xref: /linux/drivers/infiniband/hw/hfi1/sdma.h (revision dd91b5e1d6448794c07378d1be12e3261c8769e7)
1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3  * Copyright(c) 2015 - 2018 Intel Corporation.
4  */
5 
6 #ifndef _HFI1_SDMA_H
7 #define _HFI1_SDMA_H
8 
9 #include <linux/types.h>
10 #include <linux/list.h>
11 #include <asm/byteorder.h>
12 #include <linux/workqueue.h>
13 #include <linux/rculist.h>
14 
15 #include "hfi.h"
16 #include "verbs.h"
17 #include "sdma_txreq.h"
18 
19 /* Hardware limit */
20 #define MAX_DESC 64
21 /* Hardware limit for SDMA packet size */
22 #define MAX_SDMA_PKT_SIZE ((16 * 1024) - 1)
23 
24 #define SDMA_MAP_NONE          0
25 #define SDMA_MAP_SINGLE        1
26 #define SDMA_MAP_PAGE          2
27 
28 #define SDMA_AHG_VALUE_MASK          0xffff
29 #define SDMA_AHG_VALUE_SHIFT         0
30 #define SDMA_AHG_INDEX_MASK          0xf
31 #define SDMA_AHG_INDEX_SHIFT         16
32 #define SDMA_AHG_FIELD_LEN_MASK      0xf
33 #define SDMA_AHG_FIELD_LEN_SHIFT     20
34 #define SDMA_AHG_FIELD_START_MASK    0x1f
35 #define SDMA_AHG_FIELD_START_SHIFT   24
36 #define SDMA_AHG_UPDATE_ENABLE_MASK  0x1
37 #define SDMA_AHG_UPDATE_ENABLE_SHIFT 31
38 
39 /* AHG modes */
40 
41 /*
42  * Be aware the ordering and values
43  * for SDMA_AHG_APPLY_UPDATE[123]
44  * are assumed in generating a skip
45  * count in submit_tx() in sdma.c
46  */
47 #define SDMA_AHG_NO_AHG              0
48 #define SDMA_AHG_COPY                1
49 #define SDMA_AHG_APPLY_UPDATE1       2
50 #define SDMA_AHG_APPLY_UPDATE2       3
51 #define SDMA_AHG_APPLY_UPDATE3       4
52 
53 /*
54  * Bits defined in the send DMA descriptor.
55  */
56 #define SDMA_DESC0_FIRST_DESC_FLAG      BIT_ULL(63)
57 #define SDMA_DESC0_LAST_DESC_FLAG       BIT_ULL(62)
58 #define SDMA_DESC0_BYTE_COUNT_SHIFT     48
59 #define SDMA_DESC0_BYTE_COUNT_WIDTH     14
60 #define SDMA_DESC0_BYTE_COUNT_MASK \
61 	((1ULL << SDMA_DESC0_BYTE_COUNT_WIDTH) - 1)
62 #define SDMA_DESC0_BYTE_COUNT_SMASK \
63 	(SDMA_DESC0_BYTE_COUNT_MASK << SDMA_DESC0_BYTE_COUNT_SHIFT)
64 #define SDMA_DESC0_PHY_ADDR_SHIFT       0
65 #define SDMA_DESC0_PHY_ADDR_WIDTH       48
66 #define SDMA_DESC0_PHY_ADDR_MASK \
67 	((1ULL << SDMA_DESC0_PHY_ADDR_WIDTH) - 1)
68 #define SDMA_DESC0_PHY_ADDR_SMASK \
69 	(SDMA_DESC0_PHY_ADDR_MASK << SDMA_DESC0_PHY_ADDR_SHIFT)
70 
71 #define SDMA_DESC1_HEADER_UPDATE1_SHIFT 32
72 #define SDMA_DESC1_HEADER_UPDATE1_WIDTH 32
73 #define SDMA_DESC1_HEADER_UPDATE1_MASK \
74 	((1ULL << SDMA_DESC1_HEADER_UPDATE1_WIDTH) - 1)
75 #define SDMA_DESC1_HEADER_UPDATE1_SMASK \
76 	(SDMA_DESC1_HEADER_UPDATE1_MASK << SDMA_DESC1_HEADER_UPDATE1_SHIFT)
77 #define SDMA_DESC1_HEADER_MODE_SHIFT    13
78 #define SDMA_DESC1_HEADER_MODE_WIDTH    3
79 #define SDMA_DESC1_HEADER_MODE_MASK \
80 	((1ULL << SDMA_DESC1_HEADER_MODE_WIDTH) - 1)
81 #define SDMA_DESC1_HEADER_MODE_SMASK \
82 	(SDMA_DESC1_HEADER_MODE_MASK << SDMA_DESC1_HEADER_MODE_SHIFT)
83 #define SDMA_DESC1_HEADER_INDEX_SHIFT   8
84 #define SDMA_DESC1_HEADER_INDEX_WIDTH   5
85 #define SDMA_DESC1_HEADER_INDEX_MASK \
86 	((1ULL << SDMA_DESC1_HEADER_INDEX_WIDTH) - 1)
87 #define SDMA_DESC1_HEADER_INDEX_SMASK \
88 	(SDMA_DESC1_HEADER_INDEX_MASK << SDMA_DESC1_HEADER_INDEX_SHIFT)
89 #define SDMA_DESC1_HEADER_DWS_SHIFT     4
90 #define SDMA_DESC1_HEADER_DWS_WIDTH     4
91 #define SDMA_DESC1_HEADER_DWS_MASK \
92 	((1ULL << SDMA_DESC1_HEADER_DWS_WIDTH) - 1)
93 #define SDMA_DESC1_HEADER_DWS_SMASK \
94 	(SDMA_DESC1_HEADER_DWS_MASK << SDMA_DESC1_HEADER_DWS_SHIFT)
95 #define SDMA_DESC1_GENERATION_SHIFT     2
96 #define SDMA_DESC1_GENERATION_WIDTH     2
97 #define SDMA_DESC1_GENERATION_MASK \
98 	((1ULL << SDMA_DESC1_GENERATION_WIDTH) - 1)
99 #define SDMA_DESC1_GENERATION_SMASK \
100 	(SDMA_DESC1_GENERATION_MASK << SDMA_DESC1_GENERATION_SHIFT)
101 #define SDMA_DESC1_INT_REQ_FLAG         BIT_ULL(1)
102 #define SDMA_DESC1_HEAD_TO_HOST_FLAG    BIT_ULL(0)
103 
104 enum sdma_states {
105 	sdma_state_s00_hw_down,
106 	sdma_state_s10_hw_start_up_halt_wait,
107 	sdma_state_s15_hw_start_up_clean_wait,
108 	sdma_state_s20_idle,
