xref: /linux/kernel/sched/fair.c (revision 1c5183aa6e74a0817c3a370e6a94e460dbb00098)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/prio.h>
41 
42 #include <linux/cpuidle.h>
43 #include <linux/interrupt.h>
44 #include <linux/memory-tiers.h>
45 #include <linux/mempolicy.h>
46 #include <linux/mutex_api.h>
47 #include <linux/profile.h>
48 #include <linux/psi.h>
49 #include <linux/ratelimit.h>
50 #include <linux/task_work.h>
51 #include <linux/rbtree_augmented.h>
52 
53 #include <asm/switch_to.h>
54 
55 #include <uapi/linux/sched/types.h>
56 
57 #include "sched.h"
58 #include "stats.h"
59 #include "autogroup.h"
60 
61 /*
62  * The initial- and re-scaling of tunables is configurable
63  *
64  * Options are:
65  *
66  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
67  *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
68  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
69  *
70  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
71  */
72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
73 
74 /*
75  * Minimal preemption granularity for CPU-bound tasks:
76  *
77  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
78  */
79 unsigned int sysctl_sched_base_slice			= 750000ULL;
80 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
81 
82 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
83 
setup_sched_thermal_decay_shift(char * str)84 static int __init setup_sched_thermal_decay_shift(char *str)
85 {
86 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
87 	return 1;
88 }
89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
90 
91 #ifdef CONFIG_SMP
92 /*
93  * For asym packing, by default the lower numbered CPU has higher priority.
94  */
arch_asym_cpu_priority(int cpu)95 int __weak arch_asym_cpu_priority(int cpu)
96 {
97 	return -cpu;
98 }
99 
100 /*
101  * The margin used when comparing utilization with CPU capacity.
102  *
103  * (default: ~20%)
104  */
105 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
106 
107 /*
108  * The margin used when comparing CPU capacities.
109  * is 'cap1' noticeably greater than 'cap2'
110  *
111  * (default: ~5%)
112  */
113 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
114 #endif
115 
116 #ifdef CONFIG_CFS_BANDWIDTH
117 /*
118  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
119  * each time a cfs_rq requests quota.
120  *
121  * Note: in the case that the slice exceeds the runtime remaining (either due
122  * to consumption or the quota being specified to be smaller than the slice)
123  * we will always only issue the remaining available time.
124  *
125  * (default: 5 msec, units: microseconds)
126  */
127 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
128 #endif
129 
130 #ifdef CONFIG_NUMA_BALANCING
131 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
132 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
133 #endif
134 
135 #ifdef CONFIG_SYSCTL
136 static const struct ctl_table sched_fair_sysctls[] = {
137 #ifdef CONFIG_CFS_BANDWIDTH
138 	{
139 		.procname       = "sched_cfs_bandwidth_slice_us",
140 		.data           = &sysctl_sched_cfs_bandwidth_slice,
141 		.maxlen         = sizeof(unsigned int),
142 		.mode           = 0644,
143 		.proc_handler   = proc_dointvec_minmax,
144 		.extra1         = SYSCTL_ONE,
145 	},
146 #endif
147 #ifdef CONFIG_NUMA_BALANCING
148 	{
149 		.procname	= "numa_balancing_promote_rate_limit_MBps",
150 		.data		= &sysctl_numa_balancing_promote_rate_limit,
151 		.maxlen		= sizeof(unsigned int),
152 		.mode		= 0644,
153 		.proc_handler	= proc_dointvec_minmax,
154 		.extra1		= SYSCTL_ZERO,
155 	},
156 #endif /* CONFIG_NUMA_BALANCING */
157 };
158 
sched_fair_sysctl_init(void)159 static int __init sched_fair_sysctl_init(void)
160 {
161 	register_sysctl_init("kernel", sched_fair_sysctls);
162 	return 0;
163 }
164 late_initcall(sched_fair_sysctl_init);
165 #endif
166 
update_load_add(struct load_weight * lw,unsigned long inc)167 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
168 {
169 	lw->weight += inc;
170 	lw->inv_weight = 0;
171 }
172 
update_load_sub(struct load_weight * lw,unsigned long dec)173 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
174 {
175 	lw->weight -= dec;
176 	lw->inv_weight = 0;
177 }
178 
update_load_set(struct load_weight * lw,unsigned long w)179 static inline void update_load_set(struct load_weight *lw, unsigned long w)
180 {
181 	lw->weight = w;
182 	lw->inv_weight = 0;
183 }
184 
185 /*
186  * Increase the granularity value when there are more CPUs,
187  * because with more CPUs the 'effective latency' as visible
188  * to users decreases. But the relationship is not linear,
189  * so pick a second-best guess by going with the log2 of the
190  * number of CPUs.
191  *
192  * This idea comes from the SD scheduler of Con Kolivas:
193  */
get_update_sysctl_factor(void)194 static unsigned int get_update_sysctl_factor(void)
195 {
196 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
197 	unsigned int factor;
198 
199 	switch (sysctl_sched_tunable_scaling) {
200 	case SCHED_TUNABLESCALING_NONE:
201 		factor = 1;
202 		break;
203 	case SCHED_TUNABLESCALING_LINEAR:
204 		factor = cpus;
205 		break;
206 	case SCHED_TUNABLESCALING_LOG:
207 	default:
208 		factor = 1 + ilog2(cpus);
209 		break;
210 	}
211 
212 	return factor;
213 }
214 
update_sysctl(void)215 static void update_sysctl(void)
216 {
217 	unsigned int factor = get_update_sysctl_factor();
218 
219 #define SET_SYSCTL(name) \
220 	(sysctl_##name = (factor) * normalized_sysctl_##name)
221 	SET_SYSCTL(sched_base_slice);
222 #undef SET_SYSCTL
223 }
224 
sched_init_granularity(void)225 void __init sched_init_granularity(void)
226 {
227 	update_sysctl();
228 }
229 
230 #define WMULT_CONST	(~0U)
231 #define WMULT_SHIFT	32
232 
__update_inv_weight(struct load_weight * lw)233 static void __update_inv_weight(struct load_weight *lw)
234 {
235 	unsigned long w;
236 
237 	if (likely(lw->inv_weight))
238 		return;
239 
240 	w = scale_load_down(lw->weight);
241 
242 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
243 		lw->inv_weight = 1;
244 	else if (unlikely(!w))
245 		lw->inv_weight = WMULT_CONST;
246 	else
247 		lw->inv_weight = WMULT_CONST / w;
248 }
249 
250 /*
251  * delta_exec * weight / lw.weight
252  *   OR
253  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
254  *
255  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
256  * we're guaranteed shift stays positive because inv_weight is guaranteed to
257  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
258  *
259  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
260  * weight/lw.weight <= 1, and therefore our shift will also be positive.
261  */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)262 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
263 {
264 	u64 fact = scale_load_down(weight);
265 	u32 fact_hi = (u32)(fact >> 32);
266 	int shift = WMULT_SHIFT;
267 	int fs;
268 
269 	__update_inv_weight(lw);
270 
271 	if (unlikely(fact_hi)) {
272 		fs = fls(fact_hi);
273 		shift -= fs;
274 		fact >>= fs;
275 	}
276 
277 	fact = mul_u32_u32(fact, lw->inv_weight);
278 
279 	fact_hi = (u32)(fact >> 32);
280 	if (fact_hi) {
281 		fs = fls(fact_hi);
282 		shift -= fs;
283 		fact >>= fs;
284 	}
285 
286 	return mul_u64_u32_shr(delta_exec, fact, shift);
287 }
288 
289 /*
290  * delta /= w
291  */
calc_delta_fair(u64 delta,struct sched_entity * se)292 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
293 {
294 	if (unlikely(se->load.weight != NICE_0_LOAD))
295 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
296 
297 	return delta;
298 }
299 
300 const struct sched_class fair_sched_class;
301 
302 /**************************************************************
303  * CFS operations on generic schedulable entities:
304  */
305 
306 #ifdef CONFIG_FAIR_GROUP_SCHED
307 
308 /* Walk up scheduling entities hierarchy */
309 #define for_each_sched_entity(se) \
310 		for (; se; se = se->parent)
311 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)312 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 	struct rq *rq = rq_of(cfs_rq);
315 	int cpu = cpu_of(rq);
316 
317 	if (cfs_rq->on_list)
318 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
319 
320 	cfs_rq->on_list = 1;
321 
322 	/*
323 	 * Ensure we either appear before our parent (if already
324 	 * enqueued) or force our parent to appear after us when it is
325 	 * enqueued. The fact that we always enqueue bottom-up
326 	 * reduces this to two cases and a special case for the root
327 	 * cfs_rq. Furthermore, it also means that we will always reset
328 	 * tmp_alone_branch either when the branch is connected
329 	 * to a tree or when we reach the top of the tree
330 	 */
331 	if (cfs_rq->tg->parent &&
332 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
333 		/*
334 		 * If parent is already on the list, we add the child
335 		 * just before. Thanks to circular linked property of
336 		 * the list, this means to put the child at the tail
337 		 * of the list that starts by parent.
338 		 */
339 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
340 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
341 		/*
342 		 * The branch is now connected to its tree so we can
343 		 * reset tmp_alone_branch to the beginning of the
344 		 * list.
345 		 */
346 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
347 		return true;
348 	}
349 
350 	if (!cfs_rq->tg->parent) {
351 		/*
352 		 * cfs rq without parent should be put
353 		 * at the tail of the list.
354 		 */
355 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
356 			&rq->leaf_cfs_rq_list);
357 		/*
358 		 * We have reach the top of a tree so we can reset
359 		 * tmp_alone_branch to the beginning of the list.
360 		 */
361 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
362 		return true;
363 	}
364 
365 	/*
366 	 * The parent has not already been added so we want to
367 	 * make sure that it will be put after us.
368 	 * tmp_alone_branch points to the begin of the branch
369 	 * where we will add parent.
370 	 */
371 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
372 	/*
373 	 * update tmp_alone_branch to points to the new begin
374 	 * of the branch
375 	 */
376 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
377 	return false;
378 }
379 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)380 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
381 {
382 	if (cfs_rq->on_list) {
383 		struct rq *rq = rq_of(cfs_rq);
384 
385 		/*
386 		 * With cfs_rq being unthrottled/throttled during an enqueue,
387 		 * it can happen the tmp_alone_branch points to the leaf that
388 		 * we finally want to delete. In this case, tmp_alone_branch moves
389 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
390 		 * at the end of the enqueue.
391 		 */
392 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
393 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
394 
395 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
396 		cfs_rq->on_list = 0;
397 	}
398 }
399 
assert_list_leaf_cfs_rq(struct rq * rq)400 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
401 {
402 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
403 }
404 
405 /* Iterate through all leaf cfs_rq's on a runqueue */
406 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
407 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
408 				 leaf_cfs_rq_list)
409 
410 /* Do the two (enqueued) entities belong to the same group ? */
411 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)412 is_same_group(struct sched_entity *se, struct sched_entity *pse)
413 {
414 	if (se->cfs_rq == pse->cfs_rq)
415 		return se->cfs_rq;
416 
417 	return NULL;
418 }
419 
parent_entity(const struct sched_entity * se)420 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
421 {
422 	return se->parent;
423 }
424 
425 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)426 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
427 {
428 	int se_depth, pse_depth;
429 
430 	/*
431 	 * preemption test can be made between sibling entities who are in the
432 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
433 	 * both tasks until we find their ancestors who are siblings of common
434 	 * parent.
435 	 */
436 
437 	/* First walk up until both entities are at same depth */
438 	se_depth = (*se)->depth;
439 	pse_depth = (*pse)->depth;
440 
441 	while (se_depth > pse_depth) {
442 		se_depth--;
443 		*se = parent_entity(*se);
444 	}
445 
446 	while (pse_depth > se_depth) {
447 		pse_depth--;
448 		*pse = parent_entity(*pse);
449 	}
450 
451 	while (!is_same_group(*se, *pse)) {
452 		*se = parent_entity(*se);
453 		*pse = parent_entity(*pse);
454 	}
455 }
456 
tg_is_idle(struct task_group * tg)457 static int tg_is_idle(struct task_group *tg)
458 {
459 	return tg->idle > 0;
460 }
461 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)462 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
463 {
464 	return cfs_rq->idle > 0;
465 }
466 
se_is_idle(struct sched_entity * se)467 static int se_is_idle(struct sched_entity *se)
468 {
469 	if (entity_is_task(se))
470 		return task_has_idle_policy(task_of(se));
471 	return cfs_rq_is_idle(group_cfs_rq(se));
472 }
473 
474 #else	/* !CONFIG_FAIR_GROUP_SCHED */
475 
476 #define for_each_sched_entity(se) \
477 		for (; se; se = NULL)
478 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)479 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
480 {
481 	return true;
482 }
483 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)484 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
485 {
486 }
487 
assert_list_leaf_cfs_rq(struct rq * rq)488 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
489 {
490 }
491 
492 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
493 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
494 
parent_entity(struct sched_entity * se)495 static inline struct sched_entity *parent_entity(struct sched_entity *se)
496 {
497 	return NULL;
498 }
499 
500 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)501 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
502 {
503 }
504 
tg_is_idle(struct task_group * tg)505 static inline int tg_is_idle(struct task_group *tg)
506 {
507 	return 0;
508 }
509 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)510 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
511 {
512 	return 0;
513 }
514 
se_is_idle(struct sched_entity * se)515 static int se_is_idle(struct sched_entity *se)
516 {
517 	return task_has_idle_policy(task_of(se));
518 }
519 
520 #endif	/* CONFIG_FAIR_GROUP_SCHED */
521 
522 static __always_inline
523 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
524 
525 /**************************************************************
526  * Scheduling class tree data structure manipulation methods:
527  */
528 
max_vruntime(u64 max_vruntime,u64 vruntime)529 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime)
530 {
531 	s64 delta = (s64)(vruntime - max_vruntime);
532 	if (delta > 0)
533 		max_vruntime = vruntime;
534 
535 	return max_vruntime;
536 }
537 
min_vruntime(u64 min_vruntime,u64 vruntime)538 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime)
539 {
540 	s64 delta = (s64)(vruntime - min_vruntime);
541 	if (delta < 0)
542 		min_vruntime = vruntime;
543 
544 	return min_vruntime;
545 }
546 
entity_before(const struct sched_entity * a,const struct sched_entity * b)547 static inline bool entity_before(const struct sched_entity *a,
548 				 const struct sched_entity *b)
549 {
550 	/*
551 	 * Tiebreak on vruntime seems unnecessary since it can
552 	 * hardly happen.
553 	 */
554 	return (s64)(a->deadline - b->deadline) < 0;
555 }
556 
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
558 {
559 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
560 }
561 
562 #define __node_2_se(node) \
563 	rb_entry((node), struct sched_entity, run_node)
564 
565 /*
566  * Compute virtual time from the per-task service numbers:
567  *
568  * Fair schedulers conserve lag:
569  *
570  *   \Sum lag_i = 0
571  *
572  * Where lag_i is given by:
573  *
574  *   lag_i = S - s_i = w_i * (V - v_i)
575  *
576  * Where S is the ideal service time and V is it's virtual time counterpart.
577  * Therefore:
578  *
579  *   \Sum lag_i = 0
580  *   \Sum w_i * (V - v_i) = 0
581  *   \Sum w_i * V - w_i * v_i = 0
582  *
583  * From which we can solve an expression for V in v_i (which we have in
584  * se->vruntime):
585  *
586  *       \Sum v_i * w_i   \Sum v_i * w_i
587  *   V = -------------- = --------------
588  *          \Sum w_i            W
589  *
590  * Specifically, this is the weighted average of all entity virtual runtimes.
591  *
592  * [[ NOTE: this is only equal to the ideal scheduler under the condition
593  *          that join/leave operations happen at lag_i = 0, otherwise the
594  *          virtual time has non-contiguous motion equivalent to:
595  *
596  *	      V +-= lag_i / W
597  *
598  *	    Also see the comment in place_entity() that deals with this. ]]
599  *
600  * However, since v_i is u64, and the multiplication could easily overflow
601  * transform it into a relative form that uses smaller quantities:
602  *
603  * Substitute: v_i == (v_i - v0) + v0
604  *
605  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
606  * V = ---------------------------- = --------------------- + v0
607  *                  W                            W
608  *
609  * Which we track using:
610  *
611  *                    v0 := cfs_rq->min_vruntime
612  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
613  *              \Sum w_i := cfs_rq->avg_load
614  *
615  * Since min_vruntime is a monotonic increasing variable that closely tracks
616  * the per-task service, these deltas: (v_i - v), will be in the order of the
617  * maximal (virtual) lag induced in the system due to quantisation.
618  *
619  * Also, we use scale_load_down() to reduce the size.
620  *
621  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
622  */
623 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 {
626 	unsigned long weight = scale_load_down(se->load.weight);
627 	s64 key = entity_key(cfs_rq, se);
628 
629 	cfs_rq->avg_vruntime += key * weight;
630 	cfs_rq->avg_load += weight;
631 }
632 
633 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
635 {
636 	unsigned long weight = scale_load_down(se->load.weight);
637 	s64 key = entity_key(cfs_rq, se);
638 
639 	cfs_rq->avg_vruntime -= key * weight;
640 	cfs_rq->avg_load -= weight;
641 }
642 
643 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
645 {
646 	/*
647 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
648 	 */
649 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
650 }
651 
652 /*
653  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
654  * For this to be so, the result of this function must have a left bias.
655  */
avg_vruntime(struct cfs_rq * cfs_rq)656 u64 avg_vruntime(struct cfs_rq *cfs_rq)
657 {
658 	struct sched_entity *curr = cfs_rq->curr;
659 	s64 avg = cfs_rq->avg_vruntime;
660 	long load = cfs_rq->avg_load;
661 
662 	if (curr && curr->on_rq) {
663 		unsigned long weight = scale_load_down(curr->load.weight);
664 
665 		avg += entity_key(cfs_rq, curr) * weight;
666 		load += weight;
667 	}
668 
669 	if (load) {
670 		/* sign flips effective floor / ceiling */
671 		if (avg < 0)
672 			avg -= (load - 1);
673 		avg = div_s64(avg, load);
674 	}
675 
676 	return cfs_rq->min_vruntime + avg;
677 }
678 
679 /*
680  * lag_i = S - s_i = w_i * (V - v_i)
681  *
682  * However, since V is approximated by the weighted average of all entities it
683  * is possible -- by addition/removal/reweight to the tree -- to move V around
684  * and end up with a larger lag than we started with.
685  *
686  * Limit this to either double the slice length with a minimum of TICK_NSEC
687  * since that is the timing granularity.
688  *
689  * EEVDF gives the following limit for a steady state system:
690  *
691  *   -r_max < lag < max(r_max, q)
692  *
693  * XXX could add max_slice to the augmented data to track this.
694  */
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
696 {
697 	s64 vlag, limit;
698 
699 	SCHED_WARN_ON(!se->on_rq);
700 
701 	vlag = avg_vruntime(cfs_rq) - se->vruntime;
702 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
703 
704 	se->vlag = clamp(vlag, -limit, limit);
705 }
706 
707 /*
708  * Entity is eligible once it received less service than it ought to have,
709  * eg. lag >= 0.
710  *
711  * lag_i = S - s_i = w_i*(V - v_i)
712  *
713  * lag_i >= 0 -> V >= v_i
714  *
715  *     \Sum (v_i - v)*w_i
716  * V = ------------------ + v
717  *          \Sum w_i
718  *
719  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
720  *
721  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
722  *       to the loss in precision caused by the division.
723  */
vruntime_eligible(struct cfs_rq * cfs_rq,u64 vruntime)724 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
725 {
726 	struct sched_entity *curr = cfs_rq->curr;
727 	s64 avg = cfs_rq->avg_vruntime;
728 	long load = cfs_rq->avg_load;
729 
730 	if (curr && curr->on_rq) {
731 		unsigned long weight = scale_load_down(curr->load.weight);
732 
733 		avg += entity_key(cfs_rq, curr) * weight;
734 		load += weight;
735 	}
736 
737 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
738 }
739 
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)740 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
741 {
742 	return vruntime_eligible(cfs_rq, se->vruntime);
743 }
744 
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)745 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
746 {
747 	u64 min_vruntime = cfs_rq->min_vruntime;
748 	/*
749 	 * open coded max_vruntime() to allow updating avg_vruntime
750 	 */
751 	s64 delta = (s64)(vruntime - min_vruntime);
752 	if (delta > 0) {
753 		avg_vruntime_update(cfs_rq, delta);
754 		min_vruntime = vruntime;
755 	}
756 	return min_vruntime;
757 }
758 
update_min_vruntime(struct cfs_rq * cfs_rq)759 static void update_min_vruntime(struct cfs_rq *cfs_rq)
760 {
761 	struct sched_entity *se = __pick_root_entity(cfs_rq);
762 	struct sched_entity *curr = cfs_rq->curr;
763 	u64 vruntime = cfs_rq->min_vruntime;
764 
765 	if (curr) {
766 		if (curr->on_rq)
767 			vruntime = curr->vruntime;
768 		else
769 			curr = NULL;
770 	}
771 
772 	if (se) {
773 		if (!curr)
774 			vruntime = se->min_vruntime;
775 		else
776 			vruntime = min_vruntime(vruntime, se->min_vruntime);
777 	}
778 
779 	/* ensure we never gain time by being placed backwards. */
780 	cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
781 }
782 
cfs_rq_min_slice(struct cfs_rq * cfs_rq)783 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
784 {
785 	struct sched_entity *root = __pick_root_entity(cfs_rq);
786 	struct sched_entity *curr = cfs_rq->curr;
787 	u64 min_slice = ~0ULL;
788 
789 	if (curr && curr->on_rq)
790 		min_slice = curr->slice;
791 
792 	if (root)
793 		min_slice = min(min_slice, root->min_slice);
794 
795 	return min_slice;
796 }
797 
__entity_less(struct rb_node * a,const struct rb_node * b)798 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
799 {
800 	return entity_before(__node_2_se(a), __node_2_se(b));
801 }
802 
803 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
804 
__min_vruntime_update(struct sched_entity * se,struct rb_node * node)805 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
806 {
807 	if (node) {
808 		struct sched_entity *rse = __node_2_se(node);
809 		if (vruntime_gt(min_vruntime, se, rse))
810 			se->min_vruntime = rse->min_vruntime;
811 	}
812 }
813 
__min_slice_update(struct sched_entity * se,struct rb_node * node)814 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
815 {
816 	if (node) {
817 		struct sched_entity *rse = __node_2_se(node);
818 		if (rse->min_slice < se->min_slice)
819 			se->min_slice = rse->min_slice;
820 	}
821 }
822 
823 /*
824  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
825  */
min_vruntime_update(struct sched_entity * se,bool exit)826 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
827 {
828 	u64 old_min_vruntime = se->min_vruntime;
829 	u64 old_min_slice = se->min_slice;
830 	struct rb_node *node = &se->run_node;
831 
832 	se->min_vruntime = se->vruntime;
833 	__min_vruntime_update(se, node->rb_right);
834 	__min_vruntime_update(se, node->rb_left);
835 
836 	se->min_slice = se->slice;
837 	__min_slice_update(se, node->rb_right);
838 	__min_slice_update(se, node->rb_left);
839 
840 	return se->min_vruntime == old_min_vruntime &&
841 	       se->min_slice == old_min_slice;
842 }
843 
844 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
845 		     run_node, min_vruntime, min_vruntime_update);
846 
847 /*
848  * Enqueue an entity into the rb-tree:
849  */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)850 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
851 {
852 	avg_vruntime_add(cfs_rq, se);
853 	se->min_vruntime = se->vruntime;
854 	se->min_slice = se->slice;
855 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
856 				__entity_less, &min_vruntime_cb);
857 }
858 
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)859 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
860 {
861 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
862 				  &min_vruntime_cb);
863 	avg_vruntime_sub(cfs_rq, se);
864 }
865 
__pick_root_entity(struct cfs_rq * cfs_rq)866 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
867 {
868 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
869 
870 	if (!root)
871 		return NULL;
872 
873 	return __node_2_se(root);
874 }
875 
__pick_first_entity(struct cfs_rq * cfs_rq)876 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
877 {
878 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
879 
880 	if (!left)
881 		return NULL;
882 
883 	return __node_2_se(left);
884 }
885 
886 /*
887  * Earliest Eligible Virtual Deadline First
888  *
889  * In order to provide latency guarantees for different request sizes
890  * EEVDF selects the best runnable task from two criteria:
891  *
892  *  1) the task must be eligible (must be owed service)
893  *
894  *  2) from those tasks that meet 1), we select the one
895  *     with the earliest virtual deadline.
896  *
897  * We can do this in O(log n) time due to an augmented RB-tree. The
898  * tree keeps the entries sorted on deadline, but also functions as a
899  * heap based on the vruntime by keeping:
900  *
901  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
902  *
903  * Which allows tree pruning through eligibility.
904  */
pick_eevdf(struct cfs_rq * cfs_rq)905 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
906 {
907 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
908 	struct sched_entity *se = __pick_first_entity(cfs_rq);
909 	struct sched_entity *curr = cfs_rq->curr;
910 	struct sched_entity *best = NULL;
911 
912 	/*
913 	 * We can safely skip eligibility check if there is only one entity
914 	 * in this cfs_rq, saving some cycles.
915 	 */
916 	if (cfs_rq->nr_queued == 1)
917 		return curr && curr->on_rq ? curr : se;
918 
919 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
920 		curr = NULL;
921 
922 	/*
923 	 * Once selected, run a task until it either becomes non-eligible or
924 	 * until it gets a new slice. See the HACK in set_next_entity().
925 	 */
926 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
927 		return curr;
928 
929 	/* Pick the leftmost entity if it's eligible */
930 	if (se && entity_eligible(cfs_rq, se)) {
931 		best = se;
932 		goto found;
933 	}
934 
935 	/* Heap search for the EEVD entity */
936 	while (node) {
937 		struct rb_node *left = node->rb_left;
938 
939 		/*
940 		 * Eligible entities in left subtree are always better
941 		 * choices, since they have earlier deadlines.
942 		 */
943 		if (left && vruntime_eligible(cfs_rq,
944 					__node_2_se(left)->min_vruntime)) {
945 			node = left;
946 			continue;
947 		}
948 
949 		se = __node_2_se(node);
950 
951 		/*
952 		 * The left subtree either is empty or has no eligible
953 		 * entity, so check the current node since it is the one
954 		 * with earliest deadline that might be eligible.
955 		 */
956 		if (entity_eligible(cfs_rq, se)) {
957 			best = se;
958 			break;
959 		}
960 
961 		node = node->rb_right;
962 	}
963 found:
964 	if (!best || (curr && entity_before(curr, best)))
965 		best = curr;
966 
967 	return best;
968 }
969 
970 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)971 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
972 {
973 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
974 
975 	if (!last)
976 		return NULL;
977 
978 	return __node_2_se(last);
979 }
980 
981 /**************************************************************
982  * Scheduling class statistics methods:
983  */
984 #ifdef CONFIG_SMP
sched_update_scaling(void)985 int sched_update_scaling(void)
986 {
987 	unsigned int factor = get_update_sysctl_factor();
988 
989 #define WRT_SYSCTL(name) \
990 	(normalized_sysctl_##name = sysctl_##name / (factor))
991 	WRT_SYSCTL(sched_base_slice);
992 #undef WRT_SYSCTL
993 
994 	return 0;
995 }
996 #endif
997 #endif
998 
999 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1000 
1001 /*
1002  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1003  * this is probably good enough.
1004  */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1005 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1006 {
1007 	if ((s64)(se->vruntime - se->deadline) < 0)
1008 		return false;
1009 
1010 	/*
1011 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1012 	 * nice) while the request time r_i is determined by
1013 	 * sysctl_sched_base_slice.
1014 	 */
1015 	if (!se->custom_slice)
1016 		se->slice = sysctl_sched_base_slice;
1017 
1018 	/*
1019 	 * EEVDF: vd_i = ve_i + r_i / w_i
1020 	 */
1021 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1022 
1023 	/*
1024 	 * The task has consumed its request, reschedule.
1025 	 */
1026 	return true;
1027 }
1028 
1029 #include "pelt.h"
1030 #ifdef CONFIG_SMP
1031 
1032 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1033 static unsigned long task_h_load(struct task_struct *p);
1034 static unsigned long capacity_of(int cpu);
1035 
1036 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1037 void init_entity_runnable_average(struct sched_entity *se)
1038 {
1039 	struct sched_avg *sa = &se->avg;
1040 
1041 	memset(sa, 0, sizeof(*sa));
1042 
1043 	/*
1044 	 * Tasks are initialized with full load to be seen as heavy tasks until
1045 	 * they get a chance to stabilize to their real load level.
1046 	 * Group entities are initialized with zero load to reflect the fact that
1047 	 * nothing has been attached to the task group yet.
1048 	 */
1049 	if (entity_is_task(se))
1050 		sa->load_avg = scale_load_down(se->load.weight);
1051 
1052 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1053 }
1054 
1055 /*
1056  * With new tasks being created, their initial util_avgs are extrapolated
1057  * based on the cfs_rq's current util_avg:
1058  *
1059  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1060  *		* se_weight(se)
1061  *
1062  * However, in many cases, the above util_avg does not give a desired
1063  * value. Moreover, the sum of the util_avgs may be divergent, such
1064  * as when the series is a harmonic series.
1065  *
1066  * To solve this problem, we also cap the util_avg of successive tasks to
1067  * only 1/2 of the left utilization budget:
1068  *
1069  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1070  *
1071  * where n denotes the nth task and cpu_scale the CPU capacity.
1072  *
1073  * For example, for a CPU with 1024 of capacity, a simplest series from
1074  * the beginning would be like:
1075  *
1076  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1077  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1078  *
1079  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1080  * if util_avg > util_avg_cap.
1081  */
post_init_entity_util_avg(struct task_struct * p)1082 void post_init_entity_util_avg(struct task_struct *p)
1083 {
1084 	struct sched_entity *se = &p->se;
1085 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1086 	struct sched_avg *sa = &se->avg;
1087 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1088 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1089 
1090 	if (p->sched_class != &fair_sched_class) {
1091 		/*
1092 		 * For !fair tasks do:
1093 		 *
1094 		update_cfs_rq_load_avg(now, cfs_rq);
1095 		attach_entity_load_avg(cfs_rq, se);
1096 		switched_from_fair(rq, p);
1097 		 *
1098 		 * such that the next switched_to_fair() has the
1099 		 * expected state.
1100 		 */
1101 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1102 		return;
1103 	}
1104 
1105 	if (cap > 0) {
1106 		if (cfs_rq->avg.util_avg != 0) {
1107 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1108 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1109 
1110 			if (sa->util_avg > cap)
1111 				sa->util_avg = cap;
1112 		} else {
1113 			sa->util_avg = cap;
1114 		}
1115 	}
1116 
1117 	sa->runnable_avg = sa->util_avg;
1118 }
1119 
1120 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)1121 void init_entity_runnable_average(struct sched_entity *se)
1122 {
1123 }
post_init_entity_util_avg(struct task_struct * p)1124 void post_init_entity_util_avg(struct task_struct *p)
1125 {
1126 }
update_tg_load_avg(struct cfs_rq * cfs_rq)1127 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1128 {
1129 }
1130 #endif /* CONFIG_SMP */
1131 
update_curr_se(struct rq * rq,struct sched_entity * curr)1132 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1133 {
1134 	u64 now = rq_clock_task(rq);
1135 	s64 delta_exec;
1136 
1137 	delta_exec = now - curr->exec_start;
1138 	if (unlikely(delta_exec <= 0))
1139 		return delta_exec;
1140 
1141 	curr->exec_start = now;
1142 	curr->sum_exec_runtime += delta_exec;
1143 
1144 	if (schedstat_enabled()) {
1145 		struct sched_statistics *stats;
1146 
1147 		stats = __schedstats_from_se(curr);
1148 		__schedstat_set(stats->exec_max,
1149 				max(delta_exec, stats->exec_max));
1150 	}
1151 
1152 	return delta_exec;
1153 }
1154 
update_curr_task(struct task_struct * p,s64 delta_exec)1155 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1156 {
1157 	trace_sched_stat_runtime(p, delta_exec);
1158 	account_group_exec_runtime(p, delta_exec);
1159 	cgroup_account_cputime(p, delta_exec);
1160 }
1161 
did_preempt_short(struct cfs_rq * cfs_rq,struct sched_entity * curr)1162 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1163 {
1164 	if (!sched_feat(PREEMPT_SHORT))
1165 		return false;
1166 
1167 	if (curr->vlag == curr->deadline)
1168 		return false;
1169 
1170 	return !entity_eligible(cfs_rq, curr);
1171 }
1172 
do_preempt_short(struct cfs_rq * cfs_rq,struct sched_entity * pse,struct sched_entity * se)1173 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1174 				    struct sched_entity *pse, struct sched_entity *se)
1175 {
1176 	if (!sched_feat(PREEMPT_SHORT))
1177 		return false;
1178 
1179 	if (pse->slice >= se->slice)
1180 		return false;
1181 
1182 	if (!entity_eligible(cfs_rq, pse))
1183 		return false;
1184 
1185 	if (entity_before(pse, se))
1186 		return true;
1187 
1188 	if (!entity_eligible(cfs_rq, se))
1189 		return true;
1190 
1191 	return false;
1192 }
1193 
1194 /*
1195  * Used by other classes to account runtime.
1196  */
update_curr_common(struct rq * rq)1197 s64 update_curr_common(struct rq *rq)
1198 {
1199 	struct task_struct *donor = rq->donor;
1200 	s64 delta_exec;
1201 
1202 	delta_exec = update_curr_se(rq, &donor->se);
1203 	if (likely(delta_exec > 0))
1204 		update_curr_task(donor, delta_exec);
1205 
1206 	return delta_exec;
1207 }
1208 
1209 /*
1210  * Update the current task's runtime statistics.
1211  */
update_curr(struct cfs_rq * cfs_rq)1212 static void update_curr(struct cfs_rq *cfs_rq)
1213 {
1214 	struct sched_entity *curr = cfs_rq->curr;
1215 	struct rq *rq = rq_of(cfs_rq);
1216 	s64 delta_exec;
1217 	bool resched;
1218 
1219 	if (unlikely(!curr))
1220 		return;
1221 
1222 	delta_exec = update_curr_se(rq, curr);
1223 	if (unlikely(delta_exec <= 0))
1224 		return;
1225 
1226 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1227 	resched = update_deadline(cfs_rq, curr);
1228 	update_min_vruntime(cfs_rq);
1229 
1230 	if (entity_is_task(curr)) {
1231 		struct task_struct *p = task_of(curr);
1232 
1233 		update_curr_task(p, delta_exec);
1234 
1235 		/*
1236 		 * If the fair_server is active, we need to account for the
1237 		 * fair_server time whether or not the task is running on
1238 		 * behalf of fair_server or not:
1239 		 *  - If the task is running on behalf of fair_server, we need
1240 		 *    to limit its time based on the assigned runtime.
1241 		 *  - Fair task that runs outside of fair_server should account
1242 		 *    against fair_server such that it can account for this time
1243 		 *    and possibly avoid running this period.
1244 		 */
1245 		if (dl_server_active(&rq->fair_server))
1246 			dl_server_update(&rq->fair_server, delta_exec);
1247 	}
1248 
1249 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1250 
1251 	if (cfs_rq->nr_queued == 1)
1252 		return;
1253 
1254 	if (resched || did_preempt_short(cfs_rq, curr)) {
1255 		resched_curr_lazy(rq);
1256 		clear_buddies(cfs_rq, curr);
1257 	}
1258 }
1259 
update_curr_fair(struct rq * rq)1260 static void update_curr_fair(struct rq *rq)
1261 {
1262 	update_curr(cfs_rq_of(&rq->donor->se));
1263 }
1264 
1265 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1266 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1267 {
1268 	struct sched_statistics *stats;
1269 	struct task_struct *p = NULL;
1270 
1271 	if (!schedstat_enabled())
1272 		return;
1273 
1274 	stats = __schedstats_from_se(se);
1275 
1276 	if (entity_is_task(se))
1277 		p = task_of(se);
1278 
1279 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1280 }
1281 
1282 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1283 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1284 {
1285 	struct sched_statistics *stats;
1286 	struct task_struct *p = NULL;
1287 
1288 	if (!schedstat_enabled())
1289 		return;
1290 
1291 	stats = __schedstats_from_se(se);
1292 
1293 	/*
1294 	 * When the sched_schedstat changes from 0 to 1, some sched se
1295 	 * maybe already in the runqueue, the se->statistics.wait_start
1296 	 * will be 0.So it will let the delta wrong. We need to avoid this
1297 	 * scenario.
1298 	 */
1299 	if (unlikely(!schedstat_val(stats->wait_start)))
1300 		return;
1301 
1302 	if (entity_is_task(se))
1303 		p = task_of(se);
1304 
1305 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1306 }
1307 
1308 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1309 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1310 {
1311 	struct sched_statistics *stats;
1312 	struct task_struct *tsk = NULL;
1313 
1314 	if (!schedstat_enabled())
1315 		return;
1316 
1317 	stats = __schedstats_from_se(se);
1318 
1319 	if (entity_is_task(se))
1320 		tsk = task_of(se);
1321 
1322 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1323 }
1324 
1325 /*
1326  * Task is being enqueued - update stats:
1327  */
1328 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1329 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1330 {
1331 	if (!schedstat_enabled())
1332 		return;
1333 
1334 	/*
1335 	 * Are we enqueueing a waiting task? (for current tasks
1336 	 * a dequeue/enqueue event is a NOP)
1337 	 */
1338 	if (se != cfs_rq->curr)
1339 		update_stats_wait_start_fair(cfs_rq, se);
1340 
1341 	if (flags & ENQUEUE_WAKEUP)
1342 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1343 }
1344 
1345 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1346 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1347 {
1348 
1349 	if (!schedstat_enabled())
1350 		return;
1351 
1352 	/*
1353 	 * Mark the end of the wait period if dequeueing a
1354 	 * waiting task:
1355 	 */
1356 	if (se != cfs_rq->curr)
1357 		update_stats_wait_end_fair(cfs_rq, se);
1358 
1359 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1360 		struct task_struct *tsk = task_of(se);
1361 		unsigned int state;
1362 
1363 		/* XXX racy against TTWU */
1364 		state = READ_ONCE(tsk->__state);
1365 		if (state & TASK_INTERRUPTIBLE)
1366 			__schedstat_set(tsk->stats.sleep_start,
1367 				      rq_clock(rq_of(cfs_rq)));
1368 		if (state & TASK_UNINTERRUPTIBLE)
1369 			__schedstat_set(tsk->stats.block_start,
1370 				      rq_clock(rq_of(cfs_rq)));
1371 	}
1372 }
1373 
1374 /*
1375  * We are picking a new current task - update its stats:
1376  */
1377 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1378 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1379 {
1380 	/*
1381 	 * We are starting a new run period:
1382 	 */
1383 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1384 }
1385 
1386 /**************************************************
1387  * Scheduling class queueing methods:
1388  */
1389 
is_core_idle(int cpu)1390 static inline bool is_core_idle(int cpu)
1391 {
1392 #ifdef CONFIG_SCHED_SMT
1393 	int sibling;
1394 
1395 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1396 		if (cpu == sibling)
1397 			continue;
1398 
1399 		if (!idle_cpu(sibling))
1400 			return false;
1401 	}
1402 #endif
1403 
1404 	return true;
1405 }
1406 
1407 #ifdef CONFIG_NUMA
1408 #define NUMA_IMBALANCE_MIN 2
1409 
1410 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1411 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1412 {
1413 	/*
1414 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1415 	 * threshold. Above this threshold, individual tasks may be contending
1416 	 * for both memory bandwidth and any shared HT resources.  This is an
1417 	 * approximation as the number of running tasks may not be related to
1418 	 * the number of busy CPUs due to sched_setaffinity.
1419 	 */
1420 	if (dst_running > imb_numa_nr)
1421 		return imbalance;
1422 
1423 	/*
1424 	 * Allow a small imbalance based on a simple pair of communicating
1425 	 * tasks that remain local when the destination is lightly loaded.
1426 	 */
1427 	if (imbalance <= NUMA_IMBALANCE_MIN)
1428 		return 0;
1429 
1430 	return imbalance;
1431 }
1432 #endif /* CONFIG_NUMA */
1433 
1434 #ifdef CONFIG_NUMA_BALANCING
1435 /*
1436  * Approximate time to scan a full NUMA task in ms. The task scan period is
1437  * calculated based on the tasks virtual memory size and
1438  * numa_balancing_scan_size.
1439  */
1440 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1441 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1442 
1443 /* Portion of address space to scan in MB */
1444 unsigned int sysctl_numa_balancing_scan_size = 256;
1445 
1446 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1447 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1448 
1449 /* The page with hint page fault latency < threshold in ms is considered hot */
1450 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1451 
1452 struct numa_group {
1453 	refcount_t refcount;
1454 
1455 	spinlock_t lock; /* nr_tasks, tasks */
1456 	int nr_tasks;
1457 	pid_t gid;
1458 	int active_nodes;
1459 
1460 	struct rcu_head rcu;
1461 	unsigned long total_faults;
1462 	unsigned long max_faults_cpu;
1463 	/*
1464 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1465 	 *
1466 	 * Faults_cpu is used to decide whether memory should move
1467 	 * towards the CPU. As a consequence, these stats are weighted
1468 	 * more by CPU use than by memory faults.
1469 	 */
1470 	unsigned long faults[];
1471 };
1472 
1473 /*
1474  * For functions that can be called in multiple contexts that permit reading
1475  * ->numa_group (see struct task_struct for locking rules).
1476  */
deref_task_numa_group(struct task_struct * p)1477 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1478 {
1479 	return rcu_dereference_check(p->numa_group, p == current ||
1480 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1481 }
1482 
deref_curr_numa_group(struct task_struct * p)1483 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1484 {
1485 	return rcu_dereference_protected(p->numa_group, p == current);
1486 }
1487 
1488 static inline unsigned long group_faults_priv(struct numa_group *ng);
1489 static inline unsigned long group_faults_shared(struct numa_group *ng);
1490 
task_nr_scan_windows(struct task_struct * p)1491 static unsigned int task_nr_scan_windows(struct task_struct *p)
1492 {
1493 	unsigned long rss = 0;
1494 	unsigned long nr_scan_pages;
1495 
1496 	/*
1497 	 * Calculations based on RSS as non-present and empty pages are skipped
1498 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1499 	 * on resident pages
1500 	 */
1501 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1502 	rss = get_mm_rss(p->mm);
1503 	if (!rss)
1504 		rss = nr_scan_pages;
1505 
1506 	rss = round_up(rss, nr_scan_pages);
1507 	return rss / nr_scan_pages;
1508 }
1509 
1510 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1511 #define MAX_SCAN_WINDOW 2560
1512 
task_scan_min(struct task_struct * p)1513 static unsigned int task_scan_min(struct task_struct *p)
1514 {
1515 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1516 	unsigned int scan, floor;
1517 	unsigned int windows = 1;
1518 
1519 	if (scan_size < MAX_SCAN_WINDOW)
1520 		windows = MAX_SCAN_WINDOW / scan_size;
1521 	floor = 1000 / windows;
1522 
1523 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1524 	return max_t(unsigned int, floor, scan);
1525 }
1526 
task_scan_start(struct task_struct * p)1527 static unsigned int task_scan_start(struct task_struct *p)
1528 {
1529 	unsigned long smin = task_scan_min(p);
1530 	unsigned long period = smin;
1531 	struct numa_group *ng;
1532 
1533 	/* Scale the maximum scan period with the amount of shared memory. */
1534 	rcu_read_lock();
1535 	ng = rcu_dereference(p->numa_group);
1536 	if (ng) {
1537 		unsigned long shared = group_faults_shared(ng);
1538 		unsigned long private = group_faults_priv(ng);
1539 
1540 		period *= refcount_read(&ng->refcount);
1541 		period *= shared + 1;
1542 		period /= private + shared + 1;
1543 	}
1544 	rcu_read_unlock();
1545 
1546 	return max(smin, period);
1547 }
1548 
task_scan_max(struct task_struct * p)1549 static unsigned int task_scan_max(struct task_struct *p)
1550 {
1551 	unsigned long smin = task_scan_min(p);
1552 	unsigned long smax;
1553 	struct numa_group *ng;
1554 
1555 	/* Watch for min being lower than max due to floor calculations */
1556 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1557 
1558 	/* Scale the maximum scan period with the amount of shared memory. */
1559 	ng = deref_curr_numa_group(p);
1560 	if (ng) {
1561 		unsigned long shared = group_faults_shared(ng);
1562 		unsigned long private = group_faults_priv(ng);
1563 		unsigned long period = smax;
1564 
1565 		period *= refcount_read(&ng->refcount);
1566 		period *= shared + 1;
1567 		period /= private + shared + 1;
1568 
1569 		smax = max(smax, period);
1570 	}
1571 
1572 	return max(smin, smax);
1573 }
1574 
account_numa_enqueue(struct rq * rq,struct task_struct * p)1575 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1576 {
1577 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1578 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1579 }
1580 
account_numa_dequeue(struct rq * rq,struct task_struct * p)1581 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1582 {
1583 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1584 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1585 }
1586 
1587 /* Shared or private faults. */
1588 #define NR_NUMA_HINT_FAULT_TYPES 2
1589 
1590 /* Memory and CPU locality */
1591 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1592 
1593 /* Averaged statistics, and temporary buffers. */
1594 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1595 
task_numa_group_id(struct task_struct * p)1596 pid_t task_numa_group_id(struct task_struct *p)
1597 {
1598 	struct numa_group *ng;
1599 	pid_t gid = 0;
1600 
1601 	rcu_read_lock();
1602 	ng = rcu_dereference(p->numa_group);
1603 	if (ng)
1604 		gid = ng->gid;
1605 	rcu_read_unlock();
1606 
1607 	return gid;
1608 }
1609 
1610 /*
1611  * The averaged statistics, shared & private, memory & CPU,
1612  * occupy the first half of the array. The second half of the
1613  * array is for current counters, which are averaged into the
1614  * first set by task_numa_placement.
1615  */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1616 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1617 {
1618 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1619 }
1620 
task_faults(struct task_struct * p,int nid)1621 static inline unsigned long task_faults(struct task_struct *p, int nid)
1622 {
1623 	if (!p->numa_faults)
1624 		return 0;
1625 
1626 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1627 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1628 }
1629 
group_faults(struct task_struct * p,int nid)1630 static inline unsigned long group_faults(struct task_struct *p, int nid)
1631 {
1632 	struct numa_group *ng = deref_task_numa_group(p);
1633 
1634 	if (!ng)
1635 		return 0;
1636 
1637 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1638 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1639 }
1640 
group_faults_cpu(struct numa_group * group,int nid)1641 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1642 {
1643 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1644 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1645 }
1646 
group_faults_priv(struct numa_group * ng)1647 static inline unsigned long group_faults_priv(struct numa_group *ng)
1648 {
1649 	unsigned long faults = 0;
1650 	int node;
1651 
1652 	for_each_online_node(node) {
1653 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1654 	}
1655 
1656 	return faults;
1657 }
1658 
group_faults_shared(struct numa_group * ng)1659 static inline unsigned long group_faults_shared(struct numa_group *ng)
1660 {
1661 	unsigned long faults = 0;
1662 	int node;
1663 
1664 	for_each_online_node(node) {
1665 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1666 	}
1667 
1668 	return faults;
1669 }
1670 
1671 /*
1672  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1673  * considered part of a numa group's pseudo-interleaving set. Migrations
1674  * between these nodes are slowed down, to allow things to settle down.
1675  */
1676 #define ACTIVE_NODE_FRACTION 3
1677 
numa_is_active_node(int nid,struct numa_group * ng)1678 static bool numa_is_active_node(int nid, struct numa_group *ng)
1679 {
1680 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1681 }
1682 
1683 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1684 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1685 					int lim_dist, bool task)
1686 {
1687 	unsigned long score = 0;
1688 	int node, max_dist;
1689 
1690 	/*
1691 	 * All nodes are directly connected, and the same distance
1692 	 * from each other. No need for fancy placement algorithms.
1693 	 */
1694 	if (sched_numa_topology_type == NUMA_DIRECT)
1695 		return 0;
1696 
1697 	/* sched_max_numa_distance may be changed in parallel. */
1698 	max_dist = READ_ONCE(sched_max_numa_distance);
1699 	/*
1700 	 * This code is called for each node, introducing N^2 complexity,
1701 	 * which should be OK given the number of nodes rarely exceeds 8.
1702 	 */
1703 	for_each_online_node(node) {
1704 		unsigned long faults;
1705 		int dist = node_distance(nid, node);
1706 
1707 		/*
1708 		 * The furthest away nodes in the system are not interesting
1709 		 * for placement; nid was already counted.
1710 		 */
1711 		if (dist >= max_dist || node == nid)
1712 			continue;
1713 
1714 		/*
1715 		 * On systems with a backplane NUMA topology, compare groups
1716 		 * of nodes, and move tasks towards the group with the most
1717 		 * memory accesses. When comparing two nodes at distance
1718 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1719 		 * of each group. Skip other nodes.
1720 		 */
1721 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1722 			continue;
1723 
1724 		/* Add up the faults from nearby nodes. */
1725 		if (task)
1726 			faults = task_faults(p, node);
1727 		else
1728 			faults = group_faults(p, node);
1729 
1730 		/*
1731 		 * On systems with a glueless mesh NUMA topology, there are
1732 		 * no fixed "groups of nodes". Instead, nodes that are not
1733 		 * directly connected bounce traffic through intermediate
1734 		 * nodes; a numa_group can occupy any set of nodes.
1735 		 * The further away a node is, the less the faults count.
1736 		 * This seems to result in good task placement.
1737 		 */
1738 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1739 			faults *= (max_dist - dist);
1740 			faults /= (max_dist - LOCAL_DISTANCE);
1741 		}
1742 
1743 		score += faults;
1744 	}
1745 
1746 	return score;
1747 }
1748 
1749 /*
1750  * These return the fraction of accesses done by a particular task, or
1751  * task group, on a particular numa node.  The group weight is given a
1752  * larger multiplier, in order to group tasks together that are almost
1753  * evenly spread out between numa nodes.
1754  */
task_weight(struct task_struct * p,int nid,int dist)1755 static inline unsigned long task_weight(struct task_struct *p, int nid,
1756 					int dist)
1757 {
1758 	unsigned long faults, total_faults;
1759 
1760 	if (!p->numa_faults)
1761 		return 0;
1762 
1763 	total_faults = p->total_numa_faults;
1764 
1765 	if (!total_faults)
1766 		return 0;
1767 
1768 	faults = task_faults(p, nid);
1769 	faults += score_nearby_nodes(p, nid, dist, true);
1770 
1771 	return 1000 * faults / total_faults;
1772 }
1773 
group_weight(struct task_struct * p,int nid,int dist)1774 static inline unsigned long group_weight(struct task_struct *p, int nid,
1775 					 int dist)
1776 {
1777 	struct numa_group *ng = deref_task_numa_group(p);
1778 	unsigned long faults, total_faults;
1779 
1780 	if (!ng)
1781 		return 0;
1782 
1783 	total_faults = ng->total_faults;
1784 
1785 	if (!total_faults)
1786 		return 0;
1787 
1788 	faults = group_faults(p, nid);
1789 	faults += score_nearby_nodes(p, nid, dist, false);
1790 
1791 	return 1000 * faults / total_faults;
1792 }
1793 
1794 /*
1795  * If memory tiering mode is enabled, cpupid of slow memory page is
1796  * used to record scan time instead of CPU and PID.  When tiering mode
1797  * is disabled at run time, the scan time (in cpupid) will be
1798  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1799  * access out of array bound.
1800  */
cpupid_valid(int cpupid)1801 static inline bool cpupid_valid(int cpupid)
1802 {
1803 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1804 }
1805 
1806 /*
1807  * For memory tiering mode, if there are enough free pages (more than
1808  * enough watermark defined here) in fast memory node, to take full
1809  * advantage of fast memory capacity, all recently accessed slow
1810  * memory pages will be migrated to fast memory node without
1811  * considering hot threshold.
1812  */
pgdat_free_space_enough(struct pglist_data * pgdat)1813 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1814 {
1815 	int z;
1816 	unsigned long enough_wmark;
1817 
1818 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1819 			   pgdat->node_present_pages >> 4);
1820 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1821 		struct zone *zone = pgdat->node_zones + z;
1822 
1823 		if (!populated_zone(zone))
1824 			continue;
1825 
1826 		if (zone_watermark_ok(zone, 0,
1827 				      promo_wmark_pages(zone) + enough_wmark,
1828 				      ZONE_MOVABLE, 0))
1829 			return true;
1830 	}
1831 	return false;
1832 }
1833 
1834 /*
1835  * For memory tiering mode, when page tables are scanned, the scan
1836  * time will be recorded in struct page in addition to make page
1837  * PROT_NONE for slow memory page.  So when the page is accessed, in
1838  * hint page fault handler, the hint page fault latency is calculated
1839  * via,
1840  *
1841  *	hint page fault latency = hint page fault time - scan time
1842  *
1843  * The smaller the hint page fault latency, the higher the possibility
1844  * for the page to be hot.
