1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
4 * Author: Ludovic.barre@st.com for STMicroelectronics.
5 */
6 #include <linux/bitfield.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/iopoll.h>
10 #include <linux/mmc/host.h>
11 #include <linux/mmc/card.h>
12 #include <linux/of_address.h>
13 #include <linux/reset.h>
14 #include <linux/scatterlist.h>
15 #include "mmci.h"
16
17 #define SDMMC_LLI_BUF_LEN PAGE_SIZE
18
19 #define DLYB_CR 0x0
20 #define DLYB_CR_DEN BIT(0)
21 #define DLYB_CR_SEN BIT(1)
22
23 #define DLYB_CFGR 0x4
24 #define DLYB_CFGR_SEL_MASK GENMASK(3, 0)
25 #define DLYB_CFGR_UNIT_MASK GENMASK(14, 8)
26 #define DLYB_CFGR_LNG_MASK GENMASK(27, 16)
27 #define DLYB_CFGR_LNGF BIT(31)
28
29 #define DLYB_NB_DELAY 11
30 #define DLYB_CFGR_SEL_MAX (DLYB_NB_DELAY + 1)
31 #define DLYB_CFGR_UNIT_MAX 127
32
33 #define DLYB_LNG_TIMEOUT_US 1000
34 #define SDMMC_VSWEND_TIMEOUT_US 10000
35
36 #define SYSCFG_DLYBSD_CR 0x0
37 #define DLYBSD_CR_EN BIT(0)
38 #define DLYBSD_CR_RXTAPSEL_MASK GENMASK(6, 1)
39 #define DLYBSD_TAPSEL_NB 32
40 #define DLYBSD_BYP_EN BIT(16)
41 #define DLYBSD_BYP_CMD GENMASK(21, 17)
42 #define DLYBSD_ANTIGLITCH_EN BIT(22)
43
44 #define SYSCFG_DLYBSD_SR 0x4
45 #define DLYBSD_SR_LOCK BIT(0)
46 #define DLYBSD_SR_RXTAPSEL_ACK BIT(1)
47
48 #define DLYBSD_TIMEOUT_1S_IN_US 1000000
49
50 struct sdmmc_lli_desc {
51 u32 idmalar;
52 u32 idmabase;
53 u32 idmasize;
54 };
55
56 struct sdmmc_idma {
57 dma_addr_t sg_dma;
58 void *sg_cpu;
59 dma_addr_t bounce_dma_addr;
60 void *bounce_buf;
61 bool use_bounce_buffer;
62 };
63
64 struct sdmmc_dlyb;
65
66 struct sdmmc_tuning_ops {
67 int (*dlyb_enable)(struct sdmmc_dlyb *dlyb);
68 void (*set_input_ck)(struct sdmmc_dlyb *dlyb);
69 int (*tuning_prepare)(struct mmci_host *host);
70 int (*set_cfg)(struct sdmmc_dlyb *dlyb, int unit __maybe_unused,
71 int phase, bool sampler __maybe_unused);
72 };
73
74 struct sdmmc_dlyb {
75 void __iomem *base;
76 u32 unit;
77 u32 max;
78 struct sdmmc_tuning_ops *ops;
79 };
80
sdmmc_idma_validate_data(struct mmci_host * host,struct mmc_data * data)81 static int sdmmc_idma_validate_data(struct mmci_host *host,
82 struct mmc_data *data)
83 {
84 struct sdmmc_idma *idma = host->dma_priv;
85 struct device *dev = mmc_dev(host->mmc);
86 struct scatterlist *sg;
87 int i;
88
89 /*
90 * idma has constraints on idmabase & idmasize for each element
91 * excepted the last element which has no constraint on idmasize
92 */
93 idma->use_bounce_buffer = false;
94 for_each_sg(data->sg, sg, data->sg_len - 1, i) {
95 if (!IS_ALIGNED(sg->offset, sizeof(u32)) ||
96 !IS_ALIGNED(sg->length,
97 host->variant->stm32_idmabsize_align)) {
98 dev_dbg(mmc_dev(host->mmc),
99 "unaligned scatterlist: ofst:%x length:%d\n",
100 data->sg->offset, data->sg->length);
101 goto use_bounce_buffer;
102 }
103 }
104
105 if (!IS_ALIGNED(sg->offset, sizeof(u32))) {
106 dev_dbg(mmc_dev(host->mmc),
107 "unaligned last scatterlist: ofst:%x length:%d\n",
108 data->sg->offset, data->sg->length);
109 goto use_bounce_buffer;
110 }
111
112 return 0;
113
114 use_bounce_buffer:
115 if (!idma->bounce_buf) {
