1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4 *
5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7 * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8 */
9 #include <linux/btf_ids.h>
10 #include "ext_idle.h"
11
12 /*
13 * NOTE: sched_ext is in the process of growing multiple scheduler support and
14 * scx_root usage is in a transitional state. Naked dereferences are safe if the
15 * caller is one of the tasks attached to SCX and explicit RCU dereference is
16 * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but
17 * are used as temporary markers to indicate that the dereferences need to be
18 * updated to point to the associated scheduler instances rather than scx_root.
19 */
20 static struct scx_sched __rcu *scx_root;
21
22 /*
23 * During exit, a task may schedule after losing its PIDs. When disabling the
24 * BPF scheduler, we need to be able to iterate tasks in every state to
25 * guarantee system safety. Maintain a dedicated task list which contains every
26 * task between its fork and eventual free.
27 */
28 static DEFINE_RAW_SPINLOCK(scx_tasks_lock);
29 static LIST_HEAD(scx_tasks);
30
31 /* ops enable/disable */
32 static DEFINE_MUTEX(scx_enable_mutex);
33 DEFINE_STATIC_KEY_FALSE(__scx_enabled);
34 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
35 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED);
36 static int scx_bypass_depth;
37 static cpumask_var_t scx_bypass_lb_donee_cpumask;
38 static cpumask_var_t scx_bypass_lb_resched_cpumask;
39 static bool scx_aborting;
40 static bool scx_init_task_enabled;
41 static bool scx_switching_all;
42 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
43
44 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
45 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
46
47 /*
48 * A monotically increasing sequence number that is incremented every time a
49 * scheduler is enabled. This can be used by to check if any custom sched_ext
50 * scheduler has ever been used in the system.
51 */
52 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
53
54 /*
55 * The maximum amount of time in jiffies that a task may be runnable without
56 * being scheduled on a CPU. If this timeout is exceeded, it will trigger
57 * scx_error().
58 */
59 static unsigned long scx_watchdog_timeout;
60
61 /*
62 * The last time the delayed work was run. This delayed work relies on
63 * ksoftirqd being able to run to service timer interrupts, so it's possible
64 * that this work itself could get wedged. To account for this, we check that
65 * it's not stalled in the timer tick, and trigger an error if it is.
66 */
67 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
68
69 static struct delayed_work scx_watchdog_work;
70
71 /*
72 * For %SCX_KICK_WAIT: Each CPU has a pointer to an array of kick_sync sequence
73 * numbers. The arrays are allocated with kvzalloc() as size can exceed percpu
74 * allocator limits on large machines. O(nr_cpu_ids^2) allocation, allocated
75 * lazily when enabling and freed when disabling to avoid waste when sched_ext
76 * isn't active.
77 */
78 struct scx_kick_syncs {
79 struct rcu_head rcu;
80 unsigned long syncs[];
81 };
82
83 static DEFINE_PER_CPU(struct scx_kick_syncs __rcu *, scx_kick_syncs);
84
85 /*
86 * Direct dispatch marker.
87 *
88 * Non-NULL values are used for direct dispatch from enqueue path. A valid
89 * pointer points to the task currently being enqueued. An ERR_PTR value is used
90 * to indicate that direct dispatch has already happened.
91 */
92 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
93
94 static const struct rhashtable_params dsq_hash_params = {
95 .key_len = sizeof_field(struct scx_dispatch_q, id),
96 .key_offset = offsetof(struct scx_dispatch_q, id),
97 .head_offset = offsetof(struct scx_dispatch_q, hash_node),
98 };
99
100 static LLIST_HEAD(dsqs_to_free);
101
102 /* dispatch buf */
103 struct scx_dsp_buf_ent {
104 struct task_struct *task;
105 unsigned long qseq;
106 u64 dsq_id;
107 u64 enq_flags;
108 };
109
110 static u32 scx_dsp_max_batch;
111
112 struct scx_dsp_ctx {
113 struct rq *rq;
114 u32 cursor;
115 u32 nr_tasks;
116 struct scx_dsp_buf_ent buf[];
117 };
118
119 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
120
121 /* string formatting from BPF */
122 struct scx_bstr_buf {
123 u64 data[MAX_BPRINTF_VARARGS];
124 char line[SCX_EXIT_MSG_LEN];
125 };
126
127 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
128 static struct scx_bstr_buf scx_exit_bstr_buf;
129
130 /* ops debug dump */
131 struct scx_dump_data {
132 s32 cpu;
133 bool first;
134 s32 cursor;
135 struct seq_buf *s;
136 const char *prefix;
137 struct scx_bstr_buf buf;
138 };
139
140 static struct scx_dump_data scx_dump_data = {
141 .cpu = -1,
142 };
143
144 /* /sys/kernel/sched_ext interface */
145 static struct kset *scx_kset;
146
147 /*
148 * Parameters that can be adjusted through /sys/module/sched_ext/parameters.
149 * There usually is no reason to modify these as normal scheduler operation
150 * shouldn't be affected by them. The knobs are primarily for debugging.
151 */
152 static u64 scx_slice_dfl = SCX_SLICE_DFL;
153 static unsigned int scx_slice_bypass_us = SCX_SLICE_BYPASS / NSEC_PER_USEC;
154 static unsigned int scx_bypass_lb_intv_us = SCX_BYPASS_LB_DFL_INTV_US;
155
set_slice_us(const char * val,const struct kernel_param * kp)156 static int set_slice_us(const char *val, const struct kernel_param *kp)
157 {
158 return param_set_uint_minmax(val, kp, 100, 100 * USEC_PER_MSEC);
159 }
160
161 static const struct kernel_param_ops slice_us_param_ops = {
162 .set = set_slice_us,
163 .get = param_get_uint,
164 };
165
set_bypass_lb_intv_us(const char * val,const struct kernel_param * kp)166 static int set_bypass_lb_intv_us(const char *val, const struct kernel_param *kp)
167 {
168 return param_set_uint_minmax(val, kp, 0, 10 * USEC_PER_SEC);
169 }
170
171 static const struct kernel_param_ops bypass_lb_intv_us_param_ops = {
172 .set = set_bypass_lb_intv_us,
173 .get = param_get_uint,
174 };
175
176 #undef MODULE_PARAM_PREFIX
177 #define MODULE_PARAM_PREFIX "sched_ext."
178
179 module_param_cb(slice_bypass_us, &slice_us_param_ops, &scx_slice_bypass_us, 0600);
180 MODULE_PARM_DESC(slice_bypass_us, "bypass slice in microseconds, applied on [un]load (100us to 100ms)");
181 module_param_cb(bypass_lb_intv_us, &bypass_lb_intv_us_param_ops, &scx_bypass_lb_intv_us, 0600);
182 MODULE_PARM_DESC(bypass_lb_intv_us, "bypass load balance interval in microseconds (0 (disable) to 10s)");
183
184 #undef MODULE_PARAM_PREFIX
185
186 #define CREATE_TRACE_POINTS
187 #include <trace/events/sched_ext.h>
188
189 static void process_ddsp_deferred_locals(struct rq *rq);
190 static u32 reenq_local(struct rq *rq);
191 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags);
192 static bool scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind,
193 s64 exit_code, const char *fmt, va_list args);
194
scx_exit(struct scx_sched * sch,enum scx_exit_kind kind,s64 exit_code,const char * fmt,...)195 static __printf(4, 5) bool scx_exit(struct scx_sched *sch,
196 enum scx_exit_kind kind, s64 exit_code,
197 const char *fmt, ...)
198 {
199 va_list args;
200 bool ret;
201
202 va_start(args, fmt);
203 ret = scx_vexit(sch, kind, exit_code, fmt, args);
204 va_end(args);
205
206 return ret;
207 }
208
209 #define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args)
210 #define scx_verror(sch, fmt, args) scx_vexit((sch), SCX_EXIT_ERROR, 0, fmt, args)
211
212 #define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op)
213
jiffies_delta_msecs(unsigned long at,unsigned long now)214 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
215 {
216 if (time_after(at, now))
217 return jiffies_to_msecs(at - now);
218 else
219 return -(long)jiffies_to_msecs(now - at);
220 }
221
222 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
higher_bits(u32 flags)223 static u32 higher_bits(u32 flags)
224 {
225 return ~((1 << fls(flags)) - 1);
226 }
227
228 /* return the mask with only the highest bit set */
highest_bit(u32 flags)229 static u32 highest_bit(u32 flags)
230 {
231 int bit = fls(flags);
232 return ((u64)1 << bit) >> 1;
233 }
234
u32_before(u32 a,u32 b)235 static bool u32_before(u32 a, u32 b)
236 {
237 return (s32)(a - b) < 0;
238 }
239
find_global_dsq(struct scx_sched * sch,struct task_struct * p)240 static struct scx_dispatch_q *find_global_dsq(struct scx_sched *sch,
241 struct task_struct *p)
242 {
243 return sch->global_dsqs[cpu_to_node(task_cpu(p))];
244 }
245
find_user_dsq(struct scx_sched * sch,u64 dsq_id)246 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id)
247 {
248 return rhashtable_lookup(&sch->dsq_hash, &dsq_id, dsq_hash_params);
249 }
250
scx_setscheduler_class(struct task_struct * p)251 static const struct sched_class *scx_setscheduler_class(struct task_struct *p)
252 {
253 if (p->sched_class == &stop_sched_class)
254 return &stop_sched_class;
255
256 return __setscheduler_class(p->policy, p->prio);
257 }
258
259 /*
260 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
261 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
262 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
263 * whether it's running from an allowed context.
264 *
265 * @mask is constant, always inline to cull the mask calculations.
266 */
scx_kf_allow(u32 mask)267 static __always_inline void scx_kf_allow(u32 mask)
268 {
269 /* nesting is allowed only in increasing scx_kf_mask order */
270 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
271 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
272 current->scx.kf_mask, mask);
273 current->scx.kf_mask |= mask;
274 barrier();
275 }
276
scx_kf_disallow(u32 mask)277 static void scx_kf_disallow(u32 mask)
278 {
279 barrier();
280 current->scx.kf_mask &= ~mask;
281 }
282
283 /*
284 * Track the rq currently locked.
285 *
286 * This allows kfuncs to safely operate on rq from any scx ops callback,
287 * knowing which rq is already locked.
288 */
289 DEFINE_PER_CPU(struct rq *, scx_locked_rq_state);
290
update_locked_rq(struct rq * rq)291 static inline void update_locked_rq(struct rq *rq)
292 {
293 /*
294 * Check whether @rq is actually locked. This can help expose bugs
295 * or incorrect assumptions about the context in which a kfunc or
296 * callback is executed.
297 */
298 if (rq)
299 lockdep_assert_rq_held(rq);
300 __this_cpu_write(scx_locked_rq_state, rq);
301 }
302
303 #define SCX_CALL_OP(sch, mask, op, rq, args...) \
304 do { \
305 if (rq) \
306 update_locked_rq(rq); \
307 if (mask) { \
308 scx_kf_allow(mask); \
309 (sch)->ops.op(args); \
310 scx_kf_disallow(mask); \
311 } else { \
312 (sch)->ops.op(args); \
313 } \
314 if (rq) \
315 update_locked_rq(NULL); \
316 } while (0)
317
318 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \
319 ({ \
320 __typeof__((sch)->ops.op(args)) __ret; \
321 \
322 if (rq) \
323 update_locked_rq(rq); \
324 if (mask) { \
325 scx_kf_allow(mask); \
326 __ret = (sch)->ops.op(args); \
327 scx_kf_disallow(mask); \
328 } else { \
329 __ret = (sch)->ops.op(args); \
330 } \
331 if (rq) \
332 update_locked_rq(NULL); \
333 __ret; \
334 })
335
336 /*
337 * Some kfuncs are allowed only on the tasks that are subjects of the
338 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
339 * restrictions, the following SCX_CALL_OP_*() variants should be used when
340 * invoking scx_ops operations that take task arguments. These can only be used
341 * for non-nesting operations due to the way the tasks are tracked.
342 *
343 * kfuncs which can only operate on such tasks can in turn use
344 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
345 * the specific task.
346 */
347 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \
348 do { \
349 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
350 current->scx.kf_tasks[0] = task; \
351 SCX_CALL_OP((sch), mask, op, rq, task, ##args); \
352 current->scx.kf_tasks[0] = NULL; \
353 } while (0)
354
355 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \
356 ({ \
357 __typeof__((sch)->ops.op(task, ##args)) __ret; \
358 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
359 current->scx.kf_tasks[0] = task; \
360 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \
361 current->scx.kf_tasks[0] = NULL; \
362 __ret; \
363 })
364
365 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \
366 ({ \
367 __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \
368 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
369 current->scx.kf_tasks[0] = task0; \
370 current->scx.kf_tasks[1] = task1; \
371 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \
372 current->scx.kf_tasks[0] = NULL; \
373 current->scx.kf_tasks[1] = NULL; \
374 __ret; \
375 })
376
377 /* @mask is constant, always inline to cull unnecessary branches */
scx_kf_allowed(struct scx_sched * sch,u32 mask)378 static __always_inline bool scx_kf_allowed(struct scx_sched *sch, u32 mask)
379 {
380 if (unlikely(!(current->scx.kf_mask & mask))) {
381 scx_error(sch, "kfunc with mask 0x%x called from an operation only allowing 0x%x",
382 mask, current->scx.kf_mask);
383 return false;
384 }
385
386 /*
387 * Enforce nesting boundaries. e.g. A kfunc which can be called from
388 * DISPATCH must not be called if we're running DEQUEUE which is nested
389 * inside ops.dispatch(). We don't need to check boundaries for any
390 * blocking kfuncs as the verifier ensures they're only called from
391 * sleepable progs.
392 */
393 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
394 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
395 scx_error(sch, "cpu_release kfunc called from a nested operation");
396 return false;
397 }
398
399 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
400 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
401 scx_error(sch, "dispatch kfunc called from a nested operation");
402 return false;
403 }
404
405 return true;
406 }
407
408 /* see SCX_CALL_OP_TASK() */
scx_kf_allowed_on_arg_tasks(struct scx_sched * sch,u32 mask,struct task_struct * p)409 static __always_inline bool scx_kf_allowed_on_arg_tasks(struct scx_sched *sch,
410 u32 mask,
411 struct task_struct *p)
412 {
413 if (!scx_kf_allowed(sch, mask))
414 return false;
415
416 if (unlikely((p != current->scx.kf_tasks[0] &&
417 p != current->scx.kf_tasks[1]))) {
418 scx_error(sch, "called on a task not being operated on");
419 return false;
420 }
421
422 return true;
423 }
424
425 /**
426 * nldsq_next_task - Iterate to the next task in a non-local DSQ
427 * @dsq: user dsq being iterated
428 * @cur: current position, %NULL to start iteration
429 * @rev: walk backwards
430 *
431 * Returns %NULL when iteration is finished.
432 */
nldsq_next_task(struct scx_dispatch_q * dsq,struct task_struct * cur,bool rev)433 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
434 struct task_struct *cur, bool rev)
435 {
436 struct list_head *list_node;
437 struct scx_dsq_list_node *dsq_lnode;
438
439 lockdep_assert_held(&dsq->lock);
440
441 if (cur)
442 list_node = &cur->scx.dsq_list.node;
443 else
444 list_node = &dsq->list;
445
446 /* find the next task, need to skip BPF iteration cursors */
447 do {
448 if (rev)
449 list_node = list_node->prev;
450 else
451 list_node = list_node->next;
452
453 if (list_node == &dsq->list)
454 return NULL;
455
456 dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
457 node);
458 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
459
460 return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
461 }
462
463 #define nldsq_for_each_task(p, dsq) \
464 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \
465 (p) = nldsq_next_task((dsq), (p), false))
466
467
468 /*
469 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
470 * dispatch order. BPF-visible iterator is opaque and larger to allow future
471 * changes without breaking backward compatibility. Can be used with
472 * bpf_for_each(). See bpf_iter_scx_dsq_*().
473 */
474 enum scx_dsq_iter_flags {
475 /* iterate in the reverse dispatch order */
476 SCX_DSQ_ITER_REV = 1U << 16,
477
478 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30,
479 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31,
480
481 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV,
482 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS |
483 __SCX_DSQ_ITER_HAS_SLICE |
484 __SCX_DSQ_ITER_HAS_VTIME,
485 };
486
487 struct bpf_iter_scx_dsq_kern {
488 struct scx_dsq_list_node cursor;
489 struct scx_dispatch_q *dsq;
490 u64 slice;
491 u64 vtime;
492 } __attribute__((aligned(8)));
493
494 struct bpf_iter_scx_dsq {
495 u64 __opaque[6];
496 } __attribute__((aligned(8)));
497
498
499 /*
500 * SCX task iterator.
501 */
502 struct scx_task_iter {
503 struct sched_ext_entity cursor;
504 struct task_struct *locked_task;
505 struct rq *rq;
506 struct rq_flags rf;
507 u32 cnt;
508 bool list_locked;
509 };
510
511 /**
512 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
513 * @iter: iterator to init
514 *
515 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
516 * must eventually be stopped with scx_task_iter_stop().
517 *
518 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
519 * between this and the first next() call or between any two next() calls. If
520 * the locks are released between two next() calls, the caller is responsible
521 * for ensuring that the task being iterated remains accessible either through
522 * RCU read lock or obtaining a reference count.
523 *
524 * All tasks which existed when the iteration started are guaranteed to be
525 * visited as long as they are not dead.
526 */
scx_task_iter_start(struct scx_task_iter * iter)527 static void scx_task_iter_start(struct scx_task_iter *iter)
528 {
529 memset(iter, 0, sizeof(*iter));
530
531 raw_spin_lock_irq(&scx_tasks_lock);
532
533 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
534 list_add(&iter->cursor.tasks_node, &scx_tasks);
535 iter->list_locked = true;
536 }
537
__scx_task_iter_rq_unlock(struct scx_task_iter * iter)538 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
539 {
540 if (iter->locked_task) {
541 task_rq_unlock(iter->rq, iter->locked_task, &iter->rf);
542 iter->locked_task = NULL;
543 }
544 }
545
546 /**
547 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
548 * @iter: iterator to unlock
549 *
550 * If @iter is in the middle of a locked iteration, it may be locking the rq of
551 * the task currently being visited in addition to scx_tasks_lock. Unlock both.
552 * This function can be safely called anytime during an iteration. The next
553 * iterator operation will automatically restore the necessary locking.
554 */
scx_task_iter_unlock(struct scx_task_iter * iter)555 static void scx_task_iter_unlock(struct scx_task_iter *iter)
556 {
557 __scx_task_iter_rq_unlock(iter);
558 if (iter->list_locked) {
559 iter->list_locked = false;
560 raw_spin_unlock_irq(&scx_tasks_lock);
561 }
562 }
563
__scx_task_iter_maybe_relock(struct scx_task_iter * iter)564 static void __scx_task_iter_maybe_relock(struct scx_task_iter *iter)
565 {
566 if (!iter->list_locked) {
567 raw_spin_lock_irq(&scx_tasks_lock);
568 iter->list_locked = true;
569 }
570 }
571
572 /**
573 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
574 * @iter: iterator to exit
575 *
576 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held
577 * which is released on return. If the iterator holds a task's rq lock, that rq
578 * lock is also released. See scx_task_iter_start() for details.
579 */
scx_task_iter_stop(struct scx_task_iter * iter)580 static void scx_task_iter_stop(struct scx_task_iter *iter)
581 {
582 __scx_task_iter_maybe_relock(iter);
583 list_del_init(&iter->cursor.tasks_node);
584 scx_task_iter_unlock(iter);
585 }
586
587 /**
588 * scx_task_iter_next - Next task
589 * @iter: iterator to walk
590 *
591 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped
592 * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls
593 * by holding scx_tasks_lock for too long.
594 */
scx_task_iter_next(struct scx_task_iter * iter)595 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
596 {
597 struct list_head *cursor = &iter->cursor.tasks_node;
598 struct sched_ext_entity *pos;
599
600 if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) {
601 scx_task_iter_unlock(iter);
602 cond_resched();
603 }
604
605 __scx_task_iter_maybe_relock(iter);
606
607 list_for_each_entry(pos, cursor, tasks_node) {
608 if (&pos->tasks_node == &scx_tasks)
609 return NULL;
610 if (!(pos->flags & SCX_TASK_CURSOR)) {
611 list_move(cursor, &pos->tasks_node);
612 return container_of(pos, struct task_struct, scx);
613 }
614 }
615
616 /* can't happen, should always terminate at scx_tasks above */
617 BUG();
618 }
619
620 /**
621 * scx_task_iter_next_locked - Next non-idle task with its rq locked
622 * @iter: iterator to walk
623 *
624 * Visit the non-idle task with its rq lock held. Allows callers to specify
625 * whether they would like to filter out dead tasks. See scx_task_iter_start()
626 * for details.
627 */
scx_task_iter_next_locked(struct scx_task_iter * iter)628 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
629 {
630 struct task_struct *p;
631
632 __scx_task_iter_rq_unlock(iter);
633
634 while ((p = scx_task_iter_next(iter))) {
635 /*
636 * scx_task_iter is used to prepare and move tasks into SCX
637 * while loading the BPF scheduler and vice-versa while
638 * unloading. The init_tasks ("swappers") should be excluded
639 * from the iteration because:
640 *
641 * - It's unsafe to use __setschduler_prio() on an init_task to
642 * determine the sched_class to use as it won't preserve its
643 * idle_sched_class.
644 *
645 * - ops.init/exit_task() can easily be confused if called with
646 * init_tasks as they, e.g., share PID 0.
647 *
648 * As init_tasks are never scheduled through SCX, they can be
649 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
650 * doesn't work here:
651 *
652 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
653 * yet been onlined.
654 *
655 * - %PF_IDLE can be set on tasks that are not init_tasks. See
656 * play_idle_precise() used by CONFIG_IDLE_INJECT.
657 *
658 * Test for idle_sched_class as only init_tasks are on it.
659 */
660 if (p->sched_class != &idle_sched_class)
661 break;
662 }
663 if (!p)
664 return NULL;
665
666 iter->rq = task_rq_lock(p, &iter->rf);
667 iter->locked_task = p;
668
669 return p;
670 }
671
672 /**
673 * scx_add_event - Increase an event counter for 'name' by 'cnt'
674 * @sch: scx_sched to account events for
675 * @name: an event name defined in struct scx_event_stats
676 * @cnt: the number of the event occurred
677 *
678 * This can be used when preemption is not disabled.
679 */
680 #define scx_add_event(sch, name, cnt) do { \
681 this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \
682 trace_sched_ext_event(#name, (cnt)); \
683 } while(0)
684
685 /**
686 * __scx_add_event - Increase an event counter for 'name' by 'cnt'
687 * @sch: scx_sched to account events for
688 * @name: an event name defined in struct scx_event_stats
689 * @cnt: the number of the event occurred
690 *
691 * This should be used only when preemption is disabled.
692 */
693 #define __scx_add_event(sch, name, cnt) do { \
694 __this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \
695 trace_sched_ext_event(#name, cnt); \
696 } while(0)
697
698 /**
699 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e'
700 * @dst_e: destination event stats
701 * @src_e: source event stats
702 * @kind: a kind of event to be aggregated
703 */
704 #define scx_agg_event(dst_e, src_e, kind) do { \
705 (dst_e)->kind += READ_ONCE((src_e)->kind); \
706 } while(0)
707
708 /**
709 * scx_dump_event - Dump an event 'kind' in 'events' to 's'
710 * @s: output seq_buf
711 * @events: event stats
712 * @kind: a kind of event to dump
713 */
714 #define scx_dump_event(s, events, kind) do { \
715 dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \
716 } while (0)
717
718
719 static void scx_read_events(struct scx_sched *sch,
720 struct scx_event_stats *events);
721
scx_enable_state(void)722 static enum scx_enable_state scx_enable_state(void)
723 {
724 return atomic_read(&scx_enable_state_var);
725 }
726
scx_set_enable_state(enum scx_enable_state to)727 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to)
728 {
729 return atomic_xchg(&scx_enable_state_var, to);
730 }
731
scx_tryset_enable_state(enum scx_enable_state to,enum scx_enable_state from)732 static bool scx_tryset_enable_state(enum scx_enable_state to,
733 enum scx_enable_state from)
734 {
735 int from_v = from;
736
737 return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to);
738 }
739
740 /**
741 * wait_ops_state - Busy-wait the specified ops state to end
742 * @p: target task
743 * @opss: state to wait the end of
744 *
745 * Busy-wait for @p to transition out of @opss. This can only be used when the
746 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
747 * has load_acquire semantics to ensure that the caller can see the updates made
748 * in the enqueueing and dispatching paths.
749 */
wait_ops_state(struct task_struct * p,unsigned long opss)750 static void wait_ops_state(struct task_struct *p, unsigned long opss)
751 {
752 do {
753 cpu_relax();
754 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
755 }
756
__cpu_valid(s32 cpu)757 static inline bool __cpu_valid(s32 cpu)
758 {
759 return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu));
760 }
761
762 /**
763 * ops_cpu_valid - Verify a cpu number, to be used on ops input args
764 * @sch: scx_sched to abort on error
765 * @cpu: cpu number which came from a BPF ops
766 * @where: extra information reported on error
767 *
768 * @cpu is a cpu number which came from the BPF scheduler and can be any value.
769 * Verify that it is in range and one of the possible cpus. If invalid, trigger
770 * an ops error.
771 */
ops_cpu_valid(struct scx_sched * sch,s32 cpu,const char * where)772 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where)
773 {
774 if (__cpu_valid(cpu)) {
775 return true;
776 } else {
777 scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: "");
778 return false;
779 }
780 }
781
782 /**
783 * ops_sanitize_err - Sanitize a -errno value
784 * @sch: scx_sched to error out on error
785 * @ops_name: operation to blame on failure
786 * @err: -errno value to sanitize
787 *
788 * Verify @err is a valid -errno. If not, trigger scx_error() and return
789 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
790 * cause misbehaviors. For an example, a large negative return from
791 * ops.init_task() triggers an oops when passed up the call chain because the
792 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
793 * handled as a pointer.
794 */
ops_sanitize_err(struct scx_sched * sch,const char * ops_name,s32 err)795 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err)
796 {
797 if (err < 0 && err >= -MAX_ERRNO)
798 return err;
799
800 scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err);
801 return -EPROTO;
802 }
803
run_deferred(struct rq * rq)804 static void run_deferred(struct rq *rq)
805 {
806 process_ddsp_deferred_locals(rq);
807
808 if (local_read(&rq->scx.reenq_local_deferred)) {
809 local_set(&rq->scx.reenq_local_deferred, 0);
810 reenq_local(rq);
811 }
812 }
813
deferred_bal_cb_workfn(struct rq * rq)814 static void deferred_bal_cb_workfn(struct rq *rq)
815 {
816 run_deferred(rq);
817 }
818
deferred_irq_workfn(struct irq_work * irq_work)819 static void deferred_irq_workfn(struct irq_work *irq_work)
820 {
821 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
822
823 raw_spin_rq_lock(rq);
824 run_deferred(rq);
825 raw_spin_rq_unlock(rq);
826 }
827
828 /**
829 * schedule_deferred - Schedule execution of deferred actions on an rq
830 * @rq: target rq
831 *
832 * Schedule execution of deferred actions on @rq. Deferred actions are executed
833 * with @rq locked but unpinned, and thus can unlock @rq to e.g. migrate tasks
834 * to other rqs.
835 */
schedule_deferred(struct rq * rq)836 static void schedule_deferred(struct rq *rq)
837 {
838 /*
839 * Queue an irq work. They are executed on IRQ re-enable which may take
840 * a bit longer than the scheduler hook in schedule_deferred_locked().
841 */
842 irq_work_queue(&rq->scx.deferred_irq_work);
843 }
844
845 /**
846 * schedule_deferred_locked - Schedule execution of deferred actions on an rq
847 * @rq: target rq
848 *
849 * Schedule execution of deferred actions on @rq. Equivalent to
850 * schedule_deferred() but requires @rq to be locked and can be more efficient.
851 */
schedule_deferred_locked(struct rq * rq)852 static void schedule_deferred_locked(struct rq *rq)
853 {
854 lockdep_assert_rq_held(rq);
855
856 /*
857 * If in the middle of waking up a task, task_woken_scx() will be called
858 * afterwards which will then run the deferred actions, no need to
859 * schedule anything.
860 */
861 if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
862 return;
863
864 /* Don't do anything if there already is a deferred operation. */
865 if (rq->scx.flags & SCX_RQ_BAL_CB_PENDING)
866 return;
867
868 /*
869 * If in balance, the balance callbacks will be called before rq lock is
870 * released. Schedule one.
871 *
872 *
873 * We can't directly insert the callback into the
874 * rq's list: The call can drop its lock and make the pending balance
875 * callback visible to unrelated code paths that call rq_pin_lock().
876 *
877 * Just let balance_one() know that it must do it itself.
878 */
879 if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
880 rq->scx.flags |= SCX_RQ_BAL_CB_PENDING;
881 return;
882 }
883
884 /*
885 * No scheduler hooks available. Use the generic irq_work path. The
886 * above WAKEUP and BALANCE paths should cover most of the cases and the
887 * time to IRQ re-enable shouldn't be long.
888 */
889 schedule_deferred(rq);
890 }
891
892 /**
893 * touch_core_sched - Update timestamp used for core-sched task ordering
894 * @rq: rq to read clock from, must be locked
895 * @p: task to update the timestamp for
896 *
897 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
898 * implement global or local-DSQ FIFO ordering for core-sched. Should be called
899 * when a task becomes runnable and its turn on the CPU ends (e.g. slice
900 * exhaustion).
901 */
touch_core_sched(struct rq * rq,struct task_struct * p)902 static void touch_core_sched(struct rq *rq, struct task_struct *p)
903 {
904 lockdep_assert_rq_held(rq);
905
906 #ifdef CONFIG_SCHED_CORE
907 /*
908 * It's okay to update the timestamp spuriously. Use
909 * sched_core_disabled() which is cheaper than enabled().
