;
195 	struct scatterlist **journal_scatterlist;
196 	struct scatterlist **journal_io_scatterlist;
197 	struct skcipher_request **sk_requests;
198 
199 	struct crypto_shash *journal_mac;
200 
201 	struct journal_node *journal_tree;
202 	struct rb_root journal_tree_root;
203 
204 	sector_t provided_data_sectors;
205 
206 	unsigned short journal_entry_size;
207 	unsigned char journal_entries_per_sector;
208 	unsigned char journal_section_entries;
209 	unsigned short journal_section_sectors;
210 	unsigned int journal_sections;
211 	unsigned int journal_entries;
212 	sector_t data_device_sectors;
213 	sector_t meta_device_sectors;
214 	unsigned int initial_sectors;
215 	unsigned int metadata_run;
216 	__s8 log2_metadata_run;
217 	__u8 log2_buffer_sectors;
218 	__u8 sectors_per_block;
219 	__u8 log2_blocks_per_bitmap_bit;
220 
221 	unsigned char mode;
222 
223 	int failed;
224 
225 	struct crypto_shash *internal_hash;
226 
227 	struct dm_target *ti;
228 
229 	/* these variables are locked with endio_wait.lock */
230 	struct rb_root in_progress;
231 	struct list_head wait_list;
232 	wait_queue_head_t endio_wait;
233 	struct workqueue_struct *wait_wq;
234 	struct workqueue_struct *offload_wq;
235 
236 	unsigned char commit_seq;
237 	commit_id_t commit_ids[N_COMMIT_IDS];
238 
239 	unsigned int committed_section;
240 	unsigned int n_committed_sections;
241 
242 	unsigned int uncommitted_section;
243 	unsigned int n_uncommitted_sections;
244 
245 	unsigned int free_section;
246 	unsigned char free_section_entry;
247 	unsigned int free_sectors;
248 
249 	unsigned int free_sectors_threshold;
250 
251 	struct workqueue_struct *commit_wq;
252 	struct work_struct commit_work;
253 
254 	struct workqueue_struct *writer_wq;
255 	struct work_struct writer_work;
256 
257 	struct workqueue_struct *recalc_wq;
258 	struct work_struct recalc_work;
259 
260 	struct bio_list flush_bio_list;
261 
262 	unsigned long autocommit_jiffies;
263 	struct timer_list autocommit_timer;
264 	unsigned int autocommit_msec;
265 
266 	wait_queue_head_t copy_to_journal_wait;
267 
268 	struct completion crypto_backoff;
269 
270 	bool wrote_to_journal;
271 	bool journal_uptodate;
272 	bool just_formatted;
273 	bool recalculate_flag;
274 	bool reset_recalculate_flag;
275 	bool discard;
276 	bool fix_padding;
277 	bool fix_hmac;
278 	bool legacy_recalculate;
279 
280 	struct alg_spec internal_hash_alg;
281 	struct alg_spec journal_crypt_alg;
282 	struct alg_spec journal_mac_alg;
283 
284 	atomic64_t number_of_mismatches;
285 
286 	mempool_t recheck_pool;
287 	struct bio_set recheck_bios;
288 	struct bio_set recalc_bios;
289 
290 	struct notifier_block reboot_notifier;
291 };
292 
293 struct dm_integrity_range {
294 	sector_t logical_sector;
295 	sector_t n_sectors;
296 	bool waiting;
297 	union {
298 		struct rb_node node;
299 		struct {
300 			struct task_struct *task;
301 			struct list_head wait_entry;
302 		};
303 	};
304 };
305 
306 struct dm_integrity_io {
307 	struct work_struct work;
308 
309 	struct dm_integrity_c *ic;
310 	enum req_op op;
311 	bool fua;
312 
313 	struct dm_integrity_range range;
314 
315 	sector_t metadata_block;
316 	unsigned int metadata_offset;
317 
318 	atomic_t in_flight;
319 	blk_status_t bi_status;
320 
321 	struct completion *completion;
322 
323 	struct dm_bio_details bio_details;
324 
325 	char *integrity_payload;
326 	unsigned payload_len;
327 	bool integrity_payload_from_mempool;
328 	bool integrity_range_locked;
329 };
330 
331 struct journal_completion {
332 	struct dm_integrity_c *ic;
333 	atomic_t in_flight;
334 	struct completion comp;
335 };
336 
337 struct journal_io {
338 	struct dm_integrity_range range;
339 	struct journal_completion *comp;
340 };
341 
342 struct bitmap_block_status {
343 	struct work_struct work;
344 	struct dm_integrity_c *ic;
345 	unsigned int idx;
346 	unsigned long *bitmap;
347 	struct bio_list bio_queue;
348 	spinlock_t bio_queue_lock;
349 
350 };
351 
352 static struct kmem_cache *journal_io_cache;
353 
354 #define JOURNAL_IO_MEMPOOL	32
355 
356 #ifdef DEBUG_PRINT
357 #define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
358 #define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
359 						       len ? ": " : "", len, bytes)
360 #else
361 #define DEBUG_print(x, ...)			do { } while (0)
362 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
363 #endif
364 
365 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
366 static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map);
367 static void integrity_bio_wait(struct work_struct *w);
368 static void dm_integrity_dtr(struct dm_target *ti);
369 
dm_integrity_io_error(struct dm_integrity_c * ic,const char * msg,int err)370 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
371 {
372 	if (err == -EILSEQ)
373 		atomic64_inc(&ic->number_of_mismatches);
374 	if (!cmpxchg(&ic->failed, 0, err))
375 		DMERR("Error on %s: %d", msg, err);
376 }
377 
dm_integrity_failed(struct dm_integrity_c * ic)378 static int dm_integrity_failed(struct dm_integrity_c *ic)
379 {
380 	return READ_ONCE(ic->failed);
381 }
382 
dm_integrity_disable_recalculate(struct dm_integrity_c * ic)383 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
384 {
385 	if (ic->legacy_recalculate)
386 		return false;
387 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
388 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
389 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
390 		return true;
391 	return false;
392 }
393 
dm_integrity_commit_id(struct dm_integrity_c * ic,unsigned int i,unsigned int j,unsigned char seq)394 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
395 					  unsigned int j, unsigned char seq)
396 {
397 	/*
398 	 * Xor the number with section and sector, so that if a piece of
399 	 * journal is written at wrong place, it is detected.
400 	 */
401 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
402 }
403 
get_area_and_offset(struct dm_integrity_c * ic,sector_t data_sector,sector_t * area,sector_t * offset)404 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
405 				sector_t *area, sector_t *offset)
406 {
407 	if (!ic->meta_dev) {
408 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
409 		*area = data_sector >> log2_interleave_sectors;
410 		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
411 	} else {
412 		*area = 0;
413 		*offset = data_sector;
414 	}
415 }
416 
417 #define sector_to_block(ic, n)						\
418 do {									\
419 	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
420 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
421 } while (0)
422 
get_metadata_sector_and_offset(struct dm_integrity_c * ic,sector_t area,sector_t offset,unsigned int * metadata_offset)423 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
424 					    sector_t offset, unsigned int *metadata_offset)
425 {
426 	__u64 ms;
427 	unsigned int mo;
428 
429 	ms = area << ic->sb->log2_interleave_sectors;
430 	if (likely(ic->log2_metadata_run >= 0))
431 		ms += area << ic->log2_metadata_run;
432 	else
433 		ms += area * ic->metadata_run;
434 	ms >>= ic->log2_buffer_sectors;
435 
436 	sector_to_block(ic, offset);
437 
438 	if (likely(ic->log2_tag_size >= 0)) {
439 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
440 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
441 	} else {
442 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
443 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
444 	}
445 	*metadata_offset = mo;
446 	return ms;
447 }
448 
get_data_sector(struct dm_integrity_c * ic,sector_t area,sector_t offset)449 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
450 {
451 	sector_t result;
452 
453 	if (ic->meta_dev)
454 		return offset;
455 
456 	result = area << ic->sb->log2_interleave_sectors;
457 	if (likely(ic->log2_metadata_run >= 0))
458 		result += (area + 1) << ic->log2_metadata_run;
459 	else
460 		result += (area + 1) * ic->metadata_run;
461 
462 	result += (sector_t)ic->initial_sectors + offset;
463 	result += ic->start;
464 
465 	return result;
466 }
467 
wraparound_section(struct dm_integrity_c * ic,unsigned int * sec_ptr)468 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
469 {
470 	if (unlikely(*sec_ptr >= ic->journal_sections))
471 		*sec_ptr -= ic->journal_sections;
472 }
473 
sb_set_version(struct dm_integrity_c * ic)474 static void sb_set_version(struct dm_integrity_c *ic)
475 {
476 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE))
477 		ic->sb->version = SB_VERSION_6;
478 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
479 		ic->sb->version = SB_VERSION_5;
480 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
481 		ic->sb->version = SB_VERSION_4;
482 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
483 		ic->sb->version = SB_VERSION_3;
484 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
485 		ic->sb->version = SB_VERSION_2;
486 	else
487 		ic->sb->version = SB_VERSION_1;
488 }
489 
sb_mac(struct dm_integrity_c * ic,bool wr)490 static int sb_mac(struct dm_integrity_c *ic, bool wr)
491 {
492 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
493 	int r;
494 	unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
495 	__u8 *sb = (__u8 *)ic->sb;
496 	__u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
497 
498 	if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT ||
499 	    mac_size > HASH_MAX_DIGESTSIZE) {
500 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
501 		return -EINVAL;
502 	}
503 
504 	desc->tfm = ic->journal_mac;
505 
506 	if (likely(wr)) {
507 		r = crypto_shash_digest(desc, sb, mac - sb, mac);
508 		if (unlikely(r < 0)) {
509 			dm_integrity_io_error(ic, "crypto_shash_digest", r);
510 			return r;
511 		}
512 	} else {
513 		__u8 actual_mac[HASH_MAX_DIGESTSIZE];
514 
515 		r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
516 		if (unlikely(r < 0)) {
517 			dm_integrity_io_error(ic, "crypto_shash_digest", r);
518 			return r;
519 		}
520 		if (crypto_memneq(mac, actual_mac, mac_size)) {
521 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
522 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
523 			return -EILSEQ;
524 		}
525 	}
526 
527 	return 0;
528 }
529 
sync_rw_sb(struct dm_integrity_c * ic,blk_opf_t opf)530 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
531 {
532 	struct dm_io_request io_req;
533 	struct dm_io_region io_loc;
534 	const enum req_op op = opf & REQ_OP_MASK;
535 	int r;
536 
537 	io_req.bi_opf = opf;
538 	io_req.mem.type = DM_IO_KMEM;
539 	io_req.mem.ptr.addr = ic->sb;
540 	io_req.notify.fn = NULL;
541 	io_req.client = ic->io;
542 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
543 	io_loc.sector = ic->start;
544 	io_loc.count = SB_SECTORS;
545 
546 	if (op == REQ_OP_WRITE) {
547 		sb_set_version(ic);
548 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
549 			r = sb_mac(ic, true);
550 			if (unlikely(r))
551 				return r;
552 		}
553 	}
554 
555 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
556 	if (unlikely(r))
557 		return r;
558 
559 	if (op == REQ_OP_READ) {
560 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
561 			r = sb_mac(ic, false);
562 			if (unlikely(r))
563 				return r;
564 		}
565 	}
566 
567 	return 0;
568 }
569 
570 #define BITMAP_OP_TEST_ALL_SET		0
571 #define BITMAP_OP_TEST_ALL_CLEAR	1
572 #define BITMAP_OP_SET			2
573 #define BITMAP_OP_CLEAR			3
574 
block_bitmap_op(struct dm_integrity_c * ic,struct page_list * bitmap,sector_t sector,sector_t n_sectors,int mode)575 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
576 			    sector_t sector, sector_t n_sectors, int mode)
577 {
578 	unsigned long bit, end_bit, this_end_bit, page, end_page;
579 	unsigned long *data;
580 
581 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
582 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
583 			sector,
584 			n_sectors,
585 			ic->sb->log2_sectors_per_block,
586 			ic->log2_blocks_per_bitmap_bit,
587 			mode);
588 		BUG();
589 	}
590 
591 	if (unlikely(!n_sectors))
592 		return true;
593 
594 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
595 	end_bit = (sector + n_sectors - 1) >>
596 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
597 
598 	page = bit / (PAGE_SIZE * 8);
599 	bit %= PAGE_SIZE * 8;
600 
601 	end_page = end_bit / (PAGE_SIZE * 8);
602 	end_bit %= PAGE_SIZE * 8;
603 
604 repeat:
605 	if (page < end_page)
606 		this_end_bit = PAGE_SIZE * 8 - 1;
607 	else
608 		this_end_bit = end_bit;
609 
610 	data = lowmem_page_address(bitmap[page].page);
611 
612 	if (mode == BITMAP_OP_TEST_ALL_SET) {
613 		while (bit <= this_end_bit) {
614 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
615 				do {
616 					if (data[bit / BITS_PER_LONG] != -1)
617 						return false;
618 					bit += BITS_PER_LONG;
619 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
620 				continue;
621 			}
622 			if (!test_bit(bit, data))
623 				return false;
624 			bit++;
625 		}
626 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
627 		while (bit <= this_end_bit) {
628 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
629 				do {
630 					if (data[bit / BITS_PER_LONG] != 0)
631 						return false;
632 					bit += BITS_PER_LONG;
633 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
634 				continue;
635 			}
636 			if (test_bit(bit, data))
637 				return false;
638 			bit++;
639 		}
640 	} else if (mode == BITMAP_OP_SET) {
641 		while (bit <= this_end_bit) {
642 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
643 				do {
644 					data[bit / BITS_PER_LONG] = -1;
645 					bit += BITS_PER_LONG;
646 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
647 				continue;
648 			}
649 			__set_bit(bit, data);
650 			bit++;
651 		}
652 	} else if (mode == BITMAP_OP_CLEAR) {
653 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
654 			clear_page(data);
655 		else {
656 			while (bit <= this_end_bit) {
657 				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
658 					do {
659 						data[bit / BITS_PER_LONG] = 0;
660 						bit += BITS_PER_LONG;
661 					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
662 					continue;
663 				}
664 				__clear_bit(bit, data);
665 				bit++;
666 			}
667 		}
668 	} else {
669 		BUG();
670 	}
671 
672 	if (unlikely(page < end_page)) {
673 		bit = 0;
674 		page++;
675 		goto repeat;
676 	}
677 
678 	return true;
679 }
680 
block_bitmap_copy(struct dm_integrity_c * ic,struct page_list * dst,struct page_list * src)681 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
682 {
683 	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
684 	unsigned int i;
685 
686 	for (i = 0; i < n_bitmap_pages; i++) {
687 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
688 		unsigned long *src_data = lowmem_page_address(src[i].page);
689 
690 		copy_page(dst_data, src_data);
691 	}
692 }
693 
sector_to_bitmap_block(struct dm_integrity_c * ic,sector_t sector)694 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
695 {
696 	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
697 	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
698 
699 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
700 	return &ic->bbs[bitmap_block];
701 }
702 
access_journal_check(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,bool e,const char * function)703 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
704 				 bool e, const char *function)
705 {
706 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
707 	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
708 
709 	if (unlikely(section >= ic->journal_sections) ||
710 	    unlikely(offset >= limit)) {
711 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
712 		       function, section, offset, ic->journal_sections, limit);
713 		BUG();
714 	}
715 #endif
716 }
717 
page_list_location(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,unsigned int * pl_index,unsigned int * pl_offset)718 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
719 			       unsigned int *pl_index, unsigned int *pl_offset)
720 {
721 	unsigned int sector;
722 
723 	access_journal_check(ic, section, offset, false, "page_list_location");
724 
725 	sector = section * ic->journal_section_sectors + offset;
726 
727 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
728 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
729 }
730 
access_page_list(struct dm_integrity_c * ic,struct page_list * pl,unsigned int section,unsigned int offset,unsigned int * n_sectors)731 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
732 					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
733 {
734 	unsigned int pl_index, pl_offset;
735 	char *va;
736 
737 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
738 
739 	if (n_sectors)
740 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
741 
742 	va = lowmem_page_address(pl[pl_index].page);
743 
744 	return (struct journal_sector *)(va + pl_offset);
745 }
746 
access_journal(struct dm_integrity_c * ic,unsigned int section,unsigned int offset)747 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
748 {
749 	return access_page_list(ic, ic->journal, section, offset, NULL);
750 }
751 
access_journal_entry(struct dm_integrity_c * ic,unsigned int section,unsigned int n)752 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
753 {
754 	unsigned int rel_sector, offset;
755 	struct journal_sector *js;
756 
757 	access_journal_check(ic, section, n, true, "access_journal_entry");
758 
759 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
760 	offset = n / JOURNAL_BLOCK_SECTORS;
761 
762 	js = access_journal(ic, section, rel_sector);
763 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
764 }
765 
access_journal_data(struct dm_integrity_c * ic,unsigned int section,unsigned int n)766 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
767 {
768 	n <<= ic->sb->log2_sectors_per_block;
769 
770 	n += JOURNAL_BLOCK_SECTORS;
771 
772 	access_journal_check(ic, section, n, false, "access_journal_data");
773 
774 	return access_journal(ic, section, n);
775 }
776 
section_mac(struct dm_integrity_c * ic,unsigned int section,__u8 result[JOURNAL_MAC_SIZE])777 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
778 {
779 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
780 	int r;
781 	unsigned int j, size;
782 
783 	desc->tfm = ic->journal_mac;
784 
785 	r = crypto_shash_init(desc);
786 	if (unlikely(r < 0)) {
787 		dm_integrity_io_error(ic, "crypto_shash_init", r);
788 		goto err;
789 	}
790 
791 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
792 		__le64 section_le;
793 
794 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
795 		if (unlikely(r < 0)) {
796 			dm_integrity_io_error(ic, "crypto_shash_update", r);
797 			goto err;
798 		}
799 
800 		section_le = cpu_to_le64(section);
801 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
802 		if (unlikely(r < 0)) {
803 			dm_integrity_io_error(ic, "crypto_shash_update", r);
804 			goto err;
805 		}
806 	}
807 
808 	for (j = 0; j < ic->journal_section_entries; j++) {
809 		struct journal_entry *je = access_journal_entry(ic, section, j);
810 
811 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
812 		if (unlikely(r < 0)) {
813 			dm_integrity_io_error(ic, "crypto_shash_update", r);
814 			goto err;
815 		}
816 	}
817 
818 	size = crypto_shash_digestsize(ic->journal_mac);
819 
820 	if (likely(size <= JOURNAL_MAC_SIZE)) {
821 		r = crypto_shash_final(desc, result);
822 		if (unlikely(r < 0)) {
823 			dm_integrity_io_error(ic, "crypto_shash_final", r);
824 			goto err;
825 		}
826 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
827 	} else {
828 		__u8 digest[HASH_MAX_DIGESTSIZE];
829 
830 		if (WARN_ON(size > sizeof(digest))) {
831 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
832 			goto err;
833 		}
834 		r = crypto_shash_final(desc, digest);
835 		if (unlikely(r < 0)) {
836 			dm_integrity_io_error(ic, "crypto_shash_final", r);
837 			goto err;
838 		}
839 		memcpy(result, digest, JOURNAL_MAC_SIZE);
840 	}
841 
842 	return;
843 err:
844 	memset(result, 0, JOURNAL_MAC_SIZE);
845 }
846 
