1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <linux/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* scsi_init_limits() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45 * Size of integrity metadata is usually small, 1 inline sg should
46 * cover normal cases.
47 */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define SCSI_INLINE_PROT_SG_CNT 0
50 #define SCSI_INLINE_SG_CNT 0
51 #else
52 #define SCSI_INLINE_PROT_SG_CNT 1
53 #define SCSI_INLINE_SG_CNT 2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
scsi_init_sense_cache(struct Scsi_Host * shost)61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 int ret = 0;
64
65 mutex_lock(&scsi_sense_cache_mutex);
66 if (!scsi_sense_cache) {
67 scsi_sense_cache =
68 kmem_cache_create_usercopy("scsi_sense_cache",
69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 0, SCSI_SENSE_BUFFERSIZE, NULL);
71 if (!scsi_sense_cache)
72 ret = -ENOMEM;
73 }
74 mutex_unlock(&scsi_sense_cache_mutex);
75 return ret;
76 }
77
78 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 struct Scsi_Host *host = cmd->device->host;
82 struct scsi_device *device = cmd->device;
83 struct scsi_target *starget = scsi_target(device);
84
85 /*
86 * Set the appropriate busy bit for the device/host.
87 *
88 * If the host/device isn't busy, assume that something actually
89 * completed, and that we should be able to queue a command now.
90 *
91 * Note that the prior mid-layer assumption that any host could
92 * always queue at least one command is now broken. The mid-layer
93 * will implement a user specifiable stall (see
94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 * if a command is requeued with no other commands outstanding
96 * either for the device or for the host.
97 */
98 switch (reason) {
99 case SCSI_MLQUEUE_HOST_BUSY:
100 atomic_set(&host->host_blocked, host->max_host_blocked);
101 break;
102 case SCSI_MLQUEUE_DEVICE_BUSY:
103 case SCSI_MLQUEUE_EH_RETRY:
104 atomic_set(&device->device_blocked,
105 device->max_device_blocked);
106 break;
107 case SCSI_MLQUEUE_TARGET_BUSY:
108 atomic_set(&starget->target_blocked,
109 starget->max_target_blocked);
110 break;
111 }
112 }
113
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd,unsigned long msecs)114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 struct request *rq = scsi_cmd_to_rq(cmd);
117
118 if (rq->rq_flags & RQF_DONTPREP) {
119 rq->rq_flags &= ~RQF_DONTPREP;
120 scsi_mq_uninit_cmd(cmd);
121 } else {
122 WARN_ON_ONCE(true);
123 }
124
125 blk_mq_requeue_request(rq, false);
126 if (!scsi_host_in_recovery(cmd->device->host))
127 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129
130 /**
131 * __scsi_queue_insert - private queue insertion
132 * @cmd: The SCSI command being requeued
133 * @reason: The reason for the requeue
134 * @unbusy: Whether the queue should be unbusied
135 *
136 * This is a private queue insertion. The public interface
137 * scsi_queue_insert() always assumes the queue should be unbusied
138 * because it's always called before the completion. This function is
139 * for a requeue after completion, which should only occur in this
140 * file.
141 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144 struct scsi_device *device = cmd->device;
145
146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 "Inserting command %p into mlqueue\n", cmd));
148
149 scsi_set_blocked(cmd, reason);
150
151 /*
152 * Decrement the counters, since these commands are no longer
153 * active on the host/device.
154 */
155 if (unbusy)
156 scsi_device_unbusy(device, cmd);
157
158 /*
159 * Requeue this command. It will go before all other commands
160 * that are already in the queue. Schedule requeue work under
161 * lock such that the kblockd_schedule_work() call happens
162 * before blk_mq_destroy_queue() finishes.
163 */
164 cmd->result = 0;
165
166 blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167 !scsi_host_in_recovery(cmd->device->host));
168 }
169
170 /**
171 * scsi_queue_insert - Reinsert a command in the queue.
172 * @cmd: command that we are adding to queue.
173 * @reason: why we are inserting command to queue.
174 *
175 * We do this for one of two cases. Either the host is busy and it cannot accept
176 * any more commands for the time being, or the device returned QUEUE_FULL and
177 * can accept no more commands.
178 *
179 * Context: This could be called either from an interrupt context or a normal
180 * process context.
181 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 __scsi_queue_insert(cmd, reason, true);
185 }
186
187 /**
188 * scsi_failures_reset_retries - reset all failures to zero
189 * @failures: &struct scsi_failures with specific failure modes set
190 */
scsi_failures_reset_retries(struct scsi_failures * failures)191 void scsi_failures_reset_retries(struct scsi_failures *failures)
192 {
193 struct scsi_failure *failure;
194
195 failures->total_retries = 0;
196
197 for (failure = failures->failure_definitions; failure->result;
198 failure++)
199 failure->retries = 0;
200 }
201 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
202
203 /**
204 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
205 * @scmd: scsi_cmnd to check.
206 * @failures: scsi_failures struct that lists failures to check for.
207 *
208 * Returns -EAGAIN if the caller should retry else 0.
209 */
scsi_check_passthrough(struct scsi_cmnd * scmd,struct scsi_failures * failures)210 static int scsi_check_passthrough(struct scsi_cmnd *scmd,
211 struct scsi_failures *failures)
212 {
213 struct scsi_failure *failure;
214 struct scsi_sense_hdr sshdr;
215 enum sam_status status;
216
217 if (!scmd->result)
218 return 0;
219
220 if (!failures)
221 return 0;
222
223 for (failure = failures->failure_definitions; failure->result;
224 failure++) {
225 if (failure->result == SCMD_FAILURE_RESULT_ANY)
226 goto maybe_retry;
227
228 if (host_byte(scmd->result) &&
229 host_byte(scmd->result) == host_byte(failure->result))
230 goto maybe_retry;
231
232 status = status_byte(scmd->result);
233 if (!status)
234 continue;
235
236 if (failure->result == SCMD_FAILURE_STAT_ANY &&
237 !scsi_status_is_good(scmd->result))
238 goto maybe_retry;
239
240 if (status != status_byte(failure->result))
241 continue;
242
243 if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
244 failure->sense == SCMD_FAILURE_SENSE_ANY)
245 goto maybe_retry;
246
247 if (!scsi_command_normalize_sense(scmd, &sshdr))
248 return 0;
249
250 if (failure->sense != sshdr.sense_key)
251 continue;
252
253 if (failure->asc == SCMD_FAILURE_ASC_ANY)
254 goto maybe_retry;
255
256 if (failure->asc != sshdr.asc)
257 continue;
258
259 if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
260 failure->ascq == sshdr.ascq)
261 goto maybe_retry;
262 }
263
264 return 0;
265
266 maybe_retry:
267 if (failure->allowed) {
268 if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
269 ++failure->retries <= failure->allowed)
270 return -EAGAIN;
271 } else {
272 if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
273 ++failures->total_retries <= failures->total_allowed)
274 return -EAGAIN;
275 }
276
277 return 0;
278 }
279
280 /**
281 * scsi_execute_cmd - insert request and wait for the result
282 * @sdev: scsi_device
283 * @cmd: scsi command
284 * @opf: block layer request cmd_flags
285 * @buffer: data buffer
286 * @bufflen: len of buffer
287 * @timeout: request timeout in HZ
288 * @ml_retries: number of times SCSI midlayer will retry request
289 * @args: Optional args. See struct definition for field descriptions
290 *
291 * Returns the scsi_cmnd result field if a command was executed, or a negative
292 * Linux error code if we didn't get that far.
293 */
scsi_execute_cmd(struct scsi_device * sdev,const unsigned char * cmd,blk_opf_t opf,void * buffer,unsigned int bufflen,int timeout,int ml_retries,const struct scsi_exec_args * args)294 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
295 blk_opf_t opf, void *buffer, unsigned int bufflen,
296 int timeout, int ml_retries,
297 const struct scsi_exec_args *args)
298 {
299 static const struct scsi_exec_args default_args;
300 struct request *req;
301 struct scsi_cmnd *scmd;
302 int ret;
303
304 if (!args)
305 args = &default_args;
306 else if (WARN_ON_ONCE(args->sense &&
307 args->sense_len != SCSI_SENSE_BUFFERSIZE))
308 return -EINVAL;
309
310 retry:
311 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
312 if (IS_ERR(req))
313 return PTR_ERR(req);
314
315 if (bufflen) {
316 ret = blk_rq_map_kern(req, buffer, bufflen, GFP_NOIO);
317 if (ret)
318 goto out;
319 }
320 scmd = blk_mq_rq_to_pdu(req);
321 scmd->cmd_len = COMMAND_SIZE(cmd[0]);
322 memcpy(scmd->cmnd, cmd, scmd->cmd_len);
323 scmd->allowed = ml_retries;
324 scmd->flags |= args->scmd_flags;
325 req->timeout = timeout;
326 req->rq_flags |= RQF_QUIET;
327
328 /*
329 * head injection *required* here otherwise quiesce won't work
330 */
331 blk_execute_rq(req, true);
332
333 if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
334 blk_mq_free_request(req);
335 goto retry;
336 }
337
338 /*
339 * Some devices (USB mass-storage in particular) may transfer
340 * garbage data together with a residue indicating that the data
341 * is invalid. Prevent the garbage from being misinterpreted
342 * and prevent security leaks by zeroing out the excess data.
343 */
344 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
345 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
346
347 if (args->resid)
348 *args->resid = scmd->resid_len;
349 if (args->sense)
350 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
351 if (args->sshdr)
352 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
353 args->sshdr);
354
355 ret = scmd->result;
356 out:
357 blk_mq_free_request(req);
358
359 return ret;
360 }
361 EXPORT_SYMBOL(scsi_execute_cmd);
362
363 /*
364 * Wake up the error handler if necessary. Avoid as follows that the error
365 * handler is not woken up if host in-flight requests number ==
366 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
367 * with an RCU read lock in this function to ensure that this function in
368 * its entirety either finishes before scsi_eh_scmd_add() increases the
369 * host_failed counter or that it notices the shost state change made by
370 * scsi_eh_scmd_add().
371 */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)372 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
373 {
374 unsigned long flags;
375
376 rcu_read_lock();
377 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
378 if (unlikely(scsi_host_in_recovery(shost))) {
379 unsigned int busy = scsi_host_busy(shost);
380
381 spin_lock_irqsave(shost->host_lock, flags);
382 if (shost->host_failed || shost->host_eh_scheduled)
383 scsi_eh_wakeup(shost, busy);
384 spin_unlock_irqrestore(shost->host_lock, flags);
385 }
386 rcu_read_unlock();
387 }
388
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)389 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
390 {
391 struct Scsi_Host *shost = sdev->host;
392 struct scsi_target *starget = scsi_target(sdev);
393
394 scsi_dec_host_busy(shost, cmd);
395
396 if (starget->can_queue > 0)
397 atomic_dec(&starget->target_busy);
398
399 if (sdev->budget_map.map)
400 sbitmap_put(&sdev->budget_map, cmd->budget_token);
401 cmd->budget_token = -1;
402 }
403
404 /*
405 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
406 * interrupts disabled.
407 */
scsi_kick_sdev_queue(struct scsi_device * sdev,void * data)408 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
409 {
410 struct scsi_device *current_sdev = data;
411
412 if (sdev != current_sdev)
413 blk_mq_run_hw_queues(sdev->request_queue, true);
414 }
415
416 /*
417 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
418 * and call blk_run_queue for all the scsi_devices on the target -
419 * including current_sdev first.
420 *
421 * Called with *no* scsi locks held.
422 */
scsi_single_lun_run(struct scsi_device * current_sdev)423 static void scsi_single_lun_run(struct scsi_device *current_sdev)
424 {
425 struct Scsi_Host *shost = current_sdev->host;
426 struct scsi_target *starget = scsi_target(current_sdev);
427 unsigned long flags;
428
429 spin_lock_irqsave(shost->host_lock, flags);
430 starget->starget_sdev_user = NULL;
431 spin_unlock_irqrestore(shost->host_lock, flags);
432
433 /*
434 * Call blk_run_queue for all LUNs on the target, starting with
435 * current_sdev. We race with others (to set starget_sdev_user),
436 * but in most cases, we will be first. Ideally, each LU on the
437 * target would get some limited time or requests on the target.
438 */
439 blk_mq_run_hw_queues(current_sdev->request_queue,
440 shost->queuecommand_may_block);
441
442 spin_lock_irqsave(shost->host_lock, flags);
443 if (!starget->starget_sdev_user)
444 __starget_for_each_device(starget, current_sdev,
445 scsi_kick_sdev_queue);
446 spin_unlock_irqrestore(shost->host_lock, flags);
447 }
448
scsi_device_is_busy(struct scsi_device * sdev)449 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
450 {
451 if (scsi_device_busy(sdev) >= sdev->queue_depth)
452 return true;
453 if (atomic_read(&sdev->device_blocked) > 0)
454 return true;
455 return false;
456 }
457
scsi_target_is_busy(struct scsi_target * starget)458 static inline bool scsi_target_is_busy(struct scsi_target *starget)
459 {
460 if (starget->can_queue > 0) {
461 if (atomic_read(&starget->target_busy) >= starget->can_queue)
462 return true;
463 if (atomic_read(&starget->target_blocked) > 0)
464 return true;
465 }
466 return false;
467 }
468
scsi_host_is_busy(struct Scsi_Host * shost)469 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
470 {
471 if (atomic_read(&shost->host_blocked) > 0)
472 return true;
473 if (shost->host_self_blocked)
474 return true;
475 return false;
476 }
477
scsi_starved_list_run(struct Scsi_Host * shost)478 static void scsi_starved_list_run(struct Scsi_Host *shost)
479 {
480 LIST_HEAD(starved_list);
481 struct scsi_device *sdev;
482 unsigned long flags;
483
484 spin_lock_irqsave(shost->host_lock, flags);
485 list_splice_init(&shost->starved_list, &starved_list);
486
487 while (!list_empty(&starved_list)) {
488 struct request_queue *slq;
489
490 /*
491 * As long as shost is accepting commands and we have
492 * starved queues, call blk_run_queue. scsi_request_fn
493 * drops the queue_lock and can add us back to the
494 * starved_list.