910 *
911 * As this is used to determine ordering between tasks of sibling CPUs,
912 * it may be better to use per-core dispatch sequence instead.
913 */
914 if (!sched_core_disabled())
915 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
916 #endif
917 }
918
919 /**
920 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
921 * @rq: rq to read clock from, must be locked
922 * @p: task being dispatched
923 *
924 * If the BPF scheduler implements custom core-sched ordering via
925 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
926 * ordering within each local DSQ. This function is called from dispatch paths
927 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
928 */
touch_core_sched_dispatch(struct rq * rq,struct task_struct * p)929 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
930 {
931 lockdep_assert_rq_held(rq);
932
933 #ifdef CONFIG_SCHED_CORE
934 if (unlikely(SCX_HAS_OP(scx_root, core_sched_before)))
935 touch_core_sched(rq, p);
936 #endif
937 }
938
update_curr_scx(struct rq * rq)939 static void update_curr_scx(struct rq *rq)
940 {
941 struct task_struct *curr = rq->curr;
942 s64 delta_exec;
943
944 delta_exec = update_curr_common(rq);
945 if (unlikely(delta_exec <= 0))
946 return;
947
948 if (curr->scx.slice != SCX_SLICE_INF) {
949 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
950 if (!curr->scx.slice)
951 touch_core_sched(rq, curr);
952 }
953 }
954
scx_dsq_priq_less(struct rb_node * node_a,const struct rb_node * node_b)955 static bool scx_dsq_priq_less(struct rb_node *node_a,
956 const struct rb_node *node_b)
957 {
958 const struct task_struct *a =
959 container_of(node_a, struct task_struct, scx.dsq_priq);
960 const struct task_struct *b =
961 container_of(node_b, struct task_struct, scx.dsq_priq);
962
963 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
964 }
965
dsq_mod_nr(struct scx_dispatch_q * dsq,s32 delta)966 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
967 {
968 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
969 WRITE_ONCE(dsq->nr, dsq->nr + delta);
970 }
971
refill_task_slice_dfl(struct scx_sched * sch,struct task_struct * p)972 static void refill_task_slice_dfl(struct scx_sched *sch, struct task_struct *p)
973 {
974 p->scx.slice = READ_ONCE(scx_slice_dfl);
975 __scx_add_event(sch, SCX_EV_REFILL_SLICE_DFL, 1);
976 }
977
dispatch_enqueue(struct scx_sched * sch,struct scx_dispatch_q * dsq,struct task_struct * p,u64 enq_flags)978 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq,
979 struct task_struct *p, u64 enq_flags)
980 {
981 bool is_local = dsq->id == SCX_DSQ_LOCAL;
982
983 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
984 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
985 !RB_EMPTY_NODE(&p->scx.dsq_priq));
986
987 if (!is_local) {
988 raw_spin_lock_nested(&dsq->lock,
989 (enq_flags & SCX_ENQ_NESTED) ? SINGLE_DEPTH_NESTING : 0);
990
991 if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
992 scx_error(sch, "attempting to dispatch to a destroyed dsq");
993 /* fall back to the global dsq */
994 raw_spin_unlock(&dsq->lock);
995 dsq = find_global_dsq(sch, p);
996 raw_spin_lock(&dsq->lock);
997 }
998 }
999
1000 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
1001 (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
1002 /*
1003 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
1004 * their FIFO queues. To avoid confusion and accidentally
1005 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
1006 * disallow any internal DSQ from doing vtime ordering of
1007 * tasks.
1008 */
1009 scx_error(sch, "cannot use vtime ordering for built-in DSQs");
1010 enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
1011 }
1012
1013 if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
1014 struct rb_node *rbp;
1015
1016 /*
1017 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
1018 * linked to both the rbtree and list on PRIQs, this can only be
1019 * tested easily when adding the first task.
1020 */
1021 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
1022 nldsq_next_task(dsq, NULL, false)))
1023 scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks",
1024 dsq->id);
1025
1026 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
1027 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
1028
1029 /*
1030 * Find the previous task and insert after it on the list so
1031 * that @dsq->list is vtime ordered.
1032 */
1033 rbp = rb_prev(&p->scx.dsq_priq);
1034 if (rbp) {
1035 struct task_struct *prev =
1036 container_of(rbp, struct task_struct,
1037 scx.dsq_priq);
1038 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
1039 /* first task unchanged - no update needed */
1040 } else {
1041 list_add(&p->scx.dsq_list.node, &dsq->list);
1042 /* not builtin and new task is at head - use fastpath */
1043 rcu_assign_pointer(dsq->first_task, p);
1044 }
1045 } else {
1046 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */
1047 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
1048 scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
1049 dsq->id);
1050
1051 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) {
1052 list_add(&p->scx.dsq_list.node, &dsq->list);
1053 /* new task inserted at head - use fastpath */
1054 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN))
1055 rcu_assign_pointer(dsq->first_task, p);
1056 } else {
1057 bool was_empty;
1058
1059 was_empty = list_empty(&dsq->list);
1060 list_add_tail(&p->scx.dsq_list.node, &dsq->list);
1061 if (was_empty && !(dsq->id & SCX_DSQ_FLAG_BUILTIN))
1062 rcu_assign_pointer(dsq->first_task, p);
1063 }
1064 }
1065
1066 /* seq records the order tasks are queued, used by BPF DSQ iterator */
1067 dsq->seq++;
1068 p->scx.dsq_seq = dsq->seq;
1069
1070 dsq_mod_nr(dsq, 1);
1071 p->scx.dsq = dsq;
1072
1073 /*
1074 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
1075 * direct dispatch path, but we clear them here because the direct
1076 * dispatch verdict may be overridden on the enqueue path during e.g.
1077 * bypass.
1078 */
1079 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
1080 p->scx.ddsp_enq_flags = 0;
1081
1082 /*
1083 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1084 * match waiters' load_acquire.
1085 */
1086 if (enq_flags & SCX_ENQ_CLEAR_OPSS)
1087 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1088
1089 if (is_local) {
1090 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
1091 bool preempt = false;
1092
1093 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
1094 rq->curr->sched_class == &ext_sched_class) {
1095 rq->curr->scx.slice = 0;
1096 preempt = true;
1097 }
1098
1099 if (preempt || sched_class_above(&ext_sched_class,
1100 rq->curr->sched_class))
1101 resched_curr(rq);
1102 } else {
1103 raw_spin_unlock(&dsq->lock);
1104 }
1105 }
1106
task_unlink_from_dsq(struct task_struct * p,struct scx_dispatch_q * dsq)1107 static void task_unlink_from_dsq(struct task_struct *p,
1108 struct scx_dispatch_q *dsq)
1109 {
1110 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1111
1112 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1113 rb_erase(&p->scx.dsq_priq, &dsq->priq);
1114 RB_CLEAR_NODE(&p->scx.dsq_priq);
1115 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1116 }
1117
1118 list_del_init(&p->scx.dsq_list.node);
1119 dsq_mod_nr(dsq, -1);
1120
1121 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN) && dsq->first_task == p) {
1122 struct task_struct *first_task;
1123
1124 first_task = nldsq_next_task(dsq, NULL, false);
1125 rcu_assign_pointer(dsq->first_task, first_task);
1126 }
1127 }
1128
dispatch_dequeue(struct rq * rq,struct task_struct * p)1129 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1130 {
1131 struct scx_dispatch_q *dsq = p->scx.dsq;
1132 bool is_local = dsq == &rq->scx.local_dsq;
1133
1134 lockdep_assert_rq_held(rq);
1135
1136 if (!dsq) {
1137 /*
1138 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1139 * Unlinking is all that's needed to cancel.
1140 */
1141 if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1142 list_del_init(&p->scx.dsq_list.node);
1143
1144 /*
1145 * When dispatching directly from the BPF scheduler to a local
1146 * DSQ, the task isn't associated with any DSQ but
1147 * @p->scx.holding_cpu may be set under the protection of
1148 * %SCX_OPSS_DISPATCHING.
1149 */
1150 if (p->scx.holding_cpu >= 0)
1151 p->scx.holding_cpu = -1;
1152
1153 return;
1154 }
1155
1156 if (!is_local)
1157 raw_spin_lock(&dsq->lock);
1158
1159 /*
1160 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1161 * change underneath us.
1162 */
1163 if (p->scx.holding_cpu < 0) {
1164 /* @p must still be on @dsq, dequeue */
1165 task_unlink_from_dsq(p, dsq);
1166 } else {
1167 /*
1168 * We're racing against dispatch_to_local_dsq() which already
1169 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1170 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1171 * the race.
1172 */
1173 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1174 p->scx.holding_cpu = -1;
1175 }
1176 p->scx.dsq = NULL;
1177
1178 if (!is_local)
1179 raw_spin_unlock(&dsq->lock);
1180 }
1181
1182 /*
1183 * Abbreviated version of dispatch_dequeue() that can be used when both @p's rq
1184 * and dsq are locked.
1185 */
dispatch_dequeue_locked(struct task_struct * p,struct scx_dispatch_q * dsq)1186 static void dispatch_dequeue_locked(struct task_struct *p,
1187 struct scx_dispatch_q *dsq)
1188 {
1189 lockdep_assert_rq_held(task_rq(p));
1190 lockdep_assert_held(&dsq->lock);
1191
1192 task_unlink_from_dsq(p, dsq);
1193 p->scx.dsq = NULL;
1194 }
1195
find_dsq_for_dispatch(struct scx_sched * sch,struct rq * rq,u64 dsq_id,struct task_struct * p)1196 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch,
1197 struct rq *rq, u64 dsq_id,
1198 struct task_struct *p)
1199 {
1200 struct scx_dispatch_q *dsq;
1201
1202 if (dsq_id == SCX_DSQ_LOCAL)
1203 return &rq->scx.local_dsq;
1204
1205 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1206 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1207
1208 if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1209 return find_global_dsq(sch, p);
1210
1211 return &cpu_rq(cpu)->scx.local_dsq;
1212 }
1213
1214 if (dsq_id == SCX_DSQ_GLOBAL)
1215 dsq = find_global_dsq(sch, p);
1216 else
1217 dsq = find_user_dsq(sch, dsq_id);
1218
1219 if (unlikely(!dsq)) {
1220 scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]",
1221 dsq_id, p->comm, p->pid);
1222 return find_global_dsq(sch, p);
1223 }
1224
1225 return dsq;
1226 }
1227
mark_direct_dispatch(struct scx_sched * sch,struct task_struct * ddsp_task,struct task_struct * p,u64 dsq_id,u64 enq_flags)1228 static void mark_direct_dispatch(struct scx_sched *sch,
1229 struct task_struct *ddsp_task,
1230 struct task_struct *p, u64 dsq_id,
1231 u64 enq_flags)
1232 {
1233 /*
1234 * Mark that dispatch already happened from ops.select_cpu() or
1235 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1236 * which can never match a valid task pointer.
1237 */
1238 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1239
1240 /* @p must match the task on the enqueue path */
1241 if (unlikely(p != ddsp_task)) {
1242 if (IS_ERR(ddsp_task))
1243 scx_error(sch, "%s[%d] already direct-dispatched",
1244 p->comm, p->pid);
1245 else
1246 scx_error(sch, "scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1247 ddsp_task->comm, ddsp_task->pid,
1248 p->comm, p->pid);
1249 return;
1250 }
1251
1252 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1253 WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1254
1255 p->scx.ddsp_dsq_id = dsq_id;
1256 p->scx.ddsp_enq_flags = enq_flags;
1257 }
1258
direct_dispatch(struct scx_sched * sch,struct task_struct * p,u64 enq_flags)1259 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p,
1260 u64 enq_flags)
1261 {
1262 struct rq *rq = task_rq(p);
1263 struct scx_dispatch_q *dsq =
1264 find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p);
1265
1266 touch_core_sched_dispatch(rq, p);
1267
1268 p->scx.ddsp_enq_flags |= enq_flags;
1269
1270 /*
1271 * We are in the enqueue path with @rq locked and pinned, and thus can't
1272 * double lock a remote rq and enqueue to its local DSQ. For
1273 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1274 * the enqueue so that it's executed when @rq can be unlocked.
1275 */
1276 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
1277 unsigned long opss;
1278
1279 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1280
1281 switch (opss & SCX_OPSS_STATE_MASK) {
1282 case SCX_OPSS_NONE:
1283 break;
1284 case SCX_OPSS_QUEUEING:
1285 /*
1286 * As @p was never passed to the BPF side, _release is
1287 * not strictly necessary. Still do it for consistency.
1288 */
1289 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1290 break;
1291 default:
1292 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1293 p->comm, p->pid, opss);
1294 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1295 break;
1296 }
1297
1298 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1299 list_add_tail(&p->scx.dsq_list.node,
1300 &rq->scx.ddsp_deferred_locals);
1301 schedule_deferred_locked(rq);
1302 return;
1303 }
1304
1305 dispatch_enqueue(sch, dsq, p,
1306 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1307 }
1308
scx_rq_online(struct rq * rq)1309 static bool scx_rq_online(struct rq *rq)
1310 {
1311 /*
1312 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1313 * the online state as seen from the BPF scheduler. cpu_active() test
1314 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1315 * stay set until the current scheduling operation is complete even if
1316 * we aren't locking @rq.
1317 */
1318 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1319 }
1320
do_enqueue_task(struct rq * rq,struct task_struct * p,u64 enq_flags,int sticky_cpu)1321 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1322 int sticky_cpu)
1323 {
1324 struct scx_sched *sch = scx_root;
1325 struct task_struct **ddsp_taskp;
1326 struct scx_dispatch_q *dsq;
1327 unsigned long qseq;
1328
1329 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1330
1331 /* rq migration */
1332 if (sticky_cpu == cpu_of(rq))
1333 goto local_norefill;
1334
1335 /*
1336 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
1337 * is offline and are just running the hotplug path. Don't bother the
1338 * BPF scheduler.
1339 */
1340 if (!scx_rq_online(rq))
1341 goto local;
1342
1343 if (scx_rq_bypassing(rq)) {
1344 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1);
1345 goto bypass;
1346 }
1347
1348 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1349 goto direct;
1350
1351 /* see %SCX_OPS_ENQ_EXITING */
1352 if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) &&
1353 unlikely(p->flags & PF_EXITING)) {
1354 __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1);
1355 goto local;
1356 }
1357
1358 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */
1359 if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) &&
1360 is_migration_disabled(p)) {
1361 __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1);
1362 goto local;
1363 }
1364
1365 if (unlikely(!SCX_HAS_OP(sch, enqueue)))
1366 goto global;
1367
1368 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
1369 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
1370
1371 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
1372 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
1373
1374 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
1375 WARN_ON_ONCE(*ddsp_taskp);
1376 *ddsp_taskp = p;
1377
1378 SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags);
1379
1380 *ddsp_taskp = NULL;
1381 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1382 goto direct;
1383
1384 /*
1385 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
1386 * dequeue may be waiting. The store_release matches their load_acquire.
1387 */
1388 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
1389 return;
1390
1391 direct:
1392 direct_dispatch(sch, p, enq_flags);
1393 return;
1394 local_norefill:
1395 dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags);
1396 return;
1397 local:
1398 dsq = &rq->scx.local_dsq;
1399 goto enqueue;
1400 global:
1401 dsq = find_global_dsq(sch, p);
1402 goto enqueue;
1403 bypass:
1404 dsq = &task_rq(p)->scx.bypass_dsq;
1405 goto enqueue;
1406
1407 enqueue:
1408 /*
1409 * For task-ordering, slice refill must be treated as implying the end
1410 * of the current slice. Otherwise, the longer @p stays on the CPU, the
1411 * higher priority it becomes from scx_prio_less()'s POV.
1412 */
1413 touch_core_sched(rq, p);
1414 refill_task_slice_dfl(sch, p);
1415 dispatch_enqueue(sch, dsq, p, enq_flags);
1416 }
1417
task_runnable(const struct task_struct * p)1418 static bool task_runnable(const struct task_struct *p)
1419 {
1420 return !list_empty(&p->scx.runnable_node);
1421 }
1422
set_task_runnable(struct rq * rq,struct task_struct * p)1423 static void set_task_runnable(struct rq *rq, struct task_struct *p)
1424 {
1425 lockdep_assert_rq_held(rq);
1426
1427 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
1428 p->scx.runnable_at = jiffies;
1429 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
1430 }
1431
1432 /*
1433 * list_add_tail() must be used. scx_bypass() depends on tasks being
1434 * appended to the runnable_list.
1435 */
1436 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
1437 }
1438
clr_task_runnable(struct task_struct * p,bool reset_runnable_at)1439 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
1440 {
1441 list_del_init(&p->scx.runnable_node);
1442 if (reset_runnable_at)
1443 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
1444 }
1445
enqueue_task_scx(struct rq * rq,struct task_struct * p,int enq_flags)1446 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
1447 {
1448 struct scx_sched *sch = scx_root;
1449 int sticky_cpu = p->scx.sticky_cpu;
1450
1451 if (enq_flags & ENQUEUE_WAKEUP)
1452 rq->scx.flags |= SCX_RQ_IN_WAKEUP;
1453
1454 enq_flags |= rq->scx.extra_enq_flags;
1455
1456 if (sticky_cpu >= 0)
1457 p->scx.sticky_cpu = -1;
1458
1459 /*
1460 * Restoring a running task will be immediately followed by
1461 * set_next_task_scx() which expects the task to not be on the BPF
1462 * scheduler as tasks can only start running through local DSQs. Force
1463 * direct-dispatch into the local DSQ by setting the sticky_cpu.
1464 */
1465 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
1466 sticky_cpu = cpu_of(rq);
1467
1468 if (p->scx.flags & SCX_TASK_QUEUED) {
1469 WARN_ON_ONCE(!task_runnable(p));
1470 goto out;
1471 }
1472
1473 set_task_runnable(rq, p);
1474 p->scx.flags |= SCX_TASK_QUEUED;
1475 rq->scx.nr_running++;
1476 add_nr_running(rq, 1);
1477
1478 if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p))
1479 SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags);
1480
1481 if (enq_flags & SCX_ENQ_WAKEUP)
1482 touch_core_sched(rq, p);
1483
1484 do_enqueue_task(rq, p, enq_flags, sticky_cpu);
1485 out:
1486 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
1487
1488 if ((enq_flags & SCX_ENQ_CPU_SELECTED) &&
1489 unlikely(cpu_of(rq) != p->scx.selected_cpu))
1490 __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1);
1491 }
1492
ops_dequeue(struct rq * rq,struct task_struct * p,u64 deq_flags)1493 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags)
1494 {
1495 struct scx_sched *sch = scx_root;
1496 unsigned long opss;
1497
1498 /* dequeue is always temporary, don't reset runnable_at */
1499 clr_task_runnable(p, false);
1500
1501 /* acquire ensures that we see the preceding updates on QUEUED */
1502 opss = atomic_long_read_acquire(&p->scx.ops_state);
1503
1504 switch (opss & SCX_OPSS_STATE_MASK) {
1505 case SCX_OPSS_NONE:
1506 break;
1507 case SCX_OPSS_QUEUEING:
1508 /*
1509 * QUEUEING is started and finished while holding @p's rq lock.
1510 * As we're holding the rq lock now, we shouldn't see QUEUEING.
1511 */
1512 BUG();
1513 case SCX_OPSS_QUEUED:
1514 if (SCX_HAS_OP(sch, dequeue))
1515 SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq,
1516 p, deq_flags);
1517
1518 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
1519 SCX_OPSS_NONE))
1520 break;
1521 fallthrough;
1522 case SCX_OPSS_DISPATCHING:
1523 /*
1524 * If @p is being dispatched from the BPF scheduler to a DSQ,
1525 * wait for the transfer to complete so that @p doesn't get
1526 * added to its DSQ after dequeueing is complete.
1527 *
1528 * As we're waiting on DISPATCHING with the rq locked, the
1529 * dispatching side shouldn't try to lock the rq while
1530 * DISPATCHING is set. See dispatch_to_local_dsq().
1531 *
1532 * DISPATCHING shouldn't have qseq set and control can reach
1533 * here with NONE @opss from the above QUEUED case block.
1534 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
1535 */
1536 wait_ops_state(p, SCX_OPSS_DISPATCHING);
1537 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
1538 break;
1539 }
1540 }
1541
dequeue_task_scx(struct rq * rq,struct task_struct * p,int deq_flags)1542 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
1543 {
1544 struct scx_sched *sch = scx_root;
1545
1546 if (!(p->scx.flags & SCX_TASK_QUEUED)) {
1547 WARN_ON_ONCE(task_runnable(p));
1548 return true;
1549 }
1550
1551 ops_dequeue(rq, p, deq_flags);
1552
1553 /*
1554 * A currently running task which is going off @rq first gets dequeued
1555 * and then stops running. As we want running <-> stopping transitions
1556 * to be contained within runnable <-> quiescent transitions, trigger
1557 * ->stopping() early here instead of in put_prev_task_scx().
1558 *
1559 * @p may go through multiple stopping <-> running transitions between
1560 * here and put_prev_task_scx() if task attribute changes occur while
1561 * balance_scx() leaves @rq unlocked. However, they don't contain any
1562 * information meaningful to the BPF scheduler and can be suppressed by
1563 * skipping the callbacks if the task is !QUEUED.
1564 */
1565 if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) {
1566 update_curr_scx(rq);
1567 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false);
1568 }
1569
1570 if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p))
1571 SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags);
1572
1573 if (deq_flags & SCX_DEQ_SLEEP)
1574 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
1575 else
1576 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
1577
1578 p->scx.flags &= ~SCX_TASK_QUEUED;
1579 rq->scx.nr_running--;
1580 sub_nr_running(rq, 1);
1581
1582 dispatch_dequeue(rq, p);
1583 return true;
1584 }
1585
yield_task_scx(struct rq * rq)1586 static void yield_task_scx(struct rq *rq)
1587 {
1588 struct scx_sched *sch = scx_root;
1589 struct task_struct *p = rq->donor;
1590
1591 if (SCX_HAS_OP(sch, yield))
1592 SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL);
1593 else
1594 p->scx.slice = 0;
1595 }
1596
yield_to_task_scx(struct rq * rq,struct task_struct * to)1597 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
1598 {
1599 struct scx_sched *sch = scx_root;
1600 struct task_struct *from = rq->donor;
1601
1602 if (SCX_HAS_OP(sch, yield))
1603 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq,
1604 from, to);
1605 else
1606 return false;
1607 }
1608
move_local_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct scx_dispatch_q * src_dsq,struct rq * dst_rq)1609 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
1610 struct scx_dispatch_q *src_dsq,
1611 struct rq *dst_rq)
1612 {
1613 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
1614
1615 /* @dsq is locked and @p is on @dst_rq */
1616 lockdep_assert_held(&src_dsq->lock);
1617 lockdep_assert_rq_held(dst_rq);
1618
1619 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
1620
1621 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1622 list_add(&p->scx.dsq_list.node, &dst_dsq->list);
1623 else
1624 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
1625
1626 dsq_mod_nr(dst_dsq, 1);
1627 p->scx.dsq = dst_dsq;
1628 }
1629
1630 /**
1631 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
1632 * @p: task to move
1633 * @enq_flags: %SCX_ENQ_*
1634 * @src_rq: rq to move the task from, locked on entry, released on return
1635 * @dst_rq: rq to move the task into, locked on return
1636 *
1637 * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
1638 */
move_remote_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct rq * src_rq,struct rq * dst_rq)1639 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
1640 struct rq *src_rq, struct rq *dst_rq)
1641 {
1642 lockdep_assert_rq_held(src_rq);
1643
1644 /* the following marks @p MIGRATING which excludes dequeue */
1645 deactivate_task(src_rq, p, 0);
1646 set_task_cpu(p, cpu_of(dst_rq));
1647 p->scx.sticky_cpu = cpu_of(dst_rq);
1648
1649 raw_spin_rq_unlock(src_rq);
1650 raw_spin_rq_lock(dst_rq);
1651
1652 /*
1653 * We want to pass scx-specific enq_flags but activate_task() will
1654 * truncate the upper 32 bit. As we own @rq, we can pass them through
1655 * @rq->scx.extra_enq_flags instead.
1656 */
1657 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
1658 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
1659 dst_rq->scx.extra_enq_flags = enq_flags;
1660 activate_task(dst_rq, p, 0);
1661 dst_rq->scx.extra_enq_flags = 0;
1662 }
1663
1664 /*
1665 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
1666 * differences:
1667 *
1668 * - is_cpu_allowed() asks "Can this task run on this CPU?" while
1669 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
1670 * this CPU?".
1671 *
1672 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task
1673 * must be allowed to finish on the CPU that it's currently on regardless of
1674 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
1675 * BPF scheduler shouldn't attempt to migrate a task which has migration
1676 * disabled.
1677 *
1678 * - The BPF scheduler is bypassed while the rq is offline and we can always say
1679 * no to the BPF scheduler initiated migrations while offline.
1680 *
1681 * The caller must ensure that @p and @rq are on different CPUs.
1682 */
task_can_run_on_remote_rq(struct scx_sched * sch,struct task_struct * p,struct rq * rq,bool enforce)1683 static bool task_can_run_on_remote_rq(struct scx_sched *sch,
1684 struct task_struct *p, struct rq *rq,
1685 bool enforce)
1686 {
1687 int cpu = cpu_of(rq);
1688
1689 WARN_ON_ONCE(task_cpu(p) == cpu);
1690
1691 /*
1692 * If @p has migration disabled, @p->cpus_ptr is updated to contain only
1693 * the pinned CPU in migrate_disable_switch() while @p is being switched
1694 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is
1695 * updated and thus another CPU may see @p on a DSQ inbetween leading to
1696 * @p passing the below task_allowed_on_cpu() check while migration is
1697 * disabled.
1698 *
1699 * Test the migration disabled state first as the race window is narrow
1700 * and the BPF scheduler failing to check migration disabled state can
1701 * easily be masked if task_allowed_on_cpu() is done first.
1702 */
1703 if (unlikely(is_migration_disabled(p))) {
1704 if (enforce)
1705 scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d",
1706 p->comm, p->pid, task_cpu(p), cpu);
1707 return false;
1708 }
1709
1710 /*
1711 * We don't require the BPF scheduler to avoid dispatching to offline
1712 * CPUs mostly for convenience but also because CPUs can go offline
1713 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the
1714 * picked CPU is outside the allowed mask.
1715 */
1716 if (!task_allowed_on_cpu(p, cpu)) {
1717 if (enforce)
1718 scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]",
1719 cpu, p->comm, p->pid);
1720 return false;
1721 }
1722
1723 if (!scx_rq_online(rq)) {
1724 if (enforce)
1725 __scx_add_event(sch, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1);
1726 return false;
1727 }
1728
1729 return true;
1730 }
1731
1732 /**
1733 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
1734 * @p: target task
1735 * @dsq: locked DSQ @p is currently on
1736 * @src_rq: rq @p is currently on, stable with @dsq locked
1737 *
1738 * Called with @dsq locked but no rq's locked. We want to move @p to a different
1739 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
1740 * required when transferring into a local DSQ. Even when transferring into a
1741 * non-local DSQ, it's better to use the same mechanism to protect against
1742 * dequeues and maintain the invariant that @p->scx.dsq can only change while
1743 * @src_rq is locked, which e.g. scx_dump_task() depends on.
1744 *
1745 * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
1746 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
1747 * this may race with dequeue, which can't drop the rq lock or fail, do a little
1748 * dancing from our side.
1749 *
1750 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
1751 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
1752 * would be cleared to -1. While other cpus may have updated it to different
1753 * values afterwards, as this operation can't be preempted or recurse, the
1754 * holding_cpu can never become this CPU again before we're done. Thus, we can
1755 * tell whether we lost to dequeue by testing whether the holding_cpu still
1756 * points to this CPU. See dispatch_dequeue() for the counterpart.
1757 *
1758 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
1759 * still valid. %false if lost to dequeue.
1760 */
unlink_dsq_and_lock_src_rq(struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)1761 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
1762 struct scx_dispatch_q *dsq,
1763 struct rq *src_rq)
1764 {
1765 s32 cpu = raw_smp_processor_id();
1766
1767 lockdep_assert_held(&dsq->lock);
1768
1769 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
1770 task_unlink_from_dsq(p, dsq);
1771 p->scx.holding_cpu = cpu;
1772
1773 raw_spin_unlock(&dsq->lock);
1774 raw_spin_rq_lock(src_rq);
1775
1776 /* task_rq couldn't have changed if we're still the holding cpu */
1777 return likely(p->scx.holding_cpu == cpu) &&
1778 !WARN_ON_ONCE(src_rq != task_rq(p));
1779 }
1780
consume_remote_task(struct rq * this_rq,struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)1781 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
1782 struct scx_dispatch_q *dsq, struct rq *src_rq)
1783 {
1784 raw_spin_rq_unlock(this_rq);
1785
1786 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
1787 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
1788 return true;
1789 } else {
1790 raw_spin_rq_unlock(src_rq);
1791 raw_spin_rq_lock(this_rq);
1792 return false;
1793 }
1794 }
1795
1796 /**
1797 * move_task_between_dsqs() - Move a task from one DSQ to another
1798 * @sch: scx_sched being operated on
1799 * @p: target task
1800 * @enq_flags: %SCX_ENQ_*
1801 * @src_dsq: DSQ @p is currently on, must not be a local DSQ
1802 * @dst_dsq: DSQ @p is being moved to, can be any DSQ
1803 *
1804 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local
1805 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq
1806 * will change. As @p's task_rq is locked, this function doesn't need to use the
1807 * holding_cpu mechanism.
1808 *
1809 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the
1810 * return value, is locked.
