xref: /linux/drivers/scsi/scsi_lib.c (revision 7eb7f5723df50a7d5564aa609e4c147f669a5cb4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <linux/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* scsi_init_limits() */
36 #include <scsi/scsi_dh.h>
37 
38 #include <trace/events/scsi.h>
39 
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43 
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55 
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
scsi_init_sense_cache(struct Scsi_Host * shost)61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 	int ret = 0;
64 
65 	mutex_lock(&scsi_sense_cache_mutex);
66 	if (!scsi_sense_cache) {
67 		scsi_sense_cache =
68 			kmem_cache_create_usercopy("scsi_sense_cache",
69 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 				0, SCSI_SENSE_BUFFERSIZE, NULL);
71 		if (!scsi_sense_cache)
72 			ret = -ENOMEM;
73 	}
74 	mutex_unlock(&scsi_sense_cache_mutex);
75 	return ret;
76 }
77 
78 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 	struct Scsi_Host *host = cmd->device->host;
82 	struct scsi_device *device = cmd->device;
83 	struct scsi_target *starget = scsi_target(device);
84 
85 	/*
86 	 * Set the appropriate busy bit for the device/host.
87 	 *
88 	 * If the host/device isn't busy, assume that something actually
89 	 * completed, and that we should be able to queue a command now.
90 	 *
91 	 * Note that the prior mid-layer assumption that any host could
92 	 * always queue at least one command is now broken.  The mid-layer
93 	 * will implement a user specifiable stall (see
94 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 	 * if a command is requeued with no other commands outstanding
96 	 * either for the device or for the host.
97 	 */
98 	switch (reason) {
99 	case SCSI_MLQUEUE_HOST_BUSY:
100 		atomic_set(&host->host_blocked, host->max_host_blocked);
101 		break;
102 	case SCSI_MLQUEUE_DEVICE_BUSY:
103 	case SCSI_MLQUEUE_EH_RETRY:
104 		atomic_set(&device->device_blocked,
105 			   device->max_device_blocked);
106 		break;
107 	case SCSI_MLQUEUE_TARGET_BUSY:
108 		atomic_set(&starget->target_blocked,
109 			   starget->max_target_blocked);
110 		break;
111 	}
112 }
113 
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd,unsigned long msecs)114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 	struct request *rq = scsi_cmd_to_rq(cmd);
117 
118 	if (rq->rq_flags & RQF_DONTPREP) {
119 		rq->rq_flags &= ~RQF_DONTPREP;
120 		scsi_mq_uninit_cmd(cmd);
121 	} else {
122 		WARN_ON_ONCE(true);
123 	}
124 
125 	blk_mq_requeue_request(rq, false);
126 	if (!scsi_host_in_recovery(cmd->device->host))
127 		blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129 
130 /**
131  * __scsi_queue_insert - private queue insertion
132  * @cmd: The SCSI command being requeued
133  * @reason:  The reason for the requeue
134  * @unbusy: Whether the queue should be unbusied
135  *
136  * This is a private queue insertion.  The public interface
137  * scsi_queue_insert() always assumes the queue should be unbusied
138  * because it's always called before the completion.  This function is
139  * for a requeue after completion, which should only occur in this
140  * file.
141  */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144 	struct scsi_device *device = cmd->device;
145 
146 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 		"Inserting command %p into mlqueue\n", cmd));
148 
149 	scsi_set_blocked(cmd, reason);
150 
151 	/*
152 	 * Decrement the counters, since these commands are no longer
153 	 * active on the host/device.
154 	 */
155 	if (unbusy)
156 		scsi_device_unbusy(device, cmd);
157 
158 	/*
159 	 * Requeue this command.  It will go before all other commands
160 	 * that are already in the queue. Schedule requeue work under
161 	 * lock such that the kblockd_schedule_work() call happens
162 	 * before blk_mq_destroy_queue() finishes.
163 	 */
164 	cmd->result = 0;
165 
166 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167 			       !scsi_host_in_recovery(cmd->device->host));
168 }
169 
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 	__scsi_queue_insert(cmd, reason, true);
185 }
186 
187 /**
188  * scsi_failures_reset_retries - reset all failures to zero
189  * @failures: &struct scsi_failures with specific failure modes set
190  */
scsi_failures_reset_retries(struct scsi_failures * failures)191 void scsi_failures_reset_retries(struct scsi_failures *failures)
192 {
193 	struct scsi_failure *failure;
194 
195 	failures->total_retries = 0;
196 
197 	for (failure = failures->failure_definitions; failure->result;
198 	     failure++)
199 		failure->retries = 0;
200 }
201 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
202 
203 /**
204  * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
205  * @scmd: scsi_cmnd to check.
206  * @failures: scsi_failures struct that lists failures to check for.
207  *
208  * Returns -EAGAIN if the caller should retry else 0.
209  */
scsi_check_passthrough(struct scsi_cmnd * scmd,struct scsi_failures * failures)210 static int scsi_check_passthrough(struct scsi_cmnd *scmd,
211 				  struct scsi_failures *failures)
212 {
213 	struct scsi_failure *failure;
214 	struct scsi_sense_hdr sshdr;
215 	enum sam_status status;
216 
217 	if (!scmd->result)
218 		return 0;
219 
220 	if (!failures)
221 		return 0;
222 
223 	for (failure = failures->failure_definitions; failure->result;
224 	     failure++) {
225 		if (failure->result == SCMD_FAILURE_RESULT_ANY)
226 			goto maybe_retry;
227 
228 		if (host_byte(scmd->result) &&
229 		    host_byte(scmd->result) == host_byte(failure->result))
230 			goto maybe_retry;
231 
232 		status = status_byte(scmd->result);
233 		if (!status)
234 			continue;
235 
236 		if (failure->result == SCMD_FAILURE_STAT_ANY &&
237 		    !scsi_status_is_good(scmd->result))
238 			goto maybe_retry;
239 
240 		if (status != status_byte(failure->result))
241 			continue;
242 
243 		if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
244 		    failure->sense == SCMD_FAILURE_SENSE_ANY)
245 			goto maybe_retry;
246 
247 		if (!scsi_command_normalize_sense(scmd, &sshdr))
248 			return 0;
249 
250 		if (failure->sense != sshdr.sense_key)
251 			continue;
252 
253 		if (failure->asc == SCMD_FAILURE_ASC_ANY)
254 			goto maybe_retry;
255 
256 		if (failure->asc != sshdr.asc)
257 			continue;
258 
259 		if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
260 		    failure->ascq == sshdr.ascq)
261 			goto maybe_retry;
262 	}
263 
264 	return 0;
265 
266 maybe_retry:
267 	if (failure->allowed) {
268 		if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
269 		    ++failure->retries <= failure->allowed)
270 			return -EAGAIN;
271 	} else {
272 		if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
273 		    ++failures->total_retries <= failures->total_allowed)
274 			return -EAGAIN;
275 	}
276 
277 	return 0;
278 }
279 
280 /**
281  * scsi_execute_cmd - insert request and wait for the result
282  * @sdev:	scsi_device
283  * @cmd:	scsi command
284  * @opf:	block layer request cmd_flags
285  * @buffer:	data buffer
286  * @bufflen:	len of buffer
287  * @timeout:	request timeout in HZ
288  * @ml_retries:	number of times SCSI midlayer will retry request
289  * @args:	Optional args. See struct definition for field descriptions
290  *
291  * Returns the scsi_cmnd result field if a command was executed, or a negative
292  * Linux error code if we didn't get that far.
293  */
scsi_execute_cmd(struct scsi_device * sdev,const unsigned char * cmd,blk_opf_t opf,void * buffer,unsigned int bufflen,int timeout,int ml_retries,const struct scsi_exec_args * args)294 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
295 		     blk_opf_t opf, void *buffer, unsigned int bufflen,
296 		     int timeout, int ml_retries,
297 		     const struct scsi_exec_args *args)
298 {
299 	static const struct scsi_exec_args default_args;
300 	struct request *req;
301 	struct scsi_cmnd *scmd;
302 	int ret;
303 
304 	if (!args)
305 		args = &default_args;
306 	else if (WARN_ON_ONCE(args->sense &&
307 			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
308 		return -EINVAL;
309 
310 retry:
311 	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
312 	if (IS_ERR(req))
313 		return PTR_ERR(req);
314 
315 	if (bufflen) {
316 		ret = blk_rq_map_kern(req, buffer, bufflen, GFP_NOIO);
317 		if (ret)
318 			goto out;
319 	}
320 	scmd = blk_mq_rq_to_pdu(req);
321 	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
322 	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
323 	scmd->allowed = ml_retries;
324 	scmd->flags |= args->scmd_flags;
325 	req->timeout = timeout;
326 	req->rq_flags |= RQF_QUIET;
327 
328 	/*
329 	 * head injection *required* here otherwise quiesce won't work
330 	 */
331 	blk_execute_rq(req, true);
332 
333 	if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
334 		blk_mq_free_request(req);
335 		goto retry;
336 	}
337 
338 	/*
339 	 * Some devices (USB mass-storage in particular) may transfer
340 	 * garbage data together with a residue indicating that the data
341 	 * is invalid.  Prevent the garbage from being misinterpreted
342 	 * and prevent security leaks by zeroing out the excess data.
343 	 */
344 	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
345 		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
346 
347 	if (args->resid)
348 		*args->resid = scmd->resid_len;
349 	if (args->sense)
350 		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
351 	if (args->sshdr)
352 		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
353 				     args->sshdr);
354 
355 	ret = scmd->result;
356  out:
357 	blk_mq_free_request(req);
358 
359 	return ret;
360 }
361 EXPORT_SYMBOL(scsi_execute_cmd);
362 
363 /*
364  * Wake up the error handler if necessary. Avoid as follows that the error
365  * handler is not woken up if host in-flight requests number ==
366  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
367  * with an RCU read lock in this function to ensure that this function in
368  * its entirety either finishes before scsi_eh_scmd_add() increases the
369  * host_failed counter or that it notices the shost state change made by
370  * scsi_eh_scmd_add().
371  */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)372 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
373 {
374 	unsigned long flags;
375 
376 	rcu_read_lock();
377 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
378 	if (unlikely(scsi_host_in_recovery(shost))) {
379 		unsigned int busy = scsi_host_busy(shost);
380 
381 		spin_lock_irqsave(shost->host_lock, flags);
382 		if (shost->host_failed || shost->host_eh_scheduled)
383 			scsi_eh_wakeup(shost, busy);
384 		spin_unlock_irqrestore(shost->host_lock, flags);
385 	}
386 	rcu_read_unlock();
387 }
388 
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)389 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
390 {
391 	struct Scsi_Host *shost = sdev->host;
392 	struct scsi_target *starget = scsi_target(sdev);
393 
394 	scsi_dec_host_busy(shost, cmd);
395 
396 	if (starget->can_queue > 0)
397 		atomic_dec(&starget->target_busy);
398 
399 	if (sdev->budget_map.map)
400 		sbitmap_put(&sdev->budget_map, cmd->budget_token);
401 	cmd->budget_token = -1;
402 }
403 
404 /*
405  * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
406  * interrupts disabled.
407  */
scsi_kick_sdev_queue(struct scsi_device * sdev,void * data)408 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
409 {
410 	struct scsi_device *current_sdev = data;
411 
412 	if (sdev != current_sdev)
413 		blk_mq_run_hw_queues(sdev->request_queue, true);
414 }
415 
416 /*
417  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
418  * and call blk_run_queue for all the scsi_devices on the target -
419  * including current_sdev first.
420  *
421  * Called with *no* scsi locks held.
422  */
scsi_single_lun_run(struct scsi_device * current_sdev)423 static void scsi_single_lun_run(struct scsi_device *current_sdev)
424 {
425 	struct Scsi_Host *shost = current_sdev->host;
426 	struct scsi_target *starget = scsi_target(current_sdev);
427 	unsigned long flags;
428 
429 	spin_lock_irqsave(shost->host_lock, flags);
430 	starget->starget_sdev_user = NULL;
431 	spin_unlock_irqrestore(shost->host_lock, flags);
432 
433 	/*
434 	 * Call blk_run_queue for all LUNs on the target, starting with
435 	 * current_sdev. We race with others (to set starget_sdev_user),
436 	 * but in most cases, we will be first. Ideally, each LU on the
437 	 * target would get some limited time or requests on the target.
438 	 */
439 	blk_mq_run_hw_queues(current_sdev->request_queue,
440 			     shost->queuecommand_may_block);
441 
442 	spin_lock_irqsave(shost->host_lock, flags);
443 	if (!starget->starget_sdev_user)
444 		__starget_for_each_device(starget, current_sdev,
445 					  scsi_kick_sdev_queue);
446 	spin_unlock_irqrestore(shost->host_lock, flags);
447 }
448 
scsi_device_is_busy(struct scsi_device * sdev)449 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
450 {
451 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
452 		return true;
453 	if (atomic_read(&sdev->device_blocked) > 0)
454 		return true;
455 	return false;
456 }
457 
scsi_target_is_busy(struct scsi_target * starget)458 static inline bool scsi_target_is_busy(struct scsi_target *starget)
459 {
460 	if (starget->can_queue > 0) {
461 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
462 			return true;
463 		if (atomic_read(&starget->target_blocked) > 0)
464 			return true;
465 	}
466 	return false;
467 }
468 
scsi_host_is_busy(struct Scsi_Host * shost)469 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
470 {
471 	if (atomic_read(&shost->host_blocked) > 0)
472 		return true;
473 	if (shost->host_self_blocked)
474 		return true;
475 	return false;
476 }
477 
scsi_starved_list_run(struct Scsi_Host * shost)478 static void scsi_starved_list_run(struct Scsi_Host *shost)
479 {
480 	LIST_HEAD(starved_list);
481 	struct scsi_device *sdev;
482 	unsigned long flags;
483 
484 	spin_lock_irqsave(shost->host_lock, flags);
485 	list_splice_init(&shost->starved_list, &starved_list);
486 
487 	while (!list_empty(&starved_list)) {
488 		struct request_queue *slq;
489 
490 		/*
491 		 * As long as shost is accepting commands and we have
492 		 * starved queues, call blk_run_queue. scsi_request_fn
493 		 * drops the queue_lock and can add us back to the
494 		 * starved_list.
495 		 *
496 		 * host_lock protects the starved_list and starved_entry.
497 		 * scsi_request_fn must get the host_lock before checking
498 		 * or modifying starved_list or starved_entry.
