xref: /linux/drivers/scsi/sd.c (revision 7eb7f5723df50a7d5564aa609e4c147f669a5cb4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/bio-integrity.h>
37 #include <linux/module.h>
38 #include <linux/fs.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/rw_hint.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <linux/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_devinfo.h>
67 #include <scsi/scsi_driver.h>
68 #include <scsi/scsi_eh.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_ioctl.h>
71 #include <scsi/scsicam.h>
72 #include <scsi/scsi_common.h>
73 
74 #include "sd.h"
75 #include "scsi_priv.h"
76 #include "scsi_logging.h"
77 
78 MODULE_AUTHOR("Eric Youngdale");
79 MODULE_DESCRIPTION("SCSI disk (sd) driver");
80 MODULE_LICENSE("GPL");
81 
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
97 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
100 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
101 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
102 
103 #define SD_MINORS	16
104 
105 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
106 		unsigned int mode);
107 static void sd_config_write_same(struct scsi_disk *sdkp,
108 		struct queue_limits *lim);
109 static void  sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static void sd_shutdown(struct device *);
112 static void scsi_disk_release(struct device *cdev);
113 
114 static DEFINE_IDA(sd_index_ida);
115 
116 static mempool_t *sd_page_pool;
117 static struct lock_class_key sd_bio_compl_lkclass;
118 
119 static const char *sd_cache_types[] = {
120 	"write through", "none", "write back",
121 	"write back, no read (daft)"
122 };
123 
sd_set_flush_flag(struct scsi_disk * sdkp,struct queue_limits * lim)124 static void sd_set_flush_flag(struct scsi_disk *sdkp,
125 		struct queue_limits *lim)
126 {
127 	if (sdkp->WCE) {
128 		lim->features |= BLK_FEAT_WRITE_CACHE;
129 		if (sdkp->DPOFUA)
130 			lim->features |= BLK_FEAT_FUA;
131 		else
132 			lim->features &= ~BLK_FEAT_FUA;
133 	} else {
134 		lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
135 	}
136 }
137 
138 static ssize_t
cache_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)139 cache_type_store(struct device *dev, struct device_attribute *attr,
140 		 const char *buf, size_t count)
141 {
142 	int ct, rcd, wce, sp;
143 	struct scsi_disk *sdkp = to_scsi_disk(dev);
144 	struct scsi_device *sdp = sdkp->device;
145 	char buffer[64];
146 	char *buffer_data;
147 	struct scsi_mode_data data;
148 	struct scsi_sense_hdr sshdr;
149 	static const char temp[] = "temporary ";
150 	int len, ret;
151 
152 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
153 		/* no cache control on RBC devices; theoretically they
154 		 * can do it, but there's probably so many exceptions
155 		 * it's not worth the risk */
156 		return -EINVAL;
157 
158 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
159 		buf += sizeof(temp) - 1;
160 		sdkp->cache_override = 1;
161 	} else {
162 		sdkp->cache_override = 0;
163 	}
164 
165 	ct = sysfs_match_string(sd_cache_types, buf);
166 	if (ct < 0)
167 		return -EINVAL;
168 
169 	rcd = ct & 0x01 ? 1 : 0;
170 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
171 
172 	if (sdkp->cache_override) {
173 		struct queue_limits lim;
174 
175 		sdkp->WCE = wce;
176 		sdkp->RCD = rcd;
177 
178 		lim = queue_limits_start_update(sdkp->disk->queue);
179 		sd_set_flush_flag(sdkp, &lim);
180 		ret = queue_limits_commit_update_frozen(sdkp->disk->queue,
181 				&lim);
182 		if (ret)
183 			return ret;
184 		return count;
185 	}
186 
187 	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
188 			    sdkp->max_retries, &data, NULL))
189 		return -EINVAL;
190 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
191 		  data.block_descriptor_length);
192 	buffer_data = buffer + data.header_length +
193 		data.block_descriptor_length;
194 	buffer_data[2] &= ~0x05;
195 	buffer_data[2] |= wce << 2 | rcd;
196 	sp = buffer_data[0] & 0x80 ? 1 : 0;
197 	buffer_data[0] &= ~0x80;
198 
199 	/*
200 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
201 	 * received mode parameter buffer before doing MODE SELECT.
202 	 */
203 	data.device_specific = 0;
204 
205 	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
206 			       sdkp->max_retries, &data, &sshdr);
207 	if (ret) {
208 		if (ret > 0 && scsi_sense_valid(&sshdr))
209 			sd_print_sense_hdr(sdkp, &sshdr);
210 		return -EINVAL;
211 	}
212 	sd_revalidate_disk(sdkp->disk);
213 	return count;
214 }
215 
216 static ssize_t
manage_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)217 manage_start_stop_show(struct device *dev,
218 		       struct device_attribute *attr, char *buf)
219 {
220 	struct scsi_disk *sdkp = to_scsi_disk(dev);
221 	struct scsi_device *sdp = sdkp->device;
222 
223 	return sysfs_emit(buf, "%u\n",
224 			  sdp->manage_system_start_stop &&
225 			  sdp->manage_runtime_start_stop &&
226 			  sdp->manage_shutdown);
227 }
228 static DEVICE_ATTR_RO(manage_start_stop);
229 
230 static ssize_t
manage_system_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)231 manage_system_start_stop_show(struct device *dev,
232 			      struct device_attribute *attr, char *buf)
233 {
234 	struct scsi_disk *sdkp = to_scsi_disk(dev);
235 	struct scsi_device *sdp = sdkp->device;
236 
237 	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
238 }
239 
240 static ssize_t
manage_system_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)241 manage_system_start_stop_store(struct device *dev,
242 			       struct device_attribute *attr,
243 			       const char *buf, size_t count)
244 {
245 	struct scsi_disk *sdkp = to_scsi_disk(dev);
246 	struct scsi_device *sdp = sdkp->device;
247 	bool v;
248 
249 	if (!capable(CAP_SYS_ADMIN))
250 		return -EACCES;
251 
252 	if (kstrtobool(buf, &v))
253 		return -EINVAL;
254 
255 	sdp->manage_system_start_stop = v;
256 
257 	return count;
258 }
259 static DEVICE_ATTR_RW(manage_system_start_stop);
260 
261 static ssize_t
manage_runtime_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)262 manage_runtime_start_stop_show(struct device *dev,
263 			       struct device_attribute *attr, char *buf)
264 {
265 	struct scsi_disk *sdkp = to_scsi_disk(dev);
266 	struct scsi_device *sdp = sdkp->device;
267 
268 	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
269 }
270 
271 static ssize_t
manage_runtime_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)272 manage_runtime_start_stop_store(struct device *dev,
273 				struct device_attribute *attr,
274 				const char *buf, size_t count)
275 {
276 	struct scsi_disk *sdkp = to_scsi_disk(dev);
277 	struct scsi_device *sdp = sdkp->device;
278 	bool v;
279 
280 	if (!capable(CAP_SYS_ADMIN))
281 		return -EACCES;
282 
283 	if (kstrtobool(buf, &v))
284 		return -EINVAL;
285 
286 	sdp->manage_runtime_start_stop = v;
287 
288 	return count;
289 }
290 static DEVICE_ATTR_RW(manage_runtime_start_stop);
291 
manage_shutdown_show(struct device * dev,struct device_attribute * attr,char * buf)292 static ssize_t manage_shutdown_show(struct device *dev,
293 				    struct device_attribute *attr, char *buf)
294 {
295 	struct scsi_disk *sdkp = to_scsi_disk(dev);
296 	struct scsi_device *sdp = sdkp->device;
297 
298 	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
299 }
300 
manage_shutdown_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)301 static ssize_t manage_shutdown_store(struct device *dev,
302 				     struct device_attribute *attr,
303 				     const char *buf, size_t count)
304 {
305 	struct scsi_disk *sdkp = to_scsi_disk(dev);
306 	struct scsi_device *sdp = sdkp->device;
307 	bool v;
308 
309 	if (!capable(CAP_SYS_ADMIN))
310 		return -EACCES;
311 
312 	if (kstrtobool(buf, &v))
313 		return -EINVAL;
314 
315 	sdp->manage_shutdown = v;
316 
317 	return count;
318 }
319 static DEVICE_ATTR_RW(manage_shutdown);
320 
manage_restart_show(struct device * dev,struct device_attribute * attr,char * buf)321 static ssize_t manage_restart_show(struct device *dev,
322 				   struct device_attribute *attr, char *buf)
323 {
324 	struct scsi_disk *sdkp = to_scsi_disk(dev);
325 	struct scsi_device *sdp = sdkp->device;
326 
327 	return sysfs_emit(buf, "%u\n", sdp->manage_restart);
328 }
329 
manage_restart_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)330 static ssize_t manage_restart_store(struct device *dev,
331 				    struct device_attribute *attr,
332 				    const char *buf, size_t count)
333 {
334 	struct scsi_disk *sdkp = to_scsi_disk(dev);
335 	struct scsi_device *sdp = sdkp->device;
336 	bool v;
337 
338 	if (!capable(CAP_SYS_ADMIN))
339 		return -EACCES;
340 
341 	if (kstrtobool(buf, &v))
342 		return -EINVAL;
343 
344 	sdp->manage_restart = v;
345 
346 	return count;
347 }
348 static DEVICE_ATTR_RW(manage_restart);
349 
350 static ssize_t
allow_restart_show(struct device * dev,struct device_attribute * attr,char * buf)351 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
352 {
353 	struct scsi_disk *sdkp = to_scsi_disk(dev);
354 
355 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
356 }
357 
358 static ssize_t
allow_restart_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)359 allow_restart_store(struct device *dev, struct device_attribute *attr,
360 		    const char *buf, size_t count)
361 {
362 	bool v;
363 	struct scsi_disk *sdkp = to_scsi_disk(dev);
364 	struct scsi_device *sdp = sdkp->device;
365 
366 	if (!capable(CAP_SYS_ADMIN))
367 		return -EACCES;
368 
369 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
370 		return -EINVAL;
371 
372 	if (kstrtobool(buf, &v))
373 		return -EINVAL;
374 
375 	sdp->allow_restart = v;
376 
377 	return count;
378 }
379 static DEVICE_ATTR_RW(allow_restart);
380 
381 static ssize_t
cache_type_show(struct device * dev,struct device_attribute * attr,char * buf)382 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
383 {
384 	struct scsi_disk *sdkp = to_scsi_disk(dev);
385 	int ct = sdkp->RCD + 2*sdkp->WCE;
386 
387 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
388 }
389 static DEVICE_ATTR_RW(cache_type);
390 
391 static ssize_t
FUA_show(struct device * dev,struct device_attribute * attr,char * buf)392 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
393 {
394 	struct scsi_disk *sdkp = to_scsi_disk(dev);
395 
396 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
397 }
398 static DEVICE_ATTR_RO(FUA);
399 
400 static ssize_t
protection_type_show(struct device * dev,struct device_attribute * attr,char * buf)401 protection_type_show(struct device *dev, struct device_attribute *attr,
402 		     char *buf)
403 {
404 	struct scsi_disk *sdkp = to_scsi_disk(dev);
405 
406 	return sprintf(buf, "%u\n", sdkp->protection_type);
407 }
408 
409 static ssize_t
protection_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)410 protection_type_store(struct device *dev, struct device_attribute *attr,
411 		      const char *buf, size_t count)
412 {
413 	struct scsi_disk *sdkp = to_scsi_disk(dev);
414 	unsigned int val;
415 	int err;
416 
417 	if (!capable(CAP_SYS_ADMIN))
418 		return -EACCES;
419 
420 	err = kstrtouint(buf, 10, &val);
421 
422 	if (err)
423 		return err;
424 
425 	if (val <= T10_PI_TYPE3_PROTECTION)
426 		sdkp->protection_type = val;
427 
428 	return count;
429 }
430 static DEVICE_ATTR_RW(protection_type);
431 
432 static ssize_t
protection_mode_show(struct device * dev,struct device_attribute * attr,char * buf)433 protection_mode_show(struct device *dev, struct device_attribute *attr,
434 		     char *buf)
435 {
436 	struct scsi_disk *sdkp = to_scsi_disk(dev);
437 	struct scsi_device *sdp = sdkp->device;
438 	unsigned int dif, dix;
439 
440 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
441 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
442 
443 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
444 		dif = 0;
445 		dix = 1;
446 	}
447 
448 	if (!dif && !dix)
449 		return sprintf(buf, "none\n");
450 
451 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
452 }
453 static DEVICE_ATTR_RO(protection_mode);
454 
455 static ssize_t
app_tag_own_show(struct device * dev,struct device_attribute * attr,char * buf)456 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
457 {
458 	struct scsi_disk *sdkp = to_scsi_disk(dev);
459 
460 	return sprintf(buf, "%u\n", sdkp->ATO);
461 }
462 static DEVICE_ATTR_RO(app_tag_own);
463 
464 static ssize_t
thin_provisioning_show(struct device * dev,struct device_attribute * attr,char * buf)465 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
466 		       char *buf)
467 {
468 	struct scsi_disk *sdkp = to_scsi_disk(dev);
469 
470 	return sprintf(buf, "%u\n", sdkp->lbpme);
471 }
472 static DEVICE_ATTR_RO(thin_provisioning);
473 
474 /* sysfs_match_string() requires dense arrays */
475 static const char *lbp_mode[] = {
476 	[SD_LBP_FULL]		= "full",
477 	[SD_LBP_UNMAP]		= "unmap",
478 	[SD_LBP_WS16]		= "writesame_16",
479 	[SD_LBP_WS10]		= "writesame_10",
480 	[SD_LBP_ZERO]		= "writesame_zero",
481 	[SD_LBP_DISABLE]	= "disabled",
482 };
483 
484 static ssize_t
provisioning_mode_show(struct device * dev,struct device_attribute * attr,char * buf)485 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
486 		       char *buf)
487 {
488 	struct scsi_disk *sdkp = to_scsi_disk(dev);
489 
490 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
491 }
492 
493 static ssize_t
provisioning_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)494 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
495 			const char *buf, size_t count)
496 {
497 	struct scsi_disk *sdkp = to_scsi_disk(dev);
498 	struct scsi_device *sdp = sdkp->device;
499 	struct queue_limits lim;
500 	int mode, err;
501 
502 	if (!capable(CAP_SYS_ADMIN))
503 		return -EACCES;
504 
505 	if (sdp->type != TYPE_DISK)
506 		return -EINVAL;
507 
508 	mode = sysfs_match_string(lbp_mode, buf);
509 	if (mode < 0)
510 		return -EINVAL;
511 
512 	lim = queue_limits_start_update(sdkp->disk->queue);
513 	sd_config_discard(sdkp, &lim, mode);
514 	err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
515 	if (err)
516 		return err;
517 	return count;
518 }
519 static DEVICE_ATTR_RW(provisioning_mode);
520 
521 /* sysfs_match_string() requires dense arrays */
522 static const char *zeroing_mode[] = {
523 	[SD_ZERO_WRITE]		= "write",
524 	[SD_ZERO_WS]		= "writesame",
525 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
526 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
527 };
528 
529 static ssize_t
zeroing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)530 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
531 		  char *buf)
532 {
533 	struct scsi_disk *sdkp = to_scsi_disk(dev);
534 
535 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
536 }
537 
538 static ssize_t
zeroing_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)539 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
540 		   const char *buf, size_t count)
541 {
542 	struct scsi_disk *sdkp = to_scsi_disk(dev);
543 	int mode;
544 
545 	if (!capable(CAP_SYS_ADMIN))
546 		return -EACCES;
547 
548 	mode = sysfs_match_string(zeroing_mode, buf);
549 	if (mode < 0)
550 		return -EINVAL;
551 
552 	sdkp->zeroing_mode = mode;
553 
554 	return count;
555 }
556 static DEVICE_ATTR_RW(zeroing_mode);
557 
558 static ssize_t
max_medium_access_timeouts_show(struct device * dev,struct device_attribute * attr,char * buf)559 max_medium_access_timeouts_show(struct device *dev,
560 				struct device_attribute *attr, char *buf)
561 {
562 	struct scsi_disk *sdkp = to_scsi_disk(dev);
563 
564 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
565 }
566 
567 static ssize_t
max_medium_access_timeouts_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)568 max_medium_access_timeouts_store(struct device *dev,
569 				 struct device_attribute *attr, const char *buf,
570 				 size_t count)
571 {
572 	struct scsi_disk *sdkp = to_scsi_disk(dev);
573 	int err;
574 
575 	if (!capable(CAP_SYS_ADMIN))
576 		return -EACCES;
577 
578 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
579 
580 	return err ? err : count;
581 }
582 static DEVICE_ATTR_RW(max_medium_access_timeouts);
583 
584 static ssize_t
max_write_same_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)585 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
586 			   char *buf)
587 {
588 	struct scsi_disk *sdkp = to_scsi_disk(dev);
589 
590 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
591 }
592 
593 static ssize_t
max_write_same_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)594 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
595 			    const char *buf, size_t count)
596 {
597 	struct scsi_disk *sdkp = to_scsi_disk(dev);
598 	struct scsi_device *sdp = sdkp->device;
599 	struct queue_limits lim;
600 	unsigned long max;
601 	int err;
602 
603 	if (!capable(CAP_SYS_ADMIN))
604 		return -EACCES;
605 
606 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
607 		return -EINVAL;
608 
609 	err = kstrtoul(buf, 10, &max);
610 
611 	if (err)
612 		return err;
613 
614 	if (max == 0)
615 		sdp->no_write_same = 1;
616 	else if (max <= SD_MAX_WS16_BLOCKS) {
617 		sdp->no_write_same = 0;
618 		sdkp->max_ws_blocks = max;
619 	}
620 
621 	lim = queue_limits_start_update(sdkp->disk->queue);
622 	sd_config_write_same(sdkp, &lim);
623 	err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
624 	if (err)
625 		return err;
626 	return count;
627 }
628 static DEVICE_ATTR_RW(max_write_same_blocks);
629 
630 static ssize_t
zoned_cap_show(struct device * dev,struct device_attribute * attr,char * buf)631 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
632 {
633 	struct scsi_disk *sdkp = to_scsi_disk(dev);
634 
635 	if (sdkp->device->type == TYPE_ZBC)
636 		return sprintf(buf, "host-managed\n");
637 	if (sdkp->zoned == 1)
638 		return sprintf(buf, "host-aware\n");
639 	if (sdkp->zoned == 2)
640 		return sprintf(buf, "drive-managed\n");
641 	return sprintf(buf, "none\n");
642 }
643 static DEVICE_ATTR_RO(zoned_cap);
644 
645 static ssize_t
max_retries_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)646 max_retries_store(struct device *dev, struct device_attribute *attr,
647 		  const char *buf, size_t count)
648 {
649 	struct scsi_disk *sdkp = to_scsi_disk(dev);
650 	struct scsi_device *sdev = sdkp->device;
651 	int retries, err;
652 
653 	err = kstrtoint(buf, 10, &retries);
654 	if (err)
655 		return err;
656 
657 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
658 		sdkp->max_retries = retries;
659 		return count;
660 	}
661 
662 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
663 		    SD_MAX_RETRIES);
664 	return -EINVAL;
665 }
666 
667 static ssize_t
max_retries_show(struct device * dev,struct device_attribute * attr,char * buf)668 max_retries_show(struct device *dev, struct device_attribute *attr,
669 		 char *buf)
670 {
671 	struct scsi_disk *sdkp = to_scsi_disk(dev);
672 
673 	return sprintf(buf, "%d\n", sdkp->max_retries);
674 }
675 
676 static DEVICE_ATTR_RW(max_retries);
677 
678 static struct attribute *sd_disk_attrs[] = {
679 	&dev_attr_cache_type.attr,
680 	&dev_attr_FUA.attr,
681 	&dev_attr_allow_restart.attr,
682 	&dev_attr_manage_start_stop.attr,
683 	&dev_attr_manage_system_start_stop.attr,
684 	&dev_attr_manage_runtime_start_stop.attr,
685 	&dev_attr_manage_shutdown.attr,
686 	&dev_attr_manage_restart.attr,
687 	&dev_attr_protection_type.attr,
688 	&dev_attr_protection_mode.attr,
689 	&dev_attr_app_tag_own.attr,
690 	&dev_attr_thin_provisioning.attr,
691 	&dev_attr_provisioning_mode.attr,
692 	&dev_attr_zeroing_mode.attr,
693 	&dev_attr_max_write_same_blocks.attr,
694 	&dev_attr_max_medium_access_timeouts.attr,
695 	&dev_attr_zoned_cap.attr,
696 	&dev_attr_max_retries.attr,
697 	NULL,
698 };
699 ATTRIBUTE_GROUPS(sd_disk);
700 
701 static struct class sd_disk_class = {
702 	.name		= "scsi_disk",
703 	.dev_release	= scsi_disk_release,
704 	.dev_groups	= sd_disk_groups,
705 };
706 
707 /*
708  * Don't request a new module, as that could deadlock in multipath
709  * environment.