1845  */
numa_hint_fault_latency(struct folio * folio)1846 static int numa_hint_fault_latency(struct folio *folio)
1847 {
1848 	int last_time, time;
1849 
1850 	time = jiffies_to_msecs(jiffies);
1851 	last_time = folio_xchg_access_time(folio, time);
1852 
1853 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1854 }
1855 
1856 /*
1857  * For memory tiering mode, too high promotion/demotion throughput may
1858  * hurt application latency.  So we provide a mechanism to rate limit
1859  * the number of pages that are tried to be promoted.
1860  */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1861 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1862 				      unsigned long rate_limit, int nr)
1863 {
1864 	unsigned long nr_cand;
1865 	unsigned int now, start;
1866 
1867 	now = jiffies_to_msecs(jiffies);
1868 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1869 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1870 	start = pgdat->nbp_rl_start;
1871 	if (now - start > MSEC_PER_SEC &&
1872 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1873 		pgdat->nbp_rl_nr_cand = nr_cand;
1874 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1875 		return true;
1876 	return false;
1877 }
1878 
1879 #define NUMA_MIGRATION_ADJUST_STEPS	16
1880 
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1881 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1882 					    unsigned long rate_limit,
1883 					    unsigned int ref_th)
1884 {
1885 	unsigned int now, start, th_period, unit_th, th;
1886 	unsigned long nr_cand, ref_cand, diff_cand;
1887 
1888 	now = jiffies_to_msecs(jiffies);
1889 	th_period = sysctl_numa_balancing_scan_period_max;
1890 	start = pgdat->nbp_th_start;
1891 	if (now - start > th_period &&
1892 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1893 		ref_cand = rate_limit *
1894 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1895 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1896 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1897 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1898 		th = pgdat->nbp_threshold ? : ref_th;
1899 		if (diff_cand > ref_cand * 11 / 10)
1900 			th = max(th - unit_th, unit_th);
1901 		else if (diff_cand < ref_cand * 9 / 10)
1902 			th = min(th + unit_th, ref_th * 2);
1903 		pgdat->nbp_th_nr_cand = nr_cand;
1904 		pgdat->nbp_threshold = th;
1905 	}
1906 }
1907 
should_numa_migrate_memory(struct task_struct * p,struct folio * folio,int src_nid,int dst_cpu)1908 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1909 				int src_nid, int dst_cpu)
1910 {
1911 	struct numa_group *ng = deref_curr_numa_group(p);
1912 	int dst_nid = cpu_to_node(dst_cpu);
1913 	int last_cpupid, this_cpupid;
1914 
1915 	/*
1916 	 * Cannot migrate to memoryless nodes.
1917 	 */
1918 	if (!node_state(dst_nid, N_MEMORY))
1919 		return false;
1920 
1921 	/*
1922 	 * The pages in slow memory node should be migrated according
1923 	 * to hot/cold instead of private/shared.
1924 	 */
1925 	if (folio_use_access_time(folio)) {
1926 		struct pglist_data *pgdat;
1927 		unsigned long rate_limit;
1928 		unsigned int latency, th, def_th;
1929 
1930 		pgdat = NODE_DATA(dst_nid);
1931 		if (pgdat_free_space_enough(pgdat)) {
1932 			/* workload changed, reset hot threshold */
1933 			pgdat->nbp_threshold = 0;
1934 			return true;
1935 		}
1936 
1937 		def_th = sysctl_numa_balancing_hot_threshold;
1938 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1939 			(20 - PAGE_SHIFT);
1940 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1941 
1942 		th = pgdat->nbp_threshold ? : def_th;
1943 		latency = numa_hint_fault_latency(folio);
1944 		if (latency >= th)
1945 			return false;
1946 
1947 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1948 						  folio_nr_pages(folio));
1949 	}
1950 
1951 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1952 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1953 
1954 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1955 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1956 		return false;
1957 
1958 	/*
1959 	 * Allow first faults or private faults to migrate immediately early in
1960 	 * the lifetime of a task. The magic number 4 is based on waiting for
1961 	 * two full passes of the "multi-stage node selection" test that is
1962 	 * executed below.
1963 	 */
1964 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1965 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1966 		return true;
1967 
1968 	/*
1969 	 * Multi-stage node selection is used in conjunction with a periodic
1970 	 * migration fault to build a temporal task<->page relation. By using
1971 	 * a two-stage filter we remove short/unlikely relations.
1972 	 *
1973 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1974 	 * a task's usage of a particular page (n_p) per total usage of this
1975 	 * page (n_t) (in a given time-span) to a probability.
1976 	 *
1977 	 * Our periodic faults will sample this probability and getting the
1978 	 * same result twice in a row, given these samples are fully
1979 	 * independent, is then given by P(n)^2, provided our sample period
1980 	 * is sufficiently short compared to the usage pattern.
1981 	 *
1982 	 * This quadric squishes small probabilities, making it less likely we
1983 	 * act on an unlikely task<->page relation.
1984 	 */
1985 	if (!cpupid_pid_unset(last_cpupid) &&
1986 				cpupid_to_nid(last_cpupid) != dst_nid)
1987 		return false;
1988 
1989 	/* Always allow migrate on private faults */
1990 	if (cpupid_match_pid(p, last_cpupid))
1991 		return true;
1992 
1993 	/* A shared fault, but p->numa_group has not been set up yet. */
1994 	if (!ng)
1995 		return true;
1996 
1997 	/*
1998 	 * Destination node is much more heavily used than the source
1999 	 * node? Allow migration.
2000 	 */
2001 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2002 					ACTIVE_NODE_FRACTION)
2003 		return true;
2004 
2005 	/*
2006 	 * Distribute memory according to CPU & memory use on each node,
2007 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2008 	 *
2009 	 * faults_cpu(dst)   3   faults_cpu(src)
2010 	 * --------------- * - > ---------------
2011 	 * faults_mem(dst)   4   faults_mem(src)
2012 	 */
2013 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2014 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2015 }
2016 
2017 /*
2018  * 'numa_type' describes the node at the moment of load balancing.
2019  */
2020 enum numa_type {
2021 	/* The node has spare capacity that can be used to run more tasks.  */
2022 	node_has_spare = 0,
2023 	/*
2024 	 * The node is fully used and the tasks don't compete for more CPU
2025 	 * cycles. Nevertheless, some tasks might wait before running.
2026 	 */
2027 	node_fully_busy,
2028 	/*
2029 	 * The node is overloaded and can't provide expected CPU cycles to all
2030 	 * tasks.
2031 	 */
2032 	node_overloaded
2033 };
2034 
2035 /* Cached statistics for all CPUs within a node */
2036 struct numa_stats {
2037 	unsigned long load;
2038 	unsigned long runnable;
2039 	unsigned long util;
2040 	/* Total compute capacity of CPUs on a node */
2041 	unsigned long compute_capacity;
2042 	unsigned int nr_running;
2043 	unsigned int weight;
2044 	enum numa_type node_type;
2045 	int idle_cpu;
2046 };
2047 
2048 struct task_numa_env {
2049 	struct task_struct *p;
2050 
2051 	int src_cpu, src_nid;
2052 	int dst_cpu, dst_nid;
2053 	int imb_numa_nr;
2054 
2055 	struct numa_stats src_stats, dst_stats;
2056 
2057 	int imbalance_pct;
2058 	int dist;
2059 
2060 	struct task_struct *best_task;
2061 	long best_imp;
2062 	int best_cpu;
2063 };
2064 
2065 static unsigned long cpu_load(struct rq *rq);
2066 static unsigned long cpu_runnable(struct rq *rq);
2067 
2068 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2069 numa_type numa_classify(unsigned int imbalance_pct,
2070 			 struct numa_stats *ns)
2071 {
2072 	if ((ns->nr_running > ns->weight) &&
2073 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2074 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2075 		return node_overloaded;
2076 
2077 	if ((ns->nr_running < ns->weight) ||
2078 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2079 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2080 		return node_has_spare;
2081 
2082 	return node_fully_busy;
2083 }
2084 
2085 #ifdef CONFIG_SCHED_SMT
2086 /* Forward declarations of select_idle_sibling helpers */
2087 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2088 static inline int numa_idle_core(int idle_core, int cpu)
2089 {
2090 	if (!static_branch_likely(&sched_smt_present) ||
2091 	    idle_core >= 0 || !test_idle_cores(cpu))
2092 		return idle_core;
2093 
2094 	/*
2095 	 * Prefer cores instead of packing HT siblings
2096 	 * and triggering future load balancing.
2097 	 */
2098 	if (is_core_idle(cpu))
2099 		idle_core = cpu;
2100 
2101 	return idle_core;
2102 }
2103 #else
numa_idle_core(int idle_core,int cpu)2104 static inline int numa_idle_core(int idle_core, int cpu)
2105 {
2106 	return idle_core;
2107 }
2108 #endif
2109 
2110 /*
2111  * Gather all necessary information to make NUMA balancing placement
2112  * decisions that are compatible with standard load balancer. This
2113  * borrows code and logic from update_sg_lb_stats but sharing a
2114  * common implementation is impractical.
2115  */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2116 static void update_numa_stats(struct task_numa_env *env,
2117 			      struct numa_stats *ns, int nid,
2118 			      bool find_idle)
2119 {
2120 	int cpu, idle_core = -1;
2121 
2122 	memset(ns, 0, sizeof(*ns));
2123 	ns->idle_cpu = -1;
2124 
2125 	rcu_read_lock();
2126 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2127 		struct rq *rq = cpu_rq(cpu);
2128 
2129 		ns->load += cpu_load(rq);
2130 		ns->runnable += cpu_runnable(rq);
2131 		ns->util += cpu_util_cfs(cpu);
2132 		ns->nr_running += rq->cfs.h_nr_runnable;
2133 		ns->compute_capacity += capacity_of(cpu);
2134 
2135 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2136 			if (READ_ONCE(rq->numa_migrate_on) ||
2137 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2138 				continue;
2139 
2140 			if (ns->idle_cpu == -1)
2141 				ns->idle_cpu = cpu;
2142 
2143 			idle_core = numa_idle_core(idle_core, cpu);
2144 		}
2145 	}
2146 	rcu_read_unlock();
2147 
2148 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2149 
2150 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2151 
2152 	if (idle_core >= 0)
2153 		ns->idle_cpu = idle_core;
2154 }
2155 
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2156 static void task_numa_assign(struct task_numa_env *env,
2157 			     struct task_struct *p, long imp)
2158 {
2159 	struct rq *rq = cpu_rq(env->dst_cpu);
2160 
2161 	/* Check if run-queue part of active NUMA balance. */
2162 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2163 		int cpu;
2164 		int start = env->dst_cpu;
2165 
2166 		/* Find alternative idle CPU. */
2167 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2168 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2169 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2170 				continue;
2171 			}
2172 
2173 			env->dst_cpu = cpu;
2174 			rq = cpu_rq(env->dst_cpu);
2175 			if (!xchg(&rq->numa_migrate_on, 1))
2176 				goto assign;
2177 		}
2178 
2179 		/* Failed to find an alternative idle CPU */
2180 		return;
2181 	}
2182 
2183 assign:
2184 	/*
2185 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2186 	 * found a better CPU to move/swap.
2187 	 */
2188 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2189 		rq = cpu_rq(env->best_cpu);
2190 		WRITE_ONCE(rq->numa_migrate_on, 0);
2191 	}
2192 
2193 	if (env->best_task)
2194 		put_task_struct(env->best_task);
2195 	if (p)
2196 		get_task_struct(p);
2197 
2198 	env->best_task = p;
2199 	env->best_imp = imp;
2200 	env->best_cpu = env->dst_cpu;
2201 }
2202 
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2203 static bool load_too_imbalanced(long src_load, long dst_load,
2204 				struct task_numa_env *env)
2205 {
2206 	long imb, old_imb;
2207 	long orig_src_load, orig_dst_load;
2208 	long src_capacity, dst_capacity;
2209 
2210 	/*
2211 	 * The load is corrected for the CPU capacity available on each node.
2212 	 *
2213 	 * src_load        dst_load
2214 	 * ------------ vs ---------
2215 	 * src_capacity    dst_capacity
2216 	 */
2217 	src_capacity = env->src_stats.compute_capacity;
2218 	dst_capacity = env->dst_stats.compute_capacity;
2219 
2220 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2221 
2222 	orig_src_load = env->src_stats.load;
2223 	orig_dst_load = env->dst_stats.load;
2224 
2225 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2226 
2227 	/* Would this change make things worse? */
2228 	return (imb > old_imb);
2229 }
2230 
2231 /*
2232  * Maximum NUMA importance can be 1998 (2*999);
2233  * SMALLIMP @ 30 would be close to 1998/64.
2234  * Used to deter task migration.
2235  */
2236 #define SMALLIMP	30
2237 
2238 /*
2239  * This checks if the overall compute and NUMA accesses of the system would
2240  * be improved if the source tasks was migrated to the target dst_cpu taking
2241  * into account that it might be best if task running on the dst_cpu should
2242  * be exchanged with the source task
2243  */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2244 static bool task_numa_compare(struct task_numa_env *env,
2245 			      long taskimp, long groupimp, bool maymove)
2246 {
2247 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2248 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2249 	long imp = p_ng ? groupimp : taskimp;
2250 	struct task_struct *cur;
2251 	long src_load, dst_load;
2252 	int dist = env->dist;
2253 	long moveimp = imp;
2254 	long load;
2255 	bool stopsearch = false;
2256 
2257 	if (READ_ONCE(dst_rq->numa_migrate_on))
2258 		return false;
2259 
2260 	rcu_read_lock();
2261 	cur = rcu_dereference(dst_rq->curr);
2262 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2263 		cur = NULL;
2264 
2265 	/*
2266 	 * Because we have preemption enabled we can get migrated around and
2267 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2268 	 */
2269 	if (cur == env->p) {
2270 		stopsearch = true;
2271 		goto unlock;
2272 	}
2273 
2274 	if (!cur) {
2275 		if (maymove && moveimp >= env->best_imp)
2276 			goto assign;
2277 		else
2278 			goto unlock;
2279 	}
2280 
2281 	/* Skip this swap candidate if cannot move to the source cpu. */
2282 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2283 		goto unlock;
2284 
2285 	/*
2286 	 * Skip this swap candidate if it is not moving to its preferred
2287 	 * node and the best task is.
2288 	 */
2289 	if (env->best_task &&
2290 	    env->best_task->numa_preferred_nid == env->src_nid &&
2291 	    cur->numa_preferred_nid != env->src_nid) {
2292 		goto unlock;
2293 	}
2294 
2295 	/*
2296 	 * "imp" is the fault differential for the source task between the
2297 	 * source and destination node. Calculate the total differential for
2298 	 * the source task and potential destination task. The more negative
2299 	 * the value is, the more remote accesses that would be expected to
2300 	 * be incurred if the tasks were swapped.
2301 	 *
2302 	 * If dst and source tasks are in the same NUMA group, or not
2303 	 * in any group then look only at task weights.
2304 	 */
2305 	cur_ng = rcu_dereference(cur->numa_group);
2306 	if (cur_ng == p_ng) {
2307 		/*
2308 		 * Do not swap within a group or between tasks that have
2309 		 * no group if there is spare capacity. Swapping does
2310 		 * not address the load imbalance and helps one task at
2311 		 * the cost of punishing another.
2312 		 */
2313 		if (env->dst_stats.node_type == node_has_spare)
2314 			goto unlock;
2315 
2316 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2317 		      task_weight(cur, env->dst_nid, dist);
2318 		/*
2319 		 * Add some hysteresis to prevent swapping the
2320 		 * tasks within a group over tiny differences.
2321 		 */
2322 		if (cur_ng)
2323 			imp -= imp / 16;
2324 	} else {
2325 		/*
2326 		 * Compare the group weights. If a task is all by itself
2327 		 * (not part of a group), use the task weight instead.
2328 		 */
2329 		if (cur_ng && p_ng)
2330 			imp += group_weight(cur, env->src_nid, dist) -
2331 			       group_weight(cur, env->dst_nid, dist);
2332 		else
2333 			imp += task_weight(cur, env->src_nid, dist) -
2334 			       task_weight(cur, env->dst_nid, dist);
2335 	}
2336 
2337 	/* Discourage picking a task already on its preferred node */
2338 	if (cur->numa_preferred_nid == env->dst_nid)
2339 		imp -= imp / 16;
2340 
2341 	/*
2342 	 * Encourage picking a task that moves to its preferred node.
2343 	 * This potentially makes imp larger than it's maximum of
2344 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2345 	 * case, it does not matter.
2346 	 */
2347 	if (cur->numa_preferred_nid == env->src_nid)
2348 		imp += imp / 8;
2349 
2350 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2351 		imp = moveimp;
2352 		cur = NULL;
2353 		goto assign;
2354 	}
2355 
2356 	/*
2357 	 * Prefer swapping with a task moving to its preferred node over a
2358 	 * task that is not.
2359 	 */
2360 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2361 	    env->best_task->numa_preferred_nid != env->src_nid) {
2362 		goto assign;
2363 	}
2364 
2365 	/*
2366 	 * If the NUMA importance is less than SMALLIMP,
2367 	 * task migration might only result in ping pong
2368 	 * of tasks and also hurt performance due to cache
2369 	 * misses.
2370 	 */
2371 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2372 		goto unlock;
2373 
2374 	/*
2375 	 * In the overloaded case, try and keep the load balanced.
2376 	 */
2377 	load = task_h_load(env->p) - task_h_load(cur);
2378 	if (!load)
2379 		goto assign;
2380 
2381 	dst_load = env->dst_stats.load + load;
2382 	src_load = env->src_stats.load - load;
2383 
2384 	if (load_too_imbalanced(src_load, dst_load, env))
2385 		goto unlock;
2386 
2387 assign:
2388 	/* Evaluate an idle CPU for a task numa move. */
2389 	if (!cur) {
2390 		int cpu = env->dst_stats.idle_cpu;
2391 
2392 		/* Nothing cached so current CPU went idle since the search. */
2393 		if (cpu < 0)
2394 			cpu = env->dst_cpu;
2395 
2396 		/*
2397 		 * If the CPU is no longer truly idle and the previous best CPU
2398 		 * is, keep using it.
2399 		 */
2400 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2401 		    idle_cpu(env->best_cpu)) {
2402 			cpu = env->best_cpu;
2403 		}
2404 
2405 		env->dst_cpu = cpu;
2406 	}
2407 
2408 	task_numa_assign(env, cur, imp);
2409 
2410 	/*
2411 	 * If a move to idle is allowed because there is capacity or load
2412 	 * balance improves then stop the search. While a better swap
2413 	 * candidate may exist, a search is not free.
2414 	 */
2415 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2416 		stopsearch = true;
2417 
2418 	/*
2419 	 * If a swap candidate must be identified and the current best task
2420 	 * moves its preferred node then stop the search.
2421 	 */
2422 	if (!maymove && env->best_task &&
2423 	    env->best_task->numa_preferred_nid == env->src_nid) {
2424 		stopsearch = true;
2425 	}
2426 unlock:
2427 	rcu_read_unlock();
2428 
2429 	return stopsearch;
2430 }
2431 
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2432 static void task_numa_find_cpu(struct task_numa_env *env,
2433 				long taskimp, long groupimp)
2434 {
2435 	bool maymove = false;
2436 	int cpu;
2437 
2438 	/*
2439 	 * If dst node has spare capacity, then check if there is an
2440 	 * imbalance that would be overruled by the load balancer.
2441 	 */
2442 	if (env->dst_stats.node_type == node_has_spare) {
2443 		unsigned int imbalance;
2444 		int src_running, dst_running;
2445 
2446 		/*
2447 		 * Would movement cause an imbalance? Note that if src has
2448 		 * more running tasks that the imbalance is ignored as the
2449 		 * move improves the imbalance from the perspective of the
2450 		 * CPU load balancer.
2451 		 * */
2452 		src_running = env->src_stats.nr_running - 1;
2453 		dst_running = env->dst_stats.nr_running + 1;
2454 		imbalance = max(0, dst_running - src_running);
2455 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2456 						  env->imb_numa_nr);
2457 
2458 		/* Use idle CPU if there is no imbalance */
2459 		if (!imbalance) {
2460 			maymove = true;
2461 			if (env->dst_stats.idle_cpu >= 0) {
2462 				env->dst_cpu = env->dst_stats.idle_cpu;
2463 				task_numa_assign(env, NULL, 0);
2464 				return;
2465 			}
2466 		}
2467 	} else {
2468 		long src_load, dst_load, load;
2469 		/*
2470 		 * If the improvement from just moving env->p direction is better
2471 		 * than swapping tasks around, check if a move is possible.
2472 		 */
2473 		load = task_h_load(env->p);
2474 		dst_load = env->dst_stats.load + load;
2475 		src_load = env->src_stats.load - load;
2476 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2477 	}
2478 
2479 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2480 		/* Skip this CPU if the source task cannot migrate */
2481 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2482 			continue;
2483 
2484 		env->dst_cpu = cpu;
2485 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2486 			break;
2487 	}
2488 }
2489 
task_numa_migrate(struct task_struct * p)2490 static int task_numa_migrate(struct task_struct *p)
2491 {
2492 	struct task_numa_env env = {
2493 		.p = p,
2494 
2495 		.src_cpu = task_cpu(p),
2496 		.src_nid = task_node(p),
2497 
2498 		.imbalance_pct = 112,
2499 
2500 		.best_task = NULL,
2501 		.best_imp = 0,
2502 		.best_cpu = -1,
2503 	};
2504 	unsigned long taskweight, groupweight;
2505 	struct sched_domain *sd;
2506 	long taskimp, groupimp;
2507 	struct numa_group *ng;
2508 	struct rq *best_rq;
2509 	int nid, ret, dist;
2510 
2511 	/*
2512 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2513 	 * imbalance and would be the first to start moving tasks about.
2514 	 *
2515 	 * And we want to avoid any moving of tasks about, as that would create
2516 	 * random movement of tasks -- counter the numa conditions we're trying
2517 	 * to satisfy here.
2518 	 */
2519 	rcu_read_lock();
2520 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2521 	if (sd) {
2522 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2523 		env.imb_numa_nr = sd->imb_numa_nr;
2524 	}
2525 	rcu_read_unlock();
2526 
2527 	/*
2528 	 * Cpusets can break the scheduler domain tree into smaller
2529 	 * balance domains, some of which do not cross NUMA boundaries.
2530 	 * Tasks that are "trapped" in such domains cannot be migrated
2531 	 * elsewhere, so there is no point in (re)trying.
2532 	 */
2533 	if (unlikely(!sd)) {
2534 		sched_setnuma(p, task_node(p));
2535 		return -EINVAL;
2536 	}
2537 
2538 	env.dst_nid = p->numa_preferred_nid;
2539 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2540 	taskweight = task_weight(p, env.src_nid, dist);
2541 	groupweight = group_weight(p, env.src_nid, dist);
2542 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2543 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2544 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2545 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2546 
2547 	/* Try to find a spot on the preferred nid. */
2548 	task_numa_find_cpu(&env, taskimp, groupimp);
2549 
2550 	/*
2551 	 * Look at other nodes in these cases:
2552 	 * - there is no space available on the preferred_nid
2553 	 * - the task is part of a numa_group that is interleaved across
2554 	 *   multiple NUMA nodes; in order to better consolidate the group,
2555 	 *   we need to check other locations.
2556 	 */
2557 	ng = deref_curr_numa_group(p);
2558 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2559 		for_each_node_state(nid, N_CPU) {
2560 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2561 				continue;
2562 
2563 			dist = node_distance(env.src_nid, env.dst_nid);
2564 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2565 						dist != env.dist) {
2566 				taskweight = task_weight(p, env.src_nid, dist);
2567 				groupweight = group_weight(p, env.src_nid, dist);
2568 			}
2569 
2570 			/* Only consider nodes where both task and groups benefit */
2571 			taskimp = task_weight(p, nid, dist) - taskweight;
2572 			groupimp = group_weight(p, nid, dist) - groupweight;
2573 			if (taskimp < 0 && groupimp < 0)
2574 				continue;
2575 
2576 			env.dist = dist;
2577 			env.dst_nid = nid;
2578 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2579 			task_numa_find_cpu(&env, taskimp, groupimp);
2580 		}
2581 	}
2582 
2583 	/*
2584 	 * If the task is part of a workload that spans multiple NUMA nodes,
2585 	 * and is migrating into one of the workload's active nodes, remember
2586 	 * this node as the task's preferred numa node, so the workload can
2587 	 * settle down.
2588 	 * A task that migrated to a second choice node will be better off
2589 	 * trying for a better one later. Do not set the preferred node here.
2590 	 */
2591 	if (ng) {
2592 		if (env.best_cpu == -1)
2593 			nid = env.src_nid;
2594 		else
2595 			nid = cpu_to_node(env.best_cpu);
2596 
2597 		if (nid != p->numa_preferred_nid)
2598 			sched_setnuma(p, nid);
2599 	}
2600 
2601 	/* No better CPU than the current one was found. */
2602 	if (env.best_cpu == -1) {
2603 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2604 		return -EAGAIN;
2605 	}
2606 
2607 	best_rq = cpu_rq(env.best_cpu);
2608 	if (env.best_task == NULL) {
2609 		ret = migrate_task_to(p, env.best_cpu);
2610 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2611 		if (ret != 0)
2612 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2613 		return ret;
2614 	}
2615 
2616 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2617 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2618 
2619 	if (ret != 0)
2620 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2621 	put_task_struct(env.best_task);
2622 	return ret;
2623 }
2624 
2625 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2626 static void numa_migrate_preferred(struct task_struct *p)
2627 {
2628 	unsigned long interval = HZ;
2629 
2630 	/* This task has no NUMA fault statistics yet */
2631 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2632 		return;
2633 
2634 	/* Periodically retry migrating the task to the preferred node */
2635 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2636 	p->numa_migrate_retry = jiffies + interval;
2637 
2638 	/* Success if task is already running on preferred CPU */
2639 	if (task_node(p) == p->numa_preferred_nid)
2640 		return;
2641 
2642 	/* Otherwise, try migrate to a CPU on the preferred node */
2643 	task_numa_migrate(p);
2644 }
2645 
2646 /*
2647  * Find out how many nodes the workload is actively running on. Do this by
2648  * tracking the nodes from which NUMA hinting faults are triggered. This can
2649  * be different from the set of nodes where the workload's memory is currently
2650  * located.
2651  */
numa_group_count_active_nodes(struct numa_group * numa_group)2652 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2653 {
2654 	unsigned long faults, max_faults = 0;
2655 	int nid, active_nodes = 0;
2656 
2657 	for_each_node_state(nid, N_CPU) {
2658 		faults = group_faults_cpu(numa_group, nid);
2659 		if (faults > max_faults)
2660 			max_faults = faults;
2661 	}
2662 
2663 	for_each_node_state(nid, N_CPU) {
2664 		faults = group_faults_cpu(numa_group, nid);
2665 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2666 			active_nodes++;
2667 	}
2668 
2669 	numa_group->max_faults_cpu = max_faults;
2670 	numa_group->active_nodes = active_nodes;
2671 }
2672 
2673 /*
2674  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2675  * increments. The more local the fault statistics are, the higher the scan
2676  * period will be for the next scan window. If local/(local+remote) ratio is
2677  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2678  * the scan period will decrease. Aim for 70% local accesses.
2679  */
2680 #define NUMA_PERIOD_SLOTS 10
2681 #define NUMA_PERIOD_THRESHOLD 7
2682 
2683 /*
2684  * Increase the scan period (slow down scanning) if the majority of
2685  * our memory is already on our local node, or if the majority of
2686  * the page accesses are shared with other processes.
2687  * Otherwise, decrease the scan period.
2688  */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2689 static void update_task_scan_period(struct task_struct *p,
2690 			unsigned long shared, unsigned long private)
2691 {
2692 	unsigned int period_slot;
2693 	int lr_ratio, ps_ratio;
2694 	int diff;
2695 
2696 	unsigned long remote = p->numa_faults_locality[0];
2697 	unsigned long local = p->numa_faults_locality[1];
2698 
2699 	/*
2700 	 * If there were no record hinting faults then either the task is
2701 	 * completely idle or all activity is in areas that are not of interest
2702 	 * to automatic numa balancing. Related to that, if there were failed
2703 	 * migration then it implies we are migrating too quickly or the local
2704 	 * node is overloaded. In either case, scan slower
2705 	 */
2706 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2707 		p->numa_scan_period = min(p->numa_scan_period_max,
2708 			p->numa_scan_period << 1);
2709 
2710 		p->mm->numa_next_scan = jiffies +
2711 			msecs_to_jiffies(p->numa_scan_period);
2712 
2713 		return;
2714 	}
2715 
2716 	/*
2717 	 * Prepare to scale scan period relative to the current period.
2718 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2719 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2720 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2721 	 */
2722 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2723 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2724 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2725 
2726 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2727 		/*
2728 		 * Most memory accesses are local. There is no need to
2729 		 * do fast NUMA scanning, since memory is already local.
2730 		 */
2731 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2732 		if (!slot)
2733 			slot = 1;
2734 		diff = slot * period_slot;
2735 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2736 		/*
2737 		 * Most memory accesses are shared with other tasks.
2738 		 * There is no point in continuing fast NUMA scanning,
2739 		 * since other tasks may just move the memory elsewhere.
2740 		 */
2741 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2742 		if (!slot)
2743 			slot = 1;
2744 		diff = slot * period_slot;
2745 	} else {
2746 		/*
2747 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2748 		 * yet they are not on the local NUMA node. Speed up
2749 		 * NUMA scanning to get the memory moved over.
2750 		 */
2751 		int ratio = max(lr_ratio, ps_ratio);
2752 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2753 	}
2754 
2755 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2756 			task_scan_min(p), task_scan_max(p));
2757 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2758 }
2759 
2760 /*
2761  * Get the fraction of time the task has been running since the last
2762  * NUMA placement cycle. The scheduler keeps similar statistics, but
2763  * decays those on a 32ms period, which is orders of magnitude off
2764  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2765  * stats only if the task is so new there are no NUMA statistics yet.
2766  */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2767 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2768 {
2769 	u64 runtime, delta, now;
2770 	/* Use the start of this time slice to avoid calculations. */
2771 	now = p->se.exec_start;
2772 	runtime = p->se.sum_exec_runtime;
2773 
2774 	if (p->last_task_numa_placement) {
2775 		delta = runtime - p->last_sum_exec_runtime;
2776 		*period = now - p->last_task_numa_placement;
2777 
2778 		/* Avoid time going backwards, prevent potential divide error: */
2779 		if (unlikely((s64)*period < 0))
2780 			*period = 0;
2781 	} else {
2782 		delta = p->se.avg.load_sum;
2783 		*period = LOAD_AVG_MAX;
2784 	}
2785 
2786 	p->last_sum_exec_runtime = runtime;
2787 	p->last_task_numa_placement = now;
2788 
2789 	return delta;
2790 }
2791 
2792 /*
2793  * Determine the preferred nid for a task in a numa_group. This needs to
2794  * be done in a way that produces consistent results with group_weight,
2795  * otherwise workloads might not converge.
2796  */
preferred_group_nid(struct task_struct * p,int nid)2797 static int preferred_group_nid(struct task_struct *p, int nid)
2798 {
2799 	nodemask_t nodes;
2800 	int dist;
2801 
2802 	/* Direct connections between all NUMA nodes. */
2803 	if (sched_numa_topology_type == NUMA_DIRECT)
2804 		return nid;
2805 
2806 	/*
2807 	 * On a system with glueless mesh NUMA topology, group_weight
2808 	 * scores nodes according to the number of NUMA hinting faults on
2809 	 * both the node itself, and on nearby nodes.
2810 	 */
2811 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2812 		unsigned long score, max_score = 0;
2813 		int node, max_node = nid;
2814 
2815 		dist = sched_max_numa_distance;
2816 
2817 		for_each_node_state(node, N_CPU) {
2818 			score = group_weight(p, node, dist);
2819 			if (score > max_score) {
2820 				max_score = score;
2821 				max_node = node;
2822 			}
2823 		}
2824 		return max_node;
2825 	}
2826 
2827 	/*
2828 	 * Finding the preferred nid in a system with NUMA backplane
2829 	 * interconnect topology is more involved. The goal is to locate
2830 	 * tasks from numa_groups near each other in the system, and
2831 	 * untangle workloads from different sides of the system. This requires
2832 	 * searching down the hierarchy of node groups, recursively searching
2833 	 * inside the highest scoring group of nodes. The nodemask tricks
2834 	 * keep the complexity of the search down.
2835 	 */
2836 	nodes = node_states[N_CPU];
2837 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2838 		unsigned long max_faults = 0;
2839 		nodemask_t max_group = NODE_MASK_NONE;
2840 		int a, b;
2841 
2842 		/* Are there nodes at this distance from each other? */
2843 		if (!find_numa_distance(dist))
2844 			continue;
2845 
2846 		for_each_node_mask(a, nodes) {
2847 			unsigned long faults = 0;
2848 			nodemask_t this_group;
2849 			nodes_clear(this_group);
2850 
2851 			/* Sum group's NUMA faults; includes a==b case. */
2852 			for_each_node_mask(b, nodes) {
2853 				if (node_distance(a, b) < dist) {
2854 					faults += group_faults(p, b);
2855 					node_set(b, this_group);
2856 					node_clear(b, nodes);
2857 				}
2858 			}
2859 
2860 			/* Remember the top group. */
2861 			if (faults > max_faults) {
2862 				max_faults = faults;
2863 				max_group = this_group;
2864 				/*
2865 				 * subtle: at the smallest distance there is
2866 				 * just one node left in each "group", the
2867 				 * winner is the preferred nid.
2868 				 */
2869 				nid = a;
2870 			}
2871 		}
2872 		/* Next round, evaluate the nodes within max_group. */
2873 		if (!max_faults)
2874 			break;
2875 		nodes = max_group;
2876 	}
2877 	return nid;
2878 }
2879 
task_numa_placement(struct task_struct * p)2880 static void task_numa_placement(struct task_struct *p)
2881 {
2882 	int seq, nid, max_nid = NUMA_NO_NODE;
2883 	unsigned long max_faults = 0;
2884 	unsigned long fault_types[2] = { 0, 0 };
2885 	unsigned long total_faults;
2886 	u64 runtime, period;
2887 	spinlock_t *group_lock = NULL;
2888 	struct numa_group *ng;
2889 
2890 	/*
2891 	 * The p->mm->numa_scan_seq field gets updated without
2892 	 * exclusive access. Use READ_ONCE() here to ensure
2893 	 * that the field is read in a single access:
2894 	 */
2895 	seq = READ_ONCE(p->mm->numa_scan_seq);
2896 	if (p->numa_scan_seq == seq)
2897 		return;
2898 	p->numa_scan_seq = seq;
2899 	p->numa_scan_period_max = task_scan_max(p);
2900 
2901 	total_faults = p->numa_faults_locality[0] +
2902 		       p->numa_faults_locality[1];
2903 	runtime = numa_get_avg_runtime(p, &period);
2904 
2905 	/* If the task is part of a group prevent parallel updates to group stats */
2906 	ng = deref_curr_numa_group(p);
2907 	if (ng) {
2908 		group_lock = &ng->lock;
2909 		spin_lock_irq(group_lock);
2910 	}
2911 
2912 	/* Find the node with the highest number of faults */
2913 	for_each_online_node(nid) {
2914 		/* Keep track of the offsets in numa_faults array */
2915 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2916 		unsigned long faults = 0, group_faults = 0;
2917 		int priv;
2918 
2919 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2920 			long diff, f_diff, f_weight;
2921 
2922 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2923 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2924 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2925 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2926 
2927 			/* Decay existing window, copy faults since last scan */
2928 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2929 			fault_types[priv] += p->numa_faults[membuf_idx];
2930 			p->numa_faults[membuf_idx] = 0;
2931 
2932 			/*
2933 			 * Normalize the faults_from, so all tasks in a group
2934 			 * count according to CPU use, instead of by the raw
2935 			 * number of faults. Tasks with little runtime have
2936 			 * little over-all impact on throughput, and thus their
2937 			 * faults are less important.
2938 			 */
2939 			f_weight = div64_u64(runtime << 16, period + 1);
2940 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2941 				   (total_faults + 1);
2942 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2943 			p->numa_faults[cpubuf_idx] = 0;
2944 
2945 			p->numa_faults[mem_idx] += diff;
2946 			p->numa_faults[cpu_idx] += f_diff;
2947 			faults += p->numa_faults[mem_idx];
2948 			p->total_numa_faults += diff;
2949 			if (ng) {
2950 				/*
2951 				 * safe because we can only change our own group
2952 				 *
2953 				 * mem_idx represents the offset for a given
2954 				 * nid and priv in a specific region because it
2955 				 * is at the beginning of the numa_faults array.
2956 				 */
2957 				ng->faults[mem_idx] += diff;
2958 				ng->faults[cpu_idx] += f_diff;
2959 				ng->total_faults += diff;
2960 				group_faults += ng->faults[mem_idx];
2961 			}
2962 		}
2963 
2964 		if (!ng) {
2965 			if (faults > max_faults) {
2966 				max_faults = faults;
2967 				max_nid = nid;
2968 			}
2969 		} else if (group_faults > max_faults) {
2970 			max_faults = group_faults;
2971 			max_nid = nid;
2972 		}
2973 	}
2974 
2975 	/* Cannot migrate task to CPU-less node */
2976 	max_nid = numa_nearest_node(max_nid, N_CPU);
2977 
2978 	if (ng) {
2979 		numa_group_count_active_nodes(ng);
2980 		spin_unlock_irq(group_lock);
2981 		max_nid = preferred_group_nid(p, max_nid);
2982 	}
2983 
2984 	if (max_faults) {
2985 		/* Set the new preferred node */
2986 		if (max_nid != p->numa_preferred_nid)
2987 			sched_setnuma(p, max_nid);
2988 	}
2989 
2990 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2991 }
2992 
get_numa_group(struct numa_group * grp)2993 static inline int get_numa_group(struct numa_group *grp)
2994 {
2995 	return refcount_inc_not_zero(&grp->refcount);
2996 }
2997 
put_numa_group(struct numa_group * grp)2998 static inline void put_numa_group(struct numa_group *grp)
2999 {
3000 	if (refcount_dec_and_test(&grp->refcount))
3001 		kfree_rcu(grp, rcu);
3002 }
3003 
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)3004 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3005 			int *priv)
3006 {
3007 	struct numa_group *grp, *my_grp;
3008 	struct task_struct *tsk;
3009 	bool join = false;
3010 	int cpu = cpupid_to_cpu(cpupid);
3011 	int i;
3012 
3013 	if (unlikely(!deref_curr_numa_group(p))) {
3014 		unsigned int size = sizeof(struct numa_group) +
3015 				    NR_NUMA_HINT_FAULT_STATS *
3016 				    nr_node_ids * sizeof(unsigned long);
3017 
3018 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3019 		if (!grp)
3020 			return;
3021 
3022 		refcount_set(&grp->refcount, 1);
3023 		grp->active_nodes = 1;
3024 		grp->max_faults_cpu = 0;
3025 		spin_lock_init(&grp->lock);
3026 		grp->gid = p->pid;
3027 
3028 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3029 			grp->faults[i] = p->numa_faults[i];
3030 
3031 		grp->total_faults = p->total_numa_faults;
3032 
3033 		grp->nr_tasks++;
3034 		rcu_assign_pointer(p->numa_group, grp);
3035 	}
3036 
3037 	rcu_read_lock();
3038 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3039 
3040 	if (!cpupid_match_pid(tsk, cpupid))
3041 		goto no_join;
3042 
3043 	grp = rcu_dereference(tsk->numa_group);
3044 	if (!grp)
3045 		goto no_join;
3046 
3047 	my_grp = deref_curr_numa_group(p);
3048 	if (grp == my_grp)
3049 		goto no_join;
3050 
3051 	/*
3052 	 * Only join the other group if its bigger; if we're the bigger group,
3053 	 * the other task will join us.
3054 	 */
3055 	if (my_grp->nr_tasks > grp->nr_tasks)
3056 		goto no_join;
3057 
3058 	/*
3059 	 * Tie-break on the grp address.
3060 	 */
3061 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3062 		goto no_join;
3063 
3064 	/* Always join threads in the same process. */
3065 	if (tsk->mm == current->mm)
3066 		join = true;
3067 
3068 	/* Simple filter to avoid false positives due to PID collisions */
3069 	if (flags & TNF_SHARED)
3070 		join = true;
3071 
3072 	/* Update priv based on whether false sharing was detected */
3073 	*priv = !join;
3074 
3075 	if (join && !get_numa_group(grp))
3076 		goto no_join;
3077 
3078 	rcu_read_unlock();
3079 
3080 	if (!join)
3081 		return;
3082 
3083 	WARN_ON_ONCE(irqs_disabled());
3084 	double_lock_irq(&my_grp->lock, &grp->lock);
3085 
3086 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3087 		my_grp->faults[i] -= p->numa_faults[i];
3088 		grp->faults[i] += p->numa_faults[i];
3089 	}
3090 	my_grp->total_faults -= p->total_numa_faults;
3091 	grp->total_faults += p->total_numa_faults;
3092 
3093 	my_grp->nr_tasks--;
3094 	grp->nr_tasks++;
3095 
3096 	spin_unlock(&my_grp->lock);
3097 	spin_unlock_irq(&grp->lock);
3098 
3099 	rcu_assign_pointer(p->numa_group, grp);
3100 
3101 	put_numa_group(my_grp);
3102 	return;
3103 
3104 no_join:
3105 	rcu_read_unlock();
3106 	return;
3107 }
3108 
3109 /*
3110  * Get rid of NUMA statistics associated with a task (either current or dead).
3111  * If @final is set, the task is dead and has reached refcount zero, so we can
3112  * safely free all relevant data structures. Otherwise, there might be
3113  * concurrent reads from places like load balancing and procfs, and we should
3114  * reset the data back to default state without freeing ->numa_faults.
3115  */
task_numa_free(struct task_struct * p,bool final)3116 void task_numa_free(struct task_struct *p, bool final)
3117 {
3118 	/* safe: p either is current or is being freed by current */
3119 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3120 	unsigned long *numa_faults = p->numa_faults;
3121 	unsigned long flags;
3122 	int i;
3123 
3124 	if (!numa_faults)
3125 		return;
3126 
3127 	if (grp) {
3128 		spin_lock_irqsave(&grp->lock, flags);
3129 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3130 			grp->faults[i] -= p->numa_faults[i];
3131 		grp->total_faults -= p->total_numa_faults;
3132 
3133 		grp->nr_tasks--;
3134 		spin_unlock_irqrestore(&grp->lock, flags);
3135 		RCU_INIT_POINTER(p->numa_group, NULL);
3136 		put_numa_group(grp);
3137 	}
3138 
3139 	if (final) {
3140 		p->numa_faults = NULL;
3141 		kfree(numa_faults);
3142 	} else {
3143 		p->total_numa_faults = 0;
3144 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3145 			numa_faults[i] = 0;
3146 	}
3147 }
3148 
3149 /*
3150  * Got a PROT_NONE fault for a page on @node.
3151  */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3152 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3153 {
3154 	struct task_struct *p = current;
3155 	bool migrated = flags & TNF_MIGRATED;
3156 	int cpu_node = task_node(current);
3157 	int local = !!(flags & TNF_FAULT_LOCAL);
3158 	struct numa_group *ng;
3159 	int priv;
3160 
3161 	if (!static_branch_likely(&sched_numa_balancing))
3162 		return;
3163 
3164 	/* for example, ksmd faulting in a user's mm */
3165 	if (!p->mm)
3166 		return;
3167 
3168 	/*
3169 	 * NUMA faults statistics are unnecessary for the slow memory
3170 	 * node for memory tiering mode.
3171 	 */
3172 	if (!node_is_toptier(mem_node) &&
3173 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3174 	     !cpupid_valid(last_cpupid)))
3175 		return;
3176 
3177 	/* Allocate buffer to track faults on a per-node basis */
3178 	if (unlikely(!p->numa_faults)) {
3179 		int size = sizeof(*p->numa_faults) *
3180 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3181 
3182 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3183 		if (!p->numa_faults)
3184 			return;
3185 
3186 		p->total_numa_faults = 0;
3187 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3188 	}
3189 
3190 	/*
3191 	 * First accesses are treated as private, otherwise consider accesses
3192 	 * to be private if the accessing pid has not changed
3193 	 */
3194 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3195 		priv = 1;
3196 	} else {
3197 		priv = cpupid_match_pid(p, last_cpupid);
3198 		if (!priv && !(flags & TNF_NO_GROUP))
3199 			task_numa_group(p, last_cpupid, flags, &priv);
3200 	}
3201 
3202 	/*
3203 	 * If a workload spans multiple NUMA nodes, a shared fault that
3204 	 * occurs wholly within the set of nodes that the workload is
3205 	 * actively using should be counted as local. This allows the
3206 	 * scan rate to slow down when a workload has settled down.
3207 	 */
3208 	ng = deref_curr_numa_group(p);
3209 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3210 				numa_is_active_node(cpu_node, ng) &&
3211 				numa_is_active_node(mem_node, ng))
3212 		local = 1;
3213 
3214 	/*
3215 	 * Retry to migrate task to preferred node periodically, in case it
3216 	 * previously failed, or the scheduler moved us.
3217 	 */
3218 	if (time_after(jiffies, p->numa_migrate_retry)) {
3219 		task_numa_placement(p);
3220 		numa_migrate_preferred(p);
3221 	}
3222 
3223 	if (migrated)
3224 		p->numa_pages_migrated += pages;
3225 	if (flags & TNF_MIGRATE_FAIL)
3226 		p->numa_faults_locality[2] += pages;
3227 
3228 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3229 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3230 	p->numa_faults_locality[local] += pages;
3231 }
3232 
reset_ptenuma_scan(struct task_struct * p)3233 static void reset_ptenuma_scan(struct task_struct *p)
3234 {
3235 	/*
3236 	 * We only did a read acquisition of the mmap sem, so
3237 	 * p->mm->numa_scan_seq is written to without exclusive access
3238 	 * and the update is not guaranteed to be atomic. That's not
3239 	 * much of an issue though, since this is just used for
3240 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3241 	 * expensive, to avoid any form of compiler optimizations:
3242 	 */
3243 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3244 	p->mm->numa_scan_offset = 0;
3245 }
3246 
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3247 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3248 {
3249 	unsigned long pids;
3250 	/*
3251 	 * Allow unconditional access first two times, so that all the (pages)
3252 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3253 	 * This is also done to avoid any side effect of task scanning
3254 	 * amplifying the unfairness of disjoint set of VMAs' access.
3255 	 */
3256 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3257 		return true;
3258 
3259 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3260 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3261 		return true;
3262 
3263 	/*
3264 	 * Complete a scan that has already started regardless of PID access, or
3265 	 * some VMAs may never be scanned in multi-threaded applications:
3266 	 */
3267 	if (mm->numa_scan_offset > vma->vm_start) {
3268 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3269 		return true;
3270 	}
3271 
3272 	/*
3273 	 * This vma has not been accessed for a while, and if the number
3274 	 * the threads in the same process is low, which means no other
3275 	 * threads can help scan this vma, force a vma scan.
3276 	 */
3277 	if (READ_ONCE(mm->numa_scan_seq) >
3278 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3279 		return true;
3280 
3281 	return false;
3282 }
3283 
3284 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3285 
3286 /*
3287  * The expensive part of numa migration is done from task_work context.
3288  * Triggered from task_tick_numa().
3289  */
task_numa_work(struct callback_head * work)3290 static void task_numa_work(struct callback_head *work)
3291 {
3292 	unsigned long migrate, next_scan, now = jiffies;
3293 	struct task_struct *p = current;
3294 	struct mm_struct *mm = p->mm;
3295 	u64 runtime = p->se.sum_exec_runtime;
3296 	struct vm_area_struct *vma;
3297 	unsigned long start, end;
3298 	unsigned long nr_pte_updates = 0;
3299 	long pages, virtpages;
3300 	struct vma_iterator vmi;
3301 	bool vma_pids_skipped;
3302 	bool vma_pids_forced = false;
3303 
3304 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3305 
3306 	work->next = work;
3307 	/*
3308 	 * Who cares about NUMA placement when they're dying.
3309 	 *
3310 	 * NOTE: make sure not to dereference p->mm before this check,
3311 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3312 	 * without p->mm even though we still had it when we enqueued this
3313 	 * work.
3314 	 */
3315 	if (p->flags & PF_EXITING)
3316 		return;
3317 
3318 	if (!mm->numa_next_scan) {
3319 		mm->numa_next_scan = now +
3320 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3321 	}
3322 
3323 	/*
3324 	 * Enforce maximal scan/migration frequency..
3325 	 */
3326 	migrate = mm->numa_next_scan;
3327 	if (time_before(now, migrate))
3328 		return;
3329 
3330 	if (p->numa_scan_period == 0) {
3331 		p->numa_scan_period_max = task_scan_max(p);
3332 		p->numa_scan_period = task_scan_start(p);
3333 	}
3334 
3335 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3336 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3337 		return;
3338 
3339 	/*
3340 	 * Delay this task enough that another task of this mm will likely win
3341 	 * the next time around.
3342 	 */
3343 	p->node_stamp += 2 * TICK_NSEC;
3344 
3345 	pages = sysctl_numa_balancing_scan_size;
3346 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3347 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3348 	if (!pages)
3349 		return;
3350 
3351 
3352 	if (!mmap_read_trylock(mm))
3353 		return;
3354 
3355 	/*
3356 	 * VMAs are skipped if the current PID has not trapped a fault within
3357 	 * the VMA recently. Allow scanning to be forced if there is no
3358 	 * suitable VMA remaining.
3359 	 */
3360 	vma_pids_skipped = false;
3361 
3362 retry_pids:
3363 	start = mm->numa_scan_offset;
3364 	vma_iter_init(&vmi, mm, start);
3365 	vma = vma_next(&vmi);
3366 	if (!vma) {
3367 		reset_ptenuma_scan(p);
3368 		start = 0;
3369 		vma_iter_set(&vmi, start);
3370 		vma = vma_next(&vmi);
3371 	}
3372 
3373 	for (; vma; vma = vma_next(&vmi)) {
3374 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3375 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3376 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3377 			continue;
3378 		}
3379 
3380 		/*
3381 		 * Shared library pages mapped by multiple processes are not
3382 		 * migrated as it is expected they are cache replicated. Avoid
3383 		 * hinting faults in read-only file-backed mappings or the vDSO
3384 		 * as migrating the pages will be of marginal benefit.
3385 		 */
3386 		if (!vma->vm_mm ||
3387 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3388 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3389 			continue;
3390 		}
3391 
3392 		/*
3393 		 * Skip inaccessible VMAs to avoid any confusion between
3394 		 * PROT_NONE and NUMA hinting PTEs
3395 		 */
3396 		if (!vma_is_accessible(vma)) {
3397 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3398 			continue;
3399 		}
3400 
3401 		/* Initialise new per-VMA NUMAB state. */
3402 		if (!vma->numab_state) {
3403 			struct vma_numab_state *ptr;
3404 
3405 			ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3406 			if (!ptr)
3407 				continue;
3408 
3409 			if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3410 				kfree(ptr);
3411 				continue;
3412 			}
3413 
3414 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3415 
3416 			vma->numab_state->next_scan = now +
3417 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3418 
3419 			/* Reset happens after 4 times scan delay of scan start */
3420 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3421 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3422 
3423 			/*
3424 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3425 			 * to prevent VMAs being skipped prematurely on the
3426 			 * first scan:
3427 			 */
3428 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3429 		}
3430 
3431 		/*
3432 		 * Scanning the VMAs of short lived tasks add more overhead. So
3433 		 * delay the scan for new VMAs.
3434 		 */
3435 		if (mm->numa_scan_seq && time_before(jiffies,
3436 						vma->numab_state->next_scan)) {
3437 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3438 			continue;
3439 		}
3440 
3441 		/* RESET access PIDs regularly for old VMAs. */
3442 		if (mm->numa_scan_seq &&
3443 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3444 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3445 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3446 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3447 			vma->numab_state->pids_active[1] = 0;
3448 		}
3449 
3450 		/* Do not rescan VMAs twice within the same sequence. */
3451 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3452 			mm->numa_scan_offset = vma->vm_end;
3453 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3454 			continue;
3455 		}
3456 
3457 		/*
3458 		 * Do not scan the VMA if task has not accessed it, unless no other
3459 		 * VMA candidate exists.
3460 		 */
3461 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3462 			vma_pids_skipped = true;
3463 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3464 			continue;
3465 		}
3466 
3467 		do {
3468 			start = max(start, vma->vm_start);
3469 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3470 			end = min(end, vma->vm_end);
3471 			nr_pte_updates = change_prot_numa(vma, start, end);
3472 
3473 			/*
3474 			 * Try to scan sysctl_numa_balancing_size worth of
3475 			 * hpages that have at least one present PTE that
3476 			 * is not already PTE-numa. If the VMA contains
3477 			 * areas that are unused or already full of prot_numa
3478 			 * PTEs, scan up to virtpages, to skip through those
3479 			 * areas faster.
3480 			 */
3481 			if (nr_pte_updates)
3482 				pages -= (end - start) >> PAGE_SHIFT;
3483 			virtpages -= (end - start) >> PAGE_SHIFT;
3484 
3485 			start = end;
3486 			if (pages <= 0 || virtpages <= 0)
3487 				goto out;
3488 
3489 			cond_resched();
3490 		} while (end != vma->vm_end);
3491 
3492 		/* VMA scan is complete, do not scan until next sequence. */
3493 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3494 
3495 		/*
3496 		 * Only force scan within one VMA at a time, to limit the
3497 		 * cost of scanning a potentially uninteresting VMA.