499 		 */
500 		if (scsi_host_is_busy(shost))
501 			break;
502 
503 		sdev = list_entry(starved_list.next,
504 				  struct scsi_device, starved_entry);
505 		list_del_init(&sdev->starved_entry);
506 		if (scsi_target_is_busy(scsi_target(sdev))) {
507 			list_move_tail(&sdev->starved_entry,
508 				       &shost->starved_list);
509 			continue;
510 		}
511 
512 		/*
513 		 * Once we drop the host lock, a racing scsi_remove_device()
514 		 * call may remove the sdev from the starved list and destroy
515 		 * it and the queue.  Mitigate by taking a reference to the
516 		 * queue and never touching the sdev again after we drop the
517 		 * host lock.  Note: if __scsi_remove_device() invokes
518 		 * blk_mq_destroy_queue() before the queue is run from this
519 		 * function then blk_run_queue() will return immediately since
520 		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
521 		 */
522 		slq = sdev->request_queue;
523 		if (!blk_get_queue(slq))
524 			continue;
525 		spin_unlock_irqrestore(shost->host_lock, flags);
526 
527 		blk_mq_run_hw_queues(slq, false);
528 		blk_put_queue(slq);
529 
530 		spin_lock_irqsave(shost->host_lock, flags);
531 	}
532 	/* put any unprocessed entries back */
533 	list_splice(&starved_list, &shost->starved_list);
534 	spin_unlock_irqrestore(shost->host_lock, flags);
535 }
536 
537 /**
538  * scsi_run_queue - Select a proper request queue to serve next.
539  * @q:  last request's queue
540  *
541  * The previous command was completely finished, start a new one if possible.
542  */
scsi_run_queue(struct request_queue * q)543 static void scsi_run_queue(struct request_queue *q)
544 {
545 	struct scsi_device *sdev = q->queuedata;
546 
547 	if (scsi_target(sdev)->single_lun)
548 		scsi_single_lun_run(sdev);
549 	if (!list_empty(&sdev->host->starved_list))
550 		scsi_starved_list_run(sdev->host);
551 
552 	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
553 	blk_mq_kick_requeue_list(q);
554 }
555 
scsi_requeue_run_queue(struct work_struct * work)556 void scsi_requeue_run_queue(struct work_struct *work)
557 {
558 	struct scsi_device *sdev;
559 	struct request_queue *q;
560 
561 	sdev = container_of(work, struct scsi_device, requeue_work);
562 	q = sdev->request_queue;
563 	scsi_run_queue(q);
564 }
565 
scsi_run_host_queues(struct Scsi_Host * shost)566 void scsi_run_host_queues(struct Scsi_Host *shost)
567 {
568 	struct scsi_device *sdev;
569 
570 	shost_for_each_device(sdev, shost)
571 		scsi_run_queue(sdev->request_queue);
572 }
573 
scsi_uninit_cmd(struct scsi_cmnd * cmd)574 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
575 {
576 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
577 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
578 
579 		if (drv->uninit_command)
580 			drv->uninit_command(cmd);
581 	}
582 }
583 
scsi_free_sgtables(struct scsi_cmnd * cmd)584 void scsi_free_sgtables(struct scsi_cmnd *cmd)
585 {
586 	if (cmd->sdb.table.nents)
587 		sg_free_table_chained(&cmd->sdb.table,
588 				SCSI_INLINE_SG_CNT);
589 	if (scsi_prot_sg_count(cmd))
590 		sg_free_table_chained(&cmd->prot_sdb->table,
591 				SCSI_INLINE_PROT_SG_CNT);
592 }
593 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
594 
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)595 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
596 {
597 	scsi_free_sgtables(cmd);
598 	scsi_uninit_cmd(cmd);
599 }
600 
scsi_run_queue_async(struct scsi_device * sdev)601 static void scsi_run_queue_async(struct scsi_device *sdev)
602 {
603 	if (scsi_host_in_recovery(sdev->host))
604 		return;
605 
606 	if (scsi_target(sdev)->single_lun ||
607 	    !list_empty(&sdev->host->starved_list)) {
608 		kblockd_schedule_work(&sdev->requeue_work);
609 	} else {
610 		/*
611 		 * smp_mb() present in sbitmap_queue_clear() or implied in
612 		 * .end_io is for ordering writing .device_busy in
613 		 * scsi_device_unbusy() and reading sdev->restarts.
614 		 */
615 		int old = atomic_read(&sdev->restarts);
616 
617 		/*
618 		 * ->restarts has to be kept as non-zero if new budget
619 		 *  contention occurs.
620 		 *
621 		 *  No need to run queue when either another re-run
622 		 *  queue wins in updating ->restarts or a new budget
623 		 *  contention occurs.
624 		 */
625 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
626 			blk_mq_run_hw_queues(sdev->request_queue, true);
627 	}
628 }
629 
630 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)631 static bool scsi_end_request(struct request *req, blk_status_t error,
632 		unsigned int bytes)
633 {
634 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
635 	struct scsi_device *sdev = cmd->device;
636 	struct request_queue *q = sdev->request_queue;
637 
638 	if (blk_update_request(req, error, bytes))
639 		return true;
640 
641 	if (q->limits.features & BLK_FEAT_ADD_RANDOM)
642 		add_disk_randomness(req->q->disk);
643 
644 	WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
645 		     !(cmd->flags & SCMD_INITIALIZED));
646 	cmd->flags = 0;
647 
648 	/*
649 	 * Calling rcu_barrier() is not necessary here because the
650 	 * SCSI error handler guarantees that the function called by
651 	 * call_rcu() has been called before scsi_end_request() is
652 	 * called.
653 	 */
654 	destroy_rcu_head(&cmd->rcu);
655 
656 	/*
657 	 * In the MQ case the command gets freed by __blk_mq_end_request,
658 	 * so we have to do all cleanup that depends on it earlier.
659 	 *
660 	 * We also can't kick the queues from irq context, so we
661 	 * will have to defer it to a workqueue.
662 	 */
663 	scsi_mq_uninit_cmd(cmd);
664 
665 	/*
666 	 * queue is still alive, so grab the ref for preventing it
667 	 * from being cleaned up during running queue.
668 	 */
669 	percpu_ref_get(&q->q_usage_counter);
670 
671 	__blk_mq_end_request(req, error);
672 
673 	scsi_run_queue_async(sdev);
674 
675 	percpu_ref_put(&q->q_usage_counter);
676 	return false;
677 }
678 
679 /**
680  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
681  * @result:	scsi error code
682  *
683  * Translate a SCSI result code into a blk_status_t value.
684  */
scsi_result_to_blk_status(int result)685 static blk_status_t scsi_result_to_blk_status(int result)
686 {
687 	/*
688 	 * Check the scsi-ml byte first in case we converted a host or status
689 	 * byte.
690 	 */
691 	switch (scsi_ml_byte(result)) {
692 	case SCSIML_STAT_OK:
693 		break;
694 	case SCSIML_STAT_RESV_CONFLICT:
695 		return BLK_STS_RESV_CONFLICT;
696 	case SCSIML_STAT_NOSPC:
697 		return BLK_STS_NOSPC;
698 	case SCSIML_STAT_MED_ERROR:
699 		return BLK_STS_MEDIUM;
700 	case SCSIML_STAT_TGT_FAILURE:
701 		return BLK_STS_TARGET;
702 	case SCSIML_STAT_DL_TIMEOUT:
703 		return BLK_STS_DURATION_LIMIT;
704 	}
705 
706 	switch (host_byte(result)) {
707 	case DID_OK:
708 		if (scsi_status_is_good(result))
709 			return BLK_STS_OK;
710 		return BLK_STS_IOERR;
711 	case DID_TRANSPORT_FAILFAST:
712 	case DID_TRANSPORT_MARGINAL:
713 		return BLK_STS_TRANSPORT;
714 	default:
715 		return BLK_STS_IOERR;
716 	}
717 }
718 
719 /**
720  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
721  * @rq: request to examine
722  *
723  * Description:
724  *     A request could be merge of IOs which require different failure
725  *     handling.  This function determines the number of bytes which
726  *     can be failed from the beginning of the request without
727  *     crossing into area which need to be retried further.
728  *
729  * Return:
730  *     The number of bytes to fail.
731  */
scsi_rq_err_bytes(const struct request * rq)732 static unsigned int scsi_rq_err_bytes(const struct request *rq)
733 {
734 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
735 	unsigned int bytes = 0;
736 	struct bio *bio;
737 
738 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
739 		return blk_rq_bytes(rq);
740 
741 	/*
742 	 * Currently the only 'mixing' which can happen is between
743 	 * different fastfail types.  We can safely fail portions
744 	 * which have all the failfast bits that the first one has -
745 	 * the ones which are at least as eager to fail as the first
746 	 * one.
747 	 */
748 	for (bio = rq->bio; bio; bio = bio->bi_next) {
749 		if ((bio->bi_opf & ff) != ff)
750 			break;
751 		bytes += bio->bi_iter.bi_size;
752 	}
753 
754 	/* this could lead to infinite loop */
755 	BUG_ON(blk_rq_bytes(rq) && !bytes);
756 	return bytes;
757 }
758 
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)759 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
760 {
761 	struct request *req = scsi_cmd_to_rq(cmd);
762 	unsigned long wait_for;
763 
764 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
765 		return false;
766 
767 	wait_for = (cmd->allowed + 1) * req->timeout;
768 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
769 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
770 			    wait_for/HZ);
771 		return true;
772 	}
773 	return false;
774 }
775 
776 /*
777  * When ALUA transition state is returned, reprep the cmd to
778  * use the ALUA handler's transition timeout. Delay the reprep
779  * 1 sec to avoid aggressive retries of the target in that
780  * state.
781  */
782 #define ALUA_TRANSITION_REPREP_DELAY	1000
783 
784 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)785 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
786 {
787 	struct request *req = scsi_cmd_to_rq(cmd);
788 	int level = 0;
789 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
790 	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
791 	struct scsi_sense_hdr sshdr;
792 	bool sense_valid;
793 	bool sense_current = true;      /* false implies "deferred sense" */
794 	blk_status_t blk_stat;
795 
796 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
797 	if (sense_valid)
798 		sense_current = !scsi_sense_is_deferred(&sshdr);
799 
800 	blk_stat = scsi_result_to_blk_status(result);
801 
802 	if (host_byte(result) == DID_RESET) {
803 		/* Third party bus reset or reset for error recovery
804 		 * reasons.  Just retry the command and see what
805 		 * happens.
806 		 */
807 		action = ACTION_RETRY;
808 	} else if (sense_valid && sense_current) {
809 		switch (sshdr.sense_key) {
810 		case UNIT_ATTENTION:
811 			if (cmd->device->removable) {
812 				/* Detected disc change.  Set a bit
813 				 * and quietly refuse further access.
814 				 */
815 				cmd->device->changed = 1;
816 				action = ACTION_FAIL;
817 			} else {
818 				/* Must have been a power glitch, or a
819 				 * bus reset.  Could not have been a
820 				 * media change, so we just retry the
821 				 * command and see what happens.
822 				 */
823 				action = ACTION_RETRY;
824 			}
825 			break;
826 		case ILLEGAL_REQUEST:
827 			/* If we had an ILLEGAL REQUEST returned, then
828 			 * we may have performed an unsupported
829 			 * command.  The only thing this should be
830 			 * would be a ten byte read where only a six
831 			 * byte read was supported.  Also, on a system
832 			 * where READ CAPACITY failed, we may have
833 			 * read past the end of the disk.
834 			 */
835 			if ((cmd->device->use_10_for_rw &&
836 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
837 			    (cmd->cmnd[0] == READ_10 ||
838 			     cmd->cmnd[0] == WRITE_10)) {
839 				/* This will issue a new 6-byte command. */
840 				cmd->device->use_10_for_rw = 0;
841 				action = ACTION_REPREP;
842 			} else if (sshdr.asc == 0x10) /* DIX */ {
843 				action = ACTION_FAIL;
844 				blk_stat = BLK_STS_PROTECTION;
845 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
846 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
847 				action = ACTION_FAIL;
848 				blk_stat = BLK_STS_TARGET;
849 			} else
850 				action = ACTION_FAIL;
851 			break;
852 		case ABORTED_COMMAND:
853 			action = ACTION_FAIL;
854 			if (sshdr.asc == 0x10) /* DIF */
855 				blk_stat = BLK_STS_PROTECTION;
856 			break;
857 		case NOT_READY:
858 			/* If the device is in the process of becoming
859 			 * ready, or has a temporary blockage, retry.
860 			 */
861 			if (sshdr.asc == 0x04) {
862 				switch (sshdr.ascq) {
863 				case 0x01: /* becoming ready */
864 				case 0x04: /* format in progress */
865 				case 0x05: /* rebuild in progress */
866 				case 0x06: /* recalculation in progress */
867 				case 0x07: /* operation in progress */
868 				case 0x08: /* Long write in progress */
869 				case 0x09: /* self test in progress */
870 				case 0x11: /* notify (enable spinup) required */
871 				case 0x14: /* space allocation in progress */
872 				case 0x1a: /* start stop unit in progress */
873 				case 0x1b: /* sanitize in progress */
874 				case 0x1d: /* configuration in progress */
875 					action = ACTION_DELAYED_RETRY;
876 					break;
877 				case 0x0a: /* ALUA state transition */
878 					action = ACTION_DELAYED_REPREP;
879 					break;
880 				/*
881 				 * Depopulation might take many hours,
882 				 * thus it is not worthwhile to retry.