1811 */
move_task_between_dsqs(struct scx_sched * sch,struct task_struct * p,u64 enq_flags,struct scx_dispatch_q * src_dsq,struct scx_dispatch_q * dst_dsq)1812 static struct rq *move_task_between_dsqs(struct scx_sched *sch,
1813 struct task_struct *p, u64 enq_flags,
1814 struct scx_dispatch_q *src_dsq,
1815 struct scx_dispatch_q *dst_dsq)
1816 {
1817 struct rq *src_rq = task_rq(p), *dst_rq;
1818
1819 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL);
1820 lockdep_assert_held(&src_dsq->lock);
1821 lockdep_assert_rq_held(src_rq);
1822
1823 if (dst_dsq->id == SCX_DSQ_LOCAL) {
1824 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
1825 if (src_rq != dst_rq &&
1826 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) {
1827 dst_dsq = find_global_dsq(sch, p);
1828 dst_rq = src_rq;
1829 }
1830 } else {
1831 /* no need to migrate if destination is a non-local DSQ */
1832 dst_rq = src_rq;
1833 }
1834
1835 /*
1836 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
1837 * CPU, @p will be migrated.
1838 */
1839 if (dst_dsq->id == SCX_DSQ_LOCAL) {
1840 /* @p is going from a non-local DSQ to a local DSQ */
1841 if (src_rq == dst_rq) {
1842 task_unlink_from_dsq(p, src_dsq);
1843 move_local_task_to_local_dsq(p, enq_flags,
1844 src_dsq, dst_rq);
1845 raw_spin_unlock(&src_dsq->lock);
1846 } else {
1847 raw_spin_unlock(&src_dsq->lock);
1848 move_remote_task_to_local_dsq(p, enq_flags,
1849 src_rq, dst_rq);
1850 }
1851 } else {
1852 /*
1853 * @p is going from a non-local DSQ to a non-local DSQ. As
1854 * $src_dsq is already locked, do an abbreviated dequeue.
1855 */
1856 dispatch_dequeue_locked(p, src_dsq);
1857 raw_spin_unlock(&src_dsq->lock);
1858
1859 dispatch_enqueue(sch, dst_dsq, p, enq_flags);
1860 }
1861
1862 return dst_rq;
1863 }
1864
consume_dispatch_q(struct scx_sched * sch,struct rq * rq,struct scx_dispatch_q * dsq)1865 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq,
1866 struct scx_dispatch_q *dsq)
1867 {
1868 struct task_struct *p;
1869 retry:
1870 /*
1871 * The caller can't expect to successfully consume a task if the task's
1872 * addition to @dsq isn't guaranteed to be visible somehow. Test
1873 * @dsq->list without locking and skip if it seems empty.
1874 */
1875 if (list_empty(&dsq->list))
1876 return false;
1877
1878 raw_spin_lock(&dsq->lock);
1879
1880 nldsq_for_each_task(p, dsq) {
1881 struct rq *task_rq = task_rq(p);
1882
1883 /*
1884 * This loop can lead to multiple lockup scenarios, e.g. the BPF
1885 * scheduler can put an enormous number of affinitized tasks into
1886 * a contended DSQ, or the outer retry loop can repeatedly race
1887 * against scx_bypass() dequeueing tasks from @dsq trying to put
1888 * the system into the bypass mode. This can easily live-lock the
1889 * machine. If aborting, exit from all non-bypass DSQs.
1890 */
1891 if (unlikely(READ_ONCE(scx_aborting)) && dsq->id != SCX_DSQ_BYPASS)
1892 break;
1893
1894 if (rq == task_rq) {
1895 task_unlink_from_dsq(p, dsq);
1896 move_local_task_to_local_dsq(p, 0, dsq, rq);
1897 raw_spin_unlock(&dsq->lock);
1898 return true;
1899 }
1900
1901 if (task_can_run_on_remote_rq(sch, p, rq, false)) {
1902 if (likely(consume_remote_task(rq, p, dsq, task_rq)))
1903 return true;
1904 goto retry;
1905 }
1906 }
1907
1908 raw_spin_unlock(&dsq->lock);
1909 return false;
1910 }
1911
consume_global_dsq(struct scx_sched * sch,struct rq * rq)1912 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq)
1913 {
1914 int node = cpu_to_node(cpu_of(rq));
1915
1916 return consume_dispatch_q(sch, rq, sch->global_dsqs[node]);
1917 }
1918
1919 /**
1920 * dispatch_to_local_dsq - Dispatch a task to a local dsq
1921 * @sch: scx_sched being operated on
1922 * @rq: current rq which is locked
1923 * @dst_dsq: destination DSQ
1924 * @p: task to dispatch
1925 * @enq_flags: %SCX_ENQ_*
1926 *
1927 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
1928 * DSQ. This function performs all the synchronization dancing needed because
1929 * local DSQs are protected with rq locks.
1930 *
1931 * The caller must have exclusive ownership of @p (e.g. through
1932 * %SCX_OPSS_DISPATCHING).
1933 */
dispatch_to_local_dsq(struct scx_sched * sch,struct rq * rq,struct scx_dispatch_q * dst_dsq,struct task_struct * p,u64 enq_flags)1934 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq,
1935 struct scx_dispatch_q *dst_dsq,
1936 struct task_struct *p, u64 enq_flags)
1937 {
1938 struct rq *src_rq = task_rq(p);
1939 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
1940 struct rq *locked_rq = rq;
1941
1942 /*
1943 * We're synchronized against dequeue through DISPATCHING. As @p can't
1944 * be dequeued, its task_rq and cpus_allowed are stable too.
1945 *
1946 * If dispatching to @rq that @p is already on, no lock dancing needed.
1947 */
1948 if (rq == src_rq && rq == dst_rq) {
1949 dispatch_enqueue(sch, dst_dsq, p,
1950 enq_flags | SCX_ENQ_CLEAR_OPSS);
1951 return;
1952 }
1953
1954 if (src_rq != dst_rq &&
1955 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) {
1956 dispatch_enqueue(sch, find_global_dsq(sch, p), p,
1957 enq_flags | SCX_ENQ_CLEAR_OPSS);
1958 return;
1959 }
1960
1961 /*
1962 * @p is on a possibly remote @src_rq which we need to lock to move the
1963 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
1964 * on DISPATCHING, so we can't grab @src_rq lock while holding
1965 * DISPATCHING.
1966 *
1967 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
1968 * we're moving from a DSQ and use the same mechanism - mark the task
1969 * under transfer with holding_cpu, release DISPATCHING and then follow
1970 * the same protocol. See unlink_dsq_and_lock_src_rq().
1971 */
1972 p->scx.holding_cpu = raw_smp_processor_id();
1973
1974 /* store_release ensures that dequeue sees the above */
1975 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1976
1977 /* switch to @src_rq lock */
1978 if (locked_rq != src_rq) {
1979 raw_spin_rq_unlock(locked_rq);
1980 locked_rq = src_rq;
1981 raw_spin_rq_lock(src_rq);
1982 }
1983
1984 /* task_rq couldn't have changed if we're still the holding cpu */
1985 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
1986 !WARN_ON_ONCE(src_rq != task_rq(p))) {
1987 /*
1988 * If @p is staying on the same rq, there's no need to go
1989 * through the full deactivate/activate cycle. Optimize by
1990 * abbreviating move_remote_task_to_local_dsq().
1991 */
1992 if (src_rq == dst_rq) {
1993 p->scx.holding_cpu = -1;
1994 dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p,
1995 enq_flags);
1996 } else {
1997 move_remote_task_to_local_dsq(p, enq_flags,
1998 src_rq, dst_rq);
1999 /* task has been moved to dst_rq, which is now locked */
2000 locked_rq = dst_rq;
2001 }
2002
2003 /* if the destination CPU is idle, wake it up */
2004 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
2005 resched_curr(dst_rq);
2006 }
2007
2008 /* switch back to @rq lock */
2009 if (locked_rq != rq) {
2010 raw_spin_rq_unlock(locked_rq);
2011 raw_spin_rq_lock(rq);
2012 }
2013 }
2014
2015 /**
2016 * finish_dispatch - Asynchronously finish dispatching a task
2017 * @rq: current rq which is locked
2018 * @p: task to finish dispatching
2019 * @qseq_at_dispatch: qseq when @p started getting dispatched
2020 * @dsq_id: destination DSQ ID
2021 * @enq_flags: %SCX_ENQ_*
2022 *
2023 * Dispatching to local DSQs may need to wait for queueing to complete or
2024 * require rq lock dancing. As we don't wanna do either while inside
2025 * ops.dispatch() to avoid locking order inversion, we split dispatching into
2026 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the
2027 * task and its qseq. Once ops.dispatch() returns, this function is called to
2028 * finish up.
2029 *
2030 * There is no guarantee that @p is still valid for dispatching or even that it
2031 * was valid in the first place. Make sure that the task is still owned by the
2032 * BPF scheduler and claim the ownership before dispatching.
2033 */
finish_dispatch(struct scx_sched * sch,struct rq * rq,struct task_struct * p,unsigned long qseq_at_dispatch,u64 dsq_id,u64 enq_flags)2034 static void finish_dispatch(struct scx_sched *sch, struct rq *rq,
2035 struct task_struct *p,
2036 unsigned long qseq_at_dispatch,
2037 u64 dsq_id, u64 enq_flags)
2038 {
2039 struct scx_dispatch_q *dsq;
2040 unsigned long opss;
2041
2042 touch_core_sched_dispatch(rq, p);
2043 retry:
2044 /*
2045 * No need for _acquire here. @p is accessed only after a successful
2046 * try_cmpxchg to DISPATCHING.
2047 */
2048 opss = atomic_long_read(&p->scx.ops_state);
2049
2050 switch (opss & SCX_OPSS_STATE_MASK) {
2051 case SCX_OPSS_DISPATCHING:
2052 case SCX_OPSS_NONE:
2053 /* someone else already got to it */
2054 return;
2055 case SCX_OPSS_QUEUED:
2056 /*
2057 * If qseq doesn't match, @p has gone through at least one
2058 * dispatch/dequeue and re-enqueue cycle between
2059 * scx_bpf_dsq_insert() and here and we have no claim on it.
2060 */
2061 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
2062 return;
2063
2064 /*
2065 * While we know @p is accessible, we don't yet have a claim on
2066 * it - the BPF scheduler is allowed to dispatch tasks
2067 * spuriously and there can be a racing dequeue attempt. Let's
2068 * claim @p by atomically transitioning it from QUEUED to
2069 * DISPATCHING.
2070 */
2071 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2072 SCX_OPSS_DISPATCHING)))
2073 break;
2074 goto retry;
2075 case SCX_OPSS_QUEUEING:
2076 /*
2077 * do_enqueue_task() is in the process of transferring the task
2078 * to the BPF scheduler while holding @p's rq lock. As we aren't
2079 * holding any kernel or BPF resource that the enqueue path may
2080 * depend upon, it's safe to wait.
2081 */
2082 wait_ops_state(p, opss);
2083 goto retry;
2084 }
2085
2086 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
2087
2088 dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p);
2089
2090 if (dsq->id == SCX_DSQ_LOCAL)
2091 dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags);
2092 else
2093 dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2094 }
2095
flush_dispatch_buf(struct scx_sched * sch,struct rq * rq)2096 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq)
2097 {
2098 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2099 u32 u;
2100
2101 for (u = 0; u < dspc->cursor; u++) {
2102 struct scx_dsp_buf_ent *ent = &dspc->buf[u];
2103
2104 finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id,
2105 ent->enq_flags);
2106 }
2107
2108 dspc->nr_tasks += dspc->cursor;
2109 dspc->cursor = 0;
2110 }
2111
maybe_queue_balance_callback(struct rq * rq)2112 static inline void maybe_queue_balance_callback(struct rq *rq)
2113 {
2114 lockdep_assert_rq_held(rq);
2115
2116 if (!(rq->scx.flags & SCX_RQ_BAL_CB_PENDING))
2117 return;
2118
2119 queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
2120 deferred_bal_cb_workfn);
2121
2122 rq->scx.flags &= ~SCX_RQ_BAL_CB_PENDING;
2123 }
2124
balance_one(struct rq * rq,struct task_struct * prev)2125 static int balance_one(struct rq *rq, struct task_struct *prev)
2126 {
2127 struct scx_sched *sch = scx_root;
2128 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2129 bool prev_on_scx = prev->sched_class == &ext_sched_class;
2130 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED;
2131 int nr_loops = SCX_DSP_MAX_LOOPS;
2132
2133 lockdep_assert_rq_held(rq);
2134 rq->scx.flags |= SCX_RQ_IN_BALANCE;
2135 rq->scx.flags &= ~SCX_RQ_BAL_KEEP;
2136
2137 if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) &&
2138 unlikely(rq->scx.cpu_released)) {
2139 /*
2140 * If the previous sched_class for the current CPU was not SCX,
2141 * notify the BPF scheduler that it again has control of the
2142 * core. This callback complements ->cpu_release(), which is
2143 * emitted in switch_class().
2144 */
2145 if (SCX_HAS_OP(sch, cpu_acquire))
2146 SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq,
2147 cpu_of(rq), NULL);
2148 rq->scx.cpu_released = false;
2149 }
2150
2151 if (prev_on_scx) {
2152 update_curr_scx(rq);
2153
2154 /*
2155 * If @prev is runnable & has slice left, it has priority and
2156 * fetching more just increases latency for the fetched tasks.
2157 * Tell pick_task_scx() to keep running @prev. If the BPF
2158 * scheduler wants to handle this explicitly, it should
2159 * implement ->cpu_release().
2160 *
2161 * See scx_disable_workfn() for the explanation on the bypassing
2162 * test.
2163 */
2164 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) {
2165 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2166 goto has_tasks;
2167 }
2168 }
2169
2170 /* if there already are tasks to run, nothing to do */
2171 if (rq->scx.local_dsq.nr)
2172 goto has_tasks;
2173
2174 if (consume_global_dsq(sch, rq))
2175 goto has_tasks;
2176
2177 if (scx_rq_bypassing(rq)) {
2178 if (consume_dispatch_q(sch, rq, &rq->scx.bypass_dsq))
2179 goto has_tasks;
2180 else
2181 goto no_tasks;
2182 }
2183
2184 if (unlikely(!SCX_HAS_OP(sch, dispatch)) || !scx_rq_online(rq))
2185 goto no_tasks;
2186
2187 dspc->rq = rq;
2188
2189 /*
2190 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2191 * the local DSQ might still end up empty after a successful
2192 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2193 * produced some tasks, retry. The BPF scheduler may depend on this
2194 * looping behavior to simplify its implementation.
2195 */
2196 do {
2197 dspc->nr_tasks = 0;
2198
2199 SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq,
2200 cpu_of(rq), prev_on_scx ? prev : NULL);
2201
2202 flush_dispatch_buf(sch, rq);
2203
2204 if (prev_on_rq && prev->scx.slice) {
2205 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2206 goto has_tasks;
2207 }
2208 if (rq->scx.local_dsq.nr)
2209 goto has_tasks;
2210 if (consume_global_dsq(sch, rq))
2211 goto has_tasks;
2212
2213 /*
2214 * ops.dispatch() can trap us in this loop by repeatedly
2215 * dispatching ineligible tasks. Break out once in a while to
2216 * allow the watchdog to run. As IRQ can't be enabled in
2217 * balance(), we want to complete this scheduling cycle and then
2218 * start a new one. IOW, we want to call resched_curr() on the
2219 * next, most likely idle, task, not the current one. Use
2220 * scx_kick_cpu() for deferred kicking.
2221 */
2222 if (unlikely(!--nr_loops)) {
2223 scx_kick_cpu(sch, cpu_of(rq), 0);
2224 break;
2225 }
2226 } while (dspc->nr_tasks);
2227
2228 no_tasks:
2229 /*
2230 * Didn't find another task to run. Keep running @prev unless
2231 * %SCX_OPS_ENQ_LAST is in effect.
2232 */
2233 if (prev_on_rq &&
2234 (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) {
2235 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2236 __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1);
2237 goto has_tasks;
2238 }
2239 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2240 return false;
2241
2242 has_tasks:
2243 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2244 return true;
2245 }
2246
process_ddsp_deferred_locals(struct rq * rq)2247 static void process_ddsp_deferred_locals(struct rq *rq)
2248 {
2249 struct task_struct *p;
2250
2251 lockdep_assert_rq_held(rq);
2252
2253 /*
2254 * Now that @rq can be unlocked, execute the deferred enqueueing of
2255 * tasks directly dispatched to the local DSQs of other CPUs. See
2256 * direct_dispatch(). Keep popping from the head instead of using
2257 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2258 * temporarily.
2259 */
2260 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2261 struct task_struct, scx.dsq_list.node))) {
2262 struct scx_sched *sch = scx_root;
2263 struct scx_dispatch_q *dsq;
2264
2265 list_del_init(&p->scx.dsq_list.node);
2266
2267 dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p);
2268 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
2269 dispatch_to_local_dsq(sch, rq, dsq, p,
2270 p->scx.ddsp_enq_flags);
2271 }
2272 }
2273
set_next_task_scx(struct rq * rq,struct task_struct * p,bool first)2274 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2275 {
2276 struct scx_sched *sch = scx_root;
2277
2278 if (p->scx.flags & SCX_TASK_QUEUED) {
2279 /*
2280 * Core-sched might decide to execute @p before it is
2281 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2282 */
2283 ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC);
2284 dispatch_dequeue(rq, p);
2285 }
2286
2287 p->se.exec_start = rq_clock_task(rq);
2288
2289 /* see dequeue_task_scx() on why we skip when !QUEUED */
2290 if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED))
2291 SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p);
2292
2293 clr_task_runnable(p, true);
2294
2295 /*
2296 * @p is getting newly scheduled or got kicked after someone updated its
2297 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2298 */
2299 if ((p->scx.slice == SCX_SLICE_INF) !=
2300 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2301 if (p->scx.slice == SCX_SLICE_INF)
2302 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2303 else
2304 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2305
2306 sched_update_tick_dependency(rq);
2307
2308 /*
2309 * For now, let's refresh the load_avgs just when transitioning
2310 * in and out of nohz. In the future, we might want to add a
2311 * mechanism which calls the following periodically on
2312 * tick-stopped CPUs.
2313 */
2314 update_other_load_avgs(rq);
2315 }
2316 }
2317
2318 static enum scx_cpu_preempt_reason
preempt_reason_from_class(const struct sched_class * class)2319 preempt_reason_from_class(const struct sched_class *class)
2320 {
2321 if (class == &stop_sched_class)
2322 return SCX_CPU_PREEMPT_STOP;
2323 if (class == &dl_sched_class)
2324 return SCX_CPU_PREEMPT_DL;
2325 if (class == &rt_sched_class)
2326 return SCX_CPU_PREEMPT_RT;
2327 return SCX_CPU_PREEMPT_UNKNOWN;
2328 }
2329
switch_class(struct rq * rq,struct task_struct * next)2330 static void switch_class(struct rq *rq, struct task_struct *next)
2331 {
2332 struct scx_sched *sch = scx_root;
2333 const struct sched_class *next_class = next->sched_class;
2334
2335 if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT))
2336 return;
2337
2338 /*
2339 * The callback is conceptually meant to convey that the CPU is no
2340 * longer under the control of SCX. Therefore, don't invoke the callback
2341 * if the next class is below SCX (in which case the BPF scheduler has
2342 * actively decided not to schedule any tasks on the CPU).
2343 */
2344 if (sched_class_above(&ext_sched_class, next_class))
2345 return;
2346
2347 /*
2348 * At this point we know that SCX was preempted by a higher priority
2349 * sched_class, so invoke the ->cpu_release() callback if we have not
2350 * done so already. We only send the callback once between SCX being
2351 * preempted, and it regaining control of the CPU.
2352 *
2353 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
2354 * next time that balance_scx() is invoked.
2355 */
2356 if (!rq->scx.cpu_released) {
2357 if (SCX_HAS_OP(sch, cpu_release)) {
2358 struct scx_cpu_release_args args = {
2359 .reason = preempt_reason_from_class(next_class),
2360 .task = next,
2361 };
2362
2363 SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq,
2364 cpu_of(rq), &args);
2365 }
2366 rq->scx.cpu_released = true;
2367 }
2368 }
2369
put_prev_task_scx(struct rq * rq,struct task_struct * p,struct task_struct * next)2370 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
2371 struct task_struct *next)
2372 {
2373 struct scx_sched *sch = scx_root;
2374
2375 /* see kick_cpus_irq_workfn() */
2376 smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1);
2377
2378 update_curr_scx(rq);
2379
2380 /* see dequeue_task_scx() on why we skip when !QUEUED */
2381 if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED))
2382 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true);
2383
2384 if (p->scx.flags & SCX_TASK_QUEUED) {
2385 set_task_runnable(rq, p);
2386
2387 /*
2388 * If @p has slice left and is being put, @p is getting
2389 * preempted by a higher priority scheduler class or core-sched
2390 * forcing a different task. Leave it at the head of the local
2391 * DSQ.
2392 */
2393 if (p->scx.slice && !scx_rq_bypassing(rq)) {
2394 dispatch_enqueue(sch, &rq->scx.local_dsq, p,
2395 SCX_ENQ_HEAD);
2396 goto switch_class;
2397 }
2398
2399 /*
2400 * If @p is runnable but we're about to enter a lower
2401 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
2402 * ops.enqueue() that @p is the only one available for this cpu,
2403 * which should trigger an explicit follow-up scheduling event.
2404 */
2405 if (sched_class_above(&ext_sched_class, next->sched_class)) {
2406 WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST));
2407 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
2408 } else {
2409 do_enqueue_task(rq, p, 0, -1);
2410 }
2411 }
2412
2413 switch_class:
2414 if (next && next->sched_class != &ext_sched_class)
2415 switch_class(rq, next);
2416 }
2417
first_local_task(struct rq * rq)2418 static struct task_struct *first_local_task(struct rq *rq)
2419 {
2420 return list_first_entry_or_null(&rq->scx.local_dsq.list,
2421 struct task_struct, scx.dsq_list.node);
2422 }
2423
2424 static struct task_struct *
do_pick_task_scx(struct rq * rq,struct rq_flags * rf,bool force_scx)2425 do_pick_task_scx(struct rq *rq, struct rq_flags *rf, bool force_scx)
2426 {
2427 struct task_struct *prev = rq->curr;
2428 bool keep_prev, kick_idle = false;
2429 struct task_struct *p;
2430
2431 /* see kick_cpus_irq_workfn() */
2432 smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1);
2433
2434 rq_modified_clear(rq);
2435
2436 rq_unpin_lock(rq, rf);
2437 balance_one(rq, prev);
2438 rq_repin_lock(rq, rf);
2439 maybe_queue_balance_callback(rq);
2440
2441 /*
2442 * If any higher-priority sched class enqueued a runnable task on
2443 * this rq during balance_one(), abort and return RETRY_TASK, so
2444 * that the scheduler loop can restart.
2445 *
2446 * If @force_scx is true, always try to pick a SCHED_EXT task,
2447 * regardless of any higher-priority sched classes activity.
2448 */
2449 if (!force_scx && rq_modified_above(rq, &ext_sched_class))
2450 return RETRY_TASK;
2451
2452 keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP;
2453 if (unlikely(keep_prev &&
2454 prev->sched_class != &ext_sched_class)) {
2455 WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED);
2456 keep_prev = false;
2457 }
2458
2459 /*
2460 * If balance_scx() is telling us to keep running @prev, replenish slice
2461 * if necessary and keep running @prev. Otherwise, pop the first one
2462 * from the local DSQ.
2463 */
2464 if (keep_prev) {
2465 p = prev;
2466 if (!p->scx.slice)
2467 refill_task_slice_dfl(rcu_dereference_sched(scx_root), p);
2468 } else {
2469 p = first_local_task(rq);
2470 if (!p) {
2471 if (kick_idle)
2472 scx_kick_cpu(rcu_dereference_sched(scx_root),
2473 cpu_of(rq), SCX_KICK_IDLE);
2474 return NULL;
2475 }
2476
2477 if (unlikely(!p->scx.slice)) {
2478 struct scx_sched *sch = rcu_dereference_sched(scx_root);
2479
2480 if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) {
2481 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
2482 p->comm, p->pid, __func__);
2483 sch->warned_zero_slice = true;
2484 }
2485 refill_task_slice_dfl(sch, p);
2486 }
2487 }
2488
2489 return p;
2490 }
2491
pick_task_scx(struct rq * rq,struct rq_flags * rf)2492 static struct task_struct *pick_task_scx(struct rq *rq, struct rq_flags *rf)
2493 {
2494 return do_pick_task_scx(rq, rf, false);
2495 }
2496
2497 #ifdef CONFIG_SCHED_CORE
2498 /**
2499 * scx_prio_less - Task ordering for core-sched
2500 * @a: task A
2501 * @b: task B
2502 * @in_fi: in forced idle state
2503 *
2504 * Core-sched is implemented as an additional scheduling layer on top of the
2505 * usual sched_class'es and needs to find out the expected task ordering. For
2506 * SCX, core-sched calls this function to interrogate the task ordering.
2507 *
2508 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
2509 * to implement the default task ordering. The older the timestamp, the higher
2510 * priority the task - the global FIFO ordering matching the default scheduling
2511 * behavior.
2512 *
2513 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
2514 * implement FIFO ordering within each local DSQ. See pick_task_scx().
2515 */
scx_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)2516 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
2517 bool in_fi)
2518 {
2519 struct scx_sched *sch = scx_root;
2520
2521 /*
2522 * The const qualifiers are dropped from task_struct pointers when
2523 * calling ops.core_sched_before(). Accesses are controlled by the
2524 * verifier.
2525 */
2526 if (SCX_HAS_OP(sch, core_sched_before) &&
2527 !scx_rq_bypassing(task_rq(a)))
2528 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before,
2529 NULL,
2530 (struct task_struct *)a,
2531 (struct task_struct *)b);
2532 else
2533 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
2534 }
2535 #endif /* CONFIG_SCHED_CORE */
2536
select_task_rq_scx(struct task_struct * p,int prev_cpu,int wake_flags)2537 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
2538 {
2539 struct scx_sched *sch = scx_root;
2540 bool rq_bypass;
2541
2542 /*
2543 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
2544 * can be a good migration opportunity with low cache and memory
2545 * footprint. Returning a CPU different than @prev_cpu triggers
2546 * immediate rq migration. However, for SCX, as the current rq
2547 * association doesn't dictate where the task is going to run, this
2548 * doesn't fit well. If necessary, we can later add a dedicated method
2549 * which can decide to preempt self to force it through the regular
2550 * scheduling path.
2551 */
2552 if (unlikely(wake_flags & WF_EXEC))
2553 return prev_cpu;
2554
2555 rq_bypass = scx_rq_bypassing(task_rq(p));
2556 if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) {
2557 s32 cpu;
2558 struct task_struct **ddsp_taskp;
2559
2560 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
2561 WARN_ON_ONCE(*ddsp_taskp);
2562 *ddsp_taskp = p;
2563
2564 cpu = SCX_CALL_OP_TASK_RET(sch,
2565 SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
2566 select_cpu, NULL, p, prev_cpu,
2567 wake_flags);
2568 p->scx.selected_cpu = cpu;
2569 *ddsp_taskp = NULL;
2570 if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()"))
2571 return cpu;
2572 else
2573 return prev_cpu;
2574 } else {
2575 s32 cpu;
2576
2577 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0);
2578 if (cpu >= 0) {
2579 refill_task_slice_dfl(sch, p);
2580 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
2581 } else {
2582 cpu = prev_cpu;
2583 }
2584 p->scx.selected_cpu = cpu;
2585
2586 if (rq_bypass)
2587 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1);
2588 return cpu;
2589 }
2590 }
2591
task_woken_scx(struct rq * rq,struct task_struct * p)2592 static void task_woken_scx(struct rq *rq, struct task_struct *p)
2593 {
2594 run_deferred(rq);
2595 }
2596
set_cpus_allowed_scx(struct task_struct * p,struct affinity_context * ac)2597 static void set_cpus_allowed_scx(struct task_struct *p,
2598 struct affinity_context *ac)
2599 {
2600 struct scx_sched *sch = scx_root;
2601
2602 set_cpus_allowed_common(p, ac);
2603
2604 /*
2605 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
2606 * differ from the configured one in @p->cpus_mask. Always tell the bpf
2607 * scheduler the effective one.
2608 *
2609 * Fine-grained memory write control is enforced by BPF making the const
2610 * designation pointless. Cast it away when calling the operation.
2611 */
2612 if (SCX_HAS_OP(sch, set_cpumask))
2613 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL,
2614 p, (struct cpumask *)p->cpus_ptr);
2615 }
2616
handle_hotplug(struct rq * rq,bool online)2617 static void handle_hotplug(struct rq *rq, bool online)
2618 {
2619 struct scx_sched *sch = scx_root;
2620 int cpu = cpu_of(rq);
2621
2622 atomic_long_inc(&scx_hotplug_seq);
2623
2624 /*
2625 * scx_root updates are protected by cpus_read_lock() and will stay
2626 * stable here. Note that we can't depend on scx_enabled() test as the
2627 * hotplug ops need to be enabled before __scx_enabled is set.