109 	sdma_state_s30_sw_clean_up_wait,
110 	sdma_state_s40_hw_clean_up_wait,
111 	sdma_state_s50_hw_halt_wait,
112 	sdma_state_s60_idle_halt_wait,
113 	sdma_state_s80_hw_freeze,
114 	sdma_state_s82_freeze_sw_clean,
115 	sdma_state_s99_running,
116 };
117 
118 enum sdma_events {
119 	sdma_event_e00_go_hw_down,
120 	sdma_event_e10_go_hw_start,
121 	sdma_event_e15_hw_halt_done,
122 	sdma_event_e25_hw_clean_up_done,
123 	sdma_event_e30_go_running,
124 	sdma_event_e40_sw_cleaned,
125 	sdma_event_e50_hw_cleaned,
126 	sdma_event_e60_hw_halted,
127 	sdma_event_e70_go_idle,
128 	sdma_event_e80_hw_freeze,
129 	sdma_event_e81_hw_frozen,
130 	sdma_event_e82_hw_unfreeze,
131 	sdma_event_e85_link_down,
132 	sdma_event_e90_sw_halted,
133 };
134 
135 struct sdma_set_state_action {
136 	unsigned op_enable:1;
137 	unsigned op_intenable:1;
138 	unsigned op_halt:1;
139 	unsigned op_cleanup:1;
140 	unsigned go_s99_running_tofalse:1;
141 	unsigned go_s99_running_totrue:1;
142 };
143 
144 struct sdma_state {
145 	struct kref          kref;
146 	struct completion    comp;
147 	enum sdma_states current_state;
148 	unsigned             current_op;
149 	unsigned             go_s99_running;
150 	/* debugging/development */
151 	enum sdma_states previous_state;
152 	unsigned             previous_op;
153 	enum sdma_events last_event;
154 };
155 
156 /**
157  * DOC: sdma exported routines
158  *
159  * These sdma routines fit into three categories:
160  * - The SDMA API for building and submitting packets
161  *   to the ring
162  *
163  * - Initialization and tear down routines to buildup
164  *   and tear down SDMA
165  *
166  * - ISR entrances to handle interrupts, state changes
167  *   and errors
168  */
169 
170 /**
171  * DOC: sdma PSM/verbs API
172  *
173  * The sdma API is designed to be used by both PSM
174  * and verbs to supply packets to the SDMA ring.
175  *
176  * The usage of the API is as follows:
177  *
178  * Embed a struct iowait in the QP or
179  * PQ.  The iowait should be initialized with a
180  * call to iowait_init().
181  *
182  * The user of the API should create an allocation method
183  * for their version of the txreq. slabs, pre-allocated lists,
184  * and dma pools can be used.  Once the user's overload of
185  * the sdma_txreq has been allocated, the sdma_txreq member
186  * must be initialized with sdma_txinit() or sdma_txinit_ahg().
187  *
188  * The txreq must be declared with the sdma_txreq first.
189  *
190  * The tx request, once initialized,  is manipulated with calls to
191  * sdma_txadd_daddr(), sdma_txadd_page(), or sdma_txadd_kvaddr()
192  * for each disjoint memory location.  It is the user's responsibility
193  * to understand the packet boundaries and page boundaries to do the
194  * appropriate number of sdma_txadd_* calls..  The user
195  * must be prepared to deal with failures from these routines due to
196  * either memory allocation or dma_mapping failures.
197  *
198  * The mapping specifics for each memory location are recorded
199  * in the tx. Memory locations added with sdma_txadd_page()
200  * and sdma_txadd_kvaddr() are automatically mapped when added
201  * to the tx and nmapped as part of the progress processing in the
202  * SDMA interrupt handling.
203  *
204  * sdma_txadd_daddr() is used to add an dma_addr_t memory to the
205  * tx.   An example of a use case would be a pre-allocated
206  * set of headers allocated via dma_pool_alloc() or
207  * dma_alloc_coherent().  For these memory locations, it
208  * is the responsibility of the user to handle that unmapping.
209  * (This would usually be at an unload or job termination.)
210  *
211  * The routine sdma_send_txreq() is used to submit
212  * a tx to the ring after the appropriate number of
213  * sdma_txadd_* have been done.
214  *
215  * If it is desired to send a burst of sdma_txreqs, sdma_send_txlist()
216  * can be used to submit a list of packets.
217  *
218  * The user is free to use the link overhead in the struct sdma_txreq as
219  * long as the tx isn't in flight.