rw_section_mac(struct dm_integrity_c * ic,unsigned int section,bool wr)847 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
848 {
849 	__u8 result[JOURNAL_MAC_SIZE];
850 	unsigned int j;
851 
852 	if (!ic->journal_mac)
853 		return;
854 
855 	section_mac(ic, section, result);
856 
857 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
858 		struct journal_sector *js = access_journal(ic, section, j);
859 
860 		if (likely(wr))
861 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
862 		else {
863 			if (crypto_memneq(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
864 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
865 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
866 			}
867 		}
868 	}
869 }
870 
complete_journal_op(void * context)871 static void complete_journal_op(void *context)
872 {
873 	struct journal_completion *comp = context;
874 
875 	BUG_ON(!atomic_read(&comp->in_flight));
876 	if (likely(atomic_dec_and_test(&comp->in_flight)))
877 		complete(&comp->comp);
878 }
879 
xor_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)880 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
881 			unsigned int n_sections, struct journal_completion *comp)
882 {
883 	struct async_submit_ctl submit;
884 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
885 	unsigned int pl_index, pl_offset, section_index;
886 	struct page_list *source_pl, *target_pl;
887 
888 	if (likely(encrypt)) {
889 		source_pl = ic->journal;
890 		target_pl = ic->journal_io;
891 	} else {
892 		source_pl = ic->journal_io;
893 		target_pl = ic->journal;
894 	}
895 
896 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
897 
898 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
899 
900 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
901 
902 	section_index = pl_index;
903 
904 	do {
905 		size_t this_step;
906 		struct page *src_pages[2];
907 		struct page *dst_page;
908 
909 		while (unlikely(pl_index == section_index)) {
910 			unsigned int dummy;
911 
912 			if (likely(encrypt))
913 				rw_section_mac(ic, section, true);
914 			section++;
915 			n_sections--;
916 			if (!n_sections)
917 				break;
918 			page_list_location(ic, section, 0, &section_index, &dummy);
919 		}
920 
921 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
922 		dst_page = target_pl[pl_index].page;
923 		src_pages[0] = source_pl[pl_index].page;
924 		src_pages[1] = ic->journal_xor[pl_index].page;
925 
926 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
927 
928 		pl_index++;
929 		pl_offset = 0;
930 		n_bytes -= this_step;
931 	} while (n_bytes);
932 
933 	BUG_ON(n_sections);
934 
935 	async_tx_issue_pending_all();
936 }
937 
complete_journal_encrypt(void * data,int err)938 static void complete_journal_encrypt(void *data, int err)
939 {
940 	struct journal_completion *comp = data;
941 
942 	if (unlikely(err)) {
943 		if (likely(err == -EINPROGRESS)) {
944 			complete(&comp->ic->crypto_backoff);
945 			return;
946 		}
947 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
948 	}
949 	complete_journal_op(comp);
950 }
951 
do_crypt(bool encrypt,struct skcipher_request * req,struct journal_completion * comp)952 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
953 {
954 	int r;
955 
956 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
957 				      complete_journal_encrypt, comp);
958 	if (likely(encrypt))
959 		r = crypto_skcipher_encrypt(req);
960 	else
961 		r = crypto_skcipher_decrypt(req);
962 	if (likely(!r))
963 		return false;
964 	if (likely(r == -EINPROGRESS))
965 		return true;
966 	if (likely(r == -EBUSY)) {
967 		wait_for_completion(&comp->ic->crypto_backoff);
968 		reinit_completion(&comp->ic->crypto_backoff);
969 		return true;
970 	}
971 	dm_integrity_io_error(comp->ic, "encrypt", r);
972 	return false;
973 }
974 
crypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)975 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
976 			  unsigned int n_sections, struct journal_completion *comp)
977 {
978 	struct scatterlist **source_sg;
979 	struct scatterlist **target_sg;
980 
981 	atomic_add(2, &comp->in_flight);
982 
983 	if (likely(encrypt)) {
984 		source_sg = ic->journal_scatterlist;
985 		target_sg = ic->journal_io_scatterlist;
986 	} else {
987 		source_sg = ic->journal_io_scatterlist;
988 		target_sg = ic->journal_scatterlist;
989 	}
990 
991 	do {
992 		struct skcipher_request *req;
993 		unsigned int ivsize;
994 		char *iv;
995 
996 		if (likely(encrypt))
997 			rw_section_mac(ic, section, true);
998 
999 		req = ic->sk_requests[section];
1000 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1001 		iv = req->iv;
1002 
1003 		memcpy(iv, iv + ivsize, ivsize);
1004 
1005 		req->src = source_sg[section];
1006 		req->dst = target_sg[section];
1007 
1008 		if (unlikely(do_crypt(encrypt, req, comp)))
1009 			atomic_inc(&comp->in_flight);
1010 
1011 		section++;
1012 		n_sections--;
1013 	} while (n_sections);
1014 
1015 	atomic_dec(&comp->in_flight);
1016 	complete_journal_op(comp);
1017 }
1018 
encrypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)1019 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1020 			    unsigned int n_sections, struct journal_completion *comp)
1021 {
1022 	if (ic->journal_xor)
1023 		return xor_journal(ic, encrypt, section, n_sections, comp);
1024 	else
1025 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1026 }
1027 
complete_journal_io(unsigned long error,void * context)1028 static void complete_journal_io(unsigned long error, void *context)
1029 {
1030 	struct journal_completion *comp = context;
1031 
1032 	if (unlikely(error != 0))
1033 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1034 	complete_journal_op(comp);
1035 }
1036 
rw_journal_sectors(struct dm_integrity_c * ic,blk_opf_t opf,unsigned int sector,unsigned int n_sectors,struct journal_completion * comp)1037 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1038 			       unsigned int sector, unsigned int n_sectors,
1039 			       struct journal_completion *comp)
1040 {
1041 	struct dm_io_request io_req;
1042 	struct dm_io_region io_loc;
1043 	unsigned int pl_index, pl_offset;
1044 	int r;
1045 
1046 	if (unlikely(dm_integrity_failed(ic))) {
1047 		if (comp)
1048 			complete_journal_io(-1UL, comp);
1049 		return;
1050 	}
1051 
1052 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1053 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1054 
1055 	io_req.bi_opf = opf;
1056 	io_req.mem.type = DM_IO_PAGE_LIST;
1057 	if (ic->journal_io)
1058 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1059 	else
1060 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1061 	io_req.mem.offset = pl_offset;
1062 	if (likely(comp != NULL)) {
1063 		io_req.notify.fn = complete_journal_io;
1064 		io_req.notify.context = comp;
1065 	} else {
1066 		io_req.notify.fn = NULL;
1067 	}
1068 	io_req.client = ic->io;
1069 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1070 	io_loc.sector = ic->start + SB_SECTORS + sector;
1071 	io_loc.count = n_sectors;
1072 
1073 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1074 	if (unlikely(r)) {
1075 		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1076 				      "reading journal" : "writing journal", r);
1077 		if (comp) {
1078 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1079 			complete_journal_io(-1UL, comp);
1080 		}
1081 	}
1082 }
1083 
rw_journal(struct dm_integrity_c * ic,blk_opf_t opf,unsigned int section,unsigned int n_sections,struct journal_completion * comp)1084 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1085 		       unsigned int section, unsigned int n_sections,
1086 		       struct journal_completion *comp)
1087 {
1088 	unsigned int sector, n_sectors;
1089 
1090 	sector = section * ic->journal_section_sectors;
1091 	n_sectors = n_sections * ic->journal_section_sectors;
1092 
1093 	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1094 }
1095 
write_journal(struct dm_integrity_c * ic,unsigned int commit_start,unsigned int commit_sections)1096 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1097 {
1098 	struct journal_completion io_comp;
1099 	struct journal_completion crypt_comp_1;
1100 	struct journal_completion crypt_comp_2;
1101 	unsigned int i;
1102 
1103 	io_comp.ic = ic;
1104 	init_completion(&io_comp.comp);
1105 
1106 	if (commit_start + commit_sections <= ic->journal_sections) {
1107 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1108 		if (ic->journal_io) {
1109 			crypt_comp_1.ic = ic;
1110 			init_completion(&crypt_comp_1.comp);
1111 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1112 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1113 			wait_for_completion_io(&crypt_comp_1.comp);
1114 		} else {
1115 			for (i = 0; i < commit_sections; i++)
1116 				rw_section_mac(ic, commit_start + i, true);
1117 		}
1118 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1119 			   commit_sections, &io_comp);
1120 	} else {
1121 		unsigned int to_end;
1122 
1123 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1124 		to_end = ic->journal_sections - commit_start;
1125 		if (ic->journal_io) {
1126 			crypt_comp_1.ic = ic;
1127 			init_completion(&crypt_comp_1.comp);
1128 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1129 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1130 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1131 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1132 					   commit_start, to_end, &io_comp);
1133 				reinit_completion(&crypt_comp_1.comp);
1134 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1135 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1136 				wait_for_completion_io(&crypt_comp_1.comp);
1137 			} else {
1138 				crypt_comp_2.ic = ic;
1139 				init_completion(&crypt_comp_2.comp);
1140 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1141 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1142 				wait_for_completion_io(&crypt_comp_1.comp);
1143 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1144 				wait_for_completion_io(&crypt_comp_2.comp);
1145 			}
1146 		} else {
1147 			for (i = 0; i < to_end; i++)
1148 				rw_section_mac(ic, commit_start + i, true);
1149 			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1150 			for (i = 0; i < commit_sections - to_end; i++)
1151 				rw_section_mac(ic, i, true);
1152 		}
1153 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1154 	}
1155 
1156 	wait_for_completion_io(&io_comp.comp);
1157 }
1158 
copy_from_journal(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,unsigned int n_sectors,sector_t target,io_notify_fn fn,void * data)1159 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1160 			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1161 {
1162 	struct dm_io_request io_req;
1163 	struct dm_io_region io_loc;
1164 	int r;
1165 	unsigned int sector, pl_index, pl_offset;
1166 
1167 	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1168 
1169 	if (unlikely(dm_integrity_failed(ic))) {
1170 		fn(-1UL, data);
1171 		return;
1172 	}
1173 
1174 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1175 
1176 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1177 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1178 
1179 	io_req.bi_opf = REQ_OP_WRITE;
1180 	io_req.mem.type = DM_IO_PAGE_LIST;
1181 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1182 	io_req.mem.offset = pl_offset;
1183 	io_req.notify.fn = fn;
1184 	io_req.notify.context = data;
1185 	io_req.client = ic->io;
1186 	io_loc.bdev = ic->dev->bdev;
1187 	io_loc.sector = target;
1188 	io_loc.count = n_sectors;
1189 
1190 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1191 	if (unlikely(r)) {
1192 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1193 		fn(-1UL, data);
1194 	}
1195 }
1196 
ranges_overlap(struct dm_integrity_range * range1,struct dm_integrity_range * range2)1197 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1198 {
1199 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1200 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1201 }
1202 
add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range,bool check_waiting)1203 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1204 {
1205 	struct rb_node **n = &ic->in_progress.rb_node;
1206 	struct rb_node *parent;
1207 
1208 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1209 
1210 	if (likely(check_waiting)) {
1211 		struct dm_integrity_range *range;
1212 
1213 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1214 			if (unlikely(ranges_overlap(range, new_range)))
1215 				return false;
1216 		}
1217 	}
1218 
1219 	parent = NULL;
1220 
1221 	while (*n) {
1222 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1223 
1224 		parent = *n;
1225 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1226 			n = &range->node.rb_left;
1227 		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1228 			n = &range->node.rb_right;
1229 		else
1230 			return false;
1231 	}
1232 
1233 	rb_link_node(&new_range->node, parent, n);
1234 	rb_insert_color(&new_range->node, &ic->in_progress);
1235 
1236 	return true;
1237 }
1238 
remove_range_unlocked(struct dm_integrity_c * ic,struct dm_integrity_range * range)1239 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1240 {
1241 	rb_erase(&range->node, &ic->in_progress);
1242 	while (unlikely(!list_empty(&ic->wait_list))) {
1243 		struct dm_integrity_range *last_range =
1244 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1245 		struct task_struct *last_range_task;
1246 
1247 		last_range_task = last_range->task;
1248 		list_del(&last_range->wait_entry);
1249 		if (!add_new_range(ic, last_range, false)) {
1250 			last_range->task = last_range_task;
1251 			list_add(&last_range->wait_entry, &ic->wait_list);
1252 			break;
1253 		}
1254 		last_range->waiting = false;
1255 		wake_up_process(last_range_task);
1256 	}
1257 }
1258 
remove_range(struct dm_integrity_c * ic,struct dm_integrity_range * range)1259 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1260 {
1261 	unsigned long flags;
1262 
1263 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1264 	remove_range_unlocked(ic, range);
1265 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1266 }
1267 
wait_and_add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1268 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1269 {
1270 	new_range->waiting = true;
1271 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1272 	new_range->task = current;
1273 	do {
1274 		__set_current_state(TASK_UNINTERRUPTIBLE);
1275 		spin_unlock_irq(&ic->endio_wait.lock);
1276 		io_schedule();
1277 		spin_lock_irq(&ic->endio_wait.lock);
1278 	} while (unlikely(new_range->waiting));
1279 }
1280 
add_new_range_and_wait(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1281 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1282 {
1283 	if (unlikely(!add_new_range(ic, new_range, true)))
1284 		wait_and_add_new_range(ic, new_range);
1285 }
1286 
init_journal_node(struct journal_node * node)1287 static void init_journal_node(struct journal_node *node)
1288 {
1289 	RB_CLEAR_NODE(&node->node);
1290 	node->sector = (sector_t)-1;
1291 }
1292 
add_journal_node(struct dm_integrity_c * ic,struct journal_node * node,sector_t sector)1293 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1294 {
1295 	struct rb_node **link;
1296 	struct rb_node *parent;
1297 
1298 	node->sector = sector;
1299 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1300 
1301 	link = &ic->journal_tree_root.rb_node;
1302 	parent = NULL;
1303 
1304 	while (*link) {
1305 		struct journal_node *j;
1306 
1307 		parent = *link;
1308 		j = container_of(parent, struct journal_node, node);
1309 		if (sector < j->sector)
1310 			link = &j->node.rb_left;
1311 		else
1312 			link = &j->node.rb_right;
1313 	}
1314 
1315 	rb_link_node(&node->node, parent, link);
1316 	rb_insert_color(&node->node, &ic->journal_tree_root);
1317 }
1318 
remove_journal_node(struct dm_integrity_c * ic,struct journal_node * node)1319 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1320 {
1321 	BUG_ON(RB_EMPTY_NODE(&node->node));
1322 	rb_erase(&node->node, &ic->journal_tree_root);
1323 	init_journal_node(node);
1324 }
1325 
1326 #define NOT_FOUND	(-1U)
1327 
find_journal_node(struct dm_integrity_c * ic,sector_t sector,sector_t * next_sector)1328 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1329 {
1330 	struct rb_node *n = ic->journal_tree_root.rb_node;
1331 	unsigned int found = NOT_FOUND;
1332 
1333 	*next_sector = (sector_t)-1;
1334 	while (n) {
1335 		struct journal_node *j = container_of(n, struct journal_node, node);
1336 
1337 		if (sector == j->sector)
1338 			found = j - ic->journal_tree;
1339 
1340 		if (sector < j->sector) {
1341 			*next_sector = j->sector;
1342 			n = j->node.rb_left;
1343 		} else
1344 			n = j->node.rb_right;
1345 	}
1346 
1347 	return found;
1348 }
1349 
test_journal_node(struct dm_integrity_c * ic,unsigned int pos,sector_t sector)1350 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1351 {
1352 	struct journal_node *node, *next_node;
1353 	struct rb_node *next;
1354 
1355 	if (unlikely(pos >= ic->journal_entries))
1356 		return false;
1357 	node = &ic->journal_tree[pos];
1358 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1359 		return false;
1360 	if (unlikely(node->sector != sector))
1361 		return false;
1362 
1363 	next = rb_next(&node->node);
1364 	if (unlikely(!next))
1365 		return true;
1366 
1367 	next_node = container_of(next, struct journal_node, node);
1368 	return next_node->sector != sector;
1369 }
1370 
find_newer_committed_node(struct dm_integrity_c * ic,struct journal_node * node)1371 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1372 {
1373 	struct rb_node *next;
1374 	struct journal_node *next_node;
1375 	unsigned int next_section;
1376 
1377 	BUG_ON(RB_EMPTY_NODE(&node->node));
1378 
1379 	next = rb_next(&node->node);
1380 	if (unlikely(!next))
1381 		return false;
1382 
1383 	next_node = container_of(next, struct journal_node, node);
1384 
1385 	if (next_node->sector != node->sector)
1386 		return false;
1387 
1388 	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1389 	if (next_section >= ic->committed_section &&
1390 	    next_section < ic->committed_section + ic->n_committed_sections)
1391 		return true;
1392 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1393 		return true;
1394 
1395 	return false;
1396 }
1397 
1398 #define TAG_READ	0
1399 #define TAG_WRITE	1
1400 #define TAG_CMP		2
1401 
dm_integrity_rw_tag(struct dm_integrity_c * ic,unsigned char * tag,sector_t * metadata_block,unsigned int * metadata_offset,unsigned int total_size,int op)1402 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1403 			       unsigned int *metadata_offset, unsigned int total_size, int op)
1404 {
1405 	unsigned int hash_offset = 0;
1406 	unsigned char mismatch_hash = 0;
1407 	unsigned char mismatch_filler = !ic->discard;
1408 
1409 	do {
1410 		unsigned char *data, *dp;
1411 		struct dm_buffer *b;
1412 		unsigned int to_copy;
1413 		int r;
1414 
1415 		r = dm_integrity_failed(ic);
1416 		if (unlikely(r))
1417 			return r;
1418 
1419 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1420 		if (IS_ERR(data))
1421 			return PTR_ERR(data);
1422 
1423 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1424 		dp = data + *metadata_offset;
1425 		if (op == TAG_READ) {
1426 			memcpy(tag, dp, to_copy);
1427 		} else if (op == TAG_WRITE) {
1428 			if (crypto_memneq(dp, tag, to_copy)) {
1429 				memcpy(dp, tag, to_copy);
1430 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1431 			}
1432 		} else {
1433 			/* e.g.: op == TAG_CMP */
1434 
1435 			if (likely(is_power_of_2(ic->tag_size))) {
1436 				if (unlikely(crypto_memneq(dp, tag, to_copy)))
1437 					goto thorough_test;
1438 			} else {
1439 				unsigned int i, ts;
1440 thorough_test:
1441 				ts = total_size;
1442 
1443 				for (i = 0; i < to_copy; i++, ts--) {
1444 					/*
1445 					 * Warning: the control flow must not be
1446 					 * dependent on match/mismatch of
1447 					 * individual bytes.