883 				 */
884 				case 0x24: /* depopulation in progress */
885 				case 0x25: /* depopulation restore in progress */
886 					fallthrough;
887 				default:
888 					action = ACTION_FAIL;
889 					break;
890 				}
891 			} else
892 				action = ACTION_FAIL;
893 			break;
894 		case VOLUME_OVERFLOW:
895 			/* See SSC3rXX or current. */
896 			action = ACTION_FAIL;
897 			break;
898 		case DATA_PROTECT:
899 			action = ACTION_FAIL;
900 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
901 			    (sshdr.asc == 0x55 &&
902 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
903 				/* Insufficient zone resources */
904 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
905 			}
906 			break;
907 		case COMPLETED:
908 			fallthrough;
909 		default:
910 			action = ACTION_FAIL;
911 			break;
912 		}
913 	} else
914 		action = ACTION_FAIL;
915 
916 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
917 		action = ACTION_FAIL;
918 
919 	switch (action) {
920 	case ACTION_FAIL:
921 		/* Give up and fail the remainder of the request */
922 		if (!(req->rq_flags & RQF_QUIET)) {
923 			static DEFINE_RATELIMIT_STATE(_rs,
924 					DEFAULT_RATELIMIT_INTERVAL,
925 					DEFAULT_RATELIMIT_BURST);
926 
927 			if (unlikely(scsi_logging_level))
928 				level =
929 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
930 						    SCSI_LOG_MLCOMPLETE_BITS);
931 
932 			/*
933 			 * if logging is enabled the failure will be printed
934 			 * in scsi_log_completion(), so avoid duplicate messages
935 			 */
936 			if (!level && __ratelimit(&_rs)) {
937 				scsi_print_result(cmd, NULL, FAILED);
938 				if (sense_valid)
939 					scsi_print_sense(cmd);
940 				scsi_print_command(cmd);
941 			}
942 		}
943 		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
944 			return;
945 		fallthrough;
946 	case ACTION_REPREP:
947 		scsi_mq_requeue_cmd(cmd, 0);
948 		break;
949 	case ACTION_DELAYED_REPREP:
950 		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
951 		break;
952 	case ACTION_RETRY:
953 		/* Retry the same command immediately */
954 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
955 		break;
956 	case ACTION_DELAYED_RETRY:
957 		/* Retry the same command after a delay */
958 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
959 		break;
960 	}
961 }
962 
963 /*
964  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
965  * new result that may suppress further error checking. Also modifies
966  * *blk_statp in some cases.
967  */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)968 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
969 					blk_status_t *blk_statp)
970 {
971 	bool sense_valid;
972 	bool sense_current = true;	/* false implies "deferred sense" */
973 	struct request *req = scsi_cmd_to_rq(cmd);
974 	struct scsi_sense_hdr sshdr;
975 
976 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
977 	if (sense_valid)
978 		sense_current = !scsi_sense_is_deferred(&sshdr);
979 
980 	if (blk_rq_is_passthrough(req)) {
981 		if (sense_valid) {
982 			/*
983 			 * SG_IO wants current and deferred errors
984 			 */
985 			cmd->sense_len = min(8 + cmd->sense_buffer[7],
986 					     SCSI_SENSE_BUFFERSIZE);
987 		}
988 		if (sense_current)
989 			*blk_statp = scsi_result_to_blk_status(result);
990 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
991 		/*
992 		 * Flush commands do not transfers any data, and thus cannot use
993 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
994 		 * This sets *blk_statp explicitly for the problem case.
995 		 */
996 		*blk_statp = scsi_result_to_blk_status(result);
997 	}
998 	/*
999 	 * Recovered errors need reporting, but they're always treated as
1000 	 * success, so fiddle the result code here.  For passthrough requests
1001 	 * we already took a copy of the original into sreq->result which
1002 	 * is what gets returned to the user
1003 	 */
1004 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
1005 		bool do_print = true;
1006 		/*
1007 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
1008 		 * skip print since caller wants ATA registers. Only occurs
1009 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
1010 		 */
1011 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1012 			do_print = false;
1013 		else if (req->rq_flags & RQF_QUIET)
1014 			do_print = false;
1015 		if (do_print)
1016 			scsi_print_sense(cmd);
1017 		result = 0;
1018 		/* for passthrough, *blk_statp may be set */
1019 		*blk_statp = BLK_STS_OK;
1020 	}
1021 	/*
1022 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
1023 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1024 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1025 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1026 	 * intermediate statuses (both obsolete in SAM-4) as good.
1027 	 */
1028 	if ((result & 0xff) && scsi_status_is_good(result)) {
1029 		result = 0;
1030 		*blk_statp = BLK_STS_OK;
1031 	}
1032 	return result;
1033 }
1034 
1035 /**
1036  * scsi_io_completion - Completion processing for SCSI commands.
1037  * @cmd:	command that is finished.
1038  * @good_bytes:	number of processed bytes.
1039  *
1040  * We will finish off the specified number of sectors. If we are done, the
1041  * command block will be released and the queue function will be goosed. If we
1042  * are not done then we have to figure out what to do next:
1043  *
1044  *   a) We can call scsi_mq_requeue_cmd().  The request will be
1045  *	unprepared and put back on the queue.  Then a new command will
1046  *	be created for it.  This should be used if we made forward
1047  *	progress, or if we want to switch from READ(10) to READ(6) for
1048  *	example.
1049  *
1050  *   b) We can call scsi_io_completion_action().  The request will be
1051  *	put back on the queue and retried using the same command as
1052  *	before, possibly after a delay.
1053  *
1054  *   c) We can call scsi_end_request() with blk_stat other than
1055  *	BLK_STS_OK, to fail the remainder of the request.
1056  */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)1057 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1058 {
1059 	int result = cmd->result;
1060 	struct request *req = scsi_cmd_to_rq(cmd);
1061 	blk_status_t blk_stat = BLK_STS_OK;
1062 
1063 	if (unlikely(result))	/* a nz result may or may not be an error */
1064 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1065 
1066 	/*
1067 	 * Next deal with any sectors which we were able to correctly
1068 	 * handle.
1069 	 */
1070 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1071 		"%u sectors total, %d bytes done.\n",
1072 		blk_rq_sectors(req), good_bytes));
1073 
1074 	/*
1075 	 * Failed, zero length commands always need to drop down
1076 	 * to retry code. Fast path should return in this block.
1077 	 */
1078 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1079 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1080 			return; /* no bytes remaining */
1081 	}
1082 
1083 	/* Kill remainder if no retries. */
1084 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1085 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1086 			WARN_ONCE(true,
1087 			    "Bytes remaining after failed, no-retry command");
1088 		return;
1089 	}
1090 
1091 	/*
1092 	 * If there had been no error, but we have leftover bytes in the
1093 	 * request just queue the command up again.
1094 	 */
1095 	if (likely(result == 0))
1096 		scsi_mq_requeue_cmd(cmd, 0);
1097 	else
1098 		scsi_io_completion_action(cmd, result);
1099 }
1100 
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)1101 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1102 		struct request *rq)
1103 {
1104 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1105 	       !op_is_write(req_op(rq)) &&
1106 	       sdev->host->hostt->dma_need_drain(rq);
1107 }
1108 
1109 /**
1110  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1111  * @cmd: SCSI command data structure to initialize.
1112  *
1113  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1114  * for @cmd.
1115  *
1116  * Returns:
1117  * * BLK_STS_OK       - on success
1118  * * BLK_STS_RESOURCE - if the failure is retryable
1119  * * BLK_STS_IOERR    - if the failure is fatal
1120  */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1121 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1122 {
1123 	struct scsi_device *sdev = cmd->device;
1124 	struct request *rq = scsi_cmd_to_rq(cmd);
1125 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1126 	struct scatterlist *last_sg = NULL;
1127 	blk_status_t ret;
1128 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1129 	int count;
1130 
1131 	if (WARN_ON_ONCE(!nr_segs))
1132 		return BLK_STS_IOERR;
1133 
1134 	/*
1135 	 * Make sure there is space for the drain.  The driver must adjust
1136 	 * max_hw_segments to be prepared for this.
1137 	 */
1138 	if (need_drain)
1139 		nr_segs++;
1140 
1141 	/*
1142 	 * If sg table allocation fails, requeue request later.
1143 	 */
1144 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1145 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1146 		return BLK_STS_RESOURCE;
1147 
1148 	/*
1149 	 * Next, walk the list, and fill in the addresses and sizes of
1150 	 * each segment.
1151 	 */
1152 	count = __blk_rq_map_sg(rq, cmd->sdb.table.sgl, &last_sg);
1153 
1154 	if (blk_rq_bytes(rq) & rq->q->limits.dma_pad_mask) {
1155 		unsigned int pad_len =
1156 			(rq->q->limits.dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1157 
1158 		last_sg->length += pad_len;
1159 		cmd->extra_len += pad_len;
1160 	}
1161 
1162 	if (need_drain) {
1163 		sg_unmark_end(last_sg);
1164 		last_sg = sg_next(last_sg);
1165 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1166 		sg_mark_end(last_sg);
1167 
1168 		cmd->extra_len += sdev->dma_drain_len;
1169 		count++;
1170 	}
1171 
1172 	BUG_ON(count > cmd->sdb.table.nents);
1173 	cmd->sdb.table.nents = count;
1174 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1175 
1176 	if (blk_integrity_rq(rq)) {
1177 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1178 
1179 		if (WARN_ON_ONCE(!prot_sdb)) {
1180 			/*
1181 			 * This can happen if someone (e.g. multipath)
1182 			 * queues a command to a device on an adapter
1183 			 * that does not support DIX.
1184 			 */
1185 			ret = BLK_STS_IOERR;
1186 			goto out_free_sgtables;
1187 		}
1188 
1189 		if (sg_alloc_table_chained(&prot_sdb->table,
1190 				rq->nr_integrity_segments,
1191 				prot_sdb->table.sgl,
1192 				SCSI_INLINE_PROT_SG_CNT)) {
1193 			ret = BLK_STS_RESOURCE;
1194 			goto out_free_sgtables;
1195 		}
1196 
1197 		count = blk_rq_map_integrity_sg(rq, prot_sdb->table.sgl);
1198 		cmd->prot_sdb = prot_sdb;
1199 		cmd->prot_sdb->table.nents = count;
1200 	}
1201 
1202 	return BLK_STS_OK;
1203 out_free_sgtables:
1204 	scsi_free_sgtables(cmd);
1205 	return ret;
1206 }
1207 EXPORT_SYMBOL(scsi_alloc_sgtables);
1208 
1209 /**
1210  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1211  * @rq: Request associated with the SCSI command to be initialized.
1212  *
1213  * This function initializes the members of struct scsi_cmnd that must be
1214  * initialized before request processing starts and that won't be
1215  * reinitialized if a SCSI command is requeued.
1216  */
scsi_initialize_rq(struct request * rq)1217 static void scsi_initialize_rq(struct request *rq)
1218 {
1219 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1220 
1221 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1222 	cmd->cmd_len = MAX_COMMAND_SIZE;
1223 	cmd->sense_len = 0;
1224 	init_rcu_head(&cmd->rcu);
1225 	cmd->jiffies_at_alloc = jiffies;
1226 	cmd->retries = 0;
1227 }
1228 
1229 /**
1230  * scsi_alloc_request - allocate a block request and partially
1231  *                      initialize its &scsi_cmnd
1232  * @q: the device's request queue
1233  * @opf: the request operation code
1234  * @flags: block layer allocation flags
1235  *
1236  * Return: &struct request pointer on success or %NULL on failure
1237  */
scsi_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)1238 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1239 				   blk_mq_req_flags_t flags)
1240 {
1241 	struct request *rq;
1242 
1243 	rq = blk_mq_alloc_request(q, opf, flags);
1244 	if (!IS_ERR(rq))
1245 		scsi_initialize_rq(rq);
1246 	return rq;
1247 }
1248 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1249 
1250 /*
1251  * Only called when the request isn't completed by SCSI, and not freed by
1252  * SCSI
1253  */
scsi_cleanup_rq(struct request * rq)1254 static void scsi_cleanup_rq(struct request *rq)
1255 {
1256 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1257 
1258 	cmd->flags = 0;
1259 
1260 	if (rq->rq_flags & RQF_DONTPREP) {
1261 		scsi_mq_uninit_cmd(cmd);
1262 		rq->rq_flags &= ~RQF_DONTPREP;
1263 	}
1264 }
1265 
1266 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1267 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1268 {
1269 	struct request *rq = scsi_cmd_to_rq(cmd);
1270 
1271 	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1272 		cmd->flags |= SCMD_INITIALIZED;
1273 		scsi_initialize_rq(rq);
1274 	}
1275 
1276 	cmd->device = dev;
1277 	INIT_LIST_HEAD(&cmd->eh_entry);
1278 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1279 }
1280 
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1281 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1282 		struct request *req)
1283 {
1284 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1285 
1286 	/*
1287 	 * Passthrough requests may transfer data, in which case they must
1288 	 * a bio attached to them.  Or they might contain a SCSI command
1289 	 * that does not transfer data, in which case they may optionally
1290 	 * submit a request without an attached bio.
1291 	 */
1292 	if (req->bio) {
1293 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1294 		if (unlikely(ret != BLK_STS_OK))
1295 			return ret;
1296 	} else {
1297 		BUG_ON(blk_rq_bytes(req));
1298 
1299 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1300 	}
1301 
1302 	cmd->transfersize = blk_rq_bytes(req);
1303 	return BLK_STS_OK;
1304 }
1305 
1306 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1307 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1308 {
1309 	switch (sdev->sdev_state) {
1310 	case SDEV_CREATED:
1311 		return BLK_STS_OK;
1312 	case SDEV_OFFLINE:
1313 	case SDEV_TRANSPORT_OFFLINE:
1314 		/*
1315 		 * If the device is offline we refuse to process any
1316 		 * commands.  The device must be brought online
1317 		 * before trying any recovery commands.
1318 		 */
1319 		if (!sdev->offline_already) {
1320 			sdev->offline_already = true;
1321 			sdev_printk(KERN_ERR, sdev,
1322 				    "rejecting I/O to offline device\n");
1323 		}
1324 		return BLK_STS_IOERR;
1325 	case SDEV_DEL:
1326 		/*
1327 		 * If the device is fully deleted, we refuse to
1328 		 * process any commands as well.
1329 		 */
1330 		sdev_printk(KERN_ERR, sdev,
1331 			    "rejecting I/O to dead device\n");
1332 		return BLK_STS_IOERR;
1333 	case SDEV_BLOCK:
1334 	case SDEV_CREATED_BLOCK:
1335 		return BLK_STS_RESOURCE;
1336 	case SDEV_QUIESCE:
1337 		/*
1338 		 * If the device is blocked we only accept power management
1339 		 * commands.
1340 		 */
1341 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1342 			return BLK_STS_RESOURCE;
1343 		return BLK_STS_OK;
1344 	default:
1345 		/*
1346 		 * For any other not fully online state we only allow
1347 		 * power management commands.
1348 		 */
1349 		if (req && !(req->rq_flags & RQF_PM))
1350 			return BLK_STS_OFFLINE;
1351 		return BLK_STS_OK;
1352 	}
1353 }
1354 
1355 /*
1356  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1357  * and return the token else return -1.