220  *
221  * The extreme degenerate case of the number of descriptors
222  * exceeding the ring size is automatically handled as
223  * memory locations are added.  An overflow of the descriptor
224  * array that is part of the sdma_txreq is also automatically
225  * handled.
226  *
227  */
228 
229 /**
230  * DOC: Infrastructure calls
231  *
232  * sdma_init() is used to initialize data structures and
233  * CSRs for the desired number of SDMA engines.
234  *
235  * sdma_start() is used to kick the SDMA engines initialized
236  * with sdma_init().   Interrupts must be enabled at this
237  * point since aspects of the state machine are interrupt
238  * driven.
239  *
240  * sdma_engine_error() and sdma_engine_interrupt() are
241  * entrances for interrupts.
242  *
243  * sdma_map_init() is for the management of the mapping
244  * table when the number of vls is changed.
245  *
246  */
247 
248 /*
249  * struct hw_sdma_desc - raw 128 bit SDMA descriptor
250  *
251  * This is the raw descriptor in the SDMA ring
252  */
253 struct hw_sdma_desc {
254 	/* private:  don't use directly */
255 	__le64 qw[2];
256 };
257 
258 /**
259  * struct sdma_engine - Data pertaining to each SDMA engine.
260  * @dd: a back-pointer to the device data
261  * @ppd: per port back-pointer
262  * @imask: mask for irq manipulation
263  * @idle_mask: mask for determining if an interrupt is due to sdma_idle
264  *
265  * This structure has the state for each sdma_engine.
266  *
267  * Accessing to non public fields are not supported
268  * since the private members are subject to change.
269  */
270 struct sdma_engine {
271 	/* read mostly */
272 	struct hfi1_devdata *dd;
273 	struct hfi1_pportdata *ppd;
274 	/* private: */
275 	void __iomem *tail_csr;
276 	u64 imask;			/* clear interrupt mask */
277 	u64 idle_mask;
278 	u64 progress_mask;
279 	u64 int_mask;
280 	/* private: */
281 	volatile __le64      *head_dma; /* DMA'ed by chip */
282 	/* private: */
283 	dma_addr_t            head_phys;
284 	/* private: */
285 	struct hw_sdma_desc *descq;
286 	/* private: */
287 	unsigned descq_full_count;
288 	struct sdma_txreq **tx_ring;
289 	/* private: */
290 	dma_addr_t            descq_phys;
291 	/* private */
292 	u32 sdma_mask;
293 	/* private */
294 	struct sdma_state state;
295 	/* private */
296 	int cpu;
297 	/* private: */
298 	u8 sdma_shift;
299 	/* private: */
300 	u8 this_idx; /* zero relative engine */
301 	/* protect changes to senddmactrl shadow */
302 	spinlock_t senddmactrl_lock;
303 	/* private: */
304 	u64 p_senddmactrl;		/* shadow per-engine SendDmaCtrl */
305 
306 	/* read/write using tail_lock */
307 	spinlock_t            tail_lock ____cacheline_aligned_in_smp;
308 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
309 	/* private: */
310 	u64                   tail_sn;
311 #endif
312 	/* private: */
313 	u32                   descq_tail;
314 	/* private: */
315 	unsigned long         ahg_bits;
316 	/* private: */
317 	u16                   desc_avail;
318 	/* private: */
319 	u16                   tx_tail;
320 	/* private: */
321 	u16 descq_cnt;
322 
323 	/* read/write using head_lock */
324 	/* private: */
325 	seqlock_t            head_lock ____cacheline_aligned_in_smp;
326 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
327 	/* private: */
328 	u64                   head_sn;
329 #endif
330 	/* private: */
331 	u32                   descq_head;
332 	/* private: */
333 	u16                   tx_head;
334 	/* private: */
335 	u64                   last_status;
336 	/* private */
337 	u64                     err_cnt;
338 	/* private */
339 	u64                     sdma_int_cnt;
340 	u64                     idle_int_cnt;
341 	u64                     progress_int_cnt;
342 
343 	/* private: */
344 	seqlock_t            waitlock;
345 	struct list_head      dmawait;
346 
347 	/* CONFIG SDMA for now, just blindly duplicate */
348 	/* private: */
349 	struct tasklet_struct sdma_hw_clean_up_task
350 		____cacheline_aligned_in_smp;
351 
352 	/* private: */
353 	struct tasklet_struct sdma_sw_clean_up_task
354 		____cacheline_aligned_in_smp;
355 	/* private: */
356 	struct work_struct err_halt_worker;
357 	/* private */
358 	struct timer_list     err_progress_check_timer;
359 	u32                   progress_check_head;
360 	/* private: */
361 	struct work_struct flush_worker;
362 	/* protect flush list */
363 	spinlock_t flushlist_lock;
364 	/* private: */
365 	struct list_head flushlist;
366 	struct cpumask cpu_mask;
367 	struct kobject kobj;
368 	u32 msix_intr;
369 };
370 
371 int sdma_init(struct hfi1_devdata *dd, u8 port);
372 void sdma_start(struct hfi1_devdata *dd);
373 void sdma_exit(struct hfi1_devdata *dd);
374 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines);
375 void sdma_all_running(struct hfi1_devdata *dd);
376 void sdma_freeze_notify(struct hfi1_devdata *dd, int go_idle);
377 void sdma_freeze(struct hfi1_devdata *dd);
378 void sdma_unfreeze(struct hfi1_devdata *dd);
379 void sdma_wait(struct hfi1_devdata *dd);
380 
381 /**
382  * sdma_empty() - idle engine test
383  * @engine: sdma engine
384  *
385  * Currently used by verbs as a latency optimization.