2628 */
2629 if (unlikely(!sch))
2630 return;
2631
2632 if (scx_enabled())
2633 scx_idle_update_selcpu_topology(&sch->ops);
2634
2635 if (online && SCX_HAS_OP(sch, cpu_online))
2636 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu);
2637 else if (!online && SCX_HAS_OP(sch, cpu_offline))
2638 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu);
2639 else
2640 scx_exit(sch, SCX_EXIT_UNREG_KERN,
2641 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
2642 "cpu %d going %s, exiting scheduler", cpu,
2643 online ? "online" : "offline");
2644 }
2645
scx_rq_activate(struct rq * rq)2646 void scx_rq_activate(struct rq *rq)
2647 {
2648 handle_hotplug(rq, true);
2649 }
2650
scx_rq_deactivate(struct rq * rq)2651 void scx_rq_deactivate(struct rq *rq)
2652 {
2653 handle_hotplug(rq, false);
2654 }
2655
rq_online_scx(struct rq * rq)2656 static void rq_online_scx(struct rq *rq)
2657 {
2658 rq->scx.flags |= SCX_RQ_ONLINE;
2659 }
2660
rq_offline_scx(struct rq * rq)2661 static void rq_offline_scx(struct rq *rq)
2662 {
2663 rq->scx.flags &= ~SCX_RQ_ONLINE;
2664 }
2665
2666
check_rq_for_timeouts(struct rq * rq)2667 static bool check_rq_for_timeouts(struct rq *rq)
2668 {
2669 struct scx_sched *sch;
2670 struct task_struct *p;
2671 struct rq_flags rf;
2672 bool timed_out = false;
2673
2674 rq_lock_irqsave(rq, &rf);
2675 sch = rcu_dereference_bh(scx_root);
2676 if (unlikely(!sch))
2677 goto out_unlock;
2678
2679 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
2680 unsigned long last_runnable = p->scx.runnable_at;
2681
2682 if (unlikely(time_after(jiffies,
2683 last_runnable + scx_watchdog_timeout))) {
2684 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
2685
2686 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0,
2687 "%s[%d] failed to run for %u.%03us",
2688 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000);
2689 timed_out = true;
2690 break;
2691 }
2692 }
2693 out_unlock:
2694 rq_unlock_irqrestore(rq, &rf);
2695 return timed_out;
2696 }
2697
scx_watchdog_workfn(struct work_struct * work)2698 static void scx_watchdog_workfn(struct work_struct *work)
2699 {
2700 int cpu;
2701
2702 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
2703
2704 for_each_online_cpu(cpu) {
2705 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
2706 break;
2707
2708 cond_resched();
2709 }
2710 queue_delayed_work(system_unbound_wq, to_delayed_work(work),
2711 scx_watchdog_timeout / 2);
2712 }
2713
scx_tick(struct rq * rq)2714 void scx_tick(struct rq *rq)
2715 {
2716 struct scx_sched *sch;
2717 unsigned long last_check;
2718
2719 if (!scx_enabled())
2720 return;
2721
2722 sch = rcu_dereference_bh(scx_root);
2723 if (unlikely(!sch))
2724 return;
2725
2726 last_check = READ_ONCE(scx_watchdog_timestamp);
2727 if (unlikely(time_after(jiffies,
2728 last_check + READ_ONCE(scx_watchdog_timeout)))) {
2729 u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
2730
2731 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0,
2732 "watchdog failed to check in for %u.%03us",
2733 dur_ms / 1000, dur_ms % 1000);
2734 }
2735
2736 update_other_load_avgs(rq);
2737 }
2738
task_tick_scx(struct rq * rq,struct task_struct * curr,int queued)2739 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
2740 {
2741 struct scx_sched *sch = scx_root;
2742
2743 update_curr_scx(rq);
2744
2745 /*
2746 * While disabling, always resched and refresh core-sched timestamp as
2747 * we can't trust the slice management or ops.core_sched_before().
2748 */
2749 if (scx_rq_bypassing(rq)) {
2750 curr->scx.slice = 0;
2751 touch_core_sched(rq, curr);
2752 } else if (SCX_HAS_OP(sch, tick)) {
2753 SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr);
2754 }
2755
2756 if (!curr->scx.slice)
2757 resched_curr(rq);
2758 }
2759
2760 #ifdef CONFIG_EXT_GROUP_SCHED
tg_cgrp(struct task_group * tg)2761 static struct cgroup *tg_cgrp(struct task_group *tg)
2762 {
2763 /*
2764 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
2765 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
2766 * root cgroup.
2767 */
2768 if (tg && tg->css.cgroup)
2769 return tg->css.cgroup;
2770 else
2771 return &cgrp_dfl_root.cgrp;
2772 }
2773
2774 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg),
2775
2776 #else /* CONFIG_EXT_GROUP_SCHED */
2777
2778 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
2779
2780 #endif /* CONFIG_EXT_GROUP_SCHED */
2781
scx_get_task_state(const struct task_struct * p)2782 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
2783 {
2784 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
2785 }
2786
scx_set_task_state(struct task_struct * p,enum scx_task_state state)2787 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
2788 {
2789 enum scx_task_state prev_state = scx_get_task_state(p);
2790 bool warn = false;
2791
2792 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
2793
2794 switch (state) {
2795 case SCX_TASK_NONE:
2796 break;
2797 case SCX_TASK_INIT:
2798 warn = prev_state != SCX_TASK_NONE;
2799 break;
2800 case SCX_TASK_READY:
2801 warn = prev_state == SCX_TASK_NONE;
2802 break;
2803 case SCX_TASK_ENABLED:
2804 warn = prev_state != SCX_TASK_READY;
2805 break;
2806 default:
2807 warn = true;
2808 return;
2809 }
2810
2811 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
2812 prev_state, state, p->comm, p->pid);
2813
2814 p->scx.flags &= ~SCX_TASK_STATE_MASK;
2815 p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
2816 }
2817
scx_init_task(struct task_struct * p,struct task_group * tg,bool fork)2818 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork)
2819 {
2820 struct scx_sched *sch = scx_root;
2821 int ret;
2822
2823 p->scx.disallow = false;
2824
2825 if (SCX_HAS_OP(sch, init_task)) {
2826 struct scx_init_task_args args = {
2827 SCX_INIT_TASK_ARGS_CGROUP(tg)
2828 .fork = fork,
2829 };
2830
2831 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL,
2832 p, &args);
2833 if (unlikely(ret)) {
2834 ret = ops_sanitize_err(sch, "init_task", ret);
2835 return ret;
2836 }
2837 }
2838
2839 scx_set_task_state(p, SCX_TASK_INIT);
2840
2841 if (p->scx.disallow) {
2842 if (!fork) {
2843 struct rq *rq;
2844 struct rq_flags rf;
2845
2846 rq = task_rq_lock(p, &rf);
2847
2848 /*
2849 * We're in the load path and @p->policy will be applied
2850 * right after. Reverting @p->policy here and rejecting
2851 * %SCHED_EXT transitions from scx_check_setscheduler()
2852 * guarantees that if ops.init_task() sets @p->disallow,
2853 * @p can never be in SCX.
2854 */
2855 if (p->policy == SCHED_EXT) {
2856 p->policy = SCHED_NORMAL;
2857 atomic_long_inc(&scx_nr_rejected);
2858 }
2859
2860 task_rq_unlock(rq, p, &rf);
2861 } else if (p->policy == SCHED_EXT) {
2862 scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork",
2863 p->comm, p->pid);
2864 }
2865 }
2866
2867 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2868 return 0;
2869 }
2870
scx_enable_task(struct task_struct * p)2871 static void scx_enable_task(struct task_struct *p)
2872 {
2873 struct scx_sched *sch = scx_root;
2874 struct rq *rq = task_rq(p);
2875 u32 weight;
2876
2877 lockdep_assert_rq_held(rq);
2878
2879 /*
2880 * Set the weight before calling ops.enable() so that the scheduler
2881 * doesn't see a stale value if they inspect the task struct.
2882 */
2883 if (task_has_idle_policy(p))
2884 weight = WEIGHT_IDLEPRIO;
2885 else
2886 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
2887
2888 p->scx.weight = sched_weight_to_cgroup(weight);
2889
2890 if (SCX_HAS_OP(sch, enable))
2891 SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p);
2892 scx_set_task_state(p, SCX_TASK_ENABLED);
2893
2894 if (SCX_HAS_OP(sch, set_weight))
2895 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq,
2896 p, p->scx.weight);
2897 }
2898
scx_disable_task(struct task_struct * p)2899 static void scx_disable_task(struct task_struct *p)
2900 {
2901 struct scx_sched *sch = scx_root;
2902 struct rq *rq = task_rq(p);
2903
2904 lockdep_assert_rq_held(rq);
2905 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
2906
2907 if (SCX_HAS_OP(sch, disable))
2908 SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p);
2909 scx_set_task_state(p, SCX_TASK_READY);
2910 }
2911
scx_exit_task(struct task_struct * p)2912 static void scx_exit_task(struct task_struct *p)
2913 {
2914 struct scx_sched *sch = scx_root;
2915 struct scx_exit_task_args args = {
2916 .cancelled = false,
2917 };
2918
2919 lockdep_assert_rq_held(task_rq(p));
2920
2921 switch (scx_get_task_state(p)) {
2922 case SCX_TASK_NONE:
2923 return;
2924 case SCX_TASK_INIT:
2925 args.cancelled = true;
2926 break;
2927 case SCX_TASK_READY:
2928 break;
2929 case SCX_TASK_ENABLED:
2930 scx_disable_task(p);
2931 break;
2932 default:
2933 WARN_ON_ONCE(true);
2934 return;
2935 }
2936
2937 if (SCX_HAS_OP(sch, exit_task))
2938 SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p),
2939 p, &args);
2940 scx_set_task_state(p, SCX_TASK_NONE);
2941 }
2942
init_scx_entity(struct sched_ext_entity * scx)2943 void init_scx_entity(struct sched_ext_entity *scx)
2944 {
2945 memset(scx, 0, sizeof(*scx));
2946 INIT_LIST_HEAD(&scx->dsq_list.node);
2947 RB_CLEAR_NODE(&scx->dsq_priq);
2948 scx->sticky_cpu = -1;
2949 scx->holding_cpu = -1;
2950 INIT_LIST_HEAD(&scx->runnable_node);
2951 scx->runnable_at = jiffies;
2952 scx->ddsp_dsq_id = SCX_DSQ_INVALID;
2953 scx->slice = READ_ONCE(scx_slice_dfl);
2954 }
2955
scx_pre_fork(struct task_struct * p)2956 void scx_pre_fork(struct task_struct *p)
2957 {
2958 /*
2959 * BPF scheduler enable/disable paths want to be able to iterate and
2960 * update all tasks which can become complex when racing forks. As
2961 * enable/disable are very cold paths, let's use a percpu_rwsem to
2962 * exclude forks.
2963 */
2964 percpu_down_read(&scx_fork_rwsem);
2965 }
2966
scx_fork(struct task_struct * p)2967 int scx_fork(struct task_struct *p)
2968 {
2969 percpu_rwsem_assert_held(&scx_fork_rwsem);
2970
2971 if (scx_init_task_enabled)
2972 return scx_init_task(p, task_group(p), true);
2973 else
2974 return 0;
2975 }
2976
scx_post_fork(struct task_struct * p)2977 void scx_post_fork(struct task_struct *p)
2978 {
2979 if (scx_init_task_enabled) {
2980 scx_set_task_state(p, SCX_TASK_READY);
2981
2982 /*
2983 * Enable the task immediately if it's running on sched_ext.
2984 * Otherwise, it'll be enabled in switching_to_scx() if and
2985 * when it's ever configured to run with a SCHED_EXT policy.
2986 */
2987 if (p->sched_class == &ext_sched_class) {
2988 struct rq_flags rf;
2989 struct rq *rq;
2990
2991 rq = task_rq_lock(p, &rf);
2992 scx_enable_task(p);
2993 task_rq_unlock(rq, p, &rf);
2994 }
2995 }
2996
2997 raw_spin_lock_irq(&scx_tasks_lock);
2998 list_add_tail(&p->scx.tasks_node, &scx_tasks);
2999 raw_spin_unlock_irq(&scx_tasks_lock);
3000
3001 percpu_up_read(&scx_fork_rwsem);
3002 }
3003
scx_cancel_fork(struct task_struct * p)3004 void scx_cancel_fork(struct task_struct *p)
3005 {
3006 if (scx_enabled()) {
3007 struct rq *rq;
3008 struct rq_flags rf;
3009
3010 rq = task_rq_lock(p, &rf);
3011 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
3012 scx_exit_task(p);
3013 task_rq_unlock(rq, p, &rf);
3014 }
3015
3016 percpu_up_read(&scx_fork_rwsem);
3017 }
3018
sched_ext_dead(struct task_struct * p)3019 void sched_ext_dead(struct task_struct *p)
3020 {
3021 unsigned long flags;
3022
3023 raw_spin_lock_irqsave(&scx_tasks_lock, flags);
3024 list_del_init(&p->scx.tasks_node);
3025 raw_spin_unlock_irqrestore(&scx_tasks_lock, flags);
3026
3027 /*
3028 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED
3029 * transitions can't race us. Disable ops for @p.
3030 */
3031 if (scx_get_task_state(p) != SCX_TASK_NONE) {
3032 struct rq_flags rf;
3033 struct rq *rq;
3034
3035 rq = task_rq_lock(p, &rf);
3036 scx_exit_task(p);
3037 task_rq_unlock(rq, p, &rf);
3038 }
3039 }
3040
reweight_task_scx(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3041 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
3042 const struct load_weight *lw)
3043 {
3044 struct scx_sched *sch = scx_root;
3045
3046 lockdep_assert_rq_held(task_rq(p));
3047
3048 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
3049 if (SCX_HAS_OP(sch, set_weight))
3050 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq,
3051 p, p->scx.weight);
3052 }
3053
prio_changed_scx(struct rq * rq,struct task_struct * p,u64 oldprio)3054 static void prio_changed_scx(struct rq *rq, struct task_struct *p, u64 oldprio)
3055 {
3056 }
3057
switching_to_scx(struct rq * rq,struct task_struct * p)3058 static void switching_to_scx(struct rq *rq, struct task_struct *p)
3059 {
3060 struct scx_sched *sch = scx_root;
3061
3062 scx_enable_task(p);
3063
3064 /*
3065 * set_cpus_allowed_scx() is not called while @p is associated with a
3066 * different scheduler class. Keep the BPF scheduler up-to-date.
3067 */
3068 if (SCX_HAS_OP(sch, set_cpumask))
3069 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq,
3070 p, (struct cpumask *)p->cpus_ptr);
3071 }
3072
switched_from_scx(struct rq * rq,struct task_struct * p)3073 static void switched_from_scx(struct rq *rq, struct task_struct *p)
3074 {
3075 scx_disable_task(p);
3076 }
3077
wakeup_preempt_scx(struct rq * rq,struct task_struct * p,int wake_flags)3078 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
switched_to_scx(struct rq * rq,struct task_struct * p)3079 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
3080
scx_check_setscheduler(struct task_struct * p,int policy)3081 int scx_check_setscheduler(struct task_struct *p, int policy)
3082 {
3083 lockdep_assert_rq_held(task_rq(p));
3084
3085 /* if disallow, reject transitioning into SCX */
3086 if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
3087 p->policy != policy && policy == SCHED_EXT)
3088 return -EACCES;
3089
3090 return 0;
3091 }
3092
3093 #ifdef CONFIG_NO_HZ_FULL
scx_can_stop_tick(struct rq * rq)3094 bool scx_can_stop_tick(struct rq *rq)
3095 {
3096 struct task_struct *p = rq->curr;
3097
3098 if (scx_rq_bypassing(rq))
3099 return false;
3100
3101 if (p->sched_class != &ext_sched_class)
3102 return true;
3103
3104 /*
3105 * @rq can dispatch from different DSQs, so we can't tell whether it
3106 * needs the tick or not by looking at nr_running. Allow stopping ticks
3107 * iff the BPF scheduler indicated so. See set_next_task_scx().
3108 */
3109 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
3110 }
3111 #endif
3112
3113 #ifdef CONFIG_EXT_GROUP_SCHED
3114
3115 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_ops_rwsem);
3116 static bool scx_cgroup_enabled;
3117
scx_tg_init(struct task_group * tg)3118 void scx_tg_init(struct task_group *tg)
3119 {
3120 tg->scx.weight = CGROUP_WEIGHT_DFL;
3121 tg->scx.bw_period_us = default_bw_period_us();
3122 tg->scx.bw_quota_us = RUNTIME_INF;
3123 tg->scx.idle = false;
3124 }
3125
scx_tg_online(struct task_group * tg)3126 int scx_tg_online(struct task_group *tg)
3127 {
3128 struct scx_sched *sch = scx_root;
3129 int ret = 0;
3130
3131 WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED));
3132
3133 if (scx_cgroup_enabled) {
3134 if (SCX_HAS_OP(sch, cgroup_init)) {
3135 struct scx_cgroup_init_args args =
3136 { .weight = tg->scx.weight,
3137 .bw_period_us = tg->scx.bw_period_us,
3138 .bw_quota_us = tg->scx.bw_quota_us,
3139 .bw_burst_us = tg->scx.bw_burst_us };
3140
3141 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init,
3142 NULL, tg->css.cgroup, &args);
3143 if (ret)
3144 ret = ops_sanitize_err(sch, "cgroup_init", ret);
3145 }
3146 if (ret == 0)
3147 tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED;
3148 } else {
3149 tg->scx.flags |= SCX_TG_ONLINE;
3150 }
3151
3152 return ret;
3153 }
3154
scx_tg_offline(struct task_group * tg)3155 void scx_tg_offline(struct task_group *tg)
3156 {
3157 struct scx_sched *sch = scx_root;
3158
3159 WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE));
3160
3161 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) &&
3162 (tg->scx.flags & SCX_TG_INITED))
3163 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL,
3164 tg->css.cgroup);
3165 tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
3166 }
3167
scx_cgroup_can_attach(struct cgroup_taskset * tset)3168 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
3169 {
3170 struct scx_sched *sch = scx_root;
3171 struct cgroup_subsys_state *css;
3172 struct task_struct *p;
3173 int ret;
3174
3175 if (!scx_cgroup_enabled)
3176 return 0;
3177
3178 cgroup_taskset_for_each(p, css, tset) {
3179 struct cgroup *from = tg_cgrp(task_group(p));
3180 struct cgroup *to = tg_cgrp(css_tg(css));
3181
3182 WARN_ON_ONCE(p->scx.cgrp_moving_from);
3183
3184 /*
3185 * sched_move_task() omits identity migrations. Let's match the
3186 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
3187 * always match one-to-one.
3188 */
3189 if (from == to)
3190 continue;
3191
3192 if (SCX_HAS_OP(sch, cgroup_prep_move)) {
3193 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED,
3194 cgroup_prep_move, NULL,
3195 p, from, css->cgroup);
3196 if (ret)
3197 goto err;
3198 }
3199
3200 p->scx.cgrp_moving_from = from;
3201 }
3202
3203 return 0;
3204
3205 err:
3206 cgroup_taskset_for_each(p, css, tset) {
3207 if (SCX_HAS_OP(sch, cgroup_cancel_move) &&
3208 p->scx.cgrp_moving_from)
3209 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL,
3210 p, p->scx.cgrp_moving_from, css->cgroup);
3211 p->scx.cgrp_moving_from = NULL;
3212 }
3213
3214 return ops_sanitize_err(sch, "cgroup_prep_move", ret);
3215 }
3216
scx_cgroup_move_task(struct task_struct * p)3217 void scx_cgroup_move_task(struct task_struct *p)
3218 {
3219 struct scx_sched *sch = scx_root;
3220
3221 if (!scx_cgroup_enabled)
3222 return;
3223
3224 /*
3225 * @p must have ops.cgroup_prep_move() called on it and thus
3226 * cgrp_moving_from set.
3227 */
3228 if (SCX_HAS_OP(sch, cgroup_move) &&
3229 !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
3230 SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL,
3231 p, p->scx.cgrp_moving_from,
3232 tg_cgrp(task_group(p)));
3233 p->scx.cgrp_moving_from = NULL;
3234 }
3235
scx_cgroup_cancel_attach(struct cgroup_taskset * tset)3236 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
3237 {
3238 struct scx_sched *sch = scx_root;
3239 struct cgroup_subsys_state *css;
3240 struct task_struct *p;
3241
3242 if (!scx_cgroup_enabled)
3243 return;
3244
3245 cgroup_taskset_for_each(p, css, tset) {
3246 if (SCX_HAS_OP(sch, cgroup_cancel_move) &&
3247 p->scx.cgrp_moving_from)
3248 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL,
3249 p, p->scx.cgrp_moving_from, css->cgroup);
3250 p->scx.cgrp_moving_from = NULL;
3251 }
3252 }
3253
scx_group_set_weight(struct task_group * tg,unsigned long weight)3254 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
3255 {
3256 struct scx_sched *sch = scx_root;
3257
3258 percpu_down_read(&scx_cgroup_ops_rwsem);
3259
3260 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) &&
3261 tg->scx.weight != weight)
3262 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL,
3263 tg_cgrp(tg), weight);
3264
3265 tg->scx.weight = weight;
3266
3267 percpu_up_read(&scx_cgroup_ops_rwsem);
3268 }
3269
scx_group_set_idle(struct task_group * tg,bool idle)3270 void scx_group_set_idle(struct task_group *tg, bool idle)
3271 {
3272 struct scx_sched *sch = scx_root;
3273
3274 percpu_down_read(&scx_cgroup_ops_rwsem);
3275
3276 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_idle))
3277 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_idle, NULL,
3278 tg_cgrp(tg), idle);
3279
3280 /* Update the task group's idle state */
3281 tg->scx.idle = idle;
3282
3283 percpu_up_read(&scx_cgroup_ops_rwsem);
3284 }
3285
scx_group_set_bandwidth(struct task_group * tg,u64 period_us,u64 quota_us,u64 burst_us)3286 void scx_group_set_bandwidth(struct task_group *tg,
3287 u64 period_us, u64 quota_us, u64 burst_us)
3288 {
3289 struct scx_sched *sch = scx_root;
3290
3291 percpu_down_read(&scx_cgroup_ops_rwsem);
3292
3293 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) &&
3294 (tg->scx.bw_period_us != period_us ||
3295 tg->scx.bw_quota_us != quota_us ||
3296 tg->scx.bw_burst_us != burst_us))
3297 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL,
3298 tg_cgrp(tg), period_us, quota_us, burst_us);
3299
3300 tg->scx.bw_period_us = period_us;
3301 tg->scx.bw_quota_us = quota_us;
3302 tg->scx.bw_burst_us = burst_us;
3303
3304 percpu_up_read(&scx_cgroup_ops_rwsem);
3305 }
3306
scx_cgroup_lock(void)3307 static void scx_cgroup_lock(void)
3308 {
3309 percpu_down_write(&scx_cgroup_ops_rwsem);
3310 cgroup_lock();
3311 }
3312
scx_cgroup_unlock(void)3313 static void scx_cgroup_unlock(void)
3314 {
3315 cgroup_unlock();
3316 percpu_up_write(&scx_cgroup_ops_rwsem);
3317 }
3318
3319 #else /* CONFIG_EXT_GROUP_SCHED */
3320
scx_cgroup_lock(void)3321 static void scx_cgroup_lock(void) {}
scx_cgroup_unlock(void)3322 static void scx_cgroup_unlock(void) {}
3323
3324 #endif /* CONFIG_EXT_GROUP_SCHED */
3325
3326 /*
3327 * Omitted operations:
3328 *
3329 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
3330 * isn't tied to the CPU at that point. Preemption is implemented by resetting
3331 * the victim task's slice to 0 and triggering reschedule on the target CPU.
3332 *
3333 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
3334 *
3335 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
3336 * their current sched_class. Call them directly from sched core instead.
3337 */
3338 DEFINE_SCHED_CLASS(ext) = {
3339 .queue_mask = 1,
3340
3341 .enqueue_task = enqueue_task_scx,
3342 .dequeue_task = dequeue_task_scx,
3343 .yield_task = yield_task_scx,
3344 .yield_to_task = yield_to_task_scx,
3345
3346 .wakeup_preempt = wakeup_preempt_scx,
3347
3348 .pick_task = pick_task_scx,
3349
3350 .put_prev_task = put_prev_task_scx,
3351 .set_next_task = set_next_task_scx,
3352
3353 .select_task_rq = select_task_rq_scx,
3354 .task_woken = task_woken_scx,
3355 .set_cpus_allowed = set_cpus_allowed_scx,
3356
3357 .rq_online = rq_online_scx,
3358 .rq_offline = rq_offline_scx,
3359
3360 .task_tick = task_tick_scx,
3361
3362 .switching_to = switching_to_scx,
3363 .switched_from = switched_from_scx,
3364 .switched_to = switched_to_scx,
3365 .reweight_task = reweight_task_scx,
3366 .prio_changed = prio_changed_scx,
3367
3368 .update_curr = update_curr_scx,
3369
3370 #ifdef CONFIG_UCLAMP_TASK
3371 .uclamp_enabled = 1,
3372 #endif
3373 };
3374
init_dsq(struct scx_dispatch_q * dsq,u64 dsq_id)3375 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
3376 {
3377 memset(dsq, 0, sizeof(*dsq));
3378
3379 raw_spin_lock_init(&dsq->lock);
3380 INIT_LIST_HEAD(&dsq->list);
3381 dsq->id = dsq_id;
3382 }
3383
free_dsq_irq_workfn(struct irq_work * irq_work)3384 static void free_dsq_irq_workfn(struct irq_work *irq_work)
3385 {
3386 struct llist_node *to_free = llist_del_all(&dsqs_to_free);
3387 struct scx_dispatch_q *dsq, *tmp_dsq;
3388
3389 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
3390 kfree_rcu(dsq, rcu);
3391 }
3392
3393 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
3394
destroy_dsq(struct scx_sched * sch,u64 dsq_id)3395 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id)
3396 {
3397 struct scx_dispatch_q *dsq;
3398 unsigned long flags;
3399
3400 rcu_read_lock();
3401
3402 dsq = find_user_dsq(sch, dsq_id);
3403 if (!dsq)
3404 goto out_unlock_rcu;
3405
3406 raw_spin_lock_irqsave(&dsq->lock, flags);
3407
3408 if (dsq->nr) {
3409 scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)",
3410 dsq->id, dsq->nr);
3411 goto out_unlock_dsq;
3412 }
3413
3414 if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node,
3415 dsq_hash_params))
3416 goto out_unlock_dsq;
3417
3418 /*
3419 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
3420 * queueing more tasks. As this function can be called from anywhere,
3421 * freeing is bounced through an irq work to avoid nesting RCU
3422 * operations inside scheduler locks.
3423 */
3424 dsq->id = SCX_DSQ_INVALID;
3425 llist_add(&dsq->free_node, &dsqs_to_free);
3426 irq_work_queue(&free_dsq_irq_work);
3427
3428 out_unlock_dsq:
3429 raw_spin_unlock_irqrestore(&dsq->lock, flags);
3430 out_unlock_rcu:
3431 rcu_read_unlock();
3432 }
3433
3434 #ifdef CONFIG_EXT_GROUP_SCHED
scx_cgroup_exit(struct scx_sched * sch)3435 static void scx_cgroup_exit(struct scx_sched *sch)
3436 {
3437 struct cgroup_subsys_state *css;
3438
3439 scx_cgroup_enabled = false;
3440
3441 /*
3442 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk
3443 * cgroups and exit all the inited ones, all online cgroups are exited.
3444 */
3445 css_for_each_descendant_post(css, &root_task_group.css) {
3446 struct task_group *tg = css_tg(css);
3447
3448 if (!(tg->scx.flags & SCX_TG_INITED))
3449 continue;
3450 tg->scx.flags &= ~SCX_TG_INITED;
3451
3452 if (!sch->ops.cgroup_exit)
3453 continue;
3454
3455 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL,
3456 css->cgroup);
3457 }
3458 }
3459
scx_cgroup_init(struct scx_sched * sch)3460 static int scx_cgroup_init(struct scx_sched *sch)
3461 {
3462 struct cgroup_subsys_state *css;
3463 int ret;
3464
3465 /*
3466 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk
3467 * cgroups and init, all online cgroups are initialized.
3468 */
3469 css_for_each_descendant_pre(css, &root_task_group.css) {
3470 struct task_group *tg = css_tg(css);
3471 struct scx_cgroup_init_args args = {
3472 .weight = tg->scx.weight,
3473 .bw_period_us = tg->scx.bw_period_us,
3474 .bw_quota_us = tg->scx.bw_quota_us,
3475 .bw_burst_us = tg->scx.bw_burst_us,
3476 };
3477
3478 if ((tg->scx.flags &
3479 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
3480 continue;
3481
3482 if (!sch->ops.cgroup_init) {
3483 tg->scx.flags |= SCX_TG_INITED;
3484 continue;
3485 }
3486
3487 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL,
3488 css->cgroup, &args);
3489 if (ret) {
3490 css_put(css);
3491 scx_error(sch, "ops.cgroup_init() failed (%d)", ret);
3492 return ret;
3493 }
3494 tg->scx.flags |= SCX_TG_INITED;
3495 }
3496
3497 WARN_ON_ONCE(scx_cgroup_enabled);
3498 scx_cgroup_enabled = true;
3499
3500 return 0;
3501 }
3502
3503 #else
scx_cgroup_exit(struct scx_sched * sch)3504 static void scx_cgroup_exit(struct scx_sched *sch) {}
scx_cgroup_init(struct scx_sched * sch)3505 static int scx_cgroup_init(struct scx_sched *sch) { return 0; }
3506 #endif
3507
3508
3509 /********************************************************************************
3510 * Sysfs interface and ops enable/disable.