1358  */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1359 static inline int scsi_dev_queue_ready(struct request_queue *q,
1360 				  struct scsi_device *sdev)
1361 {
1362 	int token;
1363 
1364 	if (!sdev->budget_map.map)
1365 		return INT_MAX;
1366 
1367 	token = sbitmap_get(&sdev->budget_map);
1368 	if (token < 0)
1369 		return -1;
1370 
1371 	if (!atomic_read(&sdev->device_blocked))
1372 		return token;
1373 
1374 	/*
1375 	 * Only unblock if no other commands are pending and
1376 	 * if device_blocked has decreased to zero
1377 	 */
1378 	if (scsi_device_busy(sdev) > 1 ||
1379 	    atomic_dec_return(&sdev->device_blocked) > 0) {
1380 		sbitmap_put(&sdev->budget_map, token);
1381 		return -1;
1382 	}
1383 
1384 	SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1385 			 "unblocking device at zero depth\n"));
1386 
1387 	return token;
1388 }
1389 
1390 /*
1391  * scsi_target_queue_ready: checks if there we can send commands to target
1392  * @sdev: scsi device on starget to check.
1393  */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1394 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1395 					   struct scsi_device *sdev)
1396 {
1397 	struct scsi_target *starget = scsi_target(sdev);
1398 	unsigned int busy;
1399 
1400 	if (starget->single_lun) {
1401 		spin_lock_irq(shost->host_lock);
1402 		if (starget->starget_sdev_user &&
1403 		    starget->starget_sdev_user != sdev) {
1404 			spin_unlock_irq(shost->host_lock);
1405 			return 0;
1406 		}
1407 		starget->starget_sdev_user = sdev;
1408 		spin_unlock_irq(shost->host_lock);
1409 	}
1410 
1411 	if (starget->can_queue <= 0)
1412 		return 1;
1413 
1414 	busy = atomic_inc_return(&starget->target_busy) - 1;
1415 	if (atomic_read(&starget->target_blocked) > 0) {
1416 		if (busy)
1417 			goto starved;
1418 
1419 		/*
1420 		 * unblock after target_blocked iterates to zero
1421 		 */
1422 		if (atomic_dec_return(&starget->target_blocked) > 0)
1423 			goto out_dec;
1424 
1425 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1426 				 "unblocking target at zero depth\n"));
1427 	}
1428 
1429 	if (busy >= starget->can_queue)
1430 		goto starved;
1431 
1432 	return 1;
1433 
1434 starved:
1435 	spin_lock_irq(shost->host_lock);
1436 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1437 	spin_unlock_irq(shost->host_lock);
1438 out_dec:
1439 	if (starget->can_queue > 0)
1440 		atomic_dec(&starget->target_busy);
1441 	return 0;
1442 }
1443 
1444 /*
1445  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1446  * return 0. We must end up running the queue again whenever 0 is
1447  * returned, else IO can hang.
1448  */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1449 static inline int scsi_host_queue_ready(struct request_queue *q,
1450 				   struct Scsi_Host *shost,
1451 				   struct scsi_device *sdev,
1452 				   struct scsi_cmnd *cmd)
1453 {
1454 	if (atomic_read(&shost->host_blocked) > 0) {
1455 		if (scsi_host_busy(shost) > 0)
1456 			goto starved;
1457 
1458 		/*
1459 		 * unblock after host_blocked iterates to zero
1460 		 */
1461 		if (atomic_dec_return(&shost->host_blocked) > 0)
1462 			goto out_dec;
1463 
1464 		SCSI_LOG_MLQUEUE(3,
1465 			shost_printk(KERN_INFO, shost,
1466 				     "unblocking host at zero depth\n"));
1467 	}
1468 
1469 	if (shost->host_self_blocked)
1470 		goto starved;
1471 
1472 	/* We're OK to process the command, so we can't be starved */
1473 	if (!list_empty(&sdev->starved_entry)) {
1474 		spin_lock_irq(shost->host_lock);
1475 		if (!list_empty(&sdev->starved_entry))
1476 			list_del_init(&sdev->starved_entry);
1477 		spin_unlock_irq(shost->host_lock);
1478 	}
1479 
1480 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1481 
1482 	return 1;
1483 
1484 starved:
1485 	spin_lock_irq(shost->host_lock);
1486 	if (list_empty(&sdev->starved_entry))
1487 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1488 	spin_unlock_irq(shost->host_lock);
1489 out_dec:
1490 	scsi_dec_host_busy(shost, cmd);
1491 	return 0;
1492 }
1493 
1494 /*
1495  * Busy state exporting function for request stacking drivers.
1496  *
1497  * For efficiency, no lock is taken to check the busy state of
1498  * shost/starget/sdev, since the returned value is not guaranteed and
1499  * may be changed after request stacking drivers call the function,
1500  * regardless of taking lock or not.
1501  *
1502  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1503  * needs to return 'not busy'. Otherwise, request stacking drivers
1504  * may hold requests forever.
1505  */
scsi_mq_lld_busy(struct request_queue * q)1506 static bool scsi_mq_lld_busy(struct request_queue *q)
1507 {
1508 	struct scsi_device *sdev = q->queuedata;
1509 	struct Scsi_Host *shost;
1510 
1511 	if (blk_queue_dying(q))
1512 		return false;
1513 
1514 	shost = sdev->host;
1515 
1516 	/*
1517 	 * Ignore host/starget busy state.
1518 	 * Since block layer does not have a concept of fairness across
1519 	 * multiple queues, congestion of host/starget needs to be handled
1520 	 * in SCSI layer.
1521 	 */
1522 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1523 		return true;
1524 
1525 	return false;
1526 }
1527 
1528 /*
1529  * Block layer request completion callback. May be called from interrupt
1530  * context.
1531  */
scsi_complete(struct request * rq)1532 static void scsi_complete(struct request *rq)
1533 {
1534 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1535 	enum scsi_disposition disposition;
1536 
1537 	if (blk_mq_is_reserved_rq(rq)) {
1538 		/* Only pass-through requests are supported in this code path. */
1539 		WARN_ON_ONCE(!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)));
1540 		scsi_mq_uninit_cmd(cmd);
1541 		__blk_mq_end_request(rq, scsi_result_to_blk_status(cmd->result));
1542 		return;
1543 	}
1544 
1545 	INIT_LIST_HEAD(&cmd->eh_entry);
1546 
1547 	atomic_inc(&cmd->device->iodone_cnt);
1548 	if (cmd->result)
1549 		atomic_inc(&cmd->device->ioerr_cnt);
1550 
1551 	disposition = scsi_decide_disposition(cmd);
1552 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1553 		disposition = SUCCESS;
1554 
1555 	scsi_log_completion(cmd, disposition);
1556 
1557 	switch (disposition) {
1558 	case SUCCESS:
1559 		scsi_finish_command(cmd);
1560 		break;
1561 	case NEEDS_RETRY:
1562 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1563 		break;
1564 	case ADD_TO_MLQUEUE:
1565 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1566 		break;
1567 	default:
1568 		scsi_eh_scmd_add(cmd);
1569 		break;
1570 	}
1571 }
1572 
1573 /**
1574  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1575  * @cmd: command block we are dispatching.
1576  *
1577  * Return: nonzero return request was rejected and device's queue needs to be
1578  * plugged.
1579  */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1580 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1581 {
1582 	struct Scsi_Host *host = cmd->device->host;
1583 	int rtn = 0;
1584 
1585 	atomic_inc(&cmd->device->iorequest_cnt);
1586 
1587 	/* check if the device is still usable */
1588 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1589 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1590 		 * returns an immediate error upwards, and signals
1591 		 * that the device is no longer present */
1592 		cmd->result = DID_NO_CONNECT << 16;
1593 		goto done;
1594 	}
1595 
1596 	/* Check to see if the scsi lld made this device blocked. */
1597 	if (unlikely(scsi_device_blocked(cmd->device))) {
1598 		/*
1599 		 * in blocked state, the command is just put back on
1600 		 * the device queue.  The suspend state has already
1601 		 * blocked the queue so future requests should not
1602 		 * occur until the device transitions out of the
1603 		 * suspend state.
1604 		 */
1605 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1606 			"queuecommand : device blocked\n"));
1607 		atomic_dec(&cmd->device->iorequest_cnt);
1608 		return SCSI_MLQUEUE_DEVICE_BUSY;
1609 	}
1610 
1611 	/* Store the LUN value in cmnd, if needed. */
1612 	if (cmd->device->lun_in_cdb)
1613 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1614 			       (cmd->device->lun << 5 & 0xe0);
1615 
1616 	scsi_log_send(cmd);
1617 
1618 	/*
1619 	 * Before we queue this command, check if the command
1620 	 * length exceeds what the host adapter can handle.
1621 	 */
1622 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1623 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1624 			       "queuecommand : command too long. "
1625 			       "cdb_size=%d host->max_cmd_len=%d\n",
1626 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1627 		cmd->result = (DID_ABORT << 16);
1628 		goto done;
1629 	}
1630 
1631 	if (unlikely(host->shost_state == SHOST_DEL)) {
1632 		cmd->result = (DID_NO_CONNECT << 16);
1633 		goto done;
1634 
1635 	}
1636 
1637 	trace_scsi_dispatch_cmd_start(cmd);
1638 	rtn = host->hostt->queuecommand(host, cmd);
1639 	if (rtn) {
1640 		atomic_dec(&cmd->device->iorequest_cnt);
1641 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1642 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1643 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1644 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1645 
1646 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1647 			"queuecommand : request rejected\n"));
1648 	}
1649 
1650 	return rtn;
1651  done:
1652 	scsi_done(cmd);
1653 	return 0;
1654 }
1655 
1656 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1657 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1658 {
1659 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1660 		sizeof(struct scatterlist);
1661 }
1662 
scsi_prepare_cmd(struct request * req)1663 static blk_status_t scsi_prepare_cmd(struct request *req)
1664 {
1665 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1666 	struct scsi_device *sdev = req->q->queuedata;
1667 	struct Scsi_Host *shost = sdev->host;
1668 	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1669 	struct scatterlist *sg;
1670 
1671 	scsi_init_command(sdev, cmd);
1672 
1673 	cmd->eh_eflags = 0;
1674 	cmd->prot_type = 0;
1675 	cmd->prot_flags = 0;
1676 	cmd->submitter = 0;
1677 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1678 	cmd->underflow = 0;
1679 	cmd->transfersize = 0;
1680 	cmd->host_scribble = NULL;
1681 	cmd->result = 0;
1682 	cmd->extra_len = 0;
1683 	cmd->state = 0;
1684 	if (in_flight)
1685 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1686 
1687 	cmd->prot_op = SCSI_PROT_NORMAL;
1688 	if (blk_rq_bytes(req))
1689 		cmd->sc_data_direction = rq_dma_dir(req);
1690 	else
1691 		cmd->sc_data_direction = DMA_NONE;
1692 
1693 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1694 	cmd->sdb.table.sgl = sg;
1695 
1696 	if (scsi_host_get_prot(shost)) {
1697 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1698 
1699 		cmd->prot_sdb->table.sgl =
1700 			(struct scatterlist *)(cmd->prot_sdb + 1);
1701 	}
1702 
1703 	/*
1704 	 * Special handling for passthrough commands, which don't go to the ULP
1705 	 * at all:
1706 	 */
1707 	if (blk_rq_is_passthrough(req))
1708 		return scsi_setup_scsi_cmnd(sdev, req);
1709 
1710 	if (sdev->handler && sdev->handler->prep_fn) {
1711 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1712 
1713 		if (ret != BLK_STS_OK)
1714 			return ret;
1715 	}
1716 
1717 	/* Usually overridden by the ULP */
1718 	cmd->allowed = 0;
1719 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1720 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1721 }
1722 
scsi_done_internal(struct scsi_cmnd * cmd,bool complete_directly)1723 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1724 {
1725 	struct request *req = scsi_cmd_to_rq(cmd);
1726 
1727 	switch (cmd->submitter) {
1728 	case SUBMITTED_BY_BLOCK_LAYER:
1729 		break;
1730 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1731 		return scsi_eh_done(cmd);
1732 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1733 		return;
1734 	}
1735 
1736 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1737 		return;
1738 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1739 		return;
1740 	trace_scsi_dispatch_cmd_done(cmd);
1741 
1742 	if (complete_directly)
1743 		blk_mq_complete_request_direct(req, scsi_complete);
1744 	else
1745 		blk_mq_complete_request(req);
1746 }
1747 
scsi_done(struct scsi_cmnd * cmd)1748 void scsi_done(struct scsi_cmnd *cmd)
1749 {
1750 	scsi_done_internal(cmd, false);
1751 }
1752 EXPORT_SYMBOL(scsi_done);
1753 
scsi_done_direct(struct scsi_cmnd * cmd)1754 void scsi_done_direct(struct scsi_cmnd *cmd)
1755 {
1756 	scsi_done_internal(cmd, true);
1757 }
1758 EXPORT_SYMBOL(scsi_done_direct);
1759 
scsi_mq_put_budget(struct request_queue * q,int budget_token)1760 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1761 {
1762 	struct scsi_device *sdev = q->queuedata;
1763 
1764 	if (sdev->budget_map.map)
1765 		sbitmap_put(&sdev->budget_map, budget_token);
1766 }
1767 
1768 /*
1769  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1770  * not change behaviour from the previous unplug mechanism, experimentation
1771  * may prove this needs changing.
1772  */
1773 #define SCSI_QUEUE_DELAY 3
1774 
scsi_mq_get_budget(struct request_queue * q)1775 static int scsi_mq_get_budget(struct request_queue *q)
1776 {
1777 	struct scsi_device *sdev = q->queuedata;
1778 	int token = scsi_dev_queue_ready(q, sdev);
1779 
1780 	if (token >= 0)
1781 		return token;
1782 
1783 	atomic_inc(&sdev->restarts);
1784 
1785 	/*
1786 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1787 	 * .restarts must be incremented before .device_busy is read because the
1788 	 * code in scsi_run_queue_async() depends on the order of these operations.
1789 	 */
1790 	smp_mb__after_atomic();
1791 
1792 	/*
1793 	 * If all in-flight requests originated from this LUN are completed
1794 	 * before reading .device_busy, sdev->device_busy will be observed as
1795 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1796 	 * soon. Otherwise, completion of one of these requests will observe
1797 	 * the .restarts flag, and the request queue will be run for handling
1798 	 * this request, see scsi_end_request().