495 *
496 * host_lock protects the starved_list and starved_entry.
497 * scsi_request_fn must get the host_lock before checking
498 * or modifying starved_list or starved_entry.
499 */
500 if (scsi_host_is_busy(shost))
501 break;
502
503 sdev = list_entry(starved_list.next,
504 struct scsi_device, starved_entry);
505 list_del_init(&sdev->starved_entry);
506 if (scsi_target_is_busy(scsi_target(sdev))) {
507 list_move_tail(&sdev->starved_entry,
508 &shost->starved_list);
509 continue;
510 }
511
512 /*
513 * Once we drop the host lock, a racing scsi_remove_device()
514 * call may remove the sdev from the starved list and destroy
515 * it and the queue. Mitigate by taking a reference to the
516 * queue and never touching the sdev again after we drop the
517 * host lock. Note: if __scsi_remove_device() invokes
518 * blk_mq_destroy_queue() before the queue is run from this
519 * function then blk_run_queue() will return immediately since
520 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
521 */
522 slq = sdev->request_queue;
523 if (!blk_get_queue(slq))
524 continue;
525 spin_unlock_irqrestore(shost->host_lock, flags);
526
527 blk_mq_run_hw_queues(slq, false);
528 blk_put_queue(slq);
529
530 spin_lock_irqsave(shost->host_lock, flags);
531 }
532 /* put any unprocessed entries back */
533 list_splice(&starved_list, &shost->starved_list);
534 spin_unlock_irqrestore(shost->host_lock, flags);
535 }
536
537 /**
538 * scsi_run_queue - Select a proper request queue to serve next.
539 * @q: last request's queue
540 *
541 * The previous command was completely finished, start a new one if possible.
542 */
scsi_run_queue(struct request_queue * q)543 static void scsi_run_queue(struct request_queue *q)
544 {
545 struct scsi_device *sdev = q->queuedata;
546
547 if (scsi_target(sdev)->single_lun)
548 scsi_single_lun_run(sdev);
549 if (!list_empty(&sdev->host->starved_list))
550 scsi_starved_list_run(sdev->host);
551
552 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
553 blk_mq_kick_requeue_list(q);
554 }
555
scsi_requeue_run_queue(struct work_struct * work)556 void scsi_requeue_run_queue(struct work_struct *work)
557 {
558 struct scsi_device *sdev;
559 struct request_queue *q;
560
561 sdev = container_of(work, struct scsi_device, requeue_work);
562 q = sdev->request_queue;
563 scsi_run_queue(q);
564 }
565
scsi_run_host_queues(struct Scsi_Host * shost)566 void scsi_run_host_queues(struct Scsi_Host *shost)
567 {
568 struct scsi_device *sdev;
569
570 shost_for_each_device(sdev, shost)
571 scsi_run_queue(sdev->request_queue);
572 }
573
scsi_uninit_cmd(struct scsi_cmnd * cmd)574 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
575 {
576 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
577 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
578
579 if (drv->uninit_command)
580 drv->uninit_command(cmd);
581 }
582 }
583
scsi_free_sgtables(struct scsi_cmnd * cmd)584 void scsi_free_sgtables(struct scsi_cmnd *cmd)
585 {
586 if (cmd->sdb.table.nents)
587 sg_free_table_chained(&cmd->sdb.table,
588 SCSI_INLINE_SG_CNT);
589 if (scsi_prot_sg_count(cmd))
590 sg_free_table_chained(&cmd->prot_sdb->table,
591 SCSI_INLINE_PROT_SG_CNT);
592 }
593 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
594
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)595 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
596 {
597 scsi_free_sgtables(cmd);
598 scsi_uninit_cmd(cmd);
599 }
600
scsi_run_queue_async(struct scsi_device * sdev)601 static void scsi_run_queue_async(struct scsi_device *sdev)
602 {
603 if (scsi_host_in_recovery(sdev->host))
604 return;
605
606 if (scsi_target(sdev)->single_lun ||
607 !list_empty(&sdev->host->starved_list)) {
608 kblockd_schedule_work(&sdev->requeue_work);
609 } else {
610 /*
611 * smp_mb() present in sbitmap_queue_clear() or implied in
612 * .end_io is for ordering writing .device_busy in
613 * scsi_device_unbusy() and reading sdev->restarts.
614 */
615 int old = atomic_read(&sdev->restarts);
616
617 /*
618 * ->restarts has to be kept as non-zero if new budget
619 * contention occurs.
620 *
621 * No need to run queue when either another re-run
622 * queue wins in updating ->restarts or a new budget
623 * contention occurs.
624 */
625 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
626 blk_mq_run_hw_queues(sdev->request_queue, true);
627 }
628 }
629
630 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)631 static bool scsi_end_request(struct request *req, blk_status_t error,
632 unsigned int bytes)
633 {
634 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
635 struct scsi_device *sdev = cmd->device;
636 struct request_queue *q = sdev->request_queue;
637
638 if (blk_update_request(req, error, bytes))
639 return true;
640
641 if (q->limits.features & BLK_FEAT_ADD_RANDOM)
642 add_disk_randomness(req->q->disk);
643
644 WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
645 !(cmd->flags & SCMD_INITIALIZED));
646 cmd->flags = 0;
647
648 /*
649 * Calling rcu_barrier() is not necessary here because the
650 * SCSI error handler guarantees that the function called by
651 * call_rcu() has been called before scsi_end_request() is
652 * called.
653 */
654 destroy_rcu_head(&cmd->rcu);
655
656 /*
657 * In the MQ case the command gets freed by __blk_mq_end_request,
658 * so we have to do all cleanup that depends on it earlier.
659 *
660 * We also can't kick the queues from irq context, so we
661 * will have to defer it to a workqueue.
662 */
663 scsi_mq_uninit_cmd(cmd);
664
665 /*
666 * queue is still alive, so grab the ref for preventing it
667 * from being cleaned up during running queue.
668 */
669 percpu_ref_get(&q->q_usage_counter);
670
671 __blk_mq_end_request(req, error);
672
673 scsi_run_queue_async(sdev);
674
675 percpu_ref_put(&q->q_usage_counter);
676 return false;
677 }
678
679 /**
680 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
681 * @result: scsi error code
682 *
683 * Translate a SCSI result code into a blk_status_t value.
684 */
scsi_result_to_blk_status(int result)685 static blk_status_t scsi_result_to_blk_status(int result)
686 {
687 /*
688 * Check the scsi-ml byte first in case we converted a host or status
689 * byte.
690 */
691 switch (scsi_ml_byte(result)) {
692 case SCSIML_STAT_OK:
693 break;
694 case SCSIML_STAT_RESV_CONFLICT:
695 return BLK_STS_RESV_CONFLICT;
696 case SCSIML_STAT_NOSPC:
697 return BLK_STS_NOSPC;
698 case SCSIML_STAT_MED_ERROR:
699 return BLK_STS_MEDIUM;
700 case SCSIML_STAT_TGT_FAILURE:
701 return BLK_STS_TARGET;
702 case SCSIML_STAT_DL_TIMEOUT:
703 return BLK_STS_DURATION_LIMIT;
704 }
705
706 switch (host_byte(result)) {
707 case DID_OK:
708 if (scsi_status_is_good(result))
709 return BLK_STS_OK;
710 return BLK_STS_IOERR;
711 case DID_TRANSPORT_FAILFAST:
712 case DID_TRANSPORT_MARGINAL:
713 return BLK_STS_TRANSPORT;
714 default:
715 return BLK_STS_IOERR;
716 }
717 }
718
719 /**
720 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
721 * @rq: request to examine
722 *
723 * Description:
724 * A request could be merge of IOs which require different failure
725 * handling. This function determines the number of bytes which
726 * can be failed from the beginning of the request without
727 * crossing into area which need to be retried further.
728 *
729 * Return:
730 * The number of bytes to fail.
731 */
scsi_rq_err_bytes(const struct request * rq)732 static unsigned int scsi_rq_err_bytes(const struct request *rq)
733 {
734 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
735 unsigned int bytes = 0;
736 struct bio *bio;
737
738 if (!(rq->rq_flags & RQF_MIXED_MERGE))
739 return blk_rq_bytes(rq);
740
741 /*
742 * Currently the only 'mixing' which can happen is between
743 * different fastfail types. We can safely fail portions
744 * which have all the failfast bits that the first one has -
745 * the ones which are at least as eager to fail as the first
746 * one.
747 */
748 for (bio = rq->bio; bio; bio = bio->bi_next) {
749 if ((bio->bi_opf & ff) != ff)
750 break;
751 bytes += bio->bi_iter.bi_size;
752 }
753
754 /* this could lead to infinite loop */
755 BUG_ON(blk_rq_bytes(rq) && !bytes);
756 return bytes;
757 }
758
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)759 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
760 {
761 struct request *req = scsi_cmd_to_rq(cmd);
762 unsigned long wait_for;
763
764 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
765 return false;
766
767 wait_for = (cmd->allowed + 1) * req->timeout;
768 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
769 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
770 wait_for/HZ);
771 return true;
772 }
773 return false;
774 }
775
776 /*
777 * When ALUA transition state is returned, reprep the cmd to
778 * use the ALUA handler's transition timeout. Delay the reprep
779 * 1 sec to avoid aggressive retries of the target in that
780 * state.
781 */
782 #define ALUA_TRANSITION_REPREP_DELAY 1000
783
784 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)785 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
786 {
787 struct request *req = scsi_cmd_to_rq(cmd);
788 int level = 0;
789 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
790 ACTION_RETRY, ACTION_DELAYED_RETRY} action;
791 struct scsi_sense_hdr sshdr;
792 bool sense_valid;
793 bool sense_current = true; /* false implies "deferred sense" */
794 blk_status_t blk_stat;
795
796 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
797 if (sense_valid)
798 sense_current = !scsi_sense_is_deferred(&sshdr);
799
800 blk_stat = scsi_result_to_blk_status(result);
801
802 if (host_byte(result) == DID_RESET) {
803 /* Third party bus reset or reset for error recovery
804 * reasons. Just retry the command and see what
805 * happens.
806 */
807 action = ACTION_RETRY;
808 } else if (sense_valid && sense_current) {
809 switch (sshdr.sense_key) {
810 case UNIT_ATTENTION:
811 if (cmd->device->removable) {
812 /* Detected disc change. Set a bit
813 * and quietly refuse further access.
814 */
815 cmd->device->changed = 1;
816 action = ACTION_FAIL;
817 } else {
818 /* Must have been a power glitch, or a
819 * bus reset. Could not have been a
820 * media change, so we just retry the
821 * command and see what happens.
822 */
823 action = ACTION_RETRY;
824 }
825 break;
826 case ILLEGAL_REQUEST:
827 /* If we had an ILLEGAL REQUEST returned, then
828 * we may have performed an unsupported
829 * command. The only thing this should be
830 * would be a ten byte read where only a six
831 * byte read was supported. Also, on a system
832 * where READ CAPACITY failed, we may have
833 * read past the end of the disk.
834 */
835 if ((cmd->device->use_10_for_rw &&
836 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
837 (cmd->cmnd[0] == READ_10 ||
838 cmd->cmnd[0] == WRITE_10)) {
839 /* This will issue a new 6-byte command. */
840 cmd->device->use_10_for_rw = 0;
841 action = ACTION_REPREP;
842 } else if (sshdr.asc == 0x10) /* DIX */ {
843 action = ACTION_FAIL;
844 blk_stat = BLK_STS_PROTECTION;
845 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
846 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
847 action = ACTION_FAIL;
848 blk_stat = BLK_STS_TARGET;
849 } else
850 action = ACTION_FAIL;
851 break;
852 case ABORTED_COMMAND:
853 action = ACTION_FAIL;
854 if (sshdr.asc == 0x10) /* DIF */
855 blk_stat = BLK_STS_PROTECTION;
856 break;
857 case NOT_READY:
858 /* If the device is in the process of becoming
859 * ready, or has a temporary blockage, retry.
860 */
861 if (sshdr.asc == 0x04) {
862 switch (sshdr.ascq) {
863 case 0x01: /* becoming ready */
864 case 0x04: /* format in progress */
865 case 0x05: /* rebuild in progress */
866 case 0x06: /* recalculation in progress */
867 case 0x07: /* operation in progress */
868 case 0x08: /* Long write in progress */
869 case 0x09: /* self test in progress */
870 case 0x11: /* notify (enable spinup) required */
871 case 0x14: /* space allocation in progress */
872 case 0x1a: /* start stop unit in progress */
873 case 0x1b: /* sanitize in progress */
874 case 0x1d: /* configuration in progress */
875 action = ACTION_DELAYED_RETRY;
876 break;
877 case 0x0a: /* ALUA state transition */
878 action = ACTION_DELAYED_REPREP;
879 break;
880 /*
881 * Depopulation might take many hours,
882 * thus it is not worthwhile to retry.