3498 		 */
3499 		if (vma_pids_forced)
3500 			break;
3501 	}
3502 
3503 	/*
3504 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3505 	 * not accessing the VMA previously, then force a scan to ensure
3506 	 * forward progress:
3507 	 */
3508 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3509 		vma_pids_forced = true;
3510 		goto retry_pids;
3511 	}
3512 
3513 out:
3514 	/*
3515 	 * It is possible to reach the end of the VMA list but the last few
3516 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3517 	 * would find the !migratable VMA on the next scan but not reset the
3518 	 * scanner to the start so check it now.
3519 	 */
3520 	if (vma)
3521 		mm->numa_scan_offset = start;
3522 	else
3523 		reset_ptenuma_scan(p);
3524 	mmap_read_unlock(mm);
3525 
3526 	/*
3527 	 * Make sure tasks use at least 32x as much time to run other code
3528 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3529 	 * Usually update_task_scan_period slows down scanning enough; on an
3530 	 * overloaded system we need to limit overhead on a per task basis.
3531 	 */
3532 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3533 		u64 diff = p->se.sum_exec_runtime - runtime;
3534 		p->node_stamp += 32 * diff;
3535 	}
3536 }
3537 
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3538 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3539 {
3540 	int mm_users = 0;
3541 	struct mm_struct *mm = p->mm;
3542 
3543 	if (mm) {
3544 		mm_users = atomic_read(&mm->mm_users);
3545 		if (mm_users == 1) {
3546 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3547 			mm->numa_scan_seq = 0;
3548 		}
3549 	}
3550 	p->node_stamp			= 0;
3551 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3552 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3553 	p->numa_migrate_retry		= 0;
3554 	/* Protect against double add, see task_tick_numa and task_numa_work */
3555 	p->numa_work.next		= &p->numa_work;
3556 	p->numa_faults			= NULL;
3557 	p->numa_pages_migrated		= 0;
3558 	p->total_numa_faults		= 0;
3559 	RCU_INIT_POINTER(p->numa_group, NULL);
3560 	p->last_task_numa_placement	= 0;
3561 	p->last_sum_exec_runtime	= 0;
3562 
3563 	init_task_work(&p->numa_work, task_numa_work);
3564 
3565 	/* New address space, reset the preferred nid */
3566 	if (!(clone_flags & CLONE_VM)) {
3567 		p->numa_preferred_nid = NUMA_NO_NODE;
3568 		return;
3569 	}
3570 
3571 	/*
3572 	 * New thread, keep existing numa_preferred_nid which should be copied
3573 	 * already by arch_dup_task_struct but stagger when scans start.
3574 	 */
3575 	if (mm) {
3576 		unsigned int delay;
3577 
3578 		delay = min_t(unsigned int, task_scan_max(current),
3579 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3580 		delay += 2 * TICK_NSEC;
3581 		p->node_stamp = delay;
3582 	}
3583 }
3584 
3585 /*
3586  * Drive the periodic memory faults..
3587  */
task_tick_numa(struct rq * rq,struct task_struct * curr)3588 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3589 {
3590 	struct callback_head *work = &curr->numa_work;
3591 	u64 period, now;
3592 
3593 	/*
3594 	 * We don't care about NUMA placement if we don't have memory.
3595 	 */
3596 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3597 		return;
3598 
3599 	/*
3600 	 * Using runtime rather than walltime has the dual advantage that
3601 	 * we (mostly) drive the selection from busy threads and that the
3602 	 * task needs to have done some actual work before we bother with
3603 	 * NUMA placement.
3604 	 */
3605 	now = curr->se.sum_exec_runtime;
3606 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3607 
3608 	if (now > curr->node_stamp + period) {
3609 		if (!curr->node_stamp)
3610 			curr->numa_scan_period = task_scan_start(curr);
3611 		curr->node_stamp += period;
3612 
3613 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3614 			task_work_add(curr, work, TWA_RESUME);
3615 	}
3616 }
3617 
update_scan_period(struct task_struct * p,int new_cpu)3618 static void update_scan_period(struct task_struct *p, int new_cpu)
3619 {
3620 	int src_nid = cpu_to_node(task_cpu(p));
3621 	int dst_nid = cpu_to_node(new_cpu);
3622 
3623 	if (!static_branch_likely(&sched_numa_balancing))
3624 		return;
3625 
3626 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3627 		return;
3628 
3629 	if (src_nid == dst_nid)
3630 		return;
3631 
3632 	/*
3633 	 * Allow resets if faults have been trapped before one scan
3634 	 * has completed. This is most likely due to a new task that
3635 	 * is pulled cross-node due to wakeups or load balancing.
3636 	 */
3637 	if (p->numa_scan_seq) {
3638 		/*
3639 		 * Avoid scan adjustments if moving to the preferred
3640 		 * node or if the task was not previously running on
3641 		 * the preferred node.
3642 		 */
3643 		if (dst_nid == p->numa_preferred_nid ||
3644 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3645 			src_nid != p->numa_preferred_nid))
3646 			return;
3647 	}
3648 
3649 	p->numa_scan_period = task_scan_start(p);
3650 }
3651 
3652 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3653 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3654 {
3655 }
3656 
account_numa_enqueue(struct rq * rq,struct task_struct * p)3657 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3658 {
3659 }
3660 
account_numa_dequeue(struct rq * rq,struct task_struct * p)3661 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3662 {
3663 }
3664 
update_scan_period(struct task_struct * p,int new_cpu)3665 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3666 {
3667 }
3668 
3669 #endif /* CONFIG_NUMA_BALANCING */
3670 
3671 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3672 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3673 {
3674 	update_load_add(&cfs_rq->load, se->load.weight);
3675 #ifdef CONFIG_SMP
3676 	if (entity_is_task(se)) {
3677 		struct rq *rq = rq_of(cfs_rq);
3678 
3679 		account_numa_enqueue(rq, task_of(se));
3680 		list_add(&se->group_node, &rq->cfs_tasks);
3681 	}
3682 #endif
3683 	cfs_rq->nr_queued++;
3684 }
3685 
3686 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3687 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3688 {
3689 	update_load_sub(&cfs_rq->load, se->load.weight);
3690 #ifdef CONFIG_SMP
3691 	if (entity_is_task(se)) {
3692 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3693 		list_del_init(&se->group_node);
3694 	}
3695 #endif
3696 	cfs_rq->nr_queued--;
3697 }
3698 
3699 /*
3700  * Signed add and clamp on underflow.
3701  *
3702  * Explicitly do a load-store to ensure the intermediate value never hits
3703  * memory. This allows lockless observations without ever seeing the negative
3704  * values.
3705  */
3706 #define add_positive(_ptr, _val) do {                           \
3707 	typeof(_ptr) ptr = (_ptr);                              \
3708 	typeof(_val) val = (_val);                              \
3709 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3710 								\
3711 	res = var + val;                                        \
3712 								\
3713 	if (val < 0 && res > var)                               \
3714 		res = 0;                                        \
3715 								\
3716 	WRITE_ONCE(*ptr, res);                                  \
3717 } while (0)
3718 
3719 /*
3720  * Unsigned subtract and clamp on underflow.
3721  *
3722  * Explicitly do a load-store to ensure the intermediate value never hits
3723  * memory. This allows lockless observations without ever seeing the negative
3724  * values.
3725  */
3726 #define sub_positive(_ptr, _val) do {				\
3727 	typeof(_ptr) ptr = (_ptr);				\
3728 	typeof(*ptr) val = (_val);				\
3729 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3730 	res = var - val;					\
3731 	if (res > var)						\
3732 		res = 0;					\
3733 	WRITE_ONCE(*ptr, res);					\
3734 } while (0)
3735 
3736 /*
3737  * Remove and clamp on negative, from a local variable.
3738  *
3739  * A variant of sub_positive(), which does not use explicit load-store
3740  * and is thus optimized for local variable updates.
3741  */
3742 #define lsub_positive(_ptr, _val) do {				\
3743 	typeof(_ptr) ptr = (_ptr);				\
3744 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3745 } while (0)
3746 
3747 #ifdef CONFIG_SMP
3748 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3749 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3750 {
3751 	cfs_rq->avg.load_avg += se->avg.load_avg;
3752 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3753 }
3754 
3755 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3756 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3757 {
3758 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3759 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3760 	/* See update_cfs_rq_load_avg() */
3761 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3762 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3763 }
3764 #else
3765 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3766 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3767 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3768 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3769 #endif
3770 
3771 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags);
3772 
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3773 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3774 			    unsigned long weight)
3775 {
3776 	bool curr = cfs_rq->curr == se;
3777 
3778 	if (se->on_rq) {
3779 		/* commit outstanding execution time */
3780 		update_curr(cfs_rq);
3781 		update_entity_lag(cfs_rq, se);
3782 		se->deadline -= se->vruntime;
3783 		se->rel_deadline = 1;
3784 		if (!curr)
3785 			__dequeue_entity(cfs_rq, se);
3786 		update_load_sub(&cfs_rq->load, se->load.weight);
3787 	}
3788 	dequeue_load_avg(cfs_rq, se);
3789 
3790 	/*
3791 	 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3792 	 * we need to scale se->vlag when w_i changes.
3793 	 */
3794 	se->vlag = div_s64(se->vlag * se->load.weight, weight);
3795 	if (se->rel_deadline)
3796 		se->deadline = div_s64(se->deadline * se->load.weight, weight);
3797 
3798 	update_load_set(&se->load, weight);
3799 
3800 #ifdef CONFIG_SMP
3801 	do {
3802 		u32 divider = get_pelt_divider(&se->avg);
3803 
3804 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3805 	} while (0);
3806 #endif
3807 
3808 	enqueue_load_avg(cfs_rq, se);
3809 	if (se->on_rq) {
3810 		update_load_add(&cfs_rq->load, se->load.weight);
3811 		place_entity(cfs_rq, se, 0);
3812 		if (!curr)
3813 			__enqueue_entity(cfs_rq, se);
3814 
3815 		/*
3816 		 * The entity's vruntime has been adjusted, so let's check
3817 		 * whether the rq-wide min_vruntime needs updated too. Since
3818 		 * the calculations above require stable min_vruntime rather
3819 		 * than up-to-date one, we do the update at the end of the
3820 		 * reweight process.
3821 		 */
3822 		update_min_vruntime(cfs_rq);
3823 	}
3824 }
3825 
reweight_task_fair(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3826 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3827 			       const struct load_weight *lw)
3828 {
3829 	struct sched_entity *se = &p->se;
3830 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3831 	struct load_weight *load = &se->load;
3832 
3833 	reweight_entity(cfs_rq, se, lw->weight);
3834 	load->inv_weight = lw->inv_weight;
3835 }
3836 
3837 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3838 
3839 #ifdef CONFIG_FAIR_GROUP_SCHED
3840 #ifdef CONFIG_SMP
3841 /*
3842  * All this does is approximate the hierarchical proportion which includes that
3843  * global sum we all love to hate.
3844  *
3845  * That is, the weight of a group entity, is the proportional share of the
3846  * group weight based on the group runqueue weights. That is:
3847  *
3848  *                     tg->weight * grq->load.weight
3849  *   ge->load.weight = -----------------------------               (1)
3850  *                       \Sum grq->load.weight
3851  *
3852  * Now, because computing that sum is prohibitively expensive to compute (been
3853  * there, done that) we approximate it with this average stuff. The average
3854  * moves slower and therefore the approximation is cheaper and more stable.
3855  *
3856  * So instead of the above, we substitute:
3857  *
3858  *   grq->load.weight -> grq->avg.load_avg                         (2)
3859  *
3860  * which yields the following:
3861  *
3862  *                     tg->weight * grq->avg.load_avg
3863  *   ge->load.weight = ------------------------------              (3)
3864  *                             tg->load_avg
3865  *
3866  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3867  *
3868  * That is shares_avg, and it is right (given the approximation (2)).
3869  *
3870  * The problem with it is that because the average is slow -- it was designed
3871  * to be exactly that of course -- this leads to transients in boundary
3872  * conditions. In specific, the case where the group was idle and we start the
3873  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3874  * yielding bad latency etc..
3875  *
3876  * Now, in that special case (1) reduces to:
3877  *
3878  *                     tg->weight * grq->load.weight
3879  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3880  *                         grp->load.weight
3881  *
3882  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3883  *
3884  * So what we do is modify our approximation (3) to approach (4) in the (near)
3885  * UP case, like:
3886  *
3887  *   ge->load.weight =
3888  *
3889  *              tg->weight * grq->load.weight
3890  *     ---------------------------------------------------         (5)
3891  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3892  *
3893  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3894  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3895  *
3896  *
3897  *                     tg->weight * grq->load.weight
3898  *   ge->load.weight = -----------------------------		   (6)
3899  *                             tg_load_avg'
3900  *
3901  * Where:
3902  *
3903  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3904  *                  max(grq->load.weight, grq->avg.load_avg)
3905  *
3906  * And that is shares_weight and is icky. In the (near) UP case it approaches
3907  * (4) while in the normal case it approaches (3). It consistently
3908  * overestimates the ge->load.weight and therefore:
3909  *
3910  *   \Sum ge->load.weight >= tg->weight
3911  *
3912  * hence icky!
3913  */
calc_group_shares(struct cfs_rq * cfs_rq)3914 static long calc_group_shares(struct cfs_rq *cfs_rq)
3915 {
3916 	long tg_weight, tg_shares, load, shares;
3917 	struct task_group *tg = cfs_rq->tg;
3918 
3919 	tg_shares = READ_ONCE(tg->shares);
3920 
3921 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3922 
3923 	tg_weight = atomic_long_read(&tg->load_avg);
3924 
3925 	/* Ensure tg_weight >= load */
3926 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3927 	tg_weight += load;
3928 
3929 	shares = (tg_shares * load);
3930 	if (tg_weight)
3931 		shares /= tg_weight;
3932 
3933 	/*
3934 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3935 	 * of a group with small tg->shares value. It is a floor value which is
3936 	 * assigned as a minimum load.weight to the sched_entity representing
3937 	 * the group on a CPU.
3938 	 *
3939 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3940 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3941 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3942 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3943 	 * instead of 0.
3944 	 */
3945 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3946 }
3947 #endif /* CONFIG_SMP */
3948 
3949 /*
3950  * Recomputes the group entity based on the current state of its group
3951  * runqueue.
3952  */
update_cfs_group(struct sched_entity * se)3953 static void update_cfs_group(struct sched_entity *se)
3954 {
3955 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3956 	long shares;
3957 
3958 	/*
3959 	 * When a group becomes empty, preserve its weight. This matters for
3960 	 * DELAY_DEQUEUE.
3961 	 */
3962 	if (!gcfs_rq || !gcfs_rq->load.weight)
3963 		return;
3964 
3965 	if (throttled_hierarchy(gcfs_rq))
3966 		return;
3967 
3968 #ifndef CONFIG_SMP
3969 	shares = READ_ONCE(gcfs_rq->tg->shares);
3970 #else
3971 	shares = calc_group_shares(gcfs_rq);
3972 #endif
3973 	if (unlikely(se->load.weight != shares))
3974 		reweight_entity(cfs_rq_of(se), se, shares);
3975 }
3976 
3977 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3978 static inline void update_cfs_group(struct sched_entity *se)
3979 {
3980 }
3981 #endif /* CONFIG_FAIR_GROUP_SCHED */
3982 
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3983 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3984 {
3985 	struct rq *rq = rq_of(cfs_rq);
3986 
3987 	if (&rq->cfs == cfs_rq) {
3988 		/*
3989 		 * There are a few boundary cases this might miss but it should
3990 		 * get called often enough that that should (hopefully) not be
3991 		 * a real problem.
3992 		 *
3993 		 * It will not get called when we go idle, because the idle
3994 		 * thread is a different class (!fair), nor will the utilization
3995 		 * number include things like RT tasks.
3996 		 *
3997 		 * As is, the util number is not freq-invariant (we'd have to
3998 		 * implement arch_scale_freq_capacity() for that).
3999 		 *
4000 		 * See cpu_util_cfs().
4001 		 */
4002 		cpufreq_update_util(rq, flags);
4003 	}
4004 }
4005 
4006 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)4007 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4008 {
4009 	if (sa->load_sum)
4010 		return false;
4011 
4012 	if (sa->util_sum)
4013 		return false;
4014 
4015 	if (sa->runnable_sum)
4016 		return false;
4017 
4018 	/*
4019 	 * _avg must be null when _sum are null because _avg = _sum / divider
4020 	 * Make sure that rounding and/or propagation of PELT values never
4021 	 * break this.
4022 	 */
4023 	SCHED_WARN_ON(sa->load_avg ||
4024 		      sa->util_avg ||
4025 		      sa->runnable_avg);
4026 
4027 	return true;
4028 }
4029 
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4030 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4031 {
4032 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4033 				 cfs_rq->last_update_time_copy);
4034 }
4035 #ifdef CONFIG_FAIR_GROUP_SCHED
4036 /*
4037  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4038  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4039  * bottom-up, we only have to test whether the cfs_rq before us on the list
4040  * is our child.
4041  * If cfs_rq is not on the list, test whether a child needs its to be added to
4042  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4043  */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4044 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4045 {
4046 	struct cfs_rq *prev_cfs_rq;
4047 	struct list_head *prev;
4048 	struct rq *rq = rq_of(cfs_rq);
4049 
4050 	if (cfs_rq->on_list) {
4051 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4052 	} else {
4053 		prev = rq->tmp_alone_branch;
4054 	}
4055 
4056 	if (prev == &rq->leaf_cfs_rq_list)
4057 		return false;
4058 
4059 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4060 
4061 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4062 }
4063 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4064 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4065 {
4066 	if (cfs_rq->load.weight)
4067 		return false;
4068 
4069 	if (!load_avg_is_decayed(&cfs_rq->avg))
4070 		return false;
4071 
4072 	if (child_cfs_rq_on_list(cfs_rq))
4073 		return false;
4074 
4075 	return true;
4076 }
4077 
4078 /**
4079  * update_tg_load_avg - update the tg's load avg
4080  * @cfs_rq: the cfs_rq whose avg changed
4081  *
4082  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4083  * However, because tg->load_avg is a global value there are performance
4084  * considerations.
4085  *
4086  * In order to avoid having to look at the other cfs_rq's, we use a
4087  * differential update where we store the last value we propagated. This in
4088  * turn allows skipping updates if the differential is 'small'.
4089  *
4090  * Updating tg's load_avg is necessary before update_cfs_share().
4091  */
update_tg_load_avg(struct cfs_rq * cfs_rq)4092 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4093 {
4094 	long delta;
4095 	u64 now;
4096 
4097 	/*
4098 	 * No need to update load_avg for root_task_group as it is not used.
4099 	 */
4100 	if (cfs_rq->tg == &root_task_group)
4101 		return;
4102 
4103 	/* rq has been offline and doesn't contribute to the share anymore: */
4104 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4105 		return;
4106 
4107 	/*
4108 	 * For migration heavy workloads, access to tg->load_avg can be
4109 	 * unbound. Limit the update rate to at most once per ms.
4110 	 */
4111 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4112 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4113 		return;
4114 
4115 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4116 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4117 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4118 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4119 		cfs_rq->last_update_tg_load_avg = now;
4120 	}
4121 }
4122 
clear_tg_load_avg(struct cfs_rq * cfs_rq)4123 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4124 {
4125 	long delta;
4126 	u64 now;
4127 
4128 	/*
4129 	 * No need to update load_avg for root_task_group, as it is not used.
4130 	 */
4131 	if (cfs_rq->tg == &root_task_group)
4132 		return;
4133 
4134 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4135 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4136 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4137 	cfs_rq->tg_load_avg_contrib = 0;
4138 	cfs_rq->last_update_tg_load_avg = now;
4139 }
4140 
4141 /* CPU offline callback: */
clear_tg_offline_cfs_rqs(struct rq * rq)4142 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4143 {
4144 	struct task_group *tg;
4145 
4146 	lockdep_assert_rq_held(rq);
4147 
4148 	/*
4149 	 * The rq clock has already been updated in
4150 	 * set_rq_offline(), so we should skip updating
4151 	 * the rq clock again in unthrottle_cfs_rq().
4152 	 */
4153 	rq_clock_start_loop_update(rq);
4154 
4155 	rcu_read_lock();
4156 	list_for_each_entry_rcu(tg, &task_groups, list) {
4157 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4158 
4159 		clear_tg_load_avg(cfs_rq);
4160 	}
4161 	rcu_read_unlock();
4162 
4163 	rq_clock_stop_loop_update(rq);
4164 }
4165 
4166 /*
4167  * Called within set_task_rq() right before setting a task's CPU. The
4168  * caller only guarantees p->pi_lock is held; no other assumptions,
4169  * including the state of rq->lock, should be made.
4170  */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4171 void set_task_rq_fair(struct sched_entity *se,
4172 		      struct cfs_rq *prev, struct cfs_rq *next)
4173 {
4174 	u64 p_last_update_time;
4175 	u64 n_last_update_time;
4176 
4177 	if (!sched_feat(ATTACH_AGE_LOAD))
4178 		return;
4179 
4180 	/*
4181 	 * We are supposed to update the task to "current" time, then its up to
4182 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4183 	 * getting what current time is, so simply throw away the out-of-date
4184 	 * time. This will result in the wakee task is less decayed, but giving
4185 	 * the wakee more load sounds not bad.
4186 	 */
4187 	if (!(se->avg.last_update_time && prev))
4188 		return;
4189 
4190 	p_last_update_time = cfs_rq_last_update_time(prev);
4191 	n_last_update_time = cfs_rq_last_update_time(next);
4192 
4193 	__update_load_avg_blocked_se(p_last_update_time, se);
4194 	se->avg.last_update_time = n_last_update_time;
4195 }
4196 
4197 /*
4198  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4199  * propagate its contribution. The key to this propagation is the invariant
4200  * that for each group:
4201  *
4202  *   ge->avg == grq->avg						(1)
4203  *
4204  * _IFF_ we look at the pure running and runnable sums. Because they
4205  * represent the very same entity, just at different points in the hierarchy.
4206  *
4207  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4208  * and simply copies the running/runnable sum over (but still wrong, because
4209  * the group entity and group rq do not have their PELT windows aligned).
4210  *
4211  * However, update_tg_cfs_load() is more complex. So we have:
4212  *
4213  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4214  *
4215  * And since, like util, the runnable part should be directly transferable,
4216  * the following would _appear_ to be the straight forward approach:
4217  *
4218  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4219  *
4220  * And per (1) we have:
4221  *
4222  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4223  *
4224  * Which gives:
4225  *
4226  *                      ge->load.weight * grq->avg.load_avg
4227  *   ge->avg.load_avg = -----------------------------------		(4)
4228  *                               grq->load.weight
4229  *
4230  * Except that is wrong!
4231  *
4232  * Because while for entities historical weight is not important and we
4233  * really only care about our future and therefore can consider a pure
4234  * runnable sum, runqueues can NOT do this.
4235  *
4236  * We specifically want runqueues to have a load_avg that includes
4237  * historical weights. Those represent the blocked load, the load we expect
4238  * to (shortly) return to us. This only works by keeping the weights as
4239  * integral part of the sum. We therefore cannot decompose as per (3).
4240  *
4241  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4242  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4243  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4244  * runnable section of these tasks overlap (or not). If they were to perfectly
4245  * align the rq as a whole would be runnable 2/3 of the time. If however we
4246  * always have at least 1 runnable task, the rq as a whole is always runnable.
4247  *
4248  * So we'll have to approximate.. :/
4249  *
4250  * Given the constraint:
4251  *
4252  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4253  *
4254  * We can construct a rule that adds runnable to a rq by assuming minimal
4255  * overlap.
4256  *
4257  * On removal, we'll assume each task is equally runnable; which yields:
4258  *
4259  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4260  *
4261  * XXX: only do this for the part of runnable > running ?
4262  *
4263  */
4264 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4265 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4266 {
4267 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4268 	u32 new_sum, divider;
4269 
4270 	/* Nothing to update */
4271 	if (!delta_avg)
4272 		return;
4273 
4274 	/*
4275 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4276 	 * See ___update_load_avg() for details.
4277 	 */
4278 	divider = get_pelt_divider(&cfs_rq->avg);
4279 
4280 
4281 	/* Set new sched_entity's utilization */
4282 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4283 	new_sum = se->avg.util_avg * divider;
4284 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4285 	se->avg.util_sum = new_sum;
4286 
4287 	/* Update parent cfs_rq utilization */
4288 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4289 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4290 
4291 	/* See update_cfs_rq_load_avg() */
4292 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4293 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4294 }
4295 
4296 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4297 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4298 {
4299 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4300 	u32 new_sum, divider;
4301 
4302 	/* Nothing to update */
4303 	if (!delta_avg)
4304 		return;
4305 
4306 	/*
4307 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4308 	 * See ___update_load_avg() for details.
4309 	 */
4310 	divider = get_pelt_divider(&cfs_rq->avg);
4311 
4312 	/* Set new sched_entity's runnable */
4313 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4314 	new_sum = se->avg.runnable_avg * divider;
4315 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4316 	se->avg.runnable_sum = new_sum;
4317 
4318 	/* Update parent cfs_rq runnable */
4319 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4320 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4321 	/* See update_cfs_rq_load_avg() */
4322 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4323 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4324 }
4325 
4326 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4327 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4328 {
4329 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4330 	unsigned long load_avg;
4331 	u64 load_sum = 0;
4332 	s64 delta_sum;
4333 	u32 divider;
4334 
4335 	if (!runnable_sum)
4336 		return;
4337 
4338 	gcfs_rq->prop_runnable_sum = 0;
4339 
4340 	/*
4341 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4342 	 * See ___update_load_avg() for details.
4343 	 */
4344 	divider = get_pelt_divider(&cfs_rq->avg);
4345 
4346 	if (runnable_sum >= 0) {
4347 		/*
4348 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4349 		 * the CPU is saturated running == runnable.
4350 		 */
4351 		runnable_sum += se->avg.load_sum;
4352 		runnable_sum = min_t(long, runnable_sum, divider);
4353 	} else {
4354 		/*
4355 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4356 		 * assuming all tasks are equally runnable.
4357 		 */
4358 		if (scale_load_down(gcfs_rq->load.weight)) {
4359 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4360 				scale_load_down(gcfs_rq->load.weight));
4361 		}
4362 
4363 		/* But make sure to not inflate se's runnable */
4364 		runnable_sum = min(se->avg.load_sum, load_sum);
4365 	}
4366 
4367 	/*
4368 	 * runnable_sum can't be lower than running_sum
4369 	 * Rescale running sum to be in the same range as runnable sum
4370 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4371 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4372 	 */
4373 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4374 	runnable_sum = max(runnable_sum, running_sum);
4375 
4376 	load_sum = se_weight(se) * runnable_sum;
4377 	load_avg = div_u64(load_sum, divider);
4378 
4379 	delta_avg = load_avg - se->avg.load_avg;
4380 	if (!delta_avg)
4381 		return;
4382 
4383 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4384 
4385 	se->avg.load_sum = runnable_sum;
4386 	se->avg.load_avg = load_avg;
4387 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4388 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4389 	/* See update_cfs_rq_load_avg() */
4390 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4391 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4392 }
4393 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4394 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4395 {
4396 	cfs_rq->propagate = 1;
4397 	cfs_rq->prop_runnable_sum += runnable_sum;
4398 }
4399 
4400 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4401 static inline int propagate_entity_load_avg(struct sched_entity *se)
4402 {
4403 	struct cfs_rq *cfs_rq, *gcfs_rq;
4404 
4405 	if (entity_is_task(se))
4406 		return 0;
4407 
4408 	gcfs_rq = group_cfs_rq(se);
4409 	if (!gcfs_rq->propagate)
4410 		return 0;
4411 
4412 	gcfs_rq->propagate = 0;
4413 
4414 	cfs_rq = cfs_rq_of(se);
4415 
4416 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4417 
4418 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4419 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4420 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4421 
4422 	trace_pelt_cfs_tp(cfs_rq);
4423 	trace_pelt_se_tp(se);
4424 
4425 	return 1;
4426 }
4427 
4428 /*
4429  * Check if we need to update the load and the utilization of a blocked
4430  * group_entity:
4431  */
skip_blocked_update(struct sched_entity * se)4432 static inline bool skip_blocked_update(struct sched_entity *se)
4433 {
4434 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4435 
4436 	/*
4437 	 * If sched_entity still have not zero load or utilization, we have to
4438 	 * decay it:
4439 	 */
4440 	if (se->avg.load_avg || se->avg.util_avg)
4441 		return false;
4442 
4443 	/*
4444 	 * If there is a pending propagation, we have to update the load and
4445 	 * the utilization of the sched_entity:
4446 	 */
4447 	if (gcfs_rq->propagate)
4448 		return false;
4449 
4450 	/*
4451 	 * Otherwise, the load and the utilization of the sched_entity is
4452 	 * already zero and there is no pending propagation, so it will be a
4453 	 * waste of time to try to decay it:
4454 	 */
4455 	return true;
4456 }
4457 
4458 #else /* CONFIG_FAIR_GROUP_SCHED */
4459 
update_tg_load_avg(struct cfs_rq * cfs_rq)4460 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4461 
clear_tg_offline_cfs_rqs(struct rq * rq)4462 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4463 
propagate_entity_load_avg(struct sched_entity * se)4464 static inline int propagate_entity_load_avg(struct sched_entity *se)
4465 {
4466 	return 0;
4467 }
4468 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4469 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4470 
4471 #endif /* CONFIG_FAIR_GROUP_SCHED */
4472 
4473 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4474 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4475 {
4476 	u64 throttled = 0, now, lut;
4477 	struct cfs_rq *cfs_rq;
4478 	struct rq *rq;
4479 	bool is_idle;
4480 
4481 	if (load_avg_is_decayed(&se->avg))
4482 		return;
4483 
4484 	cfs_rq = cfs_rq_of(se);
4485 	rq = rq_of(cfs_rq);
4486 
4487 	rcu_read_lock();
4488 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4489 	rcu_read_unlock();
4490 
4491 	/*
4492 	 * The lag estimation comes with a cost we don't want to pay all the
4493 	 * time. Hence, limiting to the case where the source CPU is idle and
4494 	 * we know we are at the greatest risk to have an outdated clock.
4495 	 */
4496 	if (!is_idle)
4497 		return;
4498 
4499 	/*
4500 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4501 	 *
4502 	 *   last_update_time (the cfs_rq's last_update_time)
4503 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4504 	 *      = rq_clock_pelt()@cfs_rq_idle
4505 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4506 	 *
4507 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4508 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4509 	 *
4510 	 *   rq_idle_lag (delta between now and rq's update)
4511 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4512 	 *
4513 	 * We can then write:
4514 	 *
4515 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4516 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4517 	 * Where:
4518 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4519 	 *      rq_clock()@rq_idle      is rq->clock_idle
4520 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4521 	 *                              is cfs_rq->throttled_pelt_idle
4522 	 */
4523 
4524 #ifdef CONFIG_CFS_BANDWIDTH
4525 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4526 	/* The clock has been stopped for throttling */
4527 	if (throttled == U64_MAX)
4528 		return;
4529 #endif
4530 	now = u64_u32_load(rq->clock_pelt_idle);
4531 	/*
4532 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4533 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4534 	 * which lead to an underestimation. The opposite would lead to an
4535 	 * overestimation.
4536 	 */
4537 	smp_rmb();
4538 	lut = cfs_rq_last_update_time(cfs_rq);
4539 
4540 	now -= throttled;
4541 	if (now < lut)
4542 		/*
4543 		 * cfs_rq->avg.last_update_time is more recent than our
4544 		 * estimation, let's use it.
4545 		 */
4546 		now = lut;
4547 	else
4548 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4549 
4550 	__update_load_avg_blocked_se(now, se);
4551 }
4552 #else
migrate_se_pelt_lag(struct sched_entity * se)4553 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4554 #endif
4555 
4556 /**
4557  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4558  * @now: current time, as per cfs_rq_clock_pelt()
4559  * @cfs_rq: cfs_rq to update
4560  *
4561  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4562  * avg. The immediate corollary is that all (fair) tasks must be attached.
4563  *
4564  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4565  *
4566  * Return: true if the load decayed or we removed load.
4567  *
4568  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4569  * call update_tg_load_avg() when this function returns true.
4570  */
4571 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4572 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4573 {
4574 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4575 	struct sched_avg *sa = &cfs_rq->avg;
4576 	int decayed = 0;
4577 
4578 	if (cfs_rq->removed.nr) {
4579 		unsigned long r;
4580 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4581 
4582 		raw_spin_lock(&cfs_rq->removed.lock);
4583 		swap(cfs_rq->removed.util_avg, removed_util);
4584 		swap(cfs_rq->removed.load_avg, removed_load);
4585 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4586 		cfs_rq->removed.nr = 0;
4587 		raw_spin_unlock(&cfs_rq->removed.lock);
4588 
4589 		r = removed_load;
4590 		sub_positive(&sa->load_avg, r);
4591 		sub_positive(&sa->load_sum, r * divider);
4592 		/* See sa->util_sum below */
4593 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4594 
4595 		r = removed_util;
4596 		sub_positive(&sa->util_avg, r);
4597 		sub_positive(&sa->util_sum, r * divider);
4598 		/*
4599 		 * Because of rounding, se->util_sum might ends up being +1 more than
4600 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4601 		 * a lot of tasks with the rounding problem between 2 updates of
4602 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4603 		 * cfs_util_avg is not.
4604 		 * Check that util_sum is still above its lower bound for the new
4605 		 * util_avg. Given that period_contrib might have moved since the last
4606 		 * sync, we are only sure that util_sum must be above or equal to
4607 		 *    util_avg * minimum possible divider
4608 		 */
4609 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4610 
4611 		r = removed_runnable;
4612 		sub_positive(&sa->runnable_avg, r);
4613 		sub_positive(&sa->runnable_sum, r * divider);
4614 		/* See sa->util_sum above */
4615 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4616 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4617 
4618 		/*
4619 		 * removed_runnable is the unweighted version of removed_load so we
4620 		 * can use it to estimate removed_load_sum.
4621 		 */
4622 		add_tg_cfs_propagate(cfs_rq,
4623 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4624 
4625 		decayed = 1;
4626 	}
4627 
4628 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4629 	u64_u32_store_copy(sa->last_update_time,
4630 			   cfs_rq->last_update_time_copy,
4631 			   sa->last_update_time);
4632 	return decayed;
4633 }
4634 
4635 /**
4636  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4637  * @cfs_rq: cfs_rq to attach to
4638  * @se: sched_entity to attach
4639  *
4640  * Must call update_cfs_rq_load_avg() before this, since we rely on
4641  * cfs_rq->avg.last_update_time being current.
4642  */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4643 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4644 {
4645 	/*
4646 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4647 	 * See ___update_load_avg() for details.
4648 	 */
4649 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4650 
4651 	/*
4652 	 * When we attach the @se to the @cfs_rq, we must align the decay
4653 	 * window because without that, really weird and wonderful things can
4654 	 * happen.
4655 	 *
4656 	 * XXX illustrate
4657 	 */
4658 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4659 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4660 
4661 	/*
4662 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4663 	 * period_contrib. This isn't strictly correct, but since we're
4664 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4665 	 * _sum a little.
4666 	 */
4667 	se->avg.util_sum = se->avg.util_avg * divider;
4668 
4669 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4670 
4671 	se->avg.load_sum = se->avg.load_avg * divider;
4672 	if (se_weight(se) < se->avg.load_sum)
4673 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4674 	else
4675 		se->avg.load_sum = 1;
4676 
4677 	enqueue_load_avg(cfs_rq, se);
4678 	cfs_rq->avg.util_avg += se->avg.util_avg;
4679 	cfs_rq->avg.util_sum += se->avg.util_sum;
4680 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4681 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4682 
4683 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4684 
4685 	cfs_rq_util_change(cfs_rq, 0);
4686 
4687 	trace_pelt_cfs_tp(cfs_rq);
4688 }
4689 
4690 /**
4691  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4692  * @cfs_rq: cfs_rq to detach from
4693  * @se: sched_entity to detach
4694  *
4695  * Must call update_cfs_rq_load_avg() before this, since we rely on
4696  * cfs_rq->avg.last_update_time being current.
4697  */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4698 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4699 {
4700 	dequeue_load_avg(cfs_rq, se);
4701 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4702 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4703 	/* See update_cfs_rq_load_avg() */
4704 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4705 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4706 
4707 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4708 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4709 	/* See update_cfs_rq_load_avg() */
4710 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4711 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4712 
4713 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4714 
4715 	cfs_rq_util_change(cfs_rq, 0);
4716 
4717 	trace_pelt_cfs_tp(cfs_rq);
4718 }
4719 
4720 /*
4721  * Optional action to be done while updating the load average
4722  */
4723 #define UPDATE_TG	0x1
4724 #define SKIP_AGE_LOAD	0x2
4725 #define DO_ATTACH	0x4
4726 #define DO_DETACH	0x8
4727 
4728 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4729 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4730 {
4731 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4732 	int decayed;
4733 
4734 	/*
4735 	 * Track task load average for carrying it to new CPU after migrated, and
4736 	 * track group sched_entity load average for task_h_load calculation in migration
4737 	 */
4738 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4739 		__update_load_avg_se(now, cfs_rq, se);
4740 
4741 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4742 	decayed |= propagate_entity_load_avg(se);
4743 
4744 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4745 
4746 		/*
4747 		 * DO_ATTACH means we're here from enqueue_entity().
4748 		 * !last_update_time means we've passed through
4749 		 * migrate_task_rq_fair() indicating we migrated.
4750 		 *
4751 		 * IOW we're enqueueing a task on a new CPU.
4752 		 */
4753 		attach_entity_load_avg(cfs_rq, se);
4754 		update_tg_load_avg(cfs_rq);
4755 
4756 	} else if (flags & DO_DETACH) {
4757 		/*
4758 		 * DO_DETACH means we're here from dequeue_entity()
4759 		 * and we are migrating task out of the CPU.
4760 		 */
4761 		detach_entity_load_avg(cfs_rq, se);
4762 		update_tg_load_avg(cfs_rq);
4763 	} else if (decayed) {
4764 		cfs_rq_util_change(cfs_rq, 0);
4765 
4766 		if (flags & UPDATE_TG)
4767 			update_tg_load_avg(cfs_rq);
4768 	}
4769 }
4770 
4771 /*
4772  * Synchronize entity load avg of dequeued entity without locking
4773  * the previous rq.
4774  */
sync_entity_load_avg(struct sched_entity * se)4775 static void sync_entity_load_avg(struct sched_entity *se)
4776 {
4777 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4778 	u64 last_update_time;
4779 
4780 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4781 	__update_load_avg_blocked_se(last_update_time, se);
4782 }
4783 
4784 /*
4785  * Task first catches up with cfs_rq, and then subtract
4786  * itself from the cfs_rq (task must be off the queue now).
4787  */
remove_entity_load_avg(struct sched_entity * se)4788 static void remove_entity_load_avg(struct sched_entity *se)
4789 {
4790 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4791 	unsigned long flags;
4792 
4793 	/*
4794 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4795 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4796 	 * so we can remove unconditionally.
4797 	 */
4798 
4799 	sync_entity_load_avg(se);
4800 
4801 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4802 	++cfs_rq->removed.nr;
4803 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4804 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4805 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4806 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4807 }
4808 
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4809 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4810 {
4811 	return cfs_rq->avg.runnable_avg;
4812 }
4813 
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4814 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4815 {
4816 	return cfs_rq->avg.load_avg;
4817 }
4818 
4819 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4820 
task_util(struct task_struct * p)4821 static inline unsigned long task_util(struct task_struct *p)
4822 {
4823 	return READ_ONCE(p->se.avg.util_avg);
4824 }
4825 
task_runnable(struct task_struct * p)4826 static inline unsigned long task_runnable(struct task_struct *p)
4827 {
4828 	return READ_ONCE(p->se.avg.runnable_avg);
4829 }
4830 
_task_util_est(struct task_struct * p)4831 static inline unsigned long _task_util_est(struct task_struct *p)
4832 {
4833 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4834 }
4835 
task_util_est(struct task_struct * p)4836 static inline unsigned long task_util_est(struct task_struct *p)
4837 {
4838 	return max(task_util(p), _task_util_est(p));
4839 }
4840 
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4841 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4842 				    struct task_struct *p)
4843 {
4844 	unsigned int enqueued;
4845 
4846 	if (!sched_feat(UTIL_EST))
4847 		return;
4848 
4849 	/* Update root cfs_rq's estimated utilization */
4850 	enqueued  = cfs_rq->avg.util_est;
4851 	enqueued += _task_util_est(p);
4852 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4853 
4854 	trace_sched_util_est_cfs_tp(cfs_rq);
4855 }
4856 
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4857 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4858 				    struct task_struct *p)
4859 {
4860 	unsigned int enqueued;
4861 
4862 	if (!sched_feat(UTIL_EST))
4863 		return;
4864 
4865 	/* Update root cfs_rq's estimated utilization */
4866 	enqueued  = cfs_rq->avg.util_est;
4867 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4868 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4869 
4870 	trace_sched_util_est_cfs_tp(cfs_rq);
4871 }
4872 
4873 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4874 
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4875 static inline void util_est_update(struct cfs_rq *cfs_rq,
4876 				   struct task_struct *p,
4877 				   bool task_sleep)
4878 {
4879 	unsigned int ewma, dequeued, last_ewma_diff;
4880 
4881 	if (!sched_feat(UTIL_EST))
4882 		return;
4883 
4884 	/*
4885 	 * Skip update of task's estimated utilization when the task has not
4886 	 * yet completed an activation, e.g. being migrated.
4887 	 */
4888 	if (!task_sleep)
4889 		return;
4890 
4891 	/* Get current estimate of utilization */
4892 	ewma = READ_ONCE(p->se.avg.util_est);
4893 
4894 	/*
4895 	 * If the PELT values haven't changed since enqueue time,
4896 	 * skip the util_est update.
4897 	 */
4898 	if (ewma & UTIL_AVG_UNCHANGED)
4899 		return;
4900 
4901 	/* Get utilization at dequeue */
4902 	dequeued = task_util(p);
4903 
4904 	/*
4905 	 * Reset EWMA on utilization increases, the moving average is used only
4906 	 * to smooth utilization decreases.
4907 	 */
4908 	if (ewma <= dequeued) {
4909 		ewma = dequeued;
4910 		goto done;
4911 	}
4912 
4913 	/*
4914 	 * Skip update of task's estimated utilization when its members are
4915 	 * already ~1% close to its last activation value.
4916 	 */
4917 	last_ewma_diff = ewma - dequeued;
4918 	if (last_ewma_diff < UTIL_EST_MARGIN)
4919 		goto done;
4920 
4921 	/*
4922 	 * To avoid overestimation of actual task utilization, skip updates if
4923 	 * we cannot grant there is idle time in this CPU.
4924 	 */
4925 	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
4926 		return;
4927 
4928 	/*
4929 	 * To avoid underestimate of task utilization, skip updates of EWMA if
4930 	 * we cannot grant that thread got all CPU time it wanted.
4931 	 */
4932 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4933 		goto done;
4934 
4935 
4936 	/*
4937 	 * Update Task's estimated utilization
4938 	 *
4939 	 * When *p completes an activation we can consolidate another sample
4940 	 * of the task size. This is done by using this value to update the
4941 	 * Exponential Weighted Moving Average (EWMA):
4942 	 *
4943 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4944 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4945 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4946 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
4947 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
4948 	 *
4949 	 * Where 'w' is the weight of new samples, which is configured to be
4950 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4951 	 */
4952 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
4953 	ewma  -= last_ewma_diff;
4954 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
4955 done:
4956 	ewma |= UTIL_AVG_UNCHANGED;
4957 	WRITE_ONCE(p->se.avg.util_est, ewma);
4958 
4959 	trace_sched_util_est_se_tp(&p->se);
4960 }
4961 
get_actual_cpu_capacity(int cpu)4962 static inline unsigned long get_actual_cpu_capacity(int cpu)
4963 {
4964 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
4965 
4966 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
4967 
4968 	return capacity;
4969 }
4970 
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4971 static inline int util_fits_cpu(unsigned long util,
4972 				unsigned long uclamp_min,
4973 				unsigned long uclamp_max,
4974 				int cpu)
4975 {
4976 	unsigned long capacity = capacity_of(cpu);
4977 	unsigned long capacity_orig;
4978 	bool fits, uclamp_max_fits;
4979 
4980 	/*
4981 	 * Check if the real util fits without any uclamp boost/cap applied.
4982 	 */
4983 	fits = fits_capacity(util, capacity);
4984 
4985 	if (!uclamp_is_used())
4986 		return fits;
4987 
4988 	/*
4989 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4990 	 * uclamp_max. We only care about capacity pressure (by using
4991 	 * capacity_of()) for comparing against the real util.
4992 	 *
4993 	 * If a task is boosted to 1024 for example, we don't want a tiny
4994 	 * pressure to skew the check whether it fits a CPU or not.
4995 	 *
4996 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
4997 	 * should fit a little cpu even if there's some pressure.
4998 	 *
4999 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
5000 	 * on available OPP of the system.
5001 	 *
5002 	 * We honour it for uclamp_min only as a drop in performance level
5003 	 * could result in not getting the requested minimum performance level.
5004 	 *
5005 	 * For uclamp_max, we can tolerate a drop in performance level as the
5006 	 * goal is to cap the task. So it's okay if it's getting less.
5007 	 */
5008 	capacity_orig = arch_scale_cpu_capacity(cpu);
5009 
5010 	/*
5011 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5012 	 * But we do have some corner cases to cater for..
5013 	 *
5014 	 *
5015 	 *                                 C=z
5016 	 *   |                             ___
5017 	 *   |                  C=y       |   |
5018 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5019 	 *   |      C=x        |   |      |   |
5020 	 *   |      ___        |   |      |   |
5021 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5022 	 *   |     |   |       |   |      |   |
5023 	 *   |     |   |       |   |      |   |
5024 	 *   +----------------------------------------
5025 	 *         CPU0        CPU1       CPU2
5026 	 *
5027 	 *   In the above example if a task is capped to a specific performance
5028 	 *   point, y, then when:
5029 	 *
5030 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
5031 	 *     to CPU1
5032 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
5033 	 *     uclamp_max request.
5034 	 *
5035 	 *   which is what we're enforcing here. A task always fits if
5036 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5037 	 *   the normal upmigration rules should withhold still.
5038 	 *
5039 	 *   Only exception is when we are on max capacity, then we need to be
5040 	 *   careful not to block overutilized state. This is so because:
5041 	 *
5042 	 *     1. There's no concept of capping at max_capacity! We can't go
5043 	 *        beyond this performance level anyway.
5044 	 *     2. The system is being saturated when we're operating near
5045 	 *        max capacity, it doesn't make sense to block overutilized.
5046 	 */
5047 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5048 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5049 	fits = fits || uclamp_max_fits;
5050 
5051 	/*
5052 	 *
5053 	 *                                 C=z
5054 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5055 	 *   |                  C=y       |   |
5056 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5057 	 *   |      C=x        |   |      |   |
5058 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5059 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5060 	 *   |     |   |       |   |      |   |
5061 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5062 	 *   +----------------------------------------
5063 	 *         CPU0        CPU1       CPU2
5064 	 *
5065 	 * a) If util > uclamp_max, then we're capped, we don't care about
5066 	 *    actual fitness value here. We only care if uclamp_max fits
5067 	 *    capacity without taking margin/pressure into account.
5068 	 *    See comment above.
5069 	 *
5070 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5071 	 *    fits_capacity() rules apply. Except we need to ensure that we
5072 	 *    enforce we remain within uclamp_max, see comment above.
5073 	 *
5074 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5075 	 *    need to take into account the boosted value fits the CPU without
5076 	 *    taking margin/pressure into account.
5077 	 *
5078 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5079 	 * just need to consider an extra check for case (c) after ensuring we
5080 	 * handle the case uclamp_min > uclamp_max.
5081 	 */
5082 	uclamp_min = min(uclamp_min, uclamp_max);
5083 	if (fits && (util < uclamp_min) &&
5084 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5085 		return -1;
5086 
5087 	return fits;
5088 }
5089 
task_fits_cpu(struct task_struct * p,int cpu)5090 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5091 {
5092 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5093 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5094 	unsigned long util = task_util_est(p);
5095 	/*
5096 	 * Return true only if the cpu fully fits the task requirements, which
5097 	 * include the utilization but also the performance hints.
5098 	 */
5099 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5100 }
5101 
update_misfit_status(struct task_struct * p,struct rq * rq)5102 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5103 {
5104 	int cpu = cpu_of(rq);
5105 
5106 	if (!sched_asym_cpucap_active())
5107 		return;
5108 
5109 	/*
5110 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5111 	 * available CPU already? Or do we fit into this CPU ?
5112 	 */
5113 	if (!p || (p->nr_cpus_allowed == 1) ||
5114 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5115 	    task_fits_cpu(p, cpu)) {
5116 
5117 		rq->misfit_task_load = 0;
5118 		return;
5119 	}
5120 
5121 	/*
5122 	 * Make sure that misfit_task_load will not be null even if
5123 	 * task_h_load() returns 0.
5124 	 */
5125 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5126 }
5127 
5128 #else /* CONFIG_SMP */
5129 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)5130 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5131 {
5132 	return !cfs_rq->nr_queued;
5133 }
5134 
5135 #define UPDATE_TG	0x0
5136 #define SKIP_AGE_LOAD	0x0
5137 #define DO_ATTACH	0x0
5138 #define DO_DETACH	0x0
5139 
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)5140 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5141 {
5142 	cfs_rq_util_change(cfs_rq, 0);
5143 }
5144 
remove_entity_load_avg(struct sched_entity * se)5145 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5146 
5147 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5148 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5149 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5150 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5151 
sched_balance_newidle(struct rq * rq,struct rq_flags * rf)5152 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5153 {
5154 	return 0;
5155 }
5156 
5157 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5158 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5159 
5160 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5161 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5162 
5163 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5164 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5165 		bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)5166 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5167 
5168 #endif /* CONFIG_SMP */
5169 
__setparam_fair(struct task_struct * p,const struct sched_attr * attr)5170 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr)
5171 {
5172 	struct sched_entity *se = &p->se;
5173 
5174 	p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5175 	if (attr->sched_runtime) {
5176 		se->custom_slice = 1;
5177 		se->slice = clamp_t(u64, attr->sched_runtime,
5178 				      NSEC_PER_MSEC/10,   /* HZ=1000 * 10 */
5179 				      NSEC_PER_MSEC*100); /* HZ=100  / 10 */
5180 	} else {
5181 		se->custom_slice = 0;
5182 		se->slice = sysctl_sched_base_slice;
5183 	}
5184 }
5185 
5186 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5187 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5188 {
5189 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5190 	s64 lag = 0;
5191 
5192 	if (!se->custom_slice)
5193 		se->slice = sysctl_sched_base_slice;
5194 	vslice = calc_delta_fair(se->slice, se);
5195 
5196 	/*
5197 	 * Due to how V is constructed as the weighted average of entities,
5198 	 * adding tasks with positive lag, or removing tasks with negative lag
5199 	 * will move 'time' backwards, this can screw around with the lag of
5200 	 * other tasks.
5201 	 *
5202 	 * EEVDF: placement strategy #1 / #2
5203 	 */
5204 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) {
5205 		struct sched_entity *curr = cfs_rq->curr;
5206 		unsigned long load;
5207 
5208 		lag = se->vlag;
5209 
5210 		/*
5211 		 * If we want to place a task and preserve lag, we have to
5212 		 * consider the effect of the new entity on the weighted
5213 		 * average and compensate for this, otherwise lag can quickly
5214 		 * evaporate.
5215 		 *
5216 		 * Lag is defined as:
5217 		 *
5218 		 *   lag_i = S - s_i = w_i * (V - v_i)
5219 		 *
5220 		 * To avoid the 'w_i' term all over the place, we only track
5221 		 * the virtual lag:
5222 		 *
5223 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5224 		 *
5225 		 * And we take V to be the weighted average of all v:
5226 		 *
5227 		 *   V = (\Sum w_j*v_j) / W
5228 		 *
5229 		 * Where W is: \Sum w_j
5230 		 *
5231 		 * Then, the weighted average after adding an entity with lag
5232 		 * vl_i is given by:
5233 		 *
5234 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5235 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5236 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5237 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5238 		 *      = V - w_i*vl_i / (W + w_i)
5239 		 *
5240 		 * And the actual lag after adding an entity with vl_i is:
5241 		 *
5242 		 *   vl'_i = V' - v_i
5243 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5244 		 *         = vl_i - w_i*vl_i / (W + w_i)
5245 		 *
5246 		 * Which is strictly less than vl_i. So in order to preserve lag
5247 		 * we should inflate the lag before placement such that the
5248 		 * effective lag after placement comes out right.
5249 		 *
5250 		 * As such, invert the above relation for vl'_i to get the vl_i
5251 		 * we need to use such that the lag after placement is the lag
5252 		 * we computed before dequeue.