1799 	 */
1800 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1801 				!scsi_device_blocked(sdev)))
1802 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1803 	return -1;
1804 }
1805 
scsi_mq_set_rq_budget_token(struct request * req,int token)1806 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1807 {
1808 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1809 
1810 	cmd->budget_token = token;
1811 }
1812 
scsi_mq_get_rq_budget_token(struct request * req)1813 static int scsi_mq_get_rq_budget_token(struct request *req)
1814 {
1815 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1816 
1817 	return cmd->budget_token;
1818 }
1819 
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1820 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1821 			 const struct blk_mq_queue_data *bd)
1822 {
1823 	struct request *req = bd->rq;
1824 	struct request_queue *q = req->q;
1825 	struct scsi_device *sdev = q->queuedata;
1826 	struct Scsi_Host *shost = sdev->host;
1827 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1828 	blk_status_t ret;
1829 	int reason;
1830 
1831 	WARN_ON_ONCE(cmd->budget_token < 0);
1832 
1833 	/*
1834 	 * Bypass the SCSI device, SCSI target and SCSI host checks for
1835 	 * reserved commands.
1836 	 */
1837 	if (!blk_mq_is_reserved_rq(req)) {
1838 		/*
1839 		 * If the device is not in running state we will reject some or
1840 		 * all commands.
1841 		 */
1842 		if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1843 			ret = scsi_device_state_check(sdev, req);
1844 			if (ret != BLK_STS_OK)
1845 				goto out_put_budget;
1846 		}
1847 
1848 		ret = BLK_STS_RESOURCE;
1849 		if (!scsi_target_queue_ready(shost, sdev))
1850 			goto out_put_budget;
1851 		if (unlikely(scsi_host_in_recovery(shost))) {
1852 			if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1853 				ret = BLK_STS_OFFLINE;
1854 			goto out_dec_target_busy;
1855 		}
1856 		if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1857 			goto out_dec_target_busy;
1858 	}
1859 
1860 	/*
1861 	 * Only clear the driver-private command data if the LLD does not supply
1862 	 * a function to initialize that data.
1863 	 */
1864 	if (shost->hostt->cmd_size && !shost->hostt->init_cmd_priv)
1865 		memset(scsi_cmd_priv(cmd), 0, shost->hostt->cmd_size);
1866 
1867 	if (!(req->rq_flags & RQF_DONTPREP)) {
1868 		ret = scsi_prepare_cmd(req);
1869 		if (ret != BLK_STS_OK)
1870 			goto out_dec_host_busy;
1871 		req->rq_flags |= RQF_DONTPREP;
1872 	} else {
1873 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1874 	}
1875 
1876 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1877 	if (sdev->simple_tags)
1878 		cmd->flags |= SCMD_TAGGED;
1879 	if (bd->last)
1880 		cmd->flags |= SCMD_LAST;
1881 
1882 	scsi_set_resid(cmd, 0);
1883 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1884 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1885 
1886 	blk_mq_start_request(req);
1887 	if (blk_mq_is_reserved_rq(req)) {
1888 		reason = shost->hostt->queue_reserved_command(shost, cmd);
1889 		if (reason) {
1890 			ret = BLK_STS_RESOURCE;
1891 			goto out_put_budget;
1892 		}
1893 		return BLK_STS_OK;
1894 	}
1895 	reason = scsi_dispatch_cmd(cmd);
1896 	if (reason) {
1897 		scsi_set_blocked(cmd, reason);
1898 		ret = BLK_STS_RESOURCE;
1899 		goto out_dec_host_busy;
1900 	}
1901 
1902 	return BLK_STS_OK;
1903 
1904 out_dec_host_busy:
1905 	scsi_dec_host_busy(shost, cmd);
1906 out_dec_target_busy:
1907 	if (scsi_target(sdev)->can_queue > 0)
1908 		atomic_dec(&scsi_target(sdev)->target_busy);
1909 out_put_budget:
1910 	scsi_mq_put_budget(q, cmd->budget_token);
1911 	cmd->budget_token = -1;
1912 	switch (ret) {
1913 	case BLK_STS_OK:
1914 		break;
1915 	case BLK_STS_RESOURCE:
1916 		if (scsi_device_blocked(sdev))
1917 			ret = BLK_STS_DEV_RESOURCE;
1918 		break;
1919 	case BLK_STS_AGAIN:
1920 		cmd->result = DID_BUS_BUSY << 16;
1921 		if (req->rq_flags & RQF_DONTPREP)
1922 			scsi_mq_uninit_cmd(cmd);
1923 		break;
1924 	default:
1925 		if (unlikely(!scsi_device_online(sdev)))
1926 			cmd->result = DID_NO_CONNECT << 16;
1927 		else
1928 			cmd->result = DID_ERROR << 16;
1929 		/*
1930 		 * Make sure to release all allocated resources when
1931 		 * we hit an error, as we will never see this command
1932 		 * again.
1933 		 */
1934 		if (req->rq_flags & RQF_DONTPREP)
1935 			scsi_mq_uninit_cmd(cmd);
1936 		scsi_run_queue_async(sdev);
1937 		break;
1938 	}
1939 	return ret;
1940 }
1941 
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1942 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1943 				unsigned int hctx_idx, unsigned int numa_node)
1944 {
1945 	struct Scsi_Host *shost = set->driver_data;
1946 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1947 	struct scatterlist *sg;
1948 	int ret = 0;
1949 
1950 	cmd->sense_buffer =
1951 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1952 	if (!cmd->sense_buffer)
1953 		return -ENOMEM;
1954 
1955 	if (scsi_host_get_prot(shost)) {
1956 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1957 			shost->hostt->cmd_size;
1958 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1959 	}
1960 
1961 	if (shost->hostt->init_cmd_priv) {
1962 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1963 		if (ret < 0)
1964 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1965 	}
1966 
1967 	return ret;
1968 }
1969 
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1970 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1971 				 unsigned int hctx_idx)
1972 {
1973 	struct Scsi_Host *shost = set->driver_data;
1974 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1975 
1976 	if (shost->hostt->exit_cmd_priv)
1977 		shost->hostt->exit_cmd_priv(shost, cmd);
1978 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1979 }
1980 
1981 
scsi_mq_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1982 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1983 {
1984 	struct Scsi_Host *shost = hctx->driver_data;
1985 
1986 	if (shost->hostt->mq_poll)
1987 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1988 
1989 	return 0;
1990 }
1991 
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1992 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1993 			  unsigned int hctx_idx)
1994 {
1995 	struct Scsi_Host *shost = data;
1996 
1997 	hctx->driver_data = shost;
1998 	return 0;
1999 }
2000 
scsi_map_queues(struct blk_mq_tag_set * set)2001 static void scsi_map_queues(struct blk_mq_tag_set *set)
2002 {
2003 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2004 
2005 	if (shost->hostt->map_queues)
2006 		return shost->hostt->map_queues(shost);
2007 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2008 }
2009 
scsi_init_limits(struct Scsi_Host * shost,struct queue_limits * lim)2010 void scsi_init_limits(struct Scsi_Host *shost, struct queue_limits *lim)
2011 {
2012 	struct device *dev = shost->dma_dev;
2013 
2014 	memset(lim, 0, sizeof(*lim));
2015 	lim->max_segments =
2016 		min_t(unsigned short, shost->sg_tablesize, SG_MAX_SEGMENTS);
2017 
2018 	if (scsi_host_prot_dma(shost)) {
2019 		shost->sg_prot_tablesize =
2020 			min_not_zero(shost->sg_prot_tablesize,
2021 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2022 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2023 		lim->max_integrity_segments = shost->sg_prot_tablesize;
2024 	}
2025 
2026 	lim->max_hw_sectors = shost->max_sectors;
2027 	lim->seg_boundary_mask = shost->dma_boundary;
2028 	lim->max_segment_size = shost->max_segment_size;
2029 	lim->virt_boundary_mask = shost->virt_boundary_mask;
2030 	lim->dma_alignment = max_t(unsigned int,
2031 		shost->dma_alignment, dma_get_cache_alignment() - 1);
2032 
2033 	/*
2034 	 * Propagate the DMA formation properties to the dma-mapping layer as
2035 	 * a courtesy service to the LLDDs.  This needs to check that the buses
2036 	 * actually support the DMA API first, though.
2037 	 */
2038 	if (dev->dma_parms) {
2039 		dma_set_seg_boundary(dev, shost->dma_boundary);
2040 		dma_set_max_seg_size(dev, shost->max_segment_size);
2041 	}
2042 }
2043 EXPORT_SYMBOL_GPL(scsi_init_limits);
2044 
2045 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2046 	.get_budget	= scsi_mq_get_budget,
2047 	.put_budget	= scsi_mq_put_budget,
2048 	.queue_rq	= scsi_queue_rq,
2049 	.complete	= scsi_complete,
2050 	.timeout	= scsi_timeout,
2051 #ifdef CONFIG_BLK_DEBUG_FS
2052 	.show_rq	= scsi_show_rq,
2053 #endif
2054 	.init_request	= scsi_mq_init_request,
2055 	.exit_request	= scsi_mq_exit_request,
2056 	.cleanup_rq	= scsi_cleanup_rq,
2057 	.busy		= scsi_mq_lld_busy,
2058 	.map_queues	= scsi_map_queues,
2059 	.init_hctx	= scsi_init_hctx,
2060 	.poll		= scsi_mq_poll,
2061 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2062 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2063 };
2064 
2065 
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)2066 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2067 {
2068 	struct Scsi_Host *shost = hctx->driver_data;
2069 
2070 	shost->hostt->commit_rqs(shost, hctx->queue_num);
2071 }
2072 
2073 static const struct blk_mq_ops scsi_mq_ops = {
2074 	.get_budget	= scsi_mq_get_budget,
2075 	.put_budget	= scsi_mq_put_budget,
2076 	.queue_rq	= scsi_queue_rq,
2077 	.commit_rqs	= scsi_commit_rqs,
2078 	.complete	= scsi_complete,
2079 	.timeout	= scsi_timeout,
2080 #ifdef CONFIG_BLK_DEBUG_FS
2081 	.show_rq	= scsi_show_rq,
2082 #endif
2083 	.init_request	= scsi_mq_init_request,
2084 	.exit_request	= scsi_mq_exit_request,
2085 	.cleanup_rq	= scsi_cleanup_rq,
2086 	.busy		= scsi_mq_lld_busy,
2087 	.map_queues	= scsi_map_queues,
2088 	.init_hctx	= scsi_init_hctx,
2089 	.poll		= scsi_mq_poll,
2090 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2091 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2092 };
2093 
scsi_mq_setup_tags(struct Scsi_Host * shost)2094 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2095 {
2096 	unsigned int cmd_size, sgl_size;
2097 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
2098 
2099 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2100 				scsi_mq_inline_sgl_size(shost));
2101 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2102 	if (scsi_host_get_prot(shost))
2103 		cmd_size += sizeof(struct scsi_data_buffer) +
2104 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2105 
2106 	memset(tag_set, 0, sizeof(*tag_set));
2107 	if (shost->hostt->commit_rqs)
2108 		tag_set->ops = &scsi_mq_ops;
2109 	else
2110 		tag_set->ops = &scsi_mq_ops_no_commit;
2111 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2112 	tag_set->nr_maps = shost->nr_maps ? : 1;
2113 	tag_set->queue_depth = shost->can_queue + shost->nr_reserved_cmds;
2114 	tag_set->reserved_tags = shost->nr_reserved_cmds;
2115 	tag_set->cmd_size = cmd_size;
2116 	tag_set->numa_node = dev_to_node(shost->dma_dev);
2117 	if (shost->hostt->tag_alloc_policy_rr)
2118 		tag_set->flags |= BLK_MQ_F_TAG_RR;
2119 	if (shost->queuecommand_may_block)
2120 		tag_set->flags |= BLK_MQ_F_BLOCKING;
2121 	tag_set->driver_data = shost;
2122 	if (shost->host_tagset)
2123 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2124 
2125 	return blk_mq_alloc_tag_set(tag_set);
2126 }
2127 
scsi_mq_free_tags(struct kref * kref)2128 void scsi_mq_free_tags(struct kref *kref)
2129 {
2130 	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2131 					       tagset_refcnt);
2132 
2133 	blk_mq_free_tag_set(&shost->tag_set);
2134 	complete(&shost->tagset_freed);
2135 }
2136 
2137 /**
2138  * scsi_get_internal_cmd() - Allocate an internal SCSI command.
2139  * @sdev: SCSI device from which to allocate the command
2140  * @data_direction: Data direction for the allocated command
2141  * @flags: request allocation flags, e.g. BLK_MQ_REQ_RESERVED or
2142  *	BLK_MQ_REQ_NOWAIT.
2143  *
2144  * Allocates a SCSI command for internal LLDD use.
2145  */
scsi_get_internal_cmd(struct scsi_device * sdev,enum dma_data_direction data_direction,blk_mq_req_flags_t flags)2146 struct scsi_cmnd *scsi_get_internal_cmd(struct scsi_device *sdev,
2147 					enum dma_data_direction data_direction,
2148 					blk_mq_req_flags_t flags)
2149 {
2150 	enum req_op op = data_direction == DMA_TO_DEVICE ? REQ_OP_DRV_OUT :
2151 							   REQ_OP_DRV_IN;
2152 	struct scsi_cmnd *scmd;
2153 	struct request *rq;
2154 
2155 	rq = scsi_alloc_request(sdev->request_queue, op, flags);
2156 	if (IS_ERR(rq))
2157 		return NULL;
2158 	scmd = blk_mq_rq_to_pdu(rq);
2159 	scmd->device = sdev;
2160 
2161 	return scmd;
2162 }
2163 EXPORT_SYMBOL_GPL(scsi_get_internal_cmd);
2164 
2165 /**
2166  * scsi_put_internal_cmd() - Free an internal SCSI command.
2167  * @scmd: SCSI command to be freed
2168  */
scsi_put_internal_cmd(struct scsi_cmnd * scmd)2169 void scsi_put_internal_cmd(struct scsi_cmnd *scmd)
2170 {
2171 	blk_mq_free_request(blk_mq_rq_from_pdu(scmd));
2172 }
2173 EXPORT_SYMBOL_GPL(scsi_put_internal_cmd);
2174 
2175 /**
2176  * scsi_device_from_queue - return sdev associated with a request_queue
2177  * @q: The request queue to return the sdev from
2178  *
2179  * Return the sdev associated with a request queue or NULL if the
2180  * request_queue does not reference a SCSI device.