883 */
884 case 0x24: /* depopulation in progress */
885 case 0x25: /* depopulation restore in progress */
886 fallthrough;
887 default:
888 action = ACTION_FAIL;
889 break;
890 }
891 } else
892 action = ACTION_FAIL;
893 break;
894 case VOLUME_OVERFLOW:
895 /* See SSC3rXX or current. */
896 action = ACTION_FAIL;
897 break;
898 case DATA_PROTECT:
899 action = ACTION_FAIL;
900 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
901 (sshdr.asc == 0x55 &&
902 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
903 /* Insufficient zone resources */
904 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
905 }
906 break;
907 case COMPLETED:
908 fallthrough;
909 default:
910 action = ACTION_FAIL;
911 break;
912 }
913 } else
914 action = ACTION_FAIL;
915
916 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
917 action = ACTION_FAIL;
918
919 switch (action) {
920 case ACTION_FAIL:
921 /* Give up and fail the remainder of the request */
922 if (!(req->rq_flags & RQF_QUIET)) {
923 static DEFINE_RATELIMIT_STATE(_rs,
924 DEFAULT_RATELIMIT_INTERVAL,
925 DEFAULT_RATELIMIT_BURST);
926
927 if (unlikely(scsi_logging_level))
928 level =
929 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
930 SCSI_LOG_MLCOMPLETE_BITS);
931
932 /*
933 * if logging is enabled the failure will be printed
934 * in scsi_log_completion(), so avoid duplicate messages
935 */
936 if (!level && __ratelimit(&_rs)) {
937 scsi_print_result(cmd, NULL, FAILED);
938 if (sense_valid)
939 scsi_print_sense(cmd);
940 scsi_print_command(cmd);
941 }
942 }
943 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
944 return;
945 fallthrough;
946 case ACTION_REPREP:
947 scsi_mq_requeue_cmd(cmd, 0);
948 break;
949 case ACTION_DELAYED_REPREP:
950 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
951 break;
952 case ACTION_RETRY:
953 /* Retry the same command immediately */
954 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
955 break;
956 case ACTION_DELAYED_RETRY:
957 /* Retry the same command after a delay */
958 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
959 break;
960 }
961 }
962
963 /*
964 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
965 * new result that may suppress further error checking. Also modifies
966 * *blk_statp in some cases.
967 */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)968 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
969 blk_status_t *blk_statp)
970 {
971 bool sense_valid;
972 bool sense_current = true; /* false implies "deferred sense" */
973 struct request *req = scsi_cmd_to_rq(cmd);
974 struct scsi_sense_hdr sshdr;
975
976 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
977 if (sense_valid)
978 sense_current = !scsi_sense_is_deferred(&sshdr);
979
980 if (blk_rq_is_passthrough(req)) {
981 if (sense_valid) {
982 /*
983 * SG_IO wants current and deferred errors
984 */
985 cmd->sense_len = min(8 + cmd->sense_buffer[7],
986 SCSI_SENSE_BUFFERSIZE);
987 }
988 if (sense_current)
989 *blk_statp = scsi_result_to_blk_status(result);
990 } else if (blk_rq_bytes(req) == 0 && sense_current) {
991 /*
992 * Flush commands do not transfers any data, and thus cannot use
993 * good_bytes != blk_rq_bytes(req) as the signal for an error.
994 * This sets *blk_statp explicitly for the problem case.
995 */
996 *blk_statp = scsi_result_to_blk_status(result);
997 }
998 /*
999 * Recovered errors need reporting, but they're always treated as
1000 * success, so fiddle the result code here. For passthrough requests
1001 * we already took a copy of the original into sreq->result which
1002 * is what gets returned to the user
1003 */
1004 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
1005 bool do_print = true;
1006 /*
1007 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
1008 * skip print since caller wants ATA registers. Only occurs
1009 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
1010 */
1011 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1012 do_print = false;
1013 else if (req->rq_flags & RQF_QUIET)
1014 do_print = false;
1015 if (do_print)
1016 scsi_print_sense(cmd);
1017 result = 0;
1018 /* for passthrough, *blk_statp may be set */
1019 *blk_statp = BLK_STS_OK;
1020 }
1021 /*
1022 * Another corner case: the SCSI status byte is non-zero but 'good'.
1023 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1024 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1025 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1026 * intermediate statuses (both obsolete in SAM-4) as good.
1027 */
1028 if ((result & 0xff) && scsi_status_is_good(result)) {
1029 result = 0;
1030 *blk_statp = BLK_STS_OK;
1031 }
1032 return result;
1033 }
1034
1035 /**
1036 * scsi_io_completion - Completion processing for SCSI commands.
1037 * @cmd: command that is finished.
1038 * @good_bytes: number of processed bytes.
1039 *
1040 * We will finish off the specified number of sectors. If we are done, the
1041 * command block will be released and the queue function will be goosed. If we
1042 * are not done then we have to figure out what to do next:
1043 *
1044 * a) We can call scsi_mq_requeue_cmd(). The request will be
1045 * unprepared and put back on the queue. Then a new command will
1046 * be created for it. This should be used if we made forward
1047 * progress, or if we want to switch from READ(10) to READ(6) for
1048 * example.
1049 *
1050 * b) We can call scsi_io_completion_action(). The request will be
1051 * put back on the queue and retried using the same command as
1052 * before, possibly after a delay.
1053 *
1054 * c) We can call scsi_end_request() with blk_stat other than
1055 * BLK_STS_OK, to fail the remainder of the request.
1056 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)1057 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1058 {
1059 int result = cmd->result;
1060 struct request *req = scsi_cmd_to_rq(cmd);
1061 blk_status_t blk_stat = BLK_STS_OK;
1062
1063 if (unlikely(result)) /* a nz result may or may not be an error */
1064 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1065
1066 /*
1067 * Next deal with any sectors which we were able to correctly
1068 * handle.
1069 */
1070 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1071 "%u sectors total, %d bytes done.\n",
1072 blk_rq_sectors(req), good_bytes));
1073
1074 /*
1075 * Failed, zero length commands always need to drop down
1076 * to retry code. Fast path should return in this block.
1077 */
1078 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1079 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1080 return; /* no bytes remaining */
1081 }
1082
1083 /* Kill remainder if no retries. */
1084 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1085 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1086 WARN_ONCE(true,
1087 "Bytes remaining after failed, no-retry command");
1088 return;
1089 }
1090
1091 /*
1092 * If there had been no error, but we have leftover bytes in the
1093 * request just queue the command up again.
1094 */
1095 if (likely(result == 0))
1096 scsi_mq_requeue_cmd(cmd, 0);
1097 else
1098 scsi_io_completion_action(cmd, result);
1099 }
1100
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)1101 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1102 struct request *rq)
1103 {
1104 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1105 !op_is_write(req_op(rq)) &&
1106 sdev->host->hostt->dma_need_drain(rq);
1107 }
1108
1109 /**
1110 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1111 * @cmd: SCSI command data structure to initialize.
1112 *
1113 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1114 * for @cmd.
1115 *
1116 * Returns:
1117 * * BLK_STS_OK - on success
1118 * * BLK_STS_RESOURCE - if the failure is retryable
1119 * * BLK_STS_IOERR - if the failure is fatal
1120 */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1121 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1122 {
1123 struct scsi_device *sdev = cmd->device;
1124 struct request *rq = scsi_cmd_to_rq(cmd);
1125 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1126 struct scatterlist *last_sg = NULL;
1127 blk_status_t ret;
1128 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1129 int count;
1130
1131 if (WARN_ON_ONCE(!nr_segs))
1132 return BLK_STS_IOERR;
1133
1134 /*
1135 * Make sure there is space for the drain. The driver must adjust
1136 * max_hw_segments to be prepared for this.
1137 */
1138 if (need_drain)
1139 nr_segs++;
1140
1141 /*
1142 * If sg table allocation fails, requeue request later.
1143 */
1144 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1145 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1146 return BLK_STS_RESOURCE;
1147
1148 /*
1149 * Next, walk the list, and fill in the addresses and sizes of
1150 * each segment.
1151 */
1152 count = __blk_rq_map_sg(rq, cmd->sdb.table.sgl, &last_sg);
1153
1154 if (blk_rq_bytes(rq) & rq->q->limits.dma_pad_mask) {
1155 unsigned int pad_len =
1156 (rq->q->limits.dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1157
1158 last_sg->length += pad_len;
1159 cmd->extra_len += pad_len;
1160 }
1161
1162 if (need_drain) {
1163 sg_unmark_end(last_sg);
1164 last_sg = sg_next(last_sg);
1165 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1166 sg_mark_end(last_sg);
1167
1168 cmd->extra_len += sdev->dma_drain_len;
1169 count++;
1170 }
1171
1172 BUG_ON(count > cmd->sdb.table.nents);
1173 cmd->sdb.table.nents = count;
1174 cmd->sdb.length = blk_rq_payload_bytes(rq);
1175
1176 if (blk_integrity_rq(rq)) {
1177 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1178
1179 if (WARN_ON_ONCE(!prot_sdb)) {
1180 /*
1181 * This can happen if someone (e.g. multipath)
1182 * queues a command to a device on an adapter
1183 * that does not support DIX.
1184 */
1185 ret = BLK_STS_IOERR;
1186 goto out_free_sgtables;
1187 }
1188
1189 if (sg_alloc_table_chained(&prot_sdb->table,
1190 rq->nr_integrity_segments,
1191 prot_sdb->table.sgl,
1192 SCSI_INLINE_PROT_SG_CNT)) {
1193 ret = BLK_STS_RESOURCE;
1194 goto out_free_sgtables;
1195 }
1196
1197 count = blk_rq_map_integrity_sg(rq, prot_sdb->table.sgl);
1198 cmd->prot_sdb = prot_sdb;
1199 cmd->prot_sdb->table.nents = count;
1200 }
1201
1202 return BLK_STS_OK;
1203 out_free_sgtables:
1204 scsi_free_sgtables(cmd);
1205 return ret;
1206 }
1207 EXPORT_SYMBOL(scsi_alloc_sgtables);
1208
1209 /**
1210 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1211 * @rq: Request associated with the SCSI command to be initialized.
1212 *
1213 * This function initializes the members of struct scsi_cmnd that must be
1214 * initialized before request processing starts and that won't be
1215 * reinitialized if a SCSI command is requeued.
1216 */
scsi_initialize_rq(struct request * rq)1217 static void scsi_initialize_rq(struct request *rq)
1218 {
1219 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1220
1221 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1222 cmd->cmd_len = MAX_COMMAND_SIZE;
1223 cmd->sense_len = 0;
1224 init_rcu_head(&cmd->rcu);
1225 cmd->jiffies_at_alloc = jiffies;
1226 cmd->retries = 0;
1227 }
1228
1229 /**
1230 * scsi_alloc_request - allocate a block request and partially
1231 * initialize its &scsi_cmnd
1232 * @q: the device's request queue
1233 * @opf: the request operation code
1234 * @flags: block layer allocation flags
1235 *
1236 * Return: &struct request pointer on success or %NULL on failure
1237 */
scsi_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)1238 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1239 blk_mq_req_flags_t flags)
1240 {
1241 struct request *rq;
1242
1243 rq = blk_mq_alloc_request(q, opf, flags);
1244 if (!IS_ERR(rq))
1245 scsi_initialize_rq(rq);
1246 return rq;
1247 }
1248 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1249
1250 /*
1251 * Only called when the request isn't completed by SCSI, and not freed by
1252 * SCSI
1253 */
scsi_cleanup_rq(struct request * rq)1254 static void scsi_cleanup_rq(struct request *rq)
1255 {
1256 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1257
1258 cmd->flags = 0;
1259
1260 if (rq->rq_flags & RQF_DONTPREP) {
1261 scsi_mq_uninit_cmd(cmd);
1262 rq->rq_flags &= ~RQF_DONTPREP;
1263 }
1264 }
1265
1266 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1267 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1268 {
1269 struct request *rq = scsi_cmd_to_rq(cmd);
1270
1271 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1272 cmd->flags |= SCMD_INITIALIZED;
1273 scsi_initialize_rq(rq);
1274 }
1275
1276 cmd->device = dev;
1277 INIT_LIST_HEAD(&cmd->eh_entry);
1278 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1279 }
1280
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1281 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1282 struct request *req)
1283 {
1284 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1285
1286 /*
1287 * Passthrough requests may transfer data, in which case they must
1288 * a bio attached to them. Or they might contain a SCSI command
1289 * that does not transfer data, in which case they may optionally
1290 * submit a request without an attached bio.
1291 */
1292 if (req->bio) {
1293 blk_status_t ret = scsi_alloc_sgtables(cmd);
1294 if (unlikely(ret != BLK_STS_OK))
1295 return ret;
1296 } else {
1297 BUG_ON(blk_rq_bytes(req));
1298
1299 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1300 }
1301
1302 cmd->transfersize = blk_rq_bytes(req);
1303 return BLK_STS_OK;
1304 }
1305
1306 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1307 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1308 {
1309 switch (sdev->sdev_state) {
1310 case SDEV_CREATED:
1311 return BLK_STS_OK;
1312 case SDEV_OFFLINE:
1313 case SDEV_TRANSPORT_OFFLINE:
1314 /*
1315 * If the device is offline we refuse to process any
1316 * commands. The device must be brought online
1317 * before trying any recovery commands.
1318 */
1319 if (!sdev->offline_already) {
1320 sdev->offline_already = true;
1321 sdev_printk(KERN_ERR, sdev,
1322 "rejecting I/O to offline device\n");
1323 }
1324 return BLK_STS_IOERR;
1325 case SDEV_DEL:
1326 /*
1327 * If the device is fully deleted, we refuse to
1328 * process any commands as well.
1329 */
1330 sdev_printk(KERN_ERR, sdev,
1331 "rejecting I/O to dead device\n");
1332 return BLK_STS_IOERR;
1333 case SDEV_BLOCK:
1334 case SDEV_CREATED_BLOCK:
1335 return BLK_STS_RESOURCE;
1336 case SDEV_QUIESCE:
1337 /*
1338 * If the device is blocked we only accept power management
1339 * commands.
1340 */
1341 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1342 return BLK_STS_RESOURCE;
1343 return BLK_STS_OK;
1344 default:
1345 /*
1346 * For any other not fully online state we only allow
1347 * power management commands.
1348 */
1349 if (req && !(req->rq_flags & RQF_PM))
1350 return BLK_STS_OFFLINE;
1351 return BLK_STS_OK;
1352 }
1353 }
1354
1355 /*
1356 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1357 * and return the token else return -1.