710  */
sd_default_probe(dev_t devt)711 static void sd_default_probe(dev_t devt)
712 {
713 }
714 
715 /*
716  * Device no to disk mapping:
717  *
718  *       major         disc2     disc  p1
719  *   |............|.............|....|....| <- dev_t
720  *    31        20 19          8 7  4 3  0
721  *
722  * Inside a major, we have 16k disks, however mapped non-
723  * contiguously. The first 16 disks are for major0, the next
724  * ones with major1, ... Disk 256 is for major0 again, disk 272
725  * for major1, ...
726  * As we stay compatible with our numbering scheme, we can reuse
727  * the well-know SCSI majors 8, 65--71, 136--143.
728  */
sd_major(int major_idx)729 static int sd_major(int major_idx)
730 {
731 	switch (major_idx) {
732 	case 0:
733 		return SCSI_DISK0_MAJOR;
734 	case 1 ... 7:
735 		return SCSI_DISK1_MAJOR + major_idx - 1;
736 	case 8 ... 15:
737 		return SCSI_DISK8_MAJOR + major_idx - 8;
738 	default:
739 		BUG();
740 		return 0;	/* shut up gcc */
741 	}
742 }
743 
744 #ifdef CONFIG_BLK_SED_OPAL
sd_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)745 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
746 		size_t len, bool send)
747 {
748 	struct scsi_disk *sdkp = data;
749 	struct scsi_device *sdev = sdkp->device;
750 	u8 cdb[12] = { 0, };
751 	const struct scsi_exec_args exec_args = {
752 		.req_flags = BLK_MQ_REQ_PM,
753 	};
754 	int ret;
755 
756 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
757 	cdb[1] = secp;
758 	put_unaligned_be16(spsp, &cdb[2]);
759 	put_unaligned_be32(len, &cdb[6]);
760 
761 	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
762 			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
763 			       &exec_args);
764 	return ret <= 0 ? ret : -EIO;
765 }
766 #endif /* CONFIG_BLK_SED_OPAL */
767 
768 /*
769  * Look up the DIX operation based on whether the command is read or
770  * write and whether dix and dif are enabled.
771  */
sd_prot_op(bool write,bool dix,bool dif)772 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
773 {
774 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
775 	static const unsigned int ops[] = {	/* wrt dix dif */
776 		SCSI_PROT_NORMAL,		/*  0	0   0  */
777 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
778 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
779 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
780 		SCSI_PROT_NORMAL,		/*  1	0   0  */
781 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
782 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
783 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
784 	};
785 
786 	return ops[write << 2 | dix << 1 | dif];
787 }
788 
789 /*
790  * Returns a mask of the protection flags that are valid for a given DIX
791  * operation.
792  */
sd_prot_flag_mask(unsigned int prot_op)793 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
794 {
795 	static const unsigned int flag_mask[] = {
796 		[SCSI_PROT_NORMAL]		= 0,
797 
798 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
799 						  SCSI_PROT_GUARD_CHECK |
800 						  SCSI_PROT_REF_CHECK |
801 						  SCSI_PROT_REF_INCREMENT,
802 
803 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
804 						  SCSI_PROT_IP_CHECKSUM,
805 
806 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
807 						  SCSI_PROT_GUARD_CHECK |
808 						  SCSI_PROT_REF_CHECK |
809 						  SCSI_PROT_REF_INCREMENT |
810 						  SCSI_PROT_IP_CHECKSUM,
811 
812 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
813 						  SCSI_PROT_REF_INCREMENT,
814 
815 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
816 						  SCSI_PROT_REF_CHECK |
817 						  SCSI_PROT_REF_INCREMENT |
818 						  SCSI_PROT_IP_CHECKSUM,
819 
820 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
821 						  SCSI_PROT_GUARD_CHECK |
822 						  SCSI_PROT_REF_CHECK |
823 						  SCSI_PROT_REF_INCREMENT |
824 						  SCSI_PROT_IP_CHECKSUM,
825 	};
826 
827 	return flag_mask[prot_op];
828 }
829 
sd_setup_protect_cmnd(struct scsi_cmnd * scmd,unsigned int dix,unsigned int dif)830 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
831 					   unsigned int dix, unsigned int dif)
832 {
833 	struct request *rq = scsi_cmd_to_rq(scmd);
834 	struct bio *bio = rq->bio;
835 	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
836 	unsigned int protect = 0;
837 
838 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
839 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
840 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
841 
842 		if (bio_integrity_flagged(bio, BIP_CHECK_GUARD))
843 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
844 	}
845 
846 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
847 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
848 
849 		if (bio_integrity_flagged(bio, BIP_CHECK_REFTAG))
850 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
851 	}
852 
853 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
854 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
855 
856 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
857 			protect = 3 << 5;	/* Disable target PI checking */
858 		else
859 			protect = 1 << 5;	/* Enable target PI checking */
860 	}
861 
862 	scsi_set_prot_op(scmd, prot_op);
863 	scsi_set_prot_type(scmd, dif);
864 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
865 
866 	return protect;
867 }
868 
sd_disable_discard(struct scsi_disk * sdkp)869 static void sd_disable_discard(struct scsi_disk *sdkp)
870 {
871 	sdkp->provisioning_mode = SD_LBP_DISABLE;
872 	blk_queue_disable_discard(sdkp->disk->queue);
873 }
874 
sd_config_discard(struct scsi_disk * sdkp,struct queue_limits * lim,unsigned int mode)875 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
876 		unsigned int mode)
877 {
878 	unsigned int logical_block_size = sdkp->device->sector_size;
879 	unsigned int max_blocks = 0;
880 
881 	lim->discard_alignment = sdkp->unmap_alignment * logical_block_size;
882 	lim->discard_granularity = max(sdkp->physical_block_size,
883 			sdkp->unmap_granularity * logical_block_size);
884 	sdkp->provisioning_mode = mode;
885 
886 	switch (mode) {
887 
888 	case SD_LBP_FULL:
889 	case SD_LBP_DISABLE:
890 		break;
891 
892 	case SD_LBP_UNMAP:
893 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
894 					  (u32)SD_MAX_WS16_BLOCKS);
895 		break;
896 
897 	case SD_LBP_WS16:
898 		if (sdkp->device->unmap_limit_for_ws)
899 			max_blocks = sdkp->max_unmap_blocks;
900 		else
901 			max_blocks = sdkp->max_ws_blocks;
902 
903 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
904 		break;
905 
906 	case SD_LBP_WS10:
907 		if (sdkp->device->unmap_limit_for_ws)
908 			max_blocks = sdkp->max_unmap_blocks;
909 		else
910 			max_blocks = sdkp->max_ws_blocks;
911 
912 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
913 		break;
914 
915 	case SD_LBP_ZERO:
916 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
917 					  (u32)SD_MAX_WS10_BLOCKS);
918 		break;
919 	}
920 
921 	lim->max_hw_discard_sectors = max_blocks *
922 		(logical_block_size >> SECTOR_SHIFT);
923 }
924 
sd_set_special_bvec(struct request * rq,unsigned int data_len)925 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
926 {
927 	struct page *page;
928 
929 	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
930 	if (!page)
931 		return NULL;
932 	clear_highpage(page);
933 	bvec_set_page(&rq->special_vec, page, data_len, 0);
934 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
935 	return bvec_virt(&rq->special_vec);
936 }
937 
sd_setup_unmap_cmnd(struct scsi_cmnd * cmd)938 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
939 {
940 	struct scsi_device *sdp = cmd->device;
941 	struct request *rq = scsi_cmd_to_rq(cmd);
942 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
943 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
944 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
945 	unsigned int data_len = 24;
946 	char *buf;
947 
948 	buf = sd_set_special_bvec(rq, data_len);
949 	if (!buf)
950 		return BLK_STS_RESOURCE;
951 
952 	cmd->cmd_len = 10;
953 	cmd->cmnd[0] = UNMAP;
954 	cmd->cmnd[8] = 24;
955 
956 	put_unaligned_be16(6 + 16, &buf[0]);
957 	put_unaligned_be16(16, &buf[2]);
958 	put_unaligned_be64(lba, &buf[8]);
959 	put_unaligned_be32(nr_blocks, &buf[16]);
960 
961 	cmd->allowed = sdkp->max_retries;
962 	cmd->transfersize = data_len;
963 	rq->timeout = SD_TIMEOUT;
964 
965 	return scsi_alloc_sgtables(cmd);
966 }
967 
sd_config_atomic(struct scsi_disk * sdkp,struct queue_limits * lim)968 static void sd_config_atomic(struct scsi_disk *sdkp, struct queue_limits *lim)
969 {
970 	unsigned int logical_block_size = sdkp->device->sector_size,
971 		physical_block_size_sectors, max_atomic, unit_min, unit_max;
972 
973 	if ((!sdkp->max_atomic && !sdkp->max_atomic_with_boundary) ||
974 	    sdkp->protection_type == T10_PI_TYPE2_PROTECTION)
975 		return;
976 
977 	physical_block_size_sectors = sdkp->physical_block_size /
978 					sdkp->device->sector_size;
979 
980 	unit_min = rounddown_pow_of_two(sdkp->atomic_granularity ?
981 					sdkp->atomic_granularity :
982 					physical_block_size_sectors);
983 
984 	/*
985 	 * Only use atomic boundary when we have the odd scenario of
986 	 * sdkp->max_atomic == 0, which the spec does permit.
987 	 */
988 	if (sdkp->max_atomic) {
989 		max_atomic = sdkp->max_atomic;
990 		unit_max = rounddown_pow_of_two(sdkp->max_atomic);
991 		sdkp->use_atomic_write_boundary = 0;
992 	} else {
993 		max_atomic = sdkp->max_atomic_with_boundary;
994 		unit_max = rounddown_pow_of_two(sdkp->max_atomic_boundary);
995 		sdkp->use_atomic_write_boundary = 1;
996 	}
997 
998 	/*
999 	 * Ensure compliance with granularity and alignment. For now, keep it
1000 	 * simple and just don't support atomic writes for values mismatched
1001 	 * with max_{boundary}atomic, physical block size, and
1002 	 * atomic_granularity itself.
1003 	 *
1004 	 * We're really being distrustful by checking unit_max also...
1005 	 */
1006 	if (sdkp->atomic_granularity > 1) {
1007 		if (unit_min > 1 && unit_min % sdkp->atomic_granularity)
1008 			return;
1009 		if (unit_max > 1 && unit_max % sdkp->atomic_granularity)
1010 			return;
1011 	}
1012 
1013 	if (sdkp->atomic_alignment > 1) {
1014 		if (unit_min > 1 && unit_min % sdkp->atomic_alignment)
1015 			return;
1016 		if (unit_max > 1 && unit_max % sdkp->atomic_alignment)
1017 			return;
1018 	}
1019 
1020 	lim->atomic_write_hw_max = max_atomic * logical_block_size;
1021 	lim->atomic_write_hw_boundary = 0;
1022 	lim->atomic_write_hw_unit_min = unit_min * logical_block_size;
1023 	lim->atomic_write_hw_unit_max = unit_max * logical_block_size;
1024 	lim->features |= BLK_FEAT_ATOMIC_WRITES;
1025 }
1026 
sd_setup_write_same16_cmnd(struct scsi_cmnd * cmd,bool unmap)1027 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
1028 		bool unmap)
1029 {
1030 	struct scsi_device *sdp = cmd->device;
1031 	struct request *rq = scsi_cmd_to_rq(cmd);
1032 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1033 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1034 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1035 	u32 data_len = sdp->sector_size;
1036 
1037 	if (!sd_set_special_bvec(rq, data_len))
1038 		return BLK_STS_RESOURCE;
1039 
1040 	cmd->cmd_len = 16;
1041 	cmd->cmnd[0] = WRITE_SAME_16;
1042 	if (unmap)
1043 		cmd->cmnd[1] = 0x8; /* UNMAP */
1044 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1045 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1046 
1047 	cmd->allowed = sdkp->max_retries;
1048 	cmd->transfersize = data_len;
1049 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
1050 
1051 	return scsi_alloc_sgtables(cmd);
1052 }
1053 
sd_setup_write_same10_cmnd(struct scsi_cmnd * cmd,bool unmap)1054 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
1055 		bool unmap)
1056 {
1057 	struct scsi_device *sdp = cmd->device;
1058 	struct request *rq = scsi_cmd_to_rq(cmd);
1059 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1060 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1061 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1062 	u32 data_len = sdp->sector_size;
1063 
1064 	if (!sd_set_special_bvec(rq, data_len))
1065 		return BLK_STS_RESOURCE;
1066 
1067 	cmd->cmd_len = 10;
1068 	cmd->cmnd[0] = WRITE_SAME;
1069 	if (unmap)
1070 		cmd->cmnd[1] = 0x8; /* UNMAP */
1071 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1072 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1073 
1074 	cmd->allowed = sdkp->max_retries;
1075 	cmd->transfersize = data_len;
1076 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
1077 
1078 	return scsi_alloc_sgtables(cmd);
1079 }
1080 
sd_setup_write_zeroes_cmnd(struct scsi_cmnd * cmd)1081 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
1082 {
1083 	struct request *rq = scsi_cmd_to_rq(cmd);
1084 	struct scsi_device *sdp = cmd->device;
1085 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1086 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1087 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1088 
1089 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
1090 		switch (sdkp->zeroing_mode) {
1091 		case SD_ZERO_WS16_UNMAP:
1092 			return sd_setup_write_same16_cmnd(cmd, true);
1093 		case SD_ZERO_WS10_UNMAP:
1094 			return sd_setup_write_same10_cmnd(cmd, true);
1095 		}
1096 	}
1097 
1098 	if (sdp->no_write_same) {
1099 		rq->rq_flags |= RQF_QUIET;
1100 		return BLK_STS_TARGET;
1101 	}
1102 
1103 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
1104 		return sd_setup_write_same16_cmnd(cmd, false);
1105 
1106 	return sd_setup_write_same10_cmnd(cmd, false);
1107 }
1108 
sd_disable_write_same(struct scsi_disk * sdkp)1109 static void sd_disable_write_same(struct scsi_disk *sdkp)
1110 {
1111 	sdkp->device->no_write_same = 1;
1112 	sdkp->max_ws_blocks = 0;
1113 	blk_queue_disable_write_zeroes(sdkp->disk->queue);
1114 }
1115 
sd_config_write_same(struct scsi_disk * sdkp,struct queue_limits * lim)1116 static void sd_config_write_same(struct scsi_disk *sdkp,
1117 		struct queue_limits *lim)
1118 {
1119 	unsigned int logical_block_size = sdkp->device->sector_size;
1120 
1121 	if (sdkp->device->no_write_same) {
1122 		sdkp->max_ws_blocks = 0;
1123 		goto out;
1124 	}
1125 
1126 	/* Some devices can not handle block counts above 0xffff despite
1127 	 * supporting WRITE SAME(16). Consequently we default to 64k
1128 	 * blocks per I/O unless the device explicitly advertises a
1129 	 * bigger limit.
1130 	 */
1131 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1132 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1133 						   (u32)SD_MAX_WS16_BLOCKS);
1134 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1135 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1136 						   (u32)SD_MAX_WS10_BLOCKS);
1137 	else {
1138 		sdkp->device->no_write_same = 1;
1139 		sdkp->max_ws_blocks = 0;
1140 	}
1141 
1142 	if (sdkp->lbprz && sdkp->lbpws)
1143 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1144 	else if (sdkp->lbprz && sdkp->lbpws10)
1145 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1146 	else if (sdkp->max_ws_blocks)
1147 		sdkp->zeroing_mode = SD_ZERO_WS;
1148 	else
1149 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1150 
1151 	if (sdkp->max_ws_blocks &&
1152 	    sdkp->physical_block_size > logical_block_size) {
1153 		/*
1154 		 * Reporting a maximum number of blocks that is not aligned
1155 		 * on the device physical size would cause a large write same
1156 		 * request to be split into physically unaligned chunks by
1157 		 * __blkdev_issue_write_zeroes() even if the caller of this
1158 		 * functions took care to align the large request. So make sure
1159 		 * the maximum reported is aligned to the device physical block
1160 		 * size. This is only an optional optimization for regular
1161 		 * disks, but this is mandatory to avoid failure of large write
1162 		 * same requests directed at sequential write required zones of
1163 		 * host-managed ZBC disks.