5253 		 *
5254 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5255 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5256 		 *
5257 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5258 		 *                   = W*vl_i
5259 		 *
5260 		 *   vl_i = (W + w_i)*vl'_i / W
5261 		 */
5262 		load = cfs_rq->avg_load;
5263 		if (curr && curr->on_rq)
5264 			load += scale_load_down(curr->load.weight);
5265 
5266 		lag *= load + scale_load_down(se->load.weight);
5267 		if (WARN_ON_ONCE(!load))
5268 			load = 1;
5269 		lag = div_s64(lag, load);
5270 	}
5271 
5272 	se->vruntime = vruntime - lag;
5273 
5274 	if (se->rel_deadline) {
5275 		se->deadline += se->vruntime;
5276 		se->rel_deadline = 0;
5277 		return;
5278 	}
5279 
5280 	/*
5281 	 * When joining the competition; the existing tasks will be,
5282 	 * on average, halfway through their slice, as such start tasks
5283 	 * off with half a slice to ease into the competition.
5284 	 */
5285 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5286 		vslice /= 2;
5287 
5288 	/*
5289 	 * EEVDF: vd_i = ve_i + r_i/w_i
5290 	 */
5291 	se->deadline = se->vruntime + vslice;
5292 }
5293 
5294 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5295 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5296 
5297 static void
5298 requeue_delayed_entity(struct sched_entity *se);
5299 
5300 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5301 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5302 {
5303 	bool curr = cfs_rq->curr == se;
5304 
5305 	/*
5306 	 * If we're the current task, we must renormalise before calling
5307 	 * update_curr().
5308 	 */
5309 	if (curr)
5310 		place_entity(cfs_rq, se, flags);
5311 
5312 	update_curr(cfs_rq);
5313 
5314 	/*
5315 	 * When enqueuing a sched_entity, we must:
5316 	 *   - Update loads to have both entity and cfs_rq synced with now.
5317 	 *   - For group_entity, update its runnable_weight to reflect the new
5318 	 *     h_nr_runnable of its group cfs_rq.
5319 	 *   - For group_entity, update its weight to reflect the new share of
5320 	 *     its group cfs_rq
5321 	 *   - Add its new weight to cfs_rq->load.weight
5322 	 */
5323 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5324 	se_update_runnable(se);
5325 	/*
5326 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5327 	 * but update_cfs_group() here will re-adjust the weight and have to
5328 	 * undo/redo all that. Seems wasteful.
5329 	 */
5330 	update_cfs_group(se);
5331 
5332 	/*
5333 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5334 	 * we can place the entity.
5335 	 */
5336 	if (!curr)
5337 		place_entity(cfs_rq, se, flags);
5338 
5339 	account_entity_enqueue(cfs_rq, se);
5340 
5341 	/* Entity has migrated, no longer consider this task hot */
5342 	if (flags & ENQUEUE_MIGRATED)
5343 		se->exec_start = 0;
5344 
5345 	check_schedstat_required();
5346 	update_stats_enqueue_fair(cfs_rq, se, flags);
5347 	if (!curr)
5348 		__enqueue_entity(cfs_rq, se);
5349 	se->on_rq = 1;
5350 
5351 	if (cfs_rq->nr_queued == 1) {
5352 		check_enqueue_throttle(cfs_rq);
5353 		if (!throttled_hierarchy(cfs_rq)) {
5354 			list_add_leaf_cfs_rq(cfs_rq);
5355 		} else {
5356 #ifdef CONFIG_CFS_BANDWIDTH
5357 			struct rq *rq = rq_of(cfs_rq);
5358 
5359 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5360 				cfs_rq->throttled_clock = rq_clock(rq);
5361 			if (!cfs_rq->throttled_clock_self)
5362 				cfs_rq->throttled_clock_self = rq_clock(rq);
5363 #endif
5364 		}
5365 	}
5366 }
5367 
__clear_buddies_next(struct sched_entity * se)5368 static void __clear_buddies_next(struct sched_entity *se)
5369 {
5370 	for_each_sched_entity(se) {
5371 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5372 		if (cfs_rq->next != se)
5373 			break;
5374 
5375 		cfs_rq->next = NULL;
5376 	}
5377 }
5378 
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5379 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5380 {
5381 	if (cfs_rq->next == se)
5382 		__clear_buddies_next(se);
5383 }
5384 
5385 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5386 
set_delayed(struct sched_entity * se)5387 static void set_delayed(struct sched_entity *se)
5388 {
5389 	se->sched_delayed = 1;
5390 
5391 	/*
5392 	 * Delayed se of cfs_rq have no tasks queued on them.
5393 	 * Do not adjust h_nr_runnable since dequeue_entities()
5394 	 * will account it for blocked tasks.
5395 	 */
5396 	if (!entity_is_task(se))
5397 		return;
5398 
5399 	for_each_sched_entity(se) {
5400 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5401 
5402 		cfs_rq->h_nr_runnable--;
5403 		if (cfs_rq_throttled(cfs_rq))
5404 			break;
5405 	}
5406 }
5407 
clear_delayed(struct sched_entity * se)5408 static void clear_delayed(struct sched_entity *se)
5409 {
5410 	se->sched_delayed = 0;
5411 
5412 	/*
5413 	 * Delayed se of cfs_rq have no tasks queued on them.
5414 	 * Do not adjust h_nr_runnable since a dequeue has
5415 	 * already accounted for it or an enqueue of a task
5416 	 * below it will account for it in enqueue_task_fair().
5417 	 */
5418 	if (!entity_is_task(se))
5419 		return;
5420 
5421 	for_each_sched_entity(se) {
5422 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5423 
5424 		cfs_rq->h_nr_runnable++;
5425 		if (cfs_rq_throttled(cfs_rq))
5426 			break;
5427 	}
5428 }
5429 
finish_delayed_dequeue_entity(struct sched_entity * se)5430 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5431 {
5432 	clear_delayed(se);
5433 	if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5434 		se->vlag = 0;
5435 }
5436 
5437 static bool
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5438 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5439 {
5440 	bool sleep = flags & DEQUEUE_SLEEP;
5441 	int action = UPDATE_TG;
5442 
5443 	update_curr(cfs_rq);
5444 	clear_buddies(cfs_rq, se);
5445 
5446 	if (flags & DEQUEUE_DELAYED) {
5447 		SCHED_WARN_ON(!se->sched_delayed);
5448 	} else {
5449 		bool delay = sleep;
5450 		/*
5451 		 * DELAY_DEQUEUE relies on spurious wakeups, special task
5452 		 * states must not suffer spurious wakeups, excempt them.
5453 		 */
5454 		if (flags & DEQUEUE_SPECIAL)
5455 			delay = false;
5456 
5457 		SCHED_WARN_ON(delay && se->sched_delayed);
5458 
5459 		if (sched_feat(DELAY_DEQUEUE) && delay &&
5460 		    !entity_eligible(cfs_rq, se)) {
5461 			update_load_avg(cfs_rq, se, 0);
5462 			set_delayed(se);
5463 			return false;
5464 		}
5465 	}
5466 
5467 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5468 		action |= DO_DETACH;
5469 
5470 	/*
5471 	 * When dequeuing a sched_entity, we must:
5472 	 *   - Update loads to have both entity and cfs_rq synced with now.
5473 	 *   - For group_entity, update its runnable_weight to reflect the new
5474 	 *     h_nr_runnable of its group cfs_rq.
5475 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5476 	 *   - For group entity, update its weight to reflect the new share
5477 	 *     of its group cfs_rq.
5478 	 */
5479 	update_load_avg(cfs_rq, se, action);
5480 	se_update_runnable(se);
5481 
5482 	update_stats_dequeue_fair(cfs_rq, se, flags);
5483 
5484 	update_entity_lag(cfs_rq, se);
5485 	if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5486 		se->deadline -= se->vruntime;
5487 		se->rel_deadline = 1;
5488 	}
5489 
5490 	if (se != cfs_rq->curr)
5491 		__dequeue_entity(cfs_rq, se);
5492 	se->on_rq = 0;
5493 	account_entity_dequeue(cfs_rq, se);
5494 
5495 	/* return excess runtime on last dequeue */
5496 	return_cfs_rq_runtime(cfs_rq);
5497 
5498 	update_cfs_group(se);
5499 
5500 	/*
5501 	 * Now advance min_vruntime if @se was the entity holding it back,
5502 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5503 	 * put back on, and if we advance min_vruntime, we'll be placed back
5504 	 * further than we started -- i.e. we'll be penalized.
5505 	 */
5506 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5507 		update_min_vruntime(cfs_rq);
5508 
5509 	if (flags & DEQUEUE_DELAYED)
5510 		finish_delayed_dequeue_entity(se);
5511 
5512 	if (cfs_rq->nr_queued == 0)
5513 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5514 
5515 	return true;
5516 }
5517 
5518 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5519 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5520 {
5521 	clear_buddies(cfs_rq, se);
5522 
5523 	/* 'current' is not kept within the tree. */
5524 	if (se->on_rq) {
5525 		/*
5526 		 * Any task has to be enqueued before it get to execute on
5527 		 * a CPU. So account for the time it spent waiting on the
5528 		 * runqueue.
5529 		 */
5530 		update_stats_wait_end_fair(cfs_rq, se);
5531 		__dequeue_entity(cfs_rq, se);
5532 		update_load_avg(cfs_rq, se, UPDATE_TG);
5533 		/*
5534 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5535 		 * which isn't used until dequeue.
5536 		 */
5537 		se->vlag = se->deadline;
5538 	}
5539 
5540 	update_stats_curr_start(cfs_rq, se);
5541 	SCHED_WARN_ON(cfs_rq->curr);
5542 	cfs_rq->curr = se;
5543 
5544 	/*
5545 	 * Track our maximum slice length, if the CPU's load is at
5546 	 * least twice that of our own weight (i.e. don't track it
5547 	 * when there are only lesser-weight tasks around):
5548 	 */
5549 	if (schedstat_enabled() &&
5550 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5551 		struct sched_statistics *stats;
5552 
5553 		stats = __schedstats_from_se(se);
5554 		__schedstat_set(stats->slice_max,
5555 				max((u64)stats->slice_max,
5556 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5557 	}
5558 
5559 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5560 }
5561 
5562 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5563 
5564 /*
5565  * Pick the next process, keeping these things in mind, in this order:
5566  * 1) keep things fair between processes/task groups
5567  * 2) pick the "next" process, since someone really wants that to run
5568  * 3) pick the "last" process, for cache locality
5569  * 4) do not run the "skip" process, if something else is available
5570  */
5571 static struct sched_entity *
pick_next_entity(struct rq * rq,struct cfs_rq * cfs_rq)5572 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5573 {
5574 	struct sched_entity *se;
5575 
5576 	/*
5577 	 * Picking the ->next buddy will affect latency but not fairness.
5578 	 */
5579 	if (sched_feat(PICK_BUDDY) &&
5580 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5581 		/* ->next will never be delayed */
5582 		SCHED_WARN_ON(cfs_rq->next->sched_delayed);
5583 		return cfs_rq->next;
5584 	}
5585 
5586 	se = pick_eevdf(cfs_rq);
5587 	if (se->sched_delayed) {
5588 		dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5589 		/*
5590 		 * Must not reference @se again, see __block_task().
5591 		 */
5592 		return NULL;
5593 	}
5594 	return se;
5595 }
5596 
5597 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5598 
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5599 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5600 {
5601 	/*
5602 	 * If still on the runqueue then deactivate_task()
5603 	 * was not called and update_curr() has to be done:
5604 	 */
5605 	if (prev->on_rq)
5606 		update_curr(cfs_rq);
5607 
5608 	/* throttle cfs_rqs exceeding runtime */
5609 	check_cfs_rq_runtime(cfs_rq);
5610 
5611 	if (prev->on_rq) {
5612 		update_stats_wait_start_fair(cfs_rq, prev);
5613 		/* Put 'current' back into the tree. */
5614 		__enqueue_entity(cfs_rq, prev);
5615 		/* in !on_rq case, update occurred at dequeue */
5616 		update_load_avg(cfs_rq, prev, 0);
5617 	}
5618 	SCHED_WARN_ON(cfs_rq->curr != prev);
5619 	cfs_rq->curr = NULL;
5620 }
5621 
5622 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5623 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5624 {
5625 	/*
5626 	 * Update run-time statistics of the 'current'.
5627 	 */
5628 	update_curr(cfs_rq);
5629 
5630 	/*
5631 	 * Ensure that runnable average is periodically updated.
5632 	 */
5633 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5634 	update_cfs_group(curr);
5635 
5636 #ifdef CONFIG_SCHED_HRTICK
5637 	/*
5638 	 * queued ticks are scheduled to match the slice, so don't bother
5639 	 * validating it and just reschedule.
5640 	 */
5641 	if (queued) {
5642 		resched_curr_lazy(rq_of(cfs_rq));
5643 		return;
5644 	}
5645 #endif
5646 }
5647 
5648 
5649 /**************************************************
5650  * CFS bandwidth control machinery
5651  */
5652 
5653 #ifdef CONFIG_CFS_BANDWIDTH
5654 
5655 #ifdef CONFIG_JUMP_LABEL
5656 static struct static_key __cfs_bandwidth_used;
5657 
cfs_bandwidth_used(void)5658 static inline bool cfs_bandwidth_used(void)
5659 {
5660 	return static_key_false(&__cfs_bandwidth_used);
5661 }
5662 
cfs_bandwidth_usage_inc(void)5663 void cfs_bandwidth_usage_inc(void)
5664 {
5665 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5666 }
5667 
cfs_bandwidth_usage_dec(void)5668 void cfs_bandwidth_usage_dec(void)
5669 {
5670 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5671 }
5672 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5673 static bool cfs_bandwidth_used(void)
5674 {
5675 	return true;
5676 }
5677 
cfs_bandwidth_usage_inc(void)5678 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5679 void cfs_bandwidth_usage_dec(void) {}
5680 #endif /* CONFIG_JUMP_LABEL */
5681 
5682 /*
5683  * default period for cfs group bandwidth.
5684  * default: 0.1s, units: nanoseconds
5685  */
default_cfs_period(void)5686 static inline u64 default_cfs_period(void)
5687 {
5688 	return 100000000ULL;
5689 }
5690 
sched_cfs_bandwidth_slice(void)5691 static inline u64 sched_cfs_bandwidth_slice(void)
5692 {
5693 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5694 }
5695 
5696 /*
5697  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5698  * directly instead of rq->clock to avoid adding additional synchronization
5699  * around rq->lock.
5700  *
5701  * requires cfs_b->lock
5702  */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5703 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5704 {
5705 	s64 runtime;
5706 
5707 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5708 		return;
5709 
5710 	cfs_b->runtime += cfs_b->quota;
5711 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5712 	if (runtime > 0) {
5713 		cfs_b->burst_time += runtime;
5714 		cfs_b->nr_burst++;
5715 	}
5716 
5717 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5718 	cfs_b->runtime_snap = cfs_b->runtime;
5719 }
5720 
tg_cfs_bandwidth(struct task_group * tg)5721 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5722 {
5723 	return &tg->cfs_bandwidth;
5724 }
5725 
5726 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5727 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5728 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5729 {
5730 	u64 min_amount, amount = 0;
5731 
5732 	lockdep_assert_held(&cfs_b->lock);
5733 
5734 	/* note: this is a positive sum as runtime_remaining <= 0 */
5735 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5736 
5737 	if (cfs_b->quota == RUNTIME_INF)
5738 		amount = min_amount;
5739 	else {
5740 		start_cfs_bandwidth(cfs_b);
5741 
5742 		if (cfs_b->runtime > 0) {
5743 			amount = min(cfs_b->runtime, min_amount);
5744 			cfs_b->runtime -= amount;
5745 			cfs_b->idle = 0;
5746 		}
5747 	}
5748 
5749 	cfs_rq->runtime_remaining += amount;
5750 
5751 	return cfs_rq->runtime_remaining > 0;
5752 }
5753 
5754 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5755 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5756 {
5757 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5758 	int ret;
5759 
5760 	raw_spin_lock(&cfs_b->lock);
5761 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5762 	raw_spin_unlock(&cfs_b->lock);
5763 
5764 	return ret;
5765 }
5766 
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5767 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5768 {
5769 	/* dock delta_exec before expiring quota (as it could span periods) */
5770 	cfs_rq->runtime_remaining -= delta_exec;
5771 
5772 	if (likely(cfs_rq->runtime_remaining > 0))
5773 		return;
5774 
5775 	if (cfs_rq->throttled)
5776 		return;
5777 	/*
5778 	 * if we're unable to extend our runtime we resched so that the active
5779 	 * hierarchy can be throttled
5780 	 */
5781 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5782 		resched_curr(rq_of(cfs_rq));
5783 }
5784 
5785 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5786 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5787 {
5788 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5789 		return;
5790 
5791 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5792 }
5793 
cfs_rq_throttled(struct cfs_rq * cfs_rq)5794 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5795 {
5796 	return cfs_bandwidth_used() && cfs_rq->throttled;
5797 }
5798 
5799 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5800 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5801 {
5802 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5803 }
5804 
5805 /*
5806  * Ensure that neither of the group entities corresponding to src_cpu or
5807  * dest_cpu are members of a throttled hierarchy when performing group
5808  * load-balance operations.
5809  */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5810 static inline int throttled_lb_pair(struct task_group *tg,
5811 				    int src_cpu, int dest_cpu)
5812 {
5813 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5814 
5815 	src_cfs_rq = tg->cfs_rq[src_cpu];
5816 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5817 
5818 	return throttled_hierarchy(src_cfs_rq) ||
5819 	       throttled_hierarchy(dest_cfs_rq);
5820 }
5821 
tg_unthrottle_up(struct task_group * tg,void * data)5822 static int tg_unthrottle_up(struct task_group *tg, void *data)
5823 {
5824 	struct rq *rq = data;
5825 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5826 
5827 	cfs_rq->throttle_count--;
5828 	if (!cfs_rq->throttle_count) {
5829 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5830 					     cfs_rq->throttled_clock_pelt;
5831 
5832 		/* Add cfs_rq with load or one or more already running entities to the list */
5833 		if (!cfs_rq_is_decayed(cfs_rq))
5834 			list_add_leaf_cfs_rq(cfs_rq);
5835 
5836 		if (cfs_rq->throttled_clock_self) {
5837 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5838 
5839 			cfs_rq->throttled_clock_self = 0;
5840 
5841 			if (SCHED_WARN_ON((s64)delta < 0))
5842 				delta = 0;
5843 
5844 			cfs_rq->throttled_clock_self_time += delta;
5845 		}
5846 	}
5847 
5848 	return 0;
5849 }
5850 
tg_throttle_down(struct task_group * tg,void * data)5851 static int tg_throttle_down(struct task_group *tg, void *data)
5852 {
5853 	struct rq *rq = data;
5854 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5855 
5856 	/* group is entering throttled state, stop time */
5857 	if (!cfs_rq->throttle_count) {
5858 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5859 		list_del_leaf_cfs_rq(cfs_rq);
5860 
5861 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5862 		if (cfs_rq->nr_queued)
5863 			cfs_rq->throttled_clock_self = rq_clock(rq);
5864 	}
5865 	cfs_rq->throttle_count++;
5866 
5867 	return 0;
5868 }
5869 
throttle_cfs_rq(struct cfs_rq * cfs_rq)5870 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5871 {
5872 	struct rq *rq = rq_of(cfs_rq);
5873 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5874 	struct sched_entity *se;
5875 	long queued_delta, runnable_delta, idle_delta, dequeue = 1;
5876 	long rq_h_nr_queued = rq->cfs.h_nr_queued;
5877 
5878 	raw_spin_lock(&cfs_b->lock);
5879 	/* This will start the period timer if necessary */
5880 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5881 		/*
5882 		 * We have raced with bandwidth becoming available, and if we
5883 		 * actually throttled the timer might not unthrottle us for an
5884 		 * entire period. We additionally needed to make sure that any
5885 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5886 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5887 		 * for 1ns of runtime rather than just check cfs_b.
5888 		 */
5889 		dequeue = 0;
5890 	} else {
5891 		list_add_tail_rcu(&cfs_rq->throttled_list,
5892 				  &cfs_b->throttled_cfs_rq);
5893 	}
5894 	raw_spin_unlock(&cfs_b->lock);
5895 
5896 	if (!dequeue)
5897 		return false;  /* Throttle no longer required. */
5898 
5899 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5900 
5901 	/* freeze hierarchy runnable averages while throttled */
5902 	rcu_read_lock();
5903 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5904 	rcu_read_unlock();
5905 
5906 	queued_delta = cfs_rq->h_nr_queued;
5907 	runnable_delta = cfs_rq->h_nr_runnable;
5908 	idle_delta = cfs_rq->h_nr_idle;
5909 	for_each_sched_entity(se) {
5910 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5911 		int flags;
5912 
5913 		/* throttled entity or throttle-on-deactivate */
5914 		if (!se->on_rq)
5915 			goto done;
5916 
5917 		/*
5918 		 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5919 		 * This avoids teaching dequeue_entities() about throttled
5920 		 * entities and keeps things relatively simple.
5921 		 */
5922 		flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5923 		if (se->sched_delayed)
5924 			flags |= DEQUEUE_DELAYED;
5925 		dequeue_entity(qcfs_rq, se, flags);
5926 
5927 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5928 			idle_delta = cfs_rq->h_nr_queued;
5929 
5930 		qcfs_rq->h_nr_queued -= queued_delta;
5931 		qcfs_rq->h_nr_runnable -= runnable_delta;
5932 		qcfs_rq->h_nr_idle -= idle_delta;
5933 
5934 		if (qcfs_rq->load.weight) {
5935 			/* Avoid re-evaluating load for this entity: */
5936 			se = parent_entity(se);
5937 			break;
5938 		}
5939 	}
5940 
5941 	for_each_sched_entity(se) {
5942 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5943 		/* throttled entity or throttle-on-deactivate */
5944 		if (!se->on_rq)
5945 			goto done;
5946 
5947 		update_load_avg(qcfs_rq, se, 0);
5948 		se_update_runnable(se);
5949 
5950 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5951 			idle_delta = cfs_rq->h_nr_queued;
5952 
5953 		qcfs_rq->h_nr_queued -= queued_delta;
5954 		qcfs_rq->h_nr_runnable -= runnable_delta;
5955 		qcfs_rq->h_nr_idle -= idle_delta;
5956 	}
5957 
5958 	/* At this point se is NULL and we are at root level*/
5959 	sub_nr_running(rq, queued_delta);
5960 
5961 	/* Stop the fair server if throttling resulted in no runnable tasks */
5962 	if (rq_h_nr_queued && !rq->cfs.h_nr_queued)
5963 		dl_server_stop(&rq->fair_server);
5964 done:
5965 	/*
5966 	 * Note: distribution will already see us throttled via the
5967 	 * throttled-list.  rq->lock protects completion.
5968 	 */
5969 	cfs_rq->throttled = 1;
5970 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5971 	if (cfs_rq->nr_queued)
5972 		cfs_rq->throttled_clock = rq_clock(rq);
5973 	return true;
5974 }
5975 
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5976 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5977 {
5978 	struct rq *rq = rq_of(cfs_rq);
5979 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5980 	struct sched_entity *se;
5981 	long queued_delta, runnable_delta, idle_delta;
5982 	long rq_h_nr_queued = rq->cfs.h_nr_queued;
5983 
5984 	se = cfs_rq->tg->se[cpu_of(rq)];
5985 
5986 	cfs_rq->throttled = 0;
5987 
5988 	update_rq_clock(rq);
5989 
5990 	raw_spin_lock(&cfs_b->lock);
5991 	if (cfs_rq->throttled_clock) {
5992 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5993 		cfs_rq->throttled_clock = 0;
5994 	}
5995 	list_del_rcu(&cfs_rq->throttled_list);
5996 	raw_spin_unlock(&cfs_b->lock);
5997 
5998 	/* update hierarchical throttle state */
5999 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6000 
6001 	if (!cfs_rq->load.weight) {
6002 		if (!cfs_rq->on_list)
6003 			return;
6004 		/*
6005 		 * Nothing to run but something to decay (on_list)?
6006 		 * Complete the branch.
6007 		 */
6008 		for_each_sched_entity(se) {
6009 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6010 				break;
6011 		}
6012 		goto unthrottle_throttle;
6013 	}
6014 
6015 	queued_delta = cfs_rq->h_nr_queued;
6016 	runnable_delta = cfs_rq->h_nr_runnable;
6017 	idle_delta = cfs_rq->h_nr_idle;
6018 	for_each_sched_entity(se) {
6019 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6020 
6021 		/* Handle any unfinished DELAY_DEQUEUE business first. */
6022 		if (se->sched_delayed) {
6023 			int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
6024 
6025 			dequeue_entity(qcfs_rq, se, flags);
6026 		} else if (se->on_rq)
6027 			break;
6028 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6029 
6030 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6031 			idle_delta = cfs_rq->h_nr_queued;
6032 
6033 		qcfs_rq->h_nr_queued += queued_delta;
6034 		qcfs_rq->h_nr_runnable += runnable_delta;
6035 		qcfs_rq->h_nr_idle += idle_delta;
6036 
6037 		/* end evaluation on encountering a throttled cfs_rq */
6038 		if (cfs_rq_throttled(qcfs_rq))
6039 			goto unthrottle_throttle;
6040 	}
6041 
6042 	for_each_sched_entity(se) {
6043 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6044 
6045 		update_load_avg(qcfs_rq, se, UPDATE_TG);
6046 		se_update_runnable(se);
6047 
6048 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6049 			idle_delta = cfs_rq->h_nr_queued;
6050 
6051 		qcfs_rq->h_nr_queued += queued_delta;
6052 		qcfs_rq->h_nr_runnable += runnable_delta;
6053 		qcfs_rq->h_nr_idle += idle_delta;
6054 
6055 		/* end evaluation on encountering a throttled cfs_rq */
6056 		if (cfs_rq_throttled(qcfs_rq))
6057 			goto unthrottle_throttle;
6058 	}
6059 
6060 	/* Start the fair server if un-throttling resulted in new runnable tasks */
6061 	if (!rq_h_nr_queued && rq->cfs.h_nr_queued)
6062 		dl_server_start(&rq->fair_server);
6063 
6064 	/* At this point se is NULL and we are at root level*/
6065 	add_nr_running(rq, queued_delta);
6066 
6067 unthrottle_throttle:
6068 	assert_list_leaf_cfs_rq(rq);
6069 
6070 	/* Determine whether we need to wake up potentially idle CPU: */
6071 	if (rq->curr == rq->idle && rq->cfs.nr_queued)
6072 		resched_curr(rq);
6073 }
6074 
6075 #ifdef CONFIG_SMP
__cfsb_csd_unthrottle(void * arg)6076 static void __cfsb_csd_unthrottle(void *arg)
6077 {
6078 	struct cfs_rq *cursor, *tmp;
6079 	struct rq *rq = arg;
6080 	struct rq_flags rf;
6081 
6082 	rq_lock(rq, &rf);
6083 
6084 	/*
6085 	 * Iterating over the list can trigger several call to
6086 	 * update_rq_clock() in unthrottle_cfs_rq().
6087 	 * Do it once and skip the potential next ones.
6088 	 */
6089 	update_rq_clock(rq);
6090 	rq_clock_start_loop_update(rq);
6091 
6092 	/*
6093 	 * Since we hold rq lock we're safe from concurrent manipulation of
6094 	 * the CSD list. However, this RCU critical section annotates the
6095 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
6096 	 * race with group being freed in the window between removing it
6097 	 * from the list and advancing to the next entry in the list.
6098 	 */
6099 	rcu_read_lock();
6100 
6101 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6102 				 throttled_csd_list) {
6103 		list_del_init(&cursor->throttled_csd_list);
6104 
6105 		if (cfs_rq_throttled(cursor))
6106 			unthrottle_cfs_rq(cursor);
6107 	}
6108 
6109 	rcu_read_unlock();
6110 
6111 	rq_clock_stop_loop_update(rq);
6112 	rq_unlock(rq, &rf);
6113 }
6114 
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6115 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6116 {
6117 	struct rq *rq = rq_of(cfs_rq);
6118 	bool first;
6119 
6120 	if (rq == this_rq()) {
6121 		unthrottle_cfs_rq(cfs_rq);
6122 		return;
6123 	}
6124 
6125 	/* Already enqueued */
6126 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
6127 		return;
6128 
6129 	first = list_empty(&rq->cfsb_csd_list);
6130 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6131 	if (first)
6132 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6133 }
6134 #else
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6135 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6136 {
6137 	unthrottle_cfs_rq(cfs_rq);
6138 }
6139 #endif
6140 
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6141 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6142 {
6143 	lockdep_assert_rq_held(rq_of(cfs_rq));
6144 
6145 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6146 	    cfs_rq->runtime_remaining <= 0))
6147 		return;
6148 
6149 	__unthrottle_cfs_rq_async(cfs_rq);
6150 }
6151 
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)6152 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6153 {
6154 	int this_cpu = smp_processor_id();
6155 	u64 runtime, remaining = 1;
6156 	bool throttled = false;
6157 	struct cfs_rq *cfs_rq, *tmp;
6158 	struct rq_flags rf;
6159 	struct rq *rq;
6160 	LIST_HEAD(local_unthrottle);
6161 
6162 	rcu_read_lock();
6163 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6164 				throttled_list) {
6165 		rq = rq_of(cfs_rq);
6166 
6167 		if (!remaining) {
6168 			throttled = true;
6169 			break;
6170 		}
6171 
6172 		rq_lock_irqsave(rq, &rf);
6173 		if (!cfs_rq_throttled(cfs_rq))
6174 			goto next;
6175 
6176 		/* Already queued for async unthrottle */
6177 		if (!list_empty(&cfs_rq->throttled_csd_list))
6178 			goto next;
6179 
6180 		/* By the above checks, this should never be true */
6181 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6182 
6183 		raw_spin_lock(&cfs_b->lock);
6184 		runtime = -cfs_rq->runtime_remaining + 1;
6185 		if (runtime > cfs_b->runtime)
6186 			runtime = cfs_b->runtime;
6187 		cfs_b->runtime -= runtime;
6188 		remaining = cfs_b->runtime;
6189 		raw_spin_unlock(&cfs_b->lock);
6190 
6191 		cfs_rq->runtime_remaining += runtime;
6192 
6193 		/* we check whether we're throttled above */
6194 		if (cfs_rq->runtime_remaining > 0) {
6195 			if (cpu_of(rq) != this_cpu) {
6196 				unthrottle_cfs_rq_async(cfs_rq);
6197 			} else {
6198 				/*
6199 				 * We currently only expect to be unthrottling
6200 				 * a single cfs_rq locally.
6201 				 */
6202 				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6203 				list_add_tail(&cfs_rq->throttled_csd_list,
6204 					      &local_unthrottle);
6205 			}
6206 		} else {
6207 			throttled = true;
6208 		}
6209 
6210 next:
6211 		rq_unlock_irqrestore(rq, &rf);
6212 	}
6213 
6214 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6215 				 throttled_csd_list) {
6216 		struct rq *rq = rq_of(cfs_rq);
6217 
6218 		rq_lock_irqsave(rq, &rf);
6219 
6220 		list_del_init(&cfs_rq->throttled_csd_list);
6221 
6222 		if (cfs_rq_throttled(cfs_rq))
6223 			unthrottle_cfs_rq(cfs_rq);
6224 
6225 		rq_unlock_irqrestore(rq, &rf);
6226 	}
6227 	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6228 
6229 	rcu_read_unlock();
6230 
6231 	return throttled;
6232 }
6233 
6234 /*
6235  * Responsible for refilling a task_group's bandwidth and unthrottling its
6236  * cfs_rqs as appropriate. If there has been no activity within the last
6237  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6238  * used to track this state.
6239  */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6240 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6241 {
6242 	int throttled;
6243 
6244 	/* no need to continue the timer with no bandwidth constraint */
6245 	if (cfs_b->quota == RUNTIME_INF)
6246 		goto out_deactivate;
6247 
6248 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6249 	cfs_b->nr_periods += overrun;
6250 
6251 	/* Refill extra burst quota even if cfs_b->idle */
6252 	__refill_cfs_bandwidth_runtime(cfs_b);
6253 
6254 	/*
6255 	 * idle depends on !throttled (for the case of a large deficit), and if
6256 	 * we're going inactive then everything else can be deferred
6257 	 */
6258 	if (cfs_b->idle && !throttled)
6259 		goto out_deactivate;
6260 
6261 	if (!throttled) {
6262 		/* mark as potentially idle for the upcoming period */
6263 		cfs_b->idle = 1;
6264 		return 0;
6265 	}
6266 
6267 	/* account preceding periods in which throttling occurred */
6268 	cfs_b->nr_throttled += overrun;
6269 
6270 	/*
6271 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6272 	 */
6273 	while (throttled && cfs_b->runtime > 0) {
6274 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6275 		/* we can't nest cfs_b->lock while distributing bandwidth */
6276 		throttled = distribute_cfs_runtime(cfs_b);
6277 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6278 	}
6279 
6280 	/*
6281 	 * While we are ensured activity in the period following an
6282 	 * unthrottle, this also covers the case in which the new bandwidth is
6283 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6284 	 * timer to remain active while there are any throttled entities.)
6285 	 */
6286 	cfs_b->idle = 0;
6287 
6288 	return 0;
6289 
6290 out_deactivate:
6291 	return 1;
6292 }
6293 
6294 /* a cfs_rq won't donate quota below this amount */
6295 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6296 /* minimum remaining period time to redistribute slack quota */
6297 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6298 /* how long we wait to gather additional slack before distributing */
6299 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6300 
6301 /*
6302  * Are we near the end of the current quota period?
6303  *
6304  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6305  * hrtimer base being cleared by hrtimer_start. In the case of
6306  * migrate_hrtimers, base is never cleared, so we are fine.
6307  */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6308 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6309 {
6310 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6311 	s64 remaining;
6312 
6313 	/* if the call-back is running a quota refresh is already occurring */
6314 	if (hrtimer_callback_running(refresh_timer))
6315 		return 1;
6316 
6317 	/* is a quota refresh about to occur? */
6318 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6319 	if (remaining < (s64)min_expire)
6320 		return 1;
6321 
6322 	return 0;
6323 }
6324 
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6325 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6326 {
6327 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6328 
6329 	/* if there's a quota refresh soon don't bother with slack */
6330 	if (runtime_refresh_within(cfs_b, min_left))
6331 		return;
6332 
6333 	/* don't push forwards an existing deferred unthrottle */
6334 	if (cfs_b->slack_started)
6335 		return;
6336 	cfs_b->slack_started = true;
6337 
6338 	hrtimer_start(&cfs_b->slack_timer,
6339 			ns_to_ktime(cfs_bandwidth_slack_period),
6340 			HRTIMER_MODE_REL);
6341 }
6342 
6343 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6344 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6345 {
6346 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6347 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6348 
6349 	if (slack_runtime <= 0)
6350 		return;
6351 
6352 	raw_spin_lock(&cfs_b->lock);
6353 	if (cfs_b->quota != RUNTIME_INF) {
6354 		cfs_b->runtime += slack_runtime;
6355 
6356 		/* we are under rq->lock, defer unthrottling using a timer */
6357 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6358 		    !list_empty(&cfs_b->throttled_cfs_rq))
6359 			start_cfs_slack_bandwidth(cfs_b);
6360 	}
6361 	raw_spin_unlock(&cfs_b->lock);
6362 
6363 	/* even if it's not valid for return we don't want to try again */
6364 	cfs_rq->runtime_remaining -= slack_runtime;
6365 }
6366 
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6367 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6368 {
6369 	if (!cfs_bandwidth_used())
6370 		return;
6371 
6372 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued)
6373 		return;
6374 
6375 	__return_cfs_rq_runtime(cfs_rq);
6376 }
6377 
6378 /*
6379  * This is done with a timer (instead of inline with bandwidth return) since
6380  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6381  */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6382 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6383 {
6384 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6385 	unsigned long flags;
6386 
6387 	/* confirm we're still not at a refresh boundary */
6388 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6389 	cfs_b->slack_started = false;
6390 
6391 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6392 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6393 		return;
6394 	}
6395 
6396 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6397 		runtime = cfs_b->runtime;
6398 
6399 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6400 
6401 	if (!runtime)
6402 		return;
6403 
6404 	distribute_cfs_runtime(cfs_b);
6405 }
6406 
6407 /*
6408  * When a group wakes up we want to make sure that its quota is not already
6409  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6410  * runtime as update_curr() throttling can not trigger until it's on-rq.
6411  */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6412 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6413 {
6414 	if (!cfs_bandwidth_used())
6415 		return;
6416 
6417 	/* an active group must be handled by the update_curr()->put() path */
6418 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6419 		return;
6420 
6421 	/* ensure the group is not already throttled */
6422 	if (cfs_rq_throttled(cfs_rq))
6423 		return;
6424 
6425 	/* update runtime allocation */
6426 	account_cfs_rq_runtime(cfs_rq, 0);
6427 	if (cfs_rq->runtime_remaining <= 0)
6428 		throttle_cfs_rq(cfs_rq);
6429 }
6430 
sync_throttle(struct task_group * tg,int cpu)6431 static void sync_throttle(struct task_group *tg, int cpu)
6432 {
6433 	struct cfs_rq *pcfs_rq, *cfs_rq;
6434 
6435 	if (!cfs_bandwidth_used())
6436 		return;
6437 
6438 	if (!tg->parent)
6439 		return;
6440 
6441 	cfs_rq = tg->cfs_rq[cpu];
6442 	pcfs_rq = tg->parent->cfs_rq[cpu];
6443 
6444 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6445 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6446 }
6447 
6448 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6449 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6450 {
6451 	if (!cfs_bandwidth_used())
6452 		return false;
6453 
6454 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6455 		return false;
6456 
6457 	/*
6458 	 * it's possible for a throttled entity to be forced into a running
6459 	 * state (e.g. set_curr_task), in this case we're finished.
6460 	 */
6461 	if (cfs_rq_throttled(cfs_rq))
6462 		return true;
6463 
6464 	return throttle_cfs_rq(cfs_rq);
6465 }
6466 
sched_cfs_slack_timer(struct hrtimer * timer)6467 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6468 {
6469 	struct cfs_bandwidth *cfs_b =
6470 		container_of(timer, struct cfs_bandwidth, slack_timer);
6471 
6472 	do_sched_cfs_slack_timer(cfs_b);
6473 
6474 	return HRTIMER_NORESTART;
6475 }
6476 
6477 extern const u64 max_cfs_quota_period;
6478 
sched_cfs_period_timer(struct hrtimer * timer)6479 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6480 {
6481 	struct cfs_bandwidth *cfs_b =
6482 		container_of(timer, struct cfs_bandwidth, period_timer);
6483 	unsigned long flags;
6484 	int overrun;
6485 	int idle = 0;
6486 	int count = 0;
6487 
6488 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6489 	for (;;) {
6490 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6491 		if (!overrun)
6492 			break;
6493 
6494 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6495 
6496 		if (++count > 3) {
6497 			u64 new, old = ktime_to_ns(cfs_b->period);
6498 
6499 			/*
6500 			 * Grow period by a factor of 2 to avoid losing precision.
6501 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6502 			 * to fail.
6503 			 */
6504 			new = old * 2;
6505 			if (new < max_cfs_quota_period) {
6506 				cfs_b->period = ns_to_ktime(new);
6507 				cfs_b->quota *= 2;
6508 				cfs_b->burst *= 2;
6509 
6510 				pr_warn_ratelimited(
6511 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6512 					smp_processor_id(),
6513 					div_u64(new, NSEC_PER_USEC),
6514 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6515 			} else {
6516 				pr_warn_ratelimited(
6517 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6518 					smp_processor_id(),
6519 					div_u64(old, NSEC_PER_USEC),
6520 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6521 			}
6522 
6523 			/* reset count so we don't come right back in here */
6524 			count = 0;
6525 		}
6526 	}
6527 	if (idle)
6528 		cfs_b->period_active = 0;
6529 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6530 
6531 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6532 }
6533 
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6534 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6535 {
6536 	raw_spin_lock_init(&cfs_b->lock);
6537 	cfs_b->runtime = 0;
6538 	cfs_b->quota = RUNTIME_INF;
6539 	cfs_b->period = ns_to_ktime(default_cfs_period());
6540 	cfs_b->burst = 0;
6541 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6542 
6543 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6544 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6545 	cfs_b->period_timer.function = sched_cfs_period_timer;
6546 
6547 	/* Add a random offset so that timers interleave */
6548 	hrtimer_set_expires(&cfs_b->period_timer,
6549 			    get_random_u32_below(cfs_b->period));
6550 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6551 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6552 	cfs_b->slack_started = false;
6553 }
6554 
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6555 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6556 {
6557 	cfs_rq->runtime_enabled = 0;
6558 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6559 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6560 }
6561 
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6562 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6563 {
6564 	lockdep_assert_held(&cfs_b->lock);
6565 
6566 	if (cfs_b->period_active)
6567 		return;
6568 
6569 	cfs_b->period_active = 1;
6570 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6571 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6572 }
6573 
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6574 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6575 {
6576 	int __maybe_unused i;
6577 
6578 	/* init_cfs_bandwidth() was not called */
6579 	if (!cfs_b->throttled_cfs_rq.next)
6580 		return;
6581 
6582 	hrtimer_cancel(&cfs_b->period_timer);
6583 	hrtimer_cancel(&cfs_b->slack_timer);
6584 
6585 	/*
6586 	 * It is possible that we still have some cfs_rq's pending on a CSD
6587 	 * list, though this race is very rare. In order for this to occur, we
6588 	 * must have raced with the last task leaving the group while there
6589 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6590 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6591 	 * we can simply flush all pending CSD work inline here. We're
6592 	 * guaranteed at this point that no additional cfs_rq of this group can
6593 	 * join a CSD list.
6594 	 */
6595 #ifdef CONFIG_SMP
6596 	for_each_possible_cpu(i) {
6597 		struct rq *rq = cpu_rq(i);
6598 		unsigned long flags;
6599 
6600 		if (list_empty(&rq->cfsb_csd_list))
6601 			continue;
6602 
6603 		local_irq_save(flags);
6604 		__cfsb_csd_unthrottle(rq);
6605 		local_irq_restore(flags);
6606 	}
6607 #endif
6608 }
6609 
6610 /*
6611  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6612  *
6613  * The race is harmless, since modifying bandwidth settings of unhooked group
6614  * bits doesn't do much.
6615  */
6616 
6617 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6618 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6619 {
6620 	struct task_group *tg;
6621 
6622 	lockdep_assert_rq_held(rq);
6623 
6624 	rcu_read_lock();
6625 	list_for_each_entry_rcu(tg, &task_groups, list) {
6626 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6627 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6628 
6629 		raw_spin_lock(&cfs_b->lock);
6630 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6631 		raw_spin_unlock(&cfs_b->lock);
6632 	}
6633 	rcu_read_unlock();
6634 }
6635 
6636 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6637 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6638 {
6639 	struct task_group *tg;
6640 
6641 	lockdep_assert_rq_held(rq);
6642 
6643 	// Do not unthrottle for an active CPU
6644 	if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask))
6645 		return;
6646 
6647 	/*
6648 	 * The rq clock has already been updated in the
6649 	 * set_rq_offline(), so we should skip updating
6650 	 * the rq clock again in unthrottle_cfs_rq().
6651 	 */
6652 	rq_clock_start_loop_update(rq);
6653 
6654 	rcu_read_lock();
6655 	list_for_each_entry_rcu(tg, &task_groups, list) {
6656 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6657 
6658 		if (!cfs_rq->runtime_enabled)
6659 			continue;
6660 
6661 		/*
6662 		 * Offline rq is schedulable till CPU is completely disabled
6663 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6664 		 */
6665 		cfs_rq->runtime_enabled = 0;
6666 
6667 		if (!cfs_rq_throttled(cfs_rq))
6668 			continue;
6669 
6670 		/*
6671 		 * clock_task is not advancing so we just need to make sure
6672 		 * there's some valid quota amount
6673 		 */
6674 		cfs_rq->runtime_remaining = 1;
6675 		unthrottle_cfs_rq(cfs_rq);
6676 	}
6677 	rcu_read_unlock();
6678 
6679 	rq_clock_stop_loop_update(rq);
6680 }
6681 
cfs_task_bw_constrained(struct task_struct * p)6682 bool cfs_task_bw_constrained(struct task_struct *p)
6683 {
6684 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6685 
6686 	if (!cfs_bandwidth_used())
6687 		return false;
6688 
6689 	if (cfs_rq->runtime_enabled ||
6690 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6691 		return true;
6692 
6693 	return false;
6694 }
6695 
6696 #ifdef CONFIG_NO_HZ_FULL
6697 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6698 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6699 {
6700 	int cpu = cpu_of(rq);
6701 
6702 	if (!cfs_bandwidth_used())
6703 		return;
6704 
6705 	if (!tick_nohz_full_cpu(cpu))
6706 		return;
6707 
6708 	if (rq->nr_running != 1)
6709 		return;
6710 
6711 	/*
6712 	 *  We know there is only one task runnable and we've just picked it. The
6713 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6714 	 *  be otherwise able to stop the tick. Just need to check if we are using
6715 	 *  bandwidth control.
6716 	 */
6717 	if (cfs_task_bw_constrained(p))
6718 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6719 }
6720 #endif
6721 
6722 #else /* CONFIG_CFS_BANDWIDTH */
6723 
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6724 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6725 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6726 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6727 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6728 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6729 
cfs_rq_throttled(struct cfs_rq * cfs_rq)6730 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6731 {
6732 	return 0;
6733 }
6734 
throttled_hierarchy(struct cfs_rq * cfs_rq)6735 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6736 {
6737 	return 0;
6738 }
6739 
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6740 static inline int throttled_lb_pair(struct task_group *tg,
6741 				    int src_cpu, int dest_cpu)
6742 {
6743 	return 0;
6744 }
6745 
6746 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6747 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6748 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6749 #endif
6750 
tg_cfs_bandwidth(struct task_group * tg)6751 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6752 {
6753 	return NULL;
6754 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6755 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6756 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6757 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6758 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6759 bool cfs_task_bw_constrained(struct task_struct *p)
6760 {
6761 	return false;
6762 }
6763 #endif
6764 #endif /* CONFIG_CFS_BANDWIDTH */
6765 
6766 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6767 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6768 #endif
6769 
6770 /**************************************************
6771  * CFS operations on tasks:
6772  */
6773 
6774 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6775 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6776 {
6777 	struct sched_entity *se = &p->se;
6778 
6779 	SCHED_WARN_ON(task_rq(p) != rq);
6780 
6781 	if (rq->cfs.h_nr_queued > 1) {
6782 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6783 		u64 slice = se->slice;
6784 		s64 delta = slice - ran;
6785 
6786 		if (delta < 0) {
6787 			if (task_current_donor(rq, p))
6788 				resched_curr(rq);
6789 			return;
6790 		}
6791 		hrtick_start(rq, delta);
6792 	}
6793 }
6794 
6795 /*
6796  * called from enqueue/dequeue and updates the hrtick when the
6797  * current task is from our class and nr_running is low enough
6798  * to matter.
6799  */
hrtick_update(struct rq * rq)6800 static void hrtick_update(struct rq *rq)
6801 {
6802 	struct task_struct *donor = rq->donor;
6803 
6804 	if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6805 		return;
6806 
6807 	hrtick_start_fair(rq, donor);
6808 }
6809 #else /* !CONFIG_SCHED_HRTICK */
6810 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6811 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6812 {
6813 }
6814 
hrtick_update(struct rq * rq)6815 static inline void hrtick_update(struct rq *rq)
6816 {
6817 }
6818 #endif
6819 
6820 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6821 static inline bool cpu_overutilized(int cpu)
6822 {
6823 	unsigned long  rq_util_min, rq_util_max;
6824 
6825 	if (!sched_energy_enabled())
6826 		return false;
6827 
6828 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6829 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6830 
6831 	/* Return true only if the utilization doesn't fit CPU's capacity */
6832 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6833 }
6834 
6835 /*
6836  * overutilized value make sense only if EAS is enabled
6837  */
is_rd_overutilized(struct root_domain * rd)6838 static inline bool is_rd_overutilized(struct root_domain *rd)
6839 {
6840 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6841 }
6842 
set_rd_overutilized(struct root_domain * rd,bool flag)6843 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6844 {
6845 	if (!sched_energy_enabled())
6846 		return;
6847 
6848 	WRITE_ONCE(rd->overutilized, flag);
6849 	trace_sched_overutilized_tp(rd, flag);
6850 }
6851 
check_update_overutilized_status(struct rq * rq)6852 static inline void check_update_overutilized_status(struct rq *rq)
6853 {
6854 	/*
6855 	 * overutilized field is used for load balancing decisions only
6856 	 * if energy aware scheduler is being used
6857 	 */
6858 
6859 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6860 		set_rd_overutilized(rq->rd, 1);
6861 }
6862 #else
check_update_overutilized_status(struct rq * rq)6863 static inline void check_update_overutilized_status(struct rq *rq) { }
6864 #endif
6865 
6866 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6867 static int sched_idle_rq(struct rq *rq)
6868 {
6869 	return unlikely(rq->nr_running == rq->cfs.h_nr_idle &&
6870 			rq->nr_running);
6871 }
6872 
6873 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6874 static int sched_idle_cpu(int cpu)
6875 {
6876 	return sched_idle_rq(cpu_rq(cpu));
6877 }
6878 #endif
6879 
6880 static void
requeue_delayed_entity(struct sched_entity * se)6881 requeue_delayed_entity(struct sched_entity *se)
6882 {
6883 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6884 
6885 	/*
6886 	 * se->sched_delayed should imply: se->on_rq == 1.
6887 	 * Because a delayed entity is one that is still on
6888 	 * the runqueue competing until elegibility.
6889 	 */
6890 	SCHED_WARN_ON(!se->sched_delayed);
6891 	SCHED_WARN_ON(!se->on_rq);
6892 
6893 	if (sched_feat(DELAY_ZERO)) {
6894 		update_entity_lag(cfs_rq, se);
6895 		if (se->vlag > 0) {
6896 			cfs_rq->nr_queued--;
6897 			if (se != cfs_rq->curr)
6898 				__dequeue_entity(cfs_rq, se);
6899 			se->vlag = 0;
6900 			place_entity(cfs_rq, se, 0);
6901 			if (se != cfs_rq->curr)
6902 				__enqueue_entity(cfs_rq, se);
6903 			cfs_rq->nr_queued++;
6904 		}
6905 	}
6906 
6907 	update_load_avg(cfs_rq, se, 0);
6908 	clear_delayed(se);
6909 }
6910 
6911 /*
6912  * The enqueue_task method is called before nr_running is
6913  * increased. Here we update the fair scheduling stats and
6914  * then put the task into the rbtree:
6915  */
6916 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6917 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6918 {
6919 	struct cfs_rq *cfs_rq;
6920 	struct sched_entity *se = &p->se;
6921 	int h_nr_idle = task_has_idle_policy(p);
6922 	int h_nr_runnable = 1;
6923 	int task_new = !(flags & ENQUEUE_WAKEUP);
6924 	int rq_h_nr_queued = rq->cfs.h_nr_queued;
6925 	u64 slice = 0;
6926 
6927 	/*
6928 	 * The code below (indirectly) updates schedutil which looks at
6929 	 * the cfs_rq utilization to select a frequency.
6930 	 * Let's add the task's estimated utilization to the cfs_rq's
6931 	 * estimated utilization, before we update schedutil.
6932 	 */
6933 	if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
6934 		util_est_enqueue(&rq->cfs, p);
6935 
6936 	if (flags & ENQUEUE_DELAYED) {
6937 		requeue_delayed_entity(se);
6938 		return;
6939 	}
6940 
6941 	/*
6942 	 * If in_iowait is set, the code below may not trigger any cpufreq
6943 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6944 	 * passed.
6945 	 */
6946 	if (p->in_iowait)
6947 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6948 
6949 	if (task_new && se->sched_delayed)
6950 		h_nr_runnable = 0;
6951 
6952 	for_each_sched_entity(se) {
6953 		if (se->on_rq) {
6954 			if (se->sched_delayed)
6955 				requeue_delayed_entity(se);
6956 			break;
6957 		}
6958 		cfs_rq = cfs_rq_of(se);
6959 
6960 		/*
6961 		 * Basically set the slice of group entries to the min_slice of
6962 		 * their respective cfs_rq. This ensures the group can service
6963 		 * its entities in the desired time-frame.