1358 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1359 static inline int scsi_dev_queue_ready(struct request_queue *q,
1360 struct scsi_device *sdev)
1361 {
1362 int token;
1363
1364 if (!sdev->budget_map.map)
1365 return INT_MAX;
1366
1367 token = sbitmap_get(&sdev->budget_map);
1368 if (token < 0)
1369 return -1;
1370
1371 if (!atomic_read(&sdev->device_blocked))
1372 return token;
1373
1374 /*
1375 * Only unblock if no other commands are pending and
1376 * if device_blocked has decreased to zero
1377 */
1378 if (scsi_device_busy(sdev) > 1 ||
1379 atomic_dec_return(&sdev->device_blocked) > 0) {
1380 sbitmap_put(&sdev->budget_map, token);
1381 return -1;
1382 }
1383
1384 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1385 "unblocking device at zero depth\n"));
1386
1387 return token;
1388 }
1389
1390 /*
1391 * scsi_target_queue_ready: checks if there we can send commands to target
1392 * @sdev: scsi device on starget to check.
1393 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1394 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1395 struct scsi_device *sdev)
1396 {
1397 struct scsi_target *starget = scsi_target(sdev);
1398 unsigned int busy;
1399
1400 if (starget->single_lun) {
1401 spin_lock_irq(shost->host_lock);
1402 if (starget->starget_sdev_user &&
1403 starget->starget_sdev_user != sdev) {
1404 spin_unlock_irq(shost->host_lock);
1405 return 0;
1406 }
1407 starget->starget_sdev_user = sdev;
1408 spin_unlock_irq(shost->host_lock);
1409 }
1410
1411 if (starget->can_queue <= 0)
1412 return 1;
1413
1414 busy = atomic_inc_return(&starget->target_busy) - 1;
1415 if (atomic_read(&starget->target_blocked) > 0) {
1416 if (busy)
1417 goto starved;
1418
1419 /*
1420 * unblock after target_blocked iterates to zero
1421 */
1422 if (atomic_dec_return(&starget->target_blocked) > 0)
1423 goto out_dec;
1424
1425 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1426 "unblocking target at zero depth\n"));
1427 }
1428
1429 if (busy >= starget->can_queue)
1430 goto starved;
1431
1432 return 1;
1433
1434 starved:
1435 spin_lock_irq(shost->host_lock);
1436 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1437 spin_unlock_irq(shost->host_lock);
1438 out_dec:
1439 if (starget->can_queue > 0)
1440 atomic_dec(&starget->target_busy);
1441 return 0;
1442 }
1443
1444 /*
1445 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1446 * return 0. We must end up running the queue again whenever 0 is
1447 * returned, else IO can hang.
1448 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1449 static inline int scsi_host_queue_ready(struct request_queue *q,
1450 struct Scsi_Host *shost,
1451 struct scsi_device *sdev,
1452 struct scsi_cmnd *cmd)
1453 {
1454 if (atomic_read(&shost->host_blocked) > 0) {
1455 if (scsi_host_busy(shost) > 0)
1456 goto starved;
1457
1458 /*
1459 * unblock after host_blocked iterates to zero
1460 */
1461 if (atomic_dec_return(&shost->host_blocked) > 0)
1462 goto out_dec;
1463
1464 SCSI_LOG_MLQUEUE(3,
1465 shost_printk(KERN_INFO, shost,
1466 "unblocking host at zero depth\n"));
1467 }
1468
1469 if (shost->host_self_blocked)
1470 goto starved;
1471
1472 /* We're OK to process the command, so we can't be starved */
1473 if (!list_empty(&sdev->starved_entry)) {
1474 spin_lock_irq(shost->host_lock);
1475 if (!list_empty(&sdev->starved_entry))
1476 list_del_init(&sdev->starved_entry);
1477 spin_unlock_irq(shost->host_lock);
1478 }
1479
1480 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1481
1482 return 1;
1483
1484 starved:
1485 spin_lock_irq(shost->host_lock);
1486 if (list_empty(&sdev->starved_entry))
1487 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1488 spin_unlock_irq(shost->host_lock);
1489 out_dec:
1490 scsi_dec_host_busy(shost, cmd);
1491 return 0;
1492 }
1493
1494 /*
1495 * Busy state exporting function for request stacking drivers.
1496 *
1497 * For efficiency, no lock is taken to check the busy state of
1498 * shost/starget/sdev, since the returned value is not guaranteed and
1499 * may be changed after request stacking drivers call the function,
1500 * regardless of taking lock or not.
1501 *
1502 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1503 * needs to return 'not busy'. Otherwise, request stacking drivers
1504 * may hold requests forever.
1505 */
scsi_mq_lld_busy(struct request_queue * q)1506 static bool scsi_mq_lld_busy(struct request_queue *q)
1507 {
1508 struct scsi_device *sdev = q->queuedata;
1509 struct Scsi_Host *shost;
1510
1511 if (blk_queue_dying(q))
1512 return false;
1513
1514 shost = sdev->host;
1515
1516 /*
1517 * Ignore host/starget busy state.
1518 * Since block layer does not have a concept of fairness across
1519 * multiple queues, congestion of host/starget needs to be handled
1520 * in SCSI layer.
1521 */
1522 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1523 return true;
1524
1525 return false;
1526 }
1527
1528 /*
1529 * Block layer request completion callback. May be called from interrupt
1530 * context.
1531 */
scsi_complete(struct request * rq)1532 static void scsi_complete(struct request *rq)
1533 {
1534 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1535 enum scsi_disposition disposition;
1536
1537 if (blk_mq_is_reserved_rq(rq)) {
1538 /* Only pass-through requests are supported in this code path. */
1539 WARN_ON_ONCE(!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)));
1540 scsi_mq_uninit_cmd(cmd);
1541 __blk_mq_end_request(rq, scsi_result_to_blk_status(cmd->result));
1542 return;
1543 }
1544
1545 INIT_LIST_HEAD(&cmd->eh_entry);
1546
1547 atomic_inc(&cmd->device->iodone_cnt);
1548 if (cmd->result)
1549 atomic_inc(&cmd->device->ioerr_cnt);
1550
1551 disposition = scsi_decide_disposition(cmd);
1552 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1553 disposition = SUCCESS;
1554
1555 scsi_log_completion(cmd, disposition);
1556
1557 switch (disposition) {
1558 case SUCCESS:
1559 scsi_finish_command(cmd);
1560 break;
1561 case NEEDS_RETRY:
1562 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1563 break;
1564 case ADD_TO_MLQUEUE:
1565 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1566 break;
1567 default:
1568 scsi_eh_scmd_add(cmd);
1569 break;
1570 }
1571 }
1572
1573 /**
1574 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1575 * @cmd: command block we are dispatching.
1576 *
1577 * Return: nonzero return request was rejected and device's queue needs to be
1578 * plugged.
1579 */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1580 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1581 {
1582 struct Scsi_Host *host = cmd->device->host;
1583 int rtn = 0;
1584
1585 atomic_inc(&cmd->device->iorequest_cnt);
1586
1587 /* check if the device is still usable */
1588 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1589 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1590 * returns an immediate error upwards, and signals
1591 * that the device is no longer present */
1592 cmd->result = DID_NO_CONNECT << 16;
1593 goto done;
1594 }
1595
1596 /* Check to see if the scsi lld made this device blocked. */
1597 if (unlikely(scsi_device_blocked(cmd->device))) {
1598 /*
1599 * in blocked state, the command is just put back on
1600 * the device queue. The suspend state has already
1601 * blocked the queue so future requests should not
1602 * occur until the device transitions out of the
1603 * suspend state.
1604 */
1605 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1606 "queuecommand : device blocked\n"));
1607 atomic_dec(&cmd->device->iorequest_cnt);
1608 return SCSI_MLQUEUE_DEVICE_BUSY;
1609 }
1610
1611 /* Store the LUN value in cmnd, if needed. */
1612 if (cmd->device->lun_in_cdb)
1613 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1614 (cmd->device->lun << 5 & 0xe0);
1615
1616 scsi_log_send(cmd);
1617
1618 /*
1619 * Before we queue this command, check if the command
1620 * length exceeds what the host adapter can handle.
1621 */
1622 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1623 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1624 "queuecommand : command too long. "
1625 "cdb_size=%d host->max_cmd_len=%d\n",
1626 cmd->cmd_len, cmd->device->host->max_cmd_len));
1627 cmd->result = (DID_ABORT << 16);
1628 goto done;
1629 }
1630
1631 if (unlikely(host->shost_state == SHOST_DEL)) {
1632 cmd->result = (DID_NO_CONNECT << 16);
1633 goto done;
1634
1635 }
1636
1637 trace_scsi_dispatch_cmd_start(cmd);
1638 rtn = host->hostt->queuecommand(host, cmd);
1639 if (rtn) {
1640 atomic_dec(&cmd->device->iorequest_cnt);
1641 trace_scsi_dispatch_cmd_error(cmd, rtn);
1642 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1643 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1644 rtn = SCSI_MLQUEUE_HOST_BUSY;
1645
1646 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1647 "queuecommand : request rejected\n"));
1648 }
1649
1650 return rtn;
1651 done:
1652 scsi_done(cmd);
1653 return 0;
1654 }
1655
1656 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1657 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1658 {
1659 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1660 sizeof(struct scatterlist);
1661 }
1662
scsi_prepare_cmd(struct request * req)1663 static blk_status_t scsi_prepare_cmd(struct request *req)
1664 {
1665 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1666 struct scsi_device *sdev = req->q->queuedata;
1667 struct Scsi_Host *shost = sdev->host;
1668 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1669 struct scatterlist *sg;
1670
1671 scsi_init_command(sdev, cmd);
1672
1673 cmd->eh_eflags = 0;
1674 cmd->prot_type = 0;
1675 cmd->prot_flags = 0;
1676 cmd->submitter = 0;
1677 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1678 cmd->underflow = 0;
1679 cmd->transfersize = 0;
1680 cmd->host_scribble = NULL;
1681 cmd->result = 0;
1682 cmd->extra_len = 0;
1683 cmd->state = 0;
1684 if (in_flight)
1685 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1686
1687 cmd->prot_op = SCSI_PROT_NORMAL;
1688 if (blk_rq_bytes(req))
1689 cmd->sc_data_direction = rq_dma_dir(req);
1690 else
1691 cmd->sc_data_direction = DMA_NONE;
1692
1693 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1694 cmd->sdb.table.sgl = sg;
1695
1696 if (scsi_host_get_prot(shost)) {
1697 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1698
1699 cmd->prot_sdb->table.sgl =
1700 (struct scatterlist *)(cmd->prot_sdb + 1);
1701 }
1702
1703 /*
1704 * Special handling for passthrough commands, which don't go to the ULP
1705 * at all:
1706 */
1707 if (blk_rq_is_passthrough(req))
1708 return scsi_setup_scsi_cmnd(sdev, req);
1709
1710 if (sdev->handler && sdev->handler->prep_fn) {
1711 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1712
1713 if (ret != BLK_STS_OK)
1714 return ret;
1715 }
1716
1717 /* Usually overridden by the ULP */
1718 cmd->allowed = 0;
1719 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1720 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1721 }
1722
scsi_done_internal(struct scsi_cmnd * cmd,bool complete_directly)1723 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1724 {
1725 struct request *req = scsi_cmd_to_rq(cmd);
1726
1727 switch (cmd->submitter) {
1728 case SUBMITTED_BY_BLOCK_LAYER:
1729 break;
1730 case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1731 return scsi_eh_done(cmd);
1732 case SUBMITTED_BY_SCSI_RESET_IOCTL:
1733 return;
1734 }
1735
1736 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1737 return;
1738 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1739 return;
1740 trace_scsi_dispatch_cmd_done(cmd);
1741
1742 if (complete_directly)
1743 blk_mq_complete_request_direct(req, scsi_complete);
1744 else
1745 blk_mq_complete_request(req);
1746 }
1747
scsi_done(struct scsi_cmnd * cmd)1748 void scsi_done(struct scsi_cmnd *cmd)
1749 {
1750 scsi_done_internal(cmd, false);
1751 }
1752 EXPORT_SYMBOL(scsi_done);
1753
scsi_done_direct(struct scsi_cmnd * cmd)1754 void scsi_done_direct(struct scsi_cmnd *cmd)
1755 {
1756 scsi_done_internal(cmd, true);
1757 }
1758 EXPORT_SYMBOL(scsi_done_direct);
1759
scsi_mq_put_budget(struct request_queue * q,int budget_token)1760 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1761 {
1762 struct scsi_device *sdev = q->queuedata;
1763
1764 if (sdev->budget_map.map)
1765 sbitmap_put(&sdev->budget_map, budget_token);
1766 }
1767
1768 /*
1769 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1770 * not change behaviour from the previous unplug mechanism, experimentation
1771 * may prove this needs changing.
1772 */
1773 #define SCSI_QUEUE_DELAY 3
1774
scsi_mq_get_budget(struct request_queue * q)1775 static int scsi_mq_get_budget(struct request_queue *q)
1776 {
1777 struct scsi_device *sdev = q->queuedata;
1778 int token = scsi_dev_queue_ready(q, sdev);
1779
1780 if (token >= 0)
1781 return token;
1782
1783 atomic_inc(&sdev->restarts);
1784
1785 /*
1786 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1787 * .restarts must be incremented before .device_busy is read because the
1788 * code in scsi_run_queue_async() depends on the order of these operations.
1789 */
1790 smp_mb__after_atomic();
1791
1792 /*
1793 * If all in-flight requests originated from this LUN are completed
1794 * before reading .device_busy, sdev->device_busy will be observed as
1795 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1796 * soon. Otherwise, completion of one of these requests will observe
1797 * the .restarts flag, and the request queue will be run for handling
1798 * this request, see scsi_end_request().