2181  */
scsi_device_from_queue(struct request_queue * q)2182 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2183 {
2184 	struct scsi_device *sdev = NULL;
2185 
2186 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2187 	    q->mq_ops == &scsi_mq_ops)
2188 		sdev = q->queuedata;
2189 	if (!sdev || !get_device(&sdev->sdev_gendev))
2190 		sdev = NULL;
2191 
2192 	return sdev;
2193 }
2194 /*
2195  * pktcdvd should have been integrated into the SCSI layers, but for historical
2196  * reasons like the old IDE driver it isn't.  This export allows it to safely
2197  * probe if a given device is a SCSI one and only attach to that.
2198  */
2199 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2200 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2201 #endif
2202 
2203 /**
2204  * scsi_block_requests - Utility function used by low-level drivers to prevent
2205  * further commands from being queued to the device.
2206  * @shost:  host in question
2207  *
2208  * There is no timer nor any other means by which the requests get unblocked
2209  * other than the low-level driver calling scsi_unblock_requests().
2210  */
scsi_block_requests(struct Scsi_Host * shost)2211 void scsi_block_requests(struct Scsi_Host *shost)
2212 {
2213 	shost->host_self_blocked = 1;
2214 }
2215 EXPORT_SYMBOL(scsi_block_requests);
2216 
2217 /**
2218  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2219  * further commands to be queued to the device.
2220  * @shost:  host in question
2221  *
2222  * There is no timer nor any other means by which the requests get unblocked
2223  * other than the low-level driver calling scsi_unblock_requests(). This is done
2224  * as an API function so that changes to the internals of the scsi mid-layer
2225  * won't require wholesale changes to drivers that use this feature.
2226  */
scsi_unblock_requests(struct Scsi_Host * shost)2227 void scsi_unblock_requests(struct Scsi_Host *shost)
2228 {
2229 	shost->host_self_blocked = 0;
2230 	scsi_run_host_queues(shost);
2231 }
2232 EXPORT_SYMBOL(scsi_unblock_requests);
2233 
scsi_exit_queue(void)2234 void scsi_exit_queue(void)
2235 {
2236 	kmem_cache_destroy(scsi_sense_cache);
2237 }
2238 
2239 /**
2240  *	scsi_mode_select - issue a mode select
2241  *	@sdev:	SCSI device to be queried
2242  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2243  *	@sp:	Save page bit (0 == don't save, 1 == save)
2244  *	@buffer: request buffer (may not be smaller than eight bytes)
2245  *	@len:	length of request buffer.
2246  *	@timeout: command timeout
2247  *	@retries: number of retries before failing
2248  *	@data: returns a structure abstracting the mode header data
2249  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2250  *		must be SCSI_SENSE_BUFFERSIZE big.
2251  *
2252  *	Returns zero if successful; negative error number or scsi
2253  *	status on error
2254  *
2255  */
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2256 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2257 		     unsigned char *buffer, int len, int timeout, int retries,
2258 		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2259 {
2260 	unsigned char cmd[10];
2261 	unsigned char *real_buffer;
2262 	const struct scsi_exec_args exec_args = {
2263 		.sshdr = sshdr,
2264 	};
2265 	int ret;
2266 
2267 	memset(cmd, 0, sizeof(cmd));
2268 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2269 
2270 	/*
2271 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2272 	 * and the mode select header cannot fit within the maximumm 255 bytes
2273 	 * of the MODE SELECT(6) command.
2274 	 */
2275 	if (sdev->use_10_for_ms ||
2276 	    len + 4 > 255 ||
2277 	    data->block_descriptor_length > 255) {
2278 		if (len > 65535 - 8)
2279 			return -EINVAL;
2280 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2281 		if (!real_buffer)
2282 			return -ENOMEM;
2283 		memcpy(real_buffer + 8, buffer, len);
2284 		len += 8;
2285 		real_buffer[0] = 0;
2286 		real_buffer[1] = 0;
2287 		real_buffer[2] = data->medium_type;
2288 		real_buffer[3] = data->device_specific;
2289 		real_buffer[4] = data->longlba ? 0x01 : 0;
2290 		real_buffer[5] = 0;
2291 		put_unaligned_be16(data->block_descriptor_length,
2292 				   &real_buffer[6]);
2293 
2294 		cmd[0] = MODE_SELECT_10;
2295 		put_unaligned_be16(len, &cmd[7]);
2296 	} else {
2297 		if (data->longlba)
2298 			return -EINVAL;
2299 
2300 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2301 		if (!real_buffer)
2302 			return -ENOMEM;
2303 		memcpy(real_buffer + 4, buffer, len);
2304 		len += 4;
2305 		real_buffer[0] = 0;
2306 		real_buffer[1] = data->medium_type;
2307 		real_buffer[2] = data->device_specific;
2308 		real_buffer[3] = data->block_descriptor_length;
2309 
2310 		cmd[0] = MODE_SELECT;
2311 		cmd[4] = len;
2312 	}
2313 
2314 	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2315 			       timeout, retries, &exec_args);
2316 	kfree(real_buffer);
2317 	return ret;
2318 }
2319 EXPORT_SYMBOL_GPL(scsi_mode_select);
2320 
2321 /**
2322  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2323  *	@sdev:	SCSI device to be queried
2324  *	@dbd:	set to prevent mode sense from returning block descriptors
2325  *	@modepage: mode page being requested
2326  *	@subpage: sub-page of the mode page being requested
2327  *	@buffer: request buffer (may not be smaller than eight bytes)
2328  *	@len:	length of request buffer.
2329  *	@timeout: command timeout
2330  *	@retries: number of retries before failing
2331  *	@data: returns a structure abstracting the mode header data
2332  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2333  *		must be SCSI_SENSE_BUFFERSIZE big.
2334  *
2335  *	Returns zero if successful, or a negative error number on failure
2336  */
2337 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,int subpage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2338 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2339 		  unsigned char *buffer, int len, int timeout, int retries,
2340 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2341 {
2342 	unsigned char cmd[12];
2343 	int use_10_for_ms;
2344 	int header_length;
2345 	int result;
2346 	struct scsi_sense_hdr my_sshdr;
2347 	struct scsi_failure failure_defs[] = {
2348 		{
2349 			.sense = UNIT_ATTENTION,
2350 			.asc = SCMD_FAILURE_ASC_ANY,
2351 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2352 			.allowed = retries,
2353 			.result = SAM_STAT_CHECK_CONDITION,
2354 		},
2355 		{}
2356 	};
2357 	struct scsi_failures failures = {
2358 		.failure_definitions = failure_defs,
2359 	};
2360 	const struct scsi_exec_args exec_args = {
2361 		/* caller might not be interested in sense, but we need it */
2362 		.sshdr = sshdr ? : &my_sshdr,
2363 		.failures = &failures,
2364 	};
2365 
2366 	memset(data, 0, sizeof(*data));
2367 	memset(&cmd[0], 0, 12);
2368 
2369 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2370 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2371 	cmd[2] = modepage;
2372 	cmd[3] = subpage;
2373 
2374 	sshdr = exec_args.sshdr;
2375 
2376  retry:
2377 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2378 
2379 	if (use_10_for_ms) {
2380 		if (len < 8 || len > 65535)
2381 			return -EINVAL;
2382 
2383 		cmd[0] = MODE_SENSE_10;
2384 		put_unaligned_be16(len, &cmd[7]);
2385 		header_length = 8;
2386 	} else {
2387 		if (len < 4)
2388 			return -EINVAL;
2389 
2390 		cmd[0] = MODE_SENSE;
2391 		cmd[4] = len;
2392 		header_length = 4;
2393 	}
2394 
2395 	memset(buffer, 0, len);
2396 
2397 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2398 				  timeout, retries, &exec_args);
2399 	if (result < 0)
2400 		return result;
2401 
2402 	/* This code looks awful: what it's doing is making sure an
2403 	 * ILLEGAL REQUEST sense return identifies the actual command
2404 	 * byte as the problem.  MODE_SENSE commands can return
2405 	 * ILLEGAL REQUEST if the code page isn't supported */
2406 
2407 	if (!scsi_status_is_good(result)) {
2408 		if (scsi_sense_valid(sshdr)) {
2409 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2410 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2411 				/*
2412 				 * Invalid command operation code: retry using
2413 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2414 				 * request, except if the request mode page is
2415 				 * too large for MODE SENSE single byte
2416 				 * allocation length field.
2417 				 */
2418 				if (use_10_for_ms) {
2419 					if (len > 255)
2420 						return -EIO;
2421 					sdev->use_10_for_ms = 0;
2422 					goto retry;
2423 				}
2424 			}
2425 		}
2426 		return -EIO;
2427 	}
2428 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2429 		     (modepage == 6 || modepage == 8))) {
2430 		/* Initio breakage? */
2431 		header_length = 0;
2432 		data->length = 13;
2433 		data->medium_type = 0;
2434 		data->device_specific = 0;
2435 		data->longlba = 0;
2436 		data->block_descriptor_length = 0;
2437 	} else if (use_10_for_ms) {
2438 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2439 		data->medium_type = buffer[2];
2440 		data->device_specific = buffer[3];
2441 		data->longlba = buffer[4] & 0x01;
2442 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2443 	} else {
2444 		data->length = buffer[0] + 1;
2445 		data->medium_type = buffer[1];
2446 		data->device_specific = buffer[2];
2447 		data->block_descriptor_length = buffer[3];
2448 	}
2449 	data->header_length = header_length;
2450 
2451 	return 0;
2452 }
2453 EXPORT_SYMBOL(scsi_mode_sense);
2454 
2455 /**
2456  *	scsi_test_unit_ready - test if unit is ready
2457  *	@sdev:	scsi device to change the state of.
2458  *	@timeout: command timeout
2459  *	@retries: number of retries before failing
2460  *	@sshdr: outpout pointer for decoded sense information.
2461  *
2462  *	Returns zero if unsuccessful or an error if TUR failed.  For
2463  *	removable media, UNIT_ATTENTION sets ->changed flag.
2464  **/
2465 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2466 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2467 		     struct scsi_sense_hdr *sshdr)
2468 {
2469 	char cmd[] = {
2470 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2471 	};
2472 	const struct scsi_exec_args exec_args = {
2473 		.sshdr = sshdr,
2474 	};
2475 	int result;
2476 
2477 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2478 	do {
2479 		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2480 					  timeout, 1, &exec_args);
2481 		if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2482 		    sshdr->sense_key == UNIT_ATTENTION)
2483 			sdev->changed = 1;
2484 	} while (result > 0 && scsi_sense_valid(sshdr) &&
2485 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2486 
2487 	return result;
2488 }
2489 EXPORT_SYMBOL(scsi_test_unit_ready);
2490 
2491 /**
2492  *	scsi_device_set_state - Take the given device through the device state model.
2493  *	@sdev:	scsi device to change the state of.
2494  *	@state:	state to change to.
2495  *
2496  *	Returns zero if successful or an error if the requested
2497  *	transition is illegal.
2498  */
2499 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2500 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2501 {
2502 	enum scsi_device_state oldstate = sdev->sdev_state;
2503 
2504 	if (state == oldstate)
2505 		return 0;
2506 
2507 	switch (state) {
2508 	case SDEV_CREATED:
2509 		switch (oldstate) {
2510 		case SDEV_CREATED_BLOCK:
2511 			break;
2512 		default:
2513 			goto illegal;
2514 		}
2515 		break;
2516 
2517 	case SDEV_RUNNING:
2518 		switch (oldstate) {
2519 		case SDEV_CREATED:
2520 		case SDEV_OFFLINE:
2521 		case SDEV_TRANSPORT_OFFLINE:
2522 		case SDEV_QUIESCE:
2523 		case SDEV_BLOCK:
2524 			break;
2525 		default:
2526 			goto illegal;
2527 		}
2528 		break;
2529 
2530 	case SDEV_QUIESCE:
2531 		switch (oldstate) {
2532 		case SDEV_RUNNING:
2533 		case SDEV_OFFLINE:
2534 		case SDEV_TRANSPORT_OFFLINE:
2535 			break;
2536 		default:
2537 			goto illegal;
2538 		}
2539 		break;
2540 
2541 	case SDEV_OFFLINE:
2542 	case SDEV_TRANSPORT_OFFLINE:
2543 		switch (oldstate) {
2544 		case SDEV_CREATED:
2545 		case SDEV_RUNNING:
2546 		case SDEV_QUIESCE:
2547 		case SDEV_BLOCK:
2548 			break;
2549 		default:
2550 			goto illegal;
2551 		}
2552 		break;
2553 
2554 	case SDEV_BLOCK:
2555 		switch (oldstate) {
2556 		case SDEV_RUNNING:
2557 		case SDEV_CREATED_BLOCK:
2558 		case SDEV_QUIESCE:
2559 		case SDEV_OFFLINE:
2560 			break;
2561 		default:
2562 			goto illegal;
2563 		}
2564 		break;
2565 
2566 	case SDEV_CREATED_BLOCK:
2567 		switch (oldstate) {
2568 		case SDEV_CREATED:
2569 			break;
2570 		default:
2571 			goto illegal;
2572 		}
2573 		break;
2574 
2575 	case SDEV_CANCEL:
2576 		switch (oldstate) {
2577 		case SDEV_CREATED:
2578 		case SDEV_RUNNING:
2579 		case SDEV_QUIESCE:
2580 		case SDEV_OFFLINE:
2581 		case SDEV_TRANSPORT_OFFLINE:
2582 			break;
2583 		default:
2584 			goto illegal;
2585 		}
2586 		break;
2587 
2588 	case SDEV_DEL:
2589 		switch (oldstate) {
2590 		case SDEV_CREATED:
2591 		case SDEV_RUNNING:
2592 		case SDEV_OFFLINE:
2593 		case SDEV_TRANSPORT_OFFLINE:
2594 		case SDEV_CANCEL:
2595 		case SDEV_BLOCK:
2596 		case SDEV_CREATED_BLOCK:
2597 			break;
2598 		default:
2599 			goto illegal;
2600 		}
2601 		break;
2602 
2603 	}
2604 	sdev->offline_already = false;
2605 	sdev->sdev_state = state;
2606 	return 0;
2607 
2608  illegal:
2609 	SCSI_LOG_ERROR_RECOVERY(1,
2610 				sdev_printk(KERN_ERR, sdev,
2611 					    "Illegal state transition %s->%s",
2612 					    scsi_device_state_name(oldstate),
2613 					    scsi_device_state_name(state))
2614 				);
2615 	return -EINVAL;
2616 }
2617 EXPORT_SYMBOL(scsi_device_set_state);
2618 
2619 /**
2620  *	scsi_evt_emit - emit a single SCSI device uevent
2621  *	@sdev: associated SCSI device
2622  *	@evt: event to emit
2623  *
2624  *	Send a single uevent (scsi_event) to the associated scsi_device.