6964 		 */
6965 		if (slice) {
6966 			se->slice = slice;
6967 			se->custom_slice = 1;
6968 		}
6969 		enqueue_entity(cfs_rq, se, flags);
6970 		slice = cfs_rq_min_slice(cfs_rq);
6971 
6972 		cfs_rq->h_nr_runnable += h_nr_runnable;
6973 		cfs_rq->h_nr_queued++;
6974 		cfs_rq->h_nr_idle += h_nr_idle;
6975 
6976 		if (cfs_rq_is_idle(cfs_rq))
6977 			h_nr_idle = 1;
6978 
6979 		/* end evaluation on encountering a throttled cfs_rq */
6980 		if (cfs_rq_throttled(cfs_rq))
6981 			goto enqueue_throttle;
6982 
6983 		flags = ENQUEUE_WAKEUP;
6984 	}
6985 
6986 	for_each_sched_entity(se) {
6987 		cfs_rq = cfs_rq_of(se);
6988 
6989 		update_load_avg(cfs_rq, se, UPDATE_TG);
6990 		se_update_runnable(se);
6991 		update_cfs_group(se);
6992 
6993 		se->slice = slice;
6994 		slice = cfs_rq_min_slice(cfs_rq);
6995 
6996 		cfs_rq->h_nr_runnable += h_nr_runnable;
6997 		cfs_rq->h_nr_queued++;
6998 		cfs_rq->h_nr_idle += h_nr_idle;
6999 
7000 		if (cfs_rq_is_idle(cfs_rq))
7001 			h_nr_idle = 1;
7002 
7003 		/* end evaluation on encountering a throttled cfs_rq */
7004 		if (cfs_rq_throttled(cfs_rq))
7005 			goto enqueue_throttle;
7006 	}
7007 
7008 	if (!rq_h_nr_queued && rq->cfs.h_nr_queued) {
7009 		/* Account for idle runtime */
7010 		if (!rq->nr_running)
7011 			dl_server_update_idle_time(rq, rq->curr);
7012 		dl_server_start(&rq->fair_server);
7013 	}
7014 
7015 	/* At this point se is NULL and we are at root level*/
7016 	add_nr_running(rq, 1);
7017 
7018 	/*
7019 	 * Since new tasks are assigned an initial util_avg equal to
7020 	 * half of the spare capacity of their CPU, tiny tasks have the
7021 	 * ability to cross the overutilized threshold, which will
7022 	 * result in the load balancer ruining all the task placement
7023 	 * done by EAS. As a way to mitigate that effect, do not account
7024 	 * for the first enqueue operation of new tasks during the
7025 	 * overutilized flag detection.
7026 	 *
7027 	 * A better way of solving this problem would be to wait for
7028 	 * the PELT signals of tasks to converge before taking them
7029 	 * into account, but that is not straightforward to implement,
7030 	 * and the following generally works well enough in practice.
7031 	 */
7032 	if (!task_new)
7033 		check_update_overutilized_status(rq);
7034 
7035 enqueue_throttle:
7036 	assert_list_leaf_cfs_rq(rq);
7037 
7038 	hrtick_update(rq);
7039 }
7040 
7041 static void set_next_buddy(struct sched_entity *se);
7042 
7043 /*
7044  * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7045  * failing half-way through and resume the dequeue later.
7046  *
7047  * Returns:
7048  * -1 - dequeue delayed
7049  *  0 - dequeue throttled
7050  *  1 - dequeue complete
7051  */
dequeue_entities(struct rq * rq,struct sched_entity * se,int flags)7052 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7053 {
7054 	bool was_sched_idle = sched_idle_rq(rq);
7055 	int rq_h_nr_queued = rq->cfs.h_nr_queued;
7056 	bool task_sleep = flags & DEQUEUE_SLEEP;
7057 	bool task_delayed = flags & DEQUEUE_DELAYED;
7058 	struct task_struct *p = NULL;
7059 	int h_nr_idle = 0;
7060 	int h_nr_queued = 0;
7061 	int h_nr_runnable = 0;
7062 	struct cfs_rq *cfs_rq;
7063 	u64 slice = 0;
7064 
7065 	if (entity_is_task(se)) {
7066 		p = task_of(se);
7067 		h_nr_queued = 1;
7068 		h_nr_idle = task_has_idle_policy(p);
7069 		if (task_sleep || task_delayed || !se->sched_delayed)
7070 			h_nr_runnable = 1;
7071 	} else {
7072 		cfs_rq = group_cfs_rq(se);
7073 		slice = cfs_rq_min_slice(cfs_rq);
7074 	}
7075 
7076 	for_each_sched_entity(se) {
7077 		cfs_rq = cfs_rq_of(se);
7078 
7079 		if (!dequeue_entity(cfs_rq, se, flags)) {
7080 			if (p && &p->se == se)
7081 				return -1;
7082 
7083 			break;
7084 		}
7085 
7086 		cfs_rq->h_nr_runnable -= h_nr_runnable;
7087 		cfs_rq->h_nr_queued -= h_nr_queued;
7088 		cfs_rq->h_nr_idle -= h_nr_idle;
7089 
7090 		if (cfs_rq_is_idle(cfs_rq))
7091 			h_nr_idle = h_nr_queued;
7092 
7093 		/* end evaluation on encountering a throttled cfs_rq */
7094 		if (cfs_rq_throttled(cfs_rq))
7095 			return 0;
7096 
7097 		/* Don't dequeue parent if it has other entities besides us */
7098 		if (cfs_rq->load.weight) {
7099 			slice = cfs_rq_min_slice(cfs_rq);
7100 
7101 			/* Avoid re-evaluating load for this entity: */
7102 			se = parent_entity(se);
7103 			/*
7104 			 * Bias pick_next to pick a task from this cfs_rq, as
7105 			 * p is sleeping when it is within its sched_slice.
7106 			 */
7107 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7108 				set_next_buddy(se);
7109 			break;
7110 		}
7111 		flags |= DEQUEUE_SLEEP;
7112 		flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7113 	}
7114 
7115 	for_each_sched_entity(se) {
7116 		cfs_rq = cfs_rq_of(se);
7117 
7118 		update_load_avg(cfs_rq, se, UPDATE_TG);
7119 		se_update_runnable(se);
7120 		update_cfs_group(se);
7121 
7122 		se->slice = slice;
7123 		slice = cfs_rq_min_slice(cfs_rq);
7124 
7125 		cfs_rq->h_nr_runnable -= h_nr_runnable;
7126 		cfs_rq->h_nr_queued -= h_nr_queued;
7127 		cfs_rq->h_nr_idle -= h_nr_idle;
7128 
7129 		if (cfs_rq_is_idle(cfs_rq))
7130 			h_nr_idle = h_nr_queued;
7131 
7132 		/* end evaluation on encountering a throttled cfs_rq */
7133 		if (cfs_rq_throttled(cfs_rq))
7134 			return 0;
7135 	}
7136 
7137 	sub_nr_running(rq, h_nr_queued);
7138 
7139 	if (rq_h_nr_queued && !rq->cfs.h_nr_queued)
7140 		dl_server_stop(&rq->fair_server);
7141 
7142 	/* balance early to pull high priority tasks */
7143 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7144 		rq->next_balance = jiffies;
7145 
7146 	if (p && task_delayed) {
7147 		SCHED_WARN_ON(!task_sleep);
7148 		SCHED_WARN_ON(p->on_rq != 1);
7149 
7150 		/* Fix-up what dequeue_task_fair() skipped */
7151 		hrtick_update(rq);
7152 
7153 		/*
7154 		 * Fix-up what block_task() skipped.
7155 		 *
7156 		 * Must be last, @p might not be valid after this.
7157 		 */
7158 		__block_task(rq, p);
7159 	}
7160 
7161 	return 1;
7162 }
7163 
7164 /*
7165  * The dequeue_task method is called before nr_running is
7166  * decreased. We remove the task from the rbtree and
7167  * update the fair scheduling stats:
7168  */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)7169 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7170 {
7171 	if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
7172 		util_est_dequeue(&rq->cfs, p);
7173 
7174 	util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7175 	if (dequeue_entities(rq, &p->se, flags) < 0)
7176 		return false;
7177 
7178 	/*
7179 	 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7180 	 */
7181 
7182 	hrtick_update(rq);
7183 	return true;
7184 }
7185 
7186 #ifdef CONFIG_SMP
7187 
7188 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7189 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7190 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7191 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7192 
7193 #ifdef CONFIG_NO_HZ_COMMON
7194 
7195 static struct {
7196 	cpumask_var_t idle_cpus_mask;
7197 	atomic_t nr_cpus;
7198 	int has_blocked;		/* Idle CPUS has blocked load */
7199 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
7200 	unsigned long next_balance;     /* in jiffy units */
7201 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
7202 } nohz ____cacheline_aligned;
7203 
7204 #endif /* CONFIG_NO_HZ_COMMON */
7205 
cpu_load(struct rq * rq)7206 static unsigned long cpu_load(struct rq *rq)
7207 {
7208 	return cfs_rq_load_avg(&rq->cfs);
7209 }
7210 
7211 /*
7212  * cpu_load_without - compute CPU load without any contributions from *p
7213  * @cpu: the CPU which load is requested
7214  * @p: the task which load should be discounted
7215  *
7216  * The load of a CPU is defined by the load of tasks currently enqueued on that
7217  * CPU as well as tasks which are currently sleeping after an execution on that
7218  * CPU.
7219  *
7220  * This method returns the load of the specified CPU by discounting the load of
7221  * the specified task, whenever the task is currently contributing to the CPU
7222  * load.
7223  */
cpu_load_without(struct rq * rq,struct task_struct * p)7224 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7225 {
7226 	struct cfs_rq *cfs_rq;
7227 	unsigned int load;
7228 
7229 	/* Task has no contribution or is new */
7230 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7231 		return cpu_load(rq);
7232 
7233 	cfs_rq = &rq->cfs;
7234 	load = READ_ONCE(cfs_rq->avg.load_avg);
7235 
7236 	/* Discount task's util from CPU's util */
7237 	lsub_positive(&load, task_h_load(p));
7238 
7239 	return load;
7240 }
7241 
cpu_runnable(struct rq * rq)7242 static unsigned long cpu_runnable(struct rq *rq)
7243 {
7244 	return cfs_rq_runnable_avg(&rq->cfs);
7245 }
7246 
cpu_runnable_without(struct rq * rq,struct task_struct * p)7247 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7248 {
7249 	struct cfs_rq *cfs_rq;
7250 	unsigned int runnable;
7251 
7252 	/* Task has no contribution or is new */
7253 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7254 		return cpu_runnable(rq);
7255 
7256 	cfs_rq = &rq->cfs;
7257 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7258 
7259 	/* Discount task's runnable from CPU's runnable */
7260 	lsub_positive(&runnable, p->se.avg.runnable_avg);
7261 
7262 	return runnable;
7263 }
7264 
capacity_of(int cpu)7265 static unsigned long capacity_of(int cpu)
7266 {
7267 	return cpu_rq(cpu)->cpu_capacity;
7268 }
7269 
record_wakee(struct task_struct * p)7270 static void record_wakee(struct task_struct *p)
7271 {
7272 	/*
7273 	 * Only decay a single time; tasks that have less then 1 wakeup per
7274 	 * jiffy will not have built up many flips.
7275 	 */
7276 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7277 		current->wakee_flips >>= 1;
7278 		current->wakee_flip_decay_ts = jiffies;
7279 	}
7280 
7281 	if (current->last_wakee != p) {
7282 		current->last_wakee = p;
7283 		current->wakee_flips++;
7284 	}
7285 }
7286 
7287 /*
7288  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7289  *
7290  * A waker of many should wake a different task than the one last awakened
7291  * at a frequency roughly N times higher than one of its wakees.
7292  *
7293  * In order to determine whether we should let the load spread vs consolidating
7294  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7295  * partner, and a factor of lls_size higher frequency in the other.
7296  *
7297  * With both conditions met, we can be relatively sure that the relationship is
7298  * non-monogamous, with partner count exceeding socket size.
7299  *
7300  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7301  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7302  * socket size.
7303  */
wake_wide(struct task_struct * p)7304 static int wake_wide(struct task_struct *p)
7305 {
7306 	unsigned int master = current->wakee_flips;
7307 	unsigned int slave = p->wakee_flips;
7308 	int factor = __this_cpu_read(sd_llc_size);
7309 
7310 	if (master < slave)
7311 		swap(master, slave);
7312 	if (slave < factor || master < slave * factor)
7313 		return 0;
7314 	return 1;
7315 }
7316 
7317 /*
7318  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7319  * soonest. For the purpose of speed we only consider the waking and previous
7320  * CPU.
7321  *
7322  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7323  *			cache-affine and is (or	will be) idle.
7324  *
7325  * wake_affine_weight() - considers the weight to reflect the average
7326  *			  scheduling latency of the CPUs. This seems to work
7327  *			  for the overloaded case.
7328  */
7329 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7330 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7331 {
7332 	/*
7333 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7334 	 * context. Only allow the move if cache is shared. Otherwise an
7335 	 * interrupt intensive workload could force all tasks onto one
7336 	 * node depending on the IO topology or IRQ affinity settings.
7337 	 *
7338 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7339 	 * There is no guarantee that the cache hot data from an interrupt
7340 	 * is more important than cache hot data on the prev_cpu and from
7341 	 * a cpufreq perspective, it's better to have higher utilisation
7342 	 * on one CPU.
7343 	 */
7344 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7345 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7346 
7347 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7348 		return this_cpu;
7349 
7350 	if (available_idle_cpu(prev_cpu))
7351 		return prev_cpu;
7352 
7353 	return nr_cpumask_bits;
7354 }
7355 
7356 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7357 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7358 		   int this_cpu, int prev_cpu, int sync)
7359 {
7360 	s64 this_eff_load, prev_eff_load;
7361 	unsigned long task_load;
7362 
7363 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7364 
7365 	if (sync) {
7366 		unsigned long current_load = task_h_load(current);
7367 
7368 		if (current_load > this_eff_load)
7369 			return this_cpu;
7370 
7371 		this_eff_load -= current_load;
7372 	}
7373 
7374 	task_load = task_h_load(p);
7375 
7376 	this_eff_load += task_load;
7377 	if (sched_feat(WA_BIAS))
7378 		this_eff_load *= 100;
7379 	this_eff_load *= capacity_of(prev_cpu);
7380 
7381 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7382 	prev_eff_load -= task_load;
7383 	if (sched_feat(WA_BIAS))
7384 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7385 	prev_eff_load *= capacity_of(this_cpu);
7386 
7387 	/*
7388 	 * If sync, adjust the weight of prev_eff_load such that if
7389 	 * prev_eff == this_eff that select_idle_sibling() will consider
7390 	 * stacking the wakee on top of the waker if no other CPU is
7391 	 * idle.
7392 	 */
7393 	if (sync)
7394 		prev_eff_load += 1;
7395 
7396 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7397 }
7398 
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7399 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7400 		       int this_cpu, int prev_cpu, int sync)
7401 {
7402 	int target = nr_cpumask_bits;
7403 
7404 	if (sched_feat(WA_IDLE))
7405 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7406 
7407 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7408 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7409 
7410 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7411 	if (target != this_cpu)
7412 		return prev_cpu;
7413 
7414 	schedstat_inc(sd->ttwu_move_affine);
7415 	schedstat_inc(p->stats.nr_wakeups_affine);
7416 	return target;
7417 }
7418 
7419 static struct sched_group *
7420 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7421 
7422 /*
7423  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7424  */
7425 static int
sched_balance_find_dst_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7426 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7427 {
7428 	unsigned long load, min_load = ULONG_MAX;
7429 	unsigned int min_exit_latency = UINT_MAX;
7430 	u64 latest_idle_timestamp = 0;
7431 	int least_loaded_cpu = this_cpu;
7432 	int shallowest_idle_cpu = -1;
7433 	int i;
7434 
7435 	/* Check if we have any choice: */
7436 	if (group->group_weight == 1)
7437 		return cpumask_first(sched_group_span(group));
7438 
7439 	/* Traverse only the allowed CPUs */
7440 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7441 		struct rq *rq = cpu_rq(i);
7442 
7443 		if (!sched_core_cookie_match(rq, p))
7444 			continue;
7445 
7446 		if (sched_idle_cpu(i))
7447 			return i;
7448 
7449 		if (available_idle_cpu(i)) {
7450 			struct cpuidle_state *idle = idle_get_state(rq);
7451 			if (idle && idle->exit_latency < min_exit_latency) {
7452 				/*
7453 				 * We give priority to a CPU whose idle state
7454 				 * has the smallest exit latency irrespective
7455 				 * of any idle timestamp.
7456 				 */
7457 				min_exit_latency = idle->exit_latency;
7458 				latest_idle_timestamp = rq->idle_stamp;
7459 				shallowest_idle_cpu = i;
7460 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7461 				   rq->idle_stamp > latest_idle_timestamp) {
7462 				/*
7463 				 * If equal or no active idle state, then
7464 				 * the most recently idled CPU might have
7465 				 * a warmer cache.
7466 				 */
7467 				latest_idle_timestamp = rq->idle_stamp;
7468 				shallowest_idle_cpu = i;
7469 			}
7470 		} else if (shallowest_idle_cpu == -1) {
7471 			load = cpu_load(cpu_rq(i));
7472 			if (load < min_load) {
7473 				min_load = load;
7474 				least_loaded_cpu = i;
7475 			}
7476 		}
7477 	}
7478 
7479 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7480 }
7481 
sched_balance_find_dst_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7482 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7483 				  int cpu, int prev_cpu, int sd_flag)
7484 {
7485 	int new_cpu = cpu;
7486 
7487 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7488 		return prev_cpu;
7489 
7490 	/*
7491 	 * We need task's util for cpu_util_without, sync it up to
7492 	 * prev_cpu's last_update_time.
7493 	 */
7494 	if (!(sd_flag & SD_BALANCE_FORK))
7495 		sync_entity_load_avg(&p->se);
7496 
7497 	while (sd) {
7498 		struct sched_group *group;
7499 		struct sched_domain *tmp;
7500 		int weight;
7501 
7502 		if (!(sd->flags & sd_flag)) {
7503 			sd = sd->child;
7504 			continue;
7505 		}
7506 
7507 		group = sched_balance_find_dst_group(sd, p, cpu);
7508 		if (!group) {
7509 			sd = sd->child;
7510 			continue;
7511 		}
7512 
7513 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7514 		if (new_cpu == cpu) {
7515 			/* Now try balancing at a lower domain level of 'cpu': */
7516 			sd = sd->child;
7517 			continue;
7518 		}
7519 
7520 		/* Now try balancing at a lower domain level of 'new_cpu': */
7521 		cpu = new_cpu;
7522 		weight = sd->span_weight;
7523 		sd = NULL;
7524 		for_each_domain(cpu, tmp) {
7525 			if (weight <= tmp->span_weight)
7526 				break;
7527 			if (tmp->flags & sd_flag)
7528 				sd = tmp;
7529 		}
7530 	}
7531 
7532 	return new_cpu;
7533 }
7534 
__select_idle_cpu(int cpu,struct task_struct * p)7535 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7536 {
7537 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7538 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7539 		return cpu;
7540 
7541 	return -1;
7542 }
7543 
7544 #ifdef CONFIG_SCHED_SMT
7545 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7546 EXPORT_SYMBOL_GPL(sched_smt_present);
7547 
set_idle_cores(int cpu,int val)7548 static inline void set_idle_cores(int cpu, int val)
7549 {
7550 	struct sched_domain_shared *sds;
7551 
7552 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7553 	if (sds)
7554 		WRITE_ONCE(sds->has_idle_cores, val);
7555 }
7556 
test_idle_cores(int cpu)7557 static inline bool test_idle_cores(int cpu)
7558 {
7559 	struct sched_domain_shared *sds;
7560 
7561 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7562 	if (sds)
7563 		return READ_ONCE(sds->has_idle_cores);
7564 
7565 	return false;
7566 }
7567 
7568 /*
7569  * Scans the local SMT mask to see if the entire core is idle, and records this
7570  * information in sd_llc_shared->has_idle_cores.
7571  *
7572  * Since SMT siblings share all cache levels, inspecting this limited remote
7573  * state should be fairly cheap.
7574  */
__update_idle_core(struct rq * rq)7575 void __update_idle_core(struct rq *rq)
7576 {
7577 	int core = cpu_of(rq);
7578 	int cpu;
7579 
7580 	rcu_read_lock();
7581 	if (test_idle_cores(core))
7582 		goto unlock;
7583 
7584 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7585 		if (cpu == core)
7586 			continue;
7587 
7588 		if (!available_idle_cpu(cpu))
7589 			goto unlock;
7590 	}
7591 
7592 	set_idle_cores(core, 1);
7593 unlock:
7594 	rcu_read_unlock();
7595 }
7596 
7597 /*
7598  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7599  * there are no idle cores left in the system; tracked through
7600  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7601  */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7602 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7603 {
7604 	bool idle = true;
7605 	int cpu;
7606 
7607 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7608 		if (!available_idle_cpu(cpu)) {
7609 			idle = false;
7610 			if (*idle_cpu == -1) {
7611 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7612 					*idle_cpu = cpu;
7613 					break;
7614 				}
7615 				continue;
7616 			}
7617 			break;
7618 		}
7619 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7620 			*idle_cpu = cpu;
7621 	}
7622 
7623 	if (idle)
7624 		return core;
7625 
7626 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7627 	return -1;
7628 }
7629 
7630 /*
7631  * Scan the local SMT mask for idle CPUs.
7632  */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7633 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7634 {
7635 	int cpu;
7636 
7637 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7638 		if (cpu == target)
7639 			continue;
7640 		/*
7641 		 * Check if the CPU is in the LLC scheduling domain of @target.
7642 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7643 		 */
7644 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7645 			continue;
7646 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7647 			return cpu;
7648 	}
7649 
7650 	return -1;
7651 }
7652 
7653 #else /* CONFIG_SCHED_SMT */
7654 
set_idle_cores(int cpu,int val)7655 static inline void set_idle_cores(int cpu, int val)
7656 {
7657 }
7658 
test_idle_cores(int cpu)7659 static inline bool test_idle_cores(int cpu)
7660 {
7661 	return false;
7662 }
7663 
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7664 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7665 {
7666 	return __select_idle_cpu(core, p);
7667 }
7668 
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7669 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7670 {
7671 	return -1;
7672 }
7673 
7674 #endif /* CONFIG_SCHED_SMT */
7675 
7676 /*
7677  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7678  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7679  * average idle time for this rq (as found in rq->avg_idle).
7680  */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7681 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7682 {
7683 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7684 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7685 	struct sched_domain_shared *sd_share;
7686 
7687 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7688 
7689 	if (sched_feat(SIS_UTIL)) {
7690 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7691 		if (sd_share) {
7692 			/* because !--nr is the condition to stop scan */
7693 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7694 			/* overloaded LLC is unlikely to have idle cpu/core */
7695 			if (nr == 1)
7696 				return -1;
7697 		}
7698 	}
7699 
7700 	if (static_branch_unlikely(&sched_cluster_active)) {
7701 		struct sched_group *sg = sd->groups;
7702 
7703 		if (sg->flags & SD_CLUSTER) {
7704 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7705 				if (!cpumask_test_cpu(cpu, cpus))
7706 					continue;
7707 
7708 				if (has_idle_core) {
7709 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7710 					if ((unsigned int)i < nr_cpumask_bits)
7711 						return i;
7712 				} else {
7713 					if (--nr <= 0)
7714 						return -1;
7715 					idle_cpu = __select_idle_cpu(cpu, p);
7716 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7717 						return idle_cpu;
7718 				}
7719 			}
7720 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7721 		}
7722 	}
7723 
7724 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7725 		if (has_idle_core) {
7726 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7727 			if ((unsigned int)i < nr_cpumask_bits)
7728 				return i;
7729 
7730 		} else {
7731 			if (--nr <= 0)
7732 				return -1;
7733 			idle_cpu = __select_idle_cpu(cpu, p);
7734 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7735 				break;
7736 		}
7737 	}
7738 
7739 	if (has_idle_core)
7740 		set_idle_cores(target, false);
7741 
7742 	return idle_cpu;
7743 }
7744 
7745 /*
7746  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7747  * the task fits. If no CPU is big enough, but there are idle ones, try to
7748  * maximize capacity.
7749  */
7750 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7751 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7752 {
7753 	unsigned long task_util, util_min, util_max, best_cap = 0;
7754 	int fits, best_fits = 0;
7755 	int cpu, best_cpu = -1;
7756 	struct cpumask *cpus;
7757 
7758 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7759 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7760 
7761 	task_util = task_util_est(p);
7762 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7763 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7764 
7765 	for_each_cpu_wrap(cpu, cpus, target) {
7766 		unsigned long cpu_cap = capacity_of(cpu);
7767 
7768 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7769 			continue;
7770 
7771 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7772 
7773 		/* This CPU fits with all requirements */
7774 		if (fits > 0)
7775 			return cpu;
7776 		/*
7777 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7778 		 * Look for the CPU with best capacity.
7779 		 */
7780 		else if (fits < 0)
7781 			cpu_cap = get_actual_cpu_capacity(cpu);
7782 
7783 		/*
7784 		 * First, select CPU which fits better (-1 being better than 0).
7785 		 * Then, select the one with best capacity at same level.
7786 		 */
7787 		if ((fits < best_fits) ||
7788 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7789 			best_cap = cpu_cap;
7790 			best_cpu = cpu;
7791 			best_fits = fits;
7792 		}
7793 	}
7794 
7795 	return best_cpu;
7796 }
7797 
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7798 static inline bool asym_fits_cpu(unsigned long util,
7799 				 unsigned long util_min,
7800 				 unsigned long util_max,
7801 				 int cpu)
7802 {
7803 	if (sched_asym_cpucap_active())
7804 		/*
7805 		 * Return true only if the cpu fully fits the task requirements
7806 		 * which include the utilization and the performance hints.
7807 		 */
7808 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7809 
7810 	return true;
7811 }
7812 
7813 /*
7814  * Try and locate an idle core/thread in the LLC cache domain.
7815  */
select_idle_sibling(struct task_struct * p,int prev,int target)7816 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7817 {
7818 	bool has_idle_core = false;
7819 	struct sched_domain *sd;
7820 	unsigned long task_util, util_min, util_max;
7821 	int i, recent_used_cpu, prev_aff = -1;
7822 
7823 	/*
7824 	 * On asymmetric system, update task utilization because we will check
7825 	 * that the task fits with CPU's capacity.
7826 	 */
7827 	if (sched_asym_cpucap_active()) {
7828 		sync_entity_load_avg(&p->se);
7829 		task_util = task_util_est(p);
7830 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7831 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7832 	}
7833 
7834 	/*
7835 	 * per-cpu select_rq_mask usage
7836 	 */
7837 	lockdep_assert_irqs_disabled();
7838 
7839 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7840 	    asym_fits_cpu(task_util, util_min, util_max, target))
7841 		return target;
7842 
7843 	/*
7844 	 * If the previous CPU is cache affine and idle, don't be stupid:
7845 	 */
7846 	if (prev != target && cpus_share_cache(prev, target) &&
7847 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7848 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7849 
7850 		if (!static_branch_unlikely(&sched_cluster_active) ||
7851 		    cpus_share_resources(prev, target))
7852 			return prev;
7853 
7854 		prev_aff = prev;
7855 	}
7856 
7857 	/*
7858 	 * Allow a per-cpu kthread to stack with the wakee if the
7859 	 * kworker thread and the tasks previous CPUs are the same.
7860 	 * The assumption is that the wakee queued work for the
7861 	 * per-cpu kthread that is now complete and the wakeup is
7862 	 * essentially a sync wakeup. An obvious example of this
7863 	 * pattern is IO completions.
7864 	 */
7865 	if (is_per_cpu_kthread(current) &&
7866 	    in_task() &&
7867 	    prev == smp_processor_id() &&
7868 	    this_rq()->nr_running <= 1 &&
7869 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7870 		return prev;
7871 	}
7872 
7873 	/* Check a recently used CPU as a potential idle candidate: */
7874 	recent_used_cpu = p->recent_used_cpu;
7875 	p->recent_used_cpu = prev;
7876 	if (recent_used_cpu != prev &&
7877 	    recent_used_cpu != target &&
7878 	    cpus_share_cache(recent_used_cpu, target) &&
7879 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7880 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7881 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7882 
7883 		if (!static_branch_unlikely(&sched_cluster_active) ||
7884 		    cpus_share_resources(recent_used_cpu, target))
7885 			return recent_used_cpu;
7886 
7887 	} else {
7888 		recent_used_cpu = -1;
7889 	}
7890 
7891 	/*
7892 	 * For asymmetric CPU capacity systems, our domain of interest is
7893 	 * sd_asym_cpucapacity rather than sd_llc.
7894 	 */
7895 	if (sched_asym_cpucap_active()) {
7896 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7897 		/*
7898 		 * On an asymmetric CPU capacity system where an exclusive
7899 		 * cpuset defines a symmetric island (i.e. one unique
7900 		 * capacity_orig value through the cpuset), the key will be set
7901 		 * but the CPUs within that cpuset will not have a domain with
7902 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7903 		 * capacity path.
7904 		 */
7905 		if (sd) {
7906 			i = select_idle_capacity(p, sd, target);
7907 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7908 		}
7909 	}
7910 
7911 	sd = rcu_dereference(per_cpu(sd_llc, target));
7912 	if (!sd)
7913 		return target;
7914 
7915 	if (sched_smt_active()) {
7916 		has_idle_core = test_idle_cores(target);
7917 
7918 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7919 			i = select_idle_smt(p, sd, prev);
7920 			if ((unsigned int)i < nr_cpumask_bits)
7921 				return i;
7922 		}
7923 	}
7924 
7925 	i = select_idle_cpu(p, sd, has_idle_core, target);
7926 	if ((unsigned)i < nr_cpumask_bits)
7927 		return i;
7928 
7929 	/*
7930 	 * For cluster machines which have lower sharing cache like L2 or
7931 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7932 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7933 	 * use them if possible when no idle CPU found in select_idle_cpu().
7934 	 */
7935 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7936 		return prev_aff;
7937 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7938 		return recent_used_cpu;
7939 
7940 	return target;
7941 }
7942 
7943 /**
7944  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7945  * @cpu: the CPU to get the utilization for
7946  * @p: task for which the CPU utilization should be predicted or NULL
7947  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7948  * @boost: 1 to enable boosting, otherwise 0
7949  *
7950  * The unit of the return value must be the same as the one of CPU capacity
7951  * so that CPU utilization can be compared with CPU capacity.
7952  *
7953  * CPU utilization is the sum of running time of runnable tasks plus the
7954  * recent utilization of currently non-runnable tasks on that CPU.
7955  * It represents the amount of CPU capacity currently used by CFS tasks in
7956  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7957  * capacity at f_max.
7958  *
7959  * The estimated CPU utilization is defined as the maximum between CPU
7960  * utilization and sum of the estimated utilization of the currently
7961  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7962  * previously-executed tasks, which helps better deduce how busy a CPU will
7963  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7964  * of such a task would be significantly decayed at this point of time.
7965  *
7966  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7967  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7968  * utilization. Boosting is implemented in cpu_util() so that internal
7969  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7970  * latter via cpu_util_cfs_boost().
7971  *
7972  * CPU utilization can be higher than the current CPU capacity
7973  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7974  * of rounding errors as well as task migrations or wakeups of new tasks.
7975  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7976  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7977  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7978  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7979  * though since this is useful for predicting the CPU capacity required
7980  * after task migrations (scheduler-driven DVFS).
7981  *
7982  * Return: (Boosted) (estimated) utilization for the specified CPU.
7983  */
7984 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)7985 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7986 {
7987 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7988 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7989 	unsigned long runnable;
7990 
7991 	if (boost) {
7992 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7993 		util = max(util, runnable);
7994 	}
7995 
7996 	/*
7997 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7998 	 * contribution. If @p migrates from another CPU to @cpu add its
7999 	 * contribution. In all the other cases @cpu is not impacted by the
8000 	 * migration so its util_avg is already correct.
8001 	 */
8002 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8003 		lsub_positive(&util, task_util(p));
8004 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8005 		util += task_util(p);
8006 
8007 	if (sched_feat(UTIL_EST)) {
8008 		unsigned long util_est;
8009 
8010 		util_est = READ_ONCE(cfs_rq->avg.util_est);
8011 
8012 		/*
8013 		 * During wake-up @p isn't enqueued yet and doesn't contribute
8014 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
8015 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8016 		 * has been enqueued.
8017 		 *
8018 		 * During exec (@dst_cpu = -1) @p is enqueued and does
8019 		 * contribute to cpu_rq(cpu)->cfs.util_est.
8020 		 * Remove it to "simulate" cpu_util without @p's contribution.
8021 		 *
8022 		 * Despite the task_on_rq_queued(@p) check there is still a
8023 		 * small window for a possible race when an exec
8024 		 * select_task_rq_fair() races with LB's detach_task().
8025 		 *
8026 		 *   detach_task()
8027 		 *     deactivate_task()
8028 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
8029 		 *       -------------------------------- A
8030 		 *       dequeue_task()                    \
8031 		 *         dequeue_task_fair()              + Race Time
8032 		 *           util_est_dequeue()            /
8033 		 *       -------------------------------- B
8034 		 *
8035 		 * The additional check "current == p" is required to further
8036 		 * reduce the race window.
8037 		 */
8038 		if (dst_cpu == cpu)
8039 			util_est += _task_util_est(p);
8040 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
8041 			lsub_positive(&util_est, _task_util_est(p));
8042 
8043 		util = max(util, util_est);
8044 	}
8045 
8046 	return min(util, arch_scale_cpu_capacity(cpu));
8047 }
8048 
cpu_util_cfs(int cpu)8049 unsigned long cpu_util_cfs(int cpu)
8050 {
8051 	return cpu_util(cpu, NULL, -1, 0);
8052 }
8053 
cpu_util_cfs_boost(int cpu)8054 unsigned long cpu_util_cfs_boost(int cpu)
8055 {
8056 	return cpu_util(cpu, NULL, -1, 1);
8057 }
8058 
8059 /*
8060  * cpu_util_without: compute cpu utilization without any contributions from *p
8061  * @cpu: the CPU which utilization is requested
8062  * @p: the task which utilization should be discounted
8063  *
8064  * The utilization of a CPU is defined by the utilization of tasks currently
8065  * enqueued on that CPU as well as tasks which are currently sleeping after an
8066  * execution on that CPU.
8067  *
8068  * This method returns the utilization of the specified CPU by discounting the
8069  * utilization of the specified task, whenever the task is currently
8070  * contributing to the CPU utilization.
8071  */
cpu_util_without(int cpu,struct task_struct * p)8072 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8073 {
8074 	/* Task has no contribution or is new */
8075 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8076 		p = NULL;
8077 
8078 	return cpu_util(cpu, p, -1, 0);
8079 }
8080 
8081 /*
8082  * This function computes an effective utilization for the given CPU, to be
8083  * used for frequency selection given the linear relation: f = u * f_max.
8084  *
8085  * The scheduler tracks the following metrics:
8086  *
8087  *   cpu_util_{cfs,rt,dl,irq}()
8088  *   cpu_bw_dl()
8089  *
8090  * Where the cfs,rt and dl util numbers are tracked with the same metric and
8091  * synchronized windows and are thus directly comparable.
8092  *
8093  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8094  * which excludes things like IRQ and steal-time. These latter are then accrued
8095  * in the IRQ utilization.
8096  *
8097  * The DL bandwidth number OTOH is not a measured metric but a value computed
8098  * based on the task model parameters and gives the minimal utilization
8099  * required to meet deadlines.
8100  */
effective_cpu_util(int cpu,unsigned long util_cfs,unsigned long * min,unsigned long * max)8101 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8102 				 unsigned long *min,
8103 				 unsigned long *max)
8104 {
8105 	unsigned long util, irq, scale;
8106 	struct rq *rq = cpu_rq(cpu);
8107 
8108 	scale = arch_scale_cpu_capacity(cpu);
8109 
8110 	/*
8111 	 * Early check to see if IRQ/steal time saturates the CPU, can be
8112 	 * because of inaccuracies in how we track these -- see
8113 	 * update_irq_load_avg().
8114 	 */
8115 	irq = cpu_util_irq(rq);
8116 	if (unlikely(irq >= scale)) {
8117 		if (min)
8118 			*min = scale;
8119 		if (max)
8120 			*max = scale;
8121 		return scale;
8122 	}
8123 
8124 	if (min) {
8125 		/*
8126 		 * The minimum utilization returns the highest level between:
8127 		 * - the computed DL bandwidth needed with the IRQ pressure which
8128 		 *   steals time to the deadline task.
8129 		 * - The minimum performance requirement for CFS and/or RT.
8130 		 */
8131 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8132 
8133 		/*
8134 		 * When an RT task is runnable and uclamp is not used, we must
8135 		 * ensure that the task will run at maximum compute capacity.
8136 		 */
8137 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8138 			*min = max(*min, scale);
8139 	}
8140 
8141 	/*
8142 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8143 	 * CFS tasks and we use the same metric to track the effective
8144 	 * utilization (PELT windows are synchronized) we can directly add them
8145 	 * to obtain the CPU's actual utilization.
8146 	 */
8147 	util = util_cfs + cpu_util_rt(rq);
8148 	util += cpu_util_dl(rq);
8149 
8150 	/*
8151 	 * The maximum hint is a soft bandwidth requirement, which can be lower
8152 	 * than the actual utilization because of uclamp_max requirements.
8153 	 */
8154 	if (max)
8155 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8156 
8157 	if (util >= scale)
8158 		return scale;
8159 
8160 	/*
8161 	 * There is still idle time; further improve the number by using the
8162 	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8163 	 * need to scale the task numbers:
8164 	 *
8165 	 *              max - irq
8166 	 *   U' = irq + --------- * U
8167 	 *                 max
8168 	 */
8169 	util = scale_irq_capacity(util, irq, scale);
8170 	util += irq;
8171 
8172 	return min(scale, util);
8173 }
8174 
sched_cpu_util(int cpu)8175 unsigned long sched_cpu_util(int cpu)
8176 {
8177 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8178 }
8179 
8180 /*
8181  * energy_env - Utilization landscape for energy estimation.
8182  * @task_busy_time: Utilization contribution by the task for which we test the
8183  *                  placement. Given by eenv_task_busy_time().
8184  * @pd_busy_time:   Utilization of the whole perf domain without the task
8185  *                  contribution. Given by eenv_pd_busy_time().
8186  * @cpu_cap:        Maximum CPU capacity for the perf domain.
8187  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8188  */
8189 struct energy_env {
8190 	unsigned long task_busy_time;
8191 	unsigned long pd_busy_time;
8192 	unsigned long cpu_cap;
8193 	unsigned long pd_cap;
8194 };
8195 
8196 /*
8197  * Compute the task busy time for compute_energy(). This time cannot be
8198  * injected directly into effective_cpu_util() because of the IRQ scaling.
8199  * The latter only makes sense with the most recent CPUs where the task has
8200  * run.
8201  */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)8202 static inline void eenv_task_busy_time(struct energy_env *eenv,
8203 				       struct task_struct *p, int prev_cpu)
8204 {
8205 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8206 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8207 
8208 	if (unlikely(irq >= max_cap))
8209 		busy_time = max_cap;
8210 	else
8211 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8212 
8213 	eenv->task_busy_time = busy_time;
8214 }
8215 
8216 /*
8217  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8218  * utilization for each @pd_cpus, it however doesn't take into account
8219  * clamping since the ratio (utilization / cpu_capacity) is already enough to
8220  * scale the EM reported power consumption at the (eventually clamped)
8221  * cpu_capacity.
8222  *
8223  * The contribution of the task @p for which we want to estimate the
8224  * energy cost is removed (by cpu_util()) and must be calculated
8225  * separately (see eenv_task_busy_time). This ensures:
8226  *
8227  *   - A stable PD utilization, no matter which CPU of that PD we want to place
8228  *     the task on.
8229  *
8230  *   - A fair comparison between CPUs as the task contribution (task_util())
8231  *     will always be the same no matter which CPU utilization we rely on
8232  *     (util_avg or util_est).
8233  *
8234  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8235  * exceed @eenv->pd_cap.
8236  */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)8237 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8238 				     struct cpumask *pd_cpus,
8239 				     struct task_struct *p)
8240 {
8241 	unsigned long busy_time = 0;
8242 	int cpu;
8243 
8244 	for_each_cpu(cpu, pd_cpus) {
8245 		unsigned long util = cpu_util(cpu, p, -1, 0);
8246 
8247 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8248 	}
8249 
8250 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8251 }
8252 
8253 /*
8254  * Compute the maximum utilization for compute_energy() when the task @p
8255  * is placed on the cpu @dst_cpu.
8256  *
8257  * Returns the maximum utilization among @eenv->cpus. This utilization can't
8258  * exceed @eenv->cpu_cap.
8259  */
8260 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8261 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8262 		 struct task_struct *p, int dst_cpu)
8263 {
8264 	unsigned long max_util = 0;
8265 	int cpu;
8266 
8267 	for_each_cpu(cpu, pd_cpus) {
8268 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8269 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8270 		unsigned long eff_util, min, max;
8271 
8272 		/*
8273 		 * Performance domain frequency: utilization clamping
8274 		 * must be considered since it affects the selection
8275 		 * of the performance domain frequency.
8276 		 * NOTE: in case RT tasks are running, by default the min
8277 		 * utilization can be max OPP.
8278 		 */
8279 		eff_util = effective_cpu_util(cpu, util, &min, &max);
8280 
8281 		/* Task's uclamp can modify min and max value */
8282 		if (tsk && uclamp_is_used()) {
8283 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8284 
8285 			/*
8286 			 * If there is no active max uclamp constraint,
8287 			 * directly use task's one, otherwise keep max.
8288 			 */
8289 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
8290 				max = uclamp_eff_value(p, UCLAMP_MAX);
8291 			else
8292 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8293 		}
8294 
8295 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8296 		max_util = max(max_util, eff_util);
8297 	}
8298 
8299 	return min(max_util, eenv->cpu_cap);
8300 }
8301 
8302 /*
8303  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8304  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8305  * contribution is ignored.
8306  */
8307 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8308 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8309 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8310 {
8311 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8312 	unsigned long busy_time = eenv->pd_busy_time;
8313 	unsigned long energy;
8314 
8315 	if (dst_cpu >= 0)
8316 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8317 
8318 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8319 
8320 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8321 
8322 	return energy;
8323 }
8324 
8325 /*
8326  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8327  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8328  * spare capacity in each performance domain and uses it as a potential
8329  * candidate to execute the task. Then, it uses the Energy Model to figure
8330  * out which of the CPU candidates is the most energy-efficient.
8331  *
8332  * The rationale for this heuristic is as follows. In a performance domain,
8333  * all the most energy efficient CPU candidates (according to the Energy
8334  * Model) are those for which we'll request a low frequency. When there are
8335  * several CPUs for which the frequency request will be the same, we don't
8336  * have enough data to break the tie between them, because the Energy Model
8337  * only includes active power costs. With this model, if we assume that
8338  * frequency requests follow utilization (e.g. using schedutil), the CPU with
8339  * the maximum spare capacity in a performance domain is guaranteed to be among
8340  * the best candidates of the performance domain.
8341  *
8342  * In practice, it could be preferable from an energy standpoint to pack
8343  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8344  * but that could also hurt our chances to go cluster idle, and we have no
8345  * ways to tell with the current Energy Model if this is actually a good
8346  * idea or not. So, find_energy_efficient_cpu() basically favors
8347  * cluster-packing, and spreading inside a cluster. That should at least be
8348  * a good thing for latency, and this is consistent with the idea that most
8349  * of the energy savings of EAS come from the asymmetry of the system, and
8350  * not so much from breaking the tie between identical CPUs. That's also the
8351  * reason why EAS is enabled in the topology code only for systems where
8352  * SD_ASYM_CPUCAPACITY is set.
8353  *
8354  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8355  * they don't have any useful utilization data yet and it's not possible to
8356  * forecast their impact on energy consumption. Consequently, they will be
8357  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8358  * to be energy-inefficient in some use-cases. The alternative would be to
8359  * bias new tasks towards specific types of CPUs first, or to try to infer
8360  * their util_avg from the parent task, but those heuristics could hurt
8361  * other use-cases too. So, until someone finds a better way to solve this,
8362  * let's keep things simple by re-using the existing slow path.
8363  */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)8364 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8365 {
8366 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8367 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8368 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8369 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8370 	struct root_domain *rd = this_rq()->rd;
8371 	int cpu, best_energy_cpu, target = -1;
8372 	int prev_fits = -1, best_fits = -1;
8373 	unsigned long best_actual_cap = 0;
8374 	unsigned long prev_actual_cap = 0;
8375 	struct sched_domain *sd;
8376 	struct perf_domain *pd;
8377 	struct energy_env eenv;
8378 
8379 	rcu_read_lock();
8380 	pd = rcu_dereference(rd->pd);
8381 	if (!pd)
8382 		goto unlock;
8383 
8384 	/*
8385 	 * Energy-aware wake-up happens on the lowest sched_domain starting
8386 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8387 	 */
8388 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8389 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8390 		sd = sd->parent;
8391 	if (!sd)
8392 		goto unlock;
8393 
8394 	target = prev_cpu;
8395 
8396 	sync_entity_load_avg(&p->se);
8397 	if (!task_util_est(p) && p_util_min == 0)
8398 		goto unlock;
8399 
8400 	eenv_task_busy_time(&eenv, p, prev_cpu);
8401 
8402 	for (; pd; pd = pd->next) {
8403 		unsigned long util_min = p_util_min, util_max = p_util_max;
8404 		unsigned long cpu_cap, cpu_actual_cap, util;
8405 		long prev_spare_cap = -1, max_spare_cap = -1;
8406 		unsigned long rq_util_min, rq_util_max;
8407 		unsigned long cur_delta, base_energy;
8408 		int max_spare_cap_cpu = -1;
8409 		int fits, max_fits = -1;
8410 
8411 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8412 
8413 		if (cpumask_empty(cpus))
8414 			continue;
8415 
8416 		/* Account external pressure for the energy estimation */
8417 		cpu = cpumask_first(cpus);
8418 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8419 
8420 		eenv.cpu_cap = cpu_actual_cap;
8421 		eenv.pd_cap = 0;
8422 
8423 		for_each_cpu(cpu, cpus) {
8424 			struct rq *rq = cpu_rq(cpu);
8425 
8426 			eenv.pd_cap += cpu_actual_cap;
8427 
8428 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8429 				continue;
8430 
8431 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8432 				continue;
8433 
8434 			util = cpu_util(cpu, p, cpu, 0);
8435 			cpu_cap = capacity_of(cpu);
8436 
8437 			/*
8438 			 * Skip CPUs that cannot satisfy the capacity request.
8439 			 * IOW, placing the task there would make the CPU
8440 			 * overutilized. Take uclamp into account to see how
8441 			 * much capacity we can get out of the CPU; this is
8442 			 * aligned with sched_cpu_util().
8443 			 */
8444 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8445 				/*
8446 				 * Open code uclamp_rq_util_with() except for
8447 				 * the clamp() part. I.e.: apply max aggregation
8448 				 * only. util_fits_cpu() logic requires to
8449 				 * operate on non clamped util but must use the
8450 				 * max-aggregated uclamp_{min, max}.
8451 				 */
8452 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8453 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8454 
8455 				util_min = max(rq_util_min, p_util_min);
8456 				util_max = max(rq_util_max, p_util_max);
8457 			}
8458 
8459 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8460 			if (!fits)
8461 				continue;
8462 
8463 			lsub_positive(&cpu_cap, util);
8464 
8465 			if (cpu == prev_cpu) {
8466 				/* Always use prev_cpu as a candidate. */
8467 				prev_spare_cap = cpu_cap;
8468 				prev_fits = fits;
8469 			} else if ((fits > max_fits) ||
8470 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8471 				/*
8472 				 * Find the CPU with the maximum spare capacity
8473 				 * among the remaining CPUs in the performance
8474 				 * domain.
8475 				 */
8476 				max_spare_cap = cpu_cap;
8477 				max_spare_cap_cpu = cpu;
8478 				max_fits = fits;
8479 			}
8480 		}
8481 
8482 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8483 			continue;
8484 
8485 		eenv_pd_busy_time(&eenv, cpus, p);
8486 		/* Compute the 'base' energy of the pd, without @p */
8487 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8488 
8489 		/* Evaluate the energy impact of using prev_cpu. */
8490 		if (prev_spare_cap > -1) {
8491 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8492 						    prev_cpu);
8493 			/* CPU utilization has changed */
8494 			if (prev_delta < base_energy)
8495 				goto unlock;
8496 			prev_delta -= base_energy;
8497 			prev_actual_cap = cpu_actual_cap;
8498 			best_delta = min(best_delta, prev_delta);
8499 		}
8500 
8501 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8502 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8503 			/* Current best energy cpu fits better */
8504 			if (max_fits < best_fits)
8505 				continue;
8506 
8507 			/*
8508 			 * Both don't fit performance hint (i.e. uclamp_min)
8509 			 * but best energy cpu has better capacity.
8510 			 */
8511 			if ((max_fits < 0) &&
8512 			    (cpu_actual_cap <= best_actual_cap))
8513 				continue;
8514 
8515 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8516 						   max_spare_cap_cpu);
8517 			/* CPU utilization has changed */
8518 			if (cur_delta < base_energy)
8519 				goto unlock;
8520 			cur_delta -= base_energy;
8521 
8522 			/*
8523 			 * Both fit for the task but best energy cpu has lower
8524 			 * energy impact.
8525 			 */
8526 			if ((max_fits > 0) && (best_fits > 0) &&
8527 			    (cur_delta >= best_delta))
8528 				continue;
8529 
8530 			best_delta = cur_delta;
8531 			best_energy_cpu = max_spare_cap_cpu;
8532 			best_fits = max_fits;
8533 			best_actual_cap = cpu_actual_cap;
8534 		}
8535 	}
8536 	rcu_read_unlock();
8537 
8538 	if ((best_fits > prev_fits) ||
8539 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8540 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8541 		target = best_energy_cpu;
8542 
8543 	return target;
8544 
8545 unlock:
8546 	rcu_read_unlock();
8547 
8548 	return target;
8549 }
8550 
8551 /*
8552  * select_task_rq_fair: Select target runqueue for the waking task in domains
8553  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8554  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8555  *
8556  * Balances load by selecting the idlest CPU in the idlest group, or under
8557  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8558  *
8559  * Returns the target CPU number.
8560  */
8561 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8562 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8563 {
8564 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8565 	struct sched_domain *tmp, *sd = NULL;
8566 	int cpu = smp_processor_id();
8567 	int new_cpu = prev_cpu;
8568 	int want_affine = 0;
8569 	/* SD_flags and WF_flags share the first nibble */
8570 	int sd_flag = wake_flags & 0xF;
8571 
8572 	/*
8573 	 * required for stable ->cpus_allowed
8574 	 */
8575 	lockdep_assert_held(&p->pi_lock);
8576 	if (wake_flags & WF_TTWU) {
8577 		record_wakee(p);
8578 
8579 		if ((wake_flags & WF_CURRENT_CPU) &&
8580 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8581 			return cpu;
8582 
8583 		if (!is_rd_overutilized(this_rq()->rd)) {
8584 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8585 			if (new_cpu >= 0)
8586 				return new_cpu;
8587 			new_cpu = prev_cpu;
8588 		}
8589 
8590 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8591 	}
8592 
8593 	rcu_read_lock();
8594 	for_each_domain(cpu, tmp) {
8595 		/*
8596 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8597 		 * cpu is a valid SD_WAKE_AFFINE target.
8598 		 */
8599 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8600 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8601 			if (cpu != prev_cpu)
8602 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8603 
8604 			sd = NULL; /* Prefer wake_affine over balance flags */
8605 			break;
8606 		}
8607 
8608 		/*
8609 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8610 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8611 		 * will usually go to the fast path.
8612 		 */
8613 		if (tmp->flags & sd_flag)
8614 			sd = tmp;
8615 		else if (!want_affine)
8616 			break;
8617 	}
8618 
8619 	if (unlikely(sd)) {
8620 		/* Slow path */
8621 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8622 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8623 		/* Fast path */
8624 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8625 	}
8626 	rcu_read_unlock();
8627 
8628 	return new_cpu;
8629 }
8630 
8631 /*
8632  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8633  * cfs_rq_of(p) references at time of call are still valid and identify the
8634  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8635  */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8636 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8637 {
8638 	struct sched_entity *se = &p->se;
8639 
8640 	if (!task_on_rq_migrating(p)) {
8641 		remove_entity_load_avg(se);
8642 
8643 		/*
8644 		 * Here, the task's PELT values have been updated according to
8645 		 * the current rq's clock. But if that clock hasn't been
8646 		 * updated in a while, a substantial idle time will be missed,
8647 		 * leading to an inflation after wake-up on the new rq.
8648 		 *
8649 		 * Estimate the missing time from the cfs_rq last_update_time
8650 		 * and update sched_avg to improve the PELT continuity after
8651 		 * migration.
8652 		 */
8653 		migrate_se_pelt_lag(se);
8654 	}
8655 
8656 	/* Tell new CPU we are migrated */
8657 	se->avg.last_update_time = 0;
8658 
8659 	update_scan_period(p, new_cpu);
8660 }
8661 
task_dead_fair(struct task_struct * p)8662 static void task_dead_fair(struct task_struct *p)
8663 {
8664 	struct sched_entity *se = &p->se;
8665 
8666 	if (se->sched_delayed) {
8667 		struct rq_flags rf;
8668 		struct rq *rq;
8669 
8670 		rq = task_rq_lock(p, &rf);
8671 		if (se->sched_delayed) {
8672 			update_rq_clock(rq);
8673 			dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8674 		}
8675 		task_rq_unlock(rq, p, &rf);
8676 	}
8677 
8678 	remove_entity_load_avg(se);
8679 }
8680 
8681 /*
8682  * Set the max capacity the task is allowed to run at for misfit detection.