1799 */
1800 if (unlikely(scsi_device_busy(sdev) == 0 &&
1801 !scsi_device_blocked(sdev)))
1802 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1803 return -1;
1804 }
1805
scsi_mq_set_rq_budget_token(struct request * req,int token)1806 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1807 {
1808 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1809
1810 cmd->budget_token = token;
1811 }
1812
scsi_mq_get_rq_budget_token(struct request * req)1813 static int scsi_mq_get_rq_budget_token(struct request *req)
1814 {
1815 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1816
1817 return cmd->budget_token;
1818 }
1819
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1820 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1821 const struct blk_mq_queue_data *bd)
1822 {
1823 struct request *req = bd->rq;
1824 struct request_queue *q = req->q;
1825 struct scsi_device *sdev = q->queuedata;
1826 struct Scsi_Host *shost = sdev->host;
1827 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1828 blk_status_t ret;
1829 int reason;
1830
1831 WARN_ON_ONCE(cmd->budget_token < 0);
1832
1833 /*
1834 * Bypass the SCSI device, SCSI target and SCSI host checks for
1835 * reserved commands.
1836 */
1837 if (!blk_mq_is_reserved_rq(req)) {
1838 /*
1839 * If the device is not in running state we will reject some or
1840 * all commands.
1841 */
1842 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1843 ret = scsi_device_state_check(sdev, req);
1844 if (ret != BLK_STS_OK)
1845 goto out_put_budget;
1846 }
1847
1848 ret = BLK_STS_RESOURCE;
1849 if (!scsi_target_queue_ready(shost, sdev))
1850 goto out_put_budget;
1851 if (unlikely(scsi_host_in_recovery(shost))) {
1852 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1853 ret = BLK_STS_OFFLINE;
1854 goto out_dec_target_busy;
1855 }
1856 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1857 goto out_dec_target_busy;
1858 }
1859
1860 /*
1861 * Only clear the driver-private command data if the LLD does not supply
1862 * a function to initialize that data.
1863 */
1864 if (shost->hostt->cmd_size && !shost->hostt->init_cmd_priv)
1865 memset(scsi_cmd_priv(cmd), 0, shost->hostt->cmd_size);
1866
1867 if (!(req->rq_flags & RQF_DONTPREP)) {
1868 ret = scsi_prepare_cmd(req);
1869 if (ret != BLK_STS_OK)
1870 goto out_dec_host_busy;
1871 req->rq_flags |= RQF_DONTPREP;
1872 } else {
1873 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1874 }
1875
1876 cmd->flags &= SCMD_PRESERVED_FLAGS;
1877 if (sdev->simple_tags)
1878 cmd->flags |= SCMD_TAGGED;
1879 if (bd->last)
1880 cmd->flags |= SCMD_LAST;
1881
1882 scsi_set_resid(cmd, 0);
1883 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1884 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1885
1886 blk_mq_start_request(req);
1887 if (blk_mq_is_reserved_rq(req)) {
1888 reason = shost->hostt->queue_reserved_command(shost, cmd);
1889 if (reason) {
1890 ret = BLK_STS_RESOURCE;
1891 goto out_put_budget;
1892 }
1893 return BLK_STS_OK;
1894 }
1895 reason = scsi_dispatch_cmd(cmd);
1896 if (reason) {
1897 scsi_set_blocked(cmd, reason);
1898 ret = BLK_STS_RESOURCE;
1899 goto out_dec_host_busy;
1900 }
1901
1902 return BLK_STS_OK;
1903
1904 out_dec_host_busy:
1905 scsi_dec_host_busy(shost, cmd);
1906 out_dec_target_busy:
1907 if (scsi_target(sdev)->can_queue > 0)
1908 atomic_dec(&scsi_target(sdev)->target_busy);
1909 out_put_budget:
1910 scsi_mq_put_budget(q, cmd->budget_token);
1911 cmd->budget_token = -1;
1912 switch (ret) {
1913 case BLK_STS_OK:
1914 break;
1915 case BLK_STS_RESOURCE:
1916 if (scsi_device_blocked(sdev))
1917 ret = BLK_STS_DEV_RESOURCE;
1918 break;
1919 case BLK_STS_AGAIN:
1920 cmd->result = DID_BUS_BUSY << 16;
1921 if (req->rq_flags & RQF_DONTPREP)
1922 scsi_mq_uninit_cmd(cmd);
1923 break;
1924 default:
1925 if (unlikely(!scsi_device_online(sdev)))
1926 cmd->result = DID_NO_CONNECT << 16;
1927 else
1928 cmd->result = DID_ERROR << 16;
1929 /*
1930 * Make sure to release all allocated resources when
1931 * we hit an error, as we will never see this command
1932 * again.
1933 */
1934 if (req->rq_flags & RQF_DONTPREP)
1935 scsi_mq_uninit_cmd(cmd);
1936 scsi_run_queue_async(sdev);
1937 break;
1938 }
1939 return ret;
1940 }
1941
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1942 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1943 unsigned int hctx_idx, unsigned int numa_node)
1944 {
1945 struct Scsi_Host *shost = set->driver_data;
1946 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1947 struct scatterlist *sg;
1948 int ret = 0;
1949
1950 cmd->sense_buffer =
1951 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1952 if (!cmd->sense_buffer)
1953 return -ENOMEM;
1954
1955 if (scsi_host_get_prot(shost)) {
1956 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1957 shost->hostt->cmd_size;
1958 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1959 }
1960
1961 if (shost->hostt->init_cmd_priv) {
1962 ret = shost->hostt->init_cmd_priv(shost, cmd);
1963 if (ret < 0)
1964 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1965 }
1966
1967 return ret;
1968 }
1969
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1970 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1971 unsigned int hctx_idx)
1972 {
1973 struct Scsi_Host *shost = set->driver_data;
1974 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1975
1976 if (shost->hostt->exit_cmd_priv)
1977 shost->hostt->exit_cmd_priv(shost, cmd);
1978 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1979 }
1980
1981
scsi_mq_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1982 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1983 {
1984 struct Scsi_Host *shost = hctx->driver_data;
1985
1986 if (shost->hostt->mq_poll)
1987 return shost->hostt->mq_poll(shost, hctx->queue_num);
1988
1989 return 0;
1990 }
1991
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1992 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1993 unsigned int hctx_idx)
1994 {
1995 struct Scsi_Host *shost = data;
1996
1997 hctx->driver_data = shost;
1998 return 0;
1999 }
2000
scsi_map_queues(struct blk_mq_tag_set * set)2001 static void scsi_map_queues(struct blk_mq_tag_set *set)
2002 {
2003 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2004
2005 if (shost->hostt->map_queues)
2006 return shost->hostt->map_queues(shost);
2007 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2008 }
2009
scsi_init_limits(struct Scsi_Host * shost,struct queue_limits * lim)2010 void scsi_init_limits(struct Scsi_Host *shost, struct queue_limits *lim)
2011 {
2012 struct device *dev = shost->dma_dev;
2013
2014 memset(lim, 0, sizeof(*lim));
2015 lim->max_segments =
2016 min_t(unsigned short, shost->sg_tablesize, SG_MAX_SEGMENTS);
2017
2018 if (scsi_host_prot_dma(shost)) {
2019 shost->sg_prot_tablesize =
2020 min_not_zero(shost->sg_prot_tablesize,
2021 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2022 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2023 lim->max_integrity_segments = shost->sg_prot_tablesize;
2024 }
2025
2026 lim->max_hw_sectors = shost->max_sectors;
2027 lim->seg_boundary_mask = shost->dma_boundary;
2028 lim->max_segment_size = shost->max_segment_size;
2029 lim->virt_boundary_mask = shost->virt_boundary_mask;
2030 lim->dma_alignment = max_t(unsigned int,
2031 shost->dma_alignment, dma_get_cache_alignment() - 1);
2032
2033 /*
2034 * Propagate the DMA formation properties to the dma-mapping layer as
2035 * a courtesy service to the LLDDs. This needs to check that the buses
2036 * actually support the DMA API first, though.
2037 */
2038 if (dev->dma_parms) {
2039 dma_set_seg_boundary(dev, shost->dma_boundary);
2040 dma_set_max_seg_size(dev, shost->max_segment_size);
2041 }
2042 }
2043 EXPORT_SYMBOL_GPL(scsi_init_limits);
2044
2045 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2046 .get_budget = scsi_mq_get_budget,
2047 .put_budget = scsi_mq_put_budget,
2048 .queue_rq = scsi_queue_rq,
2049 .complete = scsi_complete,
2050 .timeout = scsi_timeout,
2051 #ifdef CONFIG_BLK_DEBUG_FS
2052 .show_rq = scsi_show_rq,
2053 #endif
2054 .init_request = scsi_mq_init_request,
2055 .exit_request = scsi_mq_exit_request,
2056 .cleanup_rq = scsi_cleanup_rq,
2057 .busy = scsi_mq_lld_busy,
2058 .map_queues = scsi_map_queues,
2059 .init_hctx = scsi_init_hctx,
2060 .poll = scsi_mq_poll,
2061 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
2062 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
2063 };
2064
2065
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)2066 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2067 {
2068 struct Scsi_Host *shost = hctx->driver_data;
2069
2070 shost->hostt->commit_rqs(shost, hctx->queue_num);
2071 }
2072
2073 static const struct blk_mq_ops scsi_mq_ops = {
2074 .get_budget = scsi_mq_get_budget,
2075 .put_budget = scsi_mq_put_budget,
2076 .queue_rq = scsi_queue_rq,
2077 .commit_rqs = scsi_commit_rqs,
2078 .complete = scsi_complete,
2079 .timeout = scsi_timeout,
2080 #ifdef CONFIG_BLK_DEBUG_FS
2081 .show_rq = scsi_show_rq,
2082 #endif
2083 .init_request = scsi_mq_init_request,
2084 .exit_request = scsi_mq_exit_request,
2085 .cleanup_rq = scsi_cleanup_rq,
2086 .busy = scsi_mq_lld_busy,
2087 .map_queues = scsi_map_queues,
2088 .init_hctx = scsi_init_hctx,
2089 .poll = scsi_mq_poll,
2090 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
2091 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
2092 };
2093
scsi_mq_setup_tags(struct Scsi_Host * shost)2094 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2095 {
2096 unsigned int cmd_size, sgl_size;
2097 struct blk_mq_tag_set *tag_set = &shost->tag_set;
2098
2099 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2100 scsi_mq_inline_sgl_size(shost));
2101 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2102 if (scsi_host_get_prot(shost))
2103 cmd_size += sizeof(struct scsi_data_buffer) +
2104 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2105
2106 memset(tag_set, 0, sizeof(*tag_set));
2107 if (shost->hostt->commit_rqs)
2108 tag_set->ops = &scsi_mq_ops;
2109 else
2110 tag_set->ops = &scsi_mq_ops_no_commit;
2111 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2112 tag_set->nr_maps = shost->nr_maps ? : 1;
2113 tag_set->queue_depth = shost->can_queue + shost->nr_reserved_cmds;
2114 tag_set->reserved_tags = shost->nr_reserved_cmds;
2115 tag_set->cmd_size = cmd_size;
2116 tag_set->numa_node = dev_to_node(shost->dma_dev);
2117 if (shost->hostt->tag_alloc_policy_rr)
2118 tag_set->flags |= BLK_MQ_F_TAG_RR;
2119 if (shost->queuecommand_may_block)
2120 tag_set->flags |= BLK_MQ_F_BLOCKING;
2121 tag_set->driver_data = shost;
2122 if (shost->host_tagset)
2123 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2124
2125 return blk_mq_alloc_tag_set(tag_set);
2126 }
2127
scsi_mq_free_tags(struct kref * kref)2128 void scsi_mq_free_tags(struct kref *kref)
2129 {
2130 struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2131 tagset_refcnt);
2132
2133 blk_mq_free_tag_set(&shost->tag_set);
2134 complete(&shost->tagset_freed);
2135 }
2136
2137 /**
2138 * scsi_get_internal_cmd() - Allocate an internal SCSI command.
2139 * @sdev: SCSI device from which to allocate the command
2140 * @data_direction: Data direction for the allocated command
2141 * @flags: request allocation flags, e.g. BLK_MQ_REQ_RESERVED or
2142 * BLK_MQ_REQ_NOWAIT.
2143 *
2144 * Allocates a SCSI command for internal LLDD use.
2145 */
scsi_get_internal_cmd(struct scsi_device * sdev,enum dma_data_direction data_direction,blk_mq_req_flags_t flags)2146 struct scsi_cmnd *scsi_get_internal_cmd(struct scsi_device *sdev,
2147 enum dma_data_direction data_direction,
2148 blk_mq_req_flags_t flags)
2149 {
2150 enum req_op op = data_direction == DMA_TO_DEVICE ? REQ_OP_DRV_OUT :
2151 REQ_OP_DRV_IN;
2152 struct scsi_cmnd *scmd;
2153 struct request *rq;
2154
2155 rq = scsi_alloc_request(sdev->request_queue, op, flags);
2156 if (IS_ERR(rq))
2157 return NULL;
2158 scmd = blk_mq_rq_to_pdu(rq);
2159 scmd->device = sdev;
2160
2161 return scmd;
2162 }
2163 EXPORT_SYMBOL_GPL(scsi_get_internal_cmd);
2164
2165 /**
2166 * scsi_put_internal_cmd() - Free an internal SCSI command.
2167 * @scmd: SCSI command to be freed
2168 */
scsi_put_internal_cmd(struct scsi_cmnd * scmd)2169 void scsi_put_internal_cmd(struct scsi_cmnd *scmd)
2170 {
2171 blk_mq_free_request(blk_mq_rq_from_pdu(scmd));
2172 }
2173 EXPORT_SYMBOL_GPL(scsi_put_internal_cmd);
2174
2175 /**
2176 * scsi_device_from_queue - return sdev associated with a request_queue
2177 * @q: The request queue to return the sdev from
2178 *
2179 * Return the sdev associated with a request queue or NULL if the
2180 * request_queue does not reference a SCSI device.
2181 */
scsi_device_from_queue(struct request_queue * q)2182 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2183 {
2184 struct scsi_device *sdev = NULL;
2185
2186 if (q->mq_ops == &scsi_mq_ops_no_commit ||
2187 q->mq_ops == &scsi_mq_ops)
2188 sdev = q->queuedata;
2189 if (!sdev || !get_device(&sdev->sdev_gendev))
2190 sdev = NULL;
2191
2192 return sdev;
2193 }
2194 /*
2195 * pktcdvd should have been integrated into the SCSI layers, but for historical
2196 * reasons like the old IDE driver it isn't. This export allows it to safely
2197 * probe if a given device is a SCSI one and only attach to that.