1448 					 */
1449 					mismatch_hash |= dp[i] ^ tag[i];
1450 					mismatch_filler |= dp[i] ^ DISCARD_FILLER;
1451 					hash_offset++;
1452 					if (unlikely(hash_offset == ic->tag_size)) {
1453 						if (unlikely(mismatch_hash) && unlikely(mismatch_filler)) {
1454 							dm_bufio_release(b);
1455 							return ts;
1456 						}
1457 						hash_offset = 0;
1458 						mismatch_hash = 0;
1459 						mismatch_filler = !ic->discard;
1460 					}
1461 				}
1462 			}
1463 		}
1464 		dm_bufio_release(b);
1465 
1466 		tag += to_copy;
1467 		*metadata_offset += to_copy;
1468 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1469 			(*metadata_block)++;
1470 			*metadata_offset = 0;
1471 		}
1472 
1473 		if (unlikely(!is_power_of_2(ic->tag_size)))
1474 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1475 
1476 		total_size -= to_copy;
1477 	} while (unlikely(total_size));
1478 
1479 	return 0;
1480 }
1481 
1482 struct flush_request {
1483 	struct dm_io_request io_req;
1484 	struct dm_io_region io_reg;
1485 	struct dm_integrity_c *ic;
1486 	struct completion comp;
1487 };
1488 
flush_notify(unsigned long error,void * fr_)1489 static void flush_notify(unsigned long error, void *fr_)
1490 {
1491 	struct flush_request *fr = fr_;
1492 
1493 	if (unlikely(error != 0))
1494 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1495 	complete(&fr->comp);
1496 }
1497 
dm_integrity_flush_buffers(struct dm_integrity_c * ic,bool flush_data)1498 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1499 {
1500 	int r;
1501 	struct flush_request fr;
1502 
1503 	if (!ic->meta_dev)
1504 		flush_data = false;
1505 	if (flush_data) {
1506 		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1507 		fr.io_req.mem.type = DM_IO_KMEM;
1508 		fr.io_req.mem.ptr.addr = NULL;
1509 		fr.io_req.notify.fn = flush_notify;
1510 		fr.io_req.notify.context = &fr;
1511 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio);
1512 		fr.io_reg.bdev = ic->dev->bdev;
1513 		fr.io_reg.sector = 0;
1514 		fr.io_reg.count = 0;
1515 		fr.ic = ic;
1516 		init_completion(&fr.comp);
1517 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
1518 		BUG_ON(r);
1519 	}
1520 
1521 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1522 	if (unlikely(r))
1523 		dm_integrity_io_error(ic, "writing tags", r);
1524 
1525 	if (flush_data)
1526 		wait_for_completion(&fr.comp);
1527 }
1528 
sleep_on_endio_wait(struct dm_integrity_c * ic)1529 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1530 {
1531 	DECLARE_WAITQUEUE(wait, current);
1532 
1533 	__add_wait_queue(&ic->endio_wait, &wait);
1534 	__set_current_state(TASK_UNINTERRUPTIBLE);
1535 	spin_unlock_irq(&ic->endio_wait.lock);
1536 	io_schedule();
1537 	spin_lock_irq(&ic->endio_wait.lock);
1538 	__remove_wait_queue(&ic->endio_wait, &wait);
1539 }
1540 
autocommit_fn(struct timer_list * t)1541 static void autocommit_fn(struct timer_list *t)
1542 {
1543 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1544 
1545 	if (likely(!dm_integrity_failed(ic)))
1546 		queue_work(ic->commit_wq, &ic->commit_work);
1547 }
1548 
schedule_autocommit(struct dm_integrity_c * ic)1549 static void schedule_autocommit(struct dm_integrity_c *ic)
1550 {
1551 	if (!timer_pending(&ic->autocommit_timer))
1552 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1553 }
1554 
submit_flush_bio(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1555 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1556 {
1557 	struct bio *bio;
1558 	unsigned long flags;
1559 
1560 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1561 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1562 	bio_list_add(&ic->flush_bio_list, bio);
1563 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1564 
1565 	queue_work(ic->commit_wq, &ic->commit_work);
1566 }
1567 
do_endio(struct dm_integrity_c * ic,struct bio * bio)1568 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1569 {
1570 	int r;
1571 
1572 	r = dm_integrity_failed(ic);
1573 	if (unlikely(r) && !bio->bi_status)
1574 		bio->bi_status = errno_to_blk_status(r);
1575 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1576 		unsigned long flags;
1577 
1578 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1579 		bio_list_add(&ic->synchronous_bios, bio);
1580 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1581 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1582 		return;
1583 	}
1584 	bio_endio(bio);
1585 }
1586 
do_endio_flush(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1587 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1588 {
1589 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1590 
1591 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1592 		submit_flush_bio(ic, dio);
1593 	else
1594 		do_endio(ic, bio);
1595 }
1596 
dec_in_flight(struct dm_integrity_io * dio)1597 static void dec_in_flight(struct dm_integrity_io *dio)
1598 {
1599 	if (atomic_dec_and_test(&dio->in_flight)) {
1600 		struct dm_integrity_c *ic = dio->ic;
1601 		struct bio *bio;
1602 
1603 		remove_range(ic, &dio->range);
1604 
1605 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1606 			schedule_autocommit(ic);
1607 
1608 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1609 		if (unlikely(dio->bi_status) && !bio->bi_status)
1610 			bio->bi_status = dio->bi_status;
1611 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1612 			dio->range.logical_sector += dio->range.n_sectors;
1613 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1614 			INIT_WORK(&dio->work, integrity_bio_wait);
1615 			queue_work(ic->offload_wq, &dio->work);
1616 			return;
1617 		}
1618 		do_endio_flush(ic, dio);
1619 	}
1620 }
1621 
integrity_end_io(struct bio * bio)1622 static void integrity_end_io(struct bio *bio)
1623 {
1624 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1625 
1626 	dm_bio_restore(&dio->bio_details, bio);
1627 	if (bio->bi_integrity)
1628 		bio->bi_opf |= REQ_INTEGRITY;
1629 
1630 	if (dio->completion)
1631 		complete(dio->completion);
1632 
1633 	dec_in_flight(dio);
1634 }
1635 
integrity_sector_checksum(struct dm_integrity_c * ic,sector_t sector,const char * data,char * result)1636 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1637 				      const char *data, char *result)
1638 {
1639 	__le64 sector_le = cpu_to_le64(sector);
1640 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1641 	int r;
1642 	unsigned int digest_size;
1643 
1644 	req->tfm = ic->internal_hash;
1645 
1646 	r = crypto_shash_init(req);
1647 	if (unlikely(r < 0)) {
1648 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1649 		goto failed;
1650 	}
1651 
1652 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1653 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1654 		if (unlikely(r < 0)) {
1655 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1656 			goto failed;
1657 		}
1658 	}
1659 
1660 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1661 	if (unlikely(r < 0)) {
1662 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1663 		goto failed;
1664 	}
1665 
1666 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1667 	if (unlikely(r < 0)) {
1668 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1669 		goto failed;
1670 	}
1671 
1672 	r = crypto_shash_final(req, result);
1673 	if (unlikely(r < 0)) {
1674 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1675 		goto failed;
1676 	}
1677 
1678 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1679 	if (unlikely(digest_size < ic->tag_size))
1680 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1681 
1682 	return;
1683 
1684 failed:
1685 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1686 	get_random_bytes(result, ic->tag_size);
1687 }
1688 
integrity_recheck(struct dm_integrity_io * dio,char * checksum)1689 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1690 {
1691 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1692 	struct dm_integrity_c *ic = dio->ic;
1693 	struct bvec_iter iter;
1694 	struct bio_vec bv;
1695 	sector_t sector, logical_sector, area, offset;
1696 	struct page *page;
1697 
1698 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1699 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1700 							     &dio->metadata_offset);
1701 	sector = get_data_sector(ic, area, offset);
1702 	logical_sector = dio->range.logical_sector;
1703 
1704 	page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1705 
1706 	__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1707 		unsigned pos = 0;
1708 
1709 		do {
1710 			sector_t alignment;
1711 			char *mem;
1712 			char *buffer = page_to_virt(page);
1713 			int r;
1714 			struct dm_io_request io_req;
1715 			struct dm_io_region io_loc;
1716 			io_req.bi_opf = REQ_OP_READ;
1717 			io_req.mem.type = DM_IO_KMEM;
1718 			io_req.mem.ptr.addr = buffer;
1719 			io_req.notify.fn = NULL;
1720 			io_req.client = ic->io;
1721 			io_loc.bdev = ic->dev->bdev;
1722 			io_loc.sector = sector;
1723 			io_loc.count = ic->sectors_per_block;
1724 
1725 			/* Align the bio to logical block size */
1726 			alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
1727 			alignment &= -alignment;
1728 			io_loc.sector = round_down(io_loc.sector, alignment);
1729 			io_loc.count += sector - io_loc.sector;
1730 			buffer += (sector - io_loc.sector) << SECTOR_SHIFT;
1731 			io_loc.count = round_up(io_loc.count, alignment);
1732 
1733 			r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1734 			if (unlikely(r)) {
1735 				dio->bi_status = errno_to_blk_status(r);
1736 				goto free_ret;
1737 			}
1738 
1739 			integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1740 			r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1741 						&dio->metadata_offset, ic->tag_size, TAG_CMP);
1742 			if (r) {
1743 				if (r > 0) {
1744 					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1745 						    bio->bi_bdev, logical_sector);
1746 					atomic64_inc(&ic->number_of_mismatches);
1747 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1748 							 bio, logical_sector, 0);
1749 					r = -EILSEQ;
1750 				}
1751 				dio->bi_status = errno_to_blk_status(r);
1752 				goto free_ret;
1753 			}
1754 
1755 			mem = bvec_kmap_local(&bv);
1756 			memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1757 			kunmap_local(mem);
1758 
1759 			pos += ic->sectors_per_block << SECTOR_SHIFT;
1760 			sector += ic->sectors_per_block;
1761 			logical_sector += ic->sectors_per_block;
1762 		} while (pos < bv.bv_len);
1763 	}
1764 free_ret:
1765 	mempool_free(page, &ic->recheck_pool);
1766 }
1767 
integrity_metadata(struct work_struct * w)1768 static void integrity_metadata(struct work_struct *w)
1769 {
1770 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1771 	struct dm_integrity_c *ic = dio->ic;
1772 
1773 	int r;
1774 
1775 	if (ic->internal_hash) {
1776 		struct bvec_iter iter;
1777 		struct bio_vec bv;
1778 		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1779 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1780 		char *checksums;
1781 		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1782 		char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1783 		sector_t sector;
1784 		unsigned int sectors_to_process;
1785 
1786 		if (unlikely(ic->mode == 'R'))
1787 			goto skip_io;
1788 
1789 		if (likely(dio->op != REQ_OP_DISCARD))
1790 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1791 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1792 		else
1793 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1794 		if (!checksums) {
1795 			checksums = checksums_onstack;
1796 			if (WARN_ON(extra_space &&
1797 				    digest_size > sizeof(checksums_onstack))) {
1798 				r = -EINVAL;
1799 				goto error;
1800 			}
1801 		}
1802 
1803 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1804 			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1805 			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1806 			unsigned int max_blocks = max_size / ic->tag_size;
1807 
1808 			memset(checksums, DISCARD_FILLER, max_size);
1809 
1810 			while (bi_size) {
1811 				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1812 
1813 				this_step_blocks = min(this_step_blocks, max_blocks);
1814 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1815 							this_step_blocks * ic->tag_size, TAG_WRITE);
1816 				if (unlikely(r)) {
1817 					if (likely(checksums != checksums_onstack))
1818 						kfree(checksums);
1819 					goto error;
1820 				}
1821 
1822 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1823 			}
1824 
1825 			if (likely(checksums != checksums_onstack))
1826 				kfree(checksums);
1827 			goto skip_io;
1828 		}
1829 
1830 		sector = dio->range.logical_sector;
1831 		sectors_to_process = dio->range.n_sectors;
1832 
1833 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1834 			struct bio_vec bv_copy = bv;
1835 			unsigned int pos;
1836 			char *mem, *checksums_ptr;
1837 
1838 again:
1839 			mem = bvec_kmap_local(&bv_copy);
1840 			pos = 0;
1841 			checksums_ptr = checksums;
1842 			do {
1843 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1844 				checksums_ptr += ic->tag_size;
1845 				sectors_to_process -= ic->sectors_per_block;
1846 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1847 				sector += ic->sectors_per_block;
1848 			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1849 			kunmap_local(mem);
1850 
1851 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1852 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1853 			if (unlikely(r)) {
1854 				if (likely(checksums != checksums_onstack))
1855 					kfree(checksums);
1856 				if (r > 0) {
1857 					integrity_recheck(dio, checksums_onstack);
1858 					goto skip_io;
1859 				}
1860 				goto error;
1861 			}
1862 
1863 			if (!sectors_to_process)
1864 				break;
1865 
1866 			if (unlikely(pos < bv_copy.bv_len)) {
1867 				bv_copy.bv_offset += pos;
1868 				bv_copy.bv_len -= pos;
1869 				goto again;
1870 			}
1871 		}
1872 
1873 		if (likely(checksums != checksums_onstack))
1874 			kfree(checksums);
1875 	} else {
1876 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1877 
1878 		if (bip) {
1879 			struct bio_vec biv;
1880 			struct bvec_iter iter;
1881 			unsigned int data_to_process = dio->range.n_sectors;
1882 
1883 			sector_to_block(ic, data_to_process);
1884 			data_to_process *= ic->tag_size;
1885 
1886 			bip_for_each_vec(biv, bip, iter) {
1887 				unsigned char *tag;
1888 				unsigned int this_len;
1889 
1890 				BUG_ON(PageHighMem(biv.bv_page));
1891 				tag = bvec_virt(&biv);
1892 				this_len = min(biv.bv_len, data_to_process);
1893 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1894 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1895 				if (unlikely(r))
1896 					goto error;
1897 				data_to_process -= this_len;
1898 				if (!data_to_process)
1899 					break;
1900 			}
1901 		}
1902 	}
1903 skip_io:
1904 	dec_in_flight(dio);
1905 	return;
1906 error:
1907 	dio->bi_status = errno_to_blk_status(r);
1908 	dec_in_flight(dio);
1909 }
1910 
dm_integrity_check_limits(struct dm_integrity_c * ic,sector_t logical_sector,struct bio * bio)1911 static inline bool dm_integrity_check_limits(struct dm_integrity_c *ic, sector_t logical_sector, struct bio *bio)
1912 {
1913 	if (unlikely(logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1914 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1915 		      logical_sector, bio_sectors(bio),
1916 		      ic->provided_data_sectors);
1917 		return false;
1918 	}
1919 	if (unlikely((logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1920 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1921 		      ic->sectors_per_block,
1922 		      logical_sector, bio_sectors(bio));
1923 		return false;
1924 	}
1925 	if (ic->sectors_per_block > 1 && likely(bio_op(bio) != REQ_OP_DISCARD)) {
1926 		struct bvec_iter iter;
1927 		struct bio_vec bv;
1928 
1929 		bio_for_each_segment(bv, bio, iter) {
1930 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1931 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1932 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1933 				return false;
1934 			}
1935 		}
1936 	}
1937 	return true;
1938 }
1939 
dm_integrity_map(struct dm_target * ti,struct bio * bio)1940 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1941 {
1942 	struct dm_integrity_c *ic = ti->private;
1943 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1944 	struct bio_integrity_payload *bip;
1945 
1946 	sector_t area, offset;
1947 
1948 	dio->ic = ic;
1949 	dio->bi_status = 0;
1950 	dio->op = bio_op(bio);
1951 
1952 	if (ic->mode == 'I') {
1953 		bio->bi_iter.bi_sector = dm_target_offset(ic->ti, bio->bi_iter.bi_sector);
1954 		dio->integrity_payload = NULL;
1955 		dio->integrity_payload_from_mempool = false;
1956 		dio->integrity_range_locked = false;
1957 		return dm_integrity_map_inline(dio, true);
1958 	}
1959 
1960 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1961 		if (ti->max_io_len) {
1962 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1963 			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1964 			sector_t start_boundary = sec >> log2_max_io_len;
1965 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1966 
1967 			if (start_boundary < end_boundary) {
1968 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1969 
1970 				dm_accept_partial_bio(bio, len);
1971 			}
1972 		}
1973 	}
1974 
1975 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1976 		submit_flush_bio(ic, dio);
1977 		return DM_MAPIO_SUBMITTED;
1978 	}
1979 
1980 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1981 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1982 	if (unlikely(dio->fua)) {
1983 		/*
1984 		 * Don't pass down the FUA flag because we have to flush
1985 		 * disk cache anyway.
1986 		 */
1987 		bio->bi_opf &= ~REQ_FUA;
1988 	}
1989 	if (unlikely(!dm_integrity_check_limits(ic, dio->range.logical_sector, bio)))
1990 		return DM_MAPIO_KILL;
1991 
1992 	bip = bio_integrity(bio);
1993 	if (!ic->internal_hash) {
1994 		if (bip) {
1995 			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1996 
1997 			if (ic->log2_tag_size >= 0)
1998 				wanted_tag_size <<= ic->log2_tag_size;
1999 			else
2000 				wanted_tag_size *= ic->tag_size;
2001 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
2002 				DMERR("Invalid integrity data size %u, expected %u",
2003 				      bip->bip_iter.bi_size, wanted_tag_size);
2004 				return DM_MAPIO_KILL;
2005 			}
2006 		}
2007 	} else {
2008 		if (unlikely(bip != NULL)) {
2009 			DMERR("Unexpected integrity data when using internal hash");
2010 			return DM_MAPIO_KILL;
2011 		}
2012 	}
2013 
2014 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2015 		return DM_MAPIO_KILL;
2016 
2017 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2018 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2019 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2020 
2021 	dm_integrity_map_continue(dio, true);
2022 	return DM_MAPIO_SUBMITTED;
2023 }
2024 
__journal_read_write(struct dm_integrity_io * dio,struct bio * bio,unsigned int journal_section,unsigned int journal_entry)2025 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2026 				 unsigned int journal_section, unsigned int journal_entry)
2027 {
2028 	struct dm_integrity_c *ic = dio->ic;
2029 	sector_t logical_sector;
2030 	unsigned int n_sectors;
2031 
2032 	logical_sector = dio->range.logical_sector;
2033 	n_sectors = dio->range.n_sectors;
2034 	do {
2035 		struct bio_vec bv = bio_iovec(bio);
2036 		char *mem;
2037 
2038 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2039 			bv.bv_len = n_sectors << SECTOR_SHIFT;
2040 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2041 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2042 retry_kmap:
2043 		mem = kmap_local_page(bv.bv_page);
2044 		if (likely(dio->op == REQ_OP_WRITE))
2045 			flush_dcache_page(bv.bv_page);
2046 
2047 		do {
2048 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2049 
2050 			if (unlikely(dio->op == REQ_OP_READ)) {
2051 				struct journal_sector *js;
2052 				char *mem_ptr;
2053 				unsigned int s;
2054 
2055 				if (unlikely(journal_entry_is_inprogress(je))) {
2056 					flush_dcache_page(bv.bv_page);
2057 					kunmap_local(mem);
2058 
2059 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2060 					goto retry_kmap;
2061 				}
2062 				smp_rmb();
2063 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2064 				js = access_journal_data(ic, journal_section, journal_entry);
2065 				mem_ptr = mem + bv.bv_offset;
2066 				s = 0;
2067 				do {
2068 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2069 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2070 					js++;
2071 					mem_ptr += 1 << SECTOR_SHIFT;
2072 				} while (++s < ic->sectors_per_block);
2073 #ifdef INTERNAL_VERIFY
2074 				if (ic->internal_hash) {
2075 					char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2076 
2077 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2078 					if (unlikely(crypto_memneq(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2079 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2080 							    logical_sector);
2081 						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2082 								 bio, logical_sector, 0);
2083 					}
2084 				}
2085 #endif
2086 			}
2087 
2088 			if (!ic->internal_hash) {
2089 				struct bio_integrity_payload *bip = bio_integrity(bio);
2090 				unsigned int tag_todo = ic->tag_size;
2091 				char *tag_ptr = journal_entry_tag(ic, je);
2092 
2093 				if (bip) {
2094 					do {
2095 						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2096 						unsigned int tag_now = min(biv.bv_len, tag_todo);
2097 						char *tag_addr;
2098 
2099 						BUG_ON(PageHighMem(biv.bv_page));
2100 						tag_addr = bvec_virt(&biv);
2101 						if (likely(dio->op == REQ_OP_WRITE))
2102 							memcpy(tag_ptr, tag_addr, tag_now);
2103 						else
2104 							memcpy(tag_addr, tag_ptr, tag_now);
2105 						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2106 						tag_ptr += tag_now;
2107 						tag_todo -= tag_now;
2108 					} while (unlikely(tag_todo));
2109 				} else if (likely(dio->op == REQ_OP_WRITE))
2110 					memset(tag_ptr, 0, tag_todo);
2111 			}
2112 
2113 			if (likely(dio->op == REQ_OP_WRITE)) {
2114 				struct journal_sector *js;
2115 				unsigned int s;
2116 
2117 				js = access_journal_data(ic, journal_section, journal_entry);
2118 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2119 
2120 				s = 0;
2121 				do {
2122 					je->last_bytes[s] = js[s].commit_id;
2123 				} while (++s < ic->sectors_per_block);
2124 
2125 				if (ic->internal_hash) {
2126 					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2127 
2128 					if (unlikely(digest_size > ic->tag_size)) {
2129 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2130 
2131 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2132 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2133 					} else
2134 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2135 				}
2136 
2137 				journal_entry_set_sector(je, logical_sector);
2138 			}
2139 			logical_sector += ic->sectors_per_block;
2140 
2141 			journal_entry++;
2142 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2143 				journal_entry = 0;
2144 				journal_section++;
2145 				wraparound_section(ic, &journal_section);
2146 			}
2147 
2148 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2149 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2150 
2151 		if (unlikely(dio->op == REQ_OP_READ))
2152 			flush_dcache_page(bv.bv_page);
2153 		kunmap_local(mem);
2154 	} while (n_sectors);
2155 
2156 	if (likely(dio->op == REQ_OP_WRITE)) {
2157 		smp_mb();
2158 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2159 			wake_up(&ic->copy_to_journal_wait);
2160 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2161 			queue_work(ic->commit_wq, &ic->commit_work);
2162 		else
2163 			schedule_autocommit(ic);
2164 	} else
2165 		remove_range(ic, &dio->range);
2166 
2167 	if (unlikely(bio->bi_iter.bi_size)) {
2168 		sector_t area, offset;
2169 
2170 		dio->range.logical_sector = logical_sector;
2171 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2172 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2173 		return true;
2174 	}
2175 
2176 	return false;
2177 }
2178 
dm_integrity_map_continue(struct dm_integrity_io * dio,bool from_map)2179 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2180 {
2181 	struct dm_integrity_c *ic = dio->ic;
2182 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2183 	unsigned int journal_section, journal_entry;
2184 	unsigned int journal_read_pos;
2185 	sector_t recalc_sector;
2186 	struct completion read_comp;
2187 	bool discard_retried = false;
2188 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2189 
2190 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2191 		need_sync_io = true;
2192 
2193 	if (need_sync_io && from_map) {
2194 		INIT_WORK(&dio->work, integrity_bio_wait);
2195 		queue_work(ic->offload_wq, &dio->work);
2196 		return;
2197 	}
2198 
2199 lock_retry:
2200 	spin_lock_irq(&ic->endio_wait.lock);
2201 retry:
2202 	if (unlikely(dm_integrity_failed(ic))) {
2203 		spin_unlock_irq(&ic->endio_wait.lock);
2204 		do_endio(ic, bio);
2205 		return;
2206 	}
2207 	dio->range.n_sectors = bio_sectors(bio);
2208 	journal_read_pos = NOT_FOUND;
2209 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2210 		if (dio->op == REQ_OP_WRITE) {
2211 			unsigned int next_entry, i, pos;
2212 			unsigned int ws, we, range_sectors;
2213 
2214 			dio->range.n_sectors = min(dio->range.n_sectors,
2215 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2216 			if (unlikely(!dio->range.n_sectors)) {
2217 				if (from_map)
2218 					goto offload_to_thread;
2219 				sleep_on_endio_wait(ic);
2220 				goto retry;
2221 			}
2222 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2223 			ic->free_sectors -= range_sectors;
2224 			journal_section = ic->free_section;
2225 			journal_entry = ic->free_section_entry;
2226 
2227 			next_entry = ic->free_section_entry + range_sectors;
2228 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2229 			ic->free_section += next_entry / ic->journal_section_entries;
2230 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2231 			wraparound_section(ic, &ic->free_section);
2232 
2233 			pos = journal_section * ic->journal_section_entries + journal_entry;
2234 			ws = journal_section;
2235 			we = journal_entry;
2236 			i = 0;
2237 			do {
2238 				struct journal_entry *je;
2239 
2240 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2241 				pos++;
2242 				if (unlikely(pos >= ic->journal_entries))
2243 					pos = 0;
2244 
2245 				je = access_journal_entry(ic, ws, we);
2246 				BUG_ON(!journal_entry_is_unused(je));
2247 				journal_entry_set_inprogress(je);
2248 				we++;
2249 				if (unlikely(we == ic->journal_section_entries)) {
2250 					we = 0;
2251 					ws++;
2252 					wraparound_section(ic, &ws);
2253 				}
2254 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2255 
2256 			spin_unlock_irq(&ic->endio_wait.lock);
2257 			goto journal_read_write;
2258 		} else {
2259 			sector_t next_sector;
2260 
2261 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2262 			if (likely(journal_read_pos == NOT_FOUND)) {
2263 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2264 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2265 			} else {
2266 				unsigned int i;
2267 				unsigned int jp = journal_read_pos + 1;
2268 
2269 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2270 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2271 						break;
2272 				}
2273 				dio->range.n_sectors = i;
2274 			}
2275 		}
2276 	}
2277 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2278 		/*
2279 		 * We must not sleep in the request routine because it could
2280 		 * stall bios on current->bio_list.