1164 		 */
1165 		sdkp->max_ws_blocks =
1166 			round_down(sdkp->max_ws_blocks,
1167 				   bytes_to_logical(sdkp->device,
1168 						    sdkp->physical_block_size));
1169 	}
1170 
1171 out:
1172 	lim->max_write_zeroes_sectors =
1173 		sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT);
1174 
1175 	if (sdkp->zeroing_mode == SD_ZERO_WS16_UNMAP ||
1176 	    sdkp->zeroing_mode == SD_ZERO_WS10_UNMAP)
1177 		lim->max_hw_wzeroes_unmap_sectors =
1178 				lim->max_write_zeroes_sectors;
1179 }
1180 
sd_setup_flush_cmnd(struct scsi_cmnd * cmd)1181 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1182 {
1183 	struct request *rq = scsi_cmd_to_rq(cmd);
1184 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1185 
1186 	/* flush requests don't perform I/O, zero the S/G table */
1187 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1188 
1189 	if (cmd->device->use_16_for_sync) {
1190 		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1191 		cmd->cmd_len = 16;
1192 	} else {
1193 		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1194 		cmd->cmd_len = 10;
1195 	}
1196 	cmd->transfersize = 0;
1197 	cmd->allowed = sdkp->max_retries;
1198 
1199 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1200 	return BLK_STS_OK;
1201 }
1202 
1203 /**
1204  * sd_group_number() - Compute the GROUP NUMBER field
1205  * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
1206  *	field.
1207  *
1208  * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
1209  * 0: no relative lifetime.
1210  * 1: shortest relative lifetime.
1211  * 2: second shortest relative lifetime.
1212  * 3 - 0x3d: intermediate relative lifetimes.
1213  * 0x3e: second longest relative lifetime.
1214  * 0x3f: longest relative lifetime.
1215  */
sd_group_number(struct scsi_cmnd * cmd)1216 static u8 sd_group_number(struct scsi_cmnd *cmd)
1217 {
1218 	const struct request *rq = scsi_cmd_to_rq(cmd);
1219 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1220 
1221 	if (!sdkp->rscs)
1222 		return 0;
1223 
1224 	return min3((u32)rq->bio->bi_write_hint,
1225 		    (u32)sdkp->permanent_stream_count, 0x3fu);
1226 }
1227 
sd_setup_rw32_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags,unsigned int dld)1228 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1229 				       sector_t lba, unsigned int nr_blocks,
1230 				       unsigned char flags, unsigned int dld)
1231 {
1232 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1233 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1234 	cmd->cmnd[6]  = sd_group_number(cmd);
1235 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1236 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1237 	cmd->cmnd[10] = flags;
1238 	cmd->cmnd[11] = dld & 0x07;
1239 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1240 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1241 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1242 
1243 	return BLK_STS_OK;
1244 }
1245 
sd_setup_rw16_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags,unsigned int dld)1246 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1247 				       sector_t lba, unsigned int nr_blocks,
1248 				       unsigned char flags, unsigned int dld)
1249 {
1250 	cmd->cmd_len  = 16;
1251 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1252 	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1253 	cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
1254 	cmd->cmnd[15] = 0;
1255 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1256 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1257 
1258 	return BLK_STS_OK;
1259 }
1260 
sd_setup_rw10_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1261 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1262 				       sector_t lba, unsigned int nr_blocks,
1263 				       unsigned char flags)
1264 {
1265 	cmd->cmd_len = 10;
1266 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1267 	cmd->cmnd[1] = flags;
1268 	cmd->cmnd[6] = sd_group_number(cmd);
1269 	cmd->cmnd[9] = 0;
1270 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1271 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1272 
1273 	return BLK_STS_OK;
1274 }
1275 
sd_setup_rw6_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1276 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1277 				      sector_t lba, unsigned int nr_blocks,
1278 				      unsigned char flags)
1279 {
1280 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1281 	if (WARN_ON_ONCE(nr_blocks == 0))
1282 		return BLK_STS_IOERR;
1283 
1284 	if (unlikely(flags & 0x8)) {
1285 		/*
1286 		 * This happens only if this drive failed 10byte rw
1287 		 * command with ILLEGAL_REQUEST during operation and
1288 		 * thus turned off use_10_for_rw.
1289 		 */
1290 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1291 		return BLK_STS_IOERR;
1292 	}
1293 
1294 	cmd->cmd_len = 6;
1295 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1296 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1297 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1298 	cmd->cmnd[3] = lba & 0xff;
1299 	cmd->cmnd[4] = nr_blocks;
1300 	cmd->cmnd[5] = 0;
1301 
1302 	return BLK_STS_OK;
1303 }
1304 
1305 /*
1306  * Check if a command has a duration limit set. If it does, and the target
1307  * device supports CDL and the feature is enabled, return the limit
1308  * descriptor index to use. Return 0 (no limit) otherwise.
1309  */
sd_cdl_dld(struct scsi_disk * sdkp,struct scsi_cmnd * scmd)1310 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1311 {
1312 	struct scsi_device *sdp = sdkp->device;
1313 	int hint;
1314 
1315 	if (!sdp->cdl_supported || !sdp->cdl_enable)
1316 		return 0;
1317 
1318 	/*
1319 	 * Use "no limit" if the request ioprio does not specify a duration
1320 	 * limit hint.
1321 	 */
1322 	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1323 	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1324 	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1325 		return 0;
1326 
1327 	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1328 }
1329 
sd_setup_atomic_cmnd(struct scsi_cmnd * cmd,sector_t lba,unsigned int nr_blocks,bool boundary,unsigned char flags)1330 static blk_status_t sd_setup_atomic_cmnd(struct scsi_cmnd *cmd,
1331 					sector_t lba, unsigned int nr_blocks,
1332 					bool boundary, unsigned char flags)
1333 {
1334 	cmd->cmd_len  = 16;
1335 	cmd->cmnd[0]  = WRITE_ATOMIC_16;
1336 	cmd->cmnd[1]  = flags;
1337 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1338 	put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
1339 	if (boundary)
1340 		put_unaligned_be16(nr_blocks, &cmd->cmnd[10]);
1341 	else
1342 		put_unaligned_be16(0, &cmd->cmnd[10]);
1343 	put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
1344 	cmd->cmnd[14] = 0;
1345 	cmd->cmnd[15] = 0;
1346 
1347 	return BLK_STS_OK;
1348 }
1349 
sd_setup_read_write_cmnd(struct scsi_cmnd * cmd)1350 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1351 {
1352 	struct request *rq = scsi_cmd_to_rq(cmd);
1353 	struct scsi_device *sdp = cmd->device;
1354 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1355 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1356 	sector_t threshold;
1357 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1358 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1359 	bool write = rq_data_dir(rq) == WRITE;
1360 	unsigned char protect, fua;
1361 	unsigned int dld;
1362 	blk_status_t ret;
1363 	unsigned int dif;
1364 	bool dix;
1365 
1366 	ret = scsi_alloc_sgtables(cmd);
1367 	if (ret != BLK_STS_OK)
1368 		return ret;
1369 
1370 	ret = BLK_STS_IOERR;
1371 	if (!scsi_device_online(sdp) || sdp->changed) {
1372 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1373 		goto fail;
1374 	}
1375 
1376 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1377 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1378 		goto fail;
1379 	}
1380 
1381 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1382 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1383 		goto fail;
1384 	}
1385 
1386 	/*
1387 	 * Some SD card readers can't handle accesses which touch the
1388 	 * last one or two logical blocks. Split accesses as needed.
1389 	 */
1390 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1391 
1392 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1393 		if (lba < threshold) {
1394 			/* Access up to the threshold but not beyond */
1395 			nr_blocks = threshold - lba;
1396 		} else {
1397 			/* Access only a single logical block */
1398 			nr_blocks = 1;
1399 		}
1400 	}
1401 
1402 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1403 	dix = scsi_prot_sg_count(cmd);
1404 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1405 	dld = sd_cdl_dld(sdkp, cmd);
1406 
1407 	if (dif || dix)
1408 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1409 	else
1410 		protect = 0;
1411 
1412 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1413 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1414 					 protect | fua, dld);
1415 	} else if (rq->cmd_flags & REQ_ATOMIC) {
1416 		ret = sd_setup_atomic_cmnd(cmd, lba, nr_blocks,
1417 				sdkp->use_atomic_write_boundary,
1418 				protect | fua);
1419 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1420 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1421 					 protect | fua, dld);
1422 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1423 		   sdp->use_10_for_rw || protect || rq->bio->bi_write_hint) {
1424 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1425 					 protect | fua);
1426 	} else {
1427 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1428 					protect | fua);
1429 	}
1430 
1431 	if (unlikely(ret != BLK_STS_OK))
1432 		goto fail;
1433 
1434 	/*
1435 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1436 	 * host adapter, it's safe to assume that we can at least transfer
1437 	 * this many bytes between each connect / disconnect.
1438 	 */
1439 	cmd->transfersize = sdp->sector_size;
1440 	cmd->underflow = nr_blocks << 9;
1441 	cmd->allowed = sdkp->max_retries;
1442 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1443 
1444 	SCSI_LOG_HLQUEUE(1,
1445 			 scmd_printk(KERN_INFO, cmd,
1446 				     "%s: block=%llu, count=%d\n", __func__,
1447 				     (unsigned long long)blk_rq_pos(rq),
1448 				     blk_rq_sectors(rq)));
1449 	SCSI_LOG_HLQUEUE(2,
1450 			 scmd_printk(KERN_INFO, cmd,
1451 				     "%s %d/%u 512 byte blocks.\n",
1452 				     write ? "writing" : "reading", nr_blocks,
1453 				     blk_rq_sectors(rq)));
1454 
1455 	/*
1456 	 * This indicates that the command is ready from our end to be queued.
1457 	 */
1458 	return BLK_STS_OK;
1459 fail:
1460 	scsi_free_sgtables(cmd);
1461 	return ret;
1462 }
1463 
sd_init_command(struct scsi_cmnd * cmd)1464 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1465 {
1466 	struct request *rq = scsi_cmd_to_rq(cmd);
1467 
1468 	switch (req_op(rq)) {
1469 	case REQ_OP_DISCARD:
1470 		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1471 		case SD_LBP_UNMAP:
1472 			return sd_setup_unmap_cmnd(cmd);
1473 		case SD_LBP_WS16:
1474 			return sd_setup_write_same16_cmnd(cmd, true);
1475 		case SD_LBP_WS10:
1476 			return sd_setup_write_same10_cmnd(cmd, true);
1477 		case SD_LBP_ZERO:
1478 			return sd_setup_write_same10_cmnd(cmd, false);
1479 		default:
1480 			return BLK_STS_TARGET;
1481 		}
1482 	case REQ_OP_WRITE_ZEROES:
1483 		return sd_setup_write_zeroes_cmnd(cmd);
1484 	case REQ_OP_FLUSH:
1485 		return sd_setup_flush_cmnd(cmd);
1486 	case REQ_OP_READ:
1487 	case REQ_OP_WRITE:
1488 		return sd_setup_read_write_cmnd(cmd);
1489 	case REQ_OP_ZONE_RESET:
1490 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1491 						   false);
1492 	case REQ_OP_ZONE_RESET_ALL:
1493 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1494 						   true);
1495 	case REQ_OP_ZONE_OPEN:
1496 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1497 	case REQ_OP_ZONE_CLOSE:
1498 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1499 	case REQ_OP_ZONE_FINISH:
1500 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1501 	default:
1502 		WARN_ON_ONCE(1);
1503 		return BLK_STS_NOTSUPP;
1504 	}
1505 }
1506 
sd_uninit_command(struct scsi_cmnd * SCpnt)1507 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1508 {
1509 	struct request *rq = scsi_cmd_to_rq(SCpnt);
1510 
1511 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1512 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1513 }
1514 
sd_need_revalidate(struct gendisk * disk,struct scsi_disk * sdkp)1515 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1516 {
1517 	if (sdkp->device->removable || sdkp->write_prot) {
1518 		if (disk_check_media_change(disk))
1519 			return true;
1520 	}
1521 
1522 	/*
1523 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1524 	 * nothing to do with partitions, BLKRRPART is used to force a full
1525 	 * revalidate after things like a format for historical reasons.
1526 	 */
1527 	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1528 }
1529 
1530 /**
1531  *	sd_open - open a scsi disk device
1532  *	@disk: disk to open
1533  *	@mode: open mode
1534  *
1535  *	Returns 0 if successful. Returns a negated errno value in case
1536  *	of error.
1537  *
1538  *	Note: This can be called from a user context (e.g. fsck(1) )
1539  *	or from within the kernel (e.g. as a result of a mount(1) ).
1540  *	In the latter case @inode and @filp carry an abridged amount
1541  *	of information as noted above.
1542  *
1543  *	Locking: called with disk->open_mutex held.
1544  **/
sd_open(struct gendisk * disk,blk_mode_t mode)1545 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1546 {
1547 	struct scsi_disk *sdkp = scsi_disk(disk);
1548 	struct scsi_device *sdev = sdkp->device;
1549 	int retval;
1550 
1551 	if (scsi_device_get(sdev))
1552 		return -ENXIO;
1553 
1554 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1555 
1556 	/*
1557 	 * If the device is in error recovery, wait until it is done.
1558 	 * If the device is offline, then disallow any access to it.
1559 	 */
1560 	retval = -ENXIO;
1561 	if (!scsi_block_when_processing_errors(sdev))
1562 		goto error_out;
1563 
1564 	if (sd_need_revalidate(disk, sdkp))
1565 		sd_revalidate_disk(disk);
1566 
1567 	/*
1568 	 * If the drive is empty, just let the open fail.
1569 	 */
1570 	retval = -ENOMEDIUM;
1571 	if (sdev->removable && !sdkp->media_present &&
1572 	    !(mode & BLK_OPEN_NDELAY))
1573 		goto error_out;
1574 
1575 	/*
1576 	 * If the device has the write protect tab set, have the open fail
1577 	 * if the user expects to be able to write to the thing.
1578 	 */
1579 	retval = -EROFS;
1580 	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1581 		goto error_out;
1582 
1583 	/*
1584 	 * It is possible that the disk changing stuff resulted in
1585 	 * the device being taken offline.  If this is the case,
1586 	 * report this to the user, and don't pretend that the
1587 	 * open actually succeeded.
1588 	 */
1589 	retval = -ENXIO;
1590 	if (!scsi_device_online(sdev))
1591 		goto error_out;
1592 
1593 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1594 		if (scsi_block_when_processing_errors(sdev))
1595 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1596 	}
1597 
1598 	return 0;
1599 
1600 error_out:
1601 	scsi_device_put(sdev);
1602 	return retval;
1603 }
1604 
1605 /**
1606  *	sd_release - invoked when the (last) close(2) is called on this
1607  *	scsi disk.
1608  *	@disk: disk to release
1609  *
1610  *	Returns 0.
1611  *
1612  *	Note: may block (uninterruptible) if error recovery is underway
1613  *	on this disk.
1614  *
1615  *	Locking: called with disk->open_mutex held.
1616  **/
sd_release(struct gendisk * disk)1617 static void sd_release(struct gendisk *disk)
1618 {
1619 	struct scsi_disk *sdkp = scsi_disk(disk);
1620 	struct scsi_device *sdev = sdkp->device;
1621 
1622 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1623 
1624 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1625 		if (scsi_block_when_processing_errors(sdev))
1626 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1627 	}
1628 
1629 	scsi_device_put(sdev);
1630 }
1631 
sd_getgeo(struct gendisk * disk,struct hd_geometry * geo)1632 static int sd_getgeo(struct gendisk *disk, struct hd_geometry *geo)
1633 {
1634 	struct scsi_disk *sdkp = scsi_disk(disk);
1635 	struct scsi_device *sdp = sdkp->device;
1636 	struct Scsi_Host *host = sdp->host;
1637 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1638 	int diskinfo[4];
1639 
1640 	/* default to most commonly used values */
1641 	diskinfo[0] = 0x40;	/* 1 << 6 */
1642 	diskinfo[1] = 0x20;	/* 1 << 5 */
1643 	diskinfo[2] = capacity >> 11;
1644 
1645 	/* override with calculated, extended default, or driver values */
1646 	if (host->hostt->bios_param)
1647 		host->hostt->bios_param(sdp, disk, capacity, diskinfo);
1648 	else
1649 		scsicam_bios_param(disk, capacity, diskinfo);
1650 
1651 	geo->heads = diskinfo[0];
1652 	geo->sectors = diskinfo[1];
1653 	geo->cylinders = diskinfo[2];
1654 	return 0;
1655 }
1656 
1657 /**
1658  *	sd_ioctl - process an ioctl
1659  *	@bdev: target block device
1660  *	@mode: open mode
1661  *	@cmd: ioctl command number
1662  *	@arg: this is third argument given to ioctl(2) system call.
1663  *	Often contains a pointer.
1664  *
1665  *	Returns 0 if successful (some ioctls return positive numbers on
1666  *	success as well). Returns a negated errno value in case of error.
1667  *
1668  *	Note: most ioctls are forward onto the block subsystem or further
1669  *	down in the scsi subsystem.
1670  **/
sd_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1671 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1672 		    unsigned int cmd, unsigned long arg)
1673 {
1674 	struct gendisk *disk = bdev->bd_disk;
1675 	struct scsi_disk *sdkp = scsi_disk(disk);
1676 	struct scsi_device *sdp = sdkp->device;
1677 	void __user *p = (void __user *)arg;
1678 	int error;
1679 
1680 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1681 				    "cmd=0x%x\n", disk->disk_name, cmd));
1682 
1683 	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1684 		return -ENOIOCTLCMD;
1685 
1686 	/*
1687 	 * If we are in the middle of error recovery, don't let anyone
1688 	 * else try and use this device.  Also, if error recovery fails, it
1689 	 * may try and take the device offline, in which case all further
1690 	 * access to the device is prohibited.
1691 	 */
1692 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1693 			(mode & BLK_OPEN_NDELAY));
1694 	if (error)
1695 		return error;
1696 
1697 	if (is_sed_ioctl(cmd))
1698 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1699 	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1700 }
1701 
set_media_not_present(struct scsi_disk * sdkp)1702 static void set_media_not_present(struct scsi_disk *sdkp)
1703 {
1704 	if (sdkp->media_present)
1705 		sdkp->device->changed = 1;
1706 
1707 	if (sdkp->device->removable) {
1708 		sdkp->media_present = 0;
1709 		sdkp->capacity = 0;
1710 	}
1711 }
1712 
media_not_present(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1713 static int media_not_present(struct scsi_disk *sdkp,
1714 			     struct scsi_sense_hdr *sshdr)
1715 {
1716 	if (!scsi_sense_valid(sshdr))
1717 		return 0;
1718 
1719 	/* not invoked for commands that could return deferred errors */
1720 	switch (sshdr->sense_key) {
1721 	case UNIT_ATTENTION:
1722 	case NOT_READY:
1723 		/* medium not present */
1724 		if (sshdr->asc == 0x3A) {
1725 			set_media_not_present(sdkp);
1726 			return 1;
1727 		}
1728 	}
1729 	return 0;
1730 }
1731 
1732 /**
1733  *	sd_check_events - check media events
1734  *	@disk: kernel device descriptor
1735  *	@clearing: disk events currently being cleared
1736  *
1737  *	Returns mask of DISK_EVENT_*.