2198 */
2199 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2200 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2201 #endif
2202
2203 /**
2204 * scsi_block_requests - Utility function used by low-level drivers to prevent
2205 * further commands from being queued to the device.
2206 * @shost: host in question
2207 *
2208 * There is no timer nor any other means by which the requests get unblocked
2209 * other than the low-level driver calling scsi_unblock_requests().
2210 */
scsi_block_requests(struct Scsi_Host * shost)2211 void scsi_block_requests(struct Scsi_Host *shost)
2212 {
2213 shost->host_self_blocked = 1;
2214 }
2215 EXPORT_SYMBOL(scsi_block_requests);
2216
2217 /**
2218 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2219 * further commands to be queued to the device.
2220 * @shost: host in question
2221 *
2222 * There is no timer nor any other means by which the requests get unblocked
2223 * other than the low-level driver calling scsi_unblock_requests(). This is done
2224 * as an API function so that changes to the internals of the scsi mid-layer
2225 * won't require wholesale changes to drivers that use this feature.
2226 */
scsi_unblock_requests(struct Scsi_Host * shost)2227 void scsi_unblock_requests(struct Scsi_Host *shost)
2228 {
2229 shost->host_self_blocked = 0;
2230 scsi_run_host_queues(shost);
2231 }
2232 EXPORT_SYMBOL(scsi_unblock_requests);
2233
scsi_exit_queue(void)2234 void scsi_exit_queue(void)
2235 {
2236 kmem_cache_destroy(scsi_sense_cache);
2237 }
2238
2239 /**
2240 * scsi_mode_select - issue a mode select
2241 * @sdev: SCSI device to be queried
2242 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2243 * @sp: Save page bit (0 == don't save, 1 == save)
2244 * @buffer: request buffer (may not be smaller than eight bytes)
2245 * @len: length of request buffer.
2246 * @timeout: command timeout
2247 * @retries: number of retries before failing
2248 * @data: returns a structure abstracting the mode header data
2249 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2250 * must be SCSI_SENSE_BUFFERSIZE big.
2251 *
2252 * Returns zero if successful; negative error number or scsi
2253 * status on error
2254 *
2255 */
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2256 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2257 unsigned char *buffer, int len, int timeout, int retries,
2258 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2259 {
2260 unsigned char cmd[10];
2261 unsigned char *real_buffer;
2262 const struct scsi_exec_args exec_args = {
2263 .sshdr = sshdr,
2264 };
2265 int ret;
2266
2267 memset(cmd, 0, sizeof(cmd));
2268 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2269
2270 /*
2271 * Use MODE SELECT(10) if the device asked for it or if the mode page
2272 * and the mode select header cannot fit within the maximumm 255 bytes
2273 * of the MODE SELECT(6) command.
2274 */
2275 if (sdev->use_10_for_ms ||
2276 len + 4 > 255 ||
2277 data->block_descriptor_length > 255) {
2278 if (len > 65535 - 8)
2279 return -EINVAL;
2280 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2281 if (!real_buffer)
2282 return -ENOMEM;
2283 memcpy(real_buffer + 8, buffer, len);
2284 len += 8;
2285 real_buffer[0] = 0;
2286 real_buffer[1] = 0;
2287 real_buffer[2] = data->medium_type;
2288 real_buffer[3] = data->device_specific;
2289 real_buffer[4] = data->longlba ? 0x01 : 0;
2290 real_buffer[5] = 0;
2291 put_unaligned_be16(data->block_descriptor_length,
2292 &real_buffer[6]);
2293
2294 cmd[0] = MODE_SELECT_10;
2295 put_unaligned_be16(len, &cmd[7]);
2296 } else {
2297 if (data->longlba)
2298 return -EINVAL;
2299
2300 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2301 if (!real_buffer)
2302 return -ENOMEM;
2303 memcpy(real_buffer + 4, buffer, len);
2304 len += 4;
2305 real_buffer[0] = 0;
2306 real_buffer[1] = data->medium_type;
2307 real_buffer[2] = data->device_specific;
2308 real_buffer[3] = data->block_descriptor_length;
2309
2310 cmd[0] = MODE_SELECT;
2311 cmd[4] = len;
2312 }
2313
2314 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2315 timeout, retries, &exec_args);
2316 kfree(real_buffer);
2317 return ret;
2318 }
2319 EXPORT_SYMBOL_GPL(scsi_mode_select);
2320
2321 /**
2322 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2323 * @sdev: SCSI device to be queried
2324 * @dbd: set to prevent mode sense from returning block descriptors
2325 * @modepage: mode page being requested
2326 * @subpage: sub-page of the mode page being requested
2327 * @buffer: request buffer (may not be smaller than eight bytes)
2328 * @len: length of request buffer.
2329 * @timeout: command timeout
2330 * @retries: number of retries before failing
2331 * @data: returns a structure abstracting the mode header data
2332 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2333 * must be SCSI_SENSE_BUFFERSIZE big.
2334 *
2335 * Returns zero if successful, or a negative error number on failure
2336 */
2337 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,int subpage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2338 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2339 unsigned char *buffer, int len, int timeout, int retries,
2340 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2341 {
2342 unsigned char cmd[12];
2343 int use_10_for_ms;
2344 int header_length;
2345 int result;
2346 struct scsi_sense_hdr my_sshdr;
2347 struct scsi_failure failure_defs[] = {
2348 {
2349 .sense = UNIT_ATTENTION,
2350 .asc = SCMD_FAILURE_ASC_ANY,
2351 .ascq = SCMD_FAILURE_ASCQ_ANY,
2352 .allowed = retries,
2353 .result = SAM_STAT_CHECK_CONDITION,
2354 },
2355 {}
2356 };
2357 struct scsi_failures failures = {
2358 .failure_definitions = failure_defs,
2359 };
2360 const struct scsi_exec_args exec_args = {
2361 /* caller might not be interested in sense, but we need it */
2362 .sshdr = sshdr ? : &my_sshdr,
2363 .failures = &failures,
2364 };
2365
2366 memset(data, 0, sizeof(*data));
2367 memset(&cmd[0], 0, 12);
2368
2369 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2370 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2371 cmd[2] = modepage;
2372 cmd[3] = subpage;
2373
2374 sshdr = exec_args.sshdr;
2375
2376 retry:
2377 use_10_for_ms = sdev->use_10_for_ms || len > 255;
2378
2379 if (use_10_for_ms) {
2380 if (len < 8 || len > 65535)
2381 return -EINVAL;
2382
2383 cmd[0] = MODE_SENSE_10;
2384 put_unaligned_be16(len, &cmd[7]);
2385 header_length = 8;
2386 } else {
2387 if (len < 4)
2388 return -EINVAL;
2389
2390 cmd[0] = MODE_SENSE;
2391 cmd[4] = len;
2392 header_length = 4;
2393 }
2394
2395 memset(buffer, 0, len);
2396
2397 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2398 timeout, retries, &exec_args);
2399 if (result < 0)
2400 return result;
2401
2402 /* This code looks awful: what it's doing is making sure an
2403 * ILLEGAL REQUEST sense return identifies the actual command
2404 * byte as the problem. MODE_SENSE commands can return
2405 * ILLEGAL REQUEST if the code page isn't supported */
2406
2407 if (!scsi_status_is_good(result)) {
2408 if (scsi_sense_valid(sshdr)) {
2409 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2410 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2411 /*
2412 * Invalid command operation code: retry using
2413 * MODE SENSE(6) if this was a MODE SENSE(10)
2414 * request, except if the request mode page is
2415 * too large for MODE SENSE single byte
2416 * allocation length field.
2417 */
2418 if (use_10_for_ms) {
2419 if (len > 255)
2420 return -EIO;
2421 sdev->use_10_for_ms = 0;
2422 goto retry;
2423 }
2424 }
2425 }
2426 return -EIO;
2427 }
2428 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2429 (modepage == 6 || modepage == 8))) {
2430 /* Initio breakage? */
2431 header_length = 0;
2432 data->length = 13;
2433 data->medium_type = 0;
2434 data->device_specific = 0;
2435 data->longlba = 0;
2436 data->block_descriptor_length = 0;
2437 } else if (use_10_for_ms) {
2438 data->length = get_unaligned_be16(&buffer[0]) + 2;
2439 data->medium_type = buffer[2];
2440 data->device_specific = buffer[3];
2441 data->longlba = buffer[4] & 0x01;
2442 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2443 } else {
2444 data->length = buffer[0] + 1;
2445 data->medium_type = buffer[1];
2446 data->device_specific = buffer[2];
2447 data->block_descriptor_length = buffer[3];
2448 }
2449 data->header_length = header_length;
2450
2451 return 0;
2452 }
2453 EXPORT_SYMBOL(scsi_mode_sense);
2454
2455 /**
2456 * scsi_test_unit_ready - test if unit is ready
2457 * @sdev: scsi device to change the state of.
2458 * @timeout: command timeout
2459 * @retries: number of retries before failing
2460 * @sshdr: outpout pointer for decoded sense information.
2461 *
2462 * Returns zero if unsuccessful or an error if TUR failed. For
2463 * removable media, UNIT_ATTENTION sets ->changed flag.
2464 **/
2465 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2466 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2467 struct scsi_sense_hdr *sshdr)
2468 {
2469 char cmd[] = {
2470 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2471 };
2472 const struct scsi_exec_args exec_args = {
2473 .sshdr = sshdr,
2474 };
2475 int result;
2476
2477 /* try to eat the UNIT_ATTENTION if there are enough retries */
2478 do {
2479 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2480 timeout, 1, &exec_args);
2481 if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2482 sshdr->sense_key == UNIT_ATTENTION)
2483 sdev->changed = 1;
2484 } while (result > 0 && scsi_sense_valid(sshdr) &&
2485 sshdr->sense_key == UNIT_ATTENTION && --retries);
2486
2487 return result;
2488 }
2489 EXPORT_SYMBOL(scsi_test_unit_ready);
2490
2491 /**
2492 * scsi_device_set_state - Take the given device through the device state model.
2493 * @sdev: scsi device to change the state of.
2494 * @state: state to change to.
2495 *
2496 * Returns zero if successful or an error if the requested
2497 * transition is illegal.
2498 */
2499 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2500 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2501 {
2502 enum scsi_device_state oldstate = sdev->sdev_state;
2503
2504 if (state == oldstate)
2505 return 0;
2506
2507 switch (state) {
2508 case SDEV_CREATED:
2509 switch (oldstate) {
2510 case SDEV_CREATED_BLOCK:
2511 break;
2512 default:
2513 goto illegal;
2514 }
2515 break;
2516
2517 case SDEV_RUNNING:
2518 switch (oldstate) {
2519 case SDEV_CREATED:
2520 case SDEV_OFFLINE:
2521 case SDEV_TRANSPORT_OFFLINE:
2522 case SDEV_QUIESCE:
2523 case SDEV_BLOCK:
2524 break;
2525 default:
2526 goto illegal;
2527 }
2528 break;
2529
2530 case SDEV_QUIESCE:
2531 switch (oldstate) {
2532 case SDEV_RUNNING:
2533 case SDEV_OFFLINE:
2534 case SDEV_TRANSPORT_OFFLINE:
2535 break;
2536 default:
2537 goto illegal;
2538 }
2539 break;
2540
2541 case SDEV_OFFLINE:
2542 case SDEV_TRANSPORT_OFFLINE:
2543 switch (oldstate) {
2544 case SDEV_CREATED:
2545 case SDEV_RUNNING:
2546 case SDEV_QUIESCE:
2547 case SDEV_BLOCK:
2548 break;
2549 default:
2550 goto illegal;
2551 }
2552 break;
2553
2554 case SDEV_BLOCK:
2555 switch (oldstate) {
2556 case SDEV_RUNNING:
2557 case SDEV_CREATED_BLOCK:
2558 case SDEV_QUIESCE:
2559 case SDEV_OFFLINE:
2560 break;
2561 default:
2562 goto illegal;
2563 }
2564 break;
2565
2566 case SDEV_CREATED_BLOCK:
2567 switch (oldstate) {
2568 case SDEV_CREATED:
2569 break;
2570 default:
2571 goto illegal;
2572 }
2573 break;
2574
2575 case SDEV_CANCEL:
2576 switch (oldstate) {
2577 case SDEV_CREATED:
2578 case SDEV_RUNNING:
2579 case SDEV_QUIESCE:
2580 case SDEV_OFFLINE:
2581 case SDEV_TRANSPORT_OFFLINE:
2582 break;
2583 default:
2584 goto illegal;
2585 }
2586 break;
2587
2588 case SDEV_DEL:
2589 switch (oldstate) {
2590 case SDEV_CREATED:
2591 case SDEV_RUNNING:
2592 case SDEV_OFFLINE:
2593 case SDEV_TRANSPORT_OFFLINE:
2594 case SDEV_CANCEL:
2595 case SDEV_BLOCK:
2596 case SDEV_CREATED_BLOCK:
2597 break;
2598 default:
2599 goto illegal;
2600 }
2601 break;
2602
2603 }
2604 sdev->offline_already = false;
2605 sdev->sdev_state = state;
2606 return 0;
2607
2608 illegal:
2609 SCSI_LOG_ERROR_RECOVERY(1,
2610 sdev_printk(KERN_ERR, sdev,
2611 "Illegal state transition %s->%s",
2612 scsi_device_state_name(oldstate),
2613 scsi_device_state_name(state))
2614 );
2615 return -EINVAL;
2616 }
2617 EXPORT_SYMBOL(scsi_device_set_state);
2618
2619 /**
2620 * scsi_evt_emit - emit a single SCSI device uevent
2621 * @sdev: associated SCSI device
2622 * @evt: event to emit
2623 *
2624 * Send a single uevent (scsi_event) to the associated scsi_device.