386  *
387  * Return:
388  * 1 - empty, 0 - non-empty
389  */
sdma_empty(struct sdma_engine * sde)390 static inline int sdma_empty(struct sdma_engine *sde)
391 {
392 	return sde->descq_tail == sde->descq_head;
393 }
394 
sdma_descq_freecnt(struct sdma_engine * sde)395 static inline u16 sdma_descq_freecnt(struct sdma_engine *sde)
396 {
397 	return sde->descq_cnt -
398 		(sde->descq_tail -
399 		 READ_ONCE(sde->descq_head)) - 1;
400 }
401 
sdma_descq_inprocess(struct sdma_engine * sde)402 static inline u16 sdma_descq_inprocess(struct sdma_engine *sde)
403 {
404 	return sde->descq_cnt - sdma_descq_freecnt(sde);
405 }
406 
407 /*
408  * Either head_lock or tail lock required to see
409  * a steady state.
410  */
__sdma_running(struct sdma_engine * engine)411 static inline int __sdma_running(struct sdma_engine *engine)
412 {
413 	return engine->state.current_state == sdma_state_s99_running;
414 }
415 
416 /**
417  * sdma_running() - state suitability test
418  * @engine: sdma engine
419  *
420  * sdma_running probes the internal state to determine if it is suitable
421  * for submitting packets.
422  *
423  * Return:
424  * 1 - ok to submit, 0 - not ok to submit
425  *
426  */
sdma_running(struct sdma_engine * engine)427 static inline int sdma_running(struct sdma_engine *engine)
428 {
429 	unsigned long flags;
430 	int ret;
431 
432 	spin_lock_irqsave(&engine->tail_lock, flags);
433 	ret = __sdma_running(engine);
434 	spin_unlock_irqrestore(&engine->tail_lock, flags);
435 	return ret;
436 }
437 
438 void _sdma_txreq_ahgadd(
439 	struct sdma_txreq *tx,
440 	u8 num_ahg,
441 	u8 ahg_entry,
442 	u32 *ahg,
443 	u8 ahg_hlen);
444 
445 /**
446  * sdma_txinit_ahg() - initialize an sdma_txreq struct with AHG
447  * @tx: tx request to initialize
448  * @flags: flags to key last descriptor additions
449  * @tlen: total packet length (pbc + headers + data)
450  * @ahg_entry: ahg entry to use  (0 - 31)
451  * @num_ahg: ahg descriptor for first descriptor (0 - 9)
452  * @ahg: array of AHG descriptors (up to 9 entries)
453  * @ahg_hlen: number of bytes from ASIC entry to use
454  * @cb: callback
455  *
456  * The allocation of the sdma_txreq and it enclosing structure is user
457  * dependent.  This routine must be called to initialize the user independent
458  * fields.
459  *
460  * The currently supported flags are SDMA_TXREQ_F_URGENT,
461  * SDMA_TXREQ_F_AHG_COPY, and SDMA_TXREQ_F_USE_AHG.
462  *
463  * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
464  * completion is desired as soon as possible.
465  *
466  * SDMA_TXREQ_F_AHG_COPY causes the header in the first descriptor to be
467  * copied to chip entry. SDMA_TXREQ_F_USE_AHG causes the code to add in
468  * the AHG descriptors into the first 1 to 3 descriptors.
469  *
470  * Completions of submitted requests can be gotten on selected
471  * txreqs by giving a completion routine callback to sdma_txinit() or
472  * sdma_txinit_ahg().  The environment in which the callback runs
473  * can be from an ISR, a tasklet, or a thread, so no sleeping
474  * kernel routines can be used.   Aspects of the sdma ring may
475  * be locked so care should be taken with locking.
476  *
477  * The callback pointer can be NULL to avoid any callback for the packet
478  * being submitted. The callback will be provided this tx, a status, and a flag.
479  *
480  * The status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
481  * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
482  *
483  * The flag, if the is the iowait had been used, indicates the iowait
484  * sdma_busy count has reached zero.
485  *
486  * user data portion of tlen should be precise.   The sdma_txadd_* entrances
487  * will pad with a descriptor references 1 - 3 bytes when the number of bytes
488  * specified in tlen have been supplied to the sdma_txreq.
489  *
490  * ahg_hlen is used to determine the number of on-chip entry bytes to
491  * use as the header.   This is for cases where the stored header is
492  * larger than the header to be used in a packet.  This is typical
493  * for verbs where an RDMA_WRITE_FIRST is larger than the packet in
494  * and RDMA_WRITE_MIDDLE.