2281 		 * So, we offload the bio to a workqueue if we have to sleep.
2282 		 */
2283 		if (from_map) {
2284 offload_to_thread:
2285 			spin_unlock_irq(&ic->endio_wait.lock);
2286 			INIT_WORK(&dio->work, integrity_bio_wait);
2287 			queue_work(ic->wait_wq, &dio->work);
2288 			return;
2289 		}
2290 		if (journal_read_pos != NOT_FOUND)
2291 			dio->range.n_sectors = ic->sectors_per_block;
2292 		wait_and_add_new_range(ic, &dio->range);
2293 		/*
2294 		 * wait_and_add_new_range drops the spinlock, so the journal
2295 		 * may have been changed arbitrarily. We need to recheck.
2296 		 * To simplify the code, we restrict I/O size to just one block.
2297 		 */
2298 		if (journal_read_pos != NOT_FOUND) {
2299 			sector_t next_sector;
2300 			unsigned int new_pos;
2301 
2302 			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2303 			if (unlikely(new_pos != journal_read_pos)) {
2304 				remove_range_unlocked(ic, &dio->range);
2305 				goto retry;
2306 			}
2307 		}
2308 	}
2309 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2310 		sector_t next_sector;
2311 		unsigned int new_pos;
2312 
2313 		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2314 		if (unlikely(new_pos != NOT_FOUND) ||
2315 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2316 			remove_range_unlocked(ic, &dio->range);
2317 			spin_unlock_irq(&ic->endio_wait.lock);
2318 			queue_work(ic->commit_wq, &ic->commit_work);
2319 			flush_workqueue(ic->commit_wq);
2320 			queue_work(ic->writer_wq, &ic->writer_work);
2321 			flush_workqueue(ic->writer_wq);
2322 			discard_retried = true;
2323 			goto lock_retry;
2324 		}
2325 	}
2326 	recalc_sector = le64_to_cpu(ic->sb->recalc_sector);
2327 	spin_unlock_irq(&ic->endio_wait.lock);
2328 
2329 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2330 		journal_section = journal_read_pos / ic->journal_section_entries;
2331 		journal_entry = journal_read_pos % ic->journal_section_entries;
2332 		goto journal_read_write;
2333 	}
2334 
2335 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2336 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2337 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2338 			struct bitmap_block_status *bbs;
2339 
2340 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2341 			spin_lock(&bbs->bio_queue_lock);
2342 			bio_list_add(&bbs->bio_queue, bio);
2343 			spin_unlock(&bbs->bio_queue_lock);
2344 			queue_work(ic->writer_wq, &bbs->work);
2345 			return;
2346 		}
2347 	}
2348 
2349 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2350 
2351 	if (need_sync_io) {
2352 		init_completion(&read_comp);
2353 		dio->completion = &read_comp;
2354 	} else
2355 		dio->completion = NULL;
2356 
2357 	dm_bio_record(&dio->bio_details, bio);
2358 	bio_set_dev(bio, ic->dev->bdev);
2359 	bio->bi_integrity = NULL;
2360 	bio->bi_opf &= ~REQ_INTEGRITY;
2361 	bio->bi_end_io = integrity_end_io;
2362 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2363 
2364 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2365 		integrity_metadata(&dio->work);
2366 		dm_integrity_flush_buffers(ic, false);
2367 
2368 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2369 		dio->completion = NULL;
2370 
2371 		submit_bio_noacct(bio);
2372 
2373 		return;
2374 	}
2375 
2376 	submit_bio_noacct(bio);
2377 
2378 	if (need_sync_io) {
2379 		wait_for_completion_io(&read_comp);
2380 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2381 		    dio->range.logical_sector + dio->range.n_sectors > recalc_sector)
2382 			goto skip_check;
2383 		if (ic->mode == 'B') {
2384 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2385 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2386 				goto skip_check;
2387 		}
2388 
2389 		if (likely(!bio->bi_status))
2390 			integrity_metadata(&dio->work);
2391 		else
2392 skip_check:
2393 			dec_in_flight(dio);
2394 	} else {
2395 		INIT_WORK(&dio->work, integrity_metadata);
2396 		queue_work(ic->metadata_wq, &dio->work);
2397 	}
2398 
2399 	return;
2400 
2401 journal_read_write:
2402 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2403 		goto lock_retry;
2404 
2405 	do_endio_flush(ic, dio);
2406 }
2407 
dm_integrity_map_inline(struct dm_integrity_io * dio,bool from_map)2408 static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map)
2409 {
2410 	struct dm_integrity_c *ic = dio->ic;
2411 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2412 	struct bio_integrity_payload *bip;
2413 	unsigned ret;
2414 	sector_t recalc_sector;
2415 
2416 	if (unlikely(bio_integrity(bio))) {
2417 		bio->bi_status = BLK_STS_NOTSUPP;
2418 		bio_endio(bio);
2419 		return DM_MAPIO_SUBMITTED;
2420 	}
2421 
2422 	bio_set_dev(bio, ic->dev->bdev);
2423 	if (unlikely((bio->bi_opf & REQ_PREFLUSH) != 0))
2424 		return DM_MAPIO_REMAPPED;
2425 
2426 retry:
2427 	if (!dio->integrity_payload) {
2428 		unsigned digest_size, extra_size;
2429 		dio->payload_len = ic->tuple_size * (bio_sectors(bio) >> ic->sb->log2_sectors_per_block);
2430 		digest_size = crypto_shash_digestsize(ic->internal_hash);
2431 		extra_size = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
2432 		dio->payload_len += extra_size;
2433 		dio->integrity_payload = kmalloc(dio->payload_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
2434 		if (unlikely(!dio->integrity_payload)) {
2435 			const unsigned x_size = PAGE_SIZE << 1;
2436 			if (dio->payload_len > x_size) {
2437 				unsigned sectors = ((x_size - extra_size) / ic->tuple_size) << ic->sb->log2_sectors_per_block;
2438 				if (WARN_ON(!sectors || sectors >= bio_sectors(bio))) {
2439 					bio->bi_status = BLK_STS_NOTSUPP;
2440 					bio_endio(bio);
2441 					return DM_MAPIO_SUBMITTED;
2442 				}
2443 				dm_accept_partial_bio(bio, sectors);
2444 				goto retry;
2445 			}
2446 		}
2447 	}
2448 
2449 	dio->range.logical_sector = bio->bi_iter.bi_sector;
2450 	dio->range.n_sectors = bio_sectors(bio);
2451 
2452 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)))
2453 		goto skip_spinlock;
2454 #ifdef CONFIG_64BIT
2455 	/*
2456 	 * On 64-bit CPUs we can optimize the lock away (so that it won't cause
2457 	 * cache line bouncing) and use acquire/release barriers instead.
2458 	 *
2459 	 * Paired with smp_store_release in integrity_recalc_inline.
2460 	 */
2461 	recalc_sector = le64_to_cpu(smp_load_acquire(&ic->sb->recalc_sector));
2462 	if (likely(dio->range.logical_sector + dio->range.n_sectors <= recalc_sector))
2463 		goto skip_spinlock;
2464 #endif
2465 	spin_lock_irq(&ic->endio_wait.lock);
2466 	recalc_sector = le64_to_cpu(ic->sb->recalc_sector);
2467 	if (dio->range.logical_sector + dio->range.n_sectors <= recalc_sector)
2468 		goto skip_unlock;
2469 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2470 		if (from_map) {
2471 			spin_unlock_irq(&ic->endio_wait.lock);
2472 			INIT_WORK(&dio->work, integrity_bio_wait);
2473 			queue_work(ic->wait_wq, &dio->work);
2474 			return DM_MAPIO_SUBMITTED;
2475 		}
2476 		wait_and_add_new_range(ic, &dio->range);
2477 	}
2478 	dio->integrity_range_locked = true;
2479 skip_unlock:
2480 	spin_unlock_irq(&ic->endio_wait.lock);
2481 skip_spinlock:
2482 
2483 	if (unlikely(!dio->integrity_payload)) {
2484 		dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2485 		dio->integrity_payload_from_mempool = true;
2486 	}
2487 
2488 	dio->bio_details.bi_iter = bio->bi_iter;
2489 
2490 	if (unlikely(!dm_integrity_check_limits(ic, bio->bi_iter.bi_sector, bio))) {
2491 		return DM_MAPIO_KILL;
2492 	}
2493 
2494 	bio->bi_iter.bi_sector += ic->start + SB_SECTORS;
2495 
2496 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
2497 	if (IS_ERR(bip)) {
2498 		bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2499 		bio_endio(bio);
2500 		return DM_MAPIO_SUBMITTED;
2501 	}
2502 
2503 	if (dio->op == REQ_OP_WRITE) {
2504 		unsigned pos = 0;
2505 		while (dio->bio_details.bi_iter.bi_size) {
2506 			struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2507 			const char *mem = bvec_kmap_local(&bv);
2508 			if (ic->tag_size < ic->tuple_size)
2509 				memset(dio->integrity_payload + pos + ic->tag_size, 0, ic->tuple_size - ic->tuple_size);
2510 			integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, dio->integrity_payload + pos);
2511 			kunmap_local(mem);
2512 			pos += ic->tuple_size;
2513 			bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2514 		}
2515 	}
2516 
2517 	ret = bio_integrity_add_page(bio, virt_to_page(dio->integrity_payload),
2518 					dio->payload_len, offset_in_page(dio->integrity_payload));
2519 	if (unlikely(ret != dio->payload_len)) {
2520 		bio->bi_status = BLK_STS_RESOURCE;
2521 		bio_endio(bio);
2522 		return DM_MAPIO_SUBMITTED;
2523 	}
2524 
2525 	return DM_MAPIO_REMAPPED;
2526 }
2527 
dm_integrity_free_payload(struct dm_integrity_io * dio)2528 static inline void dm_integrity_free_payload(struct dm_integrity_io *dio)
2529 {
2530 	struct dm_integrity_c *ic = dio->ic;
2531 	if (unlikely(dio->integrity_payload_from_mempool))
2532 		mempool_free(virt_to_page(dio->integrity_payload), &ic->recheck_pool);
2533 	else
2534 		kfree(dio->integrity_payload);
2535 	dio->integrity_payload = NULL;
2536 	dio->integrity_payload_from_mempool = false;
2537 }
2538 
dm_integrity_inline_recheck(struct work_struct * w)2539 static void dm_integrity_inline_recheck(struct work_struct *w)
2540 {
2541 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2542 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2543 	struct dm_integrity_c *ic = dio->ic;
2544 	struct bio *outgoing_bio;
2545 	void *outgoing_data;
2546 
2547 	dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2548 	dio->integrity_payload_from_mempool = true;
2549 
2550 	outgoing_data = dio->integrity_payload + PAGE_SIZE;
2551 
2552 	while (dio->bio_details.bi_iter.bi_size) {
2553 		char digest[HASH_MAX_DIGESTSIZE];
2554 		int r;
2555 		struct bio_integrity_payload *bip;
2556 		struct bio_vec bv;
2557 		char *mem;
2558 
2559 		outgoing_bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recheck_bios);
2560 
2561 		r = bio_add_page(outgoing_bio, virt_to_page(outgoing_data), ic->sectors_per_block << SECTOR_SHIFT, 0);
2562 		if (unlikely(r != (ic->sectors_per_block << SECTOR_SHIFT))) {
2563 			bio_put(outgoing_bio);
2564 			bio->bi_status = BLK_STS_RESOURCE;
2565 			bio_endio(bio);
2566 			return;
2567 		}
2568 
2569 		bip = bio_integrity_alloc(outgoing_bio, GFP_NOIO, 1);
2570 		if (IS_ERR(bip)) {
2571 			bio_put(outgoing_bio);
2572 			bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2573 			bio_endio(bio);
2574 			return;
2575 		}
2576 
2577 		r = bio_integrity_add_page(outgoing_bio, virt_to_page(dio->integrity_payload), ic->tuple_size, 0);
2578 		if (unlikely(r != ic->tuple_size)) {
2579 			bio_put(outgoing_bio);
2580 			bio->bi_status = BLK_STS_RESOURCE;
2581 			bio_endio(bio);
2582 			return;
2583 		}
2584 
2585 		outgoing_bio->bi_iter.bi_sector = dio->bio_details.bi_iter.bi_sector + ic->start + SB_SECTORS;
2586 
2587 		r = submit_bio_wait(outgoing_bio);
2588 		if (unlikely(r != 0)) {
2589 			bio_put(outgoing_bio);
2590 			bio->bi_status = errno_to_blk_status(r);
2591 			bio_endio(bio);
2592 			return;
2593 		}
2594 		bio_put(outgoing_bio);
2595 
2596 		integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, outgoing_data, digest);
2597 		if (unlikely(crypto_memneq(digest, dio->integrity_payload, min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) {
2598 			DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
2599 				ic->dev->bdev, dio->bio_details.bi_iter.bi_sector);
2600 			atomic64_inc(&ic->number_of_mismatches);
2601 			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
2602 				bio, dio->bio_details.bi_iter.bi_sector, 0);
2603 
2604 			bio->bi_status = BLK_STS_PROTECTION;
2605 			bio_endio(bio);
2606 			return;
2607 		}
2608 
2609 		bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2610 		mem = bvec_kmap_local(&bv);
2611 		memcpy(mem, outgoing_data, ic->sectors_per_block << SECTOR_SHIFT);
2612 		kunmap_local(mem);
2613 
2614 		bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2615 	}
2616 
2617 	bio_endio(bio);
2618 }
2619 
dm_integrity_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * status)2620 static int dm_integrity_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
2621 {
2622 	struct dm_integrity_c *ic = ti->private;
2623 	if (ic->mode == 'I') {
2624 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2625 		if (dio->op == REQ_OP_READ && likely(*status == BLK_STS_OK)) {
2626 			unsigned pos = 0;
2627 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2628 			    unlikely(dio->integrity_range_locked))
2629 				goto skip_check;
2630 			while (dio->bio_details.bi_iter.bi_size) {
2631 				char digest[HASH_MAX_DIGESTSIZE];
2632 				struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2633 				char *mem = bvec_kmap_local(&bv);
2634 				//memset(mem, 0xff, ic->sectors_per_block << SECTOR_SHIFT);
2635 				integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, digest);
2636 				if (unlikely(crypto_memneq(digest, dio->integrity_payload + pos,
2637 						min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) {
2638 					kunmap_local(mem);
2639 					dm_integrity_free_payload(dio);
2640 					INIT_WORK(&dio->work, dm_integrity_inline_recheck);
2641 					queue_work(ic->offload_wq, &dio->work);
2642 					return DM_ENDIO_INCOMPLETE;
2643 				}
2644 				kunmap_local(mem);
2645 				pos += ic->tuple_size;
2646 				bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2647 			}
2648 		}
2649 skip_check:
2650 		dm_integrity_free_payload(dio);
2651 		if (unlikely(dio->integrity_range_locked))
2652 			remove_range(ic, &dio->range);
2653 	}
2654 	return DM_ENDIO_DONE;
2655 }
2656 
integrity_bio_wait(struct work_struct * w)2657 static void integrity_bio_wait(struct work_struct *w)
2658 {
2659 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2660 	struct dm_integrity_c *ic = dio->ic;
2661 
2662 	if (ic->mode == 'I') {
2663 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2664 		int r = dm_integrity_map_inline(dio, false);
2665 		switch (r) {
2666 			case DM_MAPIO_KILL:
2667 				bio->bi_status = BLK_STS_IOERR;
2668 				fallthrough;
2669 			case DM_MAPIO_REMAPPED:
2670 				submit_bio_noacct(bio);
2671 				fallthrough;
2672 			case DM_MAPIO_SUBMITTED:
2673 				return;
2674 			default:
2675 				BUG();
2676 		}
2677 	} else {
2678 		dm_integrity_map_continue(dio, false);
2679 	}
2680 }
2681 
pad_uncommitted(struct dm_integrity_c * ic)2682 static void pad_uncommitted(struct dm_integrity_c *ic)
2683 {
2684 	if (ic->free_section_entry) {
2685 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2686 		ic->free_section_entry = 0;
2687 		ic->free_section++;
2688 		wraparound_section(ic, &ic->free_section);
2689 		ic->n_uncommitted_sections++;
2690 	}
2691 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2692 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2693 		    ic->journal_section_entries + ic->free_sectors)) {
2694 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2695 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2696 		       "journal_section_entries %u, free_sectors %u",
2697 		       ic->journal_sections, ic->journal_section_entries,
2698 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2699 		       ic->journal_section_entries, ic->free_sectors);
2700 	}
2701 }
2702 
integrity_commit(struct work_struct * w)2703 static void integrity_commit(struct work_struct *w)
2704 {
2705 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2706 	unsigned int commit_start, commit_sections;
2707 	unsigned int i, j, n;
2708 	struct bio *flushes;
2709 
2710 	timer_delete(&ic->autocommit_timer);
2711 
2712 	if (ic->mode == 'I')
2713 		return;
2714 
2715 	spin_lock_irq(&ic->endio_wait.lock);
2716 	flushes = bio_list_get(&ic->flush_bio_list);
2717 	if (unlikely(ic->mode != 'J')) {
2718 		spin_unlock_irq(&ic->endio_wait.lock);
2719 		dm_integrity_flush_buffers(ic, true);
2720 		goto release_flush_bios;
2721 	}
2722 
2723 	pad_uncommitted(ic);
2724 	commit_start = ic->uncommitted_section;
2725 	commit_sections = ic->n_uncommitted_sections;
2726 	spin_unlock_irq(&ic->endio_wait.lock);
2727 
2728 	if (!commit_sections)
2729 		goto release_flush_bios;
2730 
2731 	ic->wrote_to_journal = true;
2732 
2733 	i = commit_start;
2734 	for (n = 0; n < commit_sections; n++) {
2735 		for (j = 0; j < ic->journal_section_entries; j++) {
2736 			struct journal_entry *je;
2737 
2738 			je = access_journal_entry(ic, i, j);
2739 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2740 		}
2741 		for (j = 0; j < ic->journal_section_sectors; j++) {
2742 			struct journal_sector *js;
2743 
2744 			js = access_journal(ic, i, j);
2745 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2746 		}
2747 		i++;
2748 		if (unlikely(i >= ic->journal_sections))
2749 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2750 		wraparound_section(ic, &i);
2751 	}
2752 	smp_rmb();
2753 
2754 	write_journal(ic, commit_start, commit_sections);
2755 
2756 	spin_lock_irq(&ic->endio_wait.lock);
2757 	ic->uncommitted_section += commit_sections;
2758 	wraparound_section(ic, &ic->uncommitted_section);
2759 	ic->n_uncommitted_sections -= commit_sections;
2760 	ic->n_committed_sections += commit_sections;
2761 	spin_unlock_irq(&ic->endio_wait.lock);
2762 
2763 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2764 		queue_work(ic->writer_wq, &ic->writer_work);
2765 
2766 release_flush_bios:
2767 	while (flushes) {
2768 		struct bio *next = flushes->bi_next;
2769 
2770 		flushes->bi_next = NULL;
2771 		do_endio(ic, flushes);
2772 		flushes = next;
2773 	}
2774 }
2775 
complete_copy_from_journal(unsigned long error,void * context)2776 static void complete_copy_from_journal(unsigned long error, void *context)
2777 {
2778 	struct journal_io *io = context;
2779 	struct journal_completion *comp = io->comp;
2780 	struct dm_integrity_c *ic = comp->ic;
2781 
2782 	remove_range(ic, &io->range);
2783 	mempool_free(io, &ic->journal_io_mempool);
2784 	if (unlikely(error != 0))
2785 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2786 	complete_journal_op(comp);
2787 }
2788 
restore_last_bytes(struct dm_integrity_c * ic,struct journal_sector * js,struct journal_entry * je)2789 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2790 			       struct journal_entry *je)
2791 {
2792 	unsigned int s = 0;
2793 
2794 	do {
2795 		js->commit_id = je->last_bytes[s];
2796 		js++;
2797 	} while (++s < ic->sectors_per_block);
2798 }
2799 
do_journal_write(struct dm_integrity_c * ic,unsigned int write_start,unsigned int write_sections,bool from_replay)2800 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2801 			     unsigned int write_sections, bool from_replay)
2802 {
2803 	unsigned int i, j, n;
2804 	struct journal_completion comp;
2805 	struct blk_plug plug;
2806 
2807 	blk_start_plug(&plug);
2808 
2809 	comp.ic = ic;
2810 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2811 	init_completion(&comp.comp);
2812 
2813 	i = write_start;
2814 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2815 #ifndef INTERNAL_VERIFY
2816 		if (unlikely(from_replay))
2817 #endif
2818 			rw_section_mac(ic, i, false);
2819 		for (j = 0; j < ic->journal_section_entries; j++) {
2820 			struct journal_entry *je = access_journal_entry(ic, i, j);
2821 			sector_t sec, area, offset;
2822 			unsigned int k, l, next_loop;
2823 			sector_t metadata_block;
2824 			unsigned int metadata_offset;
2825 			struct journal_io *io;
2826 
2827 			if (journal_entry_is_unused(je))
2828 				continue;
2829 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2830 			sec = journal_entry_get_sector(je);
2831 			if (unlikely(from_replay)) {
2832 				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2833 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2834 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2835 				}
2836 				if (unlikely(sec >= ic->provided_data_sectors)) {
2837 					journal_entry_set_unused(je);
2838 					continue;
2839 				}
2840 			}
2841 			get_area_and_offset(ic, sec, &area, &offset);
2842 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2843 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2844 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2845 				sector_t sec2, area2, offset2;
2846 
2847 				if (journal_entry_is_unused(je2))
2848 					break;
2849 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2850 				sec2 = journal_entry_get_sector(je2);
2851 				if (unlikely(sec2 >= ic->provided_data_sectors))
2852 					break;
2853 				get_area_and_offset(ic, sec2, &area2, &offset2);
2854 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2855 					break;
2856 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2857 			}
2858 			next_loop = k - 1;
2859 
2860 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2861 			io->comp = &comp;
2862 			io->range.logical_sector = sec;
2863 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2864 
2865 			spin_lock_irq(&ic->endio_wait.lock);
2866 			add_new_range_and_wait(ic, &io->range);
2867 
2868 			if (likely(!from_replay)) {
2869 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2870 
2871 				/* don't write if there is newer committed sector */
2872 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2873 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2874 