2625 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2626 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2627 {
2628 int idx = 0;
2629 char *envp[3];
2630
2631 switch (evt->evt_type) {
2632 case SDEV_EVT_MEDIA_CHANGE:
2633 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2634 break;
2635 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2636 scsi_rescan_device(sdev);
2637 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2638 break;
2639 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2640 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2641 break;
2642 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2643 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2644 break;
2645 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2646 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2647 break;
2648 case SDEV_EVT_LUN_CHANGE_REPORTED:
2649 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2650 break;
2651 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2652 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2653 break;
2654 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2655 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2656 break;
2657 default:
2658 /* do nothing */
2659 break;
2660 }
2661
2662 envp[idx++] = NULL;
2663
2664 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2665 }
2666
2667 /**
2668 * scsi_evt_thread - send a uevent for each scsi event
2669 * @work: work struct for scsi_device
2670 *
2671 * Dispatch queued events to their associated scsi_device kobjects
2672 * as uevents.
2673 */
scsi_evt_thread(struct work_struct * work)2674 void scsi_evt_thread(struct work_struct *work)
2675 {
2676 struct scsi_device *sdev;
2677 enum scsi_device_event evt_type;
2678 LIST_HEAD(event_list);
2679
2680 sdev = container_of(work, struct scsi_device, event_work);
2681
2682 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2683 if (test_and_clear_bit(evt_type, sdev->pending_events))
2684 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2685
2686 while (1) {
2687 struct scsi_event *evt;
2688 struct list_head *this, *tmp;
2689 unsigned long flags;
2690
2691 spin_lock_irqsave(&sdev->list_lock, flags);
2692 list_splice_init(&sdev->event_list, &event_list);
2693 spin_unlock_irqrestore(&sdev->list_lock, flags);
2694
2695 if (list_empty(&event_list))
2696 break;
2697
2698 list_for_each_safe(this, tmp, &event_list) {
2699 evt = list_entry(this, struct scsi_event, node);
2700 list_del(&evt->node);
2701 scsi_evt_emit(sdev, evt);
2702 kfree(evt);
2703 }
2704 }
2705 }
2706
2707 /**
2708 * sdev_evt_send - send asserted event to uevent thread
2709 * @sdev: scsi_device event occurred on
2710 * @evt: event to send
2711 *
2712 * Assert scsi device event asynchronously.
2713 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2714 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2715 {
2716 unsigned long flags;
2717
2718 #if 0
2719 /* FIXME: currently this check eliminates all media change events
2720 * for polled devices. Need to update to discriminate between AN
2721 * and polled events */
2722 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2723 kfree(evt);
2724 return;
2725 }
2726 #endif
2727
2728 spin_lock_irqsave(&sdev->list_lock, flags);
2729 list_add_tail(&evt->node, &sdev->event_list);
2730 schedule_work(&sdev->event_work);
2731 spin_unlock_irqrestore(&sdev->list_lock, flags);
2732 }
2733 EXPORT_SYMBOL_GPL(sdev_evt_send);
2734
2735 /**
2736 * sdev_evt_alloc - allocate a new scsi event
2737 * @evt_type: type of event to allocate
2738 * @gfpflags: GFP flags for allocation
2739 *
2740 * Allocates and returns a new scsi_event.
2741 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2742 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2743 gfp_t gfpflags)
2744 {
2745 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2746 if (!evt)
2747 return NULL;
2748
2749 evt->evt_type = evt_type;
2750 INIT_LIST_HEAD(&evt->node);
2751
2752 /* evt_type-specific initialization, if any */
2753 switch (evt_type) {
2754 case SDEV_EVT_MEDIA_CHANGE:
2755 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2756 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2757 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2758 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2759 case SDEV_EVT_LUN_CHANGE_REPORTED:
2760 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2761 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2762 default:
2763 /* do nothing */
2764 break;
2765 }
2766
2767 return evt;
2768 }
2769 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2770
2771 /**
2772 * sdev_evt_send_simple - send asserted event to uevent thread
2773 * @sdev: scsi_device event occurred on
2774 * @evt_type: type of event to send
2775 * @gfpflags: GFP flags for allocation
2776 *
2777 * Assert scsi device event asynchronously, given an event type.
2778 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2779 void sdev_evt_send_simple(struct scsi_device *sdev,
2780 enum scsi_device_event evt_type, gfp_t gfpflags)
2781 {
2782 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2783 if (!evt) {
2784 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2785 evt_type);
2786 return;
2787 }
2788
2789 sdev_evt_send(sdev, evt);
2790 }
2791 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2792
2793 /**
2794 * scsi_device_quiesce - Block all commands except power management.
2795 * @sdev: scsi device to quiesce.
2796 *
2797 * This works by trying to transition to the SDEV_QUIESCE state
2798 * (which must be a legal transition). When the device is in this
2799 * state, only power management requests will be accepted, all others will
2800 * be deferred.
2801 *
2802 * Must be called with user context, may sleep.
2803 *
2804 * Returns zero if unsuccessful or an error if not.
2805 */
2806 int
scsi_device_quiesce(struct scsi_device * sdev)2807 scsi_device_quiesce(struct scsi_device *sdev)
2808 {
2809 struct request_queue *q = sdev->request_queue;
2810 unsigned int memflags;
2811 int err;
2812
2813 /*
2814 * It is allowed to call scsi_device_quiesce() multiple times from
2815 * the same context but concurrent scsi_device_quiesce() calls are
2816 * not allowed.
2817 */
2818 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2819
2820 if (sdev->quiesced_by == current)
2821 return 0;
2822
2823 blk_set_pm_only(q);
2824
2825 memflags = blk_mq_freeze_queue(q);
2826 /*
2827 * Ensure that the effect of blk_set_pm_only() will be visible
2828 * for percpu_ref_tryget() callers that occur after the queue
2829 * unfreeze even if the queue was already frozen before this function
2830 * was called. See also https://lwn.net/Articles/573497/.
2831 */
2832 synchronize_rcu();
2833 blk_mq_unfreeze_queue(q, memflags);
2834
2835 mutex_lock(&sdev->state_mutex);
2836 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2837 if (err == 0)
2838 sdev->quiesced_by = current;
2839 else
2840 blk_clear_pm_only(q);
2841 mutex_unlock(&sdev->state_mutex);
2842
2843 return err;
2844 }
2845 EXPORT_SYMBOL(scsi_device_quiesce);
2846
2847 /**
2848 * scsi_device_resume - Restart user issued commands to a quiesced device.
2849 * @sdev: scsi device to resume.
2850 *
2851 * Moves the device from quiesced back to running and restarts the
2852 * queues.
2853 *
2854 * Must be called with user context, may sleep.
2855 */
scsi_device_resume(struct scsi_device * sdev)2856 void scsi_device_resume(struct scsi_device *sdev)
2857 {
2858 /* check if the device state was mutated prior to resume, and if
2859 * so assume the state is being managed elsewhere (for example
2860 * device deleted during suspend)
2861 */
2862 mutex_lock(&sdev->state_mutex);
2863 if (sdev->sdev_state == SDEV_QUIESCE)
2864 scsi_device_set_state(sdev, SDEV_RUNNING);
2865 if (sdev->quiesced_by) {
2866 sdev->quiesced_by = NULL;
2867 blk_clear_pm_only(sdev->request_queue);
2868 }
2869 mutex_unlock(&sdev->state_mutex);
2870 }
2871 EXPORT_SYMBOL(scsi_device_resume);
2872
2873 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2874 device_quiesce_fn(struct scsi_device *sdev, void *data)
2875 {
2876 scsi_device_quiesce(sdev);
2877 }
2878
2879 void
scsi_target_quiesce(struct scsi_target * starget)2880 scsi_target_quiesce(struct scsi_target *starget)
2881 {
2882 starget_for_each_device(starget, NULL, device_quiesce_fn);
2883 }
2884 EXPORT_SYMBOL(scsi_target_quiesce);
2885
2886 static void
device_resume_fn(struct scsi_device * sdev,void * data)2887 device_resume_fn(struct scsi_device *sdev, void *data)
2888 {
2889 scsi_device_resume(sdev);
2890 }
2891
2892 void
scsi_target_resume(struct scsi_target * starget)2893 scsi_target_resume(struct scsi_target *starget)
2894 {
2895 starget_for_each_device(starget, NULL, device_resume_fn);
2896 }
2897 EXPORT_SYMBOL(scsi_target_resume);
2898
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2899 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2900 {
2901 if (scsi_device_set_state(sdev, SDEV_BLOCK))
2902 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2903
2904 return 0;
2905 }
2906
scsi_start_queue(struct scsi_device * sdev)2907 void scsi_start_queue(struct scsi_device *sdev)
2908 {
2909 if (cmpxchg(&sdev->queue_stopped, 1, 0))
2910 blk_mq_unquiesce_queue(sdev->request_queue);
2911 }
2912
scsi_stop_queue(struct scsi_device * sdev)2913 static void scsi_stop_queue(struct scsi_device *sdev)
2914 {
2915 /*
2916 * The atomic variable of ->queue_stopped covers that
2917 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2918 *
2919 * The caller needs to wait until quiesce is done.
2920 */
2921 if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2922 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2923 }
2924
2925 /**
2926 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2927 * @sdev: device to block
2928 *
2929 * Pause SCSI command processing on the specified device. Does not sleep.
2930 *
2931 * Returns zero if successful or a negative error code upon failure.
2932 *
2933 * Notes:
2934 * This routine transitions the device to the SDEV_BLOCK state (which must be
2935 * a legal transition). When the device is in this state, command processing
2936 * is paused until the device leaves the SDEV_BLOCK state. See also
2937 * scsi_internal_device_unblock_nowait().
2938 */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2939 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2940 {
2941 int ret = __scsi_internal_device_block_nowait(sdev);
2942
2943 /*
2944 * The device has transitioned to SDEV_BLOCK. Stop the
2945 * block layer from calling the midlayer with this device's
2946 * request queue.
2947 */
2948 if (!ret)
2949 scsi_stop_queue(sdev);
2950 return ret;
2951 }
2952 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2953
2954 /**
2955 * scsi_device_block - try to transition to the SDEV_BLOCK state
2956 * @sdev: device to block
2957 * @data: dummy argument, ignored
2958 *
2959 * Pause SCSI command processing on the specified device. Callers must wait
2960 * until all ongoing scsi_queue_rq() calls have finished after this function
2961 * returns.
2962 *
2963 * Note:
2964 * This routine transitions the device to the SDEV_BLOCK state (which must be
2965 * a legal transition). When the device is in this state, command processing
2966 * is paused until the device leaves the SDEV_BLOCK state. See also
2967 * scsi_internal_device_unblock().
2968 */
scsi_device_block(struct scsi_device * sdev,void * data)2969 static void scsi_device_block(struct scsi_device *sdev, void *data)
2970 {
2971 int err;
2972 enum scsi_device_state state;
2973
2974 mutex_lock(&sdev->state_mutex);
2975 err = __scsi_internal_device_block_nowait(sdev);
2976 state = sdev->sdev_state;
2977 if (err == 0)
2978 /*
2979 * scsi_stop_queue() must be called with the state_mutex
2980 * held. Otherwise a simultaneous scsi_start_queue() call
2981 * might unquiesce the queue before we quiesce it.
2982 */
2983 scsi_stop_queue(sdev);
2984
2985 mutex_unlock(&sdev->state_mutex);
2986
2987 WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2988 __func__, dev_name(&sdev->sdev_gendev), state);
2989 }
2990
2991 /**
2992 * scsi_internal_device_unblock_nowait - resume a device after a block request
2993 * @sdev: device to resume
2994 * @new_state: state to set the device to after unblocking
2995 *
2996 * Restart the device queue for a previously suspended SCSI device. Does not
2997 * sleep.
2998 *
2999 * Returns zero if successful or a negative error code upon failure.
3000 *
3001 * Notes:
3002 * This routine transitions the device to the SDEV_RUNNING state or to one of
3003 * the offline states (which must be a legal transition) allowing the midlayer
3004 * to goose the queue for this device.
3005 */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)3006 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3007 enum scsi_device_state new_state)
3008 {
3009 switch (new_state) {
3010 case SDEV_RUNNING:
3011 case SDEV_TRANSPORT_OFFLINE:
3012 break;
3013 default:
3014 return -EINVAL;
3015 }
3016
3017 /*
3018 * Try to transition the scsi device to SDEV_RUNNING or one of the
3019 * offlined states and goose the device queue if successful.
3020 */
3021 switch (sdev->sdev_state) {
3022 case SDEV_BLOCK:
3023 case SDEV_TRANSPORT_OFFLINE:
3024 sdev->sdev_state = new_state;
3025 break;
3026 case SDEV_CREATED_BLOCK:
3027 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3028 new_state == SDEV_OFFLINE)
3029 sdev->sdev_state = new_state;
3030 else
3031 sdev->sdev_state = SDEV_CREATED;
3032 break;
3033 case SDEV_CANCEL:
3034 case SDEV_OFFLINE:
3035 break;
3036 default:
3037 return -EINVAL;
3038 }
3039 scsi_start_queue(sdev);
3040
3041 return 0;
3042 }
3043 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3044
3045 /**
3046 * scsi_internal_device_unblock - resume a device after a block request
3047 * @sdev: device to resume
3048 * @new_state: state to set the device to after unblocking
3049 *
3050 * Restart the device queue for a previously suspended SCSI device. May sleep.
3051 *
3052 * Returns zero if successful or a negative error code upon failure.
3053 *
3054 * Notes:
3055 * This routine transitions the device to the SDEV_RUNNING state or to one of
3056 * the offline states (which must be a legal transition) allowing the midlayer
3057 * to goose the queue for this device.