116 idma->bounce_buf = dmam_alloc_coherent(dev,
117 host->mmc->max_req_size,
118 &idma->bounce_dma_addr,
119 GFP_KERNEL);
120 if (!idma->bounce_buf) {
121 dev_err(dev, "Unable to map allocate DMA bounce buffer.\n");
122 return -ENOMEM;
123 }
124 }
125
126 idma->use_bounce_buffer = true;
127
128 return 0;
129 }
130
_sdmmc_idma_prep_data(struct mmci_host * host,struct mmc_data * data)131 static int _sdmmc_idma_prep_data(struct mmci_host *host,
132 struct mmc_data *data)
133 {
134 struct sdmmc_idma *idma = host->dma_priv;
135
136 if (idma->use_bounce_buffer) {
137 if (data->flags & MMC_DATA_WRITE) {
138 unsigned int xfer_bytes = data->blksz * data->blocks;
139
140 sg_copy_to_buffer(data->sg, data->sg_len,
141 idma->bounce_buf, xfer_bytes);
142 dma_wmb();
143 }
144 } else {
145 int n_elem;
146
147 n_elem = dma_map_sg(mmc_dev(host->mmc),
148 data->sg,
149 data->sg_len,
150 mmc_get_dma_dir(data));
151
152 if (!n_elem) {
153 dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
154 return -EINVAL;
155 }
156 }
157 return 0;
158 }
159
sdmmc_idma_prep_data(struct mmci_host * host,struct mmc_data * data,bool next)160 static int sdmmc_idma_prep_data(struct mmci_host *host,
161 struct mmc_data *data, bool next)
162 {
163 /* Check if job is already prepared. */
164 if (!next && data->host_cookie == host->next_cookie)
165 return 0;
166
167 return _sdmmc_idma_prep_data(host, data);
168 }
169
sdmmc_idma_unprep_data(struct mmci_host * host,struct mmc_data * data,int err)170 static void sdmmc_idma_unprep_data(struct mmci_host *host,
171 struct mmc_data *data, int err)
172 {
173 struct sdmmc_idma *idma = host->dma_priv;
174
175 if (idma->use_bounce_buffer) {
176 if (data->flags & MMC_DATA_READ) {
177 unsigned int xfer_bytes = data->blksz * data->blocks;
178
179 sg_copy_from_buffer(data->sg, data->sg_len,
180 idma->bounce_buf, xfer_bytes);
181 }
182 } else {
183 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
184 mmc_get_dma_dir(data));
185 }
186 }
187
sdmmc_idma_setup(struct mmci_host * host)188 static int sdmmc_idma_setup(struct mmci_host *host)
189 {
190 struct sdmmc_idma *idma;
191 struct device *dev = mmc_dev(host->mmc);
192
193 idma = devm_kzalloc(dev, sizeof(*idma), GFP_KERNEL);
194 if (!idma)
195 return -ENOMEM;
196
197 host->dma_priv = idma;
198
199 if (host->variant->dma_lli) {
200 idma->sg_cpu = dmam_alloc_coherent(dev, SDMMC_LLI_BUF_LEN,
201 &idma->sg_dma, GFP_KERNEL);
202 if (!idma->sg_cpu) {
203 dev_err(dev, "Failed to alloc IDMA descriptor\n");
204 return -ENOMEM;
205 }
206 host->mmc->max_segs = SDMMC_LLI_BUF_LEN /
207 sizeof(struct sdmmc_lli_desc);
208 host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask;
209
210 host->mmc->max_req_size = SZ_1M;
211 } else {
212 host->mmc->max_segs = 1;
213 host->mmc->max_seg_size = host->mmc->max_req_size;
214 }
215
216 dma_set_max_seg_size(dev, host->mmc->max_seg_size);
217 return 0;
218 }
219
sdmmc_idma_start(struct mmci_host * host,unsigned int * datactrl)220 static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl)
221
222 {
223 struct sdmmc_idma *idma = host->dma_priv;