495  *
496  */
sdma_txinit_ahg(struct sdma_txreq * tx,u16 flags,u16 tlen,u8 ahg_entry,u8 num_ahg,u32 * ahg,u8 ahg_hlen,void (* cb)(struct sdma_txreq *,int))497 static inline int sdma_txinit_ahg(
498 	struct sdma_txreq *tx,
499 	u16 flags,
500 	u16 tlen,
501 	u8 ahg_entry,
502 	u8 num_ahg,
503 	u32 *ahg,
504 	u8 ahg_hlen,
505 	void (*cb)(struct sdma_txreq *, int))
506 {
507 	if (tlen == 0)
508 		return -ENODATA;
509 	if (tlen > MAX_SDMA_PKT_SIZE)
510 		return -EMSGSIZE;
511 	tx->desc_limit = ARRAY_SIZE(tx->descs);
512 	tx->descp = &tx->descs[0];
513 	INIT_LIST_HEAD(&tx->list);
514 	tx->num_desc = 0;
515 	tx->flags = flags;
516 	tx->complete = cb;
517 	tx->coalesce_buf = NULL;
518 	tx->wait = NULL;
519 	tx->packet_len = tlen;
520 	tx->tlen = tx->packet_len;
521 	tx->descs[0].qw[0] = SDMA_DESC0_FIRST_DESC_FLAG;
522 	tx->descs[0].qw[1] = 0;
523 	if (flags & SDMA_TXREQ_F_AHG_COPY)
524 		tx->descs[0].qw[1] |=
525 			(((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
526 				<< SDMA_DESC1_HEADER_INDEX_SHIFT) |
527 			(((u64)SDMA_AHG_COPY & SDMA_DESC1_HEADER_MODE_MASK)
528 				<< SDMA_DESC1_HEADER_MODE_SHIFT);
529 	else if (flags & SDMA_TXREQ_F_USE_AHG && num_ahg)
530 		_sdma_txreq_ahgadd(tx, num_ahg, ahg_entry, ahg, ahg_hlen);
531 	return 0;
532 }
533 
534 /**
535  * sdma_txinit() - initialize an sdma_txreq struct (no AHG)
536  * @tx: tx request to initialize
537  * @flags: flags to key last descriptor additions
538  * @tlen: total packet length (pbc + headers + data)
539  * @cb: callback pointer
540  *
541  * The allocation of the sdma_txreq and it enclosing structure is user
542  * dependent.  This routine must be called to initialize the user
543  * independent fields.
544  *
545  * The currently supported flags is SDMA_TXREQ_F_URGENT.
546  *
547  * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
548  * completion is desired as soon as possible.
549  *
550  * Completions of submitted requests can be gotten on selected
551  * txreqs by giving a completion routine callback to sdma_txinit() or
552  * sdma_txinit_ahg().  The environment in which the callback runs
553  * can be from an ISR, a tasklet, or a thread, so no sleeping
554  * kernel routines can be used.   The head size of the sdma ring may
555  * be locked so care should be taken with locking.
556  *
557  * The callback pointer can be NULL to avoid any callback for the packet
558  * being submitted.
559  *
560  * The callback, if non-NULL,  will be provided this tx and a status.  The
561  * status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
562  * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
563  *
564  */
sdma_txinit(struct sdma_txreq * tx,u16 flags,u16 tlen,void (* cb)(struct sdma_txreq *,int))565 static inline int sdma_txinit(
566 	struct sdma_txreq *tx,
567 	u16 flags,
568 	u16 tlen,
569 	void (*cb)(struct sdma_txreq *, int))
570 {
571 	return sdma_txinit_ahg(tx, flags, tlen, 0, 0, NULL, 0, cb);
572 }
573 
574 /* helpers - don't use */
sdma_mapping_type(struct sdma_desc * d)575 static inline int sdma_mapping_type(struct sdma_desc *d)
576 {
577 	return (d->qw[1] & SDMA_DESC1_GENERATION_SMASK)
578 		>> SDMA_DESC1_GENERATION_SHIFT;
579 }
580 
sdma_mapping_len(struct sdma_desc * d)581 static inline size_t sdma_mapping_len(struct sdma_desc *d)
582 {
583 	return (d->qw[0] & SDMA_DESC0_BYTE_COUNT_SMASK)
584 		>> SDMA_DESC0_BYTE_COUNT_SHIFT;
585 }
586 
sdma_mapping_addr(struct sdma_desc * d)587 static inline dma_addr_t sdma_mapping_addr(struct sdma_desc *d)
588 {
589 	return (d->qw[0] & SDMA_DESC0_PHY_ADDR_SMASK)
590 		>> SDMA_DESC0_PHY_ADDR_SHIFT;
591 }
592 
make_tx_sdma_desc(struct sdma_txreq * tx,int type,dma_addr_t addr,size_t len,void * pinning_ctx,void (* ctx_get)(void *),void (* ctx_put)(void *))593 static inline void make_tx_sdma_desc(
594 	struct sdma_txreq *tx,
595 	int type,
596 	dma_addr_t addr,
597 	size_t len,
598 	void *pinning_ctx,
599 	void (*ctx_get)(void *),
600 	void (*ctx_put)(void *))
601 {
602 	struct sdma_desc *desc = &tx->descp[tx->num_desc];
603 
604 	if (!tx->num_desc) {
605 		/* qw[0] zero; qw[1] first, ahg mode already in from init */
606 		desc->qw[1] |= ((u64)type & SDMA_DESC1_GENERATION_MASK)
607 				<< SDMA_DESC1_GENERATION_SHIFT;
608 	} else {
609 		desc->qw[0] = 0;
610 		desc->qw[1] = ((u64)type & SDMA_DESC1_GENERATION_MASK)
611 				<< SDMA_DESC1_GENERATION_SHIFT;
612 	}
613 	desc->qw[0] |= (((u64)addr & SDMA_DESC0_PHY_ADDR_MASK)
614 				<< SDMA_DESC0_PHY_ADDR_SHIFT) |
615 			(((u64)len & SDMA_DESC0_BYTE_COUNT_MASK)
616 				<< SDMA_DESC0_BYTE_COUNT_SHIFT);
617 
618 	desc->pinning_ctx = pinning_ctx;
619 	desc->ctx_put = ctx_put;