3511 */
3512
3513 #define SCX_ATTR(_name) \
3514 static struct kobj_attribute scx_attr_##_name = { \
3515 .attr = { .name = __stringify(_name), .mode = 0444 }, \
3516 .show = scx_attr_##_name##_show, \
3517 }
3518
scx_attr_state_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3519 static ssize_t scx_attr_state_show(struct kobject *kobj,
3520 struct kobj_attribute *ka, char *buf)
3521 {
3522 return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]);
3523 }
3524 SCX_ATTR(state);
3525
scx_attr_switch_all_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3526 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
3527 struct kobj_attribute *ka, char *buf)
3528 {
3529 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
3530 }
3531 SCX_ATTR(switch_all);
3532
scx_attr_nr_rejected_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3533 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
3534 struct kobj_attribute *ka, char *buf)
3535 {
3536 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
3537 }
3538 SCX_ATTR(nr_rejected);
3539
scx_attr_hotplug_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3540 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
3541 struct kobj_attribute *ka, char *buf)
3542 {
3543 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
3544 }
3545 SCX_ATTR(hotplug_seq);
3546
scx_attr_enable_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3547 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
3548 struct kobj_attribute *ka, char *buf)
3549 {
3550 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
3551 }
3552 SCX_ATTR(enable_seq);
3553
3554 static struct attribute *scx_global_attrs[] = {
3555 &scx_attr_state.attr,
3556 &scx_attr_switch_all.attr,
3557 &scx_attr_nr_rejected.attr,
3558 &scx_attr_hotplug_seq.attr,
3559 &scx_attr_enable_seq.attr,
3560 NULL,
3561 };
3562
3563 static const struct attribute_group scx_global_attr_group = {
3564 .attrs = scx_global_attrs,
3565 };
3566
3567 static void free_exit_info(struct scx_exit_info *ei);
3568
scx_sched_free_rcu_work(struct work_struct * work)3569 static void scx_sched_free_rcu_work(struct work_struct *work)
3570 {
3571 struct rcu_work *rcu_work = to_rcu_work(work);
3572 struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work);
3573 struct rhashtable_iter rht_iter;
3574 struct scx_dispatch_q *dsq;
3575 int node;
3576
3577 irq_work_sync(&sch->error_irq_work);
3578 kthread_stop(sch->helper->task);
3579
3580 free_percpu(sch->pcpu);
3581
3582 for_each_node_state(node, N_POSSIBLE)
3583 kfree(sch->global_dsqs[node]);
3584 kfree(sch->global_dsqs);
3585
3586 rhashtable_walk_enter(&sch->dsq_hash, &rht_iter);
3587 do {
3588 rhashtable_walk_start(&rht_iter);
3589
3590 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
3591 destroy_dsq(sch, dsq->id);
3592
3593 rhashtable_walk_stop(&rht_iter);
3594 } while (dsq == ERR_PTR(-EAGAIN));
3595 rhashtable_walk_exit(&rht_iter);
3596
3597 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL);
3598 free_exit_info(sch->exit_info);
3599 kfree(sch);
3600 }
3601
scx_kobj_release(struct kobject * kobj)3602 static void scx_kobj_release(struct kobject *kobj)
3603 {
3604 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj);
3605
3606 INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work);
3607 queue_rcu_work(system_unbound_wq, &sch->rcu_work);
3608 }
3609
scx_attr_ops_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3610 static ssize_t scx_attr_ops_show(struct kobject *kobj,
3611 struct kobj_attribute *ka, char *buf)
3612 {
3613 return sysfs_emit(buf, "%s\n", scx_root->ops.name);
3614 }
3615 SCX_ATTR(ops);
3616
3617 #define scx_attr_event_show(buf, at, events, kind) ({ \
3618 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \
3619 })
3620
scx_attr_events_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3621 static ssize_t scx_attr_events_show(struct kobject *kobj,
3622 struct kobj_attribute *ka, char *buf)
3623 {
3624 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj);
3625 struct scx_event_stats events;
3626 int at = 0;
3627
3628 scx_read_events(sch, &events);
3629 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK);
3630 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
3631 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST);
3632 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING);
3633 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
3634 at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL);
3635 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION);
3636 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH);
3637 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE);
3638 return at;
3639 }
3640 SCX_ATTR(events);
3641
3642 static struct attribute *scx_sched_attrs[] = {
3643 &scx_attr_ops.attr,
3644 &scx_attr_events.attr,
3645 NULL,
3646 };
3647 ATTRIBUTE_GROUPS(scx_sched);
3648
3649 static const struct kobj_type scx_ktype = {
3650 .release = scx_kobj_release,
3651 .sysfs_ops = &kobj_sysfs_ops,
3652 .default_groups = scx_sched_groups,
3653 };
3654
scx_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)3655 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
3656 {
3657 return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name);
3658 }
3659
3660 static const struct kset_uevent_ops scx_uevent_ops = {
3661 .uevent = scx_uevent,
3662 };
3663
3664 /*
3665 * Used by sched_fork() and __setscheduler_prio() to pick the matching
3666 * sched_class. dl/rt are already handled.
3667 */
task_should_scx(int policy)3668 bool task_should_scx(int policy)
3669 {
3670 if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING))
3671 return false;
3672 if (READ_ONCE(scx_switching_all))
3673 return true;
3674 return policy == SCHED_EXT;
3675 }
3676
scx_allow_ttwu_queue(const struct task_struct * p)3677 bool scx_allow_ttwu_queue(const struct task_struct *p)
3678 {
3679 struct scx_sched *sch;
3680
3681 if (!scx_enabled())
3682 return true;
3683
3684 sch = rcu_dereference_sched(scx_root);
3685 if (unlikely(!sch))
3686 return true;
3687
3688 if (sch->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP)
3689 return true;
3690
3691 if (unlikely(p->sched_class != &ext_sched_class))
3692 return true;
3693
3694 return false;
3695 }
3696
3697 /**
3698 * handle_lockup - sched_ext common lockup handler
3699 * @fmt: format string
3700 *
3701 * Called on system stall or lockup condition and initiates abort of sched_ext
3702 * if enabled, which may resolve the reported lockup.
3703 *
3704 * Returns %true if sched_ext is enabled and abort was initiated, which may
3705 * resolve the lockup. %false if sched_ext is not enabled or abort was already
3706 * initiated by someone else.
3707 */
handle_lockup(const char * fmt,...)3708 static __printf(1, 2) bool handle_lockup(const char *fmt, ...)
3709 {
3710 struct scx_sched *sch;
3711 va_list args;
3712 bool ret;
3713
3714 guard(rcu)();
3715
3716 sch = rcu_dereference(scx_root);
3717 if (unlikely(!sch))
3718 return false;
3719
3720 switch (scx_enable_state()) {
3721 case SCX_ENABLING:
3722 case SCX_ENABLED:
3723 va_start(args, fmt);
3724 ret = scx_verror(sch, fmt, args);
3725 va_end(args);
3726 return ret;
3727 default:
3728 return false;
3729 }
3730 }
3731
3732 /**
3733 * scx_rcu_cpu_stall - sched_ext RCU CPU stall handler
3734 *
3735 * While there are various reasons why RCU CPU stalls can occur on a system
3736 * that may not be caused by the current BPF scheduler, try kicking out the
3737 * current scheduler in an attempt to recover the system to a good state before
3738 * issuing panics.
3739 *
3740 * Returns %true if sched_ext is enabled and abort was initiated, which may
3741 * resolve the reported RCU stall. %false if sched_ext is not enabled or someone
3742 * else already initiated abort.
3743 */
scx_rcu_cpu_stall(void)3744 bool scx_rcu_cpu_stall(void)
3745 {
3746 return handle_lockup("RCU CPU stall detected!");
3747 }
3748
3749 /**
3750 * scx_softlockup - sched_ext softlockup handler
3751 * @dur_s: number of seconds of CPU stuck due to soft lockup
3752 *
3753 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can
3754 * live-lock the system by making many CPUs target the same DSQ to the point
3755 * where soft-lockup detection triggers. This function is called from
3756 * soft-lockup watchdog when the triggering point is close and tries to unjam
3757 * the system and aborting the BPF scheduler.
3758 */
scx_softlockup(u32 dur_s)3759 void scx_softlockup(u32 dur_s)
3760 {
3761 if (!handle_lockup("soft lockup - CPU %d stuck for %us", smp_processor_id(), dur_s))
3762 return;
3763
3764 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU %d stuck for %us, disabling BPF scheduler\n",
3765 smp_processor_id(), dur_s);
3766 }
3767
3768 /**
3769 * scx_hardlockup - sched_ext hardlockup handler
3770 *
3771 * A poorly behaving BPF scheduler can trigger hard lockup by e.g. putting
3772 * numerous affinitized tasks in a single queue and directing all CPUs at it.
3773 * Try kicking out the current scheduler in an attempt to recover the system to
3774 * a good state before taking more drastic actions.
3775 *
3776 * Returns %true if sched_ext is enabled and abort was initiated, which may
3777 * resolve the reported hardlockdup. %false if sched_ext is not enabled or
3778 * someone else already initiated abort.
3779 */
scx_hardlockup(int cpu)3780 bool scx_hardlockup(int cpu)
3781 {
3782 if (!handle_lockup("hard lockup - CPU %d", cpu))
3783 return false;
3784
3785 printk_deferred(KERN_ERR "sched_ext: Hard lockup - CPU %d, disabling BPF scheduler\n",
3786 cpu);
3787 return true;
3788 }
3789
bypass_lb_cpu(struct scx_sched * sch,struct rq * rq,struct cpumask * donee_mask,struct cpumask * resched_mask,u32 nr_donor_target,u32 nr_donee_target)3790 static u32 bypass_lb_cpu(struct scx_sched *sch, struct rq *rq,
3791 struct cpumask *donee_mask, struct cpumask *resched_mask,
3792 u32 nr_donor_target, u32 nr_donee_target)
3793 {
3794 struct scx_dispatch_q *donor_dsq = &rq->scx.bypass_dsq;
3795 struct task_struct *p, *n;
3796 struct scx_dsq_list_node cursor = INIT_DSQ_LIST_CURSOR(cursor, 0, 0);
3797 s32 delta = READ_ONCE(donor_dsq->nr) - nr_donor_target;
3798 u32 nr_balanced = 0, min_delta_us;
3799
3800 /*
3801 * All we want to guarantee is reasonable forward progress. No reason to
3802 * fine tune. Assuming every task on @donor_dsq runs their full slice,
3803 * consider offloading iff the total queued duration is over the
3804 * threshold.
3805 */
3806 min_delta_us = scx_bypass_lb_intv_us / SCX_BYPASS_LB_MIN_DELTA_DIV;
3807 if (delta < DIV_ROUND_UP(min_delta_us, scx_slice_bypass_us))
3808 return 0;
3809
3810 raw_spin_rq_lock_irq(rq);
3811 raw_spin_lock(&donor_dsq->lock);
3812 list_add(&cursor.node, &donor_dsq->list);
3813 resume:
3814 n = container_of(&cursor, struct task_struct, scx.dsq_list);
3815 n = nldsq_next_task(donor_dsq, n, false);
3816
3817 while ((p = n)) {
3818 struct rq *donee_rq;
3819 struct scx_dispatch_q *donee_dsq;
3820 int donee;
3821
3822 n = nldsq_next_task(donor_dsq, n, false);
3823
3824 if (donor_dsq->nr <= nr_donor_target)
3825 break;
3826
3827 if (cpumask_empty(donee_mask))
3828 break;
3829
3830 donee = cpumask_any_and_distribute(donee_mask, p->cpus_ptr);
3831 if (donee >= nr_cpu_ids)
3832 continue;
3833
3834 donee_rq = cpu_rq(donee);
3835 donee_dsq = &donee_rq->scx.bypass_dsq;
3836
3837 /*
3838 * $p's rq is not locked but $p's DSQ lock protects its
3839 * scheduling properties making this test safe.
3840 */
3841 if (!task_can_run_on_remote_rq(sch, p, donee_rq, false))
3842 continue;
3843
3844 /*
3845 * Moving $p from one non-local DSQ to another. The source rq
3846 * and DSQ are already locked. Do an abbreviated dequeue and
3847 * then perform enqueue without unlocking $donor_dsq.
3848 *
3849 * We don't want to drop and reacquire the lock on each
3850 * iteration as @donor_dsq can be very long and potentially
3851 * highly contended. Donee DSQs are less likely to be contended.
3852 * The nested locking is safe as only this LB moves tasks
3853 * between bypass DSQs.
3854 */
3855 dispatch_dequeue_locked(p, donor_dsq);
3856 dispatch_enqueue(sch, donee_dsq, p, SCX_ENQ_NESTED);
3857
3858 /*
3859 * $donee might have been idle and need to be woken up. No need
3860 * to be clever. Kick every CPU that receives tasks.
3861 */
3862 cpumask_set_cpu(donee, resched_mask);
3863
3864 if (READ_ONCE(donee_dsq->nr) >= nr_donee_target)
3865 cpumask_clear_cpu(donee, donee_mask);
3866
3867 nr_balanced++;
3868 if (!(nr_balanced % SCX_BYPASS_LB_BATCH) && n) {
3869 list_move_tail(&cursor.node, &n->scx.dsq_list.node);
3870 raw_spin_unlock(&donor_dsq->lock);
3871 raw_spin_rq_unlock_irq(rq);
3872 cpu_relax();
3873 raw_spin_rq_lock_irq(rq);
3874 raw_spin_lock(&donor_dsq->lock);
3875 goto resume;
3876 }
3877 }
3878
3879 list_del_init(&cursor.node);
3880 raw_spin_unlock(&donor_dsq->lock);
3881 raw_spin_rq_unlock_irq(rq);
3882
3883 return nr_balanced;
3884 }
3885
bypass_lb_node(struct scx_sched * sch,int node)3886 static void bypass_lb_node(struct scx_sched *sch, int node)
3887 {
3888 const struct cpumask *node_mask = cpumask_of_node(node);
3889 struct cpumask *donee_mask = scx_bypass_lb_donee_cpumask;
3890 struct cpumask *resched_mask = scx_bypass_lb_resched_cpumask;
3891 u32 nr_tasks = 0, nr_cpus = 0, nr_balanced = 0;
3892 u32 nr_target, nr_donor_target;
3893 u32 before_min = U32_MAX, before_max = 0;
3894 u32 after_min = U32_MAX, after_max = 0;
3895 int cpu;
3896
3897 /* count the target tasks and CPUs */
3898 for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
3899 u32 nr = READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr);
3900
3901 nr_tasks += nr;
3902 nr_cpus++;
3903
3904 before_min = min(nr, before_min);
3905 before_max = max(nr, before_max);
3906 }
3907
3908 if (!nr_cpus)
3909 return;
3910
3911 /*
3912 * We don't want CPUs to have more than $nr_donor_target tasks and
3913 * balancing to fill donee CPUs upto $nr_target. Once targets are
3914 * calculated, find the donee CPUs.
3915 */
3916 nr_target = DIV_ROUND_UP(nr_tasks, nr_cpus);
3917 nr_donor_target = DIV_ROUND_UP(nr_target * SCX_BYPASS_LB_DONOR_PCT, 100);
3918
3919 cpumask_clear(donee_mask);
3920 for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
3921 if (READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr) < nr_target)
3922 cpumask_set_cpu(cpu, donee_mask);
3923 }
3924
3925 /* iterate !donee CPUs and see if they should be offloaded */
3926 cpumask_clear(resched_mask);
3927 for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
3928 struct rq *rq = cpu_rq(cpu);
3929 struct scx_dispatch_q *donor_dsq = &rq->scx.bypass_dsq;
3930
3931 if (cpumask_empty(donee_mask))
3932 break;
3933 if (cpumask_test_cpu(cpu, donee_mask))
3934 continue;
3935 if (READ_ONCE(donor_dsq->nr) <= nr_donor_target)
3936 continue;
3937
3938 nr_balanced += bypass_lb_cpu(sch, rq, donee_mask, resched_mask,
3939 nr_donor_target, nr_target);
3940 }
3941
3942 for_each_cpu(cpu, resched_mask) {
3943 struct rq *rq = cpu_rq(cpu);
3944
3945 raw_spin_rq_lock_irq(rq);
3946 resched_curr(rq);
3947 raw_spin_rq_unlock_irq(rq);
3948 }
3949
3950 for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
3951 u32 nr = READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr);
3952
3953 after_min = min(nr, after_min);
3954 after_max = max(nr, after_max);
3955
3956 }
3957
3958 trace_sched_ext_bypass_lb(node, nr_cpus, nr_tasks, nr_balanced,
3959 before_min, before_max, after_min, after_max);
3960 }
3961
3962 /*
3963 * In bypass mode, all tasks are put on the per-CPU bypass DSQs. If the machine
3964 * is over-saturated and the BPF scheduler skewed tasks into few CPUs, some
3965 * bypass DSQs can be overloaded. If there are enough tasks to saturate other
3966 * lightly loaded CPUs, such imbalance can lead to very high execution latency
3967 * on the overloaded CPUs and thus to hung tasks and RCU stalls. To avoid such
3968 * outcomes, a simple load balancing mechanism is implemented by the following
3969 * timer which runs periodically while bypass mode is in effect.
3970 */
scx_bypass_lb_timerfn(struct timer_list * timer)3971 static void scx_bypass_lb_timerfn(struct timer_list *timer)
3972 {
3973 struct scx_sched *sch;
3974 int node;
3975 u32 intv_us;
3976
3977 sch = rcu_dereference_all(scx_root);
3978 if (unlikely(!sch) || !READ_ONCE(scx_bypass_depth))
3979 return;
3980
3981 for_each_node_with_cpus(node)
3982 bypass_lb_node(sch, node);
3983
3984 intv_us = READ_ONCE(scx_bypass_lb_intv_us);
3985 if (intv_us)
3986 mod_timer(timer, jiffies + usecs_to_jiffies(intv_us));
3987 }
3988
3989 static DEFINE_TIMER(scx_bypass_lb_timer, scx_bypass_lb_timerfn);
3990
3991 /**
3992 * scx_bypass - [Un]bypass scx_ops and guarantee forward progress
3993 * @bypass: true for bypass, false for unbypass
3994 *
3995 * Bypassing guarantees that all runnable tasks make forward progress without
3996 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
3997 * be held by tasks that the BPF scheduler is forgetting to run, which
3998 * unfortunately also excludes toggling the static branches.
3999 *
4000 * Let's work around by overriding a couple ops and modifying behaviors based on
4001 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
4002 * to force global FIFO scheduling.
4003 *
4004 * - ops.select_cpu() is ignored and the default select_cpu() is used.
4005 *
4006 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
4007 * %SCX_OPS_ENQ_LAST is also ignored.
4008 *
4009 * - ops.dispatch() is ignored.
4010 *
4011 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
4012 * can't be trusted. Whenever a tick triggers, the running task is rotated to
4013 * the tail of the queue with core_sched_at touched.
4014 *
4015 * - pick_next_task() suppresses zero slice warning.
4016 *
4017 * - scx_kick_cpu() is disabled to avoid irq_work malfunction during PM
4018 * operations.
4019 *
4020 * - scx_prio_less() reverts to the default core_sched_at order.
4021 */
scx_bypass(bool bypass)4022 static void scx_bypass(bool bypass)
4023 {
4024 static DEFINE_RAW_SPINLOCK(bypass_lock);
4025 static unsigned long bypass_timestamp;
4026 struct scx_sched *sch;
4027 unsigned long flags;
4028 int cpu;
4029
4030 raw_spin_lock_irqsave(&bypass_lock, flags);
4031 sch = rcu_dereference_bh(scx_root);
4032
4033 if (bypass) {
4034 u32 intv_us;
4035
4036 WRITE_ONCE(scx_bypass_depth, scx_bypass_depth + 1);
4037 WARN_ON_ONCE(scx_bypass_depth <= 0);
4038 if (scx_bypass_depth != 1)
4039 goto unlock;
4040 WRITE_ONCE(scx_slice_dfl, scx_slice_bypass_us * NSEC_PER_USEC);
4041 bypass_timestamp = ktime_get_ns();
4042 if (sch)
4043 scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1);
4044
4045 intv_us = READ_ONCE(scx_bypass_lb_intv_us);
4046 if (intv_us && !timer_pending(&scx_bypass_lb_timer)) {
4047 scx_bypass_lb_timer.expires =
4048 jiffies + usecs_to_jiffies(intv_us);
4049 add_timer_global(&scx_bypass_lb_timer);
4050 }
4051 } else {
4052 WRITE_ONCE(scx_bypass_depth, scx_bypass_depth - 1);
4053 WARN_ON_ONCE(scx_bypass_depth < 0);
4054 if (scx_bypass_depth != 0)
4055 goto unlock;
4056 WRITE_ONCE(scx_slice_dfl, SCX_SLICE_DFL);
4057 if (sch)
4058 scx_add_event(sch, SCX_EV_BYPASS_DURATION,
4059 ktime_get_ns() - bypass_timestamp);
4060 }
4061
4062 /*
4063 * No task property is changing. We just need to make sure all currently
4064 * queued tasks are re-queued according to the new scx_rq_bypassing()
4065 * state. As an optimization, walk each rq's runnable_list instead of
4066 * the scx_tasks list.
4067 *
4068 * This function can't trust the scheduler and thus can't use
4069 * cpus_read_lock(). Walk all possible CPUs instead of online.
4070 */
4071 for_each_possible_cpu(cpu) {
4072 struct rq *rq = cpu_rq(cpu);
4073 struct task_struct *p, *n;
4074
4075 raw_spin_rq_lock(rq);
4076
4077 if (bypass) {
4078 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
4079 rq->scx.flags |= SCX_RQ_BYPASSING;
4080 } else {
4081 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
4082 rq->scx.flags &= ~SCX_RQ_BYPASSING;
4083 }
4084
4085 /*
4086 * We need to guarantee that no tasks are on the BPF scheduler
4087 * while bypassing. Either we see enabled or the enable path
4088 * sees scx_rq_bypassing() before moving tasks to SCX.
4089 */
4090 if (!scx_enabled()) {
4091 raw_spin_rq_unlock(rq);
4092 continue;
4093 }
4094
4095 /*
4096 * The use of list_for_each_entry_safe_reverse() is required
4097 * because each task is going to be removed from and added back
4098 * to the runnable_list during iteration. Because they're added
4099 * to the tail of the list, safe reverse iteration can still
4100 * visit all nodes.
4101 */
4102 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
4103 scx.runnable_node) {
4104 /* cycling deq/enq is enough, see the function comment */
4105 scoped_guard (sched_change, p, DEQUEUE_SAVE | DEQUEUE_MOVE) {
4106 /* nothing */ ;
4107 }
4108 }
4109
4110 /* resched to restore ticks and idle state */
4111 if (cpu_online(cpu) || cpu == smp_processor_id())
4112 resched_curr(rq);
4113
4114 raw_spin_rq_unlock(rq);
4115 }
4116
4117 unlock:
4118 raw_spin_unlock_irqrestore(&bypass_lock, flags);
4119 }
4120
free_exit_info(struct scx_exit_info * ei)4121 static void free_exit_info(struct scx_exit_info *ei)
4122 {
4123 kvfree(ei->dump);
4124 kfree(ei->msg);
4125 kfree(ei->bt);
4126 kfree(ei);
4127 }
4128
alloc_exit_info(size_t exit_dump_len)4129 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
4130 {
4131 struct scx_exit_info *ei;
4132
4133 ei = kzalloc(sizeof(*ei), GFP_KERNEL);
4134 if (!ei)
4135 return NULL;
4136
4137 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
4138 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
4139 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL);
4140
4141 if (!ei->bt || !ei->msg || !ei->dump) {
4142 free_exit_info(ei);
4143 return NULL;
4144 }
4145
4146 return ei;
4147 }
4148
scx_exit_reason(enum scx_exit_kind kind)4149 static const char *scx_exit_reason(enum scx_exit_kind kind)
4150 {
4151 switch (kind) {
4152 case SCX_EXIT_UNREG:
4153 return "unregistered from user space";
4154 case SCX_EXIT_UNREG_BPF:
4155 return "unregistered from BPF";
4156 case SCX_EXIT_UNREG_KERN:
4157 return "unregistered from the main kernel";
4158 case SCX_EXIT_SYSRQ:
4159 return "disabled by sysrq-S";
4160 case SCX_EXIT_ERROR:
4161 return "runtime error";
4162 case SCX_EXIT_ERROR_BPF:
4163 return "scx_bpf_error";
4164 case SCX_EXIT_ERROR_STALL:
4165 return "runnable task stall";
4166 default:
4167 return "<UNKNOWN>";
4168 }
4169 }
4170
free_kick_syncs(void)4171 static void free_kick_syncs(void)
4172 {
4173 int cpu;
4174
4175 for_each_possible_cpu(cpu) {
4176 struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu);
4177 struct scx_kick_syncs *to_free;
4178
4179 to_free = rcu_replace_pointer(*ksyncs, NULL, true);
4180 if (to_free)
4181 kvfree_rcu(to_free, rcu);
4182 }
4183 }
4184
scx_disable_workfn(struct kthread_work * work)4185 static void scx_disable_workfn(struct kthread_work *work)
4186 {
4187 struct scx_sched *sch = container_of(work, struct scx_sched, disable_work);
4188 struct scx_exit_info *ei = sch->exit_info;
4189 struct scx_task_iter sti;
4190 struct task_struct *p;
4191 int kind, cpu;
4192
4193 kind = atomic_read(&sch->exit_kind);
4194 while (true) {
4195 if (kind == SCX_EXIT_DONE) /* already disabled? */
4196 return;
4197 WARN_ON_ONCE(kind == SCX_EXIT_NONE);
4198 if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE))
4199 break;
4200 }
4201 ei->kind = kind;
4202 ei->reason = scx_exit_reason(ei->kind);
4203
4204 /* guarantee forward progress by bypassing scx_ops */
4205 scx_bypass(true);
4206 WRITE_ONCE(scx_aborting, false);
4207
4208 switch (scx_set_enable_state(SCX_DISABLING)) {
4209 case SCX_DISABLING:
4210 WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
4211 break;
4212 case SCX_DISABLED:
4213 pr_warn("sched_ext: ops error detected without ops (%s)\n",
4214 sch->exit_info->msg);
4215 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING);
4216 goto done;
4217 default:
4218 break;
4219 }
4220
4221 /*
4222 * Here, every runnable task is guaranteed to make forward progress and
4223 * we can safely use blocking synchronization constructs. Actually
4224 * disable ops.
4225 */
4226 mutex_lock(&scx_enable_mutex);
4227
4228 static_branch_disable(&__scx_switched_all);
4229 WRITE_ONCE(scx_switching_all, false);
4230
4231 /*
4232 * Shut down cgroup support before tasks so that the cgroup attach path
4233 * doesn't race against scx_exit_task().
4234 */
4235 scx_cgroup_lock();
4236 scx_cgroup_exit(sch);
4237 scx_cgroup_unlock();
4238
4239 /*
4240 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
4241 * must be switched out and exited synchronously.
4242 */
4243 percpu_down_write(&scx_fork_rwsem);
4244
4245 scx_init_task_enabled = false;
4246
4247 scx_task_iter_start(&sti);
4248 while ((p = scx_task_iter_next_locked(&sti))) {
4249 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4250 const struct sched_class *old_class = p->sched_class;
4251 const struct sched_class *new_class = scx_setscheduler_class(p);
4252
4253 update_rq_clock(task_rq(p));
4254
4255 if (old_class != new_class)
4256 queue_flags |= DEQUEUE_CLASS;
4257
4258 scoped_guard (sched_change, p, queue_flags) {
4259 p->sched_class = new_class;
4260 }
4261
4262 scx_exit_task(p);
4263 }
4264 scx_task_iter_stop(&sti);
4265 percpu_up_write(&scx_fork_rwsem);
4266
4267 /*
4268 * Invalidate all the rq clocks to prevent getting outdated
4269 * rq clocks from a previous scx scheduler.
4270 */
4271 for_each_possible_cpu(cpu) {
4272 struct rq *rq = cpu_rq(cpu);
4273 scx_rq_clock_invalidate(rq);
4274 }
4275
4276 /* no task is on scx, turn off all the switches and flush in-progress calls */
4277 static_branch_disable(&__scx_enabled);
4278 bitmap_zero(sch->has_op, SCX_OPI_END);
4279 scx_idle_disable();
4280 synchronize_rcu();
4281
4282 if (ei->kind >= SCX_EXIT_ERROR) {
4283 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4284 sch->ops.name, ei->reason);
4285
4286 if (ei->msg[0] != '\0')
4287 pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg);
4288 #ifdef CONFIG_STACKTRACE
4289 stack_trace_print(ei->bt, ei->bt_len, 2);
4290 #endif
4291 } else {
4292 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4293 sch->ops.name, ei->reason);
4294 }
4295
4296 if (sch->ops.exit)
4297 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei);
4298
4299 cancel_delayed_work_sync(&scx_watchdog_work);
4300
4301 /*
4302 * scx_root clearing must be inside cpus_read_lock(). See
4303 * handle_hotplug().
4304 */
4305 cpus_read_lock();
4306 RCU_INIT_POINTER(scx_root, NULL);
4307 cpus_read_unlock();
4308
4309 /*
4310 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs
4311 * could observe an object of the same name still in the hierarchy when
4312 * the next scheduler is loaded.
4313 */
4314 kobject_del(&sch->kobj);
4315
4316 free_percpu(scx_dsp_ctx);
4317 scx_dsp_ctx = NULL;
4318 scx_dsp_max_batch = 0;
4319 free_kick_syncs();
4320
4321 mutex_unlock(&scx_enable_mutex);
4322
4323 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING);
4324 done:
4325 scx_bypass(false);
4326 }
4327
scx_claim_exit(struct scx_sched * sch,enum scx_exit_kind kind)4328 static bool scx_claim_exit(struct scx_sched *sch, enum scx_exit_kind kind)
4329 {
4330 int none = SCX_EXIT_NONE;
4331
4332 if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind))
4333 return false;
4334
4335 /*
4336 * Some CPUs may be trapped in the dispatch paths. Set the aborting
4337 * flag to break potential live-lock scenarios, ensuring we can
4338 * successfully reach scx_bypass().