224 struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu;
225 struct mmc_data *data = host->data;
226 struct scatterlist *sg;
227 int i;
228
229 host->dma_in_progress = true;
230
231 if (!host->variant->dma_lli || data->sg_len == 1 ||
232 idma->use_bounce_buffer) {
233 u32 dma_addr;
234
235 if (idma->use_bounce_buffer)
236 dma_addr = idma->bounce_dma_addr;
237 else
238 dma_addr = sg_dma_address(data->sg);
239
240 writel_relaxed(dma_addr,
241 host->base + MMCI_STM32_IDMABASE0R);
242 writel_relaxed(MMCI_STM32_IDMAEN,
243 host->base + MMCI_STM32_IDMACTRLR);
244 return 0;
245 }
246
247 for_each_sg(data->sg, sg, data->sg_len, i) {
248 desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc);
249 desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS
250 | MMCI_STM32_ABR;
251 desc[i].idmabase = sg_dma_address(sg);
252 desc[i].idmasize = sg_dma_len(sg);
253 }
254
255 /* notice the end of link list */
256 desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA;
257
258 dma_wmb();
259 writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR);
260 writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR);
261 writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R);
262 writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER);
263 writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN,
264 host->base + MMCI_STM32_IDMACTRLR);
265
266 return 0;
267 }
268
sdmmc_idma_error(struct mmci_host * host)269 static void sdmmc_idma_error(struct mmci_host *host)
270 {
271 struct mmc_data *data = host->data;
272 struct sdmmc_idma *idma = host->dma_priv;
273
274 if (!dma_inprogress(host))
275 return;
276
277 writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
278 host->dma_in_progress = false;
279 data->host_cookie = 0;
280
281 if (!idma->use_bounce_buffer)
282 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
283 mmc_get_dma_dir(data));
284 }
285
sdmmc_idma_finalize(struct mmci_host * host,struct mmc_data * data)286 static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data)
287 {
288 if (!dma_inprogress(host))
289 return;
290
291 writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
292 host->dma_in_progress = false;
293
294 if (!data->host_cookie)
295 sdmmc_idma_unprep_data(host, data, 0);
296 }
297
mmci_sdmmc_set_clkreg(struct mmci_host * host,unsigned int desired)298 static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired)
299 {
300 unsigned int clk = 0, ddr = 0;
301
302 if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 ||
303 host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
304 ddr = MCI_STM32_CLK_DDR;
305
306 /*
307 * cclk = mclk / (2 * clkdiv)
308 * clkdiv 0 => bypass
309 * in ddr mode bypass is not possible
310 */
311 if (desired) {
312 if (desired >= host->mclk && !ddr) {
313 host->cclk = host->mclk;
314 } else {
315 clk = DIV_ROUND_UP(host->mclk, 2 * desired);
316 if (clk > MCI_STM32_CLK_CLKDIV_MSK)
317 clk = MCI_STM32_CLK_CLKDIV_MSK;
318 host->cclk = host->mclk / (2 * clk);
319 }
320 } else {
321 /*
322 * while power-on phase the clock can't be define to 0,
323 * Only power-off and power-cyc deactivate the clock.