1738  *
1739  *	Note: this function is invoked from the block subsystem.
1740  **/
sd_check_events(struct gendisk * disk,unsigned int clearing)1741 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1742 {
1743 	struct scsi_disk *sdkp = disk->private_data;
1744 	struct scsi_device *sdp;
1745 	int retval;
1746 	bool disk_changed;
1747 
1748 	if (!sdkp)
1749 		return 0;
1750 
1751 	sdp = sdkp->device;
1752 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1753 
1754 	/*
1755 	 * If the device is offline, don't send any commands - just pretend as
1756 	 * if the command failed.  If the device ever comes back online, we
1757 	 * can deal with it then.  It is only because of unrecoverable errors
1758 	 * that we would ever take a device offline in the first place.
1759 	 */
1760 	if (!scsi_device_online(sdp)) {
1761 		set_media_not_present(sdkp);
1762 		goto out;
1763 	}
1764 
1765 	/*
1766 	 * Using TEST_UNIT_READY enables differentiation between drive with
1767 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1768 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1769 	 *
1770 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1771 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1772 	 * sd_revalidate() is called.
1773 	 */
1774 	if (scsi_block_when_processing_errors(sdp)) {
1775 		struct scsi_sense_hdr sshdr = { 0, };
1776 
1777 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1778 					      &sshdr);
1779 
1780 		/* failed to execute TUR, assume media not present */
1781 		if (retval < 0 || host_byte(retval)) {
1782 			set_media_not_present(sdkp);
1783 			goto out;
1784 		}
1785 
1786 		if (media_not_present(sdkp, &sshdr))
1787 			goto out;
1788 	}
1789 
1790 	/*
1791 	 * For removable scsi disk we have to recognise the presence
1792 	 * of a disk in the drive.
1793 	 */
1794 	if (!sdkp->media_present)
1795 		sdp->changed = 1;
1796 	sdkp->media_present = 1;
1797 out:
1798 	/*
1799 	 * sdp->changed is set under the following conditions:
1800 	 *
1801 	 *	Medium present state has changed in either direction.
1802 	 *	Device has indicated UNIT_ATTENTION.
1803 	 */
1804 	disk_changed = sdp->changed;
1805 	sdp->changed = 0;
1806 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1807 }
1808 
sd_sync_cache(struct scsi_disk * sdkp)1809 static int sd_sync_cache(struct scsi_disk *sdkp)
1810 {
1811 	int res;
1812 	struct scsi_device *sdp = sdkp->device;
1813 	const int timeout = sdp->request_queue->rq_timeout
1814 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1815 	/* Leave the rest of the command zero to indicate flush everything. */
1816 	const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1817 				SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1818 	struct scsi_sense_hdr sshdr;
1819 	struct scsi_failure failure_defs[] = {
1820 		{
1821 			.allowed = 3,
1822 			.result = SCMD_FAILURE_RESULT_ANY,
1823 		},
1824 		{}
1825 	};
1826 	struct scsi_failures failures = {
1827 		.failure_definitions = failure_defs,
1828 	};
1829 	const struct scsi_exec_args exec_args = {
1830 		.req_flags = BLK_MQ_REQ_PM,
1831 		.sshdr = &sshdr,
1832 		.failures = &failures,
1833 	};
1834 
1835 	if (!scsi_device_online(sdp))
1836 		return -ENODEV;
1837 
1838 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1839 			       sdkp->max_retries, &exec_args);
1840 	if (res) {
1841 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1842 
1843 		if (res < 0)
1844 			return res;
1845 
1846 		if (scsi_status_is_check_condition(res) &&
1847 		    scsi_sense_valid(&sshdr)) {
1848 			sd_print_sense_hdr(sdkp, &sshdr);
1849 
1850 			/* we need to evaluate the error return  */
1851 			if (sshdr.asc == 0x3a ||	/* medium not present */
1852 			    sshdr.asc == 0x20 ||	/* invalid command */
1853 			    (sshdr.asc == 0x74 && sshdr.ascq == 0x71))	/* drive is password locked */
1854 				/* this is no error here */
1855 				return 0;
1856 
1857 			/*
1858 			 * If a format is in progress or if the drive does not
1859 			 * support sync, there is not much we can do because
1860 			 * this is called during shutdown or suspend so just
1861 			 * return success so those operations can proceed.
1862 			 */
1863 			if ((sshdr.asc == 0x04 && sshdr.ascq == 0x04) ||
1864 			    sshdr.sense_key == ILLEGAL_REQUEST)
1865 				return 0;
1866 		}
1867 
1868 		switch (host_byte(res)) {
1869 		/* ignore errors due to racing a disconnection */
1870 		case DID_BAD_TARGET:
1871 		case DID_NO_CONNECT:
1872 			return 0;
1873 		/* signal the upper layer it might try again */
1874 		case DID_BUS_BUSY:
1875 		case DID_IMM_RETRY:
1876 		case DID_REQUEUE:
1877 		case DID_SOFT_ERROR:
1878 			return -EBUSY;
1879 		default:
1880 			return -EIO;
1881 		}
1882 	}
1883 	return 0;
1884 }
1885 
sd_rescan(struct device * dev)1886 static void sd_rescan(struct device *dev)
1887 {
1888 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1889 
1890 	sd_revalidate_disk(sdkp->disk);
1891 }
1892 
sd_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)1893 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1894 		enum blk_unique_id type)
1895 {
1896 	struct scsi_device *sdev = scsi_disk(disk)->device;
1897 	const struct scsi_vpd *vpd;
1898 	const unsigned char *d;
1899 	int ret = -ENXIO, len;
1900 
1901 	rcu_read_lock();
1902 	vpd = rcu_dereference(sdev->vpd_pg83);
1903 	if (!vpd)
1904 		goto out_unlock;
1905 
1906 	ret = -EINVAL;
1907 	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1908 		/* we only care about designators with LU association */
1909 		if (((d[1] >> 4) & 0x3) != 0x00)
1910 			continue;
1911 		if ((d[1] & 0xf) != type)
1912 			continue;
1913 
1914 		/*
1915 		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1916 		 * keep looking as one with more entropy might still show up.
1917 		 */
1918 		len = d[3];
1919 		if (len != 8 && len != 12 && len != 16)
1920 			continue;
1921 		ret = len;
1922 		memcpy(id, d + 4, len);
1923 		if (len == 16)
1924 			break;
1925 	}
1926 out_unlock:
1927 	rcu_read_unlock();
1928 	return ret;
1929 }
1930 
sd_scsi_to_pr_err(struct scsi_sense_hdr * sshdr,int result)1931 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1932 {
1933 	switch (host_byte(result)) {
1934 	case DID_TRANSPORT_MARGINAL:
1935 	case DID_TRANSPORT_DISRUPTED:
1936 	case DID_BUS_BUSY:
1937 		return PR_STS_RETRY_PATH_FAILURE;
1938 	case DID_NO_CONNECT:
1939 		return PR_STS_PATH_FAILED;
1940 	case DID_TRANSPORT_FAILFAST:
1941 		return PR_STS_PATH_FAST_FAILED;
1942 	}
1943 
1944 	switch (status_byte(result)) {
1945 	case SAM_STAT_RESERVATION_CONFLICT:
1946 		return PR_STS_RESERVATION_CONFLICT;
1947 	case SAM_STAT_CHECK_CONDITION:
1948 		if (!scsi_sense_valid(sshdr))
1949 			return PR_STS_IOERR;
1950 
1951 		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1952 		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1953 			return -EINVAL;
1954 
1955 		fallthrough;
1956 	default:
1957 		return PR_STS_IOERR;
1958 	}
1959 }
1960 
sd_pr_in_command(struct block_device * bdev,u8 sa,unsigned char * data,int data_len)1961 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1962 			    unsigned char *data, int data_len)
1963 {
1964 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1965 	struct scsi_device *sdev = sdkp->device;
1966 	struct scsi_sense_hdr sshdr;
1967 	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1968 	struct scsi_failure failure_defs[] = {
1969 		{
1970 			.sense = UNIT_ATTENTION,
1971 			.asc = SCMD_FAILURE_ASC_ANY,
1972 			.ascq = SCMD_FAILURE_ASCQ_ANY,
1973 			.allowed = 5,
1974 			.result = SAM_STAT_CHECK_CONDITION,
1975 		},
1976 		{}
1977 	};
1978 	struct scsi_failures failures = {
1979 		.failure_definitions = failure_defs,
1980 	};
1981 	const struct scsi_exec_args exec_args = {
1982 		.sshdr = &sshdr,
1983 		.failures = &failures,
1984 	};
1985 	int result;
1986 
1987 	put_unaligned_be16(data_len, &cmd[7]);
1988 
1989 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1990 				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1991 	if (scsi_status_is_check_condition(result) &&
1992 	    scsi_sense_valid(&sshdr)) {
1993 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1994 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1995 	}
1996 
1997 	if (result <= 0)
1998 		return result;
1999 
2000 	return sd_scsi_to_pr_err(&sshdr, result);
2001 }
2002 
sd_pr_read_keys(struct block_device * bdev,struct pr_keys * keys_info)2003 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
2004 {
2005 	int result, i, data_offset, num_copy_keys;
2006 	u32 num_keys = keys_info->num_keys;
2007 	int data_len = num_keys * 8 + 8;
2008 	u8 *data;
2009 
2010 	data = kzalloc(data_len, GFP_KERNEL);
2011 	if (!data)
2012 		return -ENOMEM;
2013 
2014 	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
2015 	if (result)
2016 		goto free_data;
2017 
2018 	keys_info->generation = get_unaligned_be32(&data[0]);
2019 	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
2020 
2021 	data_offset = 8;
2022 	num_copy_keys = min(num_keys, keys_info->num_keys);
2023 
2024 	for (i = 0; i < num_copy_keys; i++) {
2025 		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
2026 		data_offset += 8;
2027 	}
2028 
2029 free_data:
2030 	kfree(data);
2031 	return result;
2032 }
2033 
sd_pr_read_reservation(struct block_device * bdev,struct pr_held_reservation * rsv)2034 static int sd_pr_read_reservation(struct block_device *bdev,
2035 				  struct pr_held_reservation *rsv)
2036 {
2037 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
2038 	struct scsi_device *sdev = sdkp->device;
2039 	u8 data[24] = { };
2040 	int result, len;
2041 
2042 	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
2043 	if (result)
2044 		return result;
2045 
2046 	len = get_unaligned_be32(&data[4]);
2047 	if (!len)
2048 		return 0;
2049 
2050 	/* Make sure we have at least the key and type */
2051 	if (len < 14) {
2052 		sdev_printk(KERN_INFO, sdev,
2053 			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
2054 			    len);
2055 		return -EINVAL;
2056 	}
2057 
2058 	rsv->generation = get_unaligned_be32(&data[0]);
2059 	rsv->key = get_unaligned_be64(&data[8]);
2060 	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
2061 	return 0;
2062 }
2063 
sd_pr_out_command(struct block_device * bdev,u8 sa,u64 key,u64 sa_key,enum scsi_pr_type type,u8 flags)2064 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
2065 			     u64 sa_key, enum scsi_pr_type type, u8 flags)
2066 {
2067 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
2068 	struct scsi_device *sdev = sdkp->device;
2069 	struct scsi_sense_hdr sshdr;
2070 	struct scsi_failure failure_defs[] = {
2071 		{
2072 			.sense = UNIT_ATTENTION,
2073 			.asc = SCMD_FAILURE_ASC_ANY,
2074 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2075 			.allowed = 5,
2076 			.result = SAM_STAT_CHECK_CONDITION,
2077 		},
2078 		{}
2079 	};
2080 	struct scsi_failures failures = {
2081 		.failure_definitions = failure_defs,
2082 	};
2083 	const struct scsi_exec_args exec_args = {
2084 		.sshdr = &sshdr,
2085 		.failures = &failures,
2086 	};
2087 	int result;
2088 	u8 cmd[16] = { 0, };
2089 	u8 data[24] = { 0, };
2090 
2091 	cmd[0] = PERSISTENT_RESERVE_OUT;
2092 	cmd[1] = sa;
2093 	cmd[2] = type;
2094 	put_unaligned_be32(sizeof(data), &cmd[5]);
2095 
2096 	put_unaligned_be64(key, &data[0]);
2097 	put_unaligned_be64(sa_key, &data[8]);
2098 	data[20] = flags;
2099 
2100 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
2101 				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
2102 				  &exec_args);
2103 
2104 	if (scsi_status_is_check_condition(result) &&
2105 	    scsi_sense_valid(&sshdr)) {
2106 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
2107 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
2108 	}
2109 
2110 	if (result <= 0)
2111 		return result;
2112 
2113 	return sd_scsi_to_pr_err(&sshdr, result);
2114 }
2115 
sd_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)2116 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2117 		u32 flags)
2118 {
2119 	if (flags & ~PR_FL_IGNORE_KEY)
2120 		return -EOPNOTSUPP;
2121 	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
2122 			old_key, new_key, 0,
2123 			(1 << 0) /* APTPL */);
2124 }
2125 
sd_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)2126 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2127 		u32 flags)
2128 {
2129 	if (flags)
2130 		return -EOPNOTSUPP;
2131 	return sd_pr_out_command(bdev, 0x01, key, 0,
2132 				 block_pr_type_to_scsi(type), 0);
2133 }
2134 
sd_pr_release(struct block_device * bdev,u64 key,enum pr_type type)2135 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2136 {
2137 	return sd_pr_out_command(bdev, 0x02, key, 0,
2138 				 block_pr_type_to_scsi(type), 0);
2139 }
2140 
sd_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)2141 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2142 		enum pr_type type, bool abort)
2143 {
2144 	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
2145 				 block_pr_type_to_scsi(type), 0);
2146 }
2147 
sd_pr_clear(struct block_device * bdev,u64 key)2148 static int sd_pr_clear(struct block_device *bdev, u64 key)
2149 {
2150 	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
2151 }
2152 
2153 static const struct pr_ops sd_pr_ops = {
2154 	.pr_register	= sd_pr_register,
2155 	.pr_reserve	= sd_pr_reserve,
2156 	.pr_release	= sd_pr_release,
2157 	.pr_preempt	= sd_pr_preempt,
2158 	.pr_clear	= sd_pr_clear,
2159 	.pr_read_keys	= sd_pr_read_keys,
2160 	.pr_read_reservation = sd_pr_read_reservation,
2161 };
2162 
scsi_disk_free_disk(struct gendisk * disk)2163 static void scsi_disk_free_disk(struct gendisk *disk)
2164 {
2165 	struct scsi_disk *sdkp = scsi_disk(disk);
2166 
2167 	put_device(&sdkp->disk_dev);
2168 }
2169 
2170 static const struct block_device_operations sd_fops = {
2171 	.owner			= THIS_MODULE,
2172 	.open			= sd_open,
2173 	.release		= sd_release,
2174 	.ioctl			= sd_ioctl,
2175 	.getgeo			= sd_getgeo,
2176 	.compat_ioctl		= blkdev_compat_ptr_ioctl,
2177 	.check_events		= sd_check_events,
2178 	.unlock_native_capacity	= sd_unlock_native_capacity,
2179 	.report_zones		= sd_zbc_report_zones,
2180 	.get_unique_id		= sd_get_unique_id,
2181 	.free_disk		= scsi_disk_free_disk,
2182 	.pr_ops			= &sd_pr_ops,
2183 };
2184 
2185 /**
2186  *	sd_eh_reset - reset error handling callback
2187  *	@scmd:		sd-issued command that has failed
2188  *
2189  *	This function is called by the SCSI midlayer before starting
2190  *	SCSI EH. When counting medium access failures we have to be
2191  *	careful to register it only only once per device and SCSI EH run;
2192  *	there might be several timed out commands which will cause the
2193  *	'max_medium_access_timeouts' counter to trigger after the first
2194  *	SCSI EH run already and set the device to offline.
2195  *	So this function resets the internal counter before starting SCSI EH.
2196  **/
sd_eh_reset(struct scsi_cmnd * scmd)2197 static void sd_eh_reset(struct scsi_cmnd *scmd)
2198 {
2199 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2200 
2201 	/* New SCSI EH run, reset gate variable */
2202 	sdkp->ignore_medium_access_errors = false;
2203 }
2204 
2205 /**
2206  *	sd_eh_action - error handling callback
2207  *	@scmd:		sd-issued command that has failed
2208  *	@eh_disp:	The recovery disposition suggested by the midlayer
2209  *
2210  *	This function is called by the SCSI midlayer upon completion of an
2211  *	error test command (currently TEST UNIT READY). The result of sending
2212  *	the eh command is passed in eh_disp.  We're looking for devices that
2213  *	fail medium access commands but are OK with non access commands like
2214  *	test unit ready (so wrongly see the device as having a successful
2215  *	recovery)
2216  **/
sd_eh_action(struct scsi_cmnd * scmd,int eh_disp)2217 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2218 {
2219 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2220 	struct scsi_device *sdev = scmd->device;
2221 
2222 	if (!scsi_device_online(sdev) ||
2223 	    !scsi_medium_access_command(scmd) ||
2224 	    host_byte(scmd->result) != DID_TIME_OUT ||
2225 	    eh_disp != SUCCESS)
2226 		return eh_disp;
2227 
2228 	/*
2229 	 * The device has timed out executing a medium access command.
2230 	 * However, the TEST UNIT READY command sent during error
2231 	 * handling completed successfully. Either the device is in the
2232 	 * process of recovering or has it suffered an internal failure
2233 	 * that prevents access to the storage medium.
2234 	 */
2235 	if (!sdkp->ignore_medium_access_errors) {
2236 		sdkp->medium_access_timed_out++;
2237 		sdkp->ignore_medium_access_errors = true;
2238 	}
2239 
2240 	/*
2241 	 * If the device keeps failing read/write commands but TEST UNIT
2242 	 * READY always completes successfully we assume that medium
2243 	 * access is no longer possible and take the device offline.
2244 	 */
2245 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2246 		scmd_printk(KERN_ERR, scmd,
2247 			    "Medium access timeout failure. Offlining disk!\n");
2248 		mutex_lock(&sdev->state_mutex);
2249 		scsi_device_set_state(sdev, SDEV_OFFLINE);
2250 		mutex_unlock(&sdev->state_mutex);
2251 
2252 		return SUCCESS;
2253 	}
2254 
2255 	return eh_disp;
2256 }
2257 
sd_completed_bytes(struct scsi_cmnd * scmd)2258 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2259 {
2260 	struct request *req = scsi_cmd_to_rq(scmd);
2261 	struct scsi_device *sdev = scmd->device;
2262 	unsigned int transferred, good_bytes;
2263 	u64 start_lba, end_lba, bad_lba;
2264 
2265 	/*
2266 	 * Some commands have a payload smaller than the device logical
2267 	 * block size (e.g. INQUIRY on a 4K disk).