3058 */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)3059 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3060 enum scsi_device_state new_state)
3061 {
3062 int ret;
3063
3064 mutex_lock(&sdev->state_mutex);
3065 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3066 mutex_unlock(&sdev->state_mutex);
3067
3068 return ret;
3069 }
3070
3071 static int
target_block(struct device * dev,void * data)3072 target_block(struct device *dev, void *data)
3073 {
3074 if (scsi_is_target_device(dev))
3075 starget_for_each_device(to_scsi_target(dev), NULL,
3076 scsi_device_block);
3077 return 0;
3078 }
3079
3080 /**
3081 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3082 * @dev: a parent device of one or more scsi_target devices
3083 * @shost: the Scsi_Host to which this device belongs
3084 *
3085 * Iterate over all children of @dev, which should be scsi_target devices,
3086 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3087 * ongoing scsi_queue_rq() calls to finish. May sleep.
3088 *
3089 * Note:
3090 * @dev must not itself be a scsi_target device.
3091 */
3092 void
scsi_block_targets(struct Scsi_Host * shost,struct device * dev)3093 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3094 {
3095 WARN_ON_ONCE(scsi_is_target_device(dev));
3096 device_for_each_child(dev, NULL, target_block);
3097 blk_mq_wait_quiesce_done(&shost->tag_set);
3098 }
3099 EXPORT_SYMBOL_GPL(scsi_block_targets);
3100
3101 static void
device_unblock(struct scsi_device * sdev,void * data)3102 device_unblock(struct scsi_device *sdev, void *data)
3103 {
3104 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3105 }
3106
3107 static int
target_unblock(struct device * dev,void * data)3108 target_unblock(struct device *dev, void *data)
3109 {
3110 if (scsi_is_target_device(dev))
3111 starget_for_each_device(to_scsi_target(dev), data,
3112 device_unblock);
3113 return 0;
3114 }
3115
3116 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)3117 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3118 {
3119 if (scsi_is_target_device(dev))
3120 starget_for_each_device(to_scsi_target(dev), &new_state,
3121 device_unblock);
3122 else
3123 device_for_each_child(dev, &new_state, target_unblock);
3124 }
3125 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3126
3127 /**
3128 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3129 * @shost: device to block
3130 *
3131 * Pause SCSI command processing for all logical units associated with the SCSI
3132 * host and wait until pending scsi_queue_rq() calls have finished.
3133 *
3134 * Returns zero if successful or a negative error code upon failure.
3135 */
3136 int
scsi_host_block(struct Scsi_Host * shost)3137 scsi_host_block(struct Scsi_Host *shost)
3138 {
3139 struct scsi_device *sdev;
3140 int ret;
3141
3142 /*
3143 * Call scsi_internal_device_block_nowait so we can avoid
3144 * calling synchronize_rcu() for each LUN.
3145 */
3146 shost_for_each_device(sdev, shost) {
3147 mutex_lock(&sdev->state_mutex);
3148 ret = scsi_internal_device_block_nowait(sdev);
3149 mutex_unlock(&sdev->state_mutex);
3150 if (ret) {
3151 scsi_device_put(sdev);
3152 return ret;
3153 }
3154 }
3155
3156 /* Wait for ongoing scsi_queue_rq() calls to finish. */
3157 blk_mq_wait_quiesce_done(&shost->tag_set);
3158
3159 return 0;
3160 }
3161 EXPORT_SYMBOL_GPL(scsi_host_block);
3162
3163 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)3164 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3165 {
3166 struct scsi_device *sdev;
3167 int ret = 0;
3168
3169 shost_for_each_device(sdev, shost) {
3170 ret = scsi_internal_device_unblock(sdev, new_state);
3171 if (ret) {
3172 scsi_device_put(sdev);
3173 break;
3174 }
3175 }
3176 return ret;
3177 }
3178 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3179
3180 /**
3181 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3182 * @sgl: scatter-gather list
3183 * @sg_count: number of segments in sg
3184 * @offset: offset in bytes into sg, on return offset into the mapped area
3185 * @len: bytes to map, on return number of bytes mapped
3186 *
3187 * Returns virtual address of the start of the mapped page
3188 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3189 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3190 size_t *offset, size_t *len)
3191 {
3192 int i;
3193 size_t sg_len = 0, len_complete = 0;
3194 struct scatterlist *sg;
3195 struct page *page;
3196
3197 WARN_ON(!irqs_disabled());
3198
3199 for_each_sg(sgl, sg, sg_count, i) {
3200 len_complete = sg_len; /* Complete sg-entries */
3201 sg_len += sg->length;
3202 if (sg_len > *offset)
3203 break;
3204 }
3205
3206 if (unlikely(i == sg_count)) {
3207 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3208 "elements %d\n",
3209 __func__, sg_len, *offset, sg_count);
3210 WARN_ON(1);
3211 return NULL;
3212 }
3213
3214 /* Offset starting from the beginning of first page in this sg-entry */
3215 *offset = *offset - len_complete + sg->offset;
3216
3217 page = sg_page(sg) + (*offset >> PAGE_SHIFT);
3218 *offset &= ~PAGE_MASK;
3219
3220 /* Bytes in this sg-entry from *offset to the end of the page */
3221 sg_len = PAGE_SIZE - *offset;
3222 if (*len > sg_len)
3223 *len = sg_len;
3224
3225 return kmap_atomic(page);
3226 }
3227 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3228
3229 /**
3230 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3231 * @virt: virtual address to be unmapped
3232 */
scsi_kunmap_atomic_sg(void * virt)3233 void scsi_kunmap_atomic_sg(void *virt)
3234 {
3235 kunmap_atomic(virt);
3236 }
3237 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3238
sdev_disable_disk_events(struct scsi_device * sdev)3239 void sdev_disable_disk_events(struct scsi_device *sdev)
3240 {
3241 atomic_inc(&sdev->disk_events_disable_depth);
3242 }
3243 EXPORT_SYMBOL(sdev_disable_disk_events);
3244
sdev_enable_disk_events(struct scsi_device * sdev)3245 void sdev_enable_disk_events(struct scsi_device *sdev)
3246 {
3247 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3248 return;
3249 atomic_dec(&sdev->disk_events_disable_depth);
3250 }
3251 EXPORT_SYMBOL(sdev_enable_disk_events);
3252
designator_prio(const unsigned char * d)3253 static unsigned char designator_prio(const unsigned char *d)
3254 {
3255 if (d[1] & 0x30)
3256 /* not associated with LUN */
3257 return 0;
3258
3259 if (d[3] == 0)
3260 /* invalid length */
3261 return 0;
3262
3263 /*
3264 * Order of preference for lun descriptor:
3265 * - SCSI name string
3266 * - NAA IEEE Registered Extended
3267 * - EUI-64 based 16-byte
3268 * - EUI-64 based 12-byte
3269 * - NAA IEEE Registered
3270 * - NAA IEEE Extended
3271 * - EUI-64 based 8-byte
3272 * - SCSI name string (truncated)
3273 * - T10 Vendor ID
3274 * as longer descriptors reduce the likelyhood
3275 * of identification clashes.
3276 */
3277
3278 switch (d[1] & 0xf) {
3279 case 8:
3280 /* SCSI name string, variable-length UTF-8 */
3281 return 9;
3282 case 3:
3283 switch (d[4] >> 4) {
3284 case 6:
3285 /* NAA registered extended */
3286 return 8;
3287 case 5:
3288 /* NAA registered */
3289 return 5;
3290 case 4:
3291 /* NAA extended */
3292 return 4;
3293 case 3:
3294 /* NAA locally assigned */
3295 return 1;
3296 default:
3297 break;
3298 }
3299 break;
3300 case 2:
3301 switch (d[3]) {
3302 case 16:
3303 /* EUI64-based, 16 byte */
3304 return 7;
3305 case 12:
3306 /* EUI64-based, 12 byte */
3307 return 6;
3308 case 8:
3309 /* EUI64-based, 8 byte */
3310 return 3;
3311 default:
3312 break;
3313 }
3314 break;
3315 case 1:
3316 /* T10 vendor ID */
3317 return 1;
3318 default:
3319 break;
3320 }
3321
3322 return 0;
3323 }
3324
3325 /**
3326 * scsi_vpd_lun_id - return a unique device identification
3327 * @sdev: SCSI device
3328 * @id: buffer for the identification
3329 * @id_len: length of the buffer
3330 *
3331 * Copies a unique device identification into @id based
3332 * on the information in the VPD page 0x83 of the device.
3333 * The string will be formatted as a SCSI name string.
3334 *
3335 * Returns the length of the identification or error on failure.
3336 * If the identifier is longer than the supplied buffer the actual
3337 * identifier length is returned and the buffer is not zero-padded.
3338 */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3339 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3340 {
3341 u8 cur_id_prio = 0;
3342 u8 cur_id_size = 0;
3343 const unsigned char *d, *cur_id_str;
3344 const struct scsi_vpd *vpd_pg83;
3345 int id_size = -EINVAL;
3346
3347 rcu_read_lock();
3348 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3349 if (!vpd_pg83) {
3350 rcu_read_unlock();
3351 return -ENXIO;
3352 }
3353
3354 /* The id string must be at least 20 bytes + terminating NULL byte */
3355 if (id_len < 21) {
3356 rcu_read_unlock();
3357 return -EINVAL;
3358 }
3359
3360 memset(id, 0, id_len);
3361 for (d = vpd_pg83->data + 4;
3362 d < vpd_pg83->data + vpd_pg83->len;
3363 d += d[3] + 4) {
3364 u8 prio = designator_prio(d);
3365
3366 if (prio == 0 || cur_id_prio > prio)
3367 continue;
3368
3369 switch (d[1] & 0xf) {
3370 case 0x1:
3371 /* T10 Vendor ID */
3372 if (cur_id_size > d[3])
3373 break;
3374 cur_id_prio = prio;
3375 cur_id_size = d[3];
3376 if (cur_id_size + 4 > id_len)
3377 cur_id_size = id_len - 4;
3378 cur_id_str = d + 4;
3379 id_size = snprintf(id, id_len, "t10.%*pE",
3380 cur_id_size, cur_id_str);
3381 break;
3382 case 0x2:
3383 /* EUI-64 */
3384 cur_id_prio = prio;
3385 cur_id_size = d[3];
3386 cur_id_str = d + 4;
3387 switch (cur_id_size) {
3388 case 8:
3389 id_size = snprintf(id, id_len,
3390 "eui.%8phN",
3391 cur_id_str);
3392 break;
3393 case 12:
3394 id_size = snprintf(id, id_len,
3395 "eui.%12phN",
3396 cur_id_str);
3397 break;
3398 case 16:
3399 id_size = snprintf(id, id_len,
3400 "eui.%16phN",
3401 cur_id_str);
3402 break;
3403 default:
3404 break;
3405 }
3406 break;
3407 case 0x3:
3408 /* NAA */
3409 cur_id_prio = prio;
3410 cur_id_size = d[3];
3411 cur_id_str = d + 4;
3412 switch (cur_id_size) {
3413 case 8:
3414 id_size = snprintf(id, id_len,
3415 "naa.%8phN",
3416 cur_id_str);
3417 break;
3418 case 16:
3419 id_size = snprintf(id, id_len,
3420 "naa.%16phN",
3421 cur_id_str);
3422 break;
3423 default:
3424 break;
3425 }
3426 break;
3427 case 0x8:
3428 /* SCSI name string */
3429 if (cur_id_size > d[3])
3430 break;
3431 /* Prefer others for truncated descriptor */
3432 if (d[3] > id_len) {
3433 prio = 2;
3434 if (cur_id_prio > prio)
3435 break;
3436 }
3437 cur_id_prio = prio;
3438 cur_id_size = id_size = d[3];
3439 cur_id_str = d + 4;
3440 if (cur_id_size >= id_len)
3441 cur_id_size = id_len - 1;
3442 memcpy(id, cur_id_str, cur_id_size);
3443 break;
3444 default:
3445 break;
3446 }
3447 }
3448 rcu_read_unlock();
3449
3450 return id_size;
3451 }
3452 EXPORT_SYMBOL(scsi_vpd_lun_id);
3453
3454 /**
3455 * scsi_vpd_tpg_id - return a target port group identifier
3456 * @sdev: SCSI device
3457 * @rel_id: pointer to return relative target port in if not %NULL
3458 *
3459 * Returns the Target Port Group identifier from the information
3460 * from VPD page 0x83 of the device.
3461 * Optionally sets @rel_id to the relative target port on success.
3462 *
3463 * Return: the identifier or error on failure.
3464 */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3465 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3466 {
3467 const unsigned char *d;
3468 const struct scsi_vpd *vpd_pg83;
3469 int group_id = -EAGAIN, rel_port = -1;
3470
3471 rcu_read_lock();
3472 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3473 if (!vpd_pg83) {
3474 rcu_read_unlock();
3475 return -ENXIO;
3476 }
3477
3478 d = vpd_pg83->data + 4;
3479 while (d < vpd_pg83->data + vpd_pg83->len) {
3480 switch (d[1] & 0xf) {
3481 case 0x4:
3482 /* Relative target port */
3483 rel_port = get_unaligned_be16(&d[6]);
3484 break;
3485 case 0x5:
3486 /* Target port group */
3487 group_id = get_unaligned_be16(&d[6]);
3488 break;
3489 default:
3490 break;
3491 }
3492 d += d[3] + 4;
3493 }
3494 rcu_read_unlock();
3495
3496 if (group_id >= 0 && rel_id && rel_port != -1)
3497 *rel_id = rel_port;
3498
3499 return group_id;
3500 }
3501 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3502
3503 /**
3504 * scsi_build_sense - build sense data for a command
3505 * @scmd: scsi command for which the sense should be formatted
3506 * @desc: Sense format (non-zero == descriptor format,
3507 * 0 == fixed format)
3508 * @key: Sense key
3509 * @asc: Additional sense code
3510 * @ascq: Additional sense code qualifier
3511 *
3512 **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3513 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3514 {
3515 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3516 scmd->result = SAM_STAT_CHECK_CONDITION;
3517 }
3518 EXPORT_SYMBOL_GPL(scsi_build_sense);
3519
3520 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3521 #include "scsi_lib_test.c"
3522 #endif
3523