324 * if desired clock is 0, set max divider
325 */
326 clk = MCI_STM32_CLK_CLKDIV_MSK;
327 host->cclk = host->mclk / (2 * clk);
328 }
329
330 /* Set actual clock for debug */
331 if (host->mmc->ios.power_mode == MMC_POWER_ON)
332 host->mmc->actual_clock = host->cclk;
333 else
334 host->mmc->actual_clock = 0;
335
336 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
337 clk |= MCI_STM32_CLK_WIDEBUS_4;
338 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
339 clk |= MCI_STM32_CLK_WIDEBUS_8;
340
341 clk |= MCI_STM32_CLK_HWFCEN;
342 clk |= host->clk_reg_add;
343 clk |= ddr;
344
345 if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50)
346 clk |= MCI_STM32_CLK_BUSSPEED;
347
348 mmci_write_clkreg(host, clk);
349 }
350
sdmmc_dlyb_mp15_input_ck(struct sdmmc_dlyb * dlyb)351 static void sdmmc_dlyb_mp15_input_ck(struct sdmmc_dlyb *dlyb)
352 {
353 if (!dlyb || !dlyb->base)
354 return;
355
356 /* Output clock = Input clock */
357 writel_relaxed(0, dlyb->base + DLYB_CR);
358 }
359
mmci_sdmmc_set_pwrreg(struct mmci_host * host,unsigned int pwr)360 static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr)
361 {
362 struct mmc_ios ios = host->mmc->ios;
363 struct sdmmc_dlyb *dlyb = host->variant_priv;
364
365 /* adds OF options */
366 pwr = host->pwr_reg_add;
367
368 if (dlyb && dlyb->ops->set_input_ck)
369 dlyb->ops->set_input_ck(dlyb);
370
371 if (ios.power_mode == MMC_POWER_OFF) {
372 /* Only a reset could power-off sdmmc */
373 reset_control_assert(host->rst);
374 udelay(2);
375 reset_control_deassert(host->rst);
376
377 /*
378 * Set the SDMMC in Power-cycle state.
379 * This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK
380 * are driven low, to prevent the Card from being supplied
381 * through the signal lines.
382 */
383 mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr);
384 } else if (ios.power_mode == MMC_POWER_ON) {
385 /*
386 * After power-off (reset): the irq mask defined in probe
387 * functionis lost
388 * ault irq mask (probe) must be activated
389 */
390 writel(MCI_IRQENABLE | host->variant->start_err,
391 host->base + MMCIMASK0);
392
393 /* preserves voltage switch bits */
394 pwr |= host->pwr_reg & (MCI_STM32_VSWITCHEN |
395 MCI_STM32_VSWITCH);
396
397 /*
398 * After a power-cycle state, we must set the SDMMC in
399 * Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are
400 * driven high. Then we can set the SDMMC to Power-on state
401 */
402 mmci_write_pwrreg(host, MCI_PWR_OFF | pwr);
403 mdelay(1);
404 mmci_write_pwrreg(host, MCI_PWR_ON | pwr);
405 }
406 }
407
sdmmc_get_dctrl_cfg(struct mmci_host * host)408 static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host)
409 {
410 u32 datactrl;
411
412 datactrl = mmci_dctrl_blksz(host);
413
414 if (host->hw_revision >= 3) {
415 u32 thr = 0;
416
417 if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104 ||
418 host->mmc->ios.timing == MMC_TIMING_MMC_HS200) {
419 thr = ffs(min_t(unsigned int, host->data->blksz,
420 host->variant->fifosize));
421 thr = min_t(u32, thr, MMCI_STM32_THR_MASK);
422 }
423
424 writel_relaxed(thr, host->base + MMCI_STM32_FIFOTHRR);
425 }
426
427 if (host->mmc->card && mmc_card_sdio(host->mmc->card) &&
428 host->data->blocks == 1)
429 datactrl |= MCI_DPSM_STM32_MODE_SDIO;
430 else if (host->data->stop && !host->mrq->sbc)
431 datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP;
432 else
433 datactrl |= MCI_DPSM_STM32_MODE_BLOCK;
434
435 return datactrl;
436 }
437
sdmmc_busy_complete(struct mmci_host * host,struct mmc_command * cmd,u32 status,u32 err_msk)438 static bool sdmmc_busy_complete(struct mmci_host *host, struct mmc_command *cmd,
439 u32 status, u32 err_msk)
440 {
441 void __iomem *base = host->base;
442 u32 busy_d0, busy_d0end, mask, sdmmc_status;
443
444 mask = readl_relaxed(base + MMCIMASK0);
445 sdmmc_status = readl_relaxed(base + MMCISTATUS);
446 busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END;
447 busy_d0 = sdmmc_status & MCI_STM32_BUSYD0;
448
449 /* complete if there is an error or busy_d0end */
450 if ((status & err_msk) || busy_d0end)
451 goto complete;
452
453 /*
454 * On response the busy signaling is reflected in the BUSYD0 flag.