2875 					journal_entry_set_unused(je2);
2876 					remove_journal_node(ic, &section_node[j]);
2877 					j++;
2878 					sec += ic->sectors_per_block;
2879 					offset += ic->sectors_per_block;
2880 				}
2881 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2882 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2883 
2884 					journal_entry_set_unused(je2);
2885 					remove_journal_node(ic, &section_node[k - 1]);
2886 					k--;
2887 				}
2888 				if (j == k) {
2889 					remove_range_unlocked(ic, &io->range);
2890 					spin_unlock_irq(&ic->endio_wait.lock);
2891 					mempool_free(io, &ic->journal_io_mempool);
2892 					goto skip_io;
2893 				}
2894 				for (l = j; l < k; l++)
2895 					remove_journal_node(ic, &section_node[l]);
2896 			}
2897 			spin_unlock_irq(&ic->endio_wait.lock);
2898 
2899 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2900 			for (l = j; l < k; l++) {
2901 				int r;
2902 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2903 
2904 				if (
2905 #ifndef INTERNAL_VERIFY
2906 				    unlikely(from_replay) &&
2907 #endif
2908 				    ic->internal_hash) {
2909 					char test_tag[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2910 
2911 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2912 								  (char *)access_journal_data(ic, i, l), test_tag);
2913 					if (unlikely(crypto_memneq(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2914 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2915 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2916 					}
2917 				}
2918 
2919 				journal_entry_set_unused(je2);
2920 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2921 							ic->tag_size, TAG_WRITE);
2922 				if (unlikely(r))
2923 					dm_integrity_io_error(ic, "reading tags", r);
2924 			}
2925 
2926 			atomic_inc(&comp.in_flight);
2927 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2928 					  (k - j) << ic->sb->log2_sectors_per_block,
2929 					  get_data_sector(ic, area, offset),
2930 					  complete_copy_from_journal, io);
2931 skip_io:
2932 			j = next_loop;
2933 		}
2934 	}
2935 
2936 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2937 
2938 	blk_finish_plug(&plug);
2939 
2940 	complete_journal_op(&comp);
2941 	wait_for_completion_io(&comp.comp);
2942 
2943 	dm_integrity_flush_buffers(ic, true);
2944 }
2945 
integrity_writer(struct work_struct * w)2946 static void integrity_writer(struct work_struct *w)
2947 {
2948 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2949 	unsigned int write_start, write_sections;
2950 	unsigned int prev_free_sectors;
2951 
2952 	spin_lock_irq(&ic->endio_wait.lock);
2953 	write_start = ic->committed_section;
2954 	write_sections = ic->n_committed_sections;
2955 	spin_unlock_irq(&ic->endio_wait.lock);
2956 
2957 	if (!write_sections)
2958 		return;
2959 
2960 	do_journal_write(ic, write_start, write_sections, false);
2961 
2962 	spin_lock_irq(&ic->endio_wait.lock);
2963 
2964 	ic->committed_section += write_sections;
2965 	wraparound_section(ic, &ic->committed_section);
2966 	ic->n_committed_sections -= write_sections;
2967 
2968 	prev_free_sectors = ic->free_sectors;
2969 	ic->free_sectors += write_sections * ic->journal_section_entries;
2970 	if (unlikely(!prev_free_sectors))
2971 		wake_up_locked(&ic->endio_wait);
2972 
2973 	spin_unlock_irq(&ic->endio_wait.lock);
2974 }
2975 
recalc_write_super(struct dm_integrity_c * ic)2976 static void recalc_write_super(struct dm_integrity_c *ic)
2977 {
2978 	int r;
2979 
2980 	dm_integrity_flush_buffers(ic, false);
2981 	if (dm_integrity_failed(ic))
2982 		return;
2983 
2984 	r = sync_rw_sb(ic, REQ_OP_WRITE);
2985 	if (unlikely(r))
2986 		dm_integrity_io_error(ic, "writing superblock", r);
2987 }
2988 
integrity_recalc(struct work_struct * w)2989 static void integrity_recalc(struct work_struct *w)
2990 {
2991 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2992 	size_t recalc_tags_size;
2993 	u8 *recalc_buffer = NULL;
2994 	u8 *recalc_tags = NULL;
2995 	struct dm_integrity_range range;
2996 	struct dm_io_request io_req;
2997 	struct dm_io_region io_loc;
2998 	sector_t area, offset;
2999 	sector_t metadata_block;
3000 	unsigned int metadata_offset;
3001 	sector_t logical_sector, n_sectors;
3002 	__u8 *t;
3003 	unsigned int i;
3004 	int r;
3005 	unsigned int super_counter = 0;
3006 	unsigned recalc_sectors = RECALC_SECTORS;
3007 
3008 retry:
3009 	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
3010 	if (!recalc_buffer) {
3011 oom:
3012 		recalc_sectors >>= 1;
3013 		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
3014 			goto retry;
3015 		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
3016 		goto free_ret;
3017 	}
3018 	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3019 	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
3020 		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
3021 	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
3022 	if (!recalc_tags) {
3023 		vfree(recalc_buffer);
3024 		recalc_buffer = NULL;
3025 		goto oom;
3026 	}
3027 
3028 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
3029 
3030 	spin_lock_irq(&ic->endio_wait.lock);
3031 
3032 next_chunk:
3033 
3034 	if (unlikely(dm_post_suspending(ic->ti)))
3035 		goto unlock_ret;
3036 
3037 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
3038 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
3039 		if (ic->mode == 'B') {
3040 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3041 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
3042 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3043 		}
3044 		goto unlock_ret;
3045 	}
3046 
3047 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
3048 	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
3049 	if (!ic->meta_dev)
3050 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
3051 
3052 	add_new_range_and_wait(ic, &range);
3053 	spin_unlock_irq(&ic->endio_wait.lock);
3054 	logical_sector = range.logical_sector;
3055 	n_sectors = range.n_sectors;
3056 
3057 	if (ic->mode == 'B') {
3058 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
3059 			goto advance_and_next;
3060 
3061 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
3062 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
3063 			logical_sector += ic->sectors_per_block;
3064 			n_sectors -= ic->sectors_per_block;
3065 			cond_resched();
3066 		}
3067 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
3068 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
3069 			n_sectors -= ic->sectors_per_block;
3070 			cond_resched();
3071 		}
3072 		get_area_and_offset(ic, logical_sector, &area, &offset);
3073 	}
3074 
3075 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
3076 
3077 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
3078 		recalc_write_super(ic);
3079 		if (ic->mode == 'B')
3080 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3081 
3082 		super_counter = 0;
3083 	}
3084 
3085 	if (unlikely(dm_integrity_failed(ic)))
3086 		goto err;
3087 
3088 	io_req.bi_opf = REQ_OP_READ;
3089 	io_req.mem.type = DM_IO_VMA;
3090 	io_req.mem.ptr.addr = recalc_buffer;
3091 	io_req.notify.fn = NULL;
3092 	io_req.client = ic->io;
3093 	io_loc.bdev = ic->dev->bdev;
3094 	io_loc.sector = get_data_sector(ic, area, offset);
3095 	io_loc.count = n_sectors;
3096 
3097 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
3098 	if (unlikely(r)) {
3099 		dm_integrity_io_error(ic, "reading data", r);
3100 		goto err;
3101 	}
3102 
3103 	t = recalc_tags;
3104 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
3105 		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
3106 		t += ic->tag_size;
3107 	}
3108 
3109 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
3110 
3111 	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
3112 	if (unlikely(r)) {
3113 		dm_integrity_io_error(ic, "writing tags", r);
3114 		goto err;
3115 	}
3116 
3117 	if (ic->mode == 'B') {
3118 		sector_t start, end;
3119 
3120 		start = (range.logical_sector >>
3121 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3122 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3123 		end = ((range.logical_sector + range.n_sectors) >>
3124 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3125 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3126 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
3127 	}
3128 
3129 advance_and_next:
3130 	cond_resched();
3131 
3132 	spin_lock_irq(&ic->endio_wait.lock);
3133 	remove_range_unlocked(ic, &range);
3134 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
3135 	goto next_chunk;
3136 
3137 err:
3138 	remove_range(ic, &range);
3139 	goto free_ret;
3140 
3141 unlock_ret:
3142 	spin_unlock_irq(&ic->endio_wait.lock);
3143 
3144 	recalc_write_super(ic);
3145 
3146 free_ret:
3147 	vfree(recalc_buffer);
3148 	kvfree(recalc_tags);
3149 }
3150 
integrity_recalc_inline(struct work_struct * w)3151 static void integrity_recalc_inline(struct work_struct *w)
3152 {
3153 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
3154 	size_t recalc_tags_size;
3155 	u8 *recalc_buffer = NULL;
3156 	u8 *recalc_tags = NULL;
3157 	struct dm_integrity_range range;
3158 	struct bio *bio;
3159 	struct bio_integrity_payload *bip;
3160 	__u8 *t;
3161 	unsigned int i;
3162 	int r;
3163 	unsigned ret;
3164 	unsigned int super_counter = 0;
3165 	unsigned recalc_sectors = RECALC_SECTORS;
3166 
3167 retry:
3168 	recalc_buffer = kmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO | __GFP_NOWARN);
3169 	if (!recalc_buffer) {
3170 oom:
3171 		recalc_sectors >>= 1;
3172 		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
3173 			goto retry;
3174 		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
3175 		goto free_ret;
3176 	}
3177 
3178 	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tuple_size;
3179 	if (crypto_shash_digestsize(ic->internal_hash) > ic->tuple_size)
3180 		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tuple_size;
3181 	recalc_tags = kmalloc(recalc_tags_size, GFP_NOIO | __GFP_NOWARN);
3182 	if (!recalc_tags) {
3183 		kfree(recalc_buffer);
3184 		recalc_buffer = NULL;
3185 		goto oom;
3186 	}
3187 
3188 	spin_lock_irq(&ic->endio_wait.lock);
3189 
3190 next_chunk:
3191 	if (unlikely(dm_post_suspending(ic->ti)))
3192 		goto unlock_ret;
3193 
3194 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
3195 	if (unlikely(range.logical_sector >= ic->provided_data_sectors))
3196 		goto unlock_ret;
3197 	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
3198 
3199 	add_new_range_and_wait(ic, &range);
3200 	spin_unlock_irq(&ic->endio_wait.lock);
3201 
3202 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
3203 		recalc_write_super(ic);
3204 		super_counter = 0;
3205 	}
3206 
3207 	if (unlikely(dm_integrity_failed(ic)))
3208 		goto err;
3209 
3210 	DEBUG_print("recalculating: %llx - %llx\n", range.logical_sector, range.n_sectors);
3211 
3212 	bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recalc_bios);
3213 	bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector;
3214 	__bio_add_page(bio, virt_to_page(recalc_buffer), range.n_sectors << SECTOR_SHIFT, offset_in_page(recalc_buffer));
3215 	r = submit_bio_wait(bio);
3216 	bio_put(bio);
3217 	if (unlikely(r)) {
3218 		dm_integrity_io_error(ic, "reading data", r);
3219 		goto err;
3220 	}
3221 
3222 	t = recalc_tags;
3223 	for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
3224 		memset(t, 0, ic->tuple_size);
3225 		integrity_sector_checksum(ic, range.logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
3226 		t += ic->tuple_size;
3227 	}
3228 
3229 	bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_WRITE, GFP_NOIO, &ic->recalc_bios);
3230 	bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector;
3231 	__bio_add_page(bio, virt_to_page(recalc_buffer), range.n_sectors << SECTOR_SHIFT, offset_in_page(recalc_buffer));
3232 
3233 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
3234 	if (unlikely(IS_ERR(bip))) {
3235 		bio_put(bio);
3236 		DMCRIT("out of memory for bio integrity payload - recalculation disabled");
3237 		goto err;
3238 	}
3239 	ret = bio_integrity_add_page(bio, virt_to_page(recalc_tags), t - recalc_tags, offset_in_page(recalc_tags));
3240 	if (unlikely(ret != t - recalc_tags)) {
3241 		bio_put(bio);
3242 		dm_integrity_io_error(ic, "attaching integrity tags", -ENOMEM);
3243 		goto err;
3244 	}
3245 
3246 	r = submit_bio_wait(bio);
3247 	bio_put(bio);
3248 	if (unlikely(r)) {
3249 		dm_integrity_io_error(ic, "writing data", r);
3250 		goto err;
3251 	}
3252 
3253 	cond_resched();
3254 	spin_lock_irq(&ic->endio_wait.lock);
3255 	remove_range_unlocked(ic, &range);
3256 #ifdef CONFIG_64BIT
3257 	/* Paired with smp_load_acquire in dm_integrity_map_inline. */
3258 	smp_store_release(&ic->sb->recalc_sector, cpu_to_le64(range.logical_sector + range.n_sectors));
3259 #else
3260 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
3261 #endif
3262 	goto next_chunk;
3263 
3264 err:
3265 	remove_range(ic, &range);
3266 	goto free_ret;
3267 
3268 unlock_ret:
3269 	spin_unlock_irq(&ic->endio_wait.lock);
3270 
3271 	recalc_write_super(ic);
3272 
3273 free_ret:
3274 	kfree(recalc_buffer);
3275 	kfree(recalc_tags);
3276 }
3277 
bitmap_block_work(struct work_struct * w)3278 static void bitmap_block_work(struct work_struct *w)
3279 {
3280 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
3281 	struct dm_integrity_c *ic = bbs->ic;
3282 	struct bio *bio;
3283 	struct bio_list bio_queue;
3284 	struct bio_list waiting;
3285 
3286 	bio_list_init(&waiting);
3287 
3288 	spin_lock(&bbs->bio_queue_lock);
3289 	bio_queue = bbs->bio_queue;
3290 	bio_list_init(&bbs->bio_queue);
3291 	spin_unlock(&bbs->bio_queue_lock);
3292 
3293 	while ((bio = bio_list_pop(&bio_queue))) {
3294 		struct dm_integrity_io *dio;
3295 
3296 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3297 
3298 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3299 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
3300 			remove_range(ic, &dio->range);
3301 			INIT_WORK(&dio->work, integrity_bio_wait);
3302 			queue_work(ic->offload_wq, &dio->work);
3303 		} else {
3304 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
3305 					dio->range.n_sectors, BITMAP_OP_SET);
3306 			bio_list_add(&waiting, bio);
3307 		}
3308 	}
3309 
3310 	if (bio_list_empty(&waiting))
3311 		return;
3312 
3313 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
3314 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
3315 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
3316 
3317 	while ((bio = bio_list_pop(&waiting))) {
3318 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3319 
3320 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3321 				dio->range.n_sectors, BITMAP_OP_SET);
3322 
3323 		remove_range(ic, &dio->range);
3324 		INIT_WORK(&dio->work, integrity_bio_wait);
3325 		queue_work(ic->offload_wq, &dio->work);
3326 	}
3327 
3328 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3329 }
3330 
bitmap_flush_work(struct work_struct * work)3331 static void bitmap_flush_work(struct work_struct *work)
3332 {
3333 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
3334 	struct dm_integrity_range range;
3335 	unsigned long limit;
3336 	struct bio *bio;
3337 
3338 	dm_integrity_flush_buffers(ic, false);
3339 
3340 	range.logical_sector = 0;
3341 	range.n_sectors = ic->provided_data_sectors;
3342 
3343 	spin_lock_irq(&ic->endio_wait.lock);
3344 	add_new_range_and_wait(ic, &range);
3345 	spin_unlock_irq(&ic->endio_wait.lock);
3346 
3347 	dm_integrity_flush_buffers(ic, true);
3348 
3349 	limit = ic->provided_data_sectors;
3350 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3351 		limit = le64_to_cpu(ic->sb->recalc_sector)
3352 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
3353 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3354 	}
3355 	/*DEBUG_print("zeroing journal\n");*/
3356 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
3357 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
3358 
3359 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3360 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3361 
3362 	spin_lock_irq(&ic->endio_wait.lock);
3363 	remove_range_unlocked(ic, &range);
3364 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
3365 		bio_endio(bio);
3366 		spin_unlock_irq(&ic->endio_wait.lock);
3367 		spin_lock_irq(&ic->endio_wait.lock);
3368 	}
3369 	spin_unlock_irq(&ic->endio_wait.lock);
3370 }
3371 
3372 
init_journal(struct dm_integrity_c * ic,unsigned int start_section,unsigned int n_sections,unsigned char commit_seq)3373 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
3374 			 unsigned int n_sections, unsigned char commit_seq)
3375 {
3376 	unsigned int i, j, n;
3377 
3378 	if (!n_sections)
3379 		return;
3380 
3381 	for (n = 0; n < n_sections; n++) {
3382 		i = start_section + n;
3383 		wraparound_section(ic, &i);
3384 		for (j = 0; j < ic->journal_section_sectors; j++) {
3385 			struct journal_sector *js = access_journal(ic, i, j);
3386 
3387 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
3388 			memset(&js->sectors, 0, sizeof(js->sectors));
3389 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
3390 		}
3391 		for (j = 0; j < ic->journal_section_entries; j++) {
3392 			struct journal_entry *je = access_journal_entry(ic, i, j);
3393 
3394 			journal_entry_set_unused(je);
3395 		}
3396 	}
3397 
3398 	write_journal(ic, start_section, n_sections);
3399 }
3400 
find_commit_seq(struct dm_integrity_c * ic,unsigned int i,unsigned int j,commit_id_t id)3401 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
3402 {
3403 	unsigned char k;
3404 
3405 	for (k = 0; k < N_COMMIT_IDS; k++) {
3406 		if (dm_integrity_commit_id(ic, i, j, k) == id)
3407 			return k;
3408 	}
3409 	dm_integrity_io_error(ic, "journal commit id", -EIO);
3410 	return -EIO;
3411 }
3412 
replay_journal(struct dm_integrity_c * ic)3413 static void replay_journal(struct dm_integrity_c *ic)
3414 {
3415 	unsigned int i, j;
3416 	bool used_commit_ids[N_COMMIT_IDS];
3417 	unsigned int max_commit_id_sections[N_COMMIT_IDS];
3418 	unsigned int write_start, write_sections;
3419 	unsigned int continue_section;
3420 	bool journal_empty;
3421 	unsigned char unused, last_used, want_commit_seq;
3422 
3423 	if (ic->mode == 'R')
3424 		return;
3425 
3426 	if (ic->journal_uptodate)
3427 		return;
3428 
3429 	last_used = 0;
3430 	write_start = 0;
3431 
3432 	if (!ic->just_formatted) {
3433 		DEBUG_print("reading journal\n");
3434 		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3435 		if (ic->journal_io)
3436 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3437 		if (ic->journal_io) {
3438 			struct journal_completion crypt_comp;
3439 
3440 			crypt_comp.ic = ic;
3441 			init_completion(&crypt_comp.comp);
3442 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3443 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3444 			wait_for_completion(&crypt_comp.comp);
3445 		}
3446 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3447 	}
3448 
3449 	if (dm_integrity_failed(ic))
3450 		goto clear_journal;
3451 
3452 	journal_empty = true;
3453 	memset(used_commit_ids, 0, sizeof(used_commit_ids));
3454 	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3455 	for (i = 0; i < ic->journal_sections; i++) {
3456 		for (j = 0; j < ic->journal_section_sectors; j++) {
3457 			int k;
3458 			struct journal_sector *js = access_journal(ic, i, j);
3459 
3460 			k = find_commit_seq(ic, i, j, js->commit_id);
3461 			if (k < 0)
3462 				goto clear_journal;
3463 			used_commit_ids[k] = true;
3464 			max_commit_id_sections[k] = i;
3465 		}
3466 		if (journal_empty) {
3467 			for (j = 0; j < ic->journal_section_entries; j++) {
3468 				struct journal_entry *je = access_journal_entry(ic, i, j);
3469 
3470 				if (!journal_entry_is_unused(je)) {
3471 					journal_empty = false;
3472 					break;
3473 				}
3474 			}
3475 		}
3476 	}
3477 
3478 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3479 		unused = N_COMMIT_IDS - 1;
3480 		while (unused && !used_commit_ids[unused - 1])
3481 			unused--;
3482 	} else {
3483 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3484 			if (!used_commit_ids[unused])
3485 				break;
3486 		if (unused == N_COMMIT_IDS) {
3487 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3488 			goto clear_journal;
3489 		}
3490 	}
3491 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3492 		    unused, used_commit_ids[0], used_commit_ids[1],
3493 		    used_commit_ids[2], used_commit_ids[3]);
3494 
3495 	last_used = prev_commit_seq(unused);
3496 	want_commit_seq = prev_commit_seq(last_used);
3497 
3498 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3499 		journal_empty = true;
3500 
3501 	write_start = max_commit_id_sections[last_used] + 1;
3502 	if (unlikely(write_start >= ic->journal_sections))
3503 		want_commit_seq = next_commit_seq(want_commit_seq);
3504 	wraparound_section(ic, &write_start);
3505 
3506 	i = write_start;
3507 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3508 		for (j = 0; j < ic->journal_section_sectors; j++) {
3509 			struct journal_sector *js = access_journal(ic, i, j);
3510 
3511 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3512 				/*
3513 				 * This could be caused by crash during writing.