620 	if (pinning_ctx && ctx_get)
621 		ctx_get(pinning_ctx);
622 }
623 
624 /* helper to extend txreq */
625 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
626 			   int type, void *kvaddr, struct page *page,
627 			   unsigned long offset, u16 len);
628 int _pad_sdma_tx_descs(struct hfi1_devdata *, struct sdma_txreq *);
629 void __sdma_txclean(struct hfi1_devdata *, struct sdma_txreq *);
630 
sdma_txclean(struct hfi1_devdata * dd,struct sdma_txreq * tx)631 static inline void sdma_txclean(struct hfi1_devdata *dd, struct sdma_txreq *tx)
632 {
633 	if (tx->num_desc)
634 		__sdma_txclean(dd, tx);
635 }
636 
637 /* helpers used by public routines */
_sdma_close_tx(struct hfi1_devdata * dd,struct sdma_txreq * tx)638 static inline void _sdma_close_tx(struct hfi1_devdata *dd,
639 				  struct sdma_txreq *tx)
640 {
641 	u16 last_desc = tx->num_desc - 1;
642 
643 	tx->descp[last_desc].qw[0] |= SDMA_DESC0_LAST_DESC_FLAG;
644 	tx->descp[last_desc].qw[1] |= dd->default_desc1;
645 	if (tx->flags & SDMA_TXREQ_F_URGENT)
646 		tx->descp[last_desc].qw[1] |= (SDMA_DESC1_HEAD_TO_HOST_FLAG |
647 					       SDMA_DESC1_INT_REQ_FLAG);
648 }
649 
_sdma_txadd_daddr(struct hfi1_devdata * dd,int type,struct sdma_txreq * tx,dma_addr_t addr,u16 len,void * pinning_ctx,void (* ctx_get)(void *),void (* ctx_put)(void *))650 static inline int _sdma_txadd_daddr(
651 	struct hfi1_devdata *dd,
652 	int type,
653 	struct sdma_txreq *tx,
654 	dma_addr_t addr,
655 	u16 len,
656 	void *pinning_ctx,
657 	void (*ctx_get)(void *),
658 	void (*ctx_put)(void *))
659 {
660 	int rval = 0;
661 
662 	make_tx_sdma_desc(
663 		tx,
664 		type,
665 		addr, len,
666 		pinning_ctx, ctx_get, ctx_put);
667 	WARN_ON(len > tx->tlen);
668 	tx->num_desc++;
669 	tx->tlen -= len;
670 	/* special cases for last */
671 	if (!tx->tlen) {
672 		if (tx->packet_len & (sizeof(u32) - 1)) {
673 			rval = _pad_sdma_tx_descs(dd, tx);
674 			if (rval)
675 				return rval;
676 		} else {
677 			_sdma_close_tx(dd, tx);
678 		}
679 	}
680 	return rval;
681 }
682 
683 /**
684  * sdma_txadd_page() - add a page to the sdma_txreq
685  * @dd: the device to use for mapping
686  * @tx: tx request to which the page is added
687  * @page: page to map
688  * @offset: offset within the page
689  * @len: length in bytes
690  * @pinning_ctx: context to be stored on struct sdma_desc .pinning_ctx. Not
691  *               added if coalesce buffer is used. E.g. pointer to pinned-page
692  *               cache entry for the sdma_desc.
693  * @ctx_get: optional function to take reference to @pinning_ctx. Not called if
694  *           @pinning_ctx is NULL.
695  * @ctx_put: optional function to release reference to @pinning_ctx after
696  *           sdma_desc completes. May be called in interrupt context so must
697  *           not sleep. Not called if @pinning_ctx is NULL.
698  *
699  * This is used to add a page/offset/length descriptor.
700  *
701  * The mapping/unmapping of the page/offset/len is automatically handled.
702  *
703  * Return:
704  * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't
705  * extend/coalesce descriptor array
706  */
sdma_txadd_page(struct hfi1_devdata * dd,struct sdma_txreq * tx,struct page * page,unsigned long offset,u16 len,void * pinning_ctx,void (* ctx_get)(void *),void (* ctx_put)(void *))707 static inline int sdma_txadd_page(
708 	struct hfi1_devdata *dd,
709 	struct sdma_txreq *tx,
710 	struct page *page,
711 	unsigned long offset,
712 	u16 len,
713 	void *pinning_ctx,
714 	void (*ctx_get)(void *),
715 	void (*ctx_put)(void *))
716 {
717 	dma_addr_t addr;
718 	int rval;
719 
720 	if ((unlikely(tx->num_desc == tx->desc_limit))) {
721 		rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_PAGE,
722 					      NULL, page, offset, len);
723 		if (rval <= 0)
724 			return rval;
725 	}
726 
727 	addr = dma_map_page(
728 		       &dd->pcidev->dev,
729 		       page,
730 		       offset,
731 		       len,
732 		       DMA_TO_DEVICE);
733 
734 	if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
735 		__sdma_txclean(dd, tx);
736 		return -ENOSPC;
737 	}
738 
739 	return _sdma_txadd_daddr(dd, SDMA_MAP_PAGE, tx, addr, len,
740 				 pinning_ctx, ctx_get, ctx_put);
741 }
742 
743 /**
744  * sdma_txadd_daddr() - add a dma address to the sdma_txreq
745  * @dd: the device to use for mapping
746  * @tx: sdma_txreq to which the page is added
747  * @addr: dma address mapped by caller
748  * @len: length in bytes
749  *
750  * This is used to add a descriptor for memory that is already dma mapped.
751  *
752  * In this case, there is no unmapping as part of the progress processing for
753  * this memory location.