455 * if busy_d0 is in-progress we must activate busyd0end interrupt
456 * to wait this completion. Else this request has no busy step.
457 */
458 if (busy_d0) {
459 if (!host->busy_status) {
460 writel_relaxed(mask | host->variant->busy_detect_mask,
461 base + MMCIMASK0);
462 host->busy_status = status &
463 (MCI_CMDSENT | MCI_CMDRESPEND);
464 }
465 return false;
466 }
467
468 complete:
469 if (host->busy_status) {
470 writel_relaxed(mask & ~host->variant->busy_detect_mask,
471 base + MMCIMASK0);
472 host->busy_status = 0;
473 }
474
475 writel_relaxed(host->variant->busy_detect_mask, base + MMCICLEAR);
476
477 return true;
478 }
479
sdmmc_dlyb_mp15_enable(struct sdmmc_dlyb * dlyb)480 static int sdmmc_dlyb_mp15_enable(struct sdmmc_dlyb *dlyb)
481 {
482 writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
483
484 return 0;
485 }
486
sdmmc_dlyb_mp15_set_cfg(struct sdmmc_dlyb * dlyb,int unit,int phase,bool sampler)487 static int sdmmc_dlyb_mp15_set_cfg(struct sdmmc_dlyb *dlyb,
488 int unit, int phase, bool sampler)
489 {
490 u32 cfgr;
491
492 writel_relaxed(DLYB_CR_SEN | DLYB_CR_DEN, dlyb->base + DLYB_CR);
493
494 cfgr = FIELD_PREP(DLYB_CFGR_UNIT_MASK, unit) |
495 FIELD_PREP(DLYB_CFGR_SEL_MASK, phase);
496 writel_relaxed(cfgr, dlyb->base + DLYB_CFGR);
497
498 if (!sampler)
499 writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
500
501 return 0;
502 }
503
sdmmc_dlyb_mp15_prepare(struct mmci_host * host)504 static int sdmmc_dlyb_mp15_prepare(struct mmci_host *host)
505 {
506 struct sdmmc_dlyb *dlyb = host->variant_priv;
507 u32 cfgr;
508 int i, lng, ret;
509
510 for (i = 0; i <= DLYB_CFGR_UNIT_MAX; i++) {
511 dlyb->ops->set_cfg(dlyb, i, DLYB_CFGR_SEL_MAX, true);
512
513 ret = readl_relaxed_poll_timeout(dlyb->base + DLYB_CFGR, cfgr,
514 (cfgr & DLYB_CFGR_LNGF),
515 1, DLYB_LNG_TIMEOUT_US);
516 if (ret) {
517 dev_warn(mmc_dev(host->mmc),
518 "delay line cfg timeout unit:%d cfgr:%d\n",
519 i, cfgr);
520 continue;
521 }
522
523 lng = FIELD_GET(DLYB_CFGR_LNG_MASK, cfgr);
524 if (lng < BIT(DLYB_NB_DELAY) && lng > 0)
525 break;
526 }
527
528 if (i > DLYB_CFGR_UNIT_MAX)
529 return -EINVAL;
530
531 dlyb->unit = i;
532 dlyb->max = __fls(lng);
533
534 return 0;
535 }
536
sdmmc_dlyb_mp25_enable(struct sdmmc_dlyb * dlyb)537 static int sdmmc_dlyb_mp25_enable(struct sdmmc_dlyb *dlyb)
538 {
539 u32 cr, sr;
540
541 cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR);
542 cr |= DLYBSD_CR_EN;
543
544 writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR);
545
546 return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR,
547 sr, sr & DLYBSD_SR_LOCK, 1,
548 DLYBSD_TIMEOUT_1S_IN_US);
549 }
550