8683  */
set_task_max_allowed_capacity(struct task_struct * p)8684 static void set_task_max_allowed_capacity(struct task_struct *p)
8685 {
8686 	struct asym_cap_data *entry;
8687 
8688 	if (!sched_asym_cpucap_active())
8689 		return;
8690 
8691 	rcu_read_lock();
8692 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8693 		cpumask_t *cpumask;
8694 
8695 		cpumask = cpu_capacity_span(entry);
8696 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8697 			continue;
8698 
8699 		p->max_allowed_capacity = entry->capacity;
8700 		break;
8701 	}
8702 	rcu_read_unlock();
8703 }
8704 
set_cpus_allowed_fair(struct task_struct * p,struct affinity_context * ctx)8705 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8706 {
8707 	set_cpus_allowed_common(p, ctx);
8708 	set_task_max_allowed_capacity(p);
8709 }
8710 
8711 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8712 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8713 {
8714 	if (sched_fair_runnable(rq))
8715 		return 1;
8716 
8717 	return sched_balance_newidle(rq, rf) != 0;
8718 }
8719 #else
set_task_max_allowed_capacity(struct task_struct * p)8720 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8721 #endif /* CONFIG_SMP */
8722 
set_next_buddy(struct sched_entity * se)8723 static void set_next_buddy(struct sched_entity *se)
8724 {
8725 	for_each_sched_entity(se) {
8726 		if (SCHED_WARN_ON(!se->on_rq))
8727 			return;
8728 		if (se_is_idle(se))
8729 			return;
8730 		cfs_rq_of(se)->next = se;
8731 	}
8732 }
8733 
8734 /*
8735  * Preempt the current task with a newly woken task if needed:
8736  */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8737 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8738 {
8739 	struct task_struct *donor = rq->donor;
8740 	struct sched_entity *se = &donor->se, *pse = &p->se;
8741 	struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8742 	int cse_is_idle, pse_is_idle;
8743 
8744 	if (unlikely(se == pse))
8745 		return;
8746 
8747 	/*
8748 	 * This is possible from callers such as attach_tasks(), in which we
8749 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8750 	 * lead to a throttle).  This both saves work and prevents false
8751 	 * next-buddy nomination below.
8752 	 */
8753 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8754 		return;
8755 
8756 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
8757 		set_next_buddy(pse);
8758 	}
8759 
8760 	/*
8761 	 * We can come here with TIF_NEED_RESCHED already set from new task
8762 	 * wake up path.
8763 	 *
8764 	 * Note: this also catches the edge-case of curr being in a throttled
8765 	 * group (e.g. via set_curr_task), since update_curr() (in the
8766 	 * enqueue of curr) will have resulted in resched being set.  This
8767 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8768 	 * below.
8769 	 */
8770 	if (test_tsk_need_resched(rq->curr))
8771 		return;
8772 
8773 	if (!sched_feat(WAKEUP_PREEMPTION))
8774 		return;
8775 
8776 	find_matching_se(&se, &pse);
8777 	WARN_ON_ONCE(!pse);
8778 
8779 	cse_is_idle = se_is_idle(se);
8780 	pse_is_idle = se_is_idle(pse);
8781 
8782 	/*
8783 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8784 	 * in the inverse case).
8785 	 */
8786 	if (cse_is_idle && !pse_is_idle)
8787 		goto preempt;
8788 	if (cse_is_idle != pse_is_idle)
8789 		return;
8790 
8791 	/*
8792 	 * BATCH and IDLE tasks do not preempt others.
8793 	 */
8794 	if (unlikely(!normal_policy(p->policy)))
8795 		return;
8796 
8797 	cfs_rq = cfs_rq_of(se);
8798 	update_curr(cfs_rq);
8799 	/*
8800 	 * If @p has a shorter slice than current and @p is eligible, override
8801 	 * current's slice protection in order to allow preemption.
8802 	 *
8803 	 * Note that even if @p does not turn out to be the most eligible
8804 	 * task at this moment, current's slice protection will be lost.
8805 	 */
8806 	if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
8807 		se->vlag = se->deadline + 1;
8808 
8809 	/*
8810 	 * If @p has become the most eligible task, force preemption.
8811 	 */
8812 	if (pick_eevdf(cfs_rq) == pse)
8813 		goto preempt;
8814 
8815 	return;
8816 
8817 preempt:
8818 	resched_curr_lazy(rq);
8819 }
8820 
pick_task_fair(struct rq * rq)8821 static struct task_struct *pick_task_fair(struct rq *rq)
8822 {
8823 	struct sched_entity *se;
8824 	struct cfs_rq *cfs_rq;
8825 
8826 again:
8827 	cfs_rq = &rq->cfs;
8828 	if (!cfs_rq->nr_queued)
8829 		return NULL;
8830 
8831 	do {
8832 		/* Might not have done put_prev_entity() */
8833 		if (cfs_rq->curr && cfs_rq->curr->on_rq)
8834 			update_curr(cfs_rq);
8835 
8836 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8837 			goto again;
8838 
8839 		se = pick_next_entity(rq, cfs_rq);
8840 		if (!se)
8841 			goto again;
8842 		cfs_rq = group_cfs_rq(se);
8843 	} while (cfs_rq);
8844 
8845 	return task_of(se);
8846 }
8847 
8848 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8849 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8850 
8851 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8852 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8853 {
8854 	struct sched_entity *se;
8855 	struct task_struct *p;
8856 	int new_tasks;
8857 
8858 again:
8859 	p = pick_task_fair(rq);
8860 	if (!p)
8861 		goto idle;
8862 	se = &p->se;
8863 
8864 #ifdef CONFIG_FAIR_GROUP_SCHED
8865 	if (prev->sched_class != &fair_sched_class)
8866 		goto simple;
8867 
8868 	__put_prev_set_next_dl_server(rq, prev, p);
8869 
8870 	/*
8871 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8872 	 * likely that a next task is from the same cgroup as the current.
8873 	 *
8874 	 * Therefore attempt to avoid putting and setting the entire cgroup
8875 	 * hierarchy, only change the part that actually changes.
8876 	 *
8877 	 * Since we haven't yet done put_prev_entity and if the selected task
8878 	 * is a different task than we started out with, try and touch the
8879 	 * least amount of cfs_rqs.
8880 	 */
8881 	if (prev != p) {
8882 		struct sched_entity *pse = &prev->se;
8883 		struct cfs_rq *cfs_rq;
8884 
8885 		while (!(cfs_rq = is_same_group(se, pse))) {
8886 			int se_depth = se->depth;
8887 			int pse_depth = pse->depth;
8888 
8889 			if (se_depth <= pse_depth) {
8890 				put_prev_entity(cfs_rq_of(pse), pse);
8891 				pse = parent_entity(pse);
8892 			}
8893 			if (se_depth >= pse_depth) {
8894 				set_next_entity(cfs_rq_of(se), se);
8895 				se = parent_entity(se);
8896 			}
8897 		}
8898 
8899 		put_prev_entity(cfs_rq, pse);
8900 		set_next_entity(cfs_rq, se);
8901 
8902 		__set_next_task_fair(rq, p, true);
8903 	}
8904 
8905 	return p;
8906 
8907 simple:
8908 #endif
8909 	put_prev_set_next_task(rq, prev, p);
8910 	return p;
8911 
8912 idle:
8913 	if (!rf)
8914 		return NULL;
8915 
8916 	new_tasks = sched_balance_newidle(rq, rf);
8917 
8918 	/*
8919 	 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8920 	 * possible for any higher priority task to appear. In that case we
8921 	 * must re-start the pick_next_entity() loop.
8922 	 */
8923 	if (new_tasks < 0)
8924 		return RETRY_TASK;
8925 
8926 	if (new_tasks > 0)
8927 		goto again;
8928 
8929 	/*
8930 	 * rq is about to be idle, check if we need to update the
8931 	 * lost_idle_time of clock_pelt
8932 	 */
8933 	update_idle_rq_clock_pelt(rq);
8934 
8935 	return NULL;
8936 }
8937 
__pick_next_task_fair(struct rq * rq,struct task_struct * prev)8938 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8939 {
8940 	return pick_next_task_fair(rq, prev, NULL);
8941 }
8942 
fair_server_has_tasks(struct sched_dl_entity * dl_se)8943 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
8944 {
8945 	return !!dl_se->rq->cfs.nr_queued;
8946 }
8947 
fair_server_pick_task(struct sched_dl_entity * dl_se)8948 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8949 {
8950 	return pick_task_fair(dl_se->rq);
8951 }
8952 
fair_server_init(struct rq * rq)8953 void fair_server_init(struct rq *rq)
8954 {
8955 	struct sched_dl_entity *dl_se = &rq->fair_server;
8956 
8957 	init_dl_entity(dl_se);
8958 
8959 	dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
8960 }
8961 
8962 /*
8963  * Account for a descheduled task:
8964  */
put_prev_task_fair(struct rq * rq,struct task_struct * prev,struct task_struct * next)8965 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8966 {
8967 	struct sched_entity *se = &prev->se;
8968 	struct cfs_rq *cfs_rq;
8969 
8970 	for_each_sched_entity(se) {
8971 		cfs_rq = cfs_rq_of(se);
8972 		put_prev_entity(cfs_rq, se);
8973 	}
8974 }
8975 
8976 /*
8977  * sched_yield() is very simple
8978  */
yield_task_fair(struct rq * rq)8979 static void yield_task_fair(struct rq *rq)
8980 {
8981 	struct task_struct *curr = rq->curr;
8982 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8983 	struct sched_entity *se = &curr->se;
8984 
8985 	/*
8986 	 * Are we the only task in the tree?
8987 	 */
8988 	if (unlikely(rq->nr_running == 1))
8989 		return;
8990 
8991 	clear_buddies(cfs_rq, se);
8992 
8993 	update_rq_clock(rq);
8994 	/*
8995 	 * Update run-time statistics of the 'current'.
8996 	 */
8997 	update_curr(cfs_rq);
8998 	/*
8999 	 * Tell update_rq_clock() that we've just updated,
9000 	 * so we don't do microscopic update in schedule()
9001 	 * and double the fastpath cost.
9002 	 */
9003 	rq_clock_skip_update(rq);
9004 
9005 	se->deadline += calc_delta_fair(se->slice, se);
9006 }
9007 
yield_to_task_fair(struct rq * rq,struct task_struct * p)9008 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9009 {
9010 	struct sched_entity *se = &p->se;
9011 
9012 	/* throttled hierarchies are not runnable */
9013 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
9014 		return false;
9015 
9016 	/* Tell the scheduler that we'd really like se to run next. */
9017 	set_next_buddy(se);
9018 
9019 	yield_task_fair(rq);
9020 
9021 	return true;
9022 }
9023 
9024 #ifdef CONFIG_SMP
9025 /**************************************************
9026  * Fair scheduling class load-balancing methods.
9027  *
9028  * BASICS
9029  *
9030  * The purpose of load-balancing is to achieve the same basic fairness the
9031  * per-CPU scheduler provides, namely provide a proportional amount of compute
9032  * time to each task. This is expressed in the following equation:
9033  *
9034  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
9035  *
9036  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9037  * W_i,0 is defined as:
9038  *
9039  *   W_i,0 = \Sum_j w_i,j                                             (2)
9040  *
9041  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9042  * is derived from the nice value as per sched_prio_to_weight[].
9043  *
9044  * The weight average is an exponential decay average of the instantaneous
9045  * weight:
9046  *
9047  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
9048  *
9049  * C_i is the compute capacity of CPU i, typically it is the
9050  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9051  * can also include other factors [XXX].
9052  *
9053  * To achieve this balance we define a measure of imbalance which follows
9054  * directly from (1):
9055  *
9056  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
9057  *
9058  * We them move tasks around to minimize the imbalance. In the continuous
9059  * function space it is obvious this converges, in the discrete case we get
9060  * a few fun cases generally called infeasible weight scenarios.
9061  *
9062  * [XXX expand on:
9063  *     - infeasible weights;
9064  *     - local vs global optima in the discrete case. ]
9065  *
9066  *
9067  * SCHED DOMAINS
9068  *
9069  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9070  * for all i,j solution, we create a tree of CPUs that follows the hardware
9071  * topology where each level pairs two lower groups (or better). This results
9072  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9073  * tree to only the first of the previous level and we decrease the frequency
9074  * of load-balance at each level inversely proportional to the number of CPUs in
9075  * the groups.
9076  *
9077  * This yields:
9078  *
9079  *     log_2 n     1     n
9080  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
9081  *     i = 0      2^i   2^i
9082  *                               `- size of each group
9083  *         |         |     `- number of CPUs doing load-balance
9084  *         |         `- freq
9085  *         `- sum over all levels
9086  *
9087  * Coupled with a limit on how many tasks we can migrate every balance pass,
9088  * this makes (5) the runtime complexity of the balancer.
9089  *
9090  * An important property here is that each CPU is still (indirectly) connected
9091  * to every other CPU in at most O(log n) steps:
9092  *
9093  * The adjacency matrix of the resulting graph is given by:
9094  *
9095  *             log_2 n
9096  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
9097  *             k = 0
9098  *
9099  * And you'll find that:
9100  *
9101  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
9102  *
9103  * Showing there's indeed a path between every CPU in at most O(log n) steps.
9104  * The task movement gives a factor of O(m), giving a convergence complexity
9105  * of:
9106  *
9107  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
9108  *
9109  *
9110  * WORK CONSERVING
9111  *
9112  * In order to avoid CPUs going idle while there's still work to do, new idle
9113  * balancing is more aggressive and has the newly idle CPU iterate up the domain
9114  * tree itself instead of relying on other CPUs to bring it work.
9115  *
9116  * This adds some complexity to both (5) and (8) but it reduces the total idle
9117  * time.
9118  *
9119  * [XXX more?]
9120  *
9121  *
9122  * CGROUPS
9123  *
9124  * Cgroups make a horror show out of (2), instead of a simple sum we get:
9125  *
9126  *                                s_k,i
9127  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
9128  *                                 S_k
9129  *
9130  * Where
9131  *
9132  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
9133  *
9134  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9135  *
9136  * The big problem is S_k, its a global sum needed to compute a local (W_i)
9137  * property.
9138  *
9139  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9140  *      rewrite all of this once again.]
9141  */
9142 
9143 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9144 
9145 enum fbq_type { regular, remote, all };
9146 
9147 /*
9148  * 'group_type' describes the group of CPUs at the moment of load balancing.
9149  *
9150  * The enum is ordered by pulling priority, with the group with lowest priority
9151  * first so the group_type can simply be compared when selecting the busiest
9152  * group. See update_sd_pick_busiest().
9153  */
9154 enum group_type {
9155 	/* The group has spare capacity that can be used to run more tasks.  */
9156 	group_has_spare = 0,
9157 	/*
9158 	 * The group is fully used and the tasks don't compete for more CPU
9159 	 * cycles. Nevertheless, some tasks might wait before running.
9160 	 */
9161 	group_fully_busy,
9162 	/*
9163 	 * One task doesn't fit with CPU's capacity and must be migrated to a
9164 	 * more powerful CPU.
9165 	 */
9166 	group_misfit_task,
9167 	/*
9168 	 * Balance SMT group that's fully busy. Can benefit from migration
9169 	 * a task on SMT with busy sibling to another CPU on idle core.
9170 	 */
9171 	group_smt_balance,
9172 	/*
9173 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9174 	 * and the task should be migrated to it instead of running on the
9175 	 * current CPU.
9176 	 */
9177 	group_asym_packing,
9178 	/*
9179 	 * The tasks' affinity constraints previously prevented the scheduler
9180 	 * from balancing the load across the system.
9181 	 */
9182 	group_imbalanced,
9183 	/*
9184 	 * The CPU is overloaded and can't provide expected CPU cycles to all
9185 	 * tasks.
9186 	 */
9187 	group_overloaded
9188 };
9189 
9190 enum migration_type {
9191 	migrate_load = 0,
9192 	migrate_util,
9193 	migrate_task,
9194 	migrate_misfit
9195 };
9196 
9197 #define LBF_ALL_PINNED	0x01
9198 #define LBF_NEED_BREAK	0x02
9199 #define LBF_DST_PINNED  0x04
9200 #define LBF_SOME_PINNED	0x08
9201 #define LBF_ACTIVE_LB	0x10
9202 
9203 struct lb_env {
9204 	struct sched_domain	*sd;
9205 
9206 	struct rq		*src_rq;
9207 	int			src_cpu;
9208 
9209 	int			dst_cpu;
9210 	struct rq		*dst_rq;
9211 
9212 	struct cpumask		*dst_grpmask;
9213 	int			new_dst_cpu;
9214 	enum cpu_idle_type	idle;
9215 	long			imbalance;
9216 	/* The set of CPUs under consideration for load-balancing */
9217 	struct cpumask		*cpus;
9218 
9219 	unsigned int		flags;
9220 
9221 	unsigned int		loop;
9222 	unsigned int		loop_break;
9223 	unsigned int		loop_max;
9224 
9225 	enum fbq_type		fbq_type;
9226 	enum migration_type	migration_type;
9227 	struct list_head	tasks;
9228 };
9229 
9230 /*
9231  * Is this task likely cache-hot:
9232  */
task_hot(struct task_struct * p,struct lb_env * env)9233 static int task_hot(struct task_struct *p, struct lb_env *env)
9234 {
9235 	s64 delta;
9236 
9237 	lockdep_assert_rq_held(env->src_rq);
9238 
9239 	if (p->sched_class != &fair_sched_class)
9240 		return 0;
9241 
9242 	if (unlikely(task_has_idle_policy(p)))
9243 		return 0;
9244 
9245 	/* SMT siblings share cache */
9246 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9247 		return 0;
9248 
9249 	/*
9250 	 * Buddy candidates are cache hot:
9251 	 */
9252 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9253 	    (&p->se == cfs_rq_of(&p->se)->next))
9254 		return 1;
9255 
9256 	if (sysctl_sched_migration_cost == -1)
9257 		return 1;
9258 
9259 	/*
9260 	 * Don't migrate task if the task's cookie does not match
9261 	 * with the destination CPU's core cookie.
9262 	 */
9263 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9264 		return 1;
9265 
9266 	if (sysctl_sched_migration_cost == 0)
9267 		return 0;
9268 
9269 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9270 
9271 	return delta < (s64)sysctl_sched_migration_cost;
9272 }
9273 
9274 #ifdef CONFIG_NUMA_BALANCING
9275 /*
9276  * Returns a positive value, if task migration degrades locality.
9277  * Returns 0, if task migration is not affected by locality.
9278  * Returns a negative value, if task migration improves locality i.e migration preferred.
9279  */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9280 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9281 {
9282 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
9283 	unsigned long src_weight, dst_weight;
9284 	int src_nid, dst_nid, dist;
9285 
9286 	if (!static_branch_likely(&sched_numa_balancing))
9287 		return 0;
9288 
9289 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9290 		return 0;
9291 
9292 	src_nid = cpu_to_node(env->src_cpu);
9293 	dst_nid = cpu_to_node(env->dst_cpu);
9294 
9295 	if (src_nid == dst_nid)
9296 		return 0;
9297 
9298 	/* Migrating away from the preferred node is always bad. */
9299 	if (src_nid == p->numa_preferred_nid) {
9300 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9301 			return 1;
9302 		else
9303 			return 0;
9304 	}
9305 
9306 	/* Encourage migration to the preferred node. */
9307 	if (dst_nid == p->numa_preferred_nid)
9308 		return -1;
9309 
9310 	/* Leaving a core idle is often worse than degrading locality. */
9311 	if (env->idle == CPU_IDLE)
9312 		return 0;
9313 
9314 	dist = node_distance(src_nid, dst_nid);
9315 	if (numa_group) {
9316 		src_weight = group_weight(p, src_nid, dist);
9317 		dst_weight = group_weight(p, dst_nid, dist);
9318 	} else {
9319 		src_weight = task_weight(p, src_nid, dist);
9320 		dst_weight = task_weight(p, dst_nid, dist);
9321 	}
9322 
9323 	return src_weight - dst_weight;
9324 }
9325 
9326 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9327 static inline long migrate_degrades_locality(struct task_struct *p,
9328 					     struct lb_env *env)
9329 {
9330 	return 0;
9331 }
9332 #endif
9333 
9334 /*
9335  * Check whether the task is ineligible on the destination cpu
9336  *
9337  * When the PLACE_LAG scheduling feature is enabled and
9338  * dst_cfs_rq->nr_queued is greater than 1, if the task
9339  * is ineligible, it will also be ineligible when
9340  * it is migrated to the destination cpu.
9341  */
task_is_ineligible_on_dst_cpu(struct task_struct * p,int dest_cpu)9342 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu)
9343 {
9344 	struct cfs_rq *dst_cfs_rq;
9345 
9346 #ifdef CONFIG_FAIR_GROUP_SCHED
9347 	dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu];
9348 #else
9349 	dst_cfs_rq = &cpu_rq(dest_cpu)->cfs;
9350 #endif
9351 	if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued &&
9352 	    !entity_eligible(task_cfs_rq(p), &p->se))
9353 		return 1;
9354 
9355 	return 0;
9356 }
9357 
9358 /*
9359  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9360  */
9361 static
can_migrate_task(struct task_struct * p,struct lb_env * env)9362 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9363 {
9364 	long degrades, hot;
9365 
9366 	lockdep_assert_rq_held(env->src_rq);
9367 	if (p->sched_task_hot)
9368 		p->sched_task_hot = 0;
9369 
9370 	/*
9371 	 * We do not migrate tasks that are:
9372 	 * 1) delayed dequeued unless we migrate load, or
9373 	 * 2) throttled_lb_pair, or
9374 	 * 3) cannot be migrated to this CPU due to cpus_ptr, or
9375 	 * 4) running (obviously), or
9376 	 * 5) are cache-hot on their current CPU.
9377 	 */
9378 	if ((p->se.sched_delayed) && (env->migration_type != migrate_load))
9379 		return 0;
9380 
9381 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9382 		return 0;
9383 
9384 	/*
9385 	 * We want to prioritize the migration of eligible tasks.
9386 	 * For ineligible tasks we soft-limit them and only allow
9387 	 * them to migrate when nr_balance_failed is non-zero to
9388 	 * avoid load-balancing trying very hard to balance the load.
9389 	 */
9390 	if (!env->sd->nr_balance_failed &&
9391 	    task_is_ineligible_on_dst_cpu(p, env->dst_cpu))
9392 		return 0;
9393 
9394 	/* Disregard percpu kthreads; they are where they need to be. */
9395 	if (kthread_is_per_cpu(p))
9396 		return 0;
9397 
9398 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9399 		int cpu;
9400 
9401 		schedstat_inc(p->stats.nr_failed_migrations_affine);
9402 
9403 		env->flags |= LBF_SOME_PINNED;
9404 
9405 		/*
9406 		 * Remember if this task can be migrated to any other CPU in
9407 		 * our sched_group. We may want to revisit it if we couldn't
9408 		 * meet load balance goals by pulling other tasks on src_cpu.
9409 		 *
9410 		 * Avoid computing new_dst_cpu
9411 		 * - for NEWLY_IDLE
9412 		 * - if we have already computed one in current iteration
9413 		 * - if it's an active balance
9414 		 */
9415 		if (env->idle == CPU_NEWLY_IDLE ||
9416 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9417 			return 0;
9418 
9419 		/* Prevent to re-select dst_cpu via env's CPUs: */
9420 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9421 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9422 				env->flags |= LBF_DST_PINNED;
9423 				env->new_dst_cpu = cpu;
9424 				break;
9425 			}
9426 		}
9427 
9428 		return 0;
9429 	}
9430 
9431 	/* Record that we found at least one task that could run on dst_cpu */
9432 	env->flags &= ~LBF_ALL_PINNED;
9433 
9434 	if (task_on_cpu(env->src_rq, p)) {
9435 		schedstat_inc(p->stats.nr_failed_migrations_running);
9436 		return 0;
9437 	}
9438 
9439 	/*
9440 	 * Aggressive migration if:
9441 	 * 1) active balance
9442 	 * 2) destination numa is preferred
9443 	 * 3) task is cache cold, or
9444 	 * 4) too many balance attempts have failed.
9445 	 */
9446 	if (env->flags & LBF_ACTIVE_LB)
9447 		return 1;
9448 
9449 	degrades = migrate_degrades_locality(p, env);
9450 	if (!degrades)
9451 		hot = task_hot(p, env);
9452 	else
9453 		hot = degrades > 0;
9454 
9455 	if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9456 		if (hot)
9457 			p->sched_task_hot = 1;
9458 		return 1;
9459 	}
9460 
9461 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9462 	return 0;
9463 }
9464 
9465 /*
9466  * detach_task() -- detach the task for the migration specified in env
9467  */
detach_task(struct task_struct * p,struct lb_env * env)9468 static void detach_task(struct task_struct *p, struct lb_env *env)
9469 {
9470 	lockdep_assert_rq_held(env->src_rq);
9471 
9472 	if (p->sched_task_hot) {
9473 		p->sched_task_hot = 0;
9474 		schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9475 		schedstat_inc(p->stats.nr_forced_migrations);
9476 	}
9477 
9478 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9479 	set_task_cpu(p, env->dst_cpu);
9480 }
9481 
9482 /*
9483  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9484  * part of active balancing operations within "domain".
9485  *
9486  * Returns a task if successful and NULL otherwise.
9487  */
detach_one_task(struct lb_env * env)9488 static struct task_struct *detach_one_task(struct lb_env *env)
9489 {
9490 	struct task_struct *p;
9491 
9492 	lockdep_assert_rq_held(env->src_rq);
9493 
9494 	list_for_each_entry_reverse(p,
9495 			&env->src_rq->cfs_tasks, se.group_node) {
9496 		if (!can_migrate_task(p, env))
9497 			continue;
9498 
9499 		detach_task(p, env);
9500 
9501 		/*
9502 		 * Right now, this is only the second place where
9503 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9504 		 * so we can safely collect stats here rather than
9505 		 * inside detach_tasks().
9506 		 */
9507 		schedstat_inc(env->sd->lb_gained[env->idle]);
9508 		return p;
9509 	}
9510 	return NULL;
9511 }
9512 
9513 /*
9514  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9515  * busiest_rq, as part of a balancing operation within domain "sd".
9516  *
9517  * Returns number of detached tasks if successful and 0 otherwise.
9518  */
detach_tasks(struct lb_env * env)9519 static int detach_tasks(struct lb_env *env)
9520 {
9521 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9522 	unsigned long util, load;
9523 	struct task_struct *p;
9524 	int detached = 0;
9525 
9526 	lockdep_assert_rq_held(env->src_rq);
9527 
9528 	/*
9529 	 * Source run queue has been emptied by another CPU, clear
9530 	 * LBF_ALL_PINNED flag as we will not test any task.
9531 	 */
9532 	if (env->src_rq->nr_running <= 1) {
9533 		env->flags &= ~LBF_ALL_PINNED;
9534 		return 0;
9535 	}
9536 
9537 	if (env->imbalance <= 0)
9538 		return 0;
9539 
9540 	while (!list_empty(tasks)) {
9541 		/*
9542 		 * We don't want to steal all, otherwise we may be treated likewise,
9543 		 * which could at worst lead to a livelock crash.
9544 		 */
9545 		if (env->idle && env->src_rq->nr_running <= 1)
9546 			break;
9547 
9548 		env->loop++;
9549 		/* We've more or less seen every task there is, call it quits */
9550 		if (env->loop > env->loop_max)
9551 			break;
9552 
9553 		/* take a breather every nr_migrate tasks */
9554 		if (env->loop > env->loop_break) {
9555 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9556 			env->flags |= LBF_NEED_BREAK;
9557 			break;
9558 		}
9559 
9560 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9561 
9562 		if (!can_migrate_task(p, env))
9563 			goto next;
9564 
9565 		switch (env->migration_type) {
9566 		case migrate_load:
9567 			/*
9568 			 * Depending of the number of CPUs and tasks and the
9569 			 * cgroup hierarchy, task_h_load() can return a null
9570 			 * value. Make sure that env->imbalance decreases
9571 			 * otherwise detach_tasks() will stop only after
9572 			 * detaching up to loop_max tasks.
9573 			 */
9574 			load = max_t(unsigned long, task_h_load(p), 1);
9575 
9576 			if (sched_feat(LB_MIN) &&
9577 			    load < 16 && !env->sd->nr_balance_failed)
9578 				goto next;
9579 
9580 			/*
9581 			 * Make sure that we don't migrate too much load.
9582 			 * Nevertheless, let relax the constraint if
9583 			 * scheduler fails to find a good waiting task to
9584 			 * migrate.
9585 			 */
9586 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9587 				goto next;
9588 
9589 			env->imbalance -= load;
9590 			break;
9591 
9592 		case migrate_util:
9593 			util = task_util_est(p);
9594 
9595 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9596 				goto next;
9597 
9598 			env->imbalance -= util;
9599 			break;
9600 
9601 		case migrate_task:
9602 			env->imbalance--;
9603 			break;
9604 
9605 		case migrate_misfit:
9606 			/* This is not a misfit task */
9607 			if (task_fits_cpu(p, env->src_cpu))
9608 				goto next;
9609 
9610 			env->imbalance = 0;
9611 			break;
9612 		}
9613 
9614 		detach_task(p, env);
9615 		list_add(&p->se.group_node, &env->tasks);
9616 
9617 		detached++;
9618 
9619 #ifdef CONFIG_PREEMPTION
9620 		/*
9621 		 * NEWIDLE balancing is a source of latency, so preemptible
9622 		 * kernels will stop after the first task is detached to minimize
9623 		 * the critical section.
9624 		 */
9625 		if (env->idle == CPU_NEWLY_IDLE)
9626 			break;
9627 #endif
9628 
9629 		/*
9630 		 * We only want to steal up to the prescribed amount of
9631 		 * load/util/tasks.
9632 		 */
9633 		if (env->imbalance <= 0)
9634 			break;
9635 
9636 		continue;
9637 next:
9638 		if (p->sched_task_hot)
9639 			schedstat_inc(p->stats.nr_failed_migrations_hot);
9640 
9641 		list_move(&p->se.group_node, tasks);
9642 	}
9643 
9644 	/*
9645 	 * Right now, this is one of only two places we collect this stat
9646 	 * so we can safely collect detach_one_task() stats here rather
9647 	 * than inside detach_one_task().
9648 	 */
9649 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9650 
9651 	return detached;
9652 }
9653 
9654 /*
9655  * attach_task() -- attach the task detached by detach_task() to its new rq.
9656  */
attach_task(struct rq * rq,struct task_struct * p)9657 static void attach_task(struct rq *rq, struct task_struct *p)
9658 {
9659 	lockdep_assert_rq_held(rq);
9660 
9661 	WARN_ON_ONCE(task_rq(p) != rq);
9662 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9663 	wakeup_preempt(rq, p, 0);
9664 }
9665 
9666 /*
9667  * attach_one_task() -- attaches the task returned from detach_one_task() to
9668  * its new rq.
9669  */
attach_one_task(struct rq * rq,struct task_struct * p)9670 static void attach_one_task(struct rq *rq, struct task_struct *p)
9671 {
9672 	struct rq_flags rf;
9673 
9674 	rq_lock(rq, &rf);
9675 	update_rq_clock(rq);
9676 	attach_task(rq, p);
9677 	rq_unlock(rq, &rf);
9678 }
9679 
9680 /*
9681  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9682  * new rq.
9683  */
attach_tasks(struct lb_env * env)9684 static void attach_tasks(struct lb_env *env)
9685 {
9686 	struct list_head *tasks = &env->tasks;
9687 	struct task_struct *p;
9688 	struct rq_flags rf;
9689 
9690 	rq_lock(env->dst_rq, &rf);
9691 	update_rq_clock(env->dst_rq);
9692 
9693 	while (!list_empty(tasks)) {
9694 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9695 		list_del_init(&p->se.group_node);
9696 
9697 		attach_task(env->dst_rq, p);
9698 	}
9699 
9700 	rq_unlock(env->dst_rq, &rf);
9701 }
9702 
9703 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9704 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9705 {
9706 	if (cfs_rq->avg.load_avg)
9707 		return true;
9708 
9709 	if (cfs_rq->avg.util_avg)
9710 		return true;
9711 
9712 	return false;
9713 }
9714 
others_have_blocked(struct rq * rq)9715 static inline bool others_have_blocked(struct rq *rq)
9716 {
9717 	if (cpu_util_rt(rq))
9718 		return true;
9719 
9720 	if (cpu_util_dl(rq))
9721 		return true;
9722 
9723 	if (hw_load_avg(rq))
9724 		return true;
9725 
9726 	if (cpu_util_irq(rq))
9727 		return true;
9728 
9729 	return false;
9730 }
9731 
update_blocked_load_tick(struct rq * rq)9732 static inline void update_blocked_load_tick(struct rq *rq)
9733 {
9734 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9735 }
9736 
update_blocked_load_status(struct rq * rq,bool has_blocked)9737 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9738 {
9739 	if (!has_blocked)
9740 		rq->has_blocked_load = 0;
9741 }
9742 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9743 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9744 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9745 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9746 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9747 #endif
9748 
__update_blocked_others(struct rq * rq,bool * done)9749 static bool __update_blocked_others(struct rq *rq, bool *done)
9750 {
9751 	bool updated;
9752 
9753 	/*
9754 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9755 	 * DL and IRQ signals have been updated before updating CFS.
9756 	 */
9757 	updated = update_other_load_avgs(rq);
9758 
9759 	if (others_have_blocked(rq))
9760 		*done = false;
9761 
9762 	return updated;
9763 }
9764 
9765 #ifdef CONFIG_FAIR_GROUP_SCHED
9766 
__update_blocked_fair(struct rq * rq,bool * done)9767 static bool __update_blocked_fair(struct rq *rq, bool *done)
9768 {
9769 	struct cfs_rq *cfs_rq, *pos;
9770 	bool decayed = false;
9771 	int cpu = cpu_of(rq);
9772 
9773 	/*
9774 	 * Iterates the task_group tree in a bottom up fashion, see
9775 	 * list_add_leaf_cfs_rq() for details.
9776 	 */
9777 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9778 		struct sched_entity *se;
9779 
9780 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9781 			update_tg_load_avg(cfs_rq);
9782 
9783 			if (cfs_rq->nr_queued == 0)
9784 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9785 
9786 			if (cfs_rq == &rq->cfs)
9787 				decayed = true;
9788 		}
9789 
9790 		/* Propagate pending load changes to the parent, if any: */
9791 		se = cfs_rq->tg->se[cpu];
9792 		if (se && !skip_blocked_update(se))
9793 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9794 
9795 		/*
9796 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9797 		 * decayed cfs_rqs linger on the list.
9798 		 */
9799 		if (cfs_rq_is_decayed(cfs_rq))
9800 			list_del_leaf_cfs_rq(cfs_rq);
9801 
9802 		/* Don't need periodic decay once load/util_avg are null */
9803 		if (cfs_rq_has_blocked(cfs_rq))
9804 			*done = false;
9805 	}
9806 
9807 	return decayed;
9808 }
9809 
9810 /*
9811  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9812  * This needs to be done in a top-down fashion because the load of a child
9813  * group is a fraction of its parents load.
9814  */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9815 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9816 {
9817 	struct rq *rq = rq_of(cfs_rq);
9818 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9819 	unsigned long now = jiffies;
9820 	unsigned long load;
9821 
9822 	if (cfs_rq->last_h_load_update == now)
9823 		return;
9824 
9825 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9826 	for_each_sched_entity(se) {
9827 		cfs_rq = cfs_rq_of(se);
9828 		WRITE_ONCE(cfs_rq->h_load_next, se);
9829 		if (cfs_rq->last_h_load_update == now)
9830 			break;
9831 	}
9832 
9833 	if (!se) {
9834 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9835 		cfs_rq->last_h_load_update = now;
9836 	}
9837 
9838 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9839 		load = cfs_rq->h_load;
9840 		load = div64_ul(load * se->avg.load_avg,
9841 			cfs_rq_load_avg(cfs_rq) + 1);
9842 		cfs_rq = group_cfs_rq(se);
9843 		cfs_rq->h_load = load;
9844 		cfs_rq->last_h_load_update = now;
9845 	}
9846 }
9847 
task_h_load(struct task_struct * p)9848 static unsigned long task_h_load(struct task_struct *p)
9849 {
9850 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9851 
9852 	update_cfs_rq_h_load(cfs_rq);
9853 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9854 			cfs_rq_load_avg(cfs_rq) + 1);
9855 }
9856 #else
__update_blocked_fair(struct rq * rq,bool * done)9857 static bool __update_blocked_fair(struct rq *rq, bool *done)
9858 {
9859 	struct cfs_rq *cfs_rq = &rq->cfs;
9860 	bool decayed;
9861 
9862 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9863 	if (cfs_rq_has_blocked(cfs_rq))
9864 		*done = false;
9865 
9866 	return decayed;
9867 }
9868 
task_h_load(struct task_struct * p)9869 static unsigned long task_h_load(struct task_struct *p)
9870 {
9871 	return p->se.avg.load_avg;
9872 }
9873 #endif
9874 
sched_balance_update_blocked_averages(int cpu)9875 static void sched_balance_update_blocked_averages(int cpu)
9876 {
9877 	bool decayed = false, done = true;
9878 	struct rq *rq = cpu_rq(cpu);
9879 	struct rq_flags rf;
9880 
9881 	rq_lock_irqsave(rq, &rf);
9882 	update_blocked_load_tick(rq);
9883 	update_rq_clock(rq);
9884 
9885 	decayed |= __update_blocked_others(rq, &done);
9886 	decayed |= __update_blocked_fair(rq, &done);
9887 
9888 	update_blocked_load_status(rq, !done);
9889 	if (decayed)
9890 		cpufreq_update_util(rq, 0);
9891 	rq_unlock_irqrestore(rq, &rf);
9892 }
9893 
9894 /********** Helpers for sched_balance_find_src_group ************************/
9895 
9896 /*
9897  * sg_lb_stats - stats of a sched_group required for load-balancing:
9898  */
9899 struct sg_lb_stats {
9900 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9901 	unsigned long group_load;		/* Total load          over the CPUs of the group */
9902 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9903 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9904 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9905 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9906 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9907 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9908 	unsigned int group_weight;
9909 	enum group_type group_type;
9910 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9911 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9912 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9913 #ifdef CONFIG_NUMA_BALANCING
9914 	unsigned int nr_numa_running;
9915 	unsigned int nr_preferred_running;
9916 #endif
9917 };
9918 
9919 /*
9920  * sd_lb_stats - stats of a sched_domain required for load-balancing:
9921  */
9922 struct sd_lb_stats {
9923 	struct sched_group *busiest;		/* Busiest group in this sd */
9924 	struct sched_group *local;		/* Local group in this sd */
9925 	unsigned long total_load;		/* Total load of all groups in sd */
9926 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
9927 	unsigned long avg_load;			/* Average load across all groups in sd */
9928 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
9929 
9930 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
9931 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
9932 };
9933 
init_sd_lb_stats(struct sd_lb_stats * sds)9934 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9935 {
9936 	/*
9937 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9938 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9939 	 * We must however set busiest_stat::group_type and
9940 	 * busiest_stat::idle_cpus to the worst busiest group because
9941 	 * update_sd_pick_busiest() reads these before assignment.
9942 	 */
9943 	*sds = (struct sd_lb_stats){
9944 		.busiest = NULL,
9945 		.local = NULL,
9946 		.total_load = 0UL,
9947 		.total_capacity = 0UL,
9948 		.busiest_stat = {
9949 			.idle_cpus = UINT_MAX,
9950 			.group_type = group_has_spare,
9951 		},
9952 	};
9953 }
9954 
scale_rt_capacity(int cpu)9955 static unsigned long scale_rt_capacity(int cpu)
9956 {
9957 	unsigned long max = get_actual_cpu_capacity(cpu);
9958 	struct rq *rq = cpu_rq(cpu);
9959 	unsigned long used, free;
9960 	unsigned long irq;
9961 
9962 	irq = cpu_util_irq(rq);
9963 
9964 	if (unlikely(irq >= max))
9965 		return 1;
9966 
9967 	/*
9968 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9969 	 * (running and not running) with weights 0 and 1024 respectively.
9970 	 */
9971 	used = cpu_util_rt(rq);
9972 	used += cpu_util_dl(rq);
9973 
9974 	if (unlikely(used >= max))
9975 		return 1;
9976 
9977 	free = max - used;
9978 
9979 	return scale_irq_capacity(free, irq, max);
9980 }
9981 
update_cpu_capacity(struct sched_domain * sd,int cpu)9982 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9983 {
9984 	unsigned long capacity = scale_rt_capacity(cpu);
9985 	struct sched_group *sdg = sd->groups;
9986 
9987 	if (!capacity)
9988 		capacity = 1;
9989 
9990 	cpu_rq(cpu)->cpu_capacity = capacity;
9991 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9992 
9993 	sdg->sgc->capacity = capacity;
9994 	sdg->sgc->min_capacity = capacity;
9995 	sdg->sgc->max_capacity = capacity;
9996 }
9997 
update_group_capacity(struct sched_domain * sd,int cpu)9998 void update_group_capacity(struct sched_domain *sd, int cpu)
9999 {
10000 	struct sched_domain *child = sd->child;
10001 	struct sched_group *group, *sdg = sd->groups;
10002 	unsigned long capacity, min_capacity, max_capacity;
10003 	unsigned long interval;
10004 
10005 	interval = msecs_to_jiffies(sd->balance_interval);
10006 	interval = clamp(interval, 1UL, max_load_balance_interval);
10007 	sdg->sgc->next_update = jiffies + interval;
10008 
10009 	if (!child) {
10010 		update_cpu_capacity(sd, cpu);
10011 		return;
10012 	}
10013 
10014 	capacity = 0;
10015 	min_capacity = ULONG_MAX;
10016 	max_capacity = 0;
10017 
10018 	if (child->flags & SD_OVERLAP) {
10019 		/*
10020 		 * SD_OVERLAP domains cannot assume that child groups
10021 		 * span the current group.
10022 		 */
10023 
10024 		for_each_cpu(cpu, sched_group_span(sdg)) {
10025 			unsigned long cpu_cap = capacity_of(cpu);
10026 
10027 			capacity += cpu_cap;
10028 			min_capacity = min(cpu_cap, min_capacity);
10029 			max_capacity = max(cpu_cap, max_capacity);
10030 		}
10031 	} else  {
10032 		/*
10033 		 * !SD_OVERLAP domains can assume that child groups
10034 		 * span the current group.
10035 		 */
10036 
10037 		group = child->groups;
10038 		do {
10039 			struct sched_group_capacity *sgc = group->sgc;
10040 
10041 			capacity += sgc->capacity;
10042 			min_capacity = min(sgc->min_capacity, min_capacity);
10043 			max_capacity = max(sgc->max_capacity, max_capacity);
10044 			group = group->next;
10045 		} while (group != child->groups);
10046 	}
10047 
10048 	sdg->sgc->capacity = capacity;
10049 	sdg->sgc->min_capacity = min_capacity;
10050 	sdg->sgc->max_capacity = max_capacity;
10051 }
10052 
10053 /*
10054  * Check whether the capacity of the rq has been noticeably reduced by side
10055  * activity. The imbalance_pct is used for the threshold.
10056  * Return true is the capacity is reduced
10057  */
10058 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)10059 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10060 {
10061 	return ((rq->cpu_capacity * sd->imbalance_pct) <
10062 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10063 }
10064 
10065 /* Check if the rq has a misfit task */
check_misfit_status(struct rq * rq)10066 static inline bool check_misfit_status(struct rq *rq)
10067 {
10068 	return rq->misfit_task_load;
10069 }
10070 
10071 /*
10072  * Group imbalance indicates (and tries to solve) the problem where balancing
10073  * groups is inadequate due to ->cpus_ptr constraints.
10074  *
10075  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10076  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10077  * Something like:
10078  *
10079  *	{ 0 1 2 3 } { 4 5 6 7 }
10080  *	        *     * * *
10081  *
10082  * If we were to balance group-wise we'd place two tasks in the first group and
10083  * two tasks in the second group. Clearly this is undesired as it will overload
10084  * cpu 3 and leave one of the CPUs in the second group unused.
10085  *
10086  * The current solution to this issue is detecting the skew in the first group
10087  * by noticing the lower domain failed to reach balance and had difficulty
10088  * moving tasks due to affinity constraints.
10089  *
10090  * When this is so detected; this group becomes a candidate for busiest; see
10091  * update_sd_pick_busiest(). And calculate_imbalance() and
10092  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10093  * to create an effective group imbalance.
10094  *
10095  * This is a somewhat tricky proposition since the next run might not find the
10096  * group imbalance and decide the groups need to be balanced again. A most
10097  * subtle and fragile situation.
10098  */
10099 
sg_imbalanced(struct sched_group * group)10100 static inline int sg_imbalanced(struct sched_group *group)
10101 {
10102 	return group->sgc->imbalance;
10103 }
10104 
10105 /*
10106  * group_has_capacity returns true if the group has spare capacity that could
10107  * be used by some tasks.
10108  * We consider that a group has spare capacity if the number of task is
10109  * smaller than the number of CPUs or if the utilization is lower than the
10110  * available capacity for CFS tasks.
10111  * For the latter, we use a threshold to stabilize the state, to take into
10112  * account the variance of the tasks' load and to return true if the available
10113  * capacity in meaningful for the load balancer.
10114  * As an example, an available capacity of 1% can appear but it doesn't make
10115  * any benefit for the load balance.
10116  */
10117 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10118 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10119 {
10120 	if (sgs->sum_nr_running < sgs->group_weight)
10121 		return true;
10122 
10123 	if ((sgs->group_capacity * imbalance_pct) <
10124 			(sgs->group_runnable * 100))
10125 		return false;
10126 
10127 	if ((sgs->group_capacity * 100) >
10128 			(sgs->group_util * imbalance_pct))
10129 		return true;
10130 
10131 	return false;
10132 }
10133 
10134 /*
10135  *  group_is_overloaded returns true if the group has more tasks than it can
10136  *  handle.
10137  *  group_is_overloaded is not equals to !group_has_capacity because a group
10138  *  with the exact right number of tasks, has no more spare capacity but is not
10139  *  overloaded so both group_has_capacity and group_is_overloaded return
10140  *  false.
10141  */
10142 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10143 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10144 {
10145 	if (sgs->sum_nr_running <= sgs->group_weight)
10146 		return false;
10147 
10148 	if ((sgs->group_capacity * 100) <
10149 			(sgs->group_util * imbalance_pct))
10150 		return true;
10151 
10152 	if ((sgs->group_capacity * imbalance_pct) <
10153 			(sgs->group_runnable * 100))
10154 		return true;
10155 
10156 	return false;
10157 }
10158 
10159 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)10160 group_type group_classify(unsigned int imbalance_pct,
10161 			  struct sched_group *group,
10162 			  struct sg_lb_stats *sgs)
10163 {
10164 	if (group_is_overloaded(imbalance_pct, sgs))
10165 		return group_overloaded;
10166 
10167 	if (sg_imbalanced(group))
10168 		return group_imbalanced;
10169 
10170 	if (sgs->group_asym_packing)
10171 		return group_asym_packing;
10172 
10173 	if (sgs->group_smt_balance)
10174 		return group_smt_balance;
10175 
10176 	if (sgs->group_misfit_task_load)
10177 		return group_misfit_task;
10178 
10179 	if (!group_has_capacity(imbalance_pct, sgs))
10180 		return group_fully_busy;
10181 
10182 	return group_has_spare;
10183 }
10184 
10185 /**
10186  * sched_use_asym_prio - Check whether asym_packing priority must be used
10187  * @sd:		The scheduling domain of the load balancing
10188  * @cpu:	A CPU
10189  *
10190  * Always use CPU priority when balancing load between SMT siblings. When
10191  * balancing load between cores, it is not sufficient that @cpu is idle. Only
10192  * use CPU priority if the whole core is idle.
10193  *
10194  * Returns: True if the priority of @cpu must be followed. False otherwise.
10195  */
sched_use_asym_prio(struct sched_domain * sd,int cpu)10196 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10197 {
10198 	if (!(sd->flags & SD_ASYM_PACKING))
10199 		return false;
10200 
10201 	if (!sched_smt_active())
10202 		return true;
10203 
10204 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10205 }
10206 
sched_asym(struct sched_domain * sd,int dst_cpu,int src_cpu)10207 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10208 {
10209 	/*
10210 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
10211 	 * if it has higher priority than @src_cpu.
10212 	 */
10213 	return sched_use_asym_prio(sd, dst_cpu) &&
10214 		sched_asym_prefer(dst_cpu, src_cpu);
10215 }
10216 
10217 /**
10218  * sched_group_asym - Check if the destination CPU can do asym_packing balance
10219  * @env:	The load balancing environment
10220  * @sgs:	Load-balancing statistics of the candidate busiest group
10221  * @group:	The candidate busiest group
10222  *
10223  * @env::dst_cpu can do asym_packing if it has higher priority than the
10224  * preferred CPU of @group.
10225  *
10226  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10227  * otherwise.
10228  */
10229 static inline bool
sched_group_asym(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10230 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10231 {
10232 	/*
10233 	 * CPU priorities do not make sense for SMT cores with more than one
10234 	 * busy sibling.
10235 	 */
10236 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10237 	    (sgs->group_weight - sgs->idle_cpus != 1))
10238 		return false;
10239 
10240 	return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
10241 }
10242 
10243 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)10244 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10245 				    struct sched_group *sg2)
10246 {
10247 	if (!sg1 || !sg2)
10248 		return false;
10249 
10250 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10251 		(sg2->flags & SD_SHARE_CPUCAPACITY);
10252 }
10253 
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10254 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10255 			       struct sched_group *group)
10256 {
10257 	if (!env->idle)
10258 		return false;
10259 
10260 	/*
10261 	 * For SMT source group, it is better to move a task
10262 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10263 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10264 	 * will not be on.
10265 	 */
10266 	if (group->flags & SD_SHARE_CPUCAPACITY &&
10267 	    sgs->sum_h_nr_running > 1)
10268 		return true;
10269 
10270 	return false;
10271 }
10272 
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)10273 static inline long sibling_imbalance(struct lb_env *env,
10274 				    struct sd_lb_stats *sds,
10275 				    struct sg_lb_stats *busiest,
10276 				    struct sg_lb_stats *local)
10277 {
10278 	int ncores_busiest, ncores_local;
10279 	long imbalance;
10280 
10281 	if (!env->idle || !busiest->sum_nr_running)
10282 		return 0;
10283 
10284 	ncores_busiest = sds->busiest->cores;
10285 	ncores_local = sds->local->cores;
10286 
10287 	if (ncores_busiest == ncores_local) {
10288 		imbalance = busiest->sum_nr_running;
10289 		lsub_positive(&imbalance, local->sum_nr_running);
10290 		return imbalance;
10291 	}
10292 
10293 	/* Balance such that nr_running/ncores ratio are same on both groups */
10294 	imbalance = ncores_local * busiest->sum_nr_running;
10295 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10296 	/* Normalize imbalance and do rounding on normalization */
10297 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10298 	imbalance /= ncores_local + ncores_busiest;
10299 
10300 	/* Take advantage of resource in an empty sched group */
10301 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
10302 	    busiest->sum_nr_running > 1)
10303 		imbalance = 2;
10304 
10305 	return imbalance;
10306 }
10307 
10308 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)10309 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10310 {
10311 	/*
10312 	 * When there is more than 1 task, the group_overloaded case already
10313 	 * takes care of cpu with reduced capacity
10314 	 */
10315 	if (rq->cfs.h_nr_runnable != 1)
10316 		return false;
10317 
10318 	return check_cpu_capacity(rq, sd);
10319 }
10320 
10321 /**
10322  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10323  * @env: The load balancing environment.
10324  * @sds: Load-balancing data with statistics of the local group.
10325  * @group: sched_group whose statistics are to be updated.
10326  * @sgs: variable to hold the statistics for this group.
10327  * @sg_overloaded: sched_group is overloaded
10328  * @sg_overutilized: sched_group is overutilized
10329  */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,bool * sg_overloaded,bool * sg_overutilized)10330 static inline void update_sg_lb_stats(struct lb_env *env,
10331 				      struct sd_lb_stats *sds,
10332 				      struct sched_group *group,
10333 				      struct sg_lb_stats *sgs,
10334 				      bool *sg_overloaded,
10335 				      bool *sg_overutilized)
10336 {
10337 	int i, nr_running, local_group, sd_flags = env->sd->flags;
10338 	bool balancing_at_rd = !env->sd->parent;
10339 
10340 	memset(sgs, 0, sizeof(*sgs));
10341 
10342 	local_group = group == sds->local;
10343 
10344 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10345 		struct rq *rq = cpu_rq(i);
10346 		unsigned long load = cpu_load(rq);
10347 
10348 		sgs->group_load += load;
10349 		sgs->group_util += cpu_util_cfs(i);
10350 		sgs->group_runnable += cpu_runnable(rq);
10351 		sgs->sum_h_nr_running += rq->cfs.h_nr_runnable;
10352 
10353 		nr_running = rq->nr_running;
10354 		sgs->sum_nr_running += nr_running;
10355 
10356 		if (cpu_overutilized(i))
10357 			*sg_overutilized = 1;
10358 
10359 		/*
10360 		 * No need to call idle_cpu() if nr_running is not 0
10361 		 */
10362 		if (!nr_running && idle_cpu(i)) {
10363 			sgs->idle_cpus++;
10364 			/* Idle cpu can't have misfit task */
10365 			continue;
10366 		}
10367 
10368 		/* Overload indicator is only updated at root domain */
10369 		if (balancing_at_rd && nr_running > 1)
10370 			*sg_overloaded = 1;
10371 
10372 #ifdef CONFIG_NUMA_BALANCING
10373 		/* Only fbq_classify_group() uses this to classify NUMA groups */
10374 		if (sd_flags & SD_NUMA) {
10375 			sgs->nr_numa_running += rq->nr_numa_running;
10376 			sgs->nr_preferred_running += rq->nr_preferred_running;
10377 		}
10378 #endif
10379 		if (local_group)
10380 			continue;
10381 
10382 		if (sd_flags & SD_ASYM_CPUCAPACITY) {
10383 			/* Check for a misfit task on the cpu */
10384 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10385 				sgs->group_misfit_task_load = rq->misfit_task_load;
10386 				*sg_overloaded = 1;
10387 			}
10388 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10389 			/* Check for a task running on a CPU with reduced capacity */
10390 			if (sgs->group_misfit_task_load < load)
10391 				sgs->group_misfit_task_load = load;
10392 		}
10393 	}
10394 
10395 	sgs->group_capacity = group->sgc->capacity;
10396 
10397 	sgs->group_weight = group->group_weight;
10398 
10399 	/* Check if dst CPU is idle and preferred to this group */
10400 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10401 	    sched_group_asym(env, sgs, group))
10402 		sgs->group_asym_packing = 1;
10403 
10404 	/* Check for loaded SMT group to be balanced to dst CPU */
10405 	if (!local_group && smt_balance(env, sgs, group))
10406 		sgs->group_smt_balance = 1;
10407 
10408 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10409 
10410 	/* Computing avg_load makes sense only when group is overloaded */
10411 	if (sgs->group_type == group_overloaded)
10412 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10413 				sgs->group_capacity;
10414 }
10415 
10416 /**
10417  * update_sd_pick_busiest - return 1 on busiest group
10418  * @env: The load balancing environment.