754  *
755  * Return:
756  * 0 - success, -ENOMEM - couldn't extend descriptor array
757  */
758 
sdma_txadd_daddr(struct hfi1_devdata * dd,struct sdma_txreq * tx,dma_addr_t addr,u16 len)759 static inline int sdma_txadd_daddr(
760 	struct hfi1_devdata *dd,
761 	struct sdma_txreq *tx,
762 	dma_addr_t addr,
763 	u16 len)
764 {
765 	int rval;
766 
767 	if ((unlikely(tx->num_desc == tx->desc_limit))) {
768 		rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_NONE,
769 					      NULL, NULL, 0, 0);
770 		if (rval <= 0)
771 			return rval;
772 	}
773 
774 	return _sdma_txadd_daddr(dd, SDMA_MAP_NONE, tx, addr, len,
775 				 NULL, NULL, NULL);
776 }
777 
778 /**
779  * sdma_txadd_kvaddr() - add a kernel virtual address to sdma_txreq
780  * @dd: the device to use for mapping
781  * @tx: sdma_txreq to which the page is added
782  * @kvaddr: the kernel virtual address
783  * @len: length in bytes
784  *
785  * This is used to add a descriptor referenced by the indicated kvaddr and
786  * len.
787  *
788  * The mapping/unmapping of the kvaddr and len is automatically handled.
789  *
790  * Return:
791  * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't extend/coalesce
792  * descriptor array
793  */
sdma_txadd_kvaddr(struct hfi1_devdata * dd,struct sdma_txreq * tx,void * kvaddr,u16 len)794 static inline int sdma_txadd_kvaddr(
795 	struct hfi1_devdata *dd,
796 	struct sdma_txreq *tx,
797 	void *kvaddr,
798 	u16 len)
799 {
800 	dma_addr_t addr;
801 	int rval;
802 
803 	if ((unlikely(tx->num_desc == tx->desc_limit))) {
804 		rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_SINGLE,
805 					      kvaddr, NULL, 0, len);
806 		if (rval <= 0)
807 			return rval;
808 	}
809 
810 	addr = dma_map_single(
811 		       &dd->pcidev->dev,
812 		       kvaddr,
813 		       len,
814 		       DMA_TO_DEVICE);
815 
816 	if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
817 		__sdma_txclean(dd, tx);
818 		return -ENOSPC;
819 	}
820 
821 	return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx, addr, len,
822 				 NULL, NULL, NULL);
823 }
824 
825 struct iowait_work;
826 
827 int sdma_send_txreq(struct sdma_engine *sde,
828 		    struct iowait_work *wait,
829 		    struct sdma_txreq *tx,
830 		    bool pkts_sent);
831 int sdma_send_txlist(struct sdma_engine *sde,
832 		     struct iowait_work *wait,
833 		     struct list_head *tx_list,
834 		     u16 *count_out);
835 
836 int sdma_ahg_alloc(struct sdma_engine *sde);
837 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index);
838 
839 /**
840  * sdma_build_ahg - build ahg descriptor
841  * @data
842  * @dwindex
843  * @startbit
844  * @bits
845  *
846  * Build and return a 32 bit descriptor.
847  */
sdma_build_ahg_descriptor(u16 data,u8 dwindex,u8 startbit,u8 bits)848 static inline u32 sdma_build_ahg_descriptor(
849 	u16 data,
850 	u8 dwindex,
851 	u8 startbit,
852 	u8 bits)
853 {
854 	return (u32)(1UL << SDMA_AHG_UPDATE_ENABLE_SHIFT |
855 		((startbit & SDMA_AHG_FIELD_START_MASK) <<
856 		SDMA_AHG_FIELD_START_SHIFT) |
857 		((bits & SDMA_AHG_FIELD_LEN_MASK) <<
858 		SDMA_AHG_FIELD_LEN_SHIFT) |
859 		((dwindex & SDMA_AHG_INDEX_MASK) <<
860 		SDMA_AHG_INDEX_SHIFT) |
861 		((data & SDMA_AHG_VALUE_MASK) <<
862 		SDMA_AHG_VALUE_SHIFT));
863 }
864 
865 /**
866  * sdma_progress - use seq number of detect head progress
867  * @sde: sdma_engine to check
868  * @seq: base seq count
869  * @tx: txreq for which we need to check descriptor availability
870  *
871  * This is used in the appropriate spot in the sleep routine
872  * to check for potential ring progress.  This routine gets the
873  * seqcount before queuing the iowait structure for progress.
874  *
875  * If the seqcount indicates that progress needs to be checked,
876  * re-submission is detected by checking whether the descriptor
877  * queue has enough descriptor for the txreq.
878  */
sdma_progress(struct sdma_engine * sde,unsigned seq,struct sdma_txreq * tx)879 static inline unsigned sdma_progress(struct sdma_engine *sde, unsigned seq,
880 				     struct sdma_txreq *tx)
881 {
882 	if (read_seqretry(&sde->head_lock, seq)) {
883 		sde->desc_avail = sdma_descq_freecnt(sde);
884 		if (tx->num_desc > sde->desc_avail)
885 			return 0;
886 		return 1;
887 	}
888 	return 0;
889 }
890 
891 /* for use by interrupt handling */
892 void sdma_engine_error(struct sdma_engine *sde, u64 status);
893 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status);
894 
895 /*
896  *
897  * The diagram below details the relationship of the mapping structures
898  *
899  * Since the mapping now allows for non-uniform engines per vl, the
900  * number of engines for a vl is either the vl_engines[vl] or
901  * a computation based on num_sdma/num_vls:
902  *
903  * For example:
904  * nactual = vl_engines ? vl_engines[vl] : num_sdma/num_vls
905  *
906  * n = roundup to next highest power of 2 using nactual
907  *
908  * In the case where there are num_sdma/num_vls doesn't divide
909  * evenly, the extras are added from the last vl downward.