sdmmc_dlyb_mp25_set_cfg(struct sdmmc_dlyb * dlyb,int unit __maybe_unused,int phase,bool sampler __maybe_unused)551 static int sdmmc_dlyb_mp25_set_cfg(struct sdmmc_dlyb *dlyb,
552 int unit __maybe_unused, int phase,
553 bool sampler __maybe_unused)
554 {
555 u32 cr, sr;
556
557 cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR);
558 cr &= ~DLYBSD_CR_RXTAPSEL_MASK;
559 cr |= FIELD_PREP(DLYBSD_CR_RXTAPSEL_MASK, phase);
560
561 writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR);
562
563 return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR,
564 sr, sr & DLYBSD_SR_RXTAPSEL_ACK, 1,
565 DLYBSD_TIMEOUT_1S_IN_US);
566 }
567
sdmmc_dlyb_mp25_prepare(struct mmci_host * host)568 static int sdmmc_dlyb_mp25_prepare(struct mmci_host *host)
569 {
570 struct sdmmc_dlyb *dlyb = host->variant_priv;
571
572 dlyb->max = DLYBSD_TAPSEL_NB;
573
574 return 0;
575 }
576
sdmmc_dlyb_phase_tuning(struct mmci_host * host,u32 opcode)577 static int sdmmc_dlyb_phase_tuning(struct mmci_host *host, u32 opcode)
578 {
579 struct sdmmc_dlyb *dlyb = host->variant_priv;
580 int cur_len = 0, max_len = 0, end_of_len = 0;
581 int phase, ret;
582
583 for (phase = 0; phase <= dlyb->max; phase++) {
584 ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false);
585 if (ret) {
586 dev_err(mmc_dev(host->mmc), "tuning config failed\n");
587 return ret;
588 }
589
590 if (mmc_send_tuning(host->mmc, opcode, NULL)) {
591 cur_len = 0;
592 } else {
593 cur_len++;
594 if (cur_len > max_len) {
595 max_len = cur_len;
596 end_of_len = phase;
597 }
598 }
599 }
600
601 if (!max_len) {
602 dev_err(mmc_dev(host->mmc), "no tuning point found\n");
603 return -EINVAL;
604 }
605
606 if (dlyb->ops->set_input_ck)
607 dlyb->ops->set_input_ck(dlyb);
608
609 phase = end_of_len - max_len / 2;
610 ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false);
611 if (ret) {
612 dev_err(mmc_dev(host->mmc), "tuning reconfig failed\n");
613 return ret;
614 }
615
616 dev_dbg(mmc_dev(host->mmc), "unit:%d max_dly:%d phase:%d\n",
617 dlyb->unit, dlyb->max, phase);
618
619 return 0;
620 }
621
sdmmc_execute_tuning(struct mmc_host * mmc,u32 opcode)622 static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
623 {
624 struct mmci_host *host = mmc_priv(mmc);
625 struct sdmmc_dlyb *dlyb = host->variant_priv;
626 u32 clk;
627 int ret;
628
629 if ((host->mmc->ios.timing != MMC_TIMING_UHS_SDR104 &&
630 host->mmc->ios.timing != MMC_TIMING_MMC_HS200) ||
631 host->mmc->actual_clock <= 50000000)
632 return 0;
633
634 if (!dlyb || !dlyb->base)
635 return -EINVAL;
636
637 ret = dlyb->ops->dlyb_enable(dlyb);
638 if (ret)
639 return ret;
640
641 /*
642 * SDMMC_FBCK is selected when an external Delay Block is needed
643 * with SDR104 or HS200.