2625  */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2626 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2627 {
2628 	int idx = 0;
2629 	char *envp[3];
2630 
2631 	switch (evt->evt_type) {
2632 	case SDEV_EVT_MEDIA_CHANGE:
2633 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2634 		break;
2635 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2636 		scsi_rescan_device(sdev);
2637 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2638 		break;
2639 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2640 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2641 		break;
2642 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2643 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2644 		break;
2645 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2646 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2647 		break;
2648 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2649 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2650 		break;
2651 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2652 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2653 		break;
2654 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2655 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2656 		break;
2657 	default:
2658 		/* do nothing */
2659 		break;
2660 	}
2661 
2662 	envp[idx++] = NULL;
2663 
2664 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2665 }
2666 
2667 /**
2668  *	scsi_evt_thread - send a uevent for each scsi event
2669  *	@work: work struct for scsi_device
2670  *
2671  *	Dispatch queued events to their associated scsi_device kobjects
2672  *	as uevents.
2673  */
scsi_evt_thread(struct work_struct * work)2674 void scsi_evt_thread(struct work_struct *work)
2675 {
2676 	struct scsi_device *sdev;
2677 	enum scsi_device_event evt_type;
2678 	LIST_HEAD(event_list);
2679 
2680 	sdev = container_of(work, struct scsi_device, event_work);
2681 
2682 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2683 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2684 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2685 
2686 	while (1) {
2687 		struct scsi_event *evt;
2688 		struct list_head *this, *tmp;
2689 		unsigned long flags;
2690 
2691 		spin_lock_irqsave(&sdev->list_lock, flags);
2692 		list_splice_init(&sdev->event_list, &event_list);
2693 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2694 
2695 		if (list_empty(&event_list))
2696 			break;
2697 
2698 		list_for_each_safe(this, tmp, &event_list) {
2699 			evt = list_entry(this, struct scsi_event, node);
2700 			list_del(&evt->node);
2701 			scsi_evt_emit(sdev, evt);
2702 			kfree(evt);
2703 		}
2704 	}
2705 }
2706 
2707 /**
2708  * 	sdev_evt_send - send asserted event to uevent thread
2709  *	@sdev: scsi_device event occurred on
2710  *	@evt: event to send
2711  *
2712  *	Assert scsi device event asynchronously.
2713  */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2714 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2715 {
2716 	unsigned long flags;
2717 
2718 #if 0
2719 	/* FIXME: currently this check eliminates all media change events
2720 	 * for polled devices.  Need to update to discriminate between AN
2721 	 * and polled events */
2722 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2723 		kfree(evt);
2724 		return;
2725 	}
2726 #endif
2727 
2728 	spin_lock_irqsave(&sdev->list_lock, flags);
2729 	list_add_tail(&evt->node, &sdev->event_list);
2730 	schedule_work(&sdev->event_work);
2731 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2732 }
2733 EXPORT_SYMBOL_GPL(sdev_evt_send);
2734 
2735 /**
2736  * 	sdev_evt_alloc - allocate a new scsi event
2737  *	@evt_type: type of event to allocate
2738  *	@gfpflags: GFP flags for allocation
2739  *
2740  *	Allocates and returns a new scsi_event.
2741  */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2742 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2743 				  gfp_t gfpflags)
2744 {
2745 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2746 	if (!evt)
2747 		return NULL;
2748 
2749 	evt->evt_type = evt_type;
2750 	INIT_LIST_HEAD(&evt->node);
2751 
2752 	/* evt_type-specific initialization, if any */
2753 	switch (evt_type) {
2754 	case SDEV_EVT_MEDIA_CHANGE:
2755 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2756 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2757 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2758 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2759 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2760 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2761 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2762 	default:
2763 		/* do nothing */
2764 		break;
2765 	}
2766 
2767 	return evt;
2768 }
2769 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2770 
2771 /**
2772  * 	sdev_evt_send_simple - send asserted event to uevent thread
2773  *	@sdev: scsi_device event occurred on
2774  *	@evt_type: type of event to send
2775  *	@gfpflags: GFP flags for allocation
2776  *
2777  *	Assert scsi device event asynchronously, given an event type.
2778  */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2779 void sdev_evt_send_simple(struct scsi_device *sdev,
2780 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2781 {
2782 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2783 	if (!evt) {
2784 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2785 			    evt_type);
2786 		return;
2787 	}
2788 
2789 	sdev_evt_send(sdev, evt);
2790 }
2791 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2792 
2793 /**
2794  *	scsi_device_quiesce - Block all commands except power management.
2795  *	@sdev:	scsi device to quiesce.
2796  *
2797  *	This works by trying to transition to the SDEV_QUIESCE state
2798  *	(which must be a legal transition).  When the device is in this
2799  *	state, only power management requests will be accepted, all others will
2800  *	be deferred.
2801  *
2802  *	Must be called with user context, may sleep.
2803  *
2804  *	Returns zero if unsuccessful or an error if not.
2805  */
2806 int
scsi_device_quiesce(struct scsi_device * sdev)2807 scsi_device_quiesce(struct scsi_device *sdev)
2808 {
2809 	struct request_queue *q = sdev->request_queue;
2810 	unsigned int memflags;
2811 	int err;
2812 
2813 	/*
2814 	 * It is allowed to call scsi_device_quiesce() multiple times from
2815 	 * the same context but concurrent scsi_device_quiesce() calls are
2816 	 * not allowed.
2817 	 */
2818 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2819 
2820 	if (sdev->quiesced_by == current)
2821 		return 0;
2822 
2823 	blk_set_pm_only(q);
2824 
2825 	memflags = blk_mq_freeze_queue(q);
2826 	/*
2827 	 * Ensure that the effect of blk_set_pm_only() will be visible
2828 	 * for percpu_ref_tryget() callers that occur after the queue
2829 	 * unfreeze even if the queue was already frozen before this function
2830 	 * was called. See also https://lwn.net/Articles/573497/.
2831 	 */
2832 	synchronize_rcu();
2833 	blk_mq_unfreeze_queue(q, memflags);
2834 
2835 	mutex_lock(&sdev->state_mutex);
2836 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2837 	if (err == 0)
2838 		sdev->quiesced_by = current;
2839 	else
2840 		blk_clear_pm_only(q);
2841 	mutex_unlock(&sdev->state_mutex);
2842 
2843 	return err;
2844 }
2845 EXPORT_SYMBOL(scsi_device_quiesce);
2846 
2847 /**
2848  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2849  *	@sdev:	scsi device to resume.
2850  *
2851  *	Moves the device from quiesced back to running and restarts the
2852  *	queues.
2853  *
2854  *	Must be called with user context, may sleep.
2855  */
scsi_device_resume(struct scsi_device * sdev)2856 void scsi_device_resume(struct scsi_device *sdev)
2857 {
2858 	/* check if the device state was mutated prior to resume, and if
2859 	 * so assume the state is being managed elsewhere (for example
2860 	 * device deleted during suspend)
2861 	 */
2862 	mutex_lock(&sdev->state_mutex);
2863 	if (sdev->sdev_state == SDEV_QUIESCE)
2864 		scsi_device_set_state(sdev, SDEV_RUNNING);
2865 	if (sdev->quiesced_by) {
2866 		sdev->quiesced_by = NULL;
2867 		blk_clear_pm_only(sdev->request_queue);
2868 	}
2869 	mutex_unlock(&sdev->state_mutex);
2870 }
2871 EXPORT_SYMBOL(scsi_device_resume);
2872 
2873 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2874 device_quiesce_fn(struct scsi_device *sdev, void *data)
2875 {
2876 	scsi_device_quiesce(sdev);
2877 }
2878 
2879 void
scsi_target_quiesce(struct scsi_target * starget)2880 scsi_target_quiesce(struct scsi_target *starget)
2881 {
2882 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2883 }
2884 EXPORT_SYMBOL(scsi_target_quiesce);
2885 
2886 static void
device_resume_fn(struct scsi_device * sdev,void * data)2887 device_resume_fn(struct scsi_device *sdev, void *data)
2888 {
2889 	scsi_device_resume(sdev);
2890 }
2891 
2892 void
scsi_target_resume(struct scsi_target * starget)2893 scsi_target_resume(struct scsi_target *starget)
2894 {
2895 	starget_for_each_device(starget, NULL, device_resume_fn);
2896 }
2897 EXPORT_SYMBOL(scsi_target_resume);
2898 
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2899 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2900 {
2901 	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2902 		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2903 
2904 	return 0;
2905 }
2906 
scsi_start_queue(struct scsi_device * sdev)2907 void scsi_start_queue(struct scsi_device *sdev)
2908 {
2909 	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2910 		blk_mq_unquiesce_queue(sdev->request_queue);
2911 }
2912 
scsi_stop_queue(struct scsi_device * sdev)2913 static void scsi_stop_queue(struct scsi_device *sdev)
2914 {
2915 	/*
2916 	 * The atomic variable of ->queue_stopped covers that
2917 	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2918 	 *
2919 	 * The caller needs to wait until quiesce is done.
2920 	 */
2921 	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2922 		blk_mq_quiesce_queue_nowait(sdev->request_queue);
2923 }
2924 
2925 /**
2926  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2927  * @sdev: device to block
2928  *
2929  * Pause SCSI command processing on the specified device. Does not sleep.
2930  *
2931  * Returns zero if successful or a negative error code upon failure.
2932  *
2933  * Notes:
2934  * This routine transitions the device to the SDEV_BLOCK state (which must be
2935  * a legal transition). When the device is in this state, command processing
2936  * is paused until the device leaves the SDEV_BLOCK state. See also
2937  * scsi_internal_device_unblock_nowait().
2938  */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2939 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2940 {
2941 	int ret = __scsi_internal_device_block_nowait(sdev);
2942 
2943 	/*
2944 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2945 	 * block layer from calling the midlayer with this device's
2946 	 * request queue.
2947 	 */
2948 	if (!ret)
2949 		scsi_stop_queue(sdev);
2950 	return ret;
2951 }
2952 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2953 
2954 /**
2955  * scsi_device_block - try to transition to the SDEV_BLOCK state
2956  * @sdev: device to block
2957  * @data: dummy argument, ignored
2958  *
2959  * Pause SCSI command processing on the specified device. Callers must wait
2960  * until all ongoing scsi_queue_rq() calls have finished after this function
2961  * returns.
2962  *
2963  * Note:
2964  * This routine transitions the device to the SDEV_BLOCK state (which must be
2965  * a legal transition). When the device is in this state, command processing
2966  * is paused until the device leaves the SDEV_BLOCK state. See also
2967  * scsi_internal_device_unblock().
2968  */
scsi_device_block(struct scsi_device * sdev,void * data)2969 static void scsi_device_block(struct scsi_device *sdev, void *data)
2970 {
2971 	int err;
2972 	enum scsi_device_state state;
2973 
2974 	mutex_lock(&sdev->state_mutex);
2975 	err = __scsi_internal_device_block_nowait(sdev);
2976 	state = sdev->sdev_state;
2977 	if (err == 0)
2978 		/*
2979 		 * scsi_stop_queue() must be called with the state_mutex
2980 		 * held. Otherwise a simultaneous scsi_start_queue() call
2981 		 * might unquiesce the queue before we quiesce it.
2982 		 */
2983 		scsi_stop_queue(sdev);
2984 
2985 	mutex_unlock(&sdev->state_mutex);
2986 
2987 	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2988 		  __func__, dev_name(&sdev->sdev_gendev), state);
2989 }
2990 
2991 /**
2992  * scsi_internal_device_unblock_nowait - resume a device after a block request
2993  * @sdev:	device to resume
2994  * @new_state:	state to set the device to after unblocking
2995  *
2996  * Restart the device queue for a previously suspended SCSI device. Does not
2997  * sleep.
2998  *
2999  * Returns zero if successful or a negative error code upon failure.
3000  *
3001  * Notes:
3002  * This routine transitions the device to the SDEV_RUNNING state or to one of
3003  * the offline states (which must be a legal transition) allowing the midlayer
3004  * to goose the queue for this device.
3005  */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)3006 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3007 					enum scsi_device_state new_state)
3008 {
3009 	switch (new_state) {
3010 	case SDEV_RUNNING:
3011 	case SDEV_TRANSPORT_OFFLINE:
3012 		break;
3013 	default:
3014 		return -EINVAL;
3015 	}
3016 
3017 	/*
3018 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3019 	 * offlined states and goose the device queue if successful.
3020 	 */
3021 	switch (sdev->sdev_state) {
3022 	case SDEV_BLOCK:
3023 	case SDEV_TRANSPORT_OFFLINE:
3024 		sdev->sdev_state = new_state;
3025 		break;
3026 	case SDEV_CREATED_BLOCK:
3027 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3028 		    new_state == SDEV_OFFLINE)
3029 			sdev->sdev_state = new_state;
3030 		else
3031 			sdev->sdev_state = SDEV_CREATED;
3032 		break;
3033 	case SDEV_CANCEL:
3034 	case SDEV_OFFLINE:
3035 		break;
3036 	default:
3037 		return -EINVAL;
3038 	}
3039 	scsi_start_queue(sdev);
3040 
3041 	return 0;
3042 }
3043 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3044 
3045 /**
3046  * scsi_internal_device_unblock - resume a device after a block request
3047  * @sdev:	device to resume
3048  * @new_state:	state to set the device to after unblocking
3049  *
3050  * Restart the device queue for a previously suspended SCSI device. May sleep.
3051  *
3052  * Returns zero if successful or a negative error code upon failure.
3053  *
3054  * Notes:
3055  * This routine transitions the device to the SDEV_RUNNING state or to one of
3056  * the offline states (which must be a legal transition) allowing the midlayer
3057  * to goose the queue for this device.
3058  */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)3059 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3060 					enum scsi_device_state new_state)
3061 {
3062 	int ret;
3063 
3064 	mutex_lock(&sdev->state_mutex);
3065 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3066 	mutex_unlock(&sdev->state_mutex);
3067 
3068 	return ret;
3069 }
3070 
3071 static int
target_block(struct device * dev,void * data)3072 target_block(struct device *dev, void *data)
3073 {
3074 	if (scsi_is_target_device(dev))
3075 		starget_for_each_device(to_scsi_target(dev), NULL,
3076 					scsi_device_block);
3077 	return 0;
3078 }
3079 
3080 /**
3081  * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3082  * @dev: a parent device of one or more scsi_target devices
3083  * @shost: the Scsi_Host to which this device belongs
3084  *
3085  * Iterate over all children of @dev, which should be scsi_target devices,
3086  * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3087  * ongoing scsi_queue_rq() calls to finish. May sleep.