910  *
911  * For the case where n > nactual, the engines are assigned
912  * in a round robin fashion wrapping back to the first engine
913  * for a particular vl.
914  *
915  *               dd->sdma_map
916  *                    |                                   sdma_map_elem[0]
917  *                    |                                +--------------------+
918  *                    v                                |       mask         |
919  *               sdma_vl_map                           |--------------------|
920  *      +--------------------------+                   | sde[0] -> eng 1    |
921  *      |    list (RCU)            |                   |--------------------|
922  *      |--------------------------|                 ->| sde[1] -> eng 2    |
923  *      |    mask                  |              --/  |--------------------|
924  *      |--------------------------|            -/     |        *           |
925  *      |    actual_vls (max 8)    |          -/       |--------------------|
926  *      |--------------------------|       --/         | sde[n-1] -> eng n  |
927  *      |    vls (max 8)           |     -/            +--------------------+
928  *      |--------------------------|  --/
929  *      |    map[0]                |-/
930  *      |--------------------------|                   +---------------------+
931  *      |    map[1]                |---                |       mask          |
932  *      |--------------------------|   \----           |---------------------|
933  *      |           *              |        \--        | sde[0] -> eng 1+n   |
934  *      |           *              |           \----   |---------------------|
935  *      |           *              |                \->| sde[1] -> eng 2+n   |
936  *      |--------------------------|                   |---------------------|
937  *      |   map[vls - 1]           |-                  |         *           |
938  *      +--------------------------+ \-                |---------------------|
939  *                                     \-              | sde[m-1] -> eng m+n |
940  *                                       \             +---------------------+
941  *                                        \-
942  *                                          \
943  *                                           \-        +----------------------+
944  *                                             \-      |       mask           |
945  *                                               \     |----------------------|
946  *                                                \-   | sde[0] -> eng 1+m+n  |
947  *                                                  \- |----------------------|
948  *                                                    >| sde[1] -> eng 2+m+n  |
949  *                                                     |----------------------|
950  *                                                     |         *            |
951  *                                                     |----------------------|
952  *                                                     | sde[o-1] -> eng o+m+n|
953  *                                                     +----------------------+
954  *
955  */
956 
957 /**
958  * struct sdma_map_elem - mapping for a vl
959  * @mask - selector mask
960  * @sde - array of engines for this vl
961  *
962  * The mask is used to "mod" the selector
963  * to produce index into the trailing
964  * array of sdes.
965  */
966 struct sdma_map_elem {
967 	u32 mask;
968 	struct sdma_engine *sde[];
969 };
970 
971 /**
972  * struct sdma_map_el - mapping for a vl
973  * @engine_to_vl - map of an engine to a vl
974  * @list - rcu head for free callback
975  * @mask - vl mask to "mod" the vl to produce an index to map array
976  * @actual_vls - number of vls
977  * @vls - number of vls rounded to next power of 2
978  * @map - array of sdma_map_elem entries
979  *
980  * This is the parent mapping structure.  The trailing
981  * members of the struct point to sdma_map_elem entries, which
982  * in turn point to an array of sde's for that vl.
983  */
984 struct sdma_vl_map {
985 	s8 engine_to_vl[TXE_NUM_SDMA_ENGINES];
986 	struct rcu_head list;
987 	u32 mask;
988 	u8 actual_vls;
989 	u8 vls;
990 	struct sdma_map_elem *map[];
991 };
992 
993 int sdma_map_init(
994 	struct hfi1_devdata *dd,
995 	u8 port,
996 	u8 num_vls,
997 	u8 *vl_engines);
998 
999 /* slow path */
1000 void _sdma_engine_progress_schedule(struct sdma_engine *sde);
1001 
1002 /**
1003  * sdma_engine_progress_schedule() - schedule progress on engine
1004  * @sde: sdma_engine to schedule progress
1005  *
1006  * This is the fast path.
1007  *
1008  */
sdma_engine_progress_schedule(struct sdma_engine * sde)1009 static inline void sdma_engine_progress_schedule(
1010 	struct sdma_engine *sde)
1011 {
1012 	if (!sde || sdma_descq_inprocess(sde) < (sde->descq_cnt / 8))
1013 		return;
1014 	_sdma_engine_progress_schedule(sde);
1015 }
1016 
1017 struct sdma_engine *sdma_select_engine_sc(
1018 	struct hfi1_devdata *dd,
1019 	u32 selector,
1020 	u8 sc5);
1021 
1022 struct sdma_engine *sdma_select_engine_vl(
1023 	struct hfi1_devdata *dd,
1024 	u32 selector,
1025 	u8 vl);
1026 
1027 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
1028 					    u32 selector, u8 vl);
1029 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf);
1030 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
1031 				size_t count);
1032 int sdma_engine_get_vl(struct sdma_engine *sde);
1033 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *);
1034 void sdma_seqfile_dump_cpu_list(struct seq_file *s, struct hfi1_devdata *dd,
1035 				unsigned long cpuid);
1036 
1037 #ifdef CONFIG_SDMA_VERBOSITY
1038 void sdma_dumpstate(struct sdma_engine *);
1039 #endif
slashstrip(char * s)1040 static inline char *slashstrip(char *s)
1041 {
1042 	char *r = s;
1043 
1044 	while (*s)
1045 		if (*s++ == '/')
1046 			r = s;
1047 	return r;
1048 }
1049 
1050 u16 sdma_get_descq_cnt(void);
1051 
1052 extern uint mod_num_sdma;
1053 
1054 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid);
1055 #endif
1056