2268 	 */
2269 	if (scsi_bufflen(scmd) <= sdev->sector_size)
2270 		return 0;
2271 
2272 	/* Check if we have a 'bad_lba' information */
2273 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2274 				     SCSI_SENSE_BUFFERSIZE,
2275 				     &bad_lba))
2276 		return 0;
2277 
2278 	/*
2279 	 * If the bad lba was reported incorrectly, we have no idea where
2280 	 * the error is.
2281 	 */
2282 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2283 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2284 	if (bad_lba < start_lba || bad_lba >= end_lba)
2285 		return 0;
2286 
2287 	/*
2288 	 * resid is optional but mostly filled in.  When it's unused,
2289 	 * its value is zero, so we assume the whole buffer transferred
2290 	 */
2291 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2292 
2293 	/* This computation should always be done in terms of the
2294 	 * resolution of the device's medium.
2295 	 */
2296 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2297 
2298 	return min(good_bytes, transferred);
2299 }
2300 
2301 /**
2302  *	sd_done - bottom half handler: called when the lower level
2303  *	driver has completed (successfully or otherwise) a scsi command.
2304  *	@SCpnt: mid-level's per command structure.
2305  *
2306  *	Note: potentially run from within an ISR. Must not block.
2307  **/
sd_done(struct scsi_cmnd * SCpnt)2308 static int sd_done(struct scsi_cmnd *SCpnt)
2309 {
2310 	int result = SCpnt->result;
2311 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2312 	unsigned int sector_size = SCpnt->device->sector_size;
2313 	unsigned int resid;
2314 	struct scsi_sense_hdr sshdr;
2315 	struct request *req = scsi_cmd_to_rq(SCpnt);
2316 	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2317 	int sense_valid = 0;
2318 	int sense_deferred = 0;
2319 
2320 	switch (req_op(req)) {
2321 	case REQ_OP_DISCARD:
2322 	case REQ_OP_WRITE_ZEROES:
2323 	case REQ_OP_ZONE_RESET:
2324 	case REQ_OP_ZONE_RESET_ALL:
2325 	case REQ_OP_ZONE_OPEN:
2326 	case REQ_OP_ZONE_CLOSE:
2327 	case REQ_OP_ZONE_FINISH:
2328 		if (!result) {
2329 			good_bytes = blk_rq_bytes(req);
2330 			scsi_set_resid(SCpnt, 0);
2331 		} else {
2332 			good_bytes = 0;
2333 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2334 		}
2335 		break;
2336 	default:
2337 		/*
2338 		 * In case of bogus fw or device, we could end up having
2339 		 * an unaligned partial completion. Check this here and force
2340 		 * alignment.
2341 		 */
2342 		resid = scsi_get_resid(SCpnt);
2343 		if (resid & (sector_size - 1)) {
2344 			sd_printk(KERN_INFO, sdkp,
2345 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2346 				resid, sector_size);
2347 			scsi_print_command(SCpnt);
2348 			resid = min(scsi_bufflen(SCpnt),
2349 				    round_up(resid, sector_size));
2350 			scsi_set_resid(SCpnt, resid);
2351 		}
2352 	}
2353 
2354 	if (result) {
2355 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2356 		if (sense_valid)
2357 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2358 	}
2359 	sdkp->medium_access_timed_out = 0;
2360 
2361 	if (!scsi_status_is_check_condition(result) &&
2362 	    (!sense_valid || sense_deferred))
2363 		goto out;
2364 
2365 	switch (sshdr.sense_key) {
2366 	case HARDWARE_ERROR:
2367 	case MEDIUM_ERROR:
2368 		good_bytes = sd_completed_bytes(SCpnt);
2369 		break;
2370 	case RECOVERED_ERROR:
2371 		good_bytes = scsi_bufflen(SCpnt);
2372 		break;
2373 	case NO_SENSE:
2374 		/* This indicates a false check condition, so ignore it.  An
2375 		 * unknown amount of data was transferred so treat it as an
2376 		 * error.
2377 		 */
2378 		SCpnt->result = 0;
2379 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2380 		break;
2381 	case ABORTED_COMMAND:
2382 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2383 			good_bytes = sd_completed_bytes(SCpnt);
2384 		break;
2385 	case ILLEGAL_REQUEST:
2386 		switch (sshdr.asc) {
2387 		case 0x10:	/* DIX: Host detected corruption */
2388 			good_bytes = sd_completed_bytes(SCpnt);
2389 			break;
2390 		case 0x20:	/* INVALID COMMAND OPCODE */
2391 		case 0x24:	/* INVALID FIELD IN CDB */
2392 			switch (SCpnt->cmnd[0]) {
2393 			case UNMAP:
2394 				sd_disable_discard(sdkp);
2395 				break;
2396 			case WRITE_SAME_16:
2397 			case WRITE_SAME:
2398 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2399 					sd_disable_discard(sdkp);
2400 				} else {
2401 					sd_disable_write_same(sdkp);
2402 					req->rq_flags |= RQF_QUIET;
2403 				}
2404 				break;
2405 			}
2406 		}
2407 		break;
2408 	default:
2409 		break;
2410 	}
2411 
2412  out:
2413 	if (sdkp->device->type == TYPE_ZBC)
2414 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2415 
2416 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2417 					   "sd_done: completed %d of %d bytes\n",
2418 					   good_bytes, scsi_bufflen(SCpnt)));
2419 
2420 	return good_bytes;
2421 }
2422 
2423 /*
2424  * spinup disk - called only in sd_revalidate_disk()
2425  */
2426 static void
sd_spinup_disk(struct scsi_disk * sdkp)2427 sd_spinup_disk(struct scsi_disk *sdkp)
2428 {
2429 	static const u8 cmd[10] = { TEST_UNIT_READY };
2430 	unsigned long spintime_expire = 0;
2431 	int spintime, sense_valid = 0;
2432 	unsigned int the_result;
2433 	struct scsi_sense_hdr sshdr;
2434 	struct scsi_failure failure_defs[] = {
2435 		/* Do not retry Medium Not Present */
2436 		{
2437 			.sense = UNIT_ATTENTION,
2438 			.asc = 0x3A,
2439 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2440 			.result = SAM_STAT_CHECK_CONDITION,
2441 		},
2442 		{
2443 			.sense = NOT_READY,
2444 			.asc = 0x3A,
2445 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2446 			.result = SAM_STAT_CHECK_CONDITION,
2447 		},
2448 		/* Retry when scsi_status_is_good would return false 3 times */
2449 		{
2450 			.result = SCMD_FAILURE_STAT_ANY,
2451 			.allowed = 3,
2452 		},
2453 		{}
2454 	};
2455 	struct scsi_failures failures = {
2456 		.failure_definitions = failure_defs,
2457 	};
2458 	const struct scsi_exec_args exec_args = {
2459 		.sshdr = &sshdr,
2460 		.failures = &failures,
2461 	};
2462 
2463 	spintime = 0;
2464 
2465 	/* Spin up drives, as required.  Only do this at boot time */
2466 	/* Spinup needs to be done for module loads too. */
2467 	do {
2468 		bool media_was_present = sdkp->media_present;
2469 
2470 		scsi_failures_reset_retries(&failures);
2471 
2472 		the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2473 					      NULL, 0, SD_TIMEOUT,
2474 					      sdkp->max_retries, &exec_args);
2475 
2476 
2477 		if (the_result > 0) {
2478 			/*
2479 			 * If the drive has indicated to us that it doesn't
2480 			 * have any media in it, don't bother with any more
2481 			 * polling.
2482 			 */
2483 			if (media_not_present(sdkp, &sshdr)) {
2484 				if (media_was_present)
2485 					sd_printk(KERN_NOTICE, sdkp,
2486 						  "Media removed, stopped polling\n");
2487 				return;
2488 			}
2489 			sense_valid = scsi_sense_valid(&sshdr);
2490 		}
2491 
2492 		if (!scsi_status_is_check_condition(the_result)) {
2493 			/* no sense, TUR either succeeded or failed
2494 			 * with a status error */
2495 			if(!spintime && !scsi_status_is_good(the_result)) {
2496 				sd_print_result(sdkp, "Test Unit Ready failed",
2497 						the_result);
2498 			}
2499 			break;
2500 		}
2501 
2502 		/*
2503 		 * The device does not want the automatic start to be issued.
2504 		 */
2505 		if (sdkp->device->no_start_on_add)
2506 			break;
2507 
2508 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2509 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2510 				break;	/* manual intervention required */
2511 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2512 				break;	/* standby */
2513 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2514 				break;	/* unavailable */
2515 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2516 				break;	/* sanitize in progress */
2517 			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2518 				break;	/* depopulation in progress */
2519 			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2520 				break;	/* depopulation restoration in progress */
2521 			/*
2522 			 * Issue command to spin up drive when not ready
2523 			 */
2524 			if (!spintime) {
2525 				/* Return immediately and start spin cycle */
2526 				const u8 start_cmd[10] = {
2527 					[0] = START_STOP,
2528 					[1] = 1,
2529 					[4] = sdkp->device->start_stop_pwr_cond ?
2530 						0x11 : 1,
2531 				};
2532 
2533 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2534 				scsi_execute_cmd(sdkp->device, start_cmd,
2535 						 REQ_OP_DRV_IN, NULL, 0,
2536 						 SD_TIMEOUT, sdkp->max_retries,
2537 						 &exec_args);
2538 				spintime_expire = jiffies + 100 * HZ;
2539 				spintime = 1;
2540 			}
2541 			/* Wait 1 second for next try */
2542 			msleep(1000);
2543 			printk(KERN_CONT ".");
2544 
2545 		/*
2546 		 * Wait for USB flash devices with slow firmware.
2547 		 * Yes, this sense key/ASC combination shouldn't
2548 		 * occur here.  It's characteristic of these devices.
2549 		 */
2550 		} else if (sense_valid &&
2551 				sshdr.sense_key == UNIT_ATTENTION &&
2552 				sshdr.asc == 0x28) {
2553 			if (!spintime) {
2554 				spintime_expire = jiffies + 5 * HZ;
2555 				spintime = 1;
2556 			}
2557 			/* Wait 1 second for next try */
2558 			msleep(1000);
2559 		} else {
2560 			/* we don't understand the sense code, so it's
2561 			 * probably pointless to loop */
2562 			if(!spintime) {
2563 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2564 				sd_print_sense_hdr(sdkp, &sshdr);
2565 			}
2566 			break;
2567 		}
2568 
2569 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2570 
2571 	if (spintime) {
2572 		if (scsi_status_is_good(the_result))
2573 			printk(KERN_CONT "ready\n");
2574 		else
2575 			printk(KERN_CONT "not responding...\n");
2576 	}
2577 }
2578 
2579 /*
2580  * Determine whether disk supports Data Integrity Field.
2581  */
sd_read_protection_type(struct scsi_disk * sdkp,unsigned char * buffer)2582 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2583 {
2584 	struct scsi_device *sdp = sdkp->device;
2585 	u8 type;
2586 
2587 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2588 		sdkp->protection_type = 0;
2589 		return 0;
2590 	}
2591 
2592 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2593 
2594 	if (type > T10_PI_TYPE3_PROTECTION) {
2595 		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2596 			  " protection type %u. Disabling disk!\n",
2597 			  type);
2598 		sdkp->protection_type = 0;
2599 		return -ENODEV;
2600 	}
2601 
2602 	sdkp->protection_type = type;
2603 
2604 	return 0;
2605 }
2606 
sd_config_protection(struct scsi_disk * sdkp,struct queue_limits * lim)2607 static void sd_config_protection(struct scsi_disk *sdkp,
2608 		struct queue_limits *lim)
2609 {
2610 	struct scsi_device *sdp = sdkp->device;
2611 
2612 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
2613 		sd_dif_config_host(sdkp, lim);
2614 
2615 	if (!sdkp->protection_type)
2616 		return;
2617 
2618 	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2619 		sd_first_printk(KERN_NOTICE, sdkp,
2620 				"Disabling DIF Type %u protection\n",
2621 				sdkp->protection_type);
2622 		sdkp->protection_type = 0;
2623 	}
2624 
2625 	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2626 			sdkp->protection_type);
2627 }
2628 
read_capacity_error(struct scsi_disk * sdkp,struct scsi_device * sdp,struct scsi_sense_hdr * sshdr,int sense_valid,int the_result)2629 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2630 			struct scsi_sense_hdr *sshdr, int sense_valid,
2631 			int the_result)
2632 {
2633 	if (sense_valid)
2634 		sd_print_sense_hdr(sdkp, sshdr);
2635 	else
2636 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2637 
2638 	/*
2639 	 * Set dirty bit for removable devices if not ready -
2640 	 * sometimes drives will not report this properly.
2641 	 */
2642 	if (sdp->removable &&
2643 	    sense_valid && sshdr->sense_key == NOT_READY)
2644 		set_media_not_present(sdkp);
2645 
2646 	/*
2647 	 * We used to set media_present to 0 here to indicate no media
2648 	 * in the drive, but some drives fail read capacity even with
2649 	 * media present, so we can't do that.
2650 	 */
2651 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2652 }
2653 
2654 #define RC16_LEN 32
2655 #if RC16_LEN > SD_BUF_SIZE
2656 #error RC16_LEN must not be more than SD_BUF_SIZE
2657 #endif
2658 
2659 #define READ_CAPACITY_RETRIES_ON_RESET	10
2660 
read_capacity_16(struct scsi_disk * sdkp,struct scsi_device * sdp,struct queue_limits * lim,unsigned char * buffer)2661 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2662 		struct queue_limits *lim, unsigned char *buffer)
2663 {
2664 	unsigned char cmd[16];
2665 	struct scsi_sense_hdr sshdr;
2666 	const struct scsi_exec_args exec_args = {
2667 		.sshdr = &sshdr,
2668 	};
2669 	int sense_valid = 0;
2670 	int the_result;
2671 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2672 	unsigned int alignment;
2673 	unsigned long long lba;
2674 	unsigned sector_size;
2675 
2676 	if (sdp->no_read_capacity_16)
2677 		return -EINVAL;
2678 
2679 	do {
2680 		memset(cmd, 0, 16);
2681 		cmd[0] = SERVICE_ACTION_IN_16;
2682 		cmd[1] = SAI_READ_CAPACITY_16;
2683 		cmd[13] = RC16_LEN;
2684 		memset(buffer, 0, RC16_LEN);
2685 
2686 		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2687 					      buffer, RC16_LEN, SD_TIMEOUT,
2688 					      sdkp->max_retries, &exec_args);
2689 		if (the_result > 0) {
2690 			if (media_not_present(sdkp, &sshdr))
2691 				return -ENODEV;
2692 
2693 			sense_valid = scsi_sense_valid(&sshdr);
2694 			if (sense_valid &&
2695 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2696 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2697 			    sshdr.ascq == 0x00)
2698 				/* Invalid Command Operation Code or
2699 				 * Invalid Field in CDB, just retry
2700 				 * silently with RC10 */
2701 				return -EINVAL;
2702 			if (sense_valid &&
2703 			    sshdr.sense_key == UNIT_ATTENTION &&
2704 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2705 				/* Device reset might occur several times,
2706 				 * give it one more chance */
2707 				if (--reset_retries > 0)
2708 					continue;
2709 		}
2710 		retries--;
2711 
2712 	} while (the_result && retries);
2713 
2714 	if (the_result) {
2715 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2716 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2717 		return -EINVAL;
2718 	}
2719 
2720 	sector_size = get_unaligned_be32(&buffer[8]);
2721 	lba = get_unaligned_be64(&buffer[0]);
2722 
2723 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2724 		sdkp->capacity = 0;
2725 		return -ENODEV;
2726 	}
2727 
2728 	/* Logical blocks per physical block exponent */
2729 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2730 
2731 	/* RC basis */
2732 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2733 
2734 	/* Lowest aligned logical block */
2735 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2736 	lim->alignment_offset = alignment;
2737 	if (alignment && sdkp->first_scan)
2738 		sd_printk(KERN_NOTICE, sdkp,
2739 			  "physical block alignment offset: %u\n", alignment);
2740 
2741 	if (buffer[14] & 0x80) { /* LBPME */
2742 		sdkp->lbpme = 1;
2743 
2744 		if (buffer[14] & 0x40) /* LBPRZ */
2745 			sdkp->lbprz = 1;
2746 	}
2747 
2748 	sdkp->capacity = lba + 1;
2749 	return sector_size;
2750 }
2751 
read_capacity_10(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2752 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2753 						unsigned char *buffer)
2754 {
2755 	static const u8 cmd[10] = { READ_CAPACITY };
2756 	struct scsi_sense_hdr sshdr;
2757 	struct scsi_failure failure_defs[] = {
2758 		/* Do not retry Medium Not Present */
2759 		{
2760 			.sense = UNIT_ATTENTION,
2761 			.asc = 0x3A,
2762 			.result = SAM_STAT_CHECK_CONDITION,
2763 		},
2764 		{
2765 			.sense = NOT_READY,
2766 			.asc = 0x3A,
2767 			.result = SAM_STAT_CHECK_CONDITION,
2768 		},
2769 		 /* Device reset might occur several times so retry a lot */
2770 		{
2771 			.sense = UNIT_ATTENTION,
2772 			.asc = 0x29,
2773 			.allowed = READ_CAPACITY_RETRIES_ON_RESET,
2774 			.result = SAM_STAT_CHECK_CONDITION,
2775 		},
2776 		/* Any other error not listed above retry 3 times */
2777 		{
2778 			.result = SCMD_FAILURE_RESULT_ANY,
2779 			.allowed = 3,
2780 		},
2781 		{}
2782 	};
2783 	struct scsi_failures failures = {
2784 		.failure_definitions = failure_defs,
2785 	};
2786 	const struct scsi_exec_args exec_args = {
2787 		.sshdr = &sshdr,
2788 		.failures = &failures,
2789 	};
2790 	int sense_valid = 0;
2791 	int the_result;
2792 	sector_t lba;
2793 	unsigned sector_size;
2794 
2795 	memset(buffer, 0, 8);
2796 
2797 	the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2798 				      8, SD_TIMEOUT, sdkp->max_retries,
2799 				      &exec_args);
2800 
2801 	if (the_result > 0) {
2802 		sense_valid = scsi_sense_valid(&sshdr);
2803 
2804 		if (media_not_present(sdkp, &sshdr))
2805 			return -ENODEV;
2806 	}
2807 
2808 	if (the_result) {
2809 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2810 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2811 		return -EINVAL;
2812 	}
2813 
2814 	sector_size = get_unaligned_be32(&buffer[4]);
2815 	lba = get_unaligned_be32(&buffer[0]);
2816 
2817 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2818 		/* Some buggy (usb cardreader) devices return an lba of
2819 		   0xffffffff when the want to report a size of 0 (with
2820 		   which they really mean no media is present) */
2821 		sdkp->capacity = 0;
2822 		sdkp->physical_block_size = sector_size;
2823 		return sector_size;
2824 	}
2825 
2826 	sdkp->capacity = lba + 1;
2827 	sdkp->physical_block_size = sector_size;
2828 	return sector_size;
2829 }
2830 
sd_try_rc16_first(struct scsi_device * sdp)2831 static int sd_try_rc16_first(struct scsi_device *sdp)
2832 {
2833 	if (sdp->host->max_cmd_len < 16)
2834 		return 0;
2835 	if (sdp->try_rc_10_first)
2836 		return 0;
2837 	if (sdp->scsi_level > SCSI_SPC_2)
2838 		return 1;
2839 	if (scsi_device_protection(sdp))
2840 		return 1;
2841 	return 0;
2842 }
2843 
2844 /*
2845  * read disk capacity
2846  */
2847 static void
sd_read_capacity(struct scsi_disk * sdkp,struct queue_limits * lim,unsigned char * buffer)2848 sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim,
2849 		unsigned char *buffer)
2850 {
2851 	int sector_size;
2852 	struct scsi_device *sdp = sdkp->device;
2853 
2854 	if (sd_try_rc16_first(sdp)) {
2855 		sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2856 		if (sector_size == -EOVERFLOW)
2857 			goto got_data;
2858 		if (sector_size == -ENODEV)
2859 			return;
2860 		if (sector_size < 0)
2861 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2862 		if (sector_size < 0)
2863 			return;
2864 	} else {
2865 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2866 		if (sector_size == -EOVERFLOW)
2867 			goto got_data;
2868 		if (sector_size < 0)
2869 			return;
2870 		if ((sizeof(sdkp->capacity) > 4) &&
2871 		    (sdkp->capacity > 0xffffffffULL)) {
2872 			int old_sector_size = sector_size;
2873 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2874 					"Trying to use READ CAPACITY(16).\n");
2875 			sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2876 			if (sector_size < 0) {
2877 				sd_printk(KERN_NOTICE, sdkp,
2878 					"Using 0xffffffff as device size\n");
2879 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2880 				sector_size = old_sector_size;
2881 				goto got_data;
2882 			}
2883 			/* Remember that READ CAPACITY(16) succeeded */
2884 			sdp->try_rc_10_first = 0;
2885 		}
2886 	}
2887 
2888 	/* Some devices are known to return the total number of blocks,
2889 	 * not the highest block number.  Some devices have versions
2890 	 * which do this and others which do not.  Some devices we might
2891 	 * suspect of doing this but we don't know for certain.