3514 				 * We won't replay the inconsistent part of the
3515 				 * journal.
3516 				 */
3517 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3518 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3519 				goto brk;
3520 			}
3521 		}
3522 		i++;
3523 		if (unlikely(i >= ic->journal_sections))
3524 			want_commit_seq = next_commit_seq(want_commit_seq);
3525 		wraparound_section(ic, &i);
3526 	}
3527 brk:
3528 
3529 	if (!journal_empty) {
3530 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3531 			    write_sections, write_start, want_commit_seq);
3532 		do_journal_write(ic, write_start, write_sections, true);
3533 	}
3534 
3535 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3536 		continue_section = write_start;
3537 		ic->commit_seq = want_commit_seq;
3538 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3539 	} else {
3540 		unsigned int s;
3541 		unsigned char erase_seq;
3542 
3543 clear_journal:
3544 		DEBUG_print("clearing journal\n");
3545 
3546 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3547 		s = write_start;
3548 		init_journal(ic, s, 1, erase_seq);
3549 		s++;
3550 		wraparound_section(ic, &s);
3551 		if (ic->journal_sections >= 2) {
3552 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3553 			s += ic->journal_sections - 2;
3554 			wraparound_section(ic, &s);
3555 			init_journal(ic, s, 1, erase_seq);
3556 		}
3557 
3558 		continue_section = 0;
3559 		ic->commit_seq = next_commit_seq(erase_seq);
3560 	}
3561 
3562 	ic->committed_section = continue_section;
3563 	ic->n_committed_sections = 0;
3564 
3565 	ic->uncommitted_section = continue_section;
3566 	ic->n_uncommitted_sections = 0;
3567 
3568 	ic->free_section = continue_section;
3569 	ic->free_section_entry = 0;
3570 	ic->free_sectors = ic->journal_entries;
3571 
3572 	ic->journal_tree_root = RB_ROOT;
3573 	for (i = 0; i < ic->journal_entries; i++)
3574 		init_journal_node(&ic->journal_tree[i]);
3575 }
3576 
dm_integrity_enter_synchronous_mode(struct dm_integrity_c * ic)3577 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3578 {
3579 	DEBUG_print("%s\n", __func__);
3580 
3581 	if (ic->mode == 'B') {
3582 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3583 		ic->synchronous_mode = 1;
3584 
3585 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3586 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3587 		flush_workqueue(ic->commit_wq);
3588 	}
3589 }
3590 
dm_integrity_reboot(struct notifier_block * n,unsigned long code,void * x)3591 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3592 {
3593 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3594 
3595 	DEBUG_print("%s\n", __func__);
3596 
3597 	dm_integrity_enter_synchronous_mode(ic);
3598 
3599 	return NOTIFY_DONE;
3600 }
3601 
dm_integrity_postsuspend(struct dm_target * ti)3602 static void dm_integrity_postsuspend(struct dm_target *ti)
3603 {
3604 	struct dm_integrity_c *ic = ti->private;
3605 	int r;
3606 
3607 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3608 
3609 	timer_delete_sync(&ic->autocommit_timer);
3610 
3611 	if (ic->recalc_wq)
3612 		drain_workqueue(ic->recalc_wq);
3613 
3614 	if (ic->mode == 'B')
3615 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3616 
3617 	queue_work(ic->commit_wq, &ic->commit_work);
3618 	drain_workqueue(ic->commit_wq);
3619 
3620 	if (ic->mode == 'J') {
3621 		queue_work(ic->writer_wq, &ic->writer_work);
3622 		drain_workqueue(ic->writer_wq);
3623 		dm_integrity_flush_buffers(ic, true);
3624 		if (ic->wrote_to_journal) {
3625 			init_journal(ic, ic->free_section,
3626 				     ic->journal_sections - ic->free_section, ic->commit_seq);
3627 			if (ic->free_section) {
3628 				init_journal(ic, 0, ic->free_section,
3629 					     next_commit_seq(ic->commit_seq));
3630 			}
3631 		}
3632 	}
3633 
3634 	if (ic->mode == 'B') {
3635 		dm_integrity_flush_buffers(ic, true);
3636 #if 1
3637 		/* set to 0 to test bitmap replay code */
3638 		init_journal(ic, 0, ic->journal_sections, 0);
3639 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3640 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3641 		if (unlikely(r))
3642 			dm_integrity_io_error(ic, "writing superblock", r);
3643 #endif
3644 	}
3645 
3646 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3647 
3648 	ic->journal_uptodate = true;
3649 }
3650 
dm_integrity_resume(struct dm_target * ti)3651 static void dm_integrity_resume(struct dm_target *ti)
3652 {
3653 	struct dm_integrity_c *ic = ti->private;
3654 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3655 	int r;
3656 
3657 	DEBUG_print("resume\n");
3658 
3659 	ic->wrote_to_journal = false;
3660 
3661 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3662 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3663 		    ic->mode == 'B' &&
3664 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3665 			rw_journal_sectors(ic, REQ_OP_READ, 0,
3666 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3667 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3668 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3669 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3670 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3671 		}
3672 
3673 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3674 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3675 		if (unlikely(r))
3676 			dm_integrity_io_error(ic, "writing superblock", r);
3677 	}
3678 
3679 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3680 		DEBUG_print("resume dirty_bitmap\n");
3681 		rw_journal_sectors(ic, REQ_OP_READ, 0,
3682 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3683 		if (ic->mode == 'B') {
3684 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3685 			    !ic->reset_recalculate_flag) {
3686 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3687 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3688 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3689 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3690 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3691 					ic->sb->recalc_sector = cpu_to_le64(0);
3692 				}
3693 			} else {
3694 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3695 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3696 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3697 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3698 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3699 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3700 				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3701 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3702 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3703 				ic->sb->recalc_sector = cpu_to_le64(0);
3704 			}
3705 		} else {
3706 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3707 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3708 			    ic->reset_recalculate_flag) {
3709 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3710 				ic->sb->recalc_sector = cpu_to_le64(0);
3711 			}
3712 			init_journal(ic, 0, ic->journal_sections, 0);
3713 			replay_journal(ic);
3714 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3715 		}
3716 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3717 		if (unlikely(r))
3718 			dm_integrity_io_error(ic, "writing superblock", r);
3719 	} else {
3720 		replay_journal(ic);
3721 		if (ic->reset_recalculate_flag) {
3722 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3723 			ic->sb->recalc_sector = cpu_to_le64(0);
3724 		}
3725 		if (ic->mode == 'B') {
3726 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3727 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3728 			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3729 			if (unlikely(r))
3730 				dm_integrity_io_error(ic, "writing superblock", r);
3731 
3732 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3733 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3734 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3735 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3736 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3737 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3738 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3739 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3740 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3741 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3742 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3743 			}
3744 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3745 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3746 		}
3747 	}
3748 
3749 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3750 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3751 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3752 
3753 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3754 		if (recalc_pos < ic->provided_data_sectors) {
3755 			queue_work(ic->recalc_wq, &ic->recalc_work);
3756 		} else if (recalc_pos > ic->provided_data_sectors) {
3757 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3758 			recalc_write_super(ic);
3759 		}
3760 	}
3761 
3762 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3763 	ic->reboot_notifier.next = NULL;
3764 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3765 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3766 
3767 #if 0
3768 	/* set to 1 to stress test synchronous mode */
3769 	dm_integrity_enter_synchronous_mode(ic);
3770 #endif
3771 }
3772 
dm_integrity_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3773 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3774 				unsigned int status_flags, char *result, unsigned int maxlen)
3775 {
3776 	struct dm_integrity_c *ic = ti->private;
3777 	unsigned int arg_count;
3778 	size_t sz = 0;
3779 
3780 	switch (type) {
3781 	case STATUSTYPE_INFO:
3782 		DMEMIT("%llu %llu",
3783 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3784 			ic->provided_data_sectors);
3785 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3786 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3787 		else
3788 			DMEMIT(" -");
3789 		break;
3790 
3791 	case STATUSTYPE_TABLE: {
3792 		arg_count = 1; /* buffer_sectors */
3793 		arg_count += !!ic->meta_dev;
3794 		arg_count += ic->sectors_per_block != 1;
3795 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3796 		arg_count += ic->reset_recalculate_flag;
3797 		arg_count += ic->discard;
3798 		arg_count += ic->mode != 'I'; /* interleave_sectors */
3799 		arg_count += ic->mode == 'J'; /* journal_sectors */
3800 		arg_count += ic->mode == 'J'; /* journal_watermark */
3801 		arg_count += ic->mode == 'J'; /* commit_time */
3802 		arg_count += ic->mode == 'B'; /* sectors_per_bit */
3803 		arg_count += ic->mode == 'B'; /* bitmap_flush_interval */
3804 		arg_count += !!ic->internal_hash_alg.alg_string;
3805 		arg_count += !!ic->journal_crypt_alg.alg_string;
3806 		arg_count += !!ic->journal_mac_alg.alg_string;
3807 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3808 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3809 		arg_count += ic->legacy_recalculate;
3810 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3811 		       ic->tag_size, ic->mode, arg_count);
3812 		if (ic->meta_dev)
3813 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3814 		if (ic->sectors_per_block != 1)
3815 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3816 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3817 			DMEMIT(" recalculate");
3818 		if (ic->reset_recalculate_flag)
3819 			DMEMIT(" reset_recalculate");
3820 		if (ic->discard)
3821 			DMEMIT(" allow_discards");
3822 		if (ic->mode != 'I')
3823 			DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3824 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3825 		if (ic->mode == 'J') {
3826 			__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3827 
3828 			watermark_percentage += ic->journal_entries / 2;
3829 			do_div(watermark_percentage, ic->journal_entries);
3830 			DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3831 			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3832 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3833 		}
3834 		if (ic->mode == 'B') {
3835 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3836 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3837 		}
3838 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3839 			DMEMIT(" fix_padding");
3840 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3841 			DMEMIT(" fix_hmac");
3842 		if (ic->legacy_recalculate)
3843 			DMEMIT(" legacy_recalculate");
3844 
3845 #define EMIT_ALG(a, n)							\
3846 		do {							\
3847 			if (ic->a.alg_string) {				\
3848 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3849 				if (ic->a.key_string)			\
3850 					DMEMIT(":%s", ic->a.key_string);\
3851 			}						\
3852 		} while (0)
3853 		EMIT_ALG(internal_hash_alg, "internal_hash");
3854 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3855 		EMIT_ALG(journal_mac_alg, "journal_mac");
3856 		break;
3857 	}
3858 	case STATUSTYPE_IMA:
3859 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3860 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3861 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3862 
3863 		if (ic->meta_dev)
3864 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3865 		if (ic->sectors_per_block != 1)
3866 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3867 
3868 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3869 		       'y' : 'n');
3870 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3871 		DMEMIT(",fix_padding=%c",
3872 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3873 		DMEMIT(",fix_hmac=%c",
3874 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3875 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3876 
3877 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3878 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3879 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3880 		DMEMIT(";");
3881 		break;
3882 	}
3883 }
3884 
dm_integrity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3885 static int dm_integrity_iterate_devices(struct dm_target *ti,
3886 					iterate_devices_callout_fn fn, void *data)
3887 {
3888 	struct dm_integrity_c *ic = ti->private;
3889 
3890 	if (!ic->meta_dev)
3891 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3892 	else
3893 		return fn(ti, ic->dev, 0, ti->len, data);
3894 }
3895 
dm_integrity_io_hints(struct dm_target * ti,struct queue_limits * limits)3896 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3897 {
3898 	struct dm_integrity_c *ic = ti->private;
3899 
3900 	if (ic->sectors_per_block > 1) {
3901 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3902 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3903 		limits->io_min = ic->sectors_per_block << SECTOR_SHIFT;
3904 		limits->dma_alignment = limits->logical_block_size - 1;
3905 		limits->discard_granularity = ic->sectors_per_block << SECTOR_SHIFT;
3906 	}
3907 
3908 	if (!ic->internal_hash) {
3909 		struct blk_integrity *bi = &limits->integrity;
3910 
3911 		memset(bi, 0, sizeof(*bi));
3912 		bi->tuple_size = ic->tag_size;
3913 		bi->tag_size = bi->tuple_size;
3914 		bi->interval_exp =
3915 			ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3916 	}
3917 
3918 	limits->max_integrity_segments = USHRT_MAX;
3919 }
3920 
calculate_journal_section_size(struct dm_integrity_c * ic)3921 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3922 {
3923 	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3924 
3925 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3926 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3927 					 JOURNAL_ENTRY_ROUNDUP);
3928 
3929 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3930 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3931 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3932 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3933 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3934 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3935 }
3936 
calculate_device_limits(struct dm_integrity_c * ic)3937 static int calculate_device_limits(struct dm_integrity_c *ic)
3938 {
3939 	__u64 initial_sectors;
3940 
3941 	calculate_journal_section_size(ic);
3942 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3943 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3944 		return -EINVAL;
3945 	ic->initial_sectors = initial_sectors;
3946 
3947 	if (ic->mode == 'I') {
3948 		if (ic->initial_sectors + ic->provided_data_sectors > ic->meta_device_sectors)
3949 			return -EINVAL;
3950 	} else if (!ic->meta_dev) {
3951 		sector_t last_sector, last_area, last_offset;
3952 
3953 		/* we have to maintain excessive padding for compatibility with existing volumes */
3954 		__u64 metadata_run_padding =
3955 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3956 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3957 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3958 
3959 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3960 					    metadata_run_padding) >> SECTOR_SHIFT;
3961 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3962 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3963 		else
3964 			ic->log2_metadata_run = -1;
3965 
3966 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3967 		last_sector = get_data_sector(ic, last_area, last_offset);
3968 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3969 			return -EINVAL;
3970 	} else {
3971 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3972 
3973 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3974 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3975 		meta_size <<= ic->log2_buffer_sectors;
3976 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3977 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3978 			return -EINVAL;
3979 		ic->metadata_run = 1;
3980 		ic->log2_metadata_run = 0;
3981 	}
3982 
3983 	return 0;
3984 }
3985 
get_provided_data_sectors(struct dm_integrity_c * ic)3986 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3987 {
3988 	if (!ic->meta_dev) {
3989 		int test_bit;
3990 
3991 		ic->provided_data_sectors = 0;
3992 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3993 			__u64 prev_data_sectors = ic->provided_data_sectors;
3994 
3995 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3996 			if (calculate_device_limits(ic))
3997 				ic->provided_data_sectors = prev_data_sectors;
3998 		}
3999 	} else {
4000 		ic->provided_data_sectors = ic->data_device_sectors;
4001 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
4002 	}
4003 }
4004 
initialize_superblock(struct dm_integrity_c * ic,unsigned int journal_sectors,unsigned int interleave_sectors)4005 static int initialize_superblock(struct dm_integrity_c *ic,
4006 				 unsigned int journal_sectors, unsigned int interleave_sectors)
4007 {
4008 	unsigned int journal_sections;
4009 	int test_bit;
4010 
4011 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
4012 	memcpy(ic->sb->magic, SB_MAGIC, 8);
4013 	if (ic->mode == 'I')
4014 		ic->sb->flags |= cpu_to_le32(SB_FLAG_INLINE);
4015 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
4016 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
4017 	if (ic->journal_mac_alg.alg_string)
4018 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
4019 
4020 	calculate_journal_section_size(ic);
4021 	journal_sections = journal_sectors / ic->journal_section_sectors;
4022 	if (!journal_sections)
4023 		journal_sections = 1;
4024 	if (ic->mode == 'I')
4025 		journal_sections = 0;
4026 
4027 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
4028 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
4029 		get_random_bytes(ic->sb->salt, SALT_SIZE);
4030 	}
4031 
4032 	if (!ic->meta_dev) {
4033 		if (ic->fix_padding)
4034 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
4035 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
4036 		if (!interleave_sectors)
4037 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4038 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
4039 		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
4040 		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
4041 
4042 		get_provided_data_sectors(ic);
4043 		if (!ic->provided_data_sectors)
4044 			return -EINVAL;
4045 	} else {
4046 		ic->sb->log2_interleave_sectors = 0;
4047 
4048 		get_provided_data_sectors(ic);
4049 		if (!ic->provided_data_sectors)
4050 			return -EINVAL;
4051 
4052 try_smaller_buffer:
4053 		ic->sb->journal_sections = cpu_to_le32(0);
4054 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
4055 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
4056 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
4057 
4058 			if (test_journal_sections > journal_sections)
4059 				continue;
4060 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
4061 			if (calculate_device_limits(ic))
4062 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
4063 
4064 		}
4065 		if (!le32_to_cpu(ic->sb->journal_sections)) {
4066 			if (ic->log2_buffer_sectors > 3) {
4067 				ic->log2_buffer_sectors--;
4068 				goto try_smaller_buffer;
4069 			}
4070 			return -EINVAL;
4071 		}
4072 	}
4073 
4074 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
4075 
4076 	sb_set_version(ic);
4077 
4078 	return 0;
4079 }
4080 
dm_integrity_free_page_list(struct page_list * pl)4081 static void dm_integrity_free_page_list(struct page_list *pl)
4082 {
4083 	unsigned int i;
4084 
4085 	if (!pl)
4086 		return;
4087 	for (i = 0; pl[i].page; i++)
4088 		__free_page(pl[i].page);
4089 	kvfree(pl);
4090 }
4091 
dm_integrity_alloc_page_list(unsigned int n_pages)4092 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
4093 {
4094 	struct page_list *pl;
4095 	unsigned int i;
4096 
4097 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
4098 	if (!pl)
4099 		return NULL;
4100 
4101 	for (i = 0; i < n_pages; i++) {
4102 		pl[i].page = alloc_page(GFP_KERNEL);
4103 		if (!pl[i].page) {
4104 			dm_integrity_free_page_list(pl);
4105 			return NULL;
4106 		}
4107 		if (i)
4108 			pl[i - 1].next = &pl[i];
4109 	}
4110 	pl[i].page = NULL;
4111 	pl[i].next = NULL;
4112 
4113 	return pl;
4114 }
4115 
dm_integrity_free_journal_scatterlist(struct dm_integrity_c * ic,struct scatterlist ** sl)4116 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
4117 {
4118 	unsigned int i;