4339 */
4340 WRITE_ONCE(scx_aborting, true);
4341 return true;
4342 }
4343
scx_disable(enum scx_exit_kind kind)4344 static void scx_disable(enum scx_exit_kind kind)
4345 {
4346 struct scx_sched *sch;
4347
4348 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
4349 kind = SCX_EXIT_ERROR;
4350
4351 rcu_read_lock();
4352 sch = rcu_dereference(scx_root);
4353 if (sch) {
4354 scx_claim_exit(sch, kind);
4355 kthread_queue_work(sch->helper, &sch->disable_work);
4356 }
4357 rcu_read_unlock();
4358 }
4359
dump_newline(struct seq_buf * s)4360 static void dump_newline(struct seq_buf *s)
4361 {
4362 trace_sched_ext_dump("");
4363
4364 /* @s may be zero sized and seq_buf triggers WARN if so */
4365 if (s->size)
4366 seq_buf_putc(s, '\n');
4367 }
4368
dump_line(struct seq_buf * s,const char * fmt,...)4369 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
4370 {
4371 va_list args;
4372
4373 #ifdef CONFIG_TRACEPOINTS
4374 if (trace_sched_ext_dump_enabled()) {
4375 /* protected by scx_dump_state()::dump_lock */
4376 static char line_buf[SCX_EXIT_MSG_LEN];
4377
4378 va_start(args, fmt);
4379 vscnprintf(line_buf, sizeof(line_buf), fmt, args);
4380 va_end(args);
4381
4382 trace_sched_ext_dump(line_buf);
4383 }
4384 #endif
4385 /* @s may be zero sized and seq_buf triggers WARN if so */
4386 if (s->size) {
4387 va_start(args, fmt);
4388 seq_buf_vprintf(s, fmt, args);
4389 va_end(args);
4390
4391 seq_buf_putc(s, '\n');
4392 }
4393 }
4394
dump_stack_trace(struct seq_buf * s,const char * prefix,const unsigned long * bt,unsigned int len)4395 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
4396 const unsigned long *bt, unsigned int len)
4397 {
4398 unsigned int i;
4399
4400 for (i = 0; i < len; i++)
4401 dump_line(s, "%s%pS", prefix, (void *)bt[i]);
4402 }
4403
ops_dump_init(struct seq_buf * s,const char * prefix)4404 static void ops_dump_init(struct seq_buf *s, const char *prefix)
4405 {
4406 struct scx_dump_data *dd = &scx_dump_data;
4407
4408 lockdep_assert_irqs_disabled();
4409
4410 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */
4411 dd->first = true;
4412 dd->cursor = 0;
4413 dd->s = s;
4414 dd->prefix = prefix;
4415 }
4416
ops_dump_flush(void)4417 static void ops_dump_flush(void)
4418 {
4419 struct scx_dump_data *dd = &scx_dump_data;
4420 char *line = dd->buf.line;
4421
4422 if (!dd->cursor)
4423 return;
4424
4425 /*
4426 * There's something to flush and this is the first line. Insert a blank
4427 * line to distinguish ops dump.
4428 */
4429 if (dd->first) {
4430 dump_newline(dd->s);
4431 dd->first = false;
4432 }
4433
4434 /*
4435 * There may be multiple lines in $line. Scan and emit each line
4436 * separately.
4437 */
4438 while (true) {
4439 char *end = line;
4440 char c;
4441
4442 while (*end != '\n' && *end != '\0')
4443 end++;
4444
4445 /*
4446 * If $line overflowed, it may not have newline at the end.
4447 * Always emit with a newline.
4448 */
4449 c = *end;
4450 *end = '\0';
4451 dump_line(dd->s, "%s%s", dd->prefix, line);
4452 if (c == '\0')
4453 break;
4454
4455 /* move to the next line */
4456 end++;
4457 if (*end == '\0')
4458 break;
4459 line = end;
4460 }
4461
4462 dd->cursor = 0;
4463 }
4464
ops_dump_exit(void)4465 static void ops_dump_exit(void)
4466 {
4467 ops_dump_flush();
4468 scx_dump_data.cpu = -1;
4469 }
4470
scx_dump_task(struct seq_buf * s,struct scx_dump_ctx * dctx,struct task_struct * p,char marker)4471 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
4472 struct task_struct *p, char marker)
4473 {
4474 static unsigned long bt[SCX_EXIT_BT_LEN];
4475 struct scx_sched *sch = scx_root;
4476 char dsq_id_buf[19] = "(n/a)";
4477 unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
4478 unsigned int bt_len = 0;
4479
4480 if (p->scx.dsq)
4481 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
4482 (unsigned long long)p->scx.dsq->id);
4483
4484 dump_newline(s);
4485 dump_line(s, " %c%c %s[%d] %+ldms",
4486 marker, task_state_to_char(p), p->comm, p->pid,
4487 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
4488 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
4489 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
4490 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
4491 ops_state >> SCX_OPSS_QSEQ_SHIFT);
4492 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s",
4493 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf);
4494 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u",
4495 p->scx.dsq_vtime, p->scx.slice, p->scx.weight);
4496 dump_line(s, " cpus=%*pb no_mig=%u", cpumask_pr_args(p->cpus_ptr),
4497 p->migration_disabled);
4498
4499 if (SCX_HAS_OP(sch, dump_task)) {
4500 ops_dump_init(s, " ");
4501 SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p);
4502 ops_dump_exit();
4503 }
4504
4505 #ifdef CONFIG_STACKTRACE
4506 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
4507 #endif
4508 if (bt_len) {
4509 dump_newline(s);
4510 dump_stack_trace(s, " ", bt, bt_len);
4511 }
4512 }
4513
scx_dump_state(struct scx_exit_info * ei,size_t dump_len)4514 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
4515 {
4516 static DEFINE_SPINLOCK(dump_lock);
4517 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
4518 struct scx_sched *sch = scx_root;
4519 struct scx_dump_ctx dctx = {
4520 .kind = ei->kind,
4521 .exit_code = ei->exit_code,
4522 .reason = ei->reason,
4523 .at_ns = ktime_get_ns(),
4524 .at_jiffies = jiffies,
4525 };
4526 struct seq_buf s;
4527 struct scx_event_stats events;
4528 unsigned long flags;
4529 char *buf;
4530 int cpu;
4531
4532 spin_lock_irqsave(&dump_lock, flags);
4533
4534 seq_buf_init(&s, ei->dump, dump_len);
4535
4536 if (ei->kind == SCX_EXIT_NONE) {
4537 dump_line(&s, "Debug dump triggered by %s", ei->reason);
4538 } else {
4539 dump_line(&s, "%s[%d] triggered exit kind %d:",
4540 current->comm, current->pid, ei->kind);
4541 dump_line(&s, " %s (%s)", ei->reason, ei->msg);
4542 dump_newline(&s);
4543 dump_line(&s, "Backtrace:");
4544 dump_stack_trace(&s, " ", ei->bt, ei->bt_len);
4545 }
4546
4547 if (SCX_HAS_OP(sch, dump)) {
4548 ops_dump_init(&s, "");
4549 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx);
4550 ops_dump_exit();
4551 }
4552
4553 dump_newline(&s);
4554 dump_line(&s, "CPU states");
4555 dump_line(&s, "----------");
4556
4557 for_each_possible_cpu(cpu) {
4558 struct rq *rq = cpu_rq(cpu);
4559 struct rq_flags rf;
4560 struct task_struct *p;
4561 struct seq_buf ns;
4562 size_t avail, used;
4563 bool idle;
4564
4565 rq_lock_irqsave(rq, &rf);
4566
4567 idle = list_empty(&rq->scx.runnable_list) &&
4568 rq->curr->sched_class == &idle_sched_class;
4569
4570 if (idle && !SCX_HAS_OP(sch, dump_cpu))
4571 goto next;
4572
4573 /*
4574 * We don't yet know whether ops.dump_cpu() will produce output
4575 * and we may want to skip the default CPU dump if it doesn't.
4576 * Use a nested seq_buf to generate the standard dump so that we
4577 * can decide whether to commit later.
4578 */
4579 avail = seq_buf_get_buf(&s, &buf);
4580 seq_buf_init(&ns, buf, avail);
4581
4582 dump_newline(&ns);
4583 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu ksync=%lu",
4584 cpu, rq->scx.nr_running, rq->scx.flags,
4585 rq->scx.cpu_released, rq->scx.ops_qseq,
4586 rq->scx.kick_sync);
4587 dump_line(&ns, " curr=%s[%d] class=%ps",
4588 rq->curr->comm, rq->curr->pid,
4589 rq->curr->sched_class);
4590 if (!cpumask_empty(rq->scx.cpus_to_kick))
4591 dump_line(&ns, " cpus_to_kick : %*pb",
4592 cpumask_pr_args(rq->scx.cpus_to_kick));
4593 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
4594 dump_line(&ns, " idle_to_kick : %*pb",
4595 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
4596 if (!cpumask_empty(rq->scx.cpus_to_preempt))
4597 dump_line(&ns, " cpus_to_preempt: %*pb",
4598 cpumask_pr_args(rq->scx.cpus_to_preempt));
4599 if (!cpumask_empty(rq->scx.cpus_to_wait))
4600 dump_line(&ns, " cpus_to_wait : %*pb",
4601 cpumask_pr_args(rq->scx.cpus_to_wait));
4602
4603 used = seq_buf_used(&ns);
4604 if (SCX_HAS_OP(sch, dump_cpu)) {
4605 ops_dump_init(&ns, " ");
4606 SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL,
4607 &dctx, cpu, idle);
4608 ops_dump_exit();
4609 }
4610
4611 /*
4612 * If idle && nothing generated by ops.dump_cpu(), there's
4613 * nothing interesting. Skip.
4614 */
4615 if (idle && used == seq_buf_used(&ns))
4616 goto next;
4617
4618 /*
4619 * $s may already have overflowed when $ns was created. If so,
4620 * calling commit on it will trigger BUG.
4621 */
4622 if (avail) {
4623 seq_buf_commit(&s, seq_buf_used(&ns));
4624 if (seq_buf_has_overflowed(&ns))
4625 seq_buf_set_overflow(&s);
4626 }
4627
4628 if (rq->curr->sched_class == &ext_sched_class)
4629 scx_dump_task(&s, &dctx, rq->curr, '*');
4630
4631 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
4632 scx_dump_task(&s, &dctx, p, ' ');
4633 next:
4634 rq_unlock_irqrestore(rq, &rf);
4635 }
4636
4637 dump_newline(&s);
4638 dump_line(&s, "Event counters");
4639 dump_line(&s, "--------------");
4640
4641 scx_read_events(sch, &events);
4642 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK);
4643 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
4644 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST);
4645 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING);
4646 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
4647 scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL);
4648 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION);
4649 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH);
4650 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE);
4651
4652 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
4653 memcpy(ei->dump + dump_len - sizeof(trunc_marker),
4654 trunc_marker, sizeof(trunc_marker));
4655
4656 spin_unlock_irqrestore(&dump_lock, flags);
4657 }
4658
scx_error_irq_workfn(struct irq_work * irq_work)4659 static void scx_error_irq_workfn(struct irq_work *irq_work)
4660 {
4661 struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work);
4662 struct scx_exit_info *ei = sch->exit_info;
4663
4664 if (ei->kind >= SCX_EXIT_ERROR)
4665 scx_dump_state(ei, sch->ops.exit_dump_len);
4666
4667 kthread_queue_work(sch->helper, &sch->disable_work);
4668 }
4669
scx_vexit(struct scx_sched * sch,enum scx_exit_kind kind,s64 exit_code,const char * fmt,va_list args)4670 static bool scx_vexit(struct scx_sched *sch,
4671 enum scx_exit_kind kind, s64 exit_code,
4672 const char *fmt, va_list args)
4673 {
4674 struct scx_exit_info *ei = sch->exit_info;
4675
4676 if (!scx_claim_exit(sch, kind))
4677 return false;
4678
4679 ei->exit_code = exit_code;
4680 #ifdef CONFIG_STACKTRACE
4681 if (kind >= SCX_EXIT_ERROR)
4682 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
4683 #endif
4684 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
4685
4686 /*
4687 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
4688 * in scx_disable_workfn().
4689 */
4690 ei->kind = kind;
4691 ei->reason = scx_exit_reason(ei->kind);
4692
4693 irq_work_queue(&sch->error_irq_work);
4694 return true;
4695 }
4696
alloc_kick_syncs(void)4697 static int alloc_kick_syncs(void)
4698 {
4699 int cpu;
4700
4701 /*
4702 * Allocate per-CPU arrays sized by nr_cpu_ids. Use kvzalloc as size
4703 * can exceed percpu allocator limits on large machines.
4704 */
4705 for_each_possible_cpu(cpu) {
4706 struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu);
4707 struct scx_kick_syncs *new_ksyncs;
4708
4709 WARN_ON_ONCE(rcu_access_pointer(*ksyncs));
4710
4711 new_ksyncs = kvzalloc_node(struct_size(new_ksyncs, syncs, nr_cpu_ids),
4712 GFP_KERNEL, cpu_to_node(cpu));
4713 if (!new_ksyncs) {
4714 free_kick_syncs();
4715 return -ENOMEM;
4716 }
4717
4718 rcu_assign_pointer(*ksyncs, new_ksyncs);
4719 }
4720
4721 return 0;
4722 }
4723
scx_alloc_and_add_sched(struct sched_ext_ops * ops)4724 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops)
4725 {
4726 struct scx_sched *sch;
4727 int node, ret;
4728
4729 sch = kzalloc(sizeof(*sch), GFP_KERNEL);
4730 if (!sch)
4731 return ERR_PTR(-ENOMEM);
4732
4733 sch->exit_info = alloc_exit_info(ops->exit_dump_len);
4734 if (!sch->exit_info) {
4735 ret = -ENOMEM;
4736 goto err_free_sch;
4737 }
4738
4739 ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params);
4740 if (ret < 0)
4741 goto err_free_ei;
4742
4743 sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]),
4744 GFP_KERNEL);
4745 if (!sch->global_dsqs) {
4746 ret = -ENOMEM;
4747 goto err_free_hash;
4748 }
4749
4750 for_each_node_state(node, N_POSSIBLE) {
4751 struct scx_dispatch_q *dsq;
4752
4753 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
4754 if (!dsq) {
4755 ret = -ENOMEM;
4756 goto err_free_gdsqs;
4757 }
4758
4759 init_dsq(dsq, SCX_DSQ_GLOBAL);
4760 sch->global_dsqs[node] = dsq;
4761 }
4762
4763 sch->pcpu = alloc_percpu(struct scx_sched_pcpu);
4764 if (!sch->pcpu)
4765 goto err_free_gdsqs;
4766
4767 sch->helper = kthread_run_worker(0, "sched_ext_helper");
4768 if (IS_ERR(sch->helper)) {
4769 ret = PTR_ERR(sch->helper);
4770 goto err_free_pcpu;
4771 }
4772
4773 sched_set_fifo(sch->helper->task);
4774
4775 atomic_set(&sch->exit_kind, SCX_EXIT_NONE);
4776 init_irq_work(&sch->error_irq_work, scx_error_irq_workfn);
4777 kthread_init_work(&sch->disable_work, scx_disable_workfn);
4778 sch->ops = *ops;
4779 ops->priv = sch;
4780
4781 sch->kobj.kset = scx_kset;
4782 ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root");
4783 if (ret < 0)
4784 goto err_stop_helper;
4785
4786 return sch;
4787
4788 err_stop_helper:
4789 kthread_stop(sch->helper->task);
4790 err_free_pcpu:
4791 free_percpu(sch->pcpu);
4792 err_free_gdsqs:
4793 for_each_node_state(node, N_POSSIBLE)
4794 kfree(sch->global_dsqs[node]);
4795 kfree(sch->global_dsqs);
4796 err_free_hash:
4797 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL);
4798 err_free_ei:
4799 free_exit_info(sch->exit_info);
4800 err_free_sch:
4801 kfree(sch);
4802 return ERR_PTR(ret);
4803 }
4804
check_hotplug_seq(struct scx_sched * sch,const struct sched_ext_ops * ops)4805 static int check_hotplug_seq(struct scx_sched *sch,
4806 const struct sched_ext_ops *ops)
4807 {
4808 unsigned long long global_hotplug_seq;
4809
4810 /*
4811 * If a hotplug event has occurred between when a scheduler was
4812 * initialized, and when we were able to attach, exit and notify user
4813 * space about it.
4814 */
4815 if (ops->hotplug_seq) {
4816 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
4817 if (ops->hotplug_seq != global_hotplug_seq) {
4818 scx_exit(sch, SCX_EXIT_UNREG_KERN,
4819 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
4820 "expected hotplug seq %llu did not match actual %llu",
4821 ops->hotplug_seq, global_hotplug_seq);
4822 return -EBUSY;
4823 }
4824 }
4825
4826 return 0;
4827 }
4828
validate_ops(struct scx_sched * sch,const struct sched_ext_ops * ops)4829 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops)
4830 {
4831 /*
4832 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
4833 * ops.enqueue() callback isn't implemented.
4834 */
4835 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
4836 scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
4837 return -EINVAL;
4838 }
4839
4840 /*
4841 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle
4842 * selection policy to be enabled.
4843 */
4844 if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) &&
4845 (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) {
4846 scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled");
4847 return -EINVAL;
4848 }
4849
4850 if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT)
4851 pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n");
4852
4853 if (ops->cpu_acquire || ops->cpu_release)
4854 pr_warn("ops->cpu_acquire/release() are deprecated, use sched_switch TP instead\n");
4855
4856 return 0;
4857 }
4858
scx_enable(struct sched_ext_ops * ops,struct bpf_link * link)4859 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link)
4860 {
4861 struct scx_sched *sch;
4862 struct scx_task_iter sti;
4863 struct task_struct *p;
4864 unsigned long timeout;
4865 int i, cpu, ret;
4866
4867 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
4868 cpu_possible_mask)) {
4869 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n");
4870 return -EINVAL;
4871 }
4872
4873 mutex_lock(&scx_enable_mutex);
4874
4875 if (scx_enable_state() != SCX_DISABLED) {
4876 ret = -EBUSY;
4877 goto err_unlock;
4878 }
4879
4880 ret = alloc_kick_syncs();
4881 if (ret)
4882 goto err_unlock;
4883
4884 sch = scx_alloc_and_add_sched(ops);
4885 if (IS_ERR(sch)) {
4886 ret = PTR_ERR(sch);
4887 goto err_free_ksyncs;
4888 }
4889
4890 /*
4891 * Transition to ENABLING and clear exit info to arm the disable path.
4892 * Failure triggers full disabling from here on.
4893 */
4894 WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED);
4895 WARN_ON_ONCE(scx_root);
4896 if (WARN_ON_ONCE(READ_ONCE(scx_aborting)))
4897 WRITE_ONCE(scx_aborting, false);
4898
4899 atomic_long_set(&scx_nr_rejected, 0);
4900
4901 for_each_possible_cpu(cpu)
4902 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
4903
4904 /*
4905 * Keep CPUs stable during enable so that the BPF scheduler can track
4906 * online CPUs by watching ->on/offline_cpu() after ->init().
4907 */
4908 cpus_read_lock();
4909
4910 /*
4911 * Make the scheduler instance visible. Must be inside cpus_read_lock().
4912 * See handle_hotplug().
4913 */
4914 rcu_assign_pointer(scx_root, sch);
4915
4916 scx_idle_enable(ops);
4917
4918 if (sch->ops.init) {
4919 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL);
4920 if (ret) {
4921 ret = ops_sanitize_err(sch, "init", ret);
4922 cpus_read_unlock();
4923 scx_error(sch, "ops.init() failed (%d)", ret);
4924 goto err_disable;
4925 }
4926 sch->exit_info->flags |= SCX_EFLAG_INITIALIZED;
4927 }
4928
4929 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
4930 if (((void (**)(void))ops)[i])
4931 set_bit(i, sch->has_op);
4932
4933 ret = check_hotplug_seq(sch, ops);
4934 if (ret) {
4935 cpus_read_unlock();
4936 goto err_disable;
4937 }
4938 scx_idle_update_selcpu_topology(ops);
4939
4940 cpus_read_unlock();
4941
4942 ret = validate_ops(sch, ops);
4943 if (ret)
4944 goto err_disable;
4945
4946 WARN_ON_ONCE(scx_dsp_ctx);
4947 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
4948 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
4949 scx_dsp_max_batch),
4950 __alignof__(struct scx_dsp_ctx));
4951 if (!scx_dsp_ctx) {
4952 ret = -ENOMEM;
4953 goto err_disable;
4954 }
4955
4956 if (ops->timeout_ms)
4957 timeout = msecs_to_jiffies(ops->timeout_ms);
4958 else
4959 timeout = SCX_WATCHDOG_MAX_TIMEOUT;
4960
4961 WRITE_ONCE(scx_watchdog_timeout, timeout);
4962 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
4963 queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
4964 scx_watchdog_timeout / 2);
4965
4966 /*
4967 * Once __scx_enabled is set, %current can be switched to SCX anytime.
4968 * This can lead to stalls as some BPF schedulers (e.g. userspace
4969 * scheduling) may not function correctly before all tasks are switched.
4970 * Init in bypass mode to guarantee forward progress.
4971 */
4972 scx_bypass(true);
4973
4974 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
4975 if (((void (**)(void))ops)[i])
4976 set_bit(i, sch->has_op);
4977
4978 if (sch->ops.cpu_acquire || sch->ops.cpu_release)
4979 sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT;
4980
4981 /*
4982 * Lock out forks, cgroup on/offlining and moves before opening the
4983 * floodgate so that they don't wander into the operations prematurely.
4984 */
4985 percpu_down_write(&scx_fork_rwsem);
4986
4987 WARN_ON_ONCE(scx_init_task_enabled);
4988 scx_init_task_enabled = true;
4989
4990 /*
4991 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
4992 * preventing new tasks from being added. No need to exclude tasks
4993 * leaving as sched_ext_free() can handle both prepped and enabled
4994 * tasks. Prep all tasks first and then enable them with preemption
4995 * disabled.
4996 *
4997 * All cgroups should be initialized before scx_init_task() so that the
4998 * BPF scheduler can reliably track each task's cgroup membership from
4999 * scx_init_task(). Lock out cgroup on/offlining and task migrations
5000 * while tasks are being initialized so that scx_cgroup_can_attach()
5001 * never sees uninitialized tasks.
5002 */
5003 scx_cgroup_lock();
5004 ret = scx_cgroup_init(sch);
5005 if (ret)
5006 goto err_disable_unlock_all;
5007
5008 scx_task_iter_start(&sti);
5009 while ((p = scx_task_iter_next_locked(&sti))) {
5010 /*
5011 * @p may already be dead, have lost all its usages counts and
5012 * be waiting for RCU grace period before being freed. @p can't
5013 * be initialized for SCX in such cases and should be ignored.
5014 */
5015 if (!tryget_task_struct(p))
5016 continue;
5017
5018 scx_task_iter_unlock(&sti);
5019
5020 ret = scx_init_task(p, task_group(p), false);
5021 if (ret) {
5022 put_task_struct(p);
5023 scx_task_iter_stop(&sti);
5024 scx_error(sch, "ops.init_task() failed (%d) for %s[%d]",
5025 ret, p->comm, p->pid);
5026 goto err_disable_unlock_all;
5027 }
5028
5029 scx_set_task_state(p, SCX_TASK_READY);
5030
5031 put_task_struct(p);
5032 }
5033 scx_task_iter_stop(&sti);
5034 scx_cgroup_unlock();
5035 percpu_up_write(&scx_fork_rwsem);
5036
5037 /*
5038 * All tasks are READY. It's safe to turn on scx_enabled() and switch
5039 * all eligible tasks.
5040 */
5041 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
5042 static_branch_enable(&__scx_enabled);
5043
5044 /*
5045 * We're fully committed and can't fail. The task READY -> ENABLED
5046 * transitions here are synchronized against sched_ext_free() through
5047 * scx_tasks_lock.
5048 */
5049 percpu_down_write(&scx_fork_rwsem);
5050 scx_task_iter_start(&sti);
5051 while ((p = scx_task_iter_next_locked(&sti))) {
5052 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
5053 const struct sched_class *old_class = p->sched_class;
5054 const struct sched_class *new_class = scx_setscheduler_class(p);
5055
5056 if (scx_get_task_state(p) != SCX_TASK_READY)
5057 continue;
5058
5059 if (old_class != new_class)
5060 queue_flags |= DEQUEUE_CLASS;
5061
5062 scoped_guard (sched_change, p, queue_flags) {
5063 p->scx.slice = READ_ONCE(scx_slice_dfl);
5064 p->sched_class = new_class;
5065 }
5066 }
5067 scx_task_iter_stop(&sti);
5068 percpu_up_write(&scx_fork_rwsem);
5069
5070 scx_bypass(false);
5071
5072 if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) {
5073 WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE);
5074 goto err_disable;
5075 }
5076
5077 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
5078 static_branch_enable(&__scx_switched_all);
5079
5080 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
5081 sch->ops.name, scx_switched_all() ? "" : " (partial)");
5082 kobject_uevent(&sch->kobj, KOBJ_ADD);
5083 mutex_unlock(&scx_enable_mutex);
5084
5085 atomic_long_inc(&scx_enable_seq);
5086
5087 return 0;
5088
5089 err_free_ksyncs:
5090 free_kick_syncs();
5091 err_unlock:
5092 mutex_unlock(&scx_enable_mutex);
5093 return ret;
5094
5095 err_disable_unlock_all:
5096 scx_cgroup_unlock();
5097 percpu_up_write(&scx_fork_rwsem);
5098 /* we'll soon enter disable path, keep bypass on */
5099 err_disable:
5100 mutex_unlock(&scx_enable_mutex);
5101 /*
5102 * Returning an error code here would not pass all the error information
5103 * to userspace. Record errno using scx_error() for cases scx_error()
5104 * wasn't already invoked and exit indicating success so that the error
5105 * is notified through ops.exit() with all the details.
5106 *
5107 * Flush scx_disable_work to ensure that error is reported before init
5108 * completion. sch's base reference will be put by bpf_scx_unreg().
5109 */
5110 scx_error(sch, "scx_enable() failed (%d)", ret);
5111 kthread_flush_work(&sch->disable_work);
5112 return 0;
5113 }
5114
5115
5116 /********************************************************************************
5117 * bpf_struct_ops plumbing.
5118 */
5119 #include <linux/bpf_verifier.h>
5120 #include <linux/bpf.h>
5121 #include <linux/btf.h>
5122
5123 static const struct btf_type *task_struct_type;
5124
bpf_scx_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5125 static bool bpf_scx_is_valid_access(int off, int size,
5126 enum bpf_access_type type,
5127 const struct bpf_prog *prog,
5128 struct bpf_insn_access_aux *info)
5129 {
5130 if (type != BPF_READ)
5131 return false;
5132 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
5133 return false;
5134 if (off % size != 0)
5135 return false;
5136
5137 return btf_ctx_access(off, size, type, prog, info);
5138 }
5139
bpf_scx_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)5140 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
5141 const struct bpf_reg_state *reg, int off,
5142 int size)
5143 {
5144 const struct btf_type *t;
5145
5146 t = btf_type_by_id(reg->btf, reg->btf_id);
5147 if (t == task_struct_type) {
5148 if (off >= offsetof(struct task_struct, scx.slice) &&
5149 off + size <= offsetofend(struct task_struct, scx.slice))
5150 return SCALAR_VALUE;
5151 if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
5152 off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
5153 return SCALAR_VALUE;
5154 if (off >= offsetof(struct task_struct, scx.disallow) &&
5155 off + size <= offsetofend(struct task_struct, scx.disallow))
5156 return SCALAR_VALUE;
5157 }
5158
5159 return -EACCES;
5160 }
5161
5162 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
5163 .get_func_proto = bpf_base_func_proto,
5164 .is_valid_access = bpf_scx_is_valid_access,
5165 .btf_struct_access = bpf_scx_btf_struct_access,
5166 };
5167
bpf_scx_init_member(const struct btf_type * t,const struct btf_member * member,void * kdata,const void * udata)5168 static int bpf_scx_init_member(const struct btf_type *t,
5169 const struct btf_member *member,
5170 void *kdata, const void *udata)
5171 {
5172 const struct sched_ext_ops *uops = udata;
5173 struct sched_ext_ops *ops = kdata;
5174 u32 moff = __btf_member_bit_offset(t, member) / 8;
5175 int ret;
5176
5177 switch (moff) {
5178 case offsetof(struct sched_ext_ops, dispatch_max_batch):
5179 if (*(u32 *)(udata + moff) > INT_MAX)
5180 return -E2BIG;
5181 ops->dispatch_max_batch = *(u32 *)(udata + moff);
5182 return 1;
5183 case offsetof(struct sched_ext_ops, flags):
5184 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
5185 return -EINVAL;
5186 ops->flags = *(u64 *)(udata + moff);
5187 return 1;
5188 case offsetof(struct sched_ext_ops, name):
5189 ret = bpf_obj_name_cpy(ops->name, uops->name,
5190 sizeof(ops->name));
5191 if (ret < 0)
5192 return ret;
5193 if (ret == 0)
5194 return -EINVAL;
5195 return 1;
5196 case offsetof(struct sched_ext_ops, timeout_ms):
5197 if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
5198 SCX_WATCHDOG_MAX_TIMEOUT)
5199 return -E2BIG;
5200 ops->timeout_ms = *(u32 *)(udata + moff);
5201 return 1;
5202 case offsetof(struct sched_ext_ops, exit_dump_len):
5203 ops->exit_dump_len =
5204 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
5205 return 1;
5206 case offsetof(struct sched_ext_ops, hotplug_seq):
5207 ops->hotplug_seq = *(u64 *)(udata + moff);
5208 return 1;
5209 }
5210
5211 return 0;
5212 }
5213
bpf_scx_check_member(const struct btf_type * t,const struct btf_member * member,const struct bpf_prog * prog)5214 static int bpf_scx_check_member(const struct btf_type *t,
5215 const struct btf_member *member,
5216 const struct bpf_prog *prog)
5217 {
5218 u32 moff = __btf_member_bit_offset(t, member) / 8;
5219
5220 switch (moff) {
5221 case offsetof(struct sched_ext_ops, init_task):
5222 #ifdef CONFIG_EXT_GROUP_SCHED
5223 case offsetof(struct sched_ext_ops, cgroup_init):
5224 case offsetof(struct sched_ext_ops, cgroup_exit):
5225 case offsetof(struct sched_ext_ops, cgroup_prep_move):
5226 #endif
5227 case offsetof(struct sched_ext_ops, cpu_online):
5228 case offsetof(struct sched_ext_ops, cpu_offline):
5229 case offsetof(struct sched_ext_ops, init):
5230 case offsetof(struct sched_ext_ops, exit):
5231 break;
5232 default:
5233 if (prog->sleepable)
5234 return -EINVAL;
5235 }
5236
5237 return 0;
5238 }
5239
bpf_scx_reg(void * kdata,struct bpf_link * link)5240 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
5241 {
5242 return scx_enable(kdata, link);
5243 }
5244
bpf_scx_unreg(void * kdata,struct bpf_link * link)5245 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
5246 {
5247 struct sched_ext_ops *ops = kdata;
5248 struct scx_sched *sch = ops->priv;
5249
5250 scx_disable(SCX_EXIT_UNREG);
5251 kthread_flush_work(&sch->disable_work);
5252 kobject_put(&sch->kobj);
5253 }
5254
bpf_scx_init(struct btf * btf)5255 static int bpf_scx_init(struct btf *btf)
5256 {
5257 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]);
5258
5259 return 0;
5260 }
5261
bpf_scx_update(void * kdata,void * old_kdata,struct bpf_link * link)5262 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
5263 {
5264 /*
5265 * sched_ext does not support updating the actively-loaded BPF
5266 * scheduler, as registering a BPF scheduler can always fail if the
5267 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
5268 * etc. Similarly, we can always race with unregistration happening
5269 * elsewhere, such as with sysrq.