2892 	 *
2893 	 * If we know the reported capacity is wrong, decrement it.  If
2894 	 * we can only guess, then assume the number of blocks is even
2895 	 * (usually true but not always) and err on the side of lowering
2896 	 * the capacity.
2897 	 */
2898 	if (sdp->fix_capacity ||
2899 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2900 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2901 				"from its reported value: %llu\n",
2902 				(unsigned long long) sdkp->capacity);
2903 		--sdkp->capacity;
2904 	}
2905 
2906 got_data:
2907 	if (sector_size == 0) {
2908 		sector_size = 512;
2909 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2910 			  "assuming 512.\n");
2911 	}
2912 
2913 	if (sector_size != 512 &&
2914 	    sector_size != 1024 &&
2915 	    sector_size != 2048 &&
2916 	    sector_size != 4096) {
2917 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2918 			  sector_size);
2919 		/*
2920 		 * The user might want to re-format the drive with
2921 		 * a supported sectorsize.  Once this happens, it
2922 		 * would be relatively trivial to set the thing up.
2923 		 * For this reason, we leave the thing in the table.
2924 		 */
2925 		sdkp->capacity = 0;
2926 		/*
2927 		 * set a bogus sector size so the normal read/write
2928 		 * logic in the block layer will eventually refuse any
2929 		 * request on this device without tripping over power
2930 		 * of two sector size assumptions
2931 		 */
2932 		sector_size = 512;
2933 	}
2934 	lim->logical_block_size = sector_size;
2935 	lim->physical_block_size = sdkp->physical_block_size;
2936 	sdkp->device->sector_size = sector_size;
2937 
2938 	if (sdkp->capacity > 0xffffffff)
2939 		sdp->use_16_for_rw = 1;
2940 
2941 }
2942 
2943 /*
2944  * Print disk capacity
2945  */
2946 static void
sd_print_capacity(struct scsi_disk * sdkp,sector_t old_capacity)2947 sd_print_capacity(struct scsi_disk *sdkp,
2948 		  sector_t old_capacity)
2949 {
2950 	int sector_size = sdkp->device->sector_size;
2951 	char cap_str_2[10], cap_str_10[10];
2952 
2953 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2954 		return;
2955 
2956 	string_get_size(sdkp->capacity, sector_size,
2957 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2958 	string_get_size(sdkp->capacity, sector_size,
2959 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2960 
2961 	sd_printk(KERN_NOTICE, sdkp,
2962 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2963 		  (unsigned long long)sdkp->capacity,
2964 		  sector_size, cap_str_10, cap_str_2);
2965 
2966 	if (sdkp->physical_block_size != sector_size)
2967 		sd_printk(KERN_NOTICE, sdkp,
2968 			  "%u-byte physical blocks\n",
2969 			  sdkp->physical_block_size);
2970 }
2971 
2972 /* called with buffer of length 512 */
2973 static inline int
sd_do_mode_sense(struct scsi_disk * sdkp,int dbd,int modepage,unsigned char * buffer,int len,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2974 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2975 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2976 		 struct scsi_sense_hdr *sshdr)
2977 {
2978 	/*
2979 	 * If we must use MODE SENSE(10), make sure that the buffer length
2980 	 * is at least 8 bytes so that the mode sense header fits.
2981 	 */
2982 	if (sdkp->device->use_10_for_ms && len < 8)
2983 		len = 8;
2984 
2985 	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2986 			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2987 }
2988 
2989 /*
2990  * read write protect setting, if possible - called only in sd_revalidate_disk()
2991  * called with buffer of length SD_BUF_SIZE
2992  */
2993 static void
sd_read_write_protect_flag(struct scsi_disk * sdkp,unsigned char * buffer)2994 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2995 {
2996 	int res;
2997 	struct scsi_device *sdp = sdkp->device;
2998 	struct scsi_mode_data data;
2999 	int old_wp = sdkp->write_prot;
3000 
3001 	set_disk_ro(sdkp->disk, 0);
3002 	if (sdp->skip_ms_page_3f) {
3003 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
3004 		return;
3005 	}
3006 
3007 	if (sdp->use_192_bytes_for_3f) {
3008 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
3009 	} else {
3010 		/*
3011 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
3012 		 * We have to start carefully: some devices hang if we ask
3013 		 * for more than is available.
3014 		 */
3015 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
3016 
3017 		/*
3018 		 * Second attempt: ask for page 0 When only page 0 is
3019 		 * implemented, a request for page 3F may return Sense Key
3020 		 * 5: Illegal Request, Sense Code 24: Invalid field in
3021 		 * CDB.
3022 		 */
3023 		if (res < 0)
3024 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
3025 
3026 		/*
3027 		 * Third attempt: ask 255 bytes, as we did earlier.
3028 		 */
3029 		if (res < 0)
3030 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
3031 					       &data, NULL);
3032 	}
3033 
3034 	if (res < 0) {
3035 		sd_first_printk(KERN_WARNING, sdkp,
3036 			  "Test WP failed, assume Write Enabled\n");
3037 	} else {
3038 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
3039 		set_disk_ro(sdkp->disk, sdkp->write_prot);
3040 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
3041 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
3042 				  sdkp->write_prot ? "on" : "off");
3043 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
3044 		}
3045 	}
3046 }
3047 
3048 /*
3049  * sd_read_cache_type - called only from sd_revalidate_disk()
3050  * called with buffer of length SD_BUF_SIZE
3051  */
3052 static void
sd_read_cache_type(struct scsi_disk * sdkp,unsigned char * buffer)3053 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
3054 {
3055 	int len = 0, res;
3056 	struct scsi_device *sdp = sdkp->device;
3057 
3058 	int dbd;
3059 	int modepage;
3060 	int first_len;
3061 	struct scsi_mode_data data;
3062 	struct scsi_sense_hdr sshdr;
3063 	int old_wce = sdkp->WCE;
3064 	int old_rcd = sdkp->RCD;
3065 	int old_dpofua = sdkp->DPOFUA;
3066 
3067 
3068 	if (sdkp->cache_override)
3069 		return;
3070 
3071 	first_len = 4;
3072 	if (sdp->skip_ms_page_8) {
3073 		if (sdp->type == TYPE_RBC)
3074 			goto defaults;
3075 		else {
3076 			if (sdp->skip_ms_page_3f)
3077 				goto defaults;
3078 			modepage = 0x3F;
3079 			if (sdp->use_192_bytes_for_3f)
3080 				first_len = 192;
3081 			dbd = 0;
3082 		}
3083 	} else if (sdp->type == TYPE_RBC) {
3084 		modepage = 6;
3085 		dbd = 8;
3086 	} else {
3087 		modepage = 8;
3088 		dbd = 0;
3089 	}
3090 
3091 	/* cautiously ask */
3092 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
3093 			&data, &sshdr);
3094 
3095 	if (res < 0)
3096 		goto bad_sense;
3097 
3098 	if (!data.header_length) {
3099 		modepage = 6;
3100 		first_len = 0;
3101 		sd_first_printk(KERN_ERR, sdkp,
3102 				"Missing header in MODE_SENSE response\n");
3103 	}
3104 
3105 	/* that went OK, now ask for the proper length */
3106 	len = data.length;
3107 
3108 	/*
3109 	 * We're only interested in the first three bytes, actually.
3110 	 * But the data cache page is defined for the first 20.
3111 	 */
3112 	if (len < 3)
3113 		goto bad_sense;
3114 	else if (len > SD_BUF_SIZE) {
3115 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
3116 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
3117 		len = SD_BUF_SIZE;
3118 	}
3119 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
3120 		len = 192;
3121 
3122 	/* Get the data */
3123 	if (len > first_len)
3124 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
3125 				&data, &sshdr);
3126 
3127 	if (!res) {
3128 		int offset = data.header_length + data.block_descriptor_length;
3129 
3130 		while (offset < len) {
3131 			u8 page_code = buffer[offset] & 0x3F;
3132 			u8 spf       = buffer[offset] & 0x40;
3133 
3134 			if (page_code == 8 || page_code == 6) {
3135 				/* We're interested only in the first 3 bytes.
3136 				 */
3137 				if (len - offset <= 2) {
3138 					sd_first_printk(KERN_ERR, sdkp,
3139 						"Incomplete mode parameter "
3140 							"data\n");
3141 					goto defaults;
3142 				} else {
3143 					modepage = page_code;
3144 					goto Page_found;
3145 				}
3146 			} else {
3147 				/* Go to the next page */
3148 				if (spf && len - offset > 3)
3149 					offset += 4 + (buffer[offset+2] << 8) +
3150 						buffer[offset+3];
3151 				else if (!spf && len - offset > 1)
3152 					offset += 2 + buffer[offset+1];
3153 				else {
3154 					sd_first_printk(KERN_ERR, sdkp,
3155 							"Incomplete mode "
3156 							"parameter data\n");
3157 					goto defaults;
3158 				}
3159 			}
3160 		}
3161 
3162 		sd_first_printk(KERN_WARNING, sdkp,
3163 				"No Caching mode page found\n");
3164 		goto defaults;
3165 
3166 	Page_found:
3167 		if (modepage == 8) {
3168 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3169 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3170 		} else {
3171 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3172 			sdkp->RCD = 0;
3173 		}
3174 
3175 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3176 		if (sdp->broken_fua) {
3177 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3178 			sdkp->DPOFUA = 0;
3179 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3180 			   !sdkp->device->use_16_for_rw) {
3181 			sd_first_printk(KERN_NOTICE, sdkp,
3182 				  "Uses READ/WRITE(6), disabling FUA\n");
3183 			sdkp->DPOFUA = 0;
3184 		}
3185 
3186 		/* No cache flush allowed for write protected devices */
3187 		if (sdkp->WCE && sdkp->write_prot)
3188 			sdkp->WCE = 0;
3189 
3190 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
3191 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3192 			sd_printk(KERN_NOTICE, sdkp,
3193 				  "Write cache: %s, read cache: %s, %s\n",
3194 				  sdkp->WCE ? "enabled" : "disabled",
3195 				  sdkp->RCD ? "disabled" : "enabled",
3196 				  sdkp->DPOFUA ? "supports DPO and FUA"
3197 				  : "doesn't support DPO or FUA");
3198 
3199 		return;
3200 	}
3201 
3202 bad_sense:
3203 	if (res == -EIO && scsi_sense_valid(&sshdr) &&
3204 	    sshdr.sense_key == ILLEGAL_REQUEST &&
3205 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3206 		/* Invalid field in CDB */
3207 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3208 	else
3209 		sd_first_printk(KERN_ERR, sdkp,
3210 				"Asking for cache data failed\n");
3211 
3212 defaults:
3213 	if (sdp->wce_default_on) {
3214 		sd_first_printk(KERN_NOTICE, sdkp,
3215 				"Assuming drive cache: write back\n");
3216 		sdkp->WCE = 1;
3217 	} else {
3218 		sd_first_printk(KERN_WARNING, sdkp,
3219 				"Assuming drive cache: write through\n");
3220 		sdkp->WCE = 0;
3221 	}
3222 	sdkp->RCD = 0;
3223 	sdkp->DPOFUA = 0;
3224 }
3225 
sd_is_perm_stream(struct scsi_disk * sdkp,unsigned int stream_id)3226 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
3227 {
3228 	u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
3229 	struct {
3230 		struct scsi_stream_status_header h;
3231 		struct scsi_stream_status s;
3232 	} buf;
3233 	struct scsi_device *sdev = sdkp->device;
3234 	struct scsi_sense_hdr sshdr;
3235 	const struct scsi_exec_args exec_args = {
3236 		.sshdr = &sshdr,
3237 	};
3238 	int res;
3239 
3240 	put_unaligned_be16(stream_id, &cdb[4]);
3241 	put_unaligned_be32(sizeof(buf), &cdb[10]);
3242 
3243 	res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
3244 			       SD_TIMEOUT, sdkp->max_retries, &exec_args);
3245 	if (res < 0)
3246 		return false;
3247 	if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
3248 		sd_print_sense_hdr(sdkp, &sshdr);
3249 	if (res)
3250 		return false;
3251 	if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
3252 		return false;
3253 	return buf.s.perm;
3254 }
3255 
sd_read_io_hints(struct scsi_disk * sdkp,unsigned char * buffer)3256 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
3257 {
3258 	struct scsi_device *sdp = sdkp->device;
3259 	const struct scsi_io_group_descriptor *desc, *start, *end;
3260 	u16 permanent_stream_count_old;
3261 	struct scsi_sense_hdr sshdr;
3262 	struct scsi_mode_data data;
3263 	int res;
3264 
3265 	if (sdp->sdev_bflags & BLIST_SKIP_IO_HINTS)
3266 		return;
3267 
3268 	res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
3269 			      /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
3270 			      sdkp->max_retries, &data, &sshdr);
3271 	if (res < 0)
3272 		return;
3273 	start = (void *)buffer + data.header_length + 16;
3274 	end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
3275 					  sizeof(*end));
3276 	/*
3277 	 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
3278 	 * should assign the lowest numbered stream identifiers to permanent
3279 	 * streams.
3280 	 */
3281 	for (desc = start; desc < end; desc++)
3282 		if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
3283 			break;
3284 	permanent_stream_count_old = sdkp->permanent_stream_count;
3285 	sdkp->permanent_stream_count = desc - start;
3286 	if (sdkp->rscs && sdkp->permanent_stream_count < 2)
3287 		sd_printk(KERN_INFO, sdkp,
3288 			  "Unexpected: RSCS has been set and the permanent stream count is %u\n",
3289 			  sdkp->permanent_stream_count);
3290 	else if (sdkp->permanent_stream_count != permanent_stream_count_old)
3291 		sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
3292 			  sdkp->permanent_stream_count);
3293 }
3294 
3295 /*
3296  * The ATO bit indicates whether the DIF application tag is available
3297  * for use by the operating system.
3298  */
sd_read_app_tag_own(struct scsi_disk * sdkp,unsigned char * buffer)3299 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3300 {
3301 	int res, offset;
3302 	struct scsi_device *sdp = sdkp->device;
3303 	struct scsi_mode_data data;
3304 	struct scsi_sense_hdr sshdr;
3305 
3306 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3307 		return;
3308 
3309 	if (sdkp->protection_type == 0)
3310 		return;
3311 
3312 	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3313 			      sdkp->max_retries, &data, &sshdr);
3314 
3315 	if (res < 0 || !data.header_length ||
3316 	    data.length < 6) {
3317 		sd_first_printk(KERN_WARNING, sdkp,
3318 			  "getting Control mode page failed, assume no ATO\n");
3319 
3320 		if (res == -EIO && scsi_sense_valid(&sshdr))
3321 			sd_print_sense_hdr(sdkp, &sshdr);
3322 
3323 		return;
3324 	}
3325 
3326 	offset = data.header_length + data.block_descriptor_length;
3327 
3328 	if ((buffer[offset] & 0x3f) != 0x0a) {
3329 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3330 		return;
3331 	}
3332 
3333 	if ((buffer[offset + 5] & 0x80) == 0)
3334 		return;
3335 
3336 	sdkp->ATO = 1;
3337 
3338 	return;
3339 }
3340 
sd_discard_mode(struct scsi_disk * sdkp)3341 static unsigned int sd_discard_mode(struct scsi_disk *sdkp)
3342 {
3343 	if (!sdkp->lbpme)
3344 		return SD_LBP_FULL;
3345 
3346 	if (!sdkp->lbpvpd) {
3347 		/* LBP VPD page not provided */
3348 		if (sdkp->max_unmap_blocks)
3349 			return SD_LBP_UNMAP;
3350 		return SD_LBP_WS16;
3351 	}
3352 
3353 	/* LBP VPD page tells us what to use */
3354 	if (sdkp->lbpu && sdkp->max_unmap_blocks)
3355 		return SD_LBP_UNMAP;
3356 	if (sdkp->lbpws)
3357 		return SD_LBP_WS16;
3358 	if (sdkp->lbpws10)
3359 		return SD_LBP_WS10;
3360 	return SD_LBP_DISABLE;
3361 }
3362 
3363 /*
3364  * Query disk device for preferred I/O sizes.