4119 
4120 	for (i = 0; i < ic->journal_sections; i++)
4121 		kvfree(sl[i]);
4122 	kvfree(sl);
4123 }
4124 
dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c * ic,struct page_list * pl)4125 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
4126 								   struct page_list *pl)
4127 {
4128 	struct scatterlist **sl;
4129 	unsigned int i;
4130 
4131 	sl = kvmalloc_array(ic->journal_sections,
4132 			    sizeof(struct scatterlist *),
4133 			    GFP_KERNEL | __GFP_ZERO);
4134 	if (!sl)
4135 		return NULL;
4136 
4137 	for (i = 0; i < ic->journal_sections; i++) {
4138 		struct scatterlist *s;
4139 		unsigned int start_index, start_offset;
4140 		unsigned int end_index, end_offset;
4141 		unsigned int n_pages;
4142 		unsigned int idx;
4143 
4144 		page_list_location(ic, i, 0, &start_index, &start_offset);
4145 		page_list_location(ic, i, ic->journal_section_sectors - 1,
4146 				   &end_index, &end_offset);
4147 
4148 		n_pages = (end_index - start_index + 1);
4149 
4150 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
4151 				   GFP_KERNEL);
4152 		if (!s) {
4153 			dm_integrity_free_journal_scatterlist(ic, sl);
4154 			return NULL;
4155 		}
4156 
4157 		sg_init_table(s, n_pages);
4158 		for (idx = start_index; idx <= end_index; idx++) {
4159 			char *va = lowmem_page_address(pl[idx].page);
4160 			unsigned int start = 0, end = PAGE_SIZE;
4161 
4162 			if (idx == start_index)
4163 				start = start_offset;
4164 			if (idx == end_index)
4165 				end = end_offset + (1 << SECTOR_SHIFT);
4166 			sg_set_buf(&s[idx - start_index], va + start, end - start);
4167 		}
4168 
4169 		sl[i] = s;
4170 	}
4171 
4172 	return sl;
4173 }
4174 
free_alg(struct alg_spec * a)4175 static void free_alg(struct alg_spec *a)
4176 {
4177 	kfree_sensitive(a->alg_string);
4178 	kfree_sensitive(a->key);
4179 	memset(a, 0, sizeof(*a));
4180 }
4181 
get_alg_and_key(const char * arg,struct alg_spec * a,char ** error,char * error_inval)4182 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
4183 {
4184 	char *k;
4185 
4186 	free_alg(a);
4187 
4188 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
4189 	if (!a->alg_string)
4190 		goto nomem;
4191 
4192 	k = strchr(a->alg_string, ':');
4193 	if (k) {
4194 		*k = 0;
4195 		a->key_string = k + 1;
4196 		if (strlen(a->key_string) & 1)
4197 			goto inval;
4198 
4199 		a->key_size = strlen(a->key_string) / 2;
4200 		a->key = kmalloc(a->key_size, GFP_KERNEL);
4201 		if (!a->key)
4202 			goto nomem;
4203 		if (hex2bin(a->key, a->key_string, a->key_size))
4204 			goto inval;
4205 	}
4206 
4207 	return 0;
4208 inval:
4209 	*error = error_inval;
4210 	return -EINVAL;
4211 nomem:
4212 	*error = "Out of memory for an argument";
4213 	return -ENOMEM;
4214 }
4215 
get_mac(struct crypto_shash ** hash,struct alg_spec * a,char ** error,char * error_alg,char * error_key)4216 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
4217 		   char *error_alg, char *error_key)
4218 {
4219 	int r;
4220 
4221 	if (a->alg_string) {
4222 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4223 		if (IS_ERR(*hash)) {
4224 			*error = error_alg;
4225 			r = PTR_ERR(*hash);
4226 			*hash = NULL;
4227 			return r;
4228 		}
4229 
4230 		if (a->key) {
4231 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
4232 			if (r) {
4233 				*error = error_key;
4234 				return r;
4235 			}
4236 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
4237 			*error = error_key;
4238 			return -ENOKEY;
4239 		}
4240 	}
4241 
4242 	return 0;
4243 }
4244 
create_journal(struct dm_integrity_c * ic,char ** error)4245 static int create_journal(struct dm_integrity_c *ic, char **error)
4246 {
4247 	int r = 0;
4248 	unsigned int i;
4249 	__u64 journal_pages, journal_desc_size, journal_tree_size;
4250 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
4251 	struct skcipher_request *req = NULL;
4252 
4253 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
4254 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
4255 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
4256 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
4257 
4258 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
4259 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
4260 	journal_desc_size = journal_pages * sizeof(struct page_list);
4261 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
4262 		*error = "Journal doesn't fit into memory";
4263 		r = -ENOMEM;
4264 		goto bad;
4265 	}
4266 	ic->journal_pages = journal_pages;
4267 
4268 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
4269 	if (!ic->journal) {
4270 		*error = "Could not allocate memory for journal";
4271 		r = -ENOMEM;
4272 		goto bad;
4273 	}
4274 	if (ic->journal_crypt_alg.alg_string) {
4275 		unsigned int ivsize, blocksize;
4276 		struct journal_completion comp;
4277 
4278 		comp.ic = ic;
4279 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4280 		if (IS_ERR(ic->journal_crypt)) {
4281 			*error = "Invalid journal cipher";
4282 			r = PTR_ERR(ic->journal_crypt);
4283 			ic->journal_crypt = NULL;
4284 			goto bad;
4285 		}
4286 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
4287 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
4288 
4289 		if (ic->journal_crypt_alg.key) {
4290 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
4291 						   ic->journal_crypt_alg.key_size);
4292 			if (r) {
4293 				*error = "Error setting encryption key";
4294 				goto bad;
4295 			}
4296 		}
4297 		DEBUG_print("cipher %s, block size %u iv size %u\n",
4298 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
4299 
4300 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
4301 		if (!ic->journal_io) {
4302 			*error = "Could not allocate memory for journal io";
4303 			r = -ENOMEM;
4304 			goto bad;
4305 		}
4306 
4307 		if (blocksize == 1) {
4308 			struct scatterlist *sg;
4309 
4310 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4311 			if (!req) {
4312 				*error = "Could not allocate crypt request";
4313 				r = -ENOMEM;
4314 				goto bad;
4315 			}
4316 
4317 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
4318 			if (!crypt_iv) {
4319 				*error = "Could not allocate iv";
4320 				r = -ENOMEM;
4321 				goto bad;
4322 			}
4323 
4324 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
4325 			if (!ic->journal_xor) {
4326 				*error = "Could not allocate memory for journal xor";
4327 				r = -ENOMEM;
4328 				goto bad;
4329 			}
4330 
4331 			sg = kvmalloc_array(ic->journal_pages + 1,
4332 					    sizeof(struct scatterlist),
4333 					    GFP_KERNEL);
4334 			if (!sg) {
4335 				*error = "Unable to allocate sg list";
4336 				r = -ENOMEM;
4337 				goto bad;
4338 			}
4339 			sg_init_table(sg, ic->journal_pages + 1);
4340 			for (i = 0; i < ic->journal_pages; i++) {
4341 				char *va = lowmem_page_address(ic->journal_xor[i].page);
4342 
4343 				clear_page(va);
4344 				sg_set_buf(&sg[i], va, PAGE_SIZE);
4345 			}
4346 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
4347 
4348 			skcipher_request_set_crypt(req, sg, sg,
4349 						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
4350 			init_completion(&comp.comp);
4351 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4352 			if (do_crypt(true, req, &comp))
4353 				wait_for_completion(&comp.comp);
4354 			kvfree(sg);
4355 			r = dm_integrity_failed(ic);
4356 			if (r) {
4357 				*error = "Unable to encrypt journal";
4358 				goto bad;
4359 			}
4360 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
4361 
4362 			crypto_free_skcipher(ic->journal_crypt);
4363 			ic->journal_crypt = NULL;
4364 		} else {
4365 			unsigned int crypt_len = roundup(ivsize, blocksize);
4366 
4367 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4368 			if (!req) {
4369 				*error = "Could not allocate crypt request";
4370 				r = -ENOMEM;
4371 				goto bad;
4372 			}
4373 
4374 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
4375 			if (!crypt_iv) {
4376 				*error = "Could not allocate iv";
4377 				r = -ENOMEM;
4378 				goto bad;
4379 			}
4380 
4381 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
4382 			if (!crypt_data) {
4383 				*error = "Unable to allocate crypt data";
4384 				r = -ENOMEM;
4385 				goto bad;
4386 			}
4387 
4388 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
4389 			if (!ic->journal_scatterlist) {
4390 				*error = "Unable to allocate sg list";
4391 				r = -ENOMEM;
4392 				goto bad;
4393 			}
4394 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
4395 			if (!ic->journal_io_scatterlist) {
4396 				*error = "Unable to allocate sg list";
4397 				r = -ENOMEM;
4398 				goto bad;
4399 			}
4400 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
4401 							 sizeof(struct skcipher_request *),
4402 							 GFP_KERNEL | __GFP_ZERO);
4403 			if (!ic->sk_requests) {
4404 				*error = "Unable to allocate sk requests";
4405 				r = -ENOMEM;
4406 				goto bad;
4407 			}
4408 			for (i = 0; i < ic->journal_sections; i++) {
4409 				struct scatterlist sg;
4410 				struct skcipher_request *section_req;
4411 				__le32 section_le = cpu_to_le32(i);
4412 
4413 				memset(crypt_iv, 0x00, ivsize);
4414 				memset(crypt_data, 0x00, crypt_len);
4415 				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
4416 
4417 				sg_init_one(&sg, crypt_data, crypt_len);
4418 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
4419 				init_completion(&comp.comp);
4420 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4421 				if (do_crypt(true, req, &comp))
4422 					wait_for_completion(&comp.comp);
4423 
4424 				r = dm_integrity_failed(ic);
4425 				if (r) {
4426 					*error = "Unable to generate iv";
4427 					goto bad;
4428 				}
4429 
4430 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4431 				if (!section_req) {
4432 					*error = "Unable to allocate crypt request";
4433 					r = -ENOMEM;
4434 					goto bad;
4435 				}
4436 				section_req->iv = kmalloc_array(ivsize, 2,
4437 								GFP_KERNEL);
4438 				if (!section_req->iv) {
4439 					skcipher_request_free(section_req);
4440 					*error = "Unable to allocate iv";
4441 					r = -ENOMEM;
4442 					goto bad;
4443 				}
4444 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4445 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4446 				ic->sk_requests[i] = section_req;
4447 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4448 			}
4449 		}
4450 	}
4451 
4452 	for (i = 0; i < N_COMMIT_IDS; i++) {
4453 		unsigned int j;
4454 
4455 retest_commit_id:
4456 		for (j = 0; j < i; j++) {
4457 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
4458 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4459 				goto retest_commit_id;
4460 			}
4461 		}
4462 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4463 	}
4464 
4465 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4466 	if (journal_tree_size > ULONG_MAX) {
4467 		*error = "Journal doesn't fit into memory";
4468 		r = -ENOMEM;
4469 		goto bad;
4470 	}
4471 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4472 	if (!ic->journal_tree) {
4473 		*error = "Could not allocate memory for journal tree";
4474 		r = -ENOMEM;
4475 	}
4476 bad:
4477 	kfree(crypt_data);
4478 	kfree(crypt_iv);
4479 	skcipher_request_free(req);
4480 
4481 	return r;
4482 }
4483 
4484 /*
4485  * Construct a integrity mapping
4486  *
4487  * Arguments:
4488  *	device
4489  *	offset from the start of the device
4490  *	tag size
4491  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4492  *	number of optional arguments
4493  *	optional arguments:
4494  *		journal_sectors
4495  *		interleave_sectors
4496  *		buffer_sectors
4497  *		journal_watermark
4498  *		commit_time
4499  *		meta_device
4500  *		block_size
4501  *		sectors_per_bit
4502  *		bitmap_flush_interval
4503  *		internal_hash
4504  *		journal_crypt
4505  *		journal_mac
4506  *		recalculate
4507  */
dm_integrity_ctr(struct dm_target * ti,unsigned int argc,char ** argv)4508 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4509 {
4510 	struct dm_integrity_c *ic;
4511 	char dummy;
4512 	int r;
4513 	unsigned int extra_args;
4514 	struct dm_arg_set as;
4515 	static const struct dm_arg _args[] = {
4516 		{0, 18, "Invalid number of feature args"},
4517 	};
4518 	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4519 	bool should_write_sb;
4520 	__u64 threshold;
4521 	unsigned long long start;
4522 	__s8 log2_sectors_per_bitmap_bit = -1;
4523 	__s8 log2_blocks_per_bitmap_bit;
4524 	__u64 bits_in_journal;
4525 	__u64 n_bitmap_bits;
4526 
4527 #define DIRECT_ARGUMENTS	4
4528 
4529 	if (argc <= DIRECT_ARGUMENTS) {
4530 		ti->error = "Invalid argument count";
4531 		return -EINVAL;
4532 	}
4533 
4534 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4535 	if (!ic) {
4536 		ti->error = "Cannot allocate integrity context";
4537 		return -ENOMEM;
4538 	}
4539 	ti->private = ic;
4540 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4541 	ic->ti = ti;
4542 
4543 	ic->in_progress = RB_ROOT;
4544 	INIT_LIST_HEAD(&ic->wait_list);
4545 	init_waitqueue_head(&ic->endio_wait);
4546 	bio_list_init(&ic->flush_bio_list);
4547 	init_waitqueue_head(&ic->copy_to_journal_wait);
4548 	init_completion(&ic->crypto_backoff);
4549 	atomic64_set(&ic->number_of_mismatches, 0);
4550 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4551 
4552 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4553 	if (r) {
4554 		ti->error = "Device lookup failed";
4555 		goto bad;
4556 	}
4557 
4558 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4559 		ti->error = "Invalid starting offset";
4560 		r = -EINVAL;
4561 		goto bad;
4562 	}
4563 	ic->start = start;
4564 
4565 	if (strcmp(argv[2], "-")) {
4566 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4567 			ti->error = "Invalid tag size";
4568 			r = -EINVAL;
4569 			goto bad;
4570 		}
4571 	}
4572 
4573 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4574 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R") ||
4575 	    !strcmp(argv[3], "I")) {
4576 		ic->mode = argv[3][0];
4577 	} else {
4578 		ti->error = "Invalid mode (expecting J, B, D, R, I)";
4579 		r = -EINVAL;
4580 		goto bad;
4581 	}
4582 
4583 	journal_sectors = 0;
4584 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4585 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4586 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4587 	sync_msec = DEFAULT_SYNC_MSEC;
4588 	ic->sectors_per_block = 1;
4589 
4590 	as.argc = argc - DIRECT_ARGUMENTS;
4591 	as.argv = argv + DIRECT_ARGUMENTS;
4592 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4593 	if (r)
4594 		goto bad;
4595 
4596 	while (extra_args--) {
4597 		const char *opt_string;
4598 		unsigned int val;
4599 		unsigned long long llval;
4600 
4601 		opt_string = dm_shift_arg(&as);
4602 		if (!opt_string) {
4603 			r = -EINVAL;
4604 			ti->error = "Not enough feature arguments";
4605 			goto bad;
4606 		}
4607 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4608 			journal_sectors = val ? val : 1;
4609 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4610 			interleave_sectors = val;
4611 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4612 			buffer_sectors = val;
4613 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4614 			journal_watermark = val;
4615 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4616 			sync_msec = val;
4617 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4618 			if (ic->meta_dev) {
4619 				dm_put_device(ti, ic->meta_dev);
4620 				ic->meta_dev = NULL;
4621 			}
4622 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4623 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4624 			if (r) {
4625 				ti->error = "Device lookup failed";
4626 				goto bad;
4627 			}
4628 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4629 			if (val < 1 << SECTOR_SHIFT ||
4630 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4631 			    (val & (val - 1))) {
4632 				r = -EINVAL;
4633 				ti->error = "Invalid block_size argument";
4634 				goto bad;
4635 			}
4636 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4637 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4638 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4639 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4640 			if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4641 				r = -EINVAL;
4642 				ti->error = "Invalid bitmap_flush_interval argument";
4643 				goto bad;
4644 			}
4645 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4646 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4647 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4648 					    "Invalid internal_hash argument");
4649 			if (r)
4650 				goto bad;
4651 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4652 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4653 					    "Invalid journal_crypt argument");
4654 			if (r)
4655 				goto bad;
4656 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4657 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4658 					    "Invalid journal_mac argument");
4659 			if (r)
4660 				goto bad;
4661 		} else if (!strcmp(opt_string, "recalculate")) {
4662 			ic->recalculate_flag = true;
4663 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4664 			ic->recalculate_flag = true;
4665 			ic->reset_recalculate_flag = true;
4666 		} else if (!strcmp(opt_string, "allow_discards")) {
4667 			ic->discard = true;
4668 		} else if (!strcmp(opt_string, "fix_padding")) {
4669 			ic->fix_padding = true;
4670 		} else if (!strcmp(opt_string, "fix_hmac")) {
4671 			ic->fix_hmac = true;
4672 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4673 			ic->legacy_recalculate = true;
4674 		} else {
4675 			r = -EINVAL;
4676 			ti->error = "Invalid argument";
4677 			goto bad;
4678 		}
4679 	}
4680 
4681 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4682 	if (!ic->meta_dev)
4683 		ic->meta_device_sectors = ic->data_device_sectors;
4684 	else
4685 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4686 
4687 	if (!journal_sectors) {
4688 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4689 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4690 	}
4691 
4692 	if (!buffer_sectors)
4693 		buffer_sectors = 1;
4694 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4695 
4696 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4697 		    "Invalid internal hash", "Error setting internal hash key");
4698 	if (r)
4699 		goto bad;
4700 
4701 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4702 		    "Invalid journal mac", "Error setting journal mac key");
4703 	if (r)
4704 		goto bad;
4705 
4706 	if (!ic->tag_size) {
4707 		if (!ic->internal_hash) {
4708 			ti->error = "Unknown tag size";
4709 			r = -EINVAL;
4710 			goto bad;
4711 		}
4712 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4713 	}
4714 	if (ic->tag_size > MAX_TAG_SIZE) {
4715 		ti->error = "Too big tag size";
4716 		r = -EINVAL;
4717 		goto bad;
4718 	}
4719 	if (!(ic->tag_size & (ic->tag_size - 1)))
4720 		ic->log2_tag_size = __ffs(ic->tag_size);
4721 	else
4722 		ic->log2_tag_size = -1;
4723 
4724 	if (ic->mode == 'I') {
4725 		struct blk_integrity *bi;
4726 		if (ic->meta_dev) {
4727 			r = -EINVAL;
4728 			ti->error = "Metadata device not supported in inline mode";
4729 			goto bad;
4730 		}
4731 		if (!ic->internal_hash_alg.alg_string) {
4732 			r = -EINVAL;
4733 			ti->error = "Internal hash not set in inline mode";
4734 			goto bad;
4735 		}
4736 		if (ic->journal_crypt_alg.alg_string || ic->journal_mac_alg.alg_string) {
4737 			r = -EINVAL;
4738 			ti->error = "Journal crypt not supported in inline mode";
4739 			goto bad;
4740 		}
4741 		if (ic->discard) {
4742 			r = -EINVAL;
4743 			ti->error = "Discards not supported in inline mode";
4744 			goto bad;
4745 		}
4746 		bi = blk_get_integrity(ic->dev->bdev->bd_disk);
4747 		if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
4748 			r = -EINVAL;
4749 			ti->error = "Integrity profile not supported";
4750 			goto bad;
4751 		}
4752 		/*printk("tag_size: %u, tuple_size: %u\n", bi->tag_size, bi->tuple_size);*/
4753 		if (bi->tuple_size < ic->tag_size) {
4754 			r = -EINVAL;
4755 			ti->error = "The integrity profile is smaller than tag size";
4756 			goto bad;
4757 		}
4758 		if ((unsigned long)bi->tuple_size > PAGE_SIZE / 2) {
4759 			r = -EINVAL;
4760 			ti->error = "Too big tuple size";
4761 			goto bad;
4762 		}
4763 		ic->tuple_size = bi->tuple_size;
4764 		if (1 << bi->interval_exp != ic->sectors_per_block << SECTOR_SHIFT) {
4765 			r = -EINVAL;
4766 			ti->error = "Integrity profile sector size mismatch";
4767 			goto bad;
4768 		}
4769 	}
4770 
4771 	if (ic->mode == 'B' && !ic->internal_hash) {
4772 		r = -EINVAL;
4773 		ti->error = "Bitmap mode can be only used with internal hash";
4774 		goto bad;
4775 	}
4776 
4777 	if (ic->discard && !ic->internal_hash) {
4778 		r = -EINVAL;
4779 		ti->error = "Discard can be only used with internal hash";
4780 		goto bad;
4781 	}
4782 
4783 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4784 	ic->autocommit_msec = sync_msec;
4785 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4786 
4787 	ic->io = dm_io_client_create();
4788 	if (IS_ERR(ic->io)) {
4789 		r = PTR_ERR(ic->io);
4790 		ic->io = NULL;
4791 		ti->error = "Cannot allocate dm io";
4792 		goto bad;
4793 	}
4794 
4795 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4796 	if (r) {
4797 		ti->error = "Cannot allocate mempool";
4798 		goto bad;
4799 	}
4800 
4801 	r = mempool_init_page_pool(&ic->recheck_pool, 1, ic->mode == 'I' ? 1 : 0);
4802 	if (r) {
4803 		ti->error = "Cannot allocate mempool";
4804 		goto bad;
4805 	}
4806 
4807 	if (ic->mode == 'I') {
4808 		r = bioset_init(&ic->recheck_bios, RECHECK_POOL_SIZE, 0, BIOSET_NEED_BVECS);
4809 		if (r) {
4810 			ti->error = "Cannot allocate bio set";
4811 			goto bad;
4812 		}
4813 		r = bioset_init(&ic->recalc_bios, 1, 0, BIOSET_NEED_BVECS);
4814 		if (r) {
4815 			ti->error = "Cannot allocate bio set";
4816 			goto bad;
4817 		}
4818 	}
4819 
4820 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4821 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4822 	if (!ic->metadata_wq) {
4823 		ti->error = "Cannot allocate workqueue";
4824 		r = -ENOMEM;
4825 		goto bad;
4826 	}
4827 
4828 	/*
4829 	 * If this workqueue weren't ordered, it would cause bio reordering
4830 	 * and reduced performance.