10419  * @sds: sched_domain statistics
10420  * @sg: sched_group candidate to be checked for being the busiest
10421  * @sgs: sched_group statistics
10422  *
10423  * Determine if @sg is a busier group than the previously selected
10424  * busiest group.
10425  *
10426  * Return: %true if @sg is a busier group than the previously selected
10427  * busiest group. %false otherwise.
10428  */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)10429 static bool update_sd_pick_busiest(struct lb_env *env,
10430 				   struct sd_lb_stats *sds,
10431 				   struct sched_group *sg,
10432 				   struct sg_lb_stats *sgs)
10433 {
10434 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10435 
10436 	/* Make sure that there is at least one task to pull */
10437 	if (!sgs->sum_h_nr_running)
10438 		return false;
10439 
10440 	/*
10441 	 * Don't try to pull misfit tasks we can't help.
10442 	 * We can use max_capacity here as reduction in capacity on some
10443 	 * CPUs in the group should either be possible to resolve
10444 	 * internally or be covered by avg_load imbalance (eventually).
10445 	 */
10446 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10447 	    (sgs->group_type == group_misfit_task) &&
10448 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10449 	     sds->local_stat.group_type != group_has_spare))
10450 		return false;
10451 
10452 	if (sgs->group_type > busiest->group_type)
10453 		return true;
10454 
10455 	if (sgs->group_type < busiest->group_type)
10456 		return false;
10457 
10458 	/*
10459 	 * The candidate and the current busiest group are the same type of
10460 	 * group. Let check which one is the busiest according to the type.
10461 	 */
10462 
10463 	switch (sgs->group_type) {
10464 	case group_overloaded:
10465 		/* Select the overloaded group with highest avg_load. */
10466 		return sgs->avg_load > busiest->avg_load;
10467 
10468 	case group_imbalanced:
10469 		/*
10470 		 * Select the 1st imbalanced group as we don't have any way to
10471 		 * choose one more than another.
10472 		 */
10473 		return false;
10474 
10475 	case group_asym_packing:
10476 		/* Prefer to move from lowest priority CPU's work */
10477 		return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10478 
10479 	case group_misfit_task:
10480 		/*
10481 		 * If we have more than one misfit sg go with the biggest
10482 		 * misfit.
10483 		 */
10484 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10485 
10486 	case group_smt_balance:
10487 		/*
10488 		 * Check if we have spare CPUs on either SMT group to
10489 		 * choose has spare or fully busy handling.
10490 		 */
10491 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10492 			goto has_spare;
10493 
10494 		fallthrough;
10495 
10496 	case group_fully_busy:
10497 		/*
10498 		 * Select the fully busy group with highest avg_load. In
10499 		 * theory, there is no need to pull task from such kind of
10500 		 * group because tasks have all compute capacity that they need
10501 		 * but we can still improve the overall throughput by reducing
10502 		 * contention when accessing shared HW resources.
10503 		 *
10504 		 * XXX for now avg_load is not computed and always 0 so we
10505 		 * select the 1st one, except if @sg is composed of SMT
10506 		 * siblings.
10507 		 */
10508 
10509 		if (sgs->avg_load < busiest->avg_load)
10510 			return false;
10511 
10512 		if (sgs->avg_load == busiest->avg_load) {
10513 			/*
10514 			 * SMT sched groups need more help than non-SMT groups.
10515 			 * If @sg happens to also be SMT, either choice is good.
10516 			 */
10517 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10518 				return false;
10519 		}
10520 
10521 		break;
10522 
10523 	case group_has_spare:
10524 		/*
10525 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10526 		 * as we do not want to pull task off SMT core with one task
10527 		 * and make the core idle.
10528 		 */
10529 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10530 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10531 				return false;
10532 			else
10533 				return true;
10534 		}
10535 has_spare:
10536 
10537 		/*
10538 		 * Select not overloaded group with lowest number of idle CPUs
10539 		 * and highest number of running tasks. We could also compare
10540 		 * the spare capacity which is more stable but it can end up
10541 		 * that the group has less spare capacity but finally more idle
10542 		 * CPUs which means less opportunity to pull tasks.
10543 		 */
10544 		if (sgs->idle_cpus > busiest->idle_cpus)
10545 			return false;
10546 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10547 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10548 			return false;
10549 
10550 		break;
10551 	}
10552 
10553 	/*
10554 	 * Candidate sg has no more than one task per CPU and has higher
10555 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10556 	 * throughput. Maximize throughput, power/energy consequences are not
10557 	 * considered.
10558 	 */
10559 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10560 	    (sgs->group_type <= group_fully_busy) &&
10561 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10562 		return false;
10563 
10564 	return true;
10565 }
10566 
10567 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10568 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10569 {
10570 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10571 		return regular;
10572 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10573 		return remote;
10574 	return all;
10575 }
10576 
fbq_classify_rq(struct rq * rq)10577 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10578 {
10579 	if (rq->nr_running > rq->nr_numa_running)
10580 		return regular;
10581 	if (rq->nr_running > rq->nr_preferred_running)
10582 		return remote;
10583 	return all;
10584 }
10585 #else
fbq_classify_group(struct sg_lb_stats * sgs)10586 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10587 {
10588 	return all;
10589 }
10590 
fbq_classify_rq(struct rq * rq)10591 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10592 {
10593 	return regular;
10594 }
10595 #endif /* CONFIG_NUMA_BALANCING */
10596 
10597 
10598 struct sg_lb_stats;
10599 
10600 /*
10601  * task_running_on_cpu - return 1 if @p is running on @cpu.
10602  */
10603 
task_running_on_cpu(int cpu,struct task_struct * p)10604 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10605 {
10606 	/* Task has no contribution or is new */
10607 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10608 		return 0;
10609 
10610 	if (task_on_rq_queued(p))
10611 		return 1;
10612 
10613 	return 0;
10614 }
10615 
10616 /**
10617  * idle_cpu_without - would a given CPU be idle without p ?
10618  * @cpu: the processor on which idleness is tested.
10619  * @p: task which should be ignored.
10620  *
10621  * Return: 1 if the CPU would be idle. 0 otherwise.
10622  */
idle_cpu_without(int cpu,struct task_struct * p)10623 static int idle_cpu_without(int cpu, struct task_struct *p)
10624 {
10625 	struct rq *rq = cpu_rq(cpu);
10626 
10627 	if (rq->curr != rq->idle && rq->curr != p)
10628 		return 0;
10629 
10630 	/*
10631 	 * rq->nr_running can't be used but an updated version without the
10632 	 * impact of p on cpu must be used instead. The updated nr_running
10633 	 * be computed and tested before calling idle_cpu_without().
10634 	 */
10635 
10636 	if (rq->ttwu_pending)
10637 		return 0;
10638 
10639 	return 1;
10640 }
10641 
10642 /*
10643  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10644  * @sd: The sched_domain level to look for idlest group.
10645  * @group: sched_group whose statistics are to be updated.
10646  * @sgs: variable to hold the statistics for this group.
10647  * @p: The task for which we look for the idlest group/CPU.
10648  */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10649 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10650 					  struct sched_group *group,
10651 					  struct sg_lb_stats *sgs,
10652 					  struct task_struct *p)
10653 {
10654 	int i, nr_running;
10655 
10656 	memset(sgs, 0, sizeof(*sgs));
10657 
10658 	/* Assume that task can't fit any CPU of the group */
10659 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10660 		sgs->group_misfit_task_load = 1;
10661 
10662 	for_each_cpu(i, sched_group_span(group)) {
10663 		struct rq *rq = cpu_rq(i);
10664 		unsigned int local;
10665 
10666 		sgs->group_load += cpu_load_without(rq, p);
10667 		sgs->group_util += cpu_util_without(i, p);
10668 		sgs->group_runnable += cpu_runnable_without(rq, p);
10669 		local = task_running_on_cpu(i, p);
10670 		sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local;
10671 
10672 		nr_running = rq->nr_running - local;
10673 		sgs->sum_nr_running += nr_running;
10674 
10675 		/*
10676 		 * No need to call idle_cpu_without() if nr_running is not 0
10677 		 */
10678 		if (!nr_running && idle_cpu_without(i, p))
10679 			sgs->idle_cpus++;
10680 
10681 		/* Check if task fits in the CPU */
10682 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10683 		    sgs->group_misfit_task_load &&
10684 		    task_fits_cpu(p, i))
10685 			sgs->group_misfit_task_load = 0;
10686 
10687 	}
10688 
10689 	sgs->group_capacity = group->sgc->capacity;
10690 
10691 	sgs->group_weight = group->group_weight;
10692 
10693 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10694 
10695 	/*
10696 	 * Computing avg_load makes sense only when group is fully busy or
10697 	 * overloaded
10698 	 */
10699 	if (sgs->group_type == group_fully_busy ||
10700 		sgs->group_type == group_overloaded)
10701 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10702 				sgs->group_capacity;
10703 }
10704 
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10705 static bool update_pick_idlest(struct sched_group *idlest,
10706 			       struct sg_lb_stats *idlest_sgs,
10707 			       struct sched_group *group,
10708 			       struct sg_lb_stats *sgs)
10709 {
10710 	if (sgs->group_type < idlest_sgs->group_type)
10711 		return true;
10712 
10713 	if (sgs->group_type > idlest_sgs->group_type)
10714 		return false;
10715 
10716 	/*
10717 	 * The candidate and the current idlest group are the same type of
10718 	 * group. Let check which one is the idlest according to the type.
10719 	 */
10720 
10721 	switch (sgs->group_type) {
10722 	case group_overloaded:
10723 	case group_fully_busy:
10724 		/* Select the group with lowest avg_load. */
10725 		if (idlest_sgs->avg_load <= sgs->avg_load)
10726 			return false;
10727 		break;
10728 
10729 	case group_imbalanced:
10730 	case group_asym_packing:
10731 	case group_smt_balance:
10732 		/* Those types are not used in the slow wakeup path */
10733 		return false;
10734 
10735 	case group_misfit_task:
10736 		/* Select group with the highest max capacity */
10737 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10738 			return false;
10739 		break;
10740 
10741 	case group_has_spare:
10742 		/* Select group with most idle CPUs */
10743 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10744 			return false;
10745 
10746 		/* Select group with lowest group_util */
10747 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10748 			idlest_sgs->group_util <= sgs->group_util)
10749 			return false;
10750 
10751 		break;
10752 	}
10753 
10754 	return true;
10755 }
10756 
10757 /*
10758  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10759  * domain.
10760  *
10761  * Assumes p is allowed on at least one CPU in sd.
10762  */
10763 static struct sched_group *
sched_balance_find_dst_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10764 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10765 {
10766 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10767 	struct sg_lb_stats local_sgs, tmp_sgs;
10768 	struct sg_lb_stats *sgs;
10769 	unsigned long imbalance;
10770 	struct sg_lb_stats idlest_sgs = {
10771 			.avg_load = UINT_MAX,
10772 			.group_type = group_overloaded,
10773 	};
10774 
10775 	do {
10776 		int local_group;
10777 
10778 		/* Skip over this group if it has no CPUs allowed */
10779 		if (!cpumask_intersects(sched_group_span(group),
10780 					p->cpus_ptr))
10781 			continue;
10782 
10783 		/* Skip over this group if no cookie matched */
10784 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10785 			continue;
10786 
10787 		local_group = cpumask_test_cpu(this_cpu,
10788 					       sched_group_span(group));
10789 
10790 		if (local_group) {
10791 			sgs = &local_sgs;
10792 			local = group;
10793 		} else {
10794 			sgs = &tmp_sgs;
10795 		}
10796 
10797 		update_sg_wakeup_stats(sd, group, sgs, p);
10798 
10799 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10800 			idlest = group;
10801 			idlest_sgs = *sgs;
10802 		}
10803 
10804 	} while (group = group->next, group != sd->groups);
10805 
10806 
10807 	/* There is no idlest group to push tasks to */
10808 	if (!idlest)
10809 		return NULL;
10810 
10811 	/* The local group has been skipped because of CPU affinity */
10812 	if (!local)
10813 		return idlest;
10814 
10815 	/*
10816 	 * If the local group is idler than the selected idlest group
10817 	 * don't try and push the task.
10818 	 */
10819 	if (local_sgs.group_type < idlest_sgs.group_type)
10820 		return NULL;
10821 
10822 	/*
10823 	 * If the local group is busier than the selected idlest group
10824 	 * try and push the task.
10825 	 */
10826 	if (local_sgs.group_type > idlest_sgs.group_type)
10827 		return idlest;
10828 
10829 	switch (local_sgs.group_type) {
10830 	case group_overloaded:
10831 	case group_fully_busy:
10832 
10833 		/* Calculate allowed imbalance based on load */
10834 		imbalance = scale_load_down(NICE_0_LOAD) *
10835 				(sd->imbalance_pct-100) / 100;
10836 
10837 		/*
10838 		 * When comparing groups across NUMA domains, it's possible for
10839 		 * the local domain to be very lightly loaded relative to the
10840 		 * remote domains but "imbalance" skews the comparison making
10841 		 * remote CPUs look much more favourable. When considering
10842 		 * cross-domain, add imbalance to the load on the remote node
10843 		 * and consider staying local.
10844 		 */
10845 
10846 		if ((sd->flags & SD_NUMA) &&
10847 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10848 			return NULL;
10849 
10850 		/*
10851 		 * If the local group is less loaded than the selected
10852 		 * idlest group don't try and push any tasks.
10853 		 */
10854 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10855 			return NULL;
10856 
10857 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10858 			return NULL;
10859 		break;
10860 
10861 	case group_imbalanced:
10862 	case group_asym_packing:
10863 	case group_smt_balance:
10864 		/* Those type are not used in the slow wakeup path */
10865 		return NULL;
10866 
10867 	case group_misfit_task:
10868 		/* Select group with the highest max capacity */
10869 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10870 			return NULL;
10871 		break;
10872 
10873 	case group_has_spare:
10874 #ifdef CONFIG_NUMA
10875 		if (sd->flags & SD_NUMA) {
10876 			int imb_numa_nr = sd->imb_numa_nr;
10877 #ifdef CONFIG_NUMA_BALANCING
10878 			int idlest_cpu;
10879 			/*
10880 			 * If there is spare capacity at NUMA, try to select
10881 			 * the preferred node
10882 			 */
10883 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10884 				return NULL;
10885 
10886 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10887 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10888 				return idlest;
10889 #endif /* CONFIG_NUMA_BALANCING */
10890 			/*
10891 			 * Otherwise, keep the task close to the wakeup source
10892 			 * and improve locality if the number of running tasks
10893 			 * would remain below threshold where an imbalance is
10894 			 * allowed while accounting for the possibility the
10895 			 * task is pinned to a subset of CPUs. If there is a
10896 			 * real need of migration, periodic load balance will
10897 			 * take care of it.
10898 			 */
10899 			if (p->nr_cpus_allowed != NR_CPUS) {
10900 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10901 
10902 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10903 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10904 			}
10905 
10906 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10907 			if (!adjust_numa_imbalance(imbalance,
10908 						   local_sgs.sum_nr_running + 1,
10909 						   imb_numa_nr)) {
10910 				return NULL;
10911 			}
10912 		}
10913 #endif /* CONFIG_NUMA */
10914 
10915 		/*
10916 		 * Select group with highest number of idle CPUs. We could also
10917 		 * compare the utilization which is more stable but it can end
10918 		 * up that the group has less spare capacity but finally more
10919 		 * idle CPUs which means more opportunity to run task.
10920 		 */
10921 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10922 			return NULL;
10923 		break;
10924 	}
10925 
10926 	return idlest;
10927 }
10928 
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10929 static void update_idle_cpu_scan(struct lb_env *env,
10930 				 unsigned long sum_util)
10931 {
10932 	struct sched_domain_shared *sd_share;
10933 	int llc_weight, pct;
10934 	u64 x, y, tmp;
10935 	/*
10936 	 * Update the number of CPUs to scan in LLC domain, which could
10937 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10938 	 * could be expensive because it is within a shared cache line.
10939 	 * So the write of this hint only occurs during periodic load
10940 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10941 	 * can fire way more frequently than the former.
10942 	 */
10943 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10944 		return;
10945 
10946 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10947 	if (env->sd->span_weight != llc_weight)
10948 		return;
10949 
10950 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10951 	if (!sd_share)
10952 		return;
10953 
10954 	/*
10955 	 * The number of CPUs to search drops as sum_util increases, when
10956 	 * sum_util hits 85% or above, the scan stops.
10957 	 * The reason to choose 85% as the threshold is because this is the
10958 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10959 	 *
10960 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10961 	 * and y'= y / SCHED_CAPACITY_SCALE
10962 	 *
10963 	 * x is the ratio of sum_util compared to the CPU capacity:
10964 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10965 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10966 	 * and the number of CPUs to scan is calculated by:
10967 	 *
10968 	 * nr_scan = llc_weight * y'                                    [2]
10969 	 *
10970 	 * When x hits the threshold of overloaded, AKA, when
10971 	 * x = 100 / pct, y drops to 0. According to [1],
10972 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10973 	 *
10974 	 * Scale x by SCHED_CAPACITY_SCALE:
10975 	 * x' = sum_util / llc_weight;                                  [3]
10976 	 *
10977 	 * and finally [1] becomes:
10978 	 * y = SCHED_CAPACITY_SCALE -
10979 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10980 	 *
10981 	 */
10982 	/* equation [3] */
10983 	x = sum_util;
10984 	do_div(x, llc_weight);
10985 
10986 	/* equation [4] */
10987 	pct = env->sd->imbalance_pct;
10988 	tmp = x * x * pct * pct;
10989 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10990 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10991 	y = SCHED_CAPACITY_SCALE - tmp;
10992 
10993 	/* equation [2] */
10994 	y *= llc_weight;
10995 	do_div(y, SCHED_CAPACITY_SCALE);
10996 	if ((int)y != sd_share->nr_idle_scan)
10997 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10998 }
10999 
11000 /**
11001  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
11002  * @env: The load balancing environment.
11003  * @sds: variable to hold the statistics for this sched_domain.
11004  */
11005 
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)11006 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
11007 {
11008 	struct sched_group *sg = env->sd->groups;
11009 	struct sg_lb_stats *local = &sds->local_stat;
11010 	struct sg_lb_stats tmp_sgs;
11011 	unsigned long sum_util = 0;
11012 	bool sg_overloaded = 0, sg_overutilized = 0;
11013 
11014 	do {
11015 		struct sg_lb_stats *sgs = &tmp_sgs;
11016 		int local_group;
11017 
11018 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
11019 		if (local_group) {
11020 			sds->local = sg;
11021 			sgs = local;
11022 
11023 			if (env->idle != CPU_NEWLY_IDLE ||
11024 			    time_after_eq(jiffies, sg->sgc->next_update))
11025 				update_group_capacity(env->sd, env->dst_cpu);
11026 		}
11027 
11028 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11029 
11030 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11031 			sds->busiest = sg;
11032 			sds->busiest_stat = *sgs;
11033 		}
11034 
11035 		/* Now, start updating sd_lb_stats */
11036 		sds->total_load += sgs->group_load;
11037 		sds->total_capacity += sgs->group_capacity;
11038 
11039 		sum_util += sgs->group_util;
11040 		sg = sg->next;
11041 	} while (sg != env->sd->groups);
11042 
11043 	/*
11044 	 * Indicate that the child domain of the busiest group prefers tasks
11045 	 * go to a child's sibling domains first. NB the flags of a sched group
11046 	 * are those of the child domain.
11047 	 */
11048 	if (sds->busiest)
11049 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11050 
11051 
11052 	if (env->sd->flags & SD_NUMA)
11053 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11054 
11055 	if (!env->sd->parent) {
11056 		/* update overload indicator if we are at root domain */
11057 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11058 
11059 		/* Update over-utilization (tipping point, U >= 0) indicator */
11060 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11061 	} else if (sg_overutilized) {
11062 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11063 	}
11064 
11065 	update_idle_cpu_scan(env, sum_util);
11066 }
11067 
11068 /**
11069  * calculate_imbalance - Calculate the amount of imbalance present within the
11070  *			 groups of a given sched_domain during load balance.
11071  * @env: load balance environment
11072  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11073  */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)11074 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11075 {
11076 	struct sg_lb_stats *local, *busiest;
11077 
11078 	local = &sds->local_stat;
11079 	busiest = &sds->busiest_stat;
11080 
11081 	if (busiest->group_type == group_misfit_task) {
11082 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11083 			/* Set imbalance to allow misfit tasks to be balanced. */
11084 			env->migration_type = migrate_misfit;
11085 			env->imbalance = 1;
11086 		} else {
11087 			/*
11088 			 * Set load imbalance to allow moving task from cpu
11089 			 * with reduced capacity.
11090 			 */
11091 			env->migration_type = migrate_load;
11092 			env->imbalance = busiest->group_misfit_task_load;
11093 		}
11094 		return;
11095 	}
11096 
11097 	if (busiest->group_type == group_asym_packing) {
11098 		/*
11099 		 * In case of asym capacity, we will try to migrate all load to
11100 		 * the preferred CPU.
11101 		 */
11102 		env->migration_type = migrate_task;
11103 		env->imbalance = busiest->sum_h_nr_running;
11104 		return;
11105 	}
11106 
11107 	if (busiest->group_type == group_smt_balance) {
11108 		/* Reduce number of tasks sharing CPU capacity */
11109 		env->migration_type = migrate_task;
11110 		env->imbalance = 1;
11111 		return;
11112 	}
11113 
11114 	if (busiest->group_type == group_imbalanced) {
11115 		/*
11116 		 * In the group_imb case we cannot rely on group-wide averages
11117 		 * to ensure CPU-load equilibrium, try to move any task to fix
11118 		 * the imbalance. The next load balance will take care of
11119 		 * balancing back the system.
11120 		 */
11121 		env->migration_type = migrate_task;
11122 		env->imbalance = 1;
11123 		return;
11124 	}
11125 
11126 	/*
11127 	 * Try to use spare capacity of local group without overloading it or
11128 	 * emptying busiest.
11129 	 */
11130 	if (local->group_type == group_has_spare) {
11131 		if ((busiest->group_type > group_fully_busy) &&
11132 		    !(env->sd->flags & SD_SHARE_LLC)) {
11133 			/*
11134 			 * If busiest is overloaded, try to fill spare
11135 			 * capacity. This might end up creating spare capacity
11136 			 * in busiest or busiest still being overloaded but
11137 			 * there is no simple way to directly compute the
11138 			 * amount of load to migrate in order to balance the
11139 			 * system.
11140 			 */
11141 			env->migration_type = migrate_util;
11142 			env->imbalance = max(local->group_capacity, local->group_util) -
11143 					 local->group_util;
11144 
11145 			/*
11146 			 * In some cases, the group's utilization is max or even
11147 			 * higher than capacity because of migrations but the
11148 			 * local CPU is (newly) idle. There is at least one
11149 			 * waiting task in this overloaded busiest group. Let's
11150 			 * try to pull it.
11151 			 */
11152 			if (env->idle && env->imbalance == 0) {
11153 				env->migration_type = migrate_task;
11154 				env->imbalance = 1;
11155 			}
11156 
11157 			return;
11158 		}
11159 
11160 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
11161 			/*
11162 			 * When prefer sibling, evenly spread running tasks on
11163 			 * groups.
11164 			 */
11165 			env->migration_type = migrate_task;
11166 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
11167 		} else {
11168 
11169 			/*
11170 			 * If there is no overload, we just want to even the number of
11171 			 * idle CPUs.
11172 			 */
11173 			env->migration_type = migrate_task;
11174 			env->imbalance = max_t(long, 0,
11175 					       (local->idle_cpus - busiest->idle_cpus));
11176 		}
11177 
11178 #ifdef CONFIG_NUMA
11179 		/* Consider allowing a small imbalance between NUMA groups */
11180 		if (env->sd->flags & SD_NUMA) {
11181 			env->imbalance = adjust_numa_imbalance(env->imbalance,
11182 							       local->sum_nr_running + 1,
11183 							       env->sd->imb_numa_nr);
11184 		}
11185 #endif
11186 
11187 		/* Number of tasks to move to restore balance */
11188 		env->imbalance >>= 1;
11189 
11190 		return;
11191 	}
11192 
11193 	/*
11194 	 * Local is fully busy but has to take more load to relieve the
11195 	 * busiest group
11196 	 */
11197 	if (local->group_type < group_overloaded) {
11198 		/*
11199 		 * Local will become overloaded so the avg_load metrics are
11200 		 * finally needed.
11201 		 */
11202 
11203 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11204 				  local->group_capacity;
11205 
11206 		/*
11207 		 * If the local group is more loaded than the selected
11208 		 * busiest group don't try to pull any tasks.
11209 		 */
11210 		if (local->avg_load >= busiest->avg_load) {
11211 			env->imbalance = 0;
11212 			return;
11213 		}
11214 
11215 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11216 				sds->total_capacity;
11217 
11218 		/*
11219 		 * If the local group is more loaded than the average system
11220 		 * load, don't try to pull any tasks.
11221 		 */
11222 		if (local->avg_load >= sds->avg_load) {
11223 			env->imbalance = 0;
11224 			return;
11225 		}
11226 
11227 	}
11228 
11229 	/*
11230 	 * Both group are or will become overloaded and we're trying to get all
11231 	 * the CPUs to the average_load, so we don't want to push ourselves
11232 	 * above the average load, nor do we wish to reduce the max loaded CPU
11233 	 * below the average load. At the same time, we also don't want to
11234 	 * reduce the group load below the group capacity. Thus we look for
11235 	 * the minimum possible imbalance.
11236 	 */
11237 	env->migration_type = migrate_load;
11238 	env->imbalance = min(
11239 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11240 		(sds->avg_load - local->avg_load) * local->group_capacity
11241 	) / SCHED_CAPACITY_SCALE;
11242 }
11243 
11244 /******* sched_balance_find_src_group() helpers end here *********************/
11245 
11246 /*
11247  * Decision matrix according to the local and busiest group type:
11248  *
11249  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11250  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
11251  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
11252  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
11253  * asym_packing     force     force      N/A    N/A  force      force
11254  * imbalanced       force     force      N/A    N/A  force      force
11255  * overloaded       force     force      N/A    N/A  force      avg_load
11256  *
11257  * N/A :      Not Applicable because already filtered while updating
11258  *            statistics.
11259  * balanced : The system is balanced for these 2 groups.
11260  * force :    Calculate the imbalance as load migration is probably needed.
11261  * avg_load : Only if imbalance is significant enough.
11262  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
11263  *            different in groups.
11264  */
11265 
11266 /**
11267  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11268  * if there is an imbalance.
11269  * @env: The load balancing environment.
11270  *
11271  * Also calculates the amount of runnable load which should be moved
11272  * to restore balance.
11273  *
11274  * Return:	- The busiest group if imbalance exists.
11275  */
sched_balance_find_src_group(struct lb_env * env)11276 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11277 {
11278 	struct sg_lb_stats *local, *busiest;
11279 	struct sd_lb_stats sds;
11280 
11281 	init_sd_lb_stats(&sds);
11282 
11283 	/*
11284 	 * Compute the various statistics relevant for load balancing at
11285 	 * this level.
11286 	 */
11287 	update_sd_lb_stats(env, &sds);
11288 
11289 	/* There is no busy sibling group to pull tasks from */
11290 	if (!sds.busiest)
11291 		goto out_balanced;
11292 
11293 	busiest = &sds.busiest_stat;
11294 
11295 	/* Misfit tasks should be dealt with regardless of the avg load */
11296 	if (busiest->group_type == group_misfit_task)
11297 		goto force_balance;
11298 
11299 	if (!is_rd_overutilized(env->dst_rq->rd) &&
11300 	    rcu_dereference(env->dst_rq->rd->pd))
11301 		goto out_balanced;
11302 
11303 	/* ASYM feature bypasses nice load balance check */
11304 	if (busiest->group_type == group_asym_packing)
11305 		goto force_balance;
11306 
11307 	/*
11308 	 * If the busiest group is imbalanced the below checks don't
11309 	 * work because they assume all things are equal, which typically
11310 	 * isn't true due to cpus_ptr constraints and the like.
11311 	 */
11312 	if (busiest->group_type == group_imbalanced)
11313 		goto force_balance;
11314 
11315 	local = &sds.local_stat;
11316 	/*
11317 	 * If the local group is busier than the selected busiest group
11318 	 * don't try and pull any tasks.
11319 	 */
11320 	if (local->group_type > busiest->group_type)
11321 		goto out_balanced;
11322 
11323 	/*
11324 	 * When groups are overloaded, use the avg_load to ensure fairness
11325 	 * between tasks.
11326 	 */
11327 	if (local->group_type == group_overloaded) {
11328 		/*
11329 		 * If the local group is more loaded than the selected
11330 		 * busiest group don't try to pull any tasks.
11331 		 */
11332 		if (local->avg_load >= busiest->avg_load)
11333 			goto out_balanced;
11334 
11335 		/* XXX broken for overlapping NUMA groups */
11336 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11337 				sds.total_capacity;
11338 
11339 		/*
11340 		 * Don't pull any tasks if this group is already above the
11341 		 * domain average load.
11342 		 */
11343 		if (local->avg_load >= sds.avg_load)
11344 			goto out_balanced;
11345 
11346 		/*
11347 		 * If the busiest group is more loaded, use imbalance_pct to be
11348 		 * conservative.
11349 		 */
11350 		if (100 * busiest->avg_load <=
11351 				env->sd->imbalance_pct * local->avg_load)
11352 			goto out_balanced;
11353 	}
11354 
11355 	/*
11356 	 * Try to move all excess tasks to a sibling domain of the busiest
11357 	 * group's child domain.
11358 	 */
11359 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
11360 	    sibling_imbalance(env, &sds, busiest, local) > 1)
11361 		goto force_balance;
11362 
11363 	if (busiest->group_type != group_overloaded) {
11364 		if (!env->idle) {
11365 			/*
11366 			 * If the busiest group is not overloaded (and as a
11367 			 * result the local one too) but this CPU is already
11368 			 * busy, let another idle CPU try to pull task.
11369 			 */
11370 			goto out_balanced;
11371 		}
11372 
11373 		if (busiest->group_type == group_smt_balance &&
11374 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11375 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
11376 			goto force_balance;
11377 		}
11378 
11379 		if (busiest->group_weight > 1 &&
11380 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
11381 			/*
11382 			 * If the busiest group is not overloaded
11383 			 * and there is no imbalance between this and busiest
11384 			 * group wrt idle CPUs, it is balanced. The imbalance
11385 			 * becomes significant if the diff is greater than 1
11386 			 * otherwise we might end up to just move the imbalance
11387 			 * on another group. Of course this applies only if
11388 			 * there is more than 1 CPU per group.
11389 			 */
11390 			goto out_balanced;
11391 		}
11392 
11393 		if (busiest->sum_h_nr_running == 1) {
11394 			/*
11395 			 * busiest doesn't have any tasks waiting to run
11396 			 */
11397 			goto out_balanced;
11398 		}
11399 	}
11400 
11401 force_balance:
11402 	/* Looks like there is an imbalance. Compute it */
11403 	calculate_imbalance(env, &sds);
11404 	return env->imbalance ? sds.busiest : NULL;
11405 
11406 out_balanced:
11407 	env->imbalance = 0;
11408 	return NULL;
11409 }
11410 
11411 /*
11412  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11413  */
sched_balance_find_src_rq(struct lb_env * env,struct sched_group * group)11414 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11415 				     struct sched_group *group)
11416 {
11417 	struct rq *busiest = NULL, *rq;
11418 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11419 	unsigned int busiest_nr = 0;
11420 	int i;
11421 
11422 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11423 		unsigned long capacity, load, util;
11424 		unsigned int nr_running;
11425 		enum fbq_type rt;
11426 
11427 		rq = cpu_rq(i);
11428 		rt = fbq_classify_rq(rq);
11429 
11430 		/*
11431 		 * We classify groups/runqueues into three groups:
11432 		 *  - regular: there are !numa tasks
11433 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11434 		 *  - all:     there is no distinction
11435 		 *
11436 		 * In order to avoid migrating ideally placed numa tasks,
11437 		 * ignore those when there's better options.
11438 		 *
11439 		 * If we ignore the actual busiest queue to migrate another
11440 		 * task, the next balance pass can still reduce the busiest
11441 		 * queue by moving tasks around inside the node.
11442 		 *
11443 		 * If we cannot move enough load due to this classification
11444 		 * the next pass will adjust the group classification and
11445 		 * allow migration of more tasks.
11446 		 *
11447 		 * Both cases only affect the total convergence complexity.
11448 		 */
11449 		if (rt > env->fbq_type)
11450 			continue;
11451 
11452 		nr_running = rq->cfs.h_nr_runnable;
11453 		if (!nr_running)
11454 			continue;
11455 
11456 		capacity = capacity_of(i);
11457 
11458 		/*
11459 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11460 		 * eventually lead to active_balancing high->low capacity.
11461 		 * Higher per-CPU capacity is considered better than balancing
11462 		 * average load.
11463 		 */
11464 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11465 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11466 		    nr_running == 1)
11467 			continue;
11468 
11469 		/*
11470 		 * Make sure we only pull tasks from a CPU of lower priority
11471 		 * when balancing between SMT siblings.
11472 		 *
11473 		 * If balancing between cores, let lower priority CPUs help
11474 		 * SMT cores with more than one busy sibling.
11475 		 */
11476 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11477 			continue;
11478 
11479 		switch (env->migration_type) {
11480 		case migrate_load:
11481 			/*
11482 			 * When comparing with load imbalance, use cpu_load()
11483 			 * which is not scaled with the CPU capacity.
11484 			 */
11485 			load = cpu_load(rq);
11486 
11487 			if (nr_running == 1 && load > env->imbalance &&
11488 			    !check_cpu_capacity(rq, env->sd))
11489 				break;
11490 
11491 			/*
11492 			 * For the load comparisons with the other CPUs,
11493 			 * consider the cpu_load() scaled with the CPU
11494 			 * capacity, so that the load can be moved away
11495 			 * from the CPU that is potentially running at a
11496 			 * lower capacity.
11497 			 *
11498 			 * Thus we're looking for max(load_i / capacity_i),
11499 			 * crosswise multiplication to rid ourselves of the
11500 			 * division works out to:
11501 			 * load_i * capacity_j > load_j * capacity_i;
11502 			 * where j is our previous maximum.
11503 			 */
11504 			if (load * busiest_capacity > busiest_load * capacity) {
11505 				busiest_load = load;
11506 				busiest_capacity = capacity;
11507 				busiest = rq;
11508 			}
11509 			break;
11510 
11511 		case migrate_util:
11512 			util = cpu_util_cfs_boost(i);
11513 
11514 			/*
11515 			 * Don't try to pull utilization from a CPU with one
11516 			 * running task. Whatever its utilization, we will fail
11517 			 * detach the task.
11518 			 */
11519 			if (nr_running <= 1)
11520 				continue;
11521 
11522 			if (busiest_util < util) {
11523 				busiest_util = util;
11524 				busiest = rq;
11525 			}
11526 			break;
11527 
11528 		case migrate_task:
11529 			if (busiest_nr < nr_running) {
11530 				busiest_nr = nr_running;
11531 				busiest = rq;
11532 			}
11533 			break;
11534 
11535 		case migrate_misfit:
11536 			/*
11537 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11538 			 * simply seek the "biggest" misfit task.
11539 			 */
11540 			if (rq->misfit_task_load > busiest_load) {
11541 				busiest_load = rq->misfit_task_load;
11542 				busiest = rq;
11543 			}
11544 
11545 			break;
11546 
11547 		}
11548 	}
11549 
11550 	return busiest;
11551 }
11552 
11553 /*
11554  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11555  * so long as it is large enough.
11556  */
11557 #define MAX_PINNED_INTERVAL	512
11558 
11559 static inline bool
asym_active_balance(struct lb_env * env)11560 asym_active_balance(struct lb_env *env)
11561 {
11562 	/*
11563 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11564 	 * priority CPUs in order to pack all tasks in the highest priority
11565 	 * CPUs. When done between cores, do it only if the whole core if the
11566 	 * whole core is idle.
11567 	 *
11568 	 * If @env::src_cpu is an SMT core with busy siblings, let
11569 	 * the lower priority @env::dst_cpu help it. Do not follow
11570 	 * CPU priority.
11571 	 */
11572 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11573 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11574 		!sched_use_asym_prio(env->sd, env->src_cpu));
11575 }
11576 
11577 static inline bool
imbalanced_active_balance(struct lb_env * env)11578 imbalanced_active_balance(struct lb_env *env)
11579 {
11580 	struct sched_domain *sd = env->sd;
11581 
11582 	/*
11583 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11584 	 * distribution of the load on the system but also the even distribution of the
11585 	 * threads on a system with spare capacity
11586 	 */
11587 	if ((env->migration_type == migrate_task) &&
11588 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11589 		return 1;
11590 
11591 	return 0;
11592 }
11593 
need_active_balance(struct lb_env * env)11594 static int need_active_balance(struct lb_env *env)
11595 {
11596 	struct sched_domain *sd = env->sd;
11597 
11598 	if (asym_active_balance(env))
11599 		return 1;
11600 
11601 	if (imbalanced_active_balance(env))
11602 		return 1;
11603 
11604 	/*
11605 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11606 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11607 	 * because of other sched_class or IRQs if more capacity stays
11608 	 * available on dst_cpu.
11609 	 */
11610 	if (env->idle &&
11611 	    (env->src_rq->cfs.h_nr_runnable == 1)) {
11612 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11613 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11614 			return 1;
11615 	}
11616 
11617 	if (env->migration_type == migrate_misfit)
11618 		return 1;
11619 
11620 	return 0;
11621 }
11622 
11623 static int active_load_balance_cpu_stop(void *data);
11624 
should_we_balance(struct lb_env * env)11625 static int should_we_balance(struct lb_env *env)
11626 {
11627 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11628 	struct sched_group *sg = env->sd->groups;
11629 	int cpu, idle_smt = -1;
11630 
11631 	/*
11632 	 * Ensure the balancing environment is consistent; can happen
11633 	 * when the softirq triggers 'during' hotplug.
11634 	 */
11635 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11636 		return 0;
11637 
11638 	/*
11639 	 * In the newly idle case, we will allow all the CPUs
11640 	 * to do the newly idle load balance.
11641 	 *
11642 	 * However, we bail out if we already have tasks or a wakeup pending,
11643 	 * to optimize wakeup latency.
11644 	 */
11645 	if (env->idle == CPU_NEWLY_IDLE) {
11646 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11647 			return 0;
11648 		return 1;
11649 	}
11650 
11651 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11652 	/* Try to find first idle CPU */
11653 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11654 		if (!idle_cpu(cpu))
11655 			continue;
11656 
11657 		/*
11658 		 * Don't balance to idle SMT in busy core right away when
11659 		 * balancing cores, but remember the first idle SMT CPU for
11660 		 * later consideration.  Find CPU on an idle core first.
11661 		 */
11662 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11663 			if (idle_smt == -1)
11664 				idle_smt = cpu;
11665 			/*
11666 			 * If the core is not idle, and first SMT sibling which is
11667 			 * idle has been found, then its not needed to check other
11668 			 * SMT siblings for idleness:
11669 			 */
11670 #ifdef CONFIG_SCHED_SMT
11671 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11672 #endif
11673 			continue;
11674 		}
11675 
11676 		/*
11677 		 * Are we the first idle core in a non-SMT domain or higher,
11678 		 * or the first idle CPU in a SMT domain?
11679 		 */
11680 		return cpu == env->dst_cpu;
11681 	}
11682 
11683 	/* Are we the first idle CPU with busy siblings? */
11684 	if (idle_smt != -1)
11685 		return idle_smt == env->dst_cpu;
11686 
11687 	/* Are we the first CPU of this group ? */
11688 	return group_balance_cpu(sg) == env->dst_cpu;
11689 }
11690 
update_lb_imbalance_stat(struct lb_env * env,struct sched_domain * sd,enum cpu_idle_type idle)11691 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd,
11692 				     enum cpu_idle_type idle)
11693 {
11694 	if (!schedstat_enabled())
11695 		return;
11696 
11697 	switch (env->migration_type) {
11698 	case migrate_load:
11699 		__schedstat_add(sd->lb_imbalance_load[idle], env->imbalance);
11700 		break;
11701 	case migrate_util:
11702 		__schedstat_add(sd->lb_imbalance_util[idle], env->imbalance);
11703 		break;
11704 	case migrate_task:
11705 		__schedstat_add(sd->lb_imbalance_task[idle], env->imbalance);
11706 		break;
11707 	case migrate_misfit:
11708 		__schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance);
11709 		break;
11710 	}
11711 }
11712 
11713 /*
11714  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11715  * tasks if there is an imbalance.
11716  */
sched_balance_rq(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11717 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11718 			struct sched_domain *sd, enum cpu_idle_type idle,
11719 			int *continue_balancing)
11720 {
11721 	int ld_moved, cur_ld_moved, active_balance = 0;
11722 	struct sched_domain *sd_parent = sd->parent;
11723 	struct sched_group *group;
11724 	struct rq *busiest;
11725 	struct rq_flags rf;
11726 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11727 	struct lb_env env = {
11728 		.sd		= sd,
11729 		.dst_cpu	= this_cpu,
11730 		.dst_rq		= this_rq,
11731 		.dst_grpmask    = group_balance_mask(sd->groups),
11732 		.idle		= idle,
11733 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11734 		.cpus		= cpus,
11735 		.fbq_type	= all,
11736 		.tasks		= LIST_HEAD_INIT(env.tasks),
11737 	};
11738 
11739 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11740 
11741 	schedstat_inc(sd->lb_count[idle]);
11742 
11743 redo:
11744 	if (!should_we_balance(&env)) {
11745 		*continue_balancing = 0;
11746 		goto out_balanced;
11747 	}
11748 
11749 	group = sched_balance_find_src_group(&env);
11750 	if (!group) {
11751 		schedstat_inc(sd->lb_nobusyg[idle]);
11752 		goto out_balanced;
11753 	}
11754 
11755 	busiest = sched_balance_find_src_rq(&env, group);
11756 	if (!busiest) {
11757 		schedstat_inc(sd->lb_nobusyq[idle]);
11758 		goto out_balanced;
11759 	}
11760 
11761 	WARN_ON_ONCE(busiest == env.dst_rq);
11762 
11763 	update_lb_imbalance_stat(&env, sd, idle);
11764 
11765 	env.src_cpu = busiest->cpu;
11766 	env.src_rq = busiest;
11767 
11768 	ld_moved = 0;
11769 	/* Clear this flag as soon as we find a pullable task */
11770 	env.flags |= LBF_ALL_PINNED;
11771 	if (busiest->nr_running > 1) {
11772 		/*
11773 		 * Attempt to move tasks. If sched_balance_find_src_group has found
11774 		 * an imbalance but busiest->nr_running <= 1, the group is
11775 		 * still unbalanced. ld_moved simply stays zero, so it is
11776 		 * correctly treated as an imbalance.
11777 		 */
11778 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11779 
11780 more_balance:
11781 		rq_lock_irqsave(busiest, &rf);
11782 		update_rq_clock(busiest);
11783 
11784 		/*
11785 		 * cur_ld_moved - load moved in current iteration
11786 		 * ld_moved     - cumulative load moved across iterations
11787 		 */
11788 		cur_ld_moved = detach_tasks(&env);
11789 
11790 		/*
11791 		 * We've detached some tasks from busiest_rq. Every
11792 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11793 		 * unlock busiest->lock, and we are able to be sure
11794 		 * that nobody can manipulate the tasks in parallel.
11795 		 * See task_rq_lock() family for the details.
11796 		 */
11797 
11798 		rq_unlock(busiest, &rf);
11799 
11800 		if (cur_ld_moved) {
11801 			attach_tasks(&env);
11802 			ld_moved += cur_ld_moved;
11803 		}
11804 
11805 		local_irq_restore(rf.flags);
11806 
11807 		if (env.flags & LBF_NEED_BREAK) {
11808 			env.flags &= ~LBF_NEED_BREAK;
11809 			goto more_balance;
11810 		}
11811 
11812 		/*
11813 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11814 		 * us and move them to an alternate dst_cpu in our sched_group
11815 		 * where they can run. The upper limit on how many times we
11816 		 * iterate on same src_cpu is dependent on number of CPUs in our
11817 		 * sched_group.
11818 		 *
11819 		 * This changes load balance semantics a bit on who can move
11820 		 * load to a given_cpu. In addition to the given_cpu itself
11821 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11822 		 * nohz-idle), we now have balance_cpu in a position to move
11823 		 * load to given_cpu. In rare situations, this may cause
11824 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11825 		 * _independently_ and at _same_ time to move some load to
11826 		 * given_cpu) causing excess load to be moved to given_cpu.
11827 		 * This however should not happen so much in practice and
11828 		 * moreover subsequent load balance cycles should correct the
11829 		 * excess load moved.
11830 		 */
11831 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11832 
11833 			/* Prevent to re-select dst_cpu via env's CPUs */
11834 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11835 
11836 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11837 			env.dst_cpu	 = env.new_dst_cpu;
11838 			env.flags	&= ~LBF_DST_PINNED;
11839 			env.loop	 = 0;
11840 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11841 
11842 			/*
11843 			 * Go back to "more_balance" rather than "redo" since we
11844 			 * need to continue with same src_cpu.
11845 			 */
11846 			goto more_balance;
11847 		}
11848 
11849 		/*
11850 		 * We failed to reach balance because of affinity.
11851 		 */
11852 		if (sd_parent) {
11853 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11854 
11855 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11856 				*group_imbalance = 1;
11857 		}
11858 
11859 		/* All tasks on this runqueue were pinned by CPU affinity */
11860 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11861 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11862 			/*
11863 			 * Attempting to continue load balancing at the current
11864 			 * sched_domain level only makes sense if there are
11865 			 * active CPUs remaining as possible busiest CPUs to
11866 			 * pull load from which are not contained within the
11867 			 * destination group that is receiving any migrated
11868 			 * load.
11869 			 */
11870 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11871 				env.loop = 0;
11872 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11873 				goto redo;
11874 			}
11875 			goto out_all_pinned;
11876 		}
11877 	}
11878 
11879 	if (!ld_moved) {
11880 		schedstat_inc(sd->lb_failed[idle]);
11881 		/*
11882 		 * Increment the failure counter only on periodic balance.
11883 		 * We do not want newidle balance, which can be very
11884 		 * frequent, pollute the failure counter causing
11885 		 * excessive cache_hot migrations and active balances.
11886 		 *
11887 		 * Similarly for migration_misfit which is not related to
11888 		 * load/util migration, don't pollute nr_balance_failed.
11889 		 */
11890 		if (idle != CPU_NEWLY_IDLE &&
11891 		    env.migration_type != migrate_misfit)
11892 			sd->nr_balance_failed++;
11893 
11894 		if (need_active_balance(&env)) {
11895 			unsigned long flags;
11896 
11897 			raw_spin_rq_lock_irqsave(busiest, flags);
11898 
11899 			/*
11900 			 * Don't kick the active_load_balance_cpu_stop,
11901 			 * if the curr task on busiest CPU can't be
11902 			 * moved to this_cpu:
11903 			 */
11904 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11905 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11906 				goto out_one_pinned;
11907 			}
11908 
11909 			/* Record that we found at least one task that could run on this_cpu */
11910 			env.flags &= ~LBF_ALL_PINNED;
11911 
11912 			/*
11913 			 * ->active_balance synchronizes accesses to
11914 			 * ->active_balance_work.  Once set, it's cleared
11915 			 * only after active load balance is finished.
11916 			 */
11917 			if (!busiest->active_balance) {
11918 				busiest->active_balance = 1;
11919 				busiest->push_cpu = this_cpu;
11920 				active_balance = 1;
11921 			}
11922 
11923 			preempt_disable();
11924 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11925 			if (active_balance) {
11926 				stop_one_cpu_nowait(cpu_of(busiest),
11927 					active_load_balance_cpu_stop, busiest,
11928 					&busiest->active_balance_work);
11929 			}
11930 			preempt_enable();
11931 		}
11932 	} else {
11933 		sd->nr_balance_failed = 0;
11934 	}
11935 
11936 	if (likely(!active_balance) || need_active_balance(&env)) {
11937 		/* We were unbalanced, so reset the balancing interval */
11938 		sd->balance_interval = sd->min_interval;
11939 	}
11940 
11941 	goto out;
11942 
11943 out_balanced:
11944 	/*
11945 	 * We reach balance although we may have faced some affinity
11946 	 * constraints. Clear the imbalance flag only if other tasks got
11947 	 * a chance to move and fix the imbalance.
11948 	 */
11949 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11950 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11951 
11952 		if (*group_imbalance)
11953 			*group_imbalance = 0;
11954 	}
11955 
11956 out_all_pinned:
11957 	/*
11958 	 * We reach balance because all tasks are pinned at this level so
11959 	 * we can't migrate them. Let the imbalance flag set so parent level
11960 	 * can try to migrate them.
11961 	 */
11962 	schedstat_inc(sd->lb_balanced[idle]);
11963 
11964 	sd->nr_balance_failed = 0;
11965 
11966 out_one_pinned:
11967 	ld_moved = 0;
11968 
11969 	/*
11970 	 * sched_balance_newidle() disregards balance intervals, so we could
11971 	 * repeatedly reach this code, which would lead to balance_interval
11972 	 * skyrocketing in a short amount of time. Skip the balance_interval
11973 	 * increase logic to avoid that.
11974 	 *
11975 	 * Similarly misfit migration which is not necessarily an indication of
11976 	 * the system being busy and requires lb to backoff to let it settle
11977 	 * down.
11978 	 */
11979 	if (env.idle == CPU_NEWLY_IDLE ||
11980 	    env.migration_type == migrate_misfit)
11981 		goto out;
11982 
11983 	/* tune up the balancing interval */
11984 	if ((env.flags & LBF_ALL_PINNED &&
11985 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11986 	    sd->balance_interval < sd->max_interval)
11987 		sd->balance_interval *= 2;
11988 out:
11989 	return ld_moved;
11990 }
11991 
11992 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)11993 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11994 {
11995 	unsigned long interval = sd->balance_interval;
11996 
11997 	if (cpu_busy)
11998 		interval *= sd->busy_factor;
11999 
12000 	/* scale ms to jiffies */
12001 	interval = msecs_to_jiffies(interval);
12002 
12003 	/*
12004 	 * Reduce likelihood of busy balancing at higher domains racing with
12005 	 * balancing at lower domains by preventing their balancing periods
12006 	 * from being multiples of each other.
12007 	 */
12008 	if (cpu_busy)
12009 		interval -= 1;
12010 
12011 	interval = clamp(interval, 1UL, max_load_balance_interval);
12012 
12013 	return interval;
12014 }
12015 
12016 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)12017 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
12018 {
12019 	unsigned long interval, next;
12020 
12021 	/* used by idle balance, so cpu_busy = 0 */
12022 	interval = get_sd_balance_interval(sd, 0);
12023 	next = sd->last_balance + interval;
12024 
12025 	if (time_after(*next_balance, next))
12026 		*next_balance = next;
12027 }
12028 
12029 /*
12030  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
12031  * running tasks off the busiest CPU onto idle CPUs. It requires at
12032  * least 1 task to be running on each physical CPU where possible, and
12033  * avoids physical / logical imbalances.
12034  */
active_load_balance_cpu_stop(void * data)12035 static int active_load_balance_cpu_stop(void *data)
12036 {
12037 	struct rq *busiest_rq = data;
12038 	int busiest_cpu = cpu_of(busiest_rq);
12039 	int target_cpu = busiest_rq->push_cpu;
12040 	struct rq *target_rq = cpu_rq(target_cpu);
12041 	struct sched_domain *sd;
12042 	struct task_struct *p = NULL;
12043 	struct rq_flags rf;
12044 
12045 	rq_lock_irq(busiest_rq, &rf);
12046 	/*
12047 	 * Between queueing the stop-work and running it is a hole in which
12048 	 * CPUs can become inactive. We should not move tasks from or to
12049 	 * inactive CPUs.