3365  */
sd_read_block_limits(struct scsi_disk * sdkp,struct queue_limits * lim)3366 static void sd_read_block_limits(struct scsi_disk *sdkp,
3367 		struct queue_limits *lim)
3368 {
3369 	struct scsi_vpd *vpd;
3370 
3371 	rcu_read_lock();
3372 
3373 	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3374 	if (!vpd || vpd->len < 16)
3375 		goto out;
3376 
3377 	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3378 	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3379 	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3380 
3381 	if (vpd->len >= 64) {
3382 		unsigned int lba_count, desc_count;
3383 
3384 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3385 
3386 		if (!sdkp->lbpme)
3387 			goto config_atomic;
3388 
3389 		lba_count = get_unaligned_be32(&vpd->data[20]);
3390 		desc_count = get_unaligned_be32(&vpd->data[24]);
3391 
3392 		if (lba_count && desc_count)
3393 			sdkp->max_unmap_blocks = lba_count;
3394 
3395 		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3396 
3397 		if (vpd->data[32] & 0x80)
3398 			sdkp->unmap_alignment =
3399 				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3400 
3401 config_atomic:
3402 		sdkp->max_atomic = get_unaligned_be32(&vpd->data[44]);
3403 		sdkp->atomic_alignment = get_unaligned_be32(&vpd->data[48]);
3404 		sdkp->atomic_granularity = get_unaligned_be32(&vpd->data[52]);
3405 		sdkp->max_atomic_with_boundary = get_unaligned_be32(&vpd->data[56]);
3406 		sdkp->max_atomic_boundary = get_unaligned_be32(&vpd->data[60]);
3407 
3408 		sd_config_atomic(sdkp, lim);
3409 	}
3410 
3411  out:
3412 	rcu_read_unlock();
3413 }
3414 
3415 /* Parse the Block Limits Extension VPD page (0xb7) */
sd_read_block_limits_ext(struct scsi_disk * sdkp)3416 static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
3417 {
3418 	struct scsi_vpd *vpd;
3419 
3420 	rcu_read_lock();
3421 	vpd = rcu_dereference(sdkp->device->vpd_pgb7);
3422 	if (vpd && vpd->len >= 6)
3423 		sdkp->rscs = vpd->data[5] & 1;
3424 	rcu_read_unlock();
3425 }
3426 
3427 /* Query block device characteristics */
sd_read_block_characteristics(struct scsi_disk * sdkp,struct queue_limits * lim)3428 static void sd_read_block_characteristics(struct scsi_disk *sdkp,
3429 		struct queue_limits *lim)
3430 {
3431 	struct scsi_vpd *vpd;
3432 	u16 rot;
3433 
3434 	rcu_read_lock();
3435 	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3436 
3437 	if (!vpd || vpd->len <= 8) {
3438 		rcu_read_unlock();
3439 	        return;
3440 	}
3441 
3442 	rot = get_unaligned_be16(&vpd->data[4]);
3443 	sdkp->zoned = (vpd->data[8] >> 4) & 3;
3444 	rcu_read_unlock();
3445 
3446 	if (rot == 1)
3447 		lim->features &= ~(BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
3448 
3449 	if (!sdkp->first_scan)
3450 		return;
3451 
3452 	if (sdkp->device->type == TYPE_ZBC)
3453 		sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3454 	else if (sdkp->zoned == 1)
3455 		sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3456 	else if (sdkp->zoned == 2)
3457 		sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3458 }
3459 
3460 /**
3461  * sd_read_block_provisioning - Query provisioning VPD page
3462  * @sdkp: disk to query
3463  */
sd_read_block_provisioning(struct scsi_disk * sdkp)3464 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3465 {
3466 	struct scsi_vpd *vpd;
3467 
3468 	if (sdkp->lbpme == 0)
3469 		return;
3470 
3471 	rcu_read_lock();
3472 	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3473 
3474 	if (!vpd || vpd->len < 8) {
3475 		rcu_read_unlock();
3476 		return;
3477 	}
3478 
3479 	sdkp->lbpvpd	= 1;
3480 	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3481 	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3482 	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3483 	rcu_read_unlock();
3484 }
3485 
sd_read_write_same(struct scsi_disk * sdkp,unsigned char * buffer)3486 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3487 {
3488 	struct scsi_device *sdev = sdkp->device;
3489 
3490 	if (sdev->host->no_write_same) {
3491 		sdev->no_write_same = 1;
3492 
3493 		return;
3494 	}
3495 
3496 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3497 		sdev->no_report_opcodes = 1;
3498 
3499 		/*
3500 		 * Disable WRITE SAME if REPORT SUPPORTED OPERATION CODES is
3501 		 * unsupported and this is an ATA device.
3502 		 */
3503 		if (sdev->is_ata)
3504 			sdev->no_write_same = 1;
3505 	}
3506 
3507 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3508 		sdkp->ws16 = 1;
3509 
3510 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3511 		sdkp->ws10 = 1;
3512 }
3513 
sd_read_security(struct scsi_disk * sdkp,unsigned char * buffer)3514 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3515 {
3516 	struct scsi_device *sdev = sdkp->device;
3517 
3518 	if (!sdev->security_supported)
3519 		return;
3520 
3521 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3522 			SECURITY_PROTOCOL_IN, 0) == 1 &&
3523 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3524 			SECURITY_PROTOCOL_OUT, 0) == 1)
3525 		sdkp->security = 1;
3526 }
3527 
sd64_to_sectors(struct scsi_disk * sdkp,u8 * buf)3528 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3529 {
3530 	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3531 }
3532 
3533 /**
3534  * sd_read_cpr - Query concurrent positioning ranges
3535  * @sdkp:	disk to query
3536  */
sd_read_cpr(struct scsi_disk * sdkp)3537 static void sd_read_cpr(struct scsi_disk *sdkp)
3538 {
3539 	struct blk_independent_access_ranges *iars = NULL;
3540 	unsigned char *buffer = NULL;
3541 	unsigned int nr_cpr = 0;
3542 	int i, vpd_len, buf_len = SD_BUF_SIZE;
3543 	u8 *desc;
3544 
3545 	/*
3546 	 * We need to have the capacity set first for the block layer to be
3547 	 * able to check the ranges.
3548 	 */
3549 	if (sdkp->first_scan)
3550 		return;
3551 
3552 	if (!sdkp->capacity)
3553 		goto out;
3554 
3555 	/*
3556 	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3557 	 * leading to a maximum page size of 64 + 256*32 bytes.
3558 	 */
3559 	buf_len = 64 + 256*32;
3560 	buffer = kmalloc(buf_len, GFP_KERNEL);
3561 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3562 		goto out;
3563 
3564 	/* We must have at least a 64B header and one 32B range descriptor */
3565 	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3566 	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3567 		sd_printk(KERN_ERR, sdkp,
3568 			  "Invalid Concurrent Positioning Ranges VPD page\n");
3569 		goto out;
3570 	}
3571 
3572 	nr_cpr = (vpd_len - 64) / 32;
3573 	if (nr_cpr == 1) {
3574 		nr_cpr = 0;
3575 		goto out;
3576 	}
3577 
3578 	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3579 	if (!iars) {
3580 		nr_cpr = 0;
3581 		goto out;
3582 	}
3583 
3584 	desc = &buffer[64];
3585 	for (i = 0; i < nr_cpr; i++, desc += 32) {
3586 		if (desc[0] != i) {
3587 			sd_printk(KERN_ERR, sdkp,
3588 				"Invalid Concurrent Positioning Range number\n");
3589 			nr_cpr = 0;
3590 			break;
3591 		}
3592 
3593 		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3594 		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3595 	}
3596 
3597 out:
3598 	disk_set_independent_access_ranges(sdkp->disk, iars);
3599 	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3600 		sd_printk(KERN_NOTICE, sdkp,
3601 			  "%u concurrent positioning ranges\n", nr_cpr);
3602 		sdkp->nr_actuators = nr_cpr;
3603 	}
3604 
3605 	kfree(buffer);
3606 }
3607 
sd_validate_min_xfer_size(struct scsi_disk * sdkp)3608 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3609 {
3610 	struct scsi_device *sdp = sdkp->device;
3611 	unsigned int min_xfer_bytes =
3612 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3613 
3614 	if (sdkp->min_xfer_blocks == 0)
3615 		return false;
3616 
3617 	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3618 		sd_first_printk(KERN_WARNING, sdkp,
3619 				"Preferred minimum I/O size %u bytes not a " \
3620 				"multiple of physical block size (%u bytes)\n",
3621 				min_xfer_bytes, sdkp->physical_block_size);
3622 		sdkp->min_xfer_blocks = 0;
3623 		return false;
3624 	}
3625 
3626 	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3627 			min_xfer_bytes);
3628 	return true;
3629 }
3630 
3631 /*
3632  * Determine the device's preferred I/O size for reads and writes
3633  * unless the reported value is unreasonably small, large, not a
3634  * multiple of the physical block size, or simply garbage.
3635  */
sd_validate_opt_xfer_size(struct scsi_disk * sdkp,unsigned int dev_max)3636 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3637 				      unsigned int dev_max)
3638 {
3639 	struct scsi_device *sdp = sdkp->device;
3640 	unsigned int opt_xfer_bytes =
3641 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3642 	unsigned int min_xfer_bytes =
3643 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3644 
3645 	if (sdkp->opt_xfer_blocks == 0)
3646 		return false;
3647 
3648 	if (sdkp->opt_xfer_blocks > dev_max) {
3649 		sd_first_printk(KERN_WARNING, sdkp,
3650 				"Optimal transfer size %u logical blocks " \
3651 				"> dev_max (%u logical blocks)\n",
3652 				sdkp->opt_xfer_blocks, dev_max);
3653 		return false;
3654 	}
3655 
3656 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3657 		sd_first_printk(KERN_WARNING, sdkp,
3658 				"Optimal transfer size %u logical blocks " \
3659 				"> sd driver limit (%u logical blocks)\n",
3660 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3661 		return false;
3662 	}
3663 
3664 	if (opt_xfer_bytes < PAGE_SIZE) {
3665 		sd_first_printk(KERN_WARNING, sdkp,
3666 				"Optimal transfer size %u bytes < " \
3667 				"PAGE_SIZE (%u bytes)\n",
3668 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3669 		return false;
3670 	}
3671 
3672 	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3673 		sd_first_printk(KERN_WARNING, sdkp,
3674 				"Optimal transfer size %u bytes not a " \
3675 				"multiple of preferred minimum block " \
3676 				"size (%u bytes)\n",
3677 				opt_xfer_bytes, min_xfer_bytes);
3678 		return false;
3679 	}
3680 
3681 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3682 		sd_first_printk(KERN_WARNING, sdkp,
3683 				"Optimal transfer size %u bytes not a " \
3684 				"multiple of physical block size (%u bytes)\n",
3685 				opt_xfer_bytes, sdkp->physical_block_size);
3686 		return false;
3687 	}
3688 
3689 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3690 			opt_xfer_bytes);
3691 	return true;
3692 }
3693 
sd_read_block_zero(struct scsi_disk * sdkp)3694 static void sd_read_block_zero(struct scsi_disk *sdkp)
3695 {
3696 	struct scsi_device *sdev = sdkp->device;
3697 	unsigned int buf_len = sdev->sector_size;
3698 	u8 *buffer, cmd[16] = { };
3699 
3700 	buffer = kmalloc(buf_len, GFP_KERNEL);
3701 	if (!buffer)
3702 		return;
3703 
3704 	if (sdev->use_16_for_rw) {
3705 		cmd[0] = READ_16;
3706 		put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */
3707 		put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */
3708 	} else {
3709 		cmd[0] = READ_10;
3710 		put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3711 		put_unaligned_be16(1, &cmd[7]);	/* Transfer 1 logical block */
3712 	}
3713 
3714 	scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3715 			 SD_TIMEOUT, sdkp->max_retries, NULL);
3716 	kfree(buffer);
3717 }
3718 
3719 /**
3720  *	sd_revalidate_disk - called the first time a new disk is seen,
3721  *	performs disk spin up, read_capacity, etc.
3722  *	@disk: struct gendisk we care about
3723  **/
sd_revalidate_disk(struct gendisk * disk)3724 static void sd_revalidate_disk(struct gendisk *disk)
3725 {
3726 	struct scsi_disk *sdkp = scsi_disk(disk);
3727 	struct scsi_device *sdp = sdkp->device;
3728 	sector_t old_capacity = sdkp->capacity;
3729 	struct queue_limits *lim = NULL;
3730 	unsigned char *buffer = NULL;
3731 	unsigned int dev_max;
3732 	int err;
3733 
3734 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3735 				      "sd_revalidate_disk\n"));
3736 
3737 	/*
3738 	 * If the device is offline, don't try and read capacity or any
3739 	 * of the other niceties.
3740 	 */
3741 	if (!scsi_device_online(sdp))
3742 		return;
3743 
3744 	lim = kmalloc(sizeof(*lim), GFP_KERNEL);
3745 	if (!lim)
3746 		return;
3747 
3748 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3749 	if (!buffer)
3750 		goto out;
3751 
3752 	sd_spinup_disk(sdkp);
3753 
3754 	*lim = queue_limits_start_update(sdkp->disk->queue);
3755 
3756 	/*
3757 	 * Without media there is no reason to ask; moreover, some devices
3758 	 * react badly if we do.
3759 	 */
3760 	if (sdkp->media_present) {
3761 		sd_read_capacity(sdkp, lim, buffer);
3762 		/*
3763 		 * Some USB/UAS devices return generic values for mode pages
3764 		 * until the media has been accessed. Trigger a READ operation
3765 		 * to force the device to populate mode pages.
3766 		 */
3767 		if (sdp->read_before_ms)
3768 			sd_read_block_zero(sdkp);
3769 		/*
3770 		 * set the default to rotational.  All non-rotational devices
3771 		 * support the block characteristics VPD page, which will
3772 		 * cause this to be updated correctly and any device which
3773 		 * doesn't support it should be treated as rotational.
3774 		 */
3775 		lim->features |= (BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
3776 
3777 		if (scsi_device_supports_vpd(sdp)) {
3778 			sd_read_block_provisioning(sdkp);
3779 			sd_read_block_limits(sdkp, lim);
3780 			sd_read_block_limits_ext(sdkp);
3781 			sd_read_block_characteristics(sdkp, lim);
3782 			sd_zbc_read_zones(sdkp, lim, buffer);
3783 		}
3784 
3785 		sd_config_discard(sdkp, lim, sd_discard_mode(sdkp));
3786 
3787 		sd_print_capacity(sdkp, old_capacity);
3788 
3789 		sd_read_write_protect_flag(sdkp, buffer);
3790 		sd_read_cache_type(sdkp, buffer);
3791 		sd_read_io_hints(sdkp, buffer);
3792 		sd_read_app_tag_own(sdkp, buffer);
3793 		sd_read_write_same(sdkp, buffer);
3794 		sd_read_security(sdkp, buffer);
3795 		sd_config_protection(sdkp, lim);
3796 	}
3797 
3798 	/*
3799 	 * We now have all cache related info, determine how we deal
3800 	 * with flush requests.
3801 	 */
3802 	sd_set_flush_flag(sdkp, lim);
3803 
3804 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3805 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3806 
3807 	/* Some devices report a maximum block count for READ/WRITE requests. */
3808 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3809 	lim->max_dev_sectors = logical_to_sectors(sdp, dev_max);
3810 
3811 	if (sd_validate_min_xfer_size(sdkp))
3812 		lim->io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3813 	else
3814 		lim->io_min = 0;
3815 
3816 	/*
3817 	 * Limit default to SCSI host optimal sector limit if set. There may be
3818 	 * an impact on performance for when the size of a request exceeds this
3819 	 * host limit.
3820 	 */
3821 	lim->io_opt = sdp->host->opt_sectors << SECTOR_SHIFT;
3822 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3823 		lim->io_opt = min_not_zero(lim->io_opt,
3824 				logical_to_bytes(sdp, sdkp->opt_xfer_blocks));
3825 	}
3826 
3827 	sdkp->first_scan = 0;
3828 
3829 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3830 	sd_config_write_same(sdkp, lim);
3831 
3832 	err = queue_limits_commit_update_frozen(sdkp->disk->queue, lim);
3833 	if (err)
3834 		goto out;
3835 
3836 	/*
3837 	 * Query concurrent positioning ranges after
3838 	 * queue_limits_commit_update() unlocked q->limits_lock to avoid
3839 	 * deadlock with q->sysfs_dir_lock and q->sysfs_lock.
3840 	 */
3841 	if (sdkp->media_present && scsi_device_supports_vpd(sdp))
3842 		sd_read_cpr(sdkp);
3843 
3844 	/*
3845 	 * For a zoned drive, revalidating the zones can be done only once
3846 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3847 	 * capacity to 0.
3848 	 */
3849 	if (sd_zbc_revalidate_zones(sdkp))
3850 		set_capacity_and_notify(disk, 0);
3851 
3852  out:
3853 	kfree(buffer);
3854 	kfree(lim);
3855 
3856 }
3857 
3858 /**
3859  *	sd_unlock_native_capacity - unlock native capacity
3860  *	@disk: struct gendisk to set capacity for
3861  *
3862  *	Block layer calls this function if it detects that partitions
3863  *	on @disk reach beyond the end of the device.  If the SCSI host
3864  *	implements ->unlock_native_capacity() method, it's invoked to
3865  *	give it a chance to adjust the device capacity.
3866  *
3867  *	CONTEXT:
3868  *	Defined by block layer.  Might sleep.
3869  */
sd_unlock_native_capacity(struct gendisk * disk)3870 static void sd_unlock_native_capacity(struct gendisk *disk)
3871 {
3872 	struct scsi_device *sdev = scsi_disk(disk)->device;
3873 
3874 	if (sdev->host->hostt->unlock_native_capacity)
3875 		sdev->host->hostt->unlock_native_capacity(sdev);
3876 }
3877 
3878 /**
3879  *	sd_format_disk_name - format disk name
3880  *	@prefix: name prefix - ie. "sd" for SCSI disks
3881  *	@index: index of the disk to format name for
3882  *	@buf: output buffer
3883  *	@buflen: length of the output buffer
3884  *
3885  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3886  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3887  *	which is followed by sdaaa.
3888  *
3889  *	This is basically 26 base counting with one extra 'nil' entry
3890  *	at the beginning from the second digit on and can be
3891  *	determined using similar method as 26 base conversion with the
3892  *	index shifted -1 after each digit is computed.