644 */
645 clk = host->clk_reg;
646 clk &= ~MCI_STM32_CLK_SEL_MSK;
647 clk |= MCI_STM32_CLK_SELFBCK;
648 mmci_write_clkreg(host, clk);
649
650 ret = dlyb->ops->tuning_prepare(host);
651 if (ret)
652 return ret;
653
654 return sdmmc_dlyb_phase_tuning(host, opcode);
655 }
656
sdmmc_pre_sig_volt_vswitch(struct mmci_host * host)657 static void sdmmc_pre_sig_volt_vswitch(struct mmci_host *host)
658 {
659 /* clear the voltage switch completion flag */
660 writel_relaxed(MCI_STM32_VSWENDC, host->base + MMCICLEAR);
661 /* enable Voltage switch procedure */
662 mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCHEN);
663 }
664
sdmmc_post_sig_volt_switch(struct mmci_host * host,struct mmc_ios * ios)665 static int sdmmc_post_sig_volt_switch(struct mmci_host *host,
666 struct mmc_ios *ios)
667 {
668 unsigned long flags;
669 u32 status;
670 int ret = 0;
671
672 spin_lock_irqsave(&host->lock, flags);
673 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180 &&
674 host->pwr_reg & MCI_STM32_VSWITCHEN) {
675 mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCH);
676 spin_unlock_irqrestore(&host->lock, flags);
677
678 /* wait voltage switch completion while 10ms */
679 ret = readl_relaxed_poll_timeout(host->base + MMCISTATUS,
680 status,
681 (status & MCI_STM32_VSWEND),
682 10, SDMMC_VSWEND_TIMEOUT_US);
683
684 writel_relaxed(MCI_STM32_VSWENDC | MCI_STM32_CKSTOPC,
685 host->base + MMCICLEAR);
686 spin_lock_irqsave(&host->lock, flags);
687 mmci_write_pwrreg(host, host->pwr_reg &
688 ~(MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH));
689 }
690 spin_unlock_irqrestore(&host->lock, flags);
691
692 return ret;
693 }
694
695 static struct mmci_host_ops sdmmc_variant_ops = {
696 .validate_data = sdmmc_idma_validate_data,
697 .prep_data = sdmmc_idma_prep_data,
698 .unprep_data = sdmmc_idma_unprep_data,
699 .get_datactrl_cfg = sdmmc_get_dctrl_cfg,
700 .dma_setup = sdmmc_idma_setup,
701 .dma_start = sdmmc_idma_start,
702 .dma_finalize = sdmmc_idma_finalize,
703 .dma_error = sdmmc_idma_error,
704 .set_clkreg = mmci_sdmmc_set_clkreg,
705 .set_pwrreg = mmci_sdmmc_set_pwrreg,
706 .busy_complete = sdmmc_busy_complete,
707 .pre_sig_volt_switch = sdmmc_pre_sig_volt_vswitch,
708 .post_sig_volt_switch = sdmmc_post_sig_volt_switch,
709 };
710
711 static struct sdmmc_tuning_ops dlyb_tuning_mp15_ops = {
712 .dlyb_enable = sdmmc_dlyb_mp15_enable,
713 .set_input_ck = sdmmc_dlyb_mp15_input_ck,
714 .tuning_prepare = sdmmc_dlyb_mp15_prepare,
715 .set_cfg = sdmmc_dlyb_mp15_set_cfg,
716 };
717
718 static struct sdmmc_tuning_ops dlyb_tuning_mp25_ops = {
719 .dlyb_enable = sdmmc_dlyb_mp25_enable,
720 .tuning_prepare = sdmmc_dlyb_mp25_prepare,
721 .set_cfg = sdmmc_dlyb_mp25_set_cfg,
722 };
723
sdmmc_variant_init(struct mmci_host * host)724 void sdmmc_variant_init(struct mmci_host *host)
725 {
726 struct device_node *np = host->mmc->parent->of_node;
727 void __iomem *base_dlyb;
728 struct sdmmc_dlyb *dlyb;
729
730 host->ops = &sdmmc_variant_ops;
731 host->pwr_reg = readl_relaxed(host->base + MMCIPOWER);
732
733 base_dlyb = devm_of_iomap(mmc_dev(host->mmc), np, 1, NULL);
734 if (IS_ERR(base_dlyb))
735 return;
736
737 dlyb = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dlyb), GFP_KERNEL);
738 if (!dlyb)
739 return;
740
741 dlyb->base = base_dlyb;
742 if (of_device_is_compatible(np, "st,stm32mp25-sdmmc2"))
743 dlyb->ops = &dlyb_tuning_mp25_ops;
744 else
745 dlyb->ops = &dlyb_tuning_mp15_ops;
746
747 host->variant_priv = dlyb;
748 host->mmc_ops->execute_tuning = sdmmc_execute_tuning;
749 }
750