12050 	 */
12051 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12052 		goto out_unlock;
12053 
12054 	/* Make sure the requested CPU hasn't gone down in the meantime: */
12055 	if (unlikely(busiest_cpu != smp_processor_id() ||
12056 		     !busiest_rq->active_balance))
12057 		goto out_unlock;
12058 
12059 	/* Is there any task to move? */
12060 	if (busiest_rq->nr_running <= 1)
12061 		goto out_unlock;
12062 
12063 	/*
12064 	 * This condition is "impossible", if it occurs
12065 	 * we need to fix it. Originally reported by
12066 	 * Bjorn Helgaas on a 128-CPU setup.
12067 	 */
12068 	WARN_ON_ONCE(busiest_rq == target_rq);
12069 
12070 	/* Search for an sd spanning us and the target CPU. */
12071 	rcu_read_lock();
12072 	for_each_domain(target_cpu, sd) {
12073 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12074 			break;
12075 	}
12076 
12077 	if (likely(sd)) {
12078 		struct lb_env env = {
12079 			.sd		= sd,
12080 			.dst_cpu	= target_cpu,
12081 			.dst_rq		= target_rq,
12082 			.src_cpu	= busiest_rq->cpu,
12083 			.src_rq		= busiest_rq,
12084 			.idle		= CPU_IDLE,
12085 			.flags		= LBF_ACTIVE_LB,
12086 		};
12087 
12088 		schedstat_inc(sd->alb_count);
12089 		update_rq_clock(busiest_rq);
12090 
12091 		p = detach_one_task(&env);
12092 		if (p) {
12093 			schedstat_inc(sd->alb_pushed);
12094 			/* Active balancing done, reset the failure counter. */
12095 			sd->nr_balance_failed = 0;
12096 		} else {
12097 			schedstat_inc(sd->alb_failed);
12098 		}
12099 	}
12100 	rcu_read_unlock();
12101 out_unlock:
12102 	busiest_rq->active_balance = 0;
12103 	rq_unlock(busiest_rq, &rf);
12104 
12105 	if (p)
12106 		attach_one_task(target_rq, p);
12107 
12108 	local_irq_enable();
12109 
12110 	return 0;
12111 }
12112 
12113 /*
12114  * This flag serializes load-balancing passes over large domains
12115  * (above the NODE topology level) - only one load-balancing instance
12116  * may run at a time, to reduce overhead on very large systems with
12117  * lots of CPUs and large NUMA distances.
12118  *
12119  * - Note that load-balancing passes triggered while another one
12120  *   is executing are skipped and not re-tried.
12121  *
12122  * - Also note that this does not serialize rebalance_domains()
12123  *   execution, as non-SD_SERIALIZE domains will still be
12124  *   load-balanced in parallel.
12125  */
12126 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12127 
12128 /*
12129  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12130  * This trades load-balance latency on larger machines for less cross talk.
12131  */
update_max_interval(void)12132 void update_max_interval(void)
12133 {
12134 	max_load_balance_interval = HZ*num_online_cpus()/10;
12135 }
12136 
update_newidle_cost(struct sched_domain * sd,u64 cost)12137 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12138 {
12139 	if (cost > sd->max_newidle_lb_cost) {
12140 		/*
12141 		 * Track max cost of a domain to make sure to not delay the
12142 		 * next wakeup on the CPU.
12143 		 */
12144 		sd->max_newidle_lb_cost = cost;
12145 		sd->last_decay_max_lb_cost = jiffies;
12146 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12147 		/*
12148 		 * Decay the newidle max times by ~1% per second to ensure that
12149 		 * it is not outdated and the current max cost is actually
12150 		 * shorter.
12151 		 */
12152 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12153 		sd->last_decay_max_lb_cost = jiffies;
12154 
12155 		return true;
12156 	}
12157 
12158 	return false;
12159 }
12160 
12161 /*
12162  * It checks each scheduling domain to see if it is due to be balanced,
12163  * and initiates a balancing operation if so.
12164  *
12165  * Balancing parameters are set up in init_sched_domains.
12166  */
sched_balance_domains(struct rq * rq,enum cpu_idle_type idle)12167 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12168 {
12169 	int continue_balancing = 1;
12170 	int cpu = rq->cpu;
12171 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12172 	unsigned long interval;
12173 	struct sched_domain *sd;
12174 	/* Earliest time when we have to do rebalance again */
12175 	unsigned long next_balance = jiffies + 60*HZ;
12176 	int update_next_balance = 0;
12177 	int need_serialize, need_decay = 0;
12178 	u64 max_cost = 0;
12179 
12180 	rcu_read_lock();
12181 	for_each_domain(cpu, sd) {
12182 		/*
12183 		 * Decay the newidle max times here because this is a regular
12184 		 * visit to all the domains.
12185 		 */
12186 		need_decay = update_newidle_cost(sd, 0);
12187 		max_cost += sd->max_newidle_lb_cost;
12188 
12189 		/*
12190 		 * Stop the load balance at this level. There is another
12191 		 * CPU in our sched group which is doing load balancing more
12192 		 * actively.
12193 		 */
12194 		if (!continue_balancing) {
12195 			if (need_decay)
12196 				continue;
12197 			break;
12198 		}
12199 
12200 		interval = get_sd_balance_interval(sd, busy);
12201 
12202 		need_serialize = sd->flags & SD_SERIALIZE;
12203 		if (need_serialize) {
12204 			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12205 				goto out;
12206 		}
12207 
12208 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
12209 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12210 				/*
12211 				 * The LBF_DST_PINNED logic could have changed
12212 				 * env->dst_cpu, so we can't know our idle
12213 				 * state even if we migrated tasks. Update it.
12214 				 */
12215 				idle = idle_cpu(cpu);
12216 				busy = !idle && !sched_idle_cpu(cpu);
12217 			}
12218 			sd->last_balance = jiffies;
12219 			interval = get_sd_balance_interval(sd, busy);
12220 		}
12221 		if (need_serialize)
12222 			atomic_set_release(&sched_balance_running, 0);
12223 out:
12224 		if (time_after(next_balance, sd->last_balance + interval)) {
12225 			next_balance = sd->last_balance + interval;
12226 			update_next_balance = 1;
12227 		}
12228 	}
12229 	if (need_decay) {
12230 		/*
12231 		 * Ensure the rq-wide value also decays but keep it at a
12232 		 * reasonable floor to avoid funnies with rq->avg_idle.
12233 		 */
12234 		rq->max_idle_balance_cost =
12235 			max((u64)sysctl_sched_migration_cost, max_cost);
12236 	}
12237 	rcu_read_unlock();
12238 
12239 	/*
12240 	 * next_balance will be updated only when there is a need.
12241 	 * When the cpu is attached to null domain for ex, it will not be
12242 	 * updated.
12243 	 */
12244 	if (likely(update_next_balance))
12245 		rq->next_balance = next_balance;
12246 
12247 }
12248 
on_null_domain(struct rq * rq)12249 static inline int on_null_domain(struct rq *rq)
12250 {
12251 	return unlikely(!rcu_dereference_sched(rq->sd));
12252 }
12253 
12254 #ifdef CONFIG_NO_HZ_COMMON
12255 /*
12256  * NOHZ idle load balancing (ILB) details:
12257  *
12258  * - When one of the busy CPUs notices that there may be an idle rebalancing
12259  *   needed, they will kick the idle load balancer, which then does idle
12260  *   load balancing for all the idle CPUs.
12261  */
find_new_ilb(void)12262 static inline int find_new_ilb(void)
12263 {
12264 	const struct cpumask *hk_mask;
12265 	int ilb_cpu;
12266 
12267 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
12268 
12269 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12270 
12271 		if (ilb_cpu == smp_processor_id())
12272 			continue;
12273 
12274 		if (idle_cpu(ilb_cpu))
12275 			return ilb_cpu;
12276 	}
12277 
12278 	return -1;
12279 }
12280 
12281 /*
12282  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12283  * SMP function call (IPI).
12284  *
12285  * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set
12286  * (if there is one).
12287  */
kick_ilb(unsigned int flags)12288 static void kick_ilb(unsigned int flags)
12289 {
12290 	int ilb_cpu;
12291 
12292 	/*
12293 	 * Increase nohz.next_balance only when if full ilb is triggered but
12294 	 * not if we only update stats.
12295 	 */
12296 	if (flags & NOHZ_BALANCE_KICK)
12297 		nohz.next_balance = jiffies+1;
12298 
12299 	ilb_cpu = find_new_ilb();
12300 	if (ilb_cpu < 0)
12301 		return;
12302 
12303 	/*
12304 	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12305 	 * i.e. all bits in flags are already set in ilb_cpu.
12306 	 */
12307 	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12308 		return;
12309 
12310 	/*
12311 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12312 	 * the first flag owns it; cleared by nohz_csd_func().
12313 	 */
12314 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12315 	if (flags & NOHZ_KICK_MASK)
12316 		return;
12317 
12318 	/*
12319 	 * This way we generate an IPI on the target CPU which
12320 	 * is idle, and the softirq performing NOHZ idle load balancing
12321 	 * will be run before returning from the IPI.
12322 	 */
12323 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12324 }
12325 
12326 /*
12327  * Current decision point for kicking the idle load balancer in the presence
12328  * of idle CPUs in the system.
12329  */
nohz_balancer_kick(struct rq * rq)12330 static void nohz_balancer_kick(struct rq *rq)
12331 {
12332 	unsigned long now = jiffies;
12333 	struct sched_domain_shared *sds;
12334 	struct sched_domain *sd;
12335 	int nr_busy, i, cpu = rq->cpu;
12336 	unsigned int flags = 0;
12337 
12338 	if (unlikely(rq->idle_balance))
12339 		return;
12340 
12341 	/*
12342 	 * We may be recently in ticked or tickless idle mode. At the first
12343 	 * busy tick after returning from idle, we will update the busy stats.
12344 	 */
12345 	nohz_balance_exit_idle(rq);
12346 
12347 	/*
12348 	 * None are in tickless mode and hence no need for NOHZ idle load
12349 	 * balancing:
12350 	 */
12351 	if (likely(!atomic_read(&nohz.nr_cpus)))
12352 		return;
12353 
12354 	if (READ_ONCE(nohz.has_blocked) &&
12355 	    time_after(now, READ_ONCE(nohz.next_blocked)))
12356 		flags = NOHZ_STATS_KICK;
12357 
12358 	if (time_before(now, nohz.next_balance))
12359 		goto out;
12360 
12361 	if (rq->nr_running >= 2) {
12362 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12363 		goto out;
12364 	}
12365 
12366 	rcu_read_lock();
12367 
12368 	sd = rcu_dereference(rq->sd);
12369 	if (sd) {
12370 		/*
12371 		 * If there's a runnable CFS task and the current CPU has reduced
12372 		 * capacity, kick the ILB to see if there's a better CPU to run on:
12373 		 */
12374 		if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) {
12375 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12376 			goto unlock;
12377 		}
12378 	}
12379 
12380 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12381 	if (sd) {
12382 		/*
12383 		 * When ASYM_PACKING; see if there's a more preferred CPU
12384 		 * currently idle; in which case, kick the ILB to move tasks
12385 		 * around.
12386 		 *
12387 		 * When balancing between cores, all the SMT siblings of the
12388 		 * preferred CPU must be idle.
12389 		 */
12390 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12391 			if (sched_asym(sd, i, cpu)) {
12392 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12393 				goto unlock;
12394 			}
12395 		}
12396 	}
12397 
12398 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12399 	if (sd) {
12400 		/*
12401 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12402 		 * to run the misfit task on.
12403 		 */
12404 		if (check_misfit_status(rq)) {
12405 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12406 			goto unlock;
12407 		}
12408 
12409 		/*
12410 		 * For asymmetric systems, we do not want to nicely balance
12411 		 * cache use, instead we want to embrace asymmetry and only
12412 		 * ensure tasks have enough CPU capacity.
12413 		 *
12414 		 * Skip the LLC logic because it's not relevant in that case.
12415 		 */
12416 		goto unlock;
12417 	}
12418 
12419 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12420 	if (sds) {
12421 		/*
12422 		 * If there is an imbalance between LLC domains (IOW we could
12423 		 * increase the overall cache utilization), we need a less-loaded LLC
12424 		 * domain to pull some load from. Likewise, we may need to spread
12425 		 * load within the current LLC domain (e.g. packed SMT cores but
12426 		 * other CPUs are idle). We can't really know from here how busy
12427 		 * the others are - so just get a NOHZ balance going if it looks
12428 		 * like this LLC domain has tasks we could move.
12429 		 */
12430 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12431 		if (nr_busy > 1) {
12432 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12433 			goto unlock;
12434 		}
12435 	}
12436 unlock:
12437 	rcu_read_unlock();
12438 out:
12439 	if (READ_ONCE(nohz.needs_update))
12440 		flags |= NOHZ_NEXT_KICK;
12441 
12442 	if (flags)
12443 		kick_ilb(flags);
12444 }
12445 
set_cpu_sd_state_busy(int cpu)12446 static void set_cpu_sd_state_busy(int cpu)
12447 {
12448 	struct sched_domain *sd;
12449 
12450 	rcu_read_lock();
12451 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12452 
12453 	if (!sd || !sd->nohz_idle)
12454 		goto unlock;
12455 	sd->nohz_idle = 0;
12456 
12457 	atomic_inc(&sd->shared->nr_busy_cpus);
12458 unlock:
12459 	rcu_read_unlock();
12460 }
12461 
nohz_balance_exit_idle(struct rq * rq)12462 void nohz_balance_exit_idle(struct rq *rq)
12463 {
12464 	SCHED_WARN_ON(rq != this_rq());
12465 
12466 	if (likely(!rq->nohz_tick_stopped))
12467 		return;
12468 
12469 	rq->nohz_tick_stopped = 0;
12470 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12471 	atomic_dec(&nohz.nr_cpus);
12472 
12473 	set_cpu_sd_state_busy(rq->cpu);
12474 }
12475 
set_cpu_sd_state_idle(int cpu)12476 static void set_cpu_sd_state_idle(int cpu)
12477 {
12478 	struct sched_domain *sd;
12479 
12480 	rcu_read_lock();
12481 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12482 
12483 	if (!sd || sd->nohz_idle)
12484 		goto unlock;
12485 	sd->nohz_idle = 1;
12486 
12487 	atomic_dec(&sd->shared->nr_busy_cpus);
12488 unlock:
12489 	rcu_read_unlock();
12490 }
12491 
12492 /*
12493  * This routine will record that the CPU is going idle with tick stopped.
12494  * This info will be used in performing idle load balancing in the future.
12495  */
nohz_balance_enter_idle(int cpu)12496 void nohz_balance_enter_idle(int cpu)
12497 {
12498 	struct rq *rq = cpu_rq(cpu);
12499 
12500 	SCHED_WARN_ON(cpu != smp_processor_id());
12501 
12502 	/* If this CPU is going down, then nothing needs to be done: */
12503 	if (!cpu_active(cpu))
12504 		return;
12505 
12506 	/*
12507 	 * Can be set safely without rq->lock held
12508 	 * If a clear happens, it will have evaluated last additions because
12509 	 * rq->lock is held during the check and the clear
12510 	 */
12511 	rq->has_blocked_load = 1;
12512 
12513 	/*
12514 	 * The tick is still stopped but load could have been added in the
12515 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12516 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12517 	 * of nohz.has_blocked can only happen after checking the new load
12518 	 */
12519 	if (rq->nohz_tick_stopped)
12520 		goto out;
12521 
12522 	/* If we're a completely isolated CPU, we don't play: */
12523 	if (on_null_domain(rq))
12524 		return;
12525 
12526 	rq->nohz_tick_stopped = 1;
12527 
12528 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12529 	atomic_inc(&nohz.nr_cpus);
12530 
12531 	/*
12532 	 * Ensures that if nohz_idle_balance() fails to observe our
12533 	 * @idle_cpus_mask store, it must observe the @has_blocked
12534 	 * and @needs_update stores.
12535 	 */
12536 	smp_mb__after_atomic();
12537 
12538 	set_cpu_sd_state_idle(cpu);
12539 
12540 	WRITE_ONCE(nohz.needs_update, 1);
12541 out:
12542 	/*
12543 	 * Each time a cpu enter idle, we assume that it has blocked load and
12544 	 * enable the periodic update of the load of idle CPUs
12545 	 */
12546 	WRITE_ONCE(nohz.has_blocked, 1);
12547 }
12548 
update_nohz_stats(struct rq * rq)12549 static bool update_nohz_stats(struct rq *rq)
12550 {
12551 	unsigned int cpu = rq->cpu;
12552 
12553 	if (!rq->has_blocked_load)
12554 		return false;
12555 
12556 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12557 		return false;
12558 
12559 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12560 		return true;
12561 
12562 	sched_balance_update_blocked_averages(cpu);
12563 
12564 	return rq->has_blocked_load;
12565 }
12566 
12567 /*
12568  * Internal function that runs load balance for all idle CPUs. The load balance
12569  * can be a simple update of blocked load or a complete load balance with
12570  * tasks movement depending of flags.
12571  */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12572 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12573 {
12574 	/* Earliest time when we have to do rebalance again */
12575 	unsigned long now = jiffies;
12576 	unsigned long next_balance = now + 60*HZ;
12577 	bool has_blocked_load = false;
12578 	int update_next_balance = 0;
12579 	int this_cpu = this_rq->cpu;
12580 	int balance_cpu;
12581 	struct rq *rq;
12582 
12583 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12584 
12585 	/*
12586 	 * We assume there will be no idle load after this update and clear
12587 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12588 	 * set the has_blocked flag and trigger another update of idle load.
12589 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12590 	 * setting the flag, we are sure to not clear the state and not
12591 	 * check the load of an idle cpu.
12592 	 *
12593 	 * Same applies to idle_cpus_mask vs needs_update.
12594 	 */
12595 	if (flags & NOHZ_STATS_KICK)
12596 		WRITE_ONCE(nohz.has_blocked, 0);
12597 	if (flags & NOHZ_NEXT_KICK)
12598 		WRITE_ONCE(nohz.needs_update, 0);
12599 
12600 	/*
12601 	 * Ensures that if we miss the CPU, we must see the has_blocked
12602 	 * store from nohz_balance_enter_idle().
12603 	 */
12604 	smp_mb();
12605 
12606 	/*
12607 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12608 	 * chance for other idle cpu to pull load.
12609 	 */
12610 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12611 		if (!idle_cpu(balance_cpu))
12612 			continue;
12613 
12614 		/*
12615 		 * If this CPU gets work to do, stop the load balancing
12616 		 * work being done for other CPUs. Next load
12617 		 * balancing owner will pick it up.
12618 		 */
12619 		if (!idle_cpu(this_cpu) && need_resched()) {
12620 			if (flags & NOHZ_STATS_KICK)
12621 				has_blocked_load = true;
12622 			if (flags & NOHZ_NEXT_KICK)
12623 				WRITE_ONCE(nohz.needs_update, 1);
12624 			goto abort;
12625 		}
12626 
12627 		rq = cpu_rq(balance_cpu);
12628 
12629 		if (flags & NOHZ_STATS_KICK)
12630 			has_blocked_load |= update_nohz_stats(rq);
12631 
12632 		/*
12633 		 * If time for next balance is due,
12634 		 * do the balance.
12635 		 */
12636 		if (time_after_eq(jiffies, rq->next_balance)) {
12637 			struct rq_flags rf;
12638 
12639 			rq_lock_irqsave(rq, &rf);
12640 			update_rq_clock(rq);
12641 			rq_unlock_irqrestore(rq, &rf);
12642 
12643 			if (flags & NOHZ_BALANCE_KICK)
12644 				sched_balance_domains(rq, CPU_IDLE);
12645 		}
12646 
12647 		if (time_after(next_balance, rq->next_balance)) {
12648 			next_balance = rq->next_balance;
12649 			update_next_balance = 1;
12650 		}
12651 	}
12652 
12653 	/*
12654 	 * next_balance will be updated only when there is a need.
12655 	 * When the CPU is attached to null domain for ex, it will not be
12656 	 * updated.
12657 	 */
12658 	if (likely(update_next_balance))
12659 		nohz.next_balance = next_balance;
12660 
12661 	if (flags & NOHZ_STATS_KICK)
12662 		WRITE_ONCE(nohz.next_blocked,
12663 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12664 
12665 abort:
12666 	/* There is still blocked load, enable periodic update */
12667 	if (has_blocked_load)
12668 		WRITE_ONCE(nohz.has_blocked, 1);
12669 }
12670 
12671 /*
12672  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12673  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12674  */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12675 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12676 {
12677 	unsigned int flags = this_rq->nohz_idle_balance;
12678 
12679 	if (!flags)
12680 		return false;
12681 
12682 	this_rq->nohz_idle_balance = 0;
12683 
12684 	if (idle != CPU_IDLE)
12685 		return false;
12686 
12687 	_nohz_idle_balance(this_rq, flags);
12688 
12689 	return true;
12690 }
12691 
12692 /*
12693  * Check if we need to directly run the ILB for updating blocked load before
12694  * entering idle state. Here we run ILB directly without issuing IPIs.
12695  *
12696  * Note that when this function is called, the tick may not yet be stopped on
12697  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12698  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12699  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12700  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12701  * called from this function on (this) CPU that's not yet in the mask. That's
12702  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12703  * updating the blocked load of already idle CPUs without waking up one of
12704  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12705  * cpu about to enter idle, because it can take a long time.
12706  */
nohz_run_idle_balance(int cpu)12707 void nohz_run_idle_balance(int cpu)
12708 {
12709 	unsigned int flags;
12710 
12711 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12712 
12713 	/*
12714 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12715 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12716 	 */
12717 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12718 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12719 }
12720 
nohz_newidle_balance(struct rq * this_rq)12721 static void nohz_newidle_balance(struct rq *this_rq)
12722 {
12723 	int this_cpu = this_rq->cpu;
12724 
12725 	/* Will wake up very soon. No time for doing anything else*/
12726 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12727 		return;
12728 
12729 	/* Don't need to update blocked load of idle CPUs*/
12730 	if (!READ_ONCE(nohz.has_blocked) ||
12731 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12732 		return;
12733 
12734 	/*
12735 	 * Set the need to trigger ILB in order to update blocked load
12736 	 * before entering idle state.
12737 	 */
12738 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12739 }
12740 
12741 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)12742 static inline void nohz_balancer_kick(struct rq *rq) { }
12743 
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12744 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12745 {
12746 	return false;
12747 }
12748 
nohz_newidle_balance(struct rq * this_rq)12749 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12750 #endif /* CONFIG_NO_HZ_COMMON */
12751 
12752 /*
12753  * sched_balance_newidle is called by schedule() if this_cpu is about to become
12754  * idle. Attempts to pull tasks from other CPUs.
12755  *
12756  * Returns:
12757  *   < 0 - we released the lock and there are !fair tasks present
12758  *     0 - failed, no new tasks
12759  *   > 0 - success, new (fair) tasks present
12760  */
sched_balance_newidle(struct rq * this_rq,struct rq_flags * rf)12761 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12762 {
12763 	unsigned long next_balance = jiffies + HZ;
12764 	int this_cpu = this_rq->cpu;
12765 	int continue_balancing = 1;
12766 	u64 t0, t1, curr_cost = 0;
12767 	struct sched_domain *sd;
12768 	int pulled_task = 0;
12769 
12770 	update_misfit_status(NULL, this_rq);
12771 
12772 	/*
12773 	 * There is a task waiting to run. No need to search for one.
12774 	 * Return 0; the task will be enqueued when switching to idle.
12775 	 */
12776 	if (this_rq->ttwu_pending)
12777 		return 0;
12778 
12779 	/*
12780 	 * We must set idle_stamp _before_ calling sched_balance_rq()
12781 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12782 	 * as idle time.
12783 	 */
12784 	this_rq->idle_stamp = rq_clock(this_rq);
12785 
12786 	/*
12787 	 * Do not pull tasks towards !active CPUs...
12788 	 */
12789 	if (!cpu_active(this_cpu))
12790 		return 0;
12791 
12792 	/*
12793 	 * This is OK, because current is on_cpu, which avoids it being picked
12794 	 * for load-balance and preemption/IRQs are still disabled avoiding
12795 	 * further scheduler activity on it and we're being very careful to
12796 	 * re-start the picking loop.
12797 	 */
12798 	rq_unpin_lock(this_rq, rf);
12799 
12800 	rcu_read_lock();
12801 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12802 
12803 	if (!get_rd_overloaded(this_rq->rd) ||
12804 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12805 
12806 		if (sd)
12807 			update_next_balance(sd, &next_balance);
12808 		rcu_read_unlock();
12809 
12810 		goto out;
12811 	}
12812 	rcu_read_unlock();
12813 
12814 	raw_spin_rq_unlock(this_rq);
12815 
12816 	t0 = sched_clock_cpu(this_cpu);
12817 	sched_balance_update_blocked_averages(this_cpu);
12818 
12819 	rcu_read_lock();
12820 	for_each_domain(this_cpu, sd) {
12821 		u64 domain_cost;
12822 
12823 		update_next_balance(sd, &next_balance);
12824 
12825 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12826 			break;
12827 
12828 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12829 
12830 			pulled_task = sched_balance_rq(this_cpu, this_rq,
12831 						   sd, CPU_NEWLY_IDLE,
12832 						   &continue_balancing);
12833 
12834 			t1 = sched_clock_cpu(this_cpu);
12835 			domain_cost = t1 - t0;
12836 			update_newidle_cost(sd, domain_cost);
12837 
12838 			curr_cost += domain_cost;
12839 			t0 = t1;
12840 		}
12841 
12842 		/*
12843 		 * Stop searching for tasks to pull if there are
12844 		 * now runnable tasks on this rq.
12845 		 */
12846 		if (pulled_task || !continue_balancing)
12847 			break;
12848 	}
12849 	rcu_read_unlock();
12850 
12851 	raw_spin_rq_lock(this_rq);
12852 
12853 	if (curr_cost > this_rq->max_idle_balance_cost)
12854 		this_rq->max_idle_balance_cost = curr_cost;
12855 
12856 	/*
12857 	 * While browsing the domains, we released the rq lock, a task could
12858 	 * have been enqueued in the meantime. Since we're not going idle,
12859 	 * pretend we pulled a task.
12860 	 */
12861 	if (this_rq->cfs.h_nr_queued && !pulled_task)
12862 		pulled_task = 1;
12863 
12864 	/* Is there a task of a high priority class? */
12865 	if (this_rq->nr_running != this_rq->cfs.h_nr_queued)
12866 		pulled_task = -1;
12867 
12868 out:
12869 	/* Move the next balance forward */
12870 	if (time_after(this_rq->next_balance, next_balance))
12871 		this_rq->next_balance = next_balance;
12872 
12873 	if (pulled_task)
12874 		this_rq->idle_stamp = 0;
12875 	else
12876 		nohz_newidle_balance(this_rq);
12877 
12878 	rq_repin_lock(this_rq, rf);
12879 
12880 	return pulled_task;
12881 }
12882 
12883 /*
12884  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12885  *
12886  * - directly from the local sched_tick() for periodic load balancing
12887  *
12888  * - indirectly from a remote sched_tick() for NOHZ idle balancing
12889  *   through the SMP cross-call nohz_csd_func()
12890  */
sched_balance_softirq(void)12891 static __latent_entropy void sched_balance_softirq(void)
12892 {
12893 	struct rq *this_rq = this_rq();
12894 	enum cpu_idle_type idle = this_rq->idle_balance;
12895 	/*
12896 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12897 	 * balancing on behalf of the other idle CPUs whose ticks are
12898 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12899 	 * give the idle CPUs a chance to load balance. Else we may
12900 	 * load balance only within the local sched_domain hierarchy
12901 	 * and abort nohz_idle_balance altogether if we pull some load.
12902 	 */
12903 	if (nohz_idle_balance(this_rq, idle))
12904 		return;
12905 
12906 	/* normal load balance */
12907 	sched_balance_update_blocked_averages(this_rq->cpu);
12908 	sched_balance_domains(this_rq, idle);
12909 }
12910 
12911 /*
12912  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12913  */
sched_balance_trigger(struct rq * rq)12914 void sched_balance_trigger(struct rq *rq)
12915 {
12916 	/*
12917 	 * Don't need to rebalance while attached to NULL domain or
12918 	 * runqueue CPU is not active
12919 	 */
12920 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12921 		return;
12922 
12923 	if (time_after_eq(jiffies, rq->next_balance))
12924 		raise_softirq(SCHED_SOFTIRQ);
12925 
12926 	nohz_balancer_kick(rq);
12927 }
12928 
rq_online_fair(struct rq * rq)12929 static void rq_online_fair(struct rq *rq)
12930 {
12931 	update_sysctl();
12932 
12933 	update_runtime_enabled(rq);
12934 }
12935 
rq_offline_fair(struct rq * rq)12936 static void rq_offline_fair(struct rq *rq)
12937 {
12938 	update_sysctl();
12939 
12940 	/* Ensure any throttled groups are reachable by pick_next_task */
12941 	unthrottle_offline_cfs_rqs(rq);
12942 
12943 	/* Ensure that we remove rq contribution to group share: */
12944 	clear_tg_offline_cfs_rqs(rq);
12945 }
12946 
12947 #endif /* CONFIG_SMP */
12948 
12949 #ifdef CONFIG_SCHED_CORE
12950 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12951 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12952 {
12953 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12954 	u64 slice = se->slice;
12955 
12956 	return (rtime * min_nr_tasks > slice);
12957 }
12958 
12959 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
task_tick_core(struct rq * rq,struct task_struct * curr)12960 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12961 {
12962 	if (!sched_core_enabled(rq))
12963 		return;
12964 
12965 	/*
12966 	 * If runqueue has only one task which used up its slice and
12967 	 * if the sibling is forced idle, then trigger schedule to
12968 	 * give forced idle task a chance.
12969 	 *
12970 	 * sched_slice() considers only this active rq and it gets the
12971 	 * whole slice. But during force idle, we have siblings acting
12972 	 * like a single runqueue and hence we need to consider runnable
12973 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12974 	 * go through the forced idle rq, but that would be a perf hit.
12975 	 * We can assume that the forced idle CPU has at least
12976 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12977 	 * if we need to give up the CPU.
12978 	 */
12979 	if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 &&
12980 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12981 		resched_curr(rq);
12982 }
12983 
12984 /*
12985  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12986  */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)12987 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12988 			 bool forceidle)
12989 {
12990 	for_each_sched_entity(se) {
12991 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12992 
12993 		if (forceidle) {
12994 			if (cfs_rq->forceidle_seq == fi_seq)
12995 				break;
12996 			cfs_rq->forceidle_seq = fi_seq;
12997 		}
12998 
12999 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
13000 	}
13001 }
13002 
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)13003 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
13004 {
13005 	struct sched_entity *se = &p->se;
13006 
13007 	if (p->sched_class != &fair_sched_class)
13008 		return;
13009 
13010 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
13011 }
13012 
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)13013 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
13014 			bool in_fi)
13015 {
13016 	struct rq *rq = task_rq(a);
13017 	const struct sched_entity *sea = &a->se;
13018 	const struct sched_entity *seb = &b->se;
13019 	struct cfs_rq *cfs_rqa;
13020 	struct cfs_rq *cfs_rqb;
13021 	s64 delta;
13022 
13023 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
13024 
13025 #ifdef CONFIG_FAIR_GROUP_SCHED
13026 	/*
13027 	 * Find an se in the hierarchy for tasks a and b, such that the se's
13028 	 * are immediate siblings.
13029 	 */
13030 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
13031 		int sea_depth = sea->depth;
13032 		int seb_depth = seb->depth;
13033 
13034 		if (sea_depth >= seb_depth)
13035 			sea = parent_entity(sea);
13036 		if (sea_depth <= seb_depth)
13037 			seb = parent_entity(seb);
13038 	}
13039 
13040 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13041 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13042 
13043 	cfs_rqa = sea->cfs_rq;
13044 	cfs_rqb = seb->cfs_rq;
13045 #else
13046 	cfs_rqa = &task_rq(a)->cfs;
13047 	cfs_rqb = &task_rq(b)->cfs;
13048 #endif
13049 
13050 	/*
13051 	 * Find delta after normalizing se's vruntime with its cfs_rq's
13052 	 * min_vruntime_fi, which would have been updated in prior calls
13053 	 * to se_fi_update().
13054 	 */
13055 	delta = (s64)(sea->vruntime - seb->vruntime) +
13056 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13057 
13058 	return delta > 0;
13059 }
13060 
task_is_throttled_fair(struct task_struct * p,int cpu)13061 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13062 {
13063 	struct cfs_rq *cfs_rq;
13064 
13065 #ifdef CONFIG_FAIR_GROUP_SCHED
13066 	cfs_rq = task_group(p)->cfs_rq[cpu];
13067 #else
13068 	cfs_rq = &cpu_rq(cpu)->cfs;
13069 #endif
13070 	return throttled_hierarchy(cfs_rq);
13071 }
13072 #else
task_tick_core(struct rq * rq,struct task_struct * curr)13073 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13074 #endif
13075 
13076 /*
13077  * scheduler tick hitting a task of our scheduling class.
13078  *
13079  * NOTE: This function can be called remotely by the tick offload that
13080  * goes along full dynticks. Therefore no local assumption can be made
13081  * and everything must be accessed through the @rq and @curr passed in
13082  * parameters.
13083  */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)13084 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13085 {
13086 	struct cfs_rq *cfs_rq;
13087 	struct sched_entity *se = &curr->se;
13088 
13089 	for_each_sched_entity(se) {
13090 		cfs_rq = cfs_rq_of(se);
13091 		entity_tick(cfs_rq, se, queued);
13092 	}
13093 
13094 	if (static_branch_unlikely(&sched_numa_balancing))
13095 		task_tick_numa(rq, curr);
13096 
13097 	update_misfit_status(curr, rq);
13098 	check_update_overutilized_status(task_rq(curr));
13099 
13100 	task_tick_core(rq, curr);
13101 }
13102 
13103 /*
13104  * called on fork with the child task as argument from the parent's context
13105  *  - child not yet on the tasklist
13106  *  - preemption disabled
13107  */
task_fork_fair(struct task_struct * p)13108 static void task_fork_fair(struct task_struct *p)
13109 {
13110 	set_task_max_allowed_capacity(p);
13111 }
13112 
13113 /*
13114  * Priority of the task has changed. Check to see if we preempt
13115  * the current task.
13116  */
13117 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)13118 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13119 {
13120 	if (!task_on_rq_queued(p))
13121 		return;
13122 
13123 	if (rq->cfs.nr_queued == 1)
13124 		return;
13125 
13126 	/*
13127 	 * Reschedule if we are currently running on this runqueue and
13128 	 * our priority decreased, or if we are not currently running on
13129 	 * this runqueue and our priority is higher than the current's
13130 	 */
13131 	if (task_current_donor(rq, p)) {
13132 		if (p->prio > oldprio)
13133 			resched_curr(rq);
13134 	} else
13135 		wakeup_preempt(rq, p, 0);
13136 }
13137 
13138 #ifdef CONFIG_FAIR_GROUP_SCHED
13139 /*
13140  * Propagate the changes of the sched_entity across the tg tree to make it
13141  * visible to the root
13142  */
propagate_entity_cfs_rq(struct sched_entity * se)13143 static void propagate_entity_cfs_rq(struct sched_entity *se)
13144 {
13145 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13146 
13147 	if (cfs_rq_throttled(cfs_rq))
13148 		return;
13149 
13150 	if (!throttled_hierarchy(cfs_rq))
13151 		list_add_leaf_cfs_rq(cfs_rq);
13152 
13153 	/* Start to propagate at parent */
13154 	se = se->parent;
13155 
13156 	for_each_sched_entity(se) {
13157 		cfs_rq = cfs_rq_of(se);
13158 
13159 		update_load_avg(cfs_rq, se, UPDATE_TG);
13160 
13161 		if (cfs_rq_throttled(cfs_rq))
13162 			break;
13163 
13164 		if (!throttled_hierarchy(cfs_rq))
13165 			list_add_leaf_cfs_rq(cfs_rq);
13166 	}
13167 }
13168 #else
propagate_entity_cfs_rq(struct sched_entity * se)13169 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13170 #endif
13171 
detach_entity_cfs_rq(struct sched_entity * se)13172 static void detach_entity_cfs_rq(struct sched_entity *se)
13173 {
13174 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13175 
13176 #ifdef CONFIG_SMP
13177 	/*
13178 	 * In case the task sched_avg hasn't been attached:
13179 	 * - A forked task which hasn't been woken up by wake_up_new_task().
13180 	 * - A task which has been woken up by try_to_wake_up() but is
13181 	 *   waiting for actually being woken up by sched_ttwu_pending().
13182 	 */
13183 	if (!se->avg.last_update_time)
13184 		return;
13185 #endif
13186 
13187 	/* Catch up with the cfs_rq and remove our load when we leave */
13188 	update_load_avg(cfs_rq, se, 0);
13189 	detach_entity_load_avg(cfs_rq, se);
13190 	update_tg_load_avg(cfs_rq);
13191 	propagate_entity_cfs_rq(se);
13192 }
13193 
attach_entity_cfs_rq(struct sched_entity * se)13194 static void attach_entity_cfs_rq(struct sched_entity *se)
13195 {
13196 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13197 
13198 	/* Synchronize entity with its cfs_rq */
13199 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13200 	attach_entity_load_avg(cfs_rq, se);
13201 	update_tg_load_avg(cfs_rq);
13202 	propagate_entity_cfs_rq(se);
13203 }
13204 
detach_task_cfs_rq(struct task_struct * p)13205 static void detach_task_cfs_rq(struct task_struct *p)
13206 {
13207 	struct sched_entity *se = &p->se;
13208 
13209 	detach_entity_cfs_rq(se);
13210 }
13211 
attach_task_cfs_rq(struct task_struct * p)13212 static void attach_task_cfs_rq(struct task_struct *p)
13213 {
13214 	struct sched_entity *se = &p->se;
13215 
13216 	attach_entity_cfs_rq(se);
13217 }
13218 
switched_from_fair(struct rq * rq,struct task_struct * p)13219 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13220 {
13221 	detach_task_cfs_rq(p);
13222 }
13223 
switched_to_fair(struct rq * rq,struct task_struct * p)13224 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13225 {
13226 	SCHED_WARN_ON(p->se.sched_delayed);
13227 
13228 	attach_task_cfs_rq(p);
13229 
13230 	set_task_max_allowed_capacity(p);
13231 
13232 	if (task_on_rq_queued(p)) {
13233 		/*
13234 		 * We were most likely switched from sched_rt, so
13235 		 * kick off the schedule if running, otherwise just see
13236 		 * if we can still preempt the current task.
13237 		 */
13238 		if (task_current_donor(rq, p))
13239 			resched_curr(rq);
13240 		else
13241 			wakeup_preempt(rq, p, 0);
13242 	}
13243 }
13244 
__set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13245 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13246 {
13247 	struct sched_entity *se = &p->se;
13248 
13249 #ifdef CONFIG_SMP
13250 	if (task_on_rq_queued(p)) {
13251 		/*
13252 		 * Move the next running task to the front of the list, so our
13253 		 * cfs_tasks list becomes MRU one.
13254 		 */
13255 		list_move(&se->group_node, &rq->cfs_tasks);
13256 	}
13257 #endif
13258 	if (!first)
13259 		return;
13260 
13261 	SCHED_WARN_ON(se->sched_delayed);
13262 
13263 	if (hrtick_enabled_fair(rq))
13264 		hrtick_start_fair(rq, p);
13265 
13266 	update_misfit_status(p, rq);
13267 	sched_fair_update_stop_tick(rq, p);
13268 }
13269 
13270 /*
13271  * Account for a task changing its policy or group.
13272  *
13273  * This routine is mostly called to set cfs_rq->curr field when a task
13274  * migrates between groups/classes.
13275  */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13276 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13277 {
13278 	struct sched_entity *se = &p->se;
13279 
13280 	for_each_sched_entity(se) {
13281 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13282 
13283 		set_next_entity(cfs_rq, se);
13284 		/* ensure bandwidth has been allocated on our new cfs_rq */
13285 		account_cfs_rq_runtime(cfs_rq, 0);
13286 	}
13287 
13288 	__set_next_task_fair(rq, p, first);
13289 }
13290 
init_cfs_rq(struct cfs_rq * cfs_rq)13291 void init_cfs_rq(struct cfs_rq *cfs_rq)
13292 {
13293 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13294 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13295 #ifdef CONFIG_SMP
13296 	raw_spin_lock_init(&cfs_rq->removed.lock);
13297 #endif
13298 }
13299 
13300 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)13301 static void task_change_group_fair(struct task_struct *p)
13302 {
13303 	/*
13304 	 * We couldn't detach or attach a forked task which
13305 	 * hasn't been woken up by wake_up_new_task().
13306 	 */
13307 	if (READ_ONCE(p->__state) == TASK_NEW)
13308 		return;
13309 
13310 	detach_task_cfs_rq(p);
13311 
13312 #ifdef CONFIG_SMP
13313 	/* Tell se's cfs_rq has been changed -- migrated */
13314 	p->se.avg.last_update_time = 0;
13315 #endif
13316 	set_task_rq(p, task_cpu(p));
13317 	attach_task_cfs_rq(p);
13318 }
13319 
free_fair_sched_group(struct task_group * tg)13320 void free_fair_sched_group(struct task_group *tg)
13321 {
13322 	int i;
13323 
13324 	for_each_possible_cpu(i) {
13325 		if (tg->cfs_rq)
13326 			kfree(tg->cfs_rq[i]);
13327 		if (tg->se)
13328 			kfree(tg->se[i]);
13329 	}
13330 
13331 	kfree(tg->cfs_rq);
13332 	kfree(tg->se);
13333 }
13334 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13335 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13336 {
13337 	struct sched_entity *se;
13338 	struct cfs_rq *cfs_rq;
13339 	int i;
13340 
13341 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13342 	if (!tg->cfs_rq)
13343 		goto err;
13344 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13345 	if (!tg->se)
13346 		goto err;
13347 
13348 	tg->shares = NICE_0_LOAD;
13349 
13350 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13351 
13352 	for_each_possible_cpu(i) {
13353 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13354 				      GFP_KERNEL, cpu_to_node(i));
13355 		if (!cfs_rq)
13356 			goto err;
13357 
13358 		se = kzalloc_node(sizeof(struct sched_entity_stats),
13359 				  GFP_KERNEL, cpu_to_node(i));
13360 		if (!se)
13361 			goto err_free_rq;
13362 
13363 		init_cfs_rq(cfs_rq);
13364 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13365 		init_entity_runnable_average(se);
13366 	}
13367 
13368 	return 1;
13369 
13370 err_free_rq:
13371 	kfree(cfs_rq);
13372 err:
13373 	return 0;
13374 }
13375 
online_fair_sched_group(struct task_group * tg)13376 void online_fair_sched_group(struct task_group *tg)
13377 {
13378 	struct sched_entity *se;
13379 	struct rq_flags rf;
13380 	struct rq *rq;
13381 	int i;
13382 
13383 	for_each_possible_cpu(i) {
13384 		rq = cpu_rq(i);
13385 		se = tg->se[i];
13386 		rq_lock_irq(rq, &rf);
13387 		update_rq_clock(rq);
13388 		attach_entity_cfs_rq(se);
13389 		sync_throttle(tg, i);
13390 		rq_unlock_irq(rq, &rf);
13391 	}
13392 }
13393 
unregister_fair_sched_group(struct task_group * tg)13394 void unregister_fair_sched_group(struct task_group *tg)
13395 {
13396 	int cpu;
13397 
13398 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13399 
13400 	for_each_possible_cpu(cpu) {
13401 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13402 		struct sched_entity *se = tg->se[cpu];
13403 		struct rq *rq = cpu_rq(cpu);
13404 
13405 		if (se) {
13406 			if (se->sched_delayed) {
13407 				guard(rq_lock_irqsave)(rq);
13408 				if (se->sched_delayed) {
13409 					update_rq_clock(rq);
13410 					dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13411 				}
13412 				list_del_leaf_cfs_rq(cfs_rq);
13413 			}
13414 			remove_entity_load_avg(se);
13415 		}
13416 
13417 		/*
13418 		 * Only empty task groups can be destroyed; so we can speculatively
13419 		 * check on_list without danger of it being re-added.
13420 		 */
13421 		if (cfs_rq->on_list) {
13422 			guard(rq_lock_irqsave)(rq);
13423 			list_del_leaf_cfs_rq(cfs_rq);
13424 		}
13425 	}
13426 }
13427 
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)13428 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13429 			struct sched_entity *se, int cpu,
13430 			struct sched_entity *parent)
13431 {
13432 	struct rq *rq = cpu_rq(cpu);
13433 
13434 	cfs_rq->tg = tg;
13435 	cfs_rq->rq = rq;
13436 	init_cfs_rq_runtime(cfs_rq);
13437 
13438 	tg->cfs_rq[cpu] = cfs_rq;
13439 	tg->se[cpu] = se;
13440 
13441 	/* se could be NULL for root_task_group */
13442 	if (!se)
13443 		return;
13444 
13445 	if (!parent) {
13446 		se->cfs_rq = &rq->cfs;
13447 		se->depth = 0;
13448 	} else {
13449 		se->cfs_rq = parent->my_q;
13450 		se->depth = parent->depth + 1;
13451 	}
13452 
13453 	se->my_q = cfs_rq;
13454 	/* guarantee group entities always have weight */
13455 	update_load_set(&se->load, NICE_0_LOAD);
13456 	se->parent = parent;
13457 }
13458 
13459 static DEFINE_MUTEX(shares_mutex);
13460 
__sched_group_set_shares(struct task_group * tg,unsigned long shares)13461 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13462 {
13463 	int i;
13464 
13465 	lockdep_assert_held(&shares_mutex);
13466 
13467 	/*
13468 	 * We can't change the weight of the root cgroup.
13469 	 */
13470 	if (!tg->se[0])
13471 		return -EINVAL;
13472 
13473 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13474 
13475 	if (tg->shares == shares)
13476 		return 0;
13477 
13478 	tg->shares = shares;
13479 	for_each_possible_cpu(i) {
13480 		struct rq *rq = cpu_rq(i);
13481 		struct sched_entity *se = tg->se[i];
13482 		struct rq_flags rf;
13483 
13484 		/* Propagate contribution to hierarchy */
13485 		rq_lock_irqsave(rq, &rf);
13486 		update_rq_clock(rq);
13487 		for_each_sched_entity(se) {
13488 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13489 			update_cfs_group(se);
13490 		}
13491 		rq_unlock_irqrestore(rq, &rf);
13492 	}
13493 
13494 	return 0;
13495 }
13496 
sched_group_set_shares(struct task_group * tg,unsigned long shares)13497 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13498 {
13499 	int ret;
13500 
13501 	mutex_lock(&shares_mutex);
13502 	if (tg_is_idle(tg))
13503 		ret = -EINVAL;
13504 	else
13505 		ret = __sched_group_set_shares(tg, shares);
13506 	mutex_unlock(&shares_mutex);
13507 
13508 	return ret;
13509 }
13510 
sched_group_set_idle(struct task_group * tg,long idle)13511 int sched_group_set_idle(struct task_group *tg, long idle)
13512 {
13513 	int i;
13514 
13515 	if (tg == &root_task_group)
13516 		return -EINVAL;
13517 
13518 	if (idle < 0 || idle > 1)
13519 		return -EINVAL;
13520 
13521 	mutex_lock(&shares_mutex);
13522 
13523 	if (tg->idle == idle) {
13524 		mutex_unlock(&shares_mutex);
13525 		return 0;
13526 	}
13527 
13528 	tg->idle = idle;
13529 
13530 	for_each_possible_cpu(i) {
13531 		struct rq *rq = cpu_rq(i);
13532 		struct sched_entity *se = tg->se[i];
13533 		struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
13534 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13535 		long idle_task_delta;
13536 		struct rq_flags rf;
13537 
13538 		rq_lock_irqsave(rq, &rf);
13539 
13540 		grp_cfs_rq->idle = idle;
13541 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13542 			goto next_cpu;
13543 
13544 		idle_task_delta = grp_cfs_rq->h_nr_queued -
13545 				  grp_cfs_rq->h_nr_idle;
13546 		if (!cfs_rq_is_idle(grp_cfs_rq))
13547 			idle_task_delta *= -1;
13548 
13549 		for_each_sched_entity(se) {
13550 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13551 
13552 			if (!se->on_rq)
13553 				break;
13554 
13555 			cfs_rq->h_nr_idle += idle_task_delta;
13556 
13557 			/* Already accounted at parent level and above. */
13558 			if (cfs_rq_is_idle(cfs_rq))
13559 				break;
13560 		}
13561 
13562 next_cpu:
13563 		rq_unlock_irqrestore(rq, &rf);
13564 	}
13565 
13566 	/* Idle groups have minimum weight. */
13567 	if (tg_is_idle(tg))
13568 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13569 	else
13570 		__sched_group_set_shares(tg, NICE_0_LOAD);
13571 
13572 	mutex_unlock(&shares_mutex);
13573 	return 0;
13574 }
13575 
13576 #endif /* CONFIG_FAIR_GROUP_SCHED */
13577 
13578 
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13579 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13580 {
13581 	struct sched_entity *se = &task->se;
13582 	unsigned int rr_interval = 0;
13583 
13584 	/*
13585 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13586 	 * idle runqueue:
13587 	 */
13588 	if (rq->cfs.load.weight)
13589 		rr_interval = NS_TO_JIFFIES(se->slice);
13590 
13591 	return rr_interval;
13592 }
13593 
13594 /*
13595  * All the scheduling class methods:
13596  */
13597 DEFINE_SCHED_CLASS(fair) = {
13598 
13599 	.enqueue_task		= enqueue_task_fair,
13600 	.dequeue_task		= dequeue_task_fair,
13601 	.yield_task		= yield_task_fair,
13602 	.yield_to_task		= yield_to_task_fair,
13603 
13604 	.wakeup_preempt		= check_preempt_wakeup_fair,
13605 
13606 	.pick_task		= pick_task_fair,
13607 	.pick_next_task		= __pick_next_task_fair,
13608 	.put_prev_task		= put_prev_task_fair,
13609 	.set_next_task          = set_next_task_fair,
13610 
13611 #ifdef CONFIG_SMP
13612 	.balance		= balance_fair,
13613 	.select_task_rq		= select_task_rq_fair,
13614 	.migrate_task_rq	= migrate_task_rq_fair,
13615 
13616 	.rq_online		= rq_online_fair,
13617 	.rq_offline		= rq_offline_fair,
13618 
13619 	.task_dead		= task_dead_fair,
13620 	.set_cpus_allowed	= set_cpus_allowed_fair,
13621 #endif
13622 
13623 	.task_tick		= task_tick_fair,
13624 	.task_fork		= task_fork_fair,
13625 
13626 	.reweight_task		= reweight_task_fair,
13627 	.prio_changed		= prio_changed_fair,
13628 	.switched_from		= switched_from_fair,
13629 	.switched_to		= switched_to_fair,
13630 
13631 	.get_rr_interval	= get_rr_interval_fair,
13632 
13633 	.update_curr		= update_curr_fair,
13634 
13635 #ifdef CONFIG_FAIR_GROUP_SCHED
13636 	.task_change_group	= task_change_group_fair,
13637 #endif
13638 
13639 #ifdef CONFIG_SCHED_CORE
13640 	.task_is_throttled	= task_is_throttled_fair,
13641 #endif
13642 
13643 #ifdef CONFIG_UCLAMP_TASK
13644 	.uclamp_enabled		= 1,
13645 #endif
13646 };
13647 
13648 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)13649 void print_cfs_stats(struct seq_file *m, int cpu)
13650 {
13651 	struct cfs_rq *cfs_rq, *pos;
13652 
13653 	rcu_read_lock();
13654 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13655 		print_cfs_rq(m, cpu, cfs_rq);
13656 	rcu_read_unlock();
13657 }
13658 
13659 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13660 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13661 {
13662 	int node;
13663 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13664 	struct numa_group *ng;
13665 
13666 	rcu_read_lock();
13667 	ng = rcu_dereference(p->numa_group);
13668 	for_each_online_node(node) {
13669 		if (p->numa_faults) {
13670 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13671 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13672 		}
13673 		if (ng) {
13674 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13675 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13676 		}
13677 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13678 	}
13679 	rcu_read_unlock();
13680 }
13681 #endif /* CONFIG_NUMA_BALANCING */
13682 #endif /* CONFIG_SCHED_DEBUG */
13683 
init_sched_fair_class(void)13684 __init void init_sched_fair_class(void)
13685 {
13686 #ifdef CONFIG_SMP
13687 	int i;
13688 
13689 	for_each_possible_cpu(i) {
13690 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13691 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13692 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13693 					GFP_KERNEL, cpu_to_node(i));
13694 
13695 #ifdef CONFIG_CFS_BANDWIDTH
13696 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13697 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13698 #endif
13699 	}
13700 
13701 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13702 
13703 #ifdef CONFIG_NO_HZ_COMMON
13704 	nohz.next_balance = jiffies;
13705 	nohz.next_blocked = jiffies;
13706 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13707 #endif
13708 #endif /* SMP */
13709 
13710 }
13711