4831 	 */
4832 	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4833 	if (!ic->wait_wq) {
4834 		ti->error = "Cannot allocate workqueue";
4835 		r = -ENOMEM;
4836 		goto bad;
4837 	}
4838 
4839 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4840 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4841 	if (!ic->offload_wq) {
4842 		ti->error = "Cannot allocate workqueue";
4843 		r = -ENOMEM;
4844 		goto bad;
4845 	}
4846 
4847 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4848 	if (!ic->commit_wq) {
4849 		ti->error = "Cannot allocate workqueue";
4850 		r = -ENOMEM;
4851 		goto bad;
4852 	}
4853 	INIT_WORK(&ic->commit_work, integrity_commit);
4854 
4855 	if (ic->mode == 'J' || ic->mode == 'B') {
4856 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4857 		if (!ic->writer_wq) {
4858 			ti->error = "Cannot allocate workqueue";
4859 			r = -ENOMEM;
4860 			goto bad;
4861 		}
4862 		INIT_WORK(&ic->writer_work, integrity_writer);
4863 	}
4864 
4865 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4866 	if (!ic->sb) {
4867 		r = -ENOMEM;
4868 		ti->error = "Cannot allocate superblock area";
4869 		goto bad;
4870 	}
4871 
4872 	r = sync_rw_sb(ic, REQ_OP_READ);
4873 	if (r) {
4874 		ti->error = "Error reading superblock";
4875 		goto bad;
4876 	}
4877 	should_write_sb = false;
4878 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4879 		if (ic->mode != 'R') {
4880 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4881 				r = -EINVAL;
4882 				ti->error = "The device is not initialized";
4883 				goto bad;
4884 			}
4885 		}
4886 
4887 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4888 		if (r) {
4889 			ti->error = "Could not initialize superblock";
4890 			goto bad;
4891 		}
4892 		if (ic->mode != 'R')
4893 			should_write_sb = true;
4894 	}
4895 
4896 	if (!ic->sb->version || ic->sb->version > SB_VERSION_6) {
4897 		r = -EINVAL;
4898 		ti->error = "Unknown version";
4899 		goto bad;
4900 	}
4901 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE)) != (ic->mode == 'I')) {
4902 		r = -EINVAL;
4903 		ti->error = "Inline flag mismatch";
4904 		goto bad;
4905 	}
4906 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4907 		r = -EINVAL;
4908 		ti->error = "Tag size doesn't match the information in superblock";
4909 		goto bad;
4910 	}
4911 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4912 		r = -EINVAL;
4913 		ti->error = "Block size doesn't match the information in superblock";
4914 		goto bad;
4915 	}
4916 	if (ic->mode != 'I') {
4917 		if (!le32_to_cpu(ic->sb->journal_sections)) {
4918 			r = -EINVAL;
4919 			ti->error = "Corrupted superblock, journal_sections is 0";
4920 			goto bad;
4921 		}
4922 	} else {
4923 		if (le32_to_cpu(ic->sb->journal_sections)) {
4924 			r = -EINVAL;
4925 			ti->error = "Corrupted superblock, journal_sections is not 0";
4926 			goto bad;
4927 		}
4928 	}
4929 	/* make sure that ti->max_io_len doesn't overflow */
4930 	if (!ic->meta_dev) {
4931 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4932 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4933 			r = -EINVAL;
4934 			ti->error = "Invalid interleave_sectors in the superblock";
4935 			goto bad;
4936 		}
4937 	} else {
4938 		if (ic->sb->log2_interleave_sectors) {
4939 			r = -EINVAL;
4940 			ti->error = "Invalid interleave_sectors in the superblock";
4941 			goto bad;
4942 		}
4943 	}
4944 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4945 		r = -EINVAL;
4946 		ti->error = "Journal mac mismatch";
4947 		goto bad;
4948 	}
4949 
4950 	get_provided_data_sectors(ic);
4951 	if (!ic->provided_data_sectors) {
4952 		r = -EINVAL;
4953 		ti->error = "The device is too small";
4954 		goto bad;
4955 	}
4956 
4957 try_smaller_buffer:
4958 	r = calculate_device_limits(ic);
4959 	if (r) {
4960 		if (ic->meta_dev) {
4961 			if (ic->log2_buffer_sectors > 3) {
4962 				ic->log2_buffer_sectors--;
4963 				goto try_smaller_buffer;
4964 			}
4965 		}
4966 		ti->error = "The device is too small";
4967 		goto bad;
4968 	}
4969 
4970 	if (log2_sectors_per_bitmap_bit < 0)
4971 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4972 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4973 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4974 
4975 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4976 	if (bits_in_journal > UINT_MAX)
4977 		bits_in_journal = UINT_MAX;
4978 	if (bits_in_journal)
4979 		while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4980 			log2_sectors_per_bitmap_bit++;
4981 
4982 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4983 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4984 	if (should_write_sb)
4985 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4986 
4987 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4988 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4989 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4990 
4991 	if (!ic->meta_dev)
4992 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4993 
4994 	if (ti->len > ic->provided_data_sectors) {
4995 		r = -EINVAL;
4996 		ti->error = "Not enough provided sectors for requested mapping size";
4997 		goto bad;
4998 	}
4999 
5000 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
5001 	threshold += 50;
5002 	do_div(threshold, 100);
5003 	ic->free_sectors_threshold = threshold;
5004 
5005 	DEBUG_print("initialized:\n");
5006 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
5007 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
5008 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
5009 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
5010 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
5011 	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
5012 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
5013 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
5014 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
5015 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
5016 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
5017 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
5018 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
5019 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
5020 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
5021 
5022 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
5023 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
5024 		ic->sb->recalc_sector = cpu_to_le64(0);
5025 	}
5026 
5027 	if (ic->internal_hash) {
5028 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
5029 		if (!ic->recalc_wq) {
5030 			ti->error = "Cannot allocate workqueue";
5031 			r = -ENOMEM;
5032 			goto bad;
5033 		}
5034 		INIT_WORK(&ic->recalc_work, ic->mode == 'I' ? integrity_recalc_inline : integrity_recalc);
5035 	} else {
5036 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
5037 			ti->error = "Recalculate can only be specified with internal_hash";
5038 			r = -EINVAL;
5039 			goto bad;
5040 		}
5041 	}
5042 
5043 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
5044 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
5045 	    dm_integrity_disable_recalculate(ic)) {
5046 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
5047 		r = -EOPNOTSUPP;
5048 		goto bad;
5049 	}
5050 
5051 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
5052 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
5053 	if (IS_ERR(ic->bufio)) {
5054 		r = PTR_ERR(ic->bufio);
5055 		ti->error = "Cannot initialize dm-bufio";
5056 		ic->bufio = NULL;
5057 		goto bad;
5058 	}
5059 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
5060 
5061 	if (ic->mode != 'R' && ic->mode != 'I') {
5062 		r = create_journal(ic, &ti->error);
5063 		if (r)
5064 			goto bad;
5065 
5066 	}
5067 
5068 	if (ic->mode == 'B') {
5069 		unsigned int i;
5070 		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
5071 
5072 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
5073 		if (!ic->recalc_bitmap) {
5074 			ti->error = "Could not allocate memory for bitmap";
5075 			r = -ENOMEM;
5076 			goto bad;
5077 		}
5078 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
5079 		if (!ic->may_write_bitmap) {
5080 			ti->error = "Could not allocate memory for bitmap";
5081 			r = -ENOMEM;
5082 			goto bad;
5083 		}
5084 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
5085 		if (!ic->bbs) {
5086 			ti->error = "Could not allocate memory for bitmap";
5087 			r = -ENOMEM;
5088 			goto bad;
5089 		}
5090 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
5091 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
5092 			struct bitmap_block_status *bbs = &ic->bbs[i];
5093 			unsigned int sector, pl_index, pl_offset;
5094 
5095 			INIT_WORK(&bbs->work, bitmap_block_work);
5096 			bbs->ic = ic;
5097 			bbs->idx = i;
5098 			bio_list_init(&bbs->bio_queue);
5099 			spin_lock_init(&bbs->bio_queue_lock);
5100 
5101 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
5102 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
5103 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
5104 
5105 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
5106 		}
5107 	}
5108 
5109 	if (should_write_sb) {
5110 		init_journal(ic, 0, ic->journal_sections, 0);
5111 		r = dm_integrity_failed(ic);
5112 		if (unlikely(r)) {
5113 			ti->error = "Error initializing journal";
5114 			goto bad;
5115 		}
5116 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
5117 		if (r) {
5118 			ti->error = "Error initializing superblock";
5119 			goto bad;
5120 		}
5121 		ic->just_formatted = true;
5122 	}
5123 
5124 	if (!ic->meta_dev && ic->mode != 'I') {
5125 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
5126 		if (r)
5127 			goto bad;
5128 	}
5129 	if (ic->mode == 'B') {
5130 		unsigned int max_io_len;
5131 
5132 		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
5133 		if (!max_io_len)
5134 			max_io_len = 1U << 31;
5135 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
5136 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
5137 			r = dm_set_target_max_io_len(ti, max_io_len);
5138 			if (r)
5139 				goto bad;
5140 		}
5141 	}
5142 
5143 	ti->num_flush_bios = 1;
5144 	ti->flush_supported = true;
5145 	if (ic->discard)
5146 		ti->num_discard_bios = 1;
5147 
5148 	if (ic->mode == 'I')
5149 		ti->mempool_needs_integrity = true;
5150 
5151 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
5152 	return 0;
5153 
5154 bad:
5155 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
5156 	dm_integrity_dtr(ti);
5157 	return r;
5158 }
5159 
dm_integrity_dtr(struct dm_target * ti)5160 static void dm_integrity_dtr(struct dm_target *ti)
5161 {
5162 	struct dm_integrity_c *ic = ti->private;
5163 
5164 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
5165 	BUG_ON(!list_empty(&ic->wait_list));
5166 
5167 	if (ic->mode == 'B')
5168 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
5169 	if (ic->metadata_wq)
5170 		destroy_workqueue(ic->metadata_wq);
5171 	if (ic->wait_wq)
5172 		destroy_workqueue(ic->wait_wq);
5173 	if (ic->offload_wq)
5174 		destroy_workqueue(ic->offload_wq);
5175 	if (ic->commit_wq)
5176 		destroy_workqueue(ic->commit_wq);
5177 	if (ic->writer_wq)
5178 		destroy_workqueue(ic->writer_wq);
5179 	if (ic->recalc_wq)
5180 		destroy_workqueue(ic->recalc_wq);
5181 	kvfree(ic->bbs);
5182 	if (ic->bufio)
5183 		dm_bufio_client_destroy(ic->bufio);
5184 	bioset_exit(&ic->recalc_bios);
5185 	bioset_exit(&ic->recheck_bios);
5186 	mempool_exit(&ic->recheck_pool);
5187 	mempool_exit(&ic->journal_io_mempool);
5188 	if (ic->io)
5189 		dm_io_client_destroy(ic->io);
5190 	if (ic->dev)
5191 		dm_put_device(ti, ic->dev);
5192 	if (ic->meta_dev)
5193 		dm_put_device(ti, ic->meta_dev);
5194 	dm_integrity_free_page_list(ic->journal);
5195 	dm_integrity_free_page_list(ic->journal_io);
5196 	dm_integrity_free_page_list(ic->journal_xor);
5197 	dm_integrity_free_page_list(ic->recalc_bitmap);
5198 	dm_integrity_free_page_list(ic->may_write_bitmap);
5199 	if (ic->journal_scatterlist)
5200 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
5201 	if (ic->journal_io_scatterlist)
5202 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
5203 	if (ic->sk_requests) {
5204 		unsigned int i;
5205 
5206 		for (i = 0; i < ic->journal_sections; i++) {
5207 			struct skcipher_request *req;
5208 
5209 			req = ic->sk_requests[i];
5210 			if (req) {
5211 				kfree_sensitive(req->iv);
5212 				skcipher_request_free(req);
5213 			}
5214 		}
5215 		kvfree(ic->sk_requests);
5216 	}
5217 	kvfree(ic->journal_tree);
5218 	if (ic->sb)
5219 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
5220 
5221 	if (ic->internal_hash)
5222 		crypto_free_shash(ic->internal_hash);
5223 	free_alg(&ic->internal_hash_alg);
5224 
5225 	if (ic->journal_crypt)
5226 		crypto_free_skcipher(ic->journal_crypt);
5227 	free_alg(&ic->journal_crypt_alg);
5228 
5229 	if (ic->journal_mac)
5230 		crypto_free_shash(ic->journal_mac);
5231 	free_alg(&ic->journal_mac_alg);
5232 
5233 	kfree(ic);
5234 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
5235 }
5236 
5237 static struct target_type integrity_target = {
5238 	.name			= "integrity",
5239 	.version		= {1, 13, 0},
5240 	.module			= THIS_MODULE,
5241 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
5242 	.ctr			= dm_integrity_ctr,
5243 	.dtr			= dm_integrity_dtr,
5244 	.map			= dm_integrity_map,
5245 	.end_io			= dm_integrity_end_io,
5246 	.postsuspend		= dm_integrity_postsuspend,
5247 	.resume			= dm_integrity_resume,
5248 	.status			= dm_integrity_status,
5249 	.iterate_devices	= dm_integrity_iterate_devices,
5250 	.io_hints		= dm_integrity_io_hints,
5251 };
5252 
dm_integrity_init(void)5253 static int __init dm_integrity_init(void)
5254 {
5255 	int r;
5256 
5257 	journal_io_cache = kmem_cache_create("integrity_journal_io",
5258 					     sizeof(struct journal_io), 0, 0, NULL);
5259 	if (!journal_io_cache) {
5260 		DMERR("can't allocate journal io cache");
5261 		return -ENOMEM;
5262 	}
5263 
5264 	r = dm_register_target(&integrity_target);
5265 	if (r < 0) {
5266 		kmem_cache_destroy(journal_io_cache);
5267 		return r;
5268 	}
5269 
5270 	return 0;
5271 }
5272 
dm_integrity_exit(void)5273 static void __exit dm_integrity_exit(void)
5274 {
5275 	dm_unregister_target(&integrity_target);
5276 	kmem_cache_destroy(journal_io_cache);
5277 }
5278 
5279 module_init(dm_integrity_init);
5280 module_exit(dm_integrity_exit);
5281 
5282 MODULE_AUTHOR("Milan Broz");
5283 MODULE_AUTHOR("Mikulas Patocka");
5284 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
5285 MODULE_LICENSE("GPL");
5286