5270 */
5271 return -EOPNOTSUPP;
5272 }
5273
bpf_scx_validate(void * kdata)5274 static int bpf_scx_validate(void *kdata)
5275 {
5276 return 0;
5277 }
5278
sched_ext_ops__select_cpu(struct task_struct * p,s32 prev_cpu,u64 wake_flags)5279 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
sched_ext_ops__enqueue(struct task_struct * p,u64 enq_flags)5280 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__dequeue(struct task_struct * p,u64 enq_flags)5281 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__dispatch(s32 prev_cpu,struct task_struct * prev__nullable)5282 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {}
sched_ext_ops__tick(struct task_struct * p)5283 static void sched_ext_ops__tick(struct task_struct *p) {}
sched_ext_ops__runnable(struct task_struct * p,u64 enq_flags)5284 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__running(struct task_struct * p)5285 static void sched_ext_ops__running(struct task_struct *p) {}
sched_ext_ops__stopping(struct task_struct * p,bool runnable)5286 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {}
sched_ext_ops__quiescent(struct task_struct * p,u64 deq_flags)5287 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {}
sched_ext_ops__yield(struct task_struct * from,struct task_struct * to__nullable)5288 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; }
sched_ext_ops__core_sched_before(struct task_struct * a,struct task_struct * b)5289 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; }
sched_ext_ops__set_weight(struct task_struct * p,u32 weight)5290 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {}
sched_ext_ops__set_cpumask(struct task_struct * p,const struct cpumask * mask)5291 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {}
sched_ext_ops__update_idle(s32 cpu,bool idle)5292 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {}
sched_ext_ops__cpu_acquire(s32 cpu,struct scx_cpu_acquire_args * args)5293 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {}
sched_ext_ops__cpu_release(s32 cpu,struct scx_cpu_release_args * args)5294 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {}
sched_ext_ops__init_task(struct task_struct * p,struct scx_init_task_args * args)5295 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
sched_ext_ops__exit_task(struct task_struct * p,struct scx_exit_task_args * args)5296 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {}
sched_ext_ops__enable(struct task_struct * p)5297 static void sched_ext_ops__enable(struct task_struct *p) {}
sched_ext_ops__disable(struct task_struct * p)5298 static void sched_ext_ops__disable(struct task_struct *p) {}
5299 #ifdef CONFIG_EXT_GROUP_SCHED
sched_ext_ops__cgroup_init(struct cgroup * cgrp,struct scx_cgroup_init_args * args)5300 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
sched_ext_ops__cgroup_exit(struct cgroup * cgrp)5301 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {}
sched_ext_ops__cgroup_prep_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)5302 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
sched_ext_ops__cgroup_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)5303 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
sched_ext_ops__cgroup_cancel_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)5304 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
sched_ext_ops__cgroup_set_weight(struct cgroup * cgrp,u32 weight)5305 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {}
sched_ext_ops__cgroup_set_bandwidth(struct cgroup * cgrp,u64 period_us,u64 quota_us,u64 burst_us)5306 static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {}
sched_ext_ops__cgroup_set_idle(struct cgroup * cgrp,bool idle)5307 static void sched_ext_ops__cgroup_set_idle(struct cgroup *cgrp, bool idle) {}
5308 #endif
sched_ext_ops__cpu_online(s32 cpu)5309 static void sched_ext_ops__cpu_online(s32 cpu) {}
sched_ext_ops__cpu_offline(s32 cpu)5310 static void sched_ext_ops__cpu_offline(s32 cpu) {}
sched_ext_ops__init(void)5311 static s32 sched_ext_ops__init(void) { return -EINVAL; }
sched_ext_ops__exit(struct scx_exit_info * info)5312 static void sched_ext_ops__exit(struct scx_exit_info *info) {}
sched_ext_ops__dump(struct scx_dump_ctx * ctx)5313 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {}
sched_ext_ops__dump_cpu(struct scx_dump_ctx * ctx,s32 cpu,bool idle)5314 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
sched_ext_ops__dump_task(struct scx_dump_ctx * ctx,struct task_struct * p)5315 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {}
5316
5317 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
5318 .select_cpu = sched_ext_ops__select_cpu,
5319 .enqueue = sched_ext_ops__enqueue,
5320 .dequeue = sched_ext_ops__dequeue,
5321 .dispatch = sched_ext_ops__dispatch,
5322 .tick = sched_ext_ops__tick,
5323 .runnable = sched_ext_ops__runnable,
5324 .running = sched_ext_ops__running,
5325 .stopping = sched_ext_ops__stopping,
5326 .quiescent = sched_ext_ops__quiescent,
5327 .yield = sched_ext_ops__yield,
5328 .core_sched_before = sched_ext_ops__core_sched_before,
5329 .set_weight = sched_ext_ops__set_weight,
5330 .set_cpumask = sched_ext_ops__set_cpumask,
5331 .update_idle = sched_ext_ops__update_idle,
5332 .cpu_acquire = sched_ext_ops__cpu_acquire,
5333 .cpu_release = sched_ext_ops__cpu_release,
5334 .init_task = sched_ext_ops__init_task,
5335 .exit_task = sched_ext_ops__exit_task,
5336 .enable = sched_ext_ops__enable,
5337 .disable = sched_ext_ops__disable,
5338 #ifdef CONFIG_EXT_GROUP_SCHED
5339 .cgroup_init = sched_ext_ops__cgroup_init,
5340 .cgroup_exit = sched_ext_ops__cgroup_exit,
5341 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move,
5342 .cgroup_move = sched_ext_ops__cgroup_move,
5343 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move,
5344 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight,
5345 .cgroup_set_bandwidth = sched_ext_ops__cgroup_set_bandwidth,
5346 .cgroup_set_idle = sched_ext_ops__cgroup_set_idle,
5347 #endif
5348 .cpu_online = sched_ext_ops__cpu_online,
5349 .cpu_offline = sched_ext_ops__cpu_offline,
5350 .init = sched_ext_ops__init,
5351 .exit = sched_ext_ops__exit,
5352 .dump = sched_ext_ops__dump,
5353 .dump_cpu = sched_ext_ops__dump_cpu,
5354 .dump_task = sched_ext_ops__dump_task,
5355 };
5356
5357 static struct bpf_struct_ops bpf_sched_ext_ops = {
5358 .verifier_ops = &bpf_scx_verifier_ops,
5359 .reg = bpf_scx_reg,
5360 .unreg = bpf_scx_unreg,
5361 .check_member = bpf_scx_check_member,
5362 .init_member = bpf_scx_init_member,
5363 .init = bpf_scx_init,
5364 .update = bpf_scx_update,
5365 .validate = bpf_scx_validate,
5366 .name = "sched_ext_ops",
5367 .owner = THIS_MODULE,
5368 .cfi_stubs = &__bpf_ops_sched_ext_ops
5369 };
5370
5371
5372 /********************************************************************************
5373 * System integration and init.
5374 */
5375
sysrq_handle_sched_ext_reset(u8 key)5376 static void sysrq_handle_sched_ext_reset(u8 key)
5377 {
5378 scx_disable(SCX_EXIT_SYSRQ);
5379 }
5380
5381 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
5382 .handler = sysrq_handle_sched_ext_reset,
5383 .help_msg = "reset-sched-ext(S)",
5384 .action_msg = "Disable sched_ext and revert all tasks to CFS",
5385 .enable_mask = SYSRQ_ENABLE_RTNICE,
5386 };
5387
sysrq_handle_sched_ext_dump(u8 key)5388 static void sysrq_handle_sched_ext_dump(u8 key)
5389 {
5390 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
5391
5392 if (scx_enabled())
5393 scx_dump_state(&ei, 0);
5394 }
5395
5396 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
5397 .handler = sysrq_handle_sched_ext_dump,
5398 .help_msg = "dump-sched-ext(D)",
5399 .action_msg = "Trigger sched_ext debug dump",
5400 .enable_mask = SYSRQ_ENABLE_RTNICE,
5401 };
5402
can_skip_idle_kick(struct rq * rq)5403 static bool can_skip_idle_kick(struct rq *rq)
5404 {
5405 lockdep_assert_rq_held(rq);
5406
5407 /*
5408 * We can skip idle kicking if @rq is going to go through at least one
5409 * full SCX scheduling cycle before going idle. Just checking whether
5410 * curr is not idle is insufficient because we could be racing
5411 * balance_one() trying to pull the next task from a remote rq, which
5412 * may fail, and @rq may become idle afterwards.
5413 *
5414 * The race window is small and we don't and can't guarantee that @rq is
5415 * only kicked while idle anyway. Skip only when sure.
5416 */
5417 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
5418 }
5419
kick_one_cpu(s32 cpu,struct rq * this_rq,unsigned long * ksyncs)5420 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *ksyncs)
5421 {
5422 struct rq *rq = cpu_rq(cpu);
5423 struct scx_rq *this_scx = &this_rq->scx;
5424 const struct sched_class *cur_class;
5425 bool should_wait = false;
5426 unsigned long flags;
5427
5428 raw_spin_rq_lock_irqsave(rq, flags);
5429 cur_class = rq->curr->sched_class;
5430
5431 /*
5432 * During CPU hotplug, a CPU may depend on kicking itself to make
5433 * forward progress. Allow kicking self regardless of online state. If
5434 * @cpu is running a higher class task, we have no control over @cpu.
5435 * Skip kicking.
5436 */
5437 if ((cpu_online(cpu) || cpu == cpu_of(this_rq)) &&
5438 !sched_class_above(cur_class, &ext_sched_class)) {
5439 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
5440 if (cur_class == &ext_sched_class)
5441 rq->curr->scx.slice = 0;
5442 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5443 }
5444
5445 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
5446 if (cur_class == &ext_sched_class) {
5447 ksyncs[cpu] = rq->scx.kick_sync;
5448 should_wait = true;
5449 } else {
5450 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5451 }
5452 }
5453
5454 resched_curr(rq);
5455 } else {
5456 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5457 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5458 }
5459
5460 raw_spin_rq_unlock_irqrestore(rq, flags);
5461
5462 return should_wait;
5463 }
5464
kick_one_cpu_if_idle(s32 cpu,struct rq * this_rq)5465 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
5466 {
5467 struct rq *rq = cpu_rq(cpu);
5468 unsigned long flags;
5469
5470 raw_spin_rq_lock_irqsave(rq, flags);
5471
5472 if (!can_skip_idle_kick(rq) &&
5473 (cpu_online(cpu) || cpu == cpu_of(this_rq)))
5474 resched_curr(rq);
5475
5476 raw_spin_rq_unlock_irqrestore(rq, flags);
5477 }
5478
kick_cpus_irq_workfn(struct irq_work * irq_work)5479 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
5480 {
5481 struct rq *this_rq = this_rq();
5482 struct scx_rq *this_scx = &this_rq->scx;
5483 struct scx_kick_syncs __rcu *ksyncs_pcpu = __this_cpu_read(scx_kick_syncs);
5484 bool should_wait = false;
5485 unsigned long *ksyncs;
5486 s32 cpu;
5487
5488 if (unlikely(!ksyncs_pcpu)) {
5489 pr_warn_once("kick_cpus_irq_workfn() called with NULL scx_kick_syncs");
5490 return;
5491 }
5492
5493 ksyncs = rcu_dereference_bh(ksyncs_pcpu)->syncs;
5494
5495 for_each_cpu(cpu, this_scx->cpus_to_kick) {
5496 should_wait |= kick_one_cpu(cpu, this_rq, ksyncs);
5497 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
5498 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5499 }
5500
5501 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
5502 kick_one_cpu_if_idle(cpu, this_rq);
5503 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5504 }
5505
5506 if (!should_wait)
5507 return;
5508
5509 for_each_cpu(cpu, this_scx->cpus_to_wait) {
5510 unsigned long *wait_kick_sync = &cpu_rq(cpu)->scx.kick_sync;
5511
5512 /*
5513 * Busy-wait until the task running at the time of kicking is no
5514 * longer running. This can be used to implement e.g. core
5515 * scheduling.
5516 *
5517 * smp_cond_load_acquire() pairs with store_releases in
5518 * pick_task_scx() and put_prev_task_scx(). The former breaks
5519 * the wait if SCX's scheduling path is entered even if the same
5520 * task is picked subsequently. The latter is necessary to break
5521 * the wait when $cpu is taken by a higher sched class.
5522 */
5523 if (cpu != cpu_of(this_rq))
5524 smp_cond_load_acquire(wait_kick_sync, VAL != ksyncs[cpu]);
5525
5526 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5527 }
5528 }
5529
5530 /**
5531 * print_scx_info - print out sched_ext scheduler state
5532 * @log_lvl: the log level to use when printing
5533 * @p: target task
5534 *
5535 * If a sched_ext scheduler is enabled, print the name and state of the
5536 * scheduler. If @p is on sched_ext, print further information about the task.
5537 *
5538 * This function can be safely called on any task as long as the task_struct
5539 * itself is accessible. While safe, this function isn't synchronized and may
5540 * print out mixups or garbages of limited length.
5541 */
print_scx_info(const char * log_lvl,struct task_struct * p)5542 void print_scx_info(const char *log_lvl, struct task_struct *p)
5543 {
5544 struct scx_sched *sch = scx_root;
5545 enum scx_enable_state state = scx_enable_state();
5546 const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
5547 char runnable_at_buf[22] = "?";
5548 struct sched_class *class;
5549 unsigned long runnable_at;
5550
5551 if (state == SCX_DISABLED)
5552 return;
5553
5554 /*
5555 * Carefully check if the task was running on sched_ext, and then
5556 * carefully copy the time it's been runnable, and its state.
5557 */
5558 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
5559 class != &ext_sched_class) {
5560 printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name,
5561 scx_enable_state_str[state], all);
5562 return;
5563 }
5564
5565 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
5566 sizeof(runnable_at)))
5567 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
5568 jiffies_delta_msecs(runnable_at, jiffies));
5569
5570 /* print everything onto one line to conserve console space */
5571 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
5572 log_lvl, sch->ops.name, scx_enable_state_str[state], all,
5573 runnable_at_buf);
5574 }
5575
scx_pm_handler(struct notifier_block * nb,unsigned long event,void * ptr)5576 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
5577 {
5578 /*
5579 * SCX schedulers often have userspace components which are sometimes
5580 * involved in critial scheduling paths. PM operations involve freezing
5581 * userspace which can lead to scheduling misbehaviors including stalls.
5582 * Let's bypass while PM operations are in progress.
5583 */
5584 switch (event) {
5585 case PM_HIBERNATION_PREPARE:
5586 case PM_SUSPEND_PREPARE:
5587 case PM_RESTORE_PREPARE:
5588 scx_bypass(true);
5589 break;
5590 case PM_POST_HIBERNATION:
5591 case PM_POST_SUSPEND:
5592 case PM_POST_RESTORE:
5593 scx_bypass(false);
5594 break;
5595 }
5596
5597 return NOTIFY_OK;
5598 }
5599
5600 static struct notifier_block scx_pm_notifier = {
5601 .notifier_call = scx_pm_handler,
5602 };
5603
init_sched_ext_class(void)5604 void __init init_sched_ext_class(void)
5605 {
5606 s32 cpu, v;
5607
5608 /*
5609 * The following is to prevent the compiler from optimizing out the enum
5610 * definitions so that BPF scheduler implementations can use them
5611 * through the generated vmlinux.h.
5612 */
5613 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
5614 SCX_TG_ONLINE);
5615
5616 scx_idle_init_masks();
5617
5618 for_each_possible_cpu(cpu) {
5619 struct rq *rq = cpu_rq(cpu);
5620 int n = cpu_to_node(cpu);
5621
5622 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
5623 init_dsq(&rq->scx.bypass_dsq, SCX_DSQ_BYPASS);
5624 INIT_LIST_HEAD(&rq->scx.runnable_list);
5625 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
5626
5627 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n));
5628 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n));
5629 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n));
5630 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n));
5631 rq->scx.deferred_irq_work = IRQ_WORK_INIT_HARD(deferred_irq_workfn);
5632 rq->scx.kick_cpus_irq_work = IRQ_WORK_INIT_HARD(kick_cpus_irq_workfn);
5633
5634 if (cpu_online(cpu))
5635 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
5636 }
5637
5638 register_sysrq_key('S', &sysrq_sched_ext_reset_op);
5639 register_sysrq_key('D', &sysrq_sched_ext_dump_op);
5640 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
5641 }
5642
5643
5644 /********************************************************************************
5645 * Helpers that can be called from the BPF scheduler.
5646 */
scx_dsq_insert_preamble(struct scx_sched * sch,struct task_struct * p,u64 enq_flags)5647 static bool scx_dsq_insert_preamble(struct scx_sched *sch, struct task_struct *p,
5648 u64 enq_flags)
5649 {
5650 if (!scx_kf_allowed(sch, SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
5651 return false;
5652
5653 lockdep_assert_irqs_disabled();
5654
5655 if (unlikely(!p)) {
5656 scx_error(sch, "called with NULL task");
5657 return false;
5658 }
5659
5660 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
5661 scx_error(sch, "invalid enq_flags 0x%llx", enq_flags);
5662 return false;
5663 }
5664
5665 return true;
5666 }
5667
scx_dsq_insert_commit(struct scx_sched * sch,struct task_struct * p,u64 dsq_id,u64 enq_flags)5668 static void scx_dsq_insert_commit(struct scx_sched *sch, struct task_struct *p,
5669 u64 dsq_id, u64 enq_flags)
5670 {
5671 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
5672 struct task_struct *ddsp_task;
5673
5674 ddsp_task = __this_cpu_read(direct_dispatch_task);
5675 if (ddsp_task) {
5676 mark_direct_dispatch(sch, ddsp_task, p, dsq_id, enq_flags);
5677 return;
5678 }
5679
5680 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
5681 scx_error(sch, "dispatch buffer overflow");
5682 return;
5683 }
5684
5685 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
5686 .task = p,
5687 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
5688 .dsq_id = dsq_id,
5689 .enq_flags = enq_flags,
5690 };
5691 }
5692
5693 __bpf_kfunc_start_defs();
5694
5695 /**
5696 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ
5697 * @p: task_struct to insert
5698 * @dsq_id: DSQ to insert into
5699 * @slice: duration @p can run for in nsecs, 0 to keep the current value
5700 * @enq_flags: SCX_ENQ_*
5701 *
5702 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to
5703 * call this function spuriously. Can be called from ops.enqueue(),
5704 * ops.select_cpu(), and ops.dispatch().
5705 *
5706 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
5707 * and @p must match the task being enqueued.
5708 *
5709 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
5710 * will be directly inserted into the corresponding dispatch queue after
5711 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be
5712 * inserted into the local DSQ of the CPU returned by ops.select_cpu().
5713 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
5714 * task is inserted.
5715 *
5716 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
5717 * and this function can be called upto ops.dispatch_max_batch times to insert
5718 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
5719 * remaining slots. scx_bpf_dsq_move_to_local() flushes the batch and resets the
5720 * counter.
5721 *
5722 * This function doesn't have any locking restrictions and may be called under
5723 * BPF locks (in the future when BPF introduces more flexible locking).
5724 *
5725 * @p is allowed to run for @slice. The scheduling path is triggered on slice
5726 * exhaustion. If zero, the current residual slice is maintained. If
5727 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
5728 * scx_bpf_kick_cpu() to trigger scheduling.
5729 *
5730 * Returns %true on successful insertion, %false on failure. On the root
5731 * scheduler, %false return triggers scheduler abort and the caller doesn't need
5732 * to check the return value.
5733 */
scx_bpf_dsq_insert___v2(struct task_struct * p,u64 dsq_id,u64 slice,u64 enq_flags)5734 __bpf_kfunc bool scx_bpf_dsq_insert___v2(struct task_struct *p, u64 dsq_id,
5735 u64 slice, u64 enq_flags)
5736 {
5737 struct scx_sched *sch;
5738
5739 guard(rcu)();
5740 sch = rcu_dereference(scx_root);
5741 if (unlikely(!sch))
5742 return false;
5743
5744 if (!scx_dsq_insert_preamble(sch, p, enq_flags))
5745 return false;
5746
5747 if (slice)
5748 p->scx.slice = slice;
5749 else
5750 p->scx.slice = p->scx.slice ?: 1;
5751
5752 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags);
5753
5754 return true;
5755 }
5756
5757 /*
5758 * COMPAT: Will be removed in v6.23 along with the ___v2 suffix.
5759 */
scx_bpf_dsq_insert(struct task_struct * p,u64 dsq_id,u64 slice,u64 enq_flags)5760 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id,
5761 u64 slice, u64 enq_flags)
5762 {
5763 scx_bpf_dsq_insert___v2(p, dsq_id, slice, enq_flags);
5764 }
5765
scx_dsq_insert_vtime(struct scx_sched * sch,struct task_struct * p,u64 dsq_id,u64 slice,u64 vtime,u64 enq_flags)5766 static bool scx_dsq_insert_vtime(struct scx_sched *sch, struct task_struct *p,
5767 u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags)
5768 {
5769 if (!scx_dsq_insert_preamble(sch, p, enq_flags))
5770 return false;
5771
5772 if (slice)
5773 p->scx.slice = slice;
5774 else
5775 p->scx.slice = p->scx.slice ?: 1;
5776
5777 p->scx.dsq_vtime = vtime;
5778
5779 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
5780
5781 return true;
5782 }
5783
5784 struct scx_bpf_dsq_insert_vtime_args {
5785 /* @p can't be packed together as KF_RCU is not transitive */
5786 u64 dsq_id;
5787 u64 slice;
5788 u64 vtime;
5789 u64 enq_flags;
5790 };
5791
5792 /**
5793 * __scx_bpf_dsq_insert_vtime - Arg-wrapped vtime DSQ insertion
5794 * @p: task_struct to insert
5795 * @args: struct containing the rest of the arguments
5796 * @args->dsq_id: DSQ to insert into
5797 * @args->slice: duration @p can run for in nsecs, 0 to keep the current value
5798 * @args->vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
5799 * @args->enq_flags: SCX_ENQ_*
5800 *
5801 * Wrapper kfunc that takes arguments via struct to work around BPF's 5 argument
5802 * limit. BPF programs should use scx_bpf_dsq_insert_vtime() which is provided
5803 * as an inline wrapper in common.bpf.h.
5804 *
5805 * Insert @p into the vtime priority queue of the DSQ identified by
5806 * @args->dsq_id. Tasks queued into the priority queue are ordered by
5807 * @args->vtime. All other aspects are identical to scx_bpf_dsq_insert().
5808 *
5809 * @args->vtime ordering is according to time_before64() which considers
5810 * wrapping. A numerically larger vtime may indicate an earlier position in the
5811 * ordering and vice-versa.
5812 *
5813 * A DSQ can only be used as a FIFO or priority queue at any given time and this
5814 * function must not be called on a DSQ which already has one or more FIFO tasks
5815 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and
5816 * SCX_DSQ_GLOBAL) cannot be used as priority queues.
5817 *
5818 * Returns %true on successful insertion, %false on failure. On the root
5819 * scheduler, %false return triggers scheduler abort and the caller doesn't need
5820 * to check the return value.
5821 */
5822 __bpf_kfunc bool
__scx_bpf_dsq_insert_vtime(struct task_struct * p,struct scx_bpf_dsq_insert_vtime_args * args)5823 __scx_bpf_dsq_insert_vtime(struct task_struct *p,
5824 struct scx_bpf_dsq_insert_vtime_args *args)
5825 {
5826 struct scx_sched *sch;
5827
5828 guard(rcu)();
5829
5830 sch = rcu_dereference(scx_root);
5831 if (unlikely(!sch))
5832 return false;
5833
5834 return scx_dsq_insert_vtime(sch, p, args->dsq_id, args->slice,
5835 args->vtime, args->enq_flags);
5836 }
5837
5838 /*
5839 * COMPAT: Will be removed in v6.23.
5840 */
scx_bpf_dsq_insert_vtime(struct task_struct * p,u64 dsq_id,u64 slice,u64 vtime,u64 enq_flags)5841 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id,
5842 u64 slice, u64 vtime, u64 enq_flags)
5843 {
5844 struct scx_sched *sch;
5845
5846 guard(rcu)();
5847
5848 sch = rcu_dereference(scx_root);
5849 if (unlikely(!sch))
5850 return;
5851
5852 scx_dsq_insert_vtime(sch, p, dsq_id, slice, vtime, enq_flags);
5853 }
5854
5855 __bpf_kfunc_end_defs();
5856
5857 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
5858 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU)
5859 BTF_ID_FLAGS(func, scx_bpf_dsq_insert___v2, KF_RCU)
5860 BTF_ID_FLAGS(func, __scx_bpf_dsq_insert_vtime, KF_RCU)
5861 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU)
5862 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
5863
5864 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
5865 .owner = THIS_MODULE,
5866 .set = &scx_kfunc_ids_enqueue_dispatch,
5867 };
5868
scx_dsq_move(struct bpf_iter_scx_dsq_kern * kit,struct task_struct * p,u64 dsq_id,u64 enq_flags)5869 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit,
5870 struct task_struct *p, u64 dsq_id, u64 enq_flags)
5871 {
5872 struct scx_sched *sch = scx_root;
5873 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
5874 struct rq *this_rq, *src_rq, *locked_rq;
5875 bool dispatched = false;
5876 bool in_balance;
5877 unsigned long flags;
5878
5879 if (!scx_kf_allowed_if_unlocked() &&
5880 !scx_kf_allowed(sch, SCX_KF_DISPATCH))
5881 return false;
5882
5883 /*
5884 * If the BPF scheduler keeps calling this function repeatedly, it can
5885 * cause similar live-lock conditions as consume_dispatch_q().
5886 */
5887 if (unlikely(READ_ONCE(scx_aborting)))
5888 return false;
5889
5890 /*
5891 * Can be called from either ops.dispatch() locking this_rq() or any
5892 * context where no rq lock is held. If latter, lock @p's task_rq which
5893 * we'll likely need anyway.
5894 */
5895 src_rq = task_rq(p);
5896
5897 local_irq_save(flags);
5898 this_rq = this_rq();
5899 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
5900
5901 if (in_balance) {
5902 if (this_rq != src_rq) {
5903 raw_spin_rq_unlock(this_rq);
5904 raw_spin_rq_lock(src_rq);
5905 }
5906 } else {
5907 raw_spin_rq_lock(src_rq);
5908 }
5909
5910 locked_rq = src_rq;
5911 raw_spin_lock(&src_dsq->lock);
5912
5913 /*
5914 * Did someone else get to it? @p could have already left $src_dsq, got
5915 * re-enqueud, or be in the process of being consumed by someone else.
5916 */
5917 if (unlikely(p->scx.dsq != src_dsq ||
5918 u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
5919 p->scx.holding_cpu >= 0) ||
5920 WARN_ON_ONCE(src_rq != task_rq(p))) {
5921 raw_spin_unlock(&src_dsq->lock);
5922 goto out;
5923 }
5924
5925 /* @p is still on $src_dsq and stable, determine the destination */
5926 dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p);
5927
5928 /*
5929 * Apply vtime and slice updates before moving so that the new time is
5930 * visible before inserting into $dst_dsq. @p is still on $src_dsq but
5931 * this is safe as we're locking it.
5932 */
5933 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
5934 p->scx.dsq_vtime = kit->vtime;
5935 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
5936 p->scx.slice = kit->slice;
5937
5938 /* execute move */
5939 locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq);
5940 dispatched = true;
5941 out:
5942 if (in_balance) {
5943 if (this_rq != locked_rq) {
5944 raw_spin_rq_unlock(locked_rq);
5945 raw_spin_rq_lock(this_rq);
5946 }
5947 } else {
5948 raw_spin_rq_unlock_irqrestore(locked_rq, flags);
5949 }
5950
5951 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
5952 __SCX_DSQ_ITER_HAS_VTIME);
5953 return dispatched;
5954 }
5955
5956 __bpf_kfunc_start_defs();
5957
5958 /**
5959 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
5960 *
5961 * Can only be called from ops.dispatch().