3088  *
3089  * Note:
3090  * @dev must not itself be a scsi_target device.
3091  */
3092 void
scsi_block_targets(struct Scsi_Host * shost,struct device * dev)3093 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3094 {
3095 	WARN_ON_ONCE(scsi_is_target_device(dev));
3096 	device_for_each_child(dev, NULL, target_block);
3097 	blk_mq_wait_quiesce_done(&shost->tag_set);
3098 }
3099 EXPORT_SYMBOL_GPL(scsi_block_targets);
3100 
3101 static void
device_unblock(struct scsi_device * sdev,void * data)3102 device_unblock(struct scsi_device *sdev, void *data)
3103 {
3104 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3105 }
3106 
3107 static int
target_unblock(struct device * dev,void * data)3108 target_unblock(struct device *dev, void *data)
3109 {
3110 	if (scsi_is_target_device(dev))
3111 		starget_for_each_device(to_scsi_target(dev), data,
3112 					device_unblock);
3113 	return 0;
3114 }
3115 
3116 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)3117 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3118 {
3119 	if (scsi_is_target_device(dev))
3120 		starget_for_each_device(to_scsi_target(dev), &new_state,
3121 					device_unblock);
3122 	else
3123 		device_for_each_child(dev, &new_state, target_unblock);
3124 }
3125 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3126 
3127 /**
3128  * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3129  * @shost: device to block
3130  *
3131  * Pause SCSI command processing for all logical units associated with the SCSI
3132  * host and wait until pending scsi_queue_rq() calls have finished.
3133  *
3134  * Returns zero if successful or a negative error code upon failure.
3135  */
3136 int
scsi_host_block(struct Scsi_Host * shost)3137 scsi_host_block(struct Scsi_Host *shost)
3138 {
3139 	struct scsi_device *sdev;
3140 	int ret;
3141 
3142 	/*
3143 	 * Call scsi_internal_device_block_nowait so we can avoid
3144 	 * calling synchronize_rcu() for each LUN.
3145 	 */
3146 	shost_for_each_device(sdev, shost) {
3147 		mutex_lock(&sdev->state_mutex);
3148 		ret = scsi_internal_device_block_nowait(sdev);
3149 		mutex_unlock(&sdev->state_mutex);
3150 		if (ret) {
3151 			scsi_device_put(sdev);
3152 			return ret;
3153 		}
3154 	}
3155 
3156 	/* Wait for ongoing scsi_queue_rq() calls to finish. */
3157 	blk_mq_wait_quiesce_done(&shost->tag_set);
3158 
3159 	return 0;
3160 }
3161 EXPORT_SYMBOL_GPL(scsi_host_block);
3162 
3163 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)3164 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3165 {
3166 	struct scsi_device *sdev;
3167 	int ret = 0;
3168 
3169 	shost_for_each_device(sdev, shost) {
3170 		ret = scsi_internal_device_unblock(sdev, new_state);
3171 		if (ret) {
3172 			scsi_device_put(sdev);
3173 			break;
3174 		}
3175 	}
3176 	return ret;
3177 }
3178 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3179 
3180 /**
3181  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3182  * @sgl:	scatter-gather list
3183  * @sg_count:	number of segments in sg
3184  * @offset:	offset in bytes into sg, on return offset into the mapped area
3185  * @len:	bytes to map, on return number of bytes mapped
3186  *
3187  * Returns virtual address of the start of the mapped page
3188  */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3189 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3190 			  size_t *offset, size_t *len)
3191 {
3192 	int i;
3193 	size_t sg_len = 0, len_complete = 0;
3194 	struct scatterlist *sg;
3195 	struct page *page;
3196 
3197 	WARN_ON(!irqs_disabled());
3198 
3199 	for_each_sg(sgl, sg, sg_count, i) {
3200 		len_complete = sg_len; /* Complete sg-entries */
3201 		sg_len += sg->length;
3202 		if (sg_len > *offset)
3203 			break;
3204 	}
3205 
3206 	if (unlikely(i == sg_count)) {
3207 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3208 			"elements %d\n",
3209 		       __func__, sg_len, *offset, sg_count);
3210 		WARN_ON(1);
3211 		return NULL;
3212 	}
3213 
3214 	/* Offset starting from the beginning of first page in this sg-entry */
3215 	*offset = *offset - len_complete + sg->offset;
3216 
3217 	page = sg_page(sg) + (*offset >> PAGE_SHIFT);
3218 	*offset &= ~PAGE_MASK;
3219 
3220 	/* Bytes in this sg-entry from *offset to the end of the page */
3221 	sg_len = PAGE_SIZE - *offset;
3222 	if (*len > sg_len)
3223 		*len = sg_len;
3224 
3225 	return kmap_atomic(page);
3226 }
3227 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3228 
3229 /**
3230  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3231  * @virt:	virtual address to be unmapped
3232  */
scsi_kunmap_atomic_sg(void * virt)3233 void scsi_kunmap_atomic_sg(void *virt)
3234 {
3235 	kunmap_atomic(virt);
3236 }
3237 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3238 
sdev_disable_disk_events(struct scsi_device * sdev)3239 void sdev_disable_disk_events(struct scsi_device *sdev)
3240 {
3241 	atomic_inc(&sdev->disk_events_disable_depth);
3242 }
3243 EXPORT_SYMBOL(sdev_disable_disk_events);
3244 
sdev_enable_disk_events(struct scsi_device * sdev)3245 void sdev_enable_disk_events(struct scsi_device *sdev)
3246 {
3247 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3248 		return;
3249 	atomic_dec(&sdev->disk_events_disable_depth);
3250 }
3251 EXPORT_SYMBOL(sdev_enable_disk_events);
3252 
designator_prio(const unsigned char * d)3253 static unsigned char designator_prio(const unsigned char *d)
3254 {
3255 	if (d[1] & 0x30)
3256 		/* not associated with LUN */
3257 		return 0;
3258 
3259 	if (d[3] == 0)
3260 		/* invalid length */
3261 		return 0;
3262 
3263 	/*
3264 	 * Order of preference for lun descriptor:
3265 	 * - SCSI name string
3266 	 * - NAA IEEE Registered Extended
3267 	 * - EUI-64 based 16-byte
3268 	 * - EUI-64 based 12-byte
3269 	 * - NAA IEEE Registered
3270 	 * - NAA IEEE Extended
3271 	 * - EUI-64 based 8-byte
3272 	 * - SCSI name string (truncated)
3273 	 * - T10 Vendor ID
3274 	 * as longer descriptors reduce the likelyhood
3275 	 * of identification clashes.
3276 	 */
3277 
3278 	switch (d[1] & 0xf) {
3279 	case 8:
3280 		/* SCSI name string, variable-length UTF-8 */
3281 		return 9;
3282 	case 3:
3283 		switch (d[4] >> 4) {
3284 		case 6:
3285 			/* NAA registered extended */
3286 			return 8;
3287 		case 5:
3288 			/* NAA registered */
3289 			return 5;
3290 		case 4:
3291 			/* NAA extended */
3292 			return 4;
3293 		case 3:
3294 			/* NAA locally assigned */
3295 			return 1;
3296 		default:
3297 			break;
3298 		}
3299 		break;
3300 	case 2:
3301 		switch (d[3]) {
3302 		case 16:
3303 			/* EUI64-based, 16 byte */
3304 			return 7;
3305 		case 12:
3306 			/* EUI64-based, 12 byte */
3307 			return 6;
3308 		case 8:
3309 			/* EUI64-based, 8 byte */
3310 			return 3;
3311 		default:
3312 			break;
3313 		}
3314 		break;
3315 	case 1:
3316 		/* T10 vendor ID */
3317 		return 1;
3318 	default:
3319 		break;
3320 	}
3321 
3322 	return 0;
3323 }
3324 
3325 /**
3326  * scsi_vpd_lun_id - return a unique device identification
3327  * @sdev: SCSI device
3328  * @id:   buffer for the identification
3329  * @id_len:  length of the buffer
3330  *
3331  * Copies a unique device identification into @id based
3332  * on the information in the VPD page 0x83 of the device.
3333  * The string will be formatted as a SCSI name string.
3334  *
3335  * Returns the length of the identification or error on failure.
3336  * If the identifier is longer than the supplied buffer the actual
3337  * identifier length is returned and the buffer is not zero-padded.
3338  */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3339 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3340 {
3341 	u8 cur_id_prio = 0;
3342 	u8 cur_id_size = 0;
3343 	const unsigned char *d, *cur_id_str;
3344 	const struct scsi_vpd *vpd_pg83;
3345 	int id_size = -EINVAL;
3346 
3347 	rcu_read_lock();
3348 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3349 	if (!vpd_pg83) {
3350 		rcu_read_unlock();
3351 		return -ENXIO;
3352 	}
3353 
3354 	/* The id string must be at least 20 bytes + terminating NULL byte */
3355 	if (id_len < 21) {
3356 		rcu_read_unlock();
3357 		return -EINVAL;
3358 	}
3359 
3360 	memset(id, 0, id_len);
3361 	for (d = vpd_pg83->data + 4;
3362 	     d < vpd_pg83->data + vpd_pg83->len;
3363 	     d += d[3] + 4) {
3364 		u8 prio = designator_prio(d);
3365 
3366 		if (prio == 0 || cur_id_prio > prio)
3367 			continue;
3368 
3369 		switch (d[1] & 0xf) {
3370 		case 0x1:
3371 			/* T10 Vendor ID */
3372 			if (cur_id_size > d[3])
3373 				break;
3374 			cur_id_prio = prio;
3375 			cur_id_size = d[3];
3376 			if (cur_id_size + 4 > id_len)
3377 				cur_id_size = id_len - 4;
3378 			cur_id_str = d + 4;
3379 			id_size = snprintf(id, id_len, "t10.%*pE",
3380 					   cur_id_size, cur_id_str);
3381 			break;
3382 		case 0x2:
3383 			/* EUI-64 */
3384 			cur_id_prio = prio;
3385 			cur_id_size = d[3];
3386 			cur_id_str = d + 4;
3387 			switch (cur_id_size) {
3388 			case 8:
3389 				id_size = snprintf(id, id_len,
3390 						   "eui.%8phN",
3391 						   cur_id_str);
3392 				break;
3393 			case 12:
3394 				id_size = snprintf(id, id_len,
3395 						   "eui.%12phN",
3396 						   cur_id_str);
3397 				break;
3398 			case 16:
3399 				id_size = snprintf(id, id_len,
3400 						   "eui.%16phN",
3401 						   cur_id_str);
3402 				break;
3403 			default:
3404 				break;
3405 			}
3406 			break;
3407 		case 0x3:
3408 			/* NAA */
3409 			cur_id_prio = prio;
3410 			cur_id_size = d[3];
3411 			cur_id_str = d + 4;
3412 			switch (cur_id_size) {
3413 			case 8:
3414 				id_size = snprintf(id, id_len,
3415 						   "naa.%8phN",
3416 						   cur_id_str);
3417 				break;
3418 			case 16:
3419 				id_size = snprintf(id, id_len,
3420 						   "naa.%16phN",
3421 						   cur_id_str);
3422 				break;
3423 			default:
3424 				break;
3425 			}
3426 			break;
3427 		case 0x8:
3428 			/* SCSI name string */
3429 			if (cur_id_size > d[3])
3430 				break;
3431 			/* Prefer others for truncated descriptor */
3432 			if (d[3] > id_len) {
3433 				prio = 2;
3434 				if (cur_id_prio > prio)
3435 					break;
3436 			}
3437 			cur_id_prio = prio;
3438 			cur_id_size = id_size = d[3];
3439 			cur_id_str = d + 4;
3440 			if (cur_id_size >= id_len)
3441 				cur_id_size = id_len - 1;
3442 			memcpy(id, cur_id_str, cur_id_size);
3443 			break;
3444 		default:
3445 			break;
3446 		}
3447 	}
3448 	rcu_read_unlock();
3449 
3450 	return id_size;
3451 }
3452 EXPORT_SYMBOL(scsi_vpd_lun_id);
3453 
3454 /**
3455  * scsi_vpd_tpg_id - return a target port group identifier
3456  * @sdev: SCSI device
3457  * @rel_id: pointer to return relative target port in if not %NULL
3458  *
3459  * Returns the Target Port Group identifier from the information
3460  * from VPD page 0x83 of the device.
3461  * Optionally sets @rel_id to the relative target port on success.
3462  *
3463  * Return: the identifier or error on failure.
3464  */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3465 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3466 {
3467 	const unsigned char *d;
3468 	const struct scsi_vpd *vpd_pg83;
3469 	int group_id = -EAGAIN, rel_port = -1;
3470 
3471 	rcu_read_lock();
3472 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3473 	if (!vpd_pg83) {
3474 		rcu_read_unlock();
3475 		return -ENXIO;
3476 	}
3477 
3478 	d = vpd_pg83->data + 4;
3479 	while (d < vpd_pg83->data + vpd_pg83->len) {
3480 		switch (d[1] & 0xf) {
3481 		case 0x4:
3482 			/* Relative target port */
3483 			rel_port = get_unaligned_be16(&d[6]);
3484 			break;
3485 		case 0x5:
3486 			/* Target port group */
3487 			group_id = get_unaligned_be16(&d[6]);
3488 			break;
3489 		default:
3490 			break;
3491 		}
3492 		d += d[3] + 4;
3493 	}
3494 	rcu_read_unlock();
3495 
3496 	if (group_id >= 0 && rel_id && rel_port != -1)
3497 		*rel_id = rel_port;
3498 
3499 	return group_id;
3500 }
3501 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3502 
3503 /**
3504  * scsi_build_sense - build sense data for a command
3505  * @scmd:	scsi command for which the sense should be formatted
3506  * @desc:	Sense format (non-zero == descriptor format,
3507  *              0 == fixed format)
3508  * @key:	Sense key
3509  * @asc:	Additional sense code
3510  * @ascq:	Additional sense code qualifier
3511  *
3512  **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3513 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3514 {
3515 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3516 	scmd->result = SAM_STAT_CHECK_CONDITION;
3517 }
3518 EXPORT_SYMBOL_GPL(scsi_build_sense);
3519 
3520 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3521 #include "scsi_lib_test.c"
3522 #endif
3523