3893  *
3894  *	CONTEXT:
3895  *	Don't care.
3896  *
3897  *	RETURNS:
3898  *	0 on success, -errno on failure.
3899  */
sd_format_disk_name(char * prefix,int index,char * buf,int buflen)3900 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3901 {
3902 	const int base = 'z' - 'a' + 1;
3903 	char *begin = buf + strlen(prefix);
3904 	char *end = buf + buflen;
3905 	char *p;
3906 	int unit;
3907 
3908 	p = end - 1;
3909 	*p = '\0';
3910 	unit = base;
3911 	do {
3912 		if (p == begin)
3913 			return -EINVAL;
3914 		*--p = 'a' + (index % unit);
3915 		index = (index / unit) - 1;
3916 	} while (index >= 0);
3917 
3918 	memmove(begin, p, end - p);
3919 	memcpy(buf, prefix, strlen(prefix));
3920 
3921 	return 0;
3922 }
3923 
3924 /**
3925  *	sd_probe - called during driver initialization and whenever a
3926  *	new scsi device is attached to the system. It is called once
3927  *	for each scsi device (not just disks) present.
3928  *	@dev: pointer to device object
3929  *
3930  *	Returns 0 if successful (or not interested in this scsi device
3931  *	(e.g. scanner)); 1 when there is an error.
3932  *
3933  *	Note: this function is invoked from the scsi mid-level.
3934  *	This function sets up the mapping between a given
3935  *	<host,channel,id,lun> (found in sdp) and new device name
3936  *	(e.g. /dev/sda). More precisely it is the block device major
3937  *	and minor number that is chosen here.
3938  *
3939  *	Assume sd_probe is not re-entrant (for time being)
3940  *	Also think about sd_probe() and sd_remove() running coincidentally.
3941  **/
sd_probe(struct device * dev)3942 static int sd_probe(struct device *dev)
3943 {
3944 	struct scsi_device *sdp = to_scsi_device(dev);
3945 	struct scsi_disk *sdkp;
3946 	struct gendisk *gd;
3947 	int index;
3948 	int error;
3949 
3950 	scsi_autopm_get_device(sdp);
3951 	error = -ENODEV;
3952 	if (sdp->type != TYPE_DISK &&
3953 	    sdp->type != TYPE_ZBC &&
3954 	    sdp->type != TYPE_MOD &&
3955 	    sdp->type != TYPE_RBC)
3956 		goto out;
3957 
3958 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3959 		sdev_printk(KERN_WARNING, sdp,
3960 			    "Unsupported ZBC host-managed device.\n");
3961 		goto out;
3962 	}
3963 
3964 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3965 					"sd_probe\n"));
3966 
3967 	error = -ENOMEM;
3968 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3969 	if (!sdkp)
3970 		goto out;
3971 
3972 	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3973 					 &sd_bio_compl_lkclass);
3974 	if (!gd)
3975 		goto out_free;
3976 
3977 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3978 	if (index < 0) {
3979 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3980 		goto out_put;
3981 	}
3982 
3983 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3984 	if (error) {
3985 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3986 		goto out_free_index;
3987 	}
3988 
3989 	sdkp->device = sdp;
3990 	sdkp->disk = gd;
3991 	sdkp->index = index;
3992 	sdkp->max_retries = SD_MAX_RETRIES;
3993 	atomic_set(&sdkp->openers, 0);
3994 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3995 
3996 	if (!sdp->request_queue->rq_timeout) {
3997 		if (sdp->type != TYPE_MOD)
3998 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3999 		else
4000 			blk_queue_rq_timeout(sdp->request_queue,
4001 					     SD_MOD_TIMEOUT);
4002 	}
4003 
4004 	device_initialize(&sdkp->disk_dev);
4005 	sdkp->disk_dev.parent = get_device(dev);
4006 	sdkp->disk_dev.class = &sd_disk_class;
4007 	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
4008 
4009 	error = device_add(&sdkp->disk_dev);
4010 	if (error) {
4011 		put_device(&sdkp->disk_dev);
4012 		goto out;
4013 	}
4014 
4015 	dev_set_drvdata(dev, sdkp);
4016 
4017 	gd->major = sd_major((index & 0xf0) >> 4);
4018 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
4019 	gd->minors = SD_MINORS;
4020 
4021 	gd->fops = &sd_fops;
4022 	gd->private_data = sdkp;
4023 
4024 	/* defaults, until the device tells us otherwise */
4025 	sdp->sector_size = 512;
4026 	sdkp->capacity = 0;
4027 	sdkp->media_present = 1;
4028 	sdkp->write_prot = 0;
4029 	sdkp->cache_override = 0;
4030 	sdkp->WCE = 0;
4031 	sdkp->RCD = 0;
4032 	sdkp->ATO = 0;
4033 	sdkp->first_scan = 1;
4034 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
4035 
4036 	sd_revalidate_disk(gd);
4037 
4038 	if (sdp->removable) {
4039 		gd->flags |= GENHD_FL_REMOVABLE;
4040 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
4041 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
4042 	}
4043 
4044 	blk_pm_runtime_init(sdp->request_queue, dev);
4045 	if (sdp->rpm_autosuspend) {
4046 		pm_runtime_set_autosuspend_delay(dev,
4047 			sdp->host->rpm_autosuspend_delay);
4048 	}
4049 
4050 	error = device_add_disk(dev, gd, NULL);
4051 	if (error) {
4052 		device_unregister(&sdkp->disk_dev);
4053 		put_disk(gd);
4054 		goto out;
4055 	}
4056 
4057 	if (sdkp->security) {
4058 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
4059 		if (sdkp->opal_dev)
4060 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
4061 	}
4062 
4063 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
4064 		  sdp->removable ? "removable " : "");
4065 	scsi_autopm_put_device(sdp);
4066 
4067 	return 0;
4068 
4069  out_free_index:
4070 	ida_free(&sd_index_ida, index);
4071  out_put:
4072 	put_disk(gd);
4073  out_free:
4074 	kfree(sdkp);
4075  out:
4076 	scsi_autopm_put_device(sdp);
4077 	return error;
4078 }
4079 
4080 /**
4081  *	sd_remove - called whenever a scsi disk (previously recognized by
4082  *	sd_probe) is detached from the system. It is called (potentially
4083  *	multiple times) during sd module unload.
4084  *	@dev: pointer to device object
4085  *
4086  *	Note: this function is invoked from the scsi mid-level.
4087  *	This function potentially frees up a device name (e.g. /dev/sdc)
4088  *	that could be re-used by a subsequent sd_probe().
4089  *	This function is not called when the built-in sd driver is "exit-ed".
4090  **/
sd_remove(struct device * dev)4091 static int sd_remove(struct device *dev)
4092 {
4093 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4094 
4095 	scsi_autopm_get_device(sdkp->device);
4096 
4097 	device_del(&sdkp->disk_dev);
4098 	del_gendisk(sdkp->disk);
4099 	if (!sdkp->suspended)
4100 		sd_shutdown(dev);
4101 
4102 	put_disk(sdkp->disk);
4103 	return 0;
4104 }
4105 
scsi_disk_release(struct device * dev)4106 static void scsi_disk_release(struct device *dev)
4107 {
4108 	struct scsi_disk *sdkp = to_scsi_disk(dev);
4109 
4110 	ida_free(&sd_index_ida, sdkp->index);
4111 	put_device(&sdkp->device->sdev_gendev);
4112 	free_opal_dev(sdkp->opal_dev);
4113 
4114 	kfree(sdkp);
4115 }
4116 
sd_start_stop_device(struct scsi_disk * sdkp,int start)4117 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
4118 {
4119 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
4120 	struct scsi_sense_hdr sshdr;
4121 	struct scsi_failure failure_defs[] = {
4122 		{
4123 			/* Power on, reset, or bus device reset occurred */
4124 			.sense = UNIT_ATTENTION,
4125 			.asc = 0x29,
4126 			.ascq = 0,
4127 			.result = SAM_STAT_CHECK_CONDITION,
4128 		},
4129 		{
4130 			/* Power on occurred */
4131 			.sense = UNIT_ATTENTION,
4132 			.asc = 0x29,
4133 			.ascq = 1,
4134 			.result = SAM_STAT_CHECK_CONDITION,
4135 		},
4136 		{
4137 			/* SCSI bus reset */
4138 			.sense = UNIT_ATTENTION,
4139 			.asc = 0x29,
4140 			.ascq = 2,
4141 			.result = SAM_STAT_CHECK_CONDITION,
4142 		},
4143 		{}
4144 	};
4145 	struct scsi_failures failures = {
4146 		.total_allowed = 3,
4147 		.failure_definitions = failure_defs,
4148 	};
4149 	const struct scsi_exec_args exec_args = {
4150 		.sshdr = &sshdr,
4151 		.req_flags = BLK_MQ_REQ_PM,
4152 		.failures = &failures,
4153 	};
4154 	struct scsi_device *sdp = sdkp->device;
4155 	int res;
4156 
4157 	if (start)
4158 		cmd[4] |= 1;	/* START */
4159 
4160 	if (sdp->start_stop_pwr_cond)
4161 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
4162 
4163 	if (!scsi_device_online(sdp))
4164 		return -ENODEV;
4165 
4166 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
4167 			       sdkp->max_retries, &exec_args);
4168 	if (res) {
4169 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
4170 		if (res > 0 && scsi_sense_valid(&sshdr)) {
4171 			sd_print_sense_hdr(sdkp, &sshdr);
4172 			/* 0x3a is medium not present */
4173 			if (sshdr.asc == 0x3a)
4174 				res = 0;
4175 		}
4176 	}
4177 
4178 	/* SCSI error codes must not go to the generic layer */
4179 	if (res)
4180 		return -EIO;
4181 
4182 	return 0;
4183 }
4184 
4185 /*
4186  * Send a SYNCHRONIZE CACHE instruction down to the device through
4187  * the normal SCSI command structure.  Wait for the command to
4188  * complete.
4189  */
sd_shutdown(struct device * dev)4190 static void sd_shutdown(struct device *dev)
4191 {
4192 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4193 
4194 	if (!sdkp)
4195 		return;         /* this can happen */
4196 
4197 	if (pm_runtime_suspended(dev))
4198 		return;
4199 
4200 	if (sdkp->WCE && sdkp->media_present) {
4201 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4202 		sd_sync_cache(sdkp);
4203 	}
4204 
4205 	if ((system_state != SYSTEM_RESTART &&
4206 	     sdkp->device->manage_system_start_stop) ||
4207 	    (system_state == SYSTEM_POWER_OFF &&
4208 	     sdkp->device->manage_shutdown) ||
4209 	    (system_state == SYSTEM_RUNNING &&
4210 	     sdkp->device->manage_runtime_start_stop) ||
4211 	    (system_state == SYSTEM_RESTART &&
4212 	     sdkp->device->manage_restart)) {
4213 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4214 		sd_start_stop_device(sdkp, 0);
4215 	}
4216 }
4217 
sd_do_start_stop(struct scsi_device * sdev,bool runtime)4218 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
4219 {
4220 	return (sdev->manage_system_start_stop && !runtime) ||
4221 		(sdev->manage_runtime_start_stop && runtime);
4222 }
4223 
sd_suspend_common(struct device * dev,bool runtime)4224 static int sd_suspend_common(struct device *dev, bool runtime)
4225 {
4226 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4227 	int ret = 0;
4228 
4229 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
4230 		return 0;
4231 
4232 	if (sdkp->WCE && sdkp->media_present) {
4233 		if (!sdkp->device->silence_suspend)
4234 			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4235 		ret = sd_sync_cache(sdkp);
4236 		/* ignore OFFLINE device */
4237 		if (ret == -ENODEV)
4238 			return 0;
4239 
4240 		if (ret)
4241 			return ret;
4242 	}
4243 
4244 	if (sd_do_start_stop(sdkp->device, runtime)) {
4245 		if (!sdkp->device->silence_suspend)
4246 			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4247 		/* an error is not worth aborting a system sleep */
4248 		ret = sd_start_stop_device(sdkp, 0);
4249 		if (!runtime)
4250 			ret = 0;
4251 	}
4252 
4253 	if (!ret)
4254 		sdkp->suspended = true;
4255 
4256 	return ret;
4257 }
4258 
sd_suspend_system(struct device * dev)4259 static int sd_suspend_system(struct device *dev)
4260 {
4261 	if (pm_runtime_suspended(dev))
4262 		return 0;
4263 
4264 	return sd_suspend_common(dev, false);
4265 }
4266 
sd_suspend_runtime(struct device * dev)4267 static int sd_suspend_runtime(struct device *dev)
4268 {
4269 	return sd_suspend_common(dev, true);
4270 }
4271 
sd_resume(struct device * dev)4272 static int sd_resume(struct device *dev)
4273 {
4274 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4275 
4276 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4277 
4278 	if (opal_unlock_from_suspend(sdkp->opal_dev)) {
4279 		sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
4280 		return -EIO;
4281 	}
4282 
4283 	return 0;
4284 }
4285 
sd_resume_common(struct device * dev,bool runtime)4286 static int sd_resume_common(struct device *dev, bool runtime)
4287 {
4288 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4289 	int ret;
4290 
4291 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4292 		return 0;
4293 
4294 	if (!sd_do_start_stop(sdkp->device, runtime)) {
4295 		sdkp->suspended = false;
4296 		return 0;
4297 	}
4298 
4299 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4300 	ret = sd_start_stop_device(sdkp, 1);
4301 	if (!ret) {
4302 		sd_resume(dev);
4303 		sdkp->suspended = false;
4304 	}
4305 
4306 	return ret;
4307 }
4308 
sd_resume_system(struct device * dev)4309 static int sd_resume_system(struct device *dev)
4310 {
4311 	if (pm_runtime_suspended(dev)) {
4312 		struct scsi_disk *sdkp = dev_get_drvdata(dev);
4313 		struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4314 
4315 		if (sdp && sdp->force_runtime_start_on_system_start)
4316 			pm_request_resume(dev);
4317 
4318 		return 0;
4319 	}
4320 
4321 	return sd_resume_common(dev, false);
4322 }
4323 
sd_resume_runtime(struct device * dev)4324 static int sd_resume_runtime(struct device *dev)
4325 {
4326 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4327 	struct scsi_device *sdp;
4328 
4329 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4330 		return 0;
4331 
4332 	sdp = sdkp->device;
4333 
4334 	if (sdp->ignore_media_change) {
4335 		/* clear the device's sense data */
4336 		static const u8 cmd[10] = { REQUEST_SENSE };
4337 		const struct scsi_exec_args exec_args = {
4338 			.req_flags = BLK_MQ_REQ_PM,
4339 		};
4340 
4341 		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4342 				     sdp->request_queue->rq_timeout, 1,
4343 				     &exec_args))
4344 			sd_printk(KERN_NOTICE, sdkp,
4345 				  "Failed to clear sense data\n");
4346 	}
4347 
4348 	return sd_resume_common(dev, true);
4349 }
4350 
4351 static const struct dev_pm_ops sd_pm_ops = {
4352 	.suspend		= sd_suspend_system,
4353 	.resume			= sd_resume_system,
4354 	.poweroff		= sd_suspend_system,
4355 	.restore		= sd_resume_system,
4356 	.runtime_suspend	= sd_suspend_runtime,
4357 	.runtime_resume		= sd_resume_runtime,
4358 };
4359 
4360 static struct scsi_driver sd_template = {
4361 	.gendrv = {
4362 		.name		= "sd",
4363 		.probe		= sd_probe,
4364 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4365 		.remove		= sd_remove,
4366 		.shutdown	= sd_shutdown,
4367 		.pm		= &sd_pm_ops,
4368 	},
4369 	.rescan			= sd_rescan,
4370 	.resume			= sd_resume,
4371 	.init_command		= sd_init_command,
4372 	.uninit_command		= sd_uninit_command,
4373 	.done			= sd_done,
4374 	.eh_action		= sd_eh_action,
4375 	.eh_reset		= sd_eh_reset,
4376 };
4377 
4378 /**
4379  *	init_sd - entry point for this driver (both when built in or when
4380  *	a module).
4381  *
4382  *	Note: this function registers this driver with the scsi mid-level.
4383  **/
init_sd(void)4384 static int __init init_sd(void)
4385 {
4386 	int majors = 0, i, err;
4387 
4388 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4389 
4390 	for (i = 0; i < SD_MAJORS; i++) {
4391 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4392 			continue;
4393 		majors++;
4394 	}
4395 
4396 	if (!majors)
4397 		return -ENODEV;
4398 
4399 	err = class_register(&sd_disk_class);
4400 	if (err)
4401 		goto err_out;
4402 
4403 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4404 	if (!sd_page_pool) {
4405 		printk(KERN_ERR "sd: can't init discard page pool\n");
4406 		err = -ENOMEM;
4407 		goto err_out_class;
4408 	}
4409 
4410 	err = scsi_register_driver(&sd_template.gendrv);
4411 	if (err)
4412 		goto err_out_driver;
4413 
4414 	return 0;
4415 
4416 err_out_driver:
4417 	mempool_destroy(sd_page_pool);
4418 err_out_class:
4419 	class_unregister(&sd_disk_class);
4420 err_out:
4421 	for (i = 0; i < SD_MAJORS; i++)
4422 		unregister_blkdev(sd_major(i), "sd");
4423 	return err;
4424 }
4425 
4426 /**
4427  *	exit_sd - exit point for this driver (when it is a module).
4428  *
4429  *	Note: this function unregisters this driver from the scsi mid-level.
4430  **/
exit_sd(void)4431 static void __exit exit_sd(void)
4432 {
4433 	int i;
4434 
4435 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4436 
4437 	scsi_unregister_driver(&sd_template.gendrv);
4438 	mempool_destroy(sd_page_pool);
4439 
4440 	class_unregister(&sd_disk_class);
4441 
4442 	for (i = 0; i < SD_MAJORS; i++)
4443 		unregister_blkdev(sd_major(i), "sd");
4444 }
4445 
4446 module_init(init_sd);
4447 module_exit(exit_sd);
4448 
sd_print_sense_hdr(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)4449 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4450 {
4451 	scsi_print_sense_hdr(sdkp->device,
4452 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4453 }
4454 
sd_print_result(const struct scsi_disk * sdkp,const char * msg,int result)4455 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4456 {
4457 	const char *hb_string = scsi_hostbyte_string(result);
4458 
4459 	if (hb_string)
4460 		sd_printk(KERN_INFO, sdkp,
4461 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4462 			  hb_string ? hb_string : "invalid",
4463 			  "DRIVER_OK");
4464 	else
4465 		sd_printk(KERN_INFO, sdkp,
4466 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4467 			  msg, host_byte(result), "DRIVER_OK");
4468 }
4469