5962 */
scx_bpf_dispatch_nr_slots(void)5963 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
5964 {
5965 struct scx_sched *sch;
5966
5967 guard(rcu)();
5968
5969 sch = rcu_dereference(scx_root);
5970 if (unlikely(!sch))
5971 return 0;
5972
5973 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
5974 return 0;
5975
5976 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
5977 }
5978
5979 /**
5980 * scx_bpf_dispatch_cancel - Cancel the latest dispatch
5981 *
5982 * Cancel the latest dispatch. Can be called multiple times to cancel further
5983 * dispatches. Can only be called from ops.dispatch().
5984 */
scx_bpf_dispatch_cancel(void)5985 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
5986 {
5987 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
5988 struct scx_sched *sch;
5989
5990 guard(rcu)();
5991
5992 sch = rcu_dereference(scx_root);
5993 if (unlikely(!sch))
5994 return;
5995
5996 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
5997 return;
5998
5999 if (dspc->cursor > 0)
6000 dspc->cursor--;
6001 else
6002 scx_error(sch, "dispatch buffer underflow");
6003 }
6004
6005 /**
6006 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ
6007 * @dsq_id: DSQ to move task from
6008 *
6009 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's
6010 * local DSQ for execution. Can only be called from ops.dispatch().
6011 *
6012 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert()
6013 * before trying to move from the specified DSQ. It may also grab rq locks and
6014 * thus can't be called under any BPF locks.
6015 *
6016 * Returns %true if a task has been moved, %false if there isn't any task to
6017 * move.
6018 */
scx_bpf_dsq_move_to_local(u64 dsq_id)6019 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id)
6020 {
6021 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6022 struct scx_dispatch_q *dsq;
6023 struct scx_sched *sch;
6024
6025 guard(rcu)();
6026
6027 sch = rcu_dereference(scx_root);
6028 if (unlikely(!sch))
6029 return false;
6030
6031 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
6032 return false;
6033
6034 flush_dispatch_buf(sch, dspc->rq);
6035
6036 dsq = find_user_dsq(sch, dsq_id);
6037 if (unlikely(!dsq)) {
6038 scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id);
6039 return false;
6040 }
6041
6042 if (consume_dispatch_q(sch, dspc->rq, dsq)) {
6043 /*
6044 * A successfully consumed task can be dequeued before it starts
6045 * running while the CPU is trying to migrate other dispatched
6046 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
6047 * local DSQ.
6048 */
6049 dspc->nr_tasks++;
6050 return true;
6051 } else {
6052 return false;
6053 }
6054 }
6055
6056 /**
6057 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs
6058 * @it__iter: DSQ iterator in progress
6059 * @slice: duration the moved task can run for in nsecs
6060 *
6061 * Override the slice of the next task that will be moved from @it__iter using
6062 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous
6063 * slice duration is kept.
6064 */
scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq * it__iter,u64 slice)6065 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter,
6066 u64 slice)
6067 {
6068 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6069
6070 kit->slice = slice;
6071 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
6072 }
6073
6074 /**
6075 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs
6076 * @it__iter: DSQ iterator in progress
6077 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
6078 *
6079 * Override the vtime of the next task that will be moved from @it__iter using
6080 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice
6081 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the
6082 * override is ignored and cleared.
6083 */
scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq * it__iter,u64 vtime)6084 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter,
6085 u64 vtime)
6086 {
6087 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6088
6089 kit->vtime = vtime;
6090 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
6091 }
6092
6093 /**
6094 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ
6095 * @it__iter: DSQ iterator in progress
6096 * @p: task to transfer
6097 * @dsq_id: DSQ to move @p to
6098 * @enq_flags: SCX_ENQ_*
6099 *
6100 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
6101 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
6102 * be the destination.
6103 *
6104 * For the transfer to be successful, @p must still be on the DSQ and have been
6105 * queued before the DSQ iteration started. This function doesn't care whether
6106 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
6107 * been queued before the iteration started.
6108 *
6109 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update.
6110 *
6111 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
6112 * lock (e.g. BPF timers or SYSCALL programs).
6113 *
6114 * Returns %true if @p has been consumed, %false if @p had already been
6115 * consumed, dequeued, or, for sub-scheds, @dsq_id points to a disallowed local
6116 * DSQ.
6117 */
scx_bpf_dsq_move(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)6118 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter,
6119 struct task_struct *p, u64 dsq_id,
6120 u64 enq_flags)
6121 {
6122 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
6123 p, dsq_id, enq_flags);
6124 }
6125
6126 /**
6127 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ
6128 * @it__iter: DSQ iterator in progress
6129 * @p: task to transfer
6130 * @dsq_id: DSQ to move @p to
6131 * @enq_flags: SCX_ENQ_*
6132 *
6133 * Transfer @p which is on the DSQ currently iterated by @it__iter to the
6134 * priority queue of the DSQ specified by @dsq_id. The destination must be a
6135 * user DSQ as only user DSQs support priority queue.
6136 *
6137 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice()
6138 * and scx_bpf_dsq_move_set_vtime() to update.
6139 *
6140 * All other aspects are identical to scx_bpf_dsq_move(). See
6141 * scx_bpf_dsq_insert_vtime() for more information on @vtime.
6142 */
scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)6143 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter,
6144 struct task_struct *p, u64 dsq_id,
6145 u64 enq_flags)
6146 {
6147 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
6148 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6149 }
6150
6151 __bpf_kfunc_end_defs();
6152
6153 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
6154 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
6155 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
6156 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local)
6157 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU)
6158 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU)
6159 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
6160 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
6161 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
6162
6163 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
6164 .owner = THIS_MODULE,
6165 .set = &scx_kfunc_ids_dispatch,
6166 };
6167
reenq_local(struct rq * rq)6168 static u32 reenq_local(struct rq *rq)
6169 {
6170 LIST_HEAD(tasks);
6171 u32 nr_enqueued = 0;
6172 struct task_struct *p, *n;
6173
6174 lockdep_assert_rq_held(rq);
6175
6176 /*
6177 * The BPF scheduler may choose to dispatch tasks back to
6178 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
6179 * first to avoid processing the same tasks repeatedly.
6180 */
6181 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
6182 scx.dsq_list.node) {
6183 /*
6184 * If @p is being migrated, @p's current CPU may not agree with
6185 * its allowed CPUs and the migration_cpu_stop is about to
6186 * deactivate and re-activate @p anyway. Skip re-enqueueing.
6187 *
6188 * While racing sched property changes may also dequeue and
6189 * re-enqueue a migrating task while its current CPU and allowed
6190 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
6191 * the current local DSQ for running tasks and thus are not
6192 * visible to the BPF scheduler.
6193 */
6194 if (p->migration_pending)
6195 continue;
6196
6197 dispatch_dequeue(rq, p);
6198 list_add_tail(&p->scx.dsq_list.node, &tasks);
6199 }
6200
6201 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
6202 list_del_init(&p->scx.dsq_list.node);
6203 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
6204 nr_enqueued++;
6205 }
6206
6207 return nr_enqueued;
6208 }
6209
6210 __bpf_kfunc_start_defs();
6211
6212 /**
6213 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6214 *
6215 * Iterate over all of the tasks currently enqueued on the local DSQ of the
6216 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
6217 * processed tasks. Can only be called from ops.cpu_release().
6218 *
6219 * COMPAT: Will be removed in v6.23 along with the ___v2 suffix on the void
6220 * returning variant that can be called from anywhere.
6221 */
scx_bpf_reenqueue_local(void)6222 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
6223 {
6224 struct scx_sched *sch;
6225 struct rq *rq;
6226
6227 guard(rcu)();
6228 sch = rcu_dereference(scx_root);
6229 if (unlikely(!sch))
6230 return 0;
6231
6232 if (!scx_kf_allowed(sch, SCX_KF_CPU_RELEASE))
6233 return 0;
6234
6235 rq = cpu_rq(smp_processor_id());
6236 lockdep_assert_rq_held(rq);
6237
6238 return reenq_local(rq);
6239 }
6240
6241 __bpf_kfunc_end_defs();
6242
6243 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
6244 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
6245 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
6246
6247 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
6248 .owner = THIS_MODULE,
6249 .set = &scx_kfunc_ids_cpu_release,
6250 };
6251
6252 __bpf_kfunc_start_defs();
6253
6254 /**
6255 * scx_bpf_create_dsq - Create a custom DSQ
6256 * @dsq_id: DSQ to create
6257 * @node: NUMA node to allocate from
6258 *
6259 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
6260 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
6261 */
scx_bpf_create_dsq(u64 dsq_id,s32 node)6262 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
6263 {
6264 struct scx_dispatch_q *dsq;
6265 struct scx_sched *sch;
6266 s32 ret;
6267
6268 if (unlikely(node >= (int)nr_node_ids ||
6269 (node < 0 && node != NUMA_NO_NODE)))
6270 return -EINVAL;
6271
6272 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN))
6273 return -EINVAL;
6274
6275 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
6276 if (!dsq)
6277 return -ENOMEM;
6278
6279 init_dsq(dsq, dsq_id);
6280
6281 rcu_read_lock();
6282
6283 sch = rcu_dereference(scx_root);
6284 if (sch)
6285 ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node,
6286 dsq_hash_params);
6287 else
6288 ret = -ENODEV;
6289
6290 rcu_read_unlock();
6291 if (ret)
6292 kfree(dsq);
6293 return ret;
6294 }
6295
6296 __bpf_kfunc_end_defs();
6297
6298 BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
6299 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
6300 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU)
6301 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU)
6302 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
6303 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
6304 BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
6305
6306 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
6307 .owner = THIS_MODULE,
6308 .set = &scx_kfunc_ids_unlocked,
6309 };
6310
6311 __bpf_kfunc_start_defs();
6312
6313 /**
6314 * scx_bpf_task_set_slice - Set task's time slice
6315 * @p: task of interest
6316 * @slice: time slice to set in nsecs
6317 *
6318 * Set @p's time slice to @slice. Returns %true on success, %false if the
6319 * calling scheduler doesn't have authority over @p.
6320 */
scx_bpf_task_set_slice(struct task_struct * p,u64 slice)6321 __bpf_kfunc bool scx_bpf_task_set_slice(struct task_struct *p, u64 slice)
6322 {
6323 p->scx.slice = slice;
6324 return true;
6325 }
6326
6327 /**
6328 * scx_bpf_task_set_dsq_vtime - Set task's virtual time for DSQ ordering
6329 * @p: task of interest
6330 * @vtime: virtual time to set
6331 *
6332 * Set @p's virtual time to @vtime. Returns %true on success, %false if the
6333 * calling scheduler doesn't have authority over @p.
6334 */
scx_bpf_task_set_dsq_vtime(struct task_struct * p,u64 vtime)6335 __bpf_kfunc bool scx_bpf_task_set_dsq_vtime(struct task_struct *p, u64 vtime)
6336 {
6337 p->scx.dsq_vtime = vtime;
6338 return true;
6339 }
6340
scx_kick_cpu(struct scx_sched * sch,s32 cpu,u64 flags)6341 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags)
6342 {
6343 struct rq *this_rq;
6344 unsigned long irq_flags;
6345
6346 if (!ops_cpu_valid(sch, cpu, NULL))
6347 return;
6348
6349 local_irq_save(irq_flags);
6350
6351 this_rq = this_rq();
6352
6353 /*
6354 * While bypassing for PM ops, IRQ handling may not be online which can
6355 * lead to irq_work_queue() malfunction such as infinite busy wait for
6356 * IRQ status update. Suppress kicking.
6357 */
6358 if (scx_rq_bypassing(this_rq))
6359 goto out;
6360
6361 /*
6362 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
6363 * rq locks. We can probably be smarter and avoid bouncing if called
6364 * from ops which don't hold a rq lock.
6365 */
6366 if (flags & SCX_KICK_IDLE) {
6367 struct rq *target_rq = cpu_rq(cpu);
6368
6369 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
6370 scx_error(sch, "PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
6371
6372 if (raw_spin_rq_trylock(target_rq)) {
6373 if (can_skip_idle_kick(target_rq)) {
6374 raw_spin_rq_unlock(target_rq);
6375 goto out;
6376 }
6377 raw_spin_rq_unlock(target_rq);
6378 }
6379 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
6380 } else {
6381 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
6382
6383 if (flags & SCX_KICK_PREEMPT)
6384 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
6385 if (flags & SCX_KICK_WAIT)
6386 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
6387 }
6388
6389 irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
6390 out:
6391 local_irq_restore(irq_flags);
6392 }
6393
6394 /**
6395 * scx_bpf_kick_cpu - Trigger reschedule on a CPU
6396 * @cpu: cpu to kick
6397 * @flags: %SCX_KICK_* flags
6398 *
6399 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
6400 * trigger rescheduling on a busy CPU. This can be called from any online
6401 * scx_ops operation and the actual kicking is performed asynchronously through
6402 * an irq work.
6403 */
scx_bpf_kick_cpu(s32 cpu,u64 flags)6404 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
6405 {
6406 struct scx_sched *sch;
6407
6408 guard(rcu)();
6409 sch = rcu_dereference(scx_root);
6410 if (likely(sch))
6411 scx_kick_cpu(sch, cpu, flags);
6412 }
6413
6414 /**
6415 * scx_bpf_dsq_nr_queued - Return the number of queued tasks
6416 * @dsq_id: id of the DSQ
6417 *
6418 * Return the number of tasks in the DSQ matching @dsq_id. If not found,
6419 * -%ENOENT is returned.
6420 */
scx_bpf_dsq_nr_queued(u64 dsq_id)6421 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
6422 {
6423 struct scx_sched *sch;
6424 struct scx_dispatch_q *dsq;
6425 s32 ret;
6426
6427 preempt_disable();
6428
6429 sch = rcu_dereference_sched(scx_root);
6430 if (unlikely(!sch)) {
6431 ret = -ENODEV;
6432 goto out;
6433 }
6434
6435 if (dsq_id == SCX_DSQ_LOCAL) {
6436 ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
6437 goto out;
6438 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
6439 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
6440
6441 if (ops_cpu_valid(sch, cpu, NULL)) {
6442 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
6443 goto out;
6444 }
6445 } else {
6446 dsq = find_user_dsq(sch, dsq_id);
6447 if (dsq) {
6448 ret = READ_ONCE(dsq->nr);
6449 goto out;
6450 }
6451 }
6452 ret = -ENOENT;
6453 out:
6454 preempt_enable();
6455 return ret;
6456 }
6457
6458 /**
6459 * scx_bpf_destroy_dsq - Destroy a custom DSQ
6460 * @dsq_id: DSQ to destroy
6461 *
6462 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
6463 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
6464 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
6465 * which doesn't exist. Can be called from any online scx_ops operations.
6466 */
scx_bpf_destroy_dsq(u64 dsq_id)6467 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
6468 {
6469 struct scx_sched *sch;
6470
6471 rcu_read_lock();
6472 sch = rcu_dereference(scx_root);
6473 if (sch)
6474 destroy_dsq(sch, dsq_id);
6475 rcu_read_unlock();
6476 }
6477
6478 /**
6479 * bpf_iter_scx_dsq_new - Create a DSQ iterator
6480 * @it: iterator to initialize
6481 * @dsq_id: DSQ to iterate
6482 * @flags: %SCX_DSQ_ITER_*
6483 *
6484 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
6485 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
6486 * tasks which are already queued when this function is invoked.
6487 */
bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq * it,u64 dsq_id,u64 flags)6488 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
6489 u64 flags)
6490 {
6491 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6492 struct scx_sched *sch;
6493
6494 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
6495 sizeof(struct bpf_iter_scx_dsq));
6496 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
6497 __alignof__(struct bpf_iter_scx_dsq));
6498 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
6499 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
6500
6501 /*
6502 * next() and destroy() will be called regardless of the return value.
6503 * Always clear $kit->dsq.
6504 */
6505 kit->dsq = NULL;
6506
6507 sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held());
6508 if (unlikely(!sch))
6509 return -ENODEV;
6510
6511 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
6512 return -EINVAL;
6513
6514 kit->dsq = find_user_dsq(sch, dsq_id);
6515 if (!kit->dsq)
6516 return -ENOENT;
6517
6518 kit->cursor = INIT_DSQ_LIST_CURSOR(kit->cursor, flags,
6519 READ_ONCE(kit->dsq->seq));
6520
6521 return 0;
6522 }
6523
6524 /**
6525 * bpf_iter_scx_dsq_next - Progress a DSQ iterator
6526 * @it: iterator to progress
6527 *
6528 * Return the next task. See bpf_iter_scx_dsq_new().
6529 */
bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq * it)6530 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
6531 {
6532 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6533 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
6534 struct task_struct *p;
6535 unsigned long flags;
6536
6537 if (!kit->dsq)
6538 return NULL;
6539
6540 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6541
6542 if (list_empty(&kit->cursor.node))
6543 p = NULL;
6544 else
6545 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
6546
6547 /*
6548 * Only tasks which were queued before the iteration started are
6549 * visible. This bounds BPF iterations and guarantees that vtime never
6550 * jumps in the other direction while iterating.
6551 */
6552 do {
6553 p = nldsq_next_task(kit->dsq, p, rev);
6554 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
6555
6556 if (p) {
6557 if (rev)
6558 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
6559 else
6560 list_move(&kit->cursor.node, &p->scx.dsq_list.node);
6561 } else {
6562 list_del_init(&kit->cursor.node);
6563 }
6564
6565 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6566
6567 return p;
6568 }
6569
6570 /**
6571 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
6572 * @it: iterator to destroy
6573 *
6574 * Undo scx_iter_scx_dsq_new().
6575 */
bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq * it)6576 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
6577 {
6578 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6579
6580 if (!kit->dsq)
6581 return;
6582
6583 if (!list_empty(&kit->cursor.node)) {
6584 unsigned long flags;
6585
6586 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6587 list_del_init(&kit->cursor.node);
6588 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6589 }
6590 kit->dsq = NULL;
6591 }
6592
6593 /**
6594 * scx_bpf_dsq_peek - Lockless peek at the first element.
6595 * @dsq_id: DSQ to examine.
6596 *
6597 * Read the first element in the DSQ. This is semantically equivalent to using
6598 * the DSQ iterator, but is lockfree. Of course, like any lockless operation,
6599 * this provides only a point-in-time snapshot, and the contents may change
6600 * by the time any subsequent locking operation reads the queue.
6601 *
6602 * Returns the pointer, or NULL indicates an empty queue OR internal error.
6603 */
scx_bpf_dsq_peek(u64 dsq_id)6604 __bpf_kfunc struct task_struct *scx_bpf_dsq_peek(u64 dsq_id)
6605 {
6606 struct scx_sched *sch;
6607 struct scx_dispatch_q *dsq;
6608
6609 sch = rcu_dereference(scx_root);
6610 if (unlikely(!sch))
6611 return NULL;
6612
6613 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) {
6614 scx_error(sch, "peek disallowed on builtin DSQ 0x%llx", dsq_id);
6615 return NULL;
6616 }
6617
6618 dsq = find_user_dsq(sch, dsq_id);
6619 if (unlikely(!dsq)) {
6620 scx_error(sch, "peek on non-existent DSQ 0x%llx", dsq_id);
6621 return NULL;
6622 }
6623
6624 return rcu_dereference(dsq->first_task);
6625 }
6626
6627 __bpf_kfunc_end_defs();
6628
__bstr_format(struct scx_sched * sch,u64 * data_buf,char * line_buf,size_t line_size,char * fmt,unsigned long long * data,u32 data__sz)6629 static s32 __bstr_format(struct scx_sched *sch, u64 *data_buf, char *line_buf,
6630 size_t line_size, char *fmt, unsigned long long *data,
6631 u32 data__sz)
6632 {
6633 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
6634 s32 ret;
6635
6636 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
6637 (data__sz && !data)) {
6638 scx_error(sch, "invalid data=%p and data__sz=%u", (void *)data, data__sz);
6639 return -EINVAL;
6640 }
6641
6642 ret = copy_from_kernel_nofault(data_buf, data, data__sz);
6643 if (ret < 0) {
6644 scx_error(sch, "failed to read data fields (%d)", ret);
6645 return ret;
6646 }
6647
6648 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
6649 &bprintf_data);
6650 if (ret < 0) {
6651 scx_error(sch, "format preparation failed (%d)", ret);
6652 return ret;
6653 }
6654
6655 ret = bstr_printf(line_buf, line_size, fmt,
6656 bprintf_data.bin_args);
6657 bpf_bprintf_cleanup(&bprintf_data);
6658 if (ret < 0) {
6659 scx_error(sch, "(\"%s\", %p, %u) failed to format", fmt, data, data__sz);
6660 return ret;
6661 }
6662
6663 return ret;
6664 }
6665
bstr_format(struct scx_sched * sch,struct scx_bstr_buf * buf,char * fmt,unsigned long long * data,u32 data__sz)6666 static s32 bstr_format(struct scx_sched *sch, struct scx_bstr_buf *buf,
6667 char *fmt, unsigned long long *data, u32 data__sz)
6668 {
6669 return __bstr_format(sch, buf->data, buf->line, sizeof(buf->line),
6670 fmt, data, data__sz);
6671 }
6672
6673 __bpf_kfunc_start_defs();
6674
6675 /**
6676 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
6677 * @exit_code: Exit value to pass to user space via struct scx_exit_info.
6678 * @fmt: error message format string
6679 * @data: format string parameters packaged using ___bpf_fill() macro
6680 * @data__sz: @data len, must end in '__sz' for the verifier
6681 *
6682 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
6683 * disabling.
6684 */
scx_bpf_exit_bstr(s64 exit_code,char * fmt,unsigned long long * data,u32 data__sz)6685 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
6686 unsigned long long *data, u32 data__sz)
6687 {
6688 struct scx_sched *sch;
6689 unsigned long flags;
6690
6691 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6692 sch = rcu_dereference_bh(scx_root);
6693 if (likely(sch) &&
6694 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6695 scx_exit(sch, SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line);
6696 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6697 }
6698
6699 /**
6700 * scx_bpf_error_bstr - Indicate fatal error
6701 * @fmt: error message format string
6702 * @data: format string parameters packaged using ___bpf_fill() macro
6703 * @data__sz: @data len, must end in '__sz' for the verifier
6704 *
6705 * Indicate that the BPF scheduler encountered a fatal error and initiate ops
6706 * disabling.
6707 */
scx_bpf_error_bstr(char * fmt,unsigned long long * data,u32 data__sz)6708 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
6709 u32 data__sz)
6710 {
6711 struct scx_sched *sch;
6712 unsigned long flags;
6713
6714 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6715 sch = rcu_dereference_bh(scx_root);
6716 if (likely(sch) &&
6717 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6718 scx_exit(sch, SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line);
6719 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6720 }
6721
6722 /**
6723 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler
6724 * @fmt: format string
6725 * @data: format string parameters packaged using ___bpf_fill() macro
6726 * @data__sz: @data len, must end in '__sz' for the verifier
6727 *
6728 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
6729 * dump_task() to generate extra debug dump specific to the BPF scheduler.
6730 *
6731 * The extra dump may be multiple lines. A single line may be split over
6732 * multiple calls. The last line is automatically terminated.
6733 */
scx_bpf_dump_bstr(char * fmt,unsigned long long * data,u32 data__sz)6734 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
6735 u32 data__sz)
6736 {
6737 struct scx_sched *sch;
6738 struct scx_dump_data *dd = &scx_dump_data;
6739 struct scx_bstr_buf *buf = &dd->buf;
6740 s32 ret;
6741
6742 guard(rcu)();
6743
6744 sch = rcu_dereference(scx_root);
6745 if (unlikely(!sch))
6746 return;
6747
6748 if (raw_smp_processor_id() != dd->cpu) {
6749 scx_error(sch, "scx_bpf_dump() must only be called from ops.dump() and friends");
6750 return;
6751 }
6752
6753 /* append the formatted string to the line buf */
6754 ret = __bstr_format(sch, buf->data, buf->line + dd->cursor,
6755 sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
6756 if (ret < 0) {
6757 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
6758 dd->prefix, fmt, data, data__sz, ret);
6759 return;
6760 }
6761
6762 dd->cursor += ret;
6763 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
6764
6765 if (!dd->cursor)
6766 return;
6767
6768 /*
6769 * If the line buf overflowed or ends in a newline, flush it into the
6770 * dump. This is to allow the caller to generate a single line over
6771 * multiple calls. As ops_dump_flush() can also handle multiple lines in
6772 * the line buf, the only case which can lead to an unexpected
6773 * truncation is when the caller keeps generating newlines in the middle
6774 * instead of the end consecutively. Don't do that.
6775 */
6776 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
6777 ops_dump_flush();
6778 }
6779
6780 /**
6781 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6782 *
6783 * Iterate over all of the tasks currently enqueued on the local DSQ of the
6784 * caller's CPU, and re-enqueue them in the BPF scheduler. Can be called from
6785 * anywhere.
6786 */
scx_bpf_reenqueue_local___v2(void)6787 __bpf_kfunc void scx_bpf_reenqueue_local___v2(void)
6788 {
6789 struct rq *rq;
6790
6791 guard(preempt)();
6792
6793 rq = this_rq();
6794 local_set(&rq->scx.reenq_local_deferred, 1);
6795 schedule_deferred(rq);
6796 }
6797
6798 /**
6799 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
6800 * @cpu: CPU of interest
6801 *
6802 * Return the maximum relative capacity of @cpu in relation to the most
6803 * performant CPU in the system. The return value is in the range [1,
6804 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
6805 */
scx_bpf_cpuperf_cap(s32 cpu)6806 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
6807 {
6808 struct scx_sched *sch;
6809
6810 guard(rcu)();
6811
6812 sch = rcu_dereference(scx_root);
6813 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL))
6814 return arch_scale_cpu_capacity(cpu);
6815 else
6816 return SCX_CPUPERF_ONE;
6817 }
6818
6819 /**
6820 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
6821 * @cpu: CPU of interest
6822 *
6823 * Return the current relative performance of @cpu in relation to its maximum.
6824 * The return value is in the range [1, %SCX_CPUPERF_ONE].
6825 *
6826 * The current performance level of a CPU in relation to the maximum performance
6827 * available in the system can be calculated as follows:
6828 *
6829 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
6830 *
6831 * The result is in the range [1, %SCX_CPUPERF_ONE].
6832 */
scx_bpf_cpuperf_cur(s32 cpu)6833 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
6834 {
6835 struct scx_sched *sch;
6836
6837 guard(rcu)();
6838
6839 sch = rcu_dereference(scx_root);
6840 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL))
6841 return arch_scale_freq_capacity(cpu);
6842 else
6843 return SCX_CPUPERF_ONE;
6844 }
6845
6846 /**
6847 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
6848 * @cpu: CPU of interest
6849 * @perf: target performance level [0, %SCX_CPUPERF_ONE]
6850 *
6851 * Set the target performance level of @cpu to @perf. @perf is in linear
6852 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
6853 * schedutil cpufreq governor chooses the target frequency.
6854 *
6855 * The actual performance level chosen, CPU grouping, and the overhead and
6856 * latency of the operations are dependent on the hardware and cpufreq driver in
6857 * use. Consult hardware and cpufreq documentation for more information. The
6858 * current performance level can be monitored using scx_bpf_cpuperf_cur().
6859 */
scx_bpf_cpuperf_set(s32 cpu,u32 perf)6860 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
6861 {
6862 struct scx_sched *sch;
6863
6864 guard(rcu)();
6865
6866 sch = rcu_dereference(scx_root);
6867 if (unlikely(!sch))
6868 return;
6869
6870 if (unlikely(perf > SCX_CPUPERF_ONE)) {
6871 scx_error(sch, "Invalid cpuperf target %u for CPU %d", perf, cpu);
6872 return;
6873 }
6874
6875 if (ops_cpu_valid(sch, cpu, NULL)) {
6876 struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq();
6877 struct rq_flags rf;
6878
6879 /*
6880 * When called with an rq lock held, restrict the operation
6881 * to the corresponding CPU to prevent ABBA deadlocks.
6882 */
6883 if (locked_rq && rq != locked_rq) {
6884 scx_error(sch, "Invalid target CPU %d", cpu);
6885 return;
6886 }
6887
6888 /*
6889 * If no rq lock is held, allow to operate on any CPU by
6890 * acquiring the corresponding rq lock.
6891 */
6892 if (!locked_rq) {
6893 rq_lock_irqsave(rq, &rf);
6894 update_rq_clock(rq);
6895 }
6896
6897 rq->scx.cpuperf_target = perf;
6898 cpufreq_update_util(rq, 0);
6899
6900 if (!locked_rq)
6901 rq_unlock_irqrestore(rq, &rf);
6902 }
6903 }
6904
6905 /**
6906 * scx_bpf_nr_node_ids - Return the number of possible node IDs
6907 *
6908 * All valid node IDs in the system are smaller than the returned value.
6909 */
scx_bpf_nr_node_ids(void)6910 __bpf_kfunc u32 scx_bpf_nr_node_ids(void)
6911 {
6912 return nr_node_ids;
6913 }
6914
6915 /**
6916 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
6917 *
6918 * All valid CPU IDs in the system are smaller than the returned value.
6919 */
scx_bpf_nr_cpu_ids(void)6920 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
6921 {
6922 return nr_cpu_ids;
6923 }
6924
6925 /**
6926 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
6927 */
scx_bpf_get_possible_cpumask(void)6928 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
6929 {
6930 return cpu_possible_mask;
6931 }
6932
6933 /**
6934 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
6935 */
scx_bpf_get_online_cpumask(void)6936 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
6937 {
6938 return cpu_online_mask;
6939 }
6940
6941 /**
6942 * scx_bpf_put_cpumask - Release a possible/online cpumask
6943 * @cpumask: cpumask to release
6944 */
scx_bpf_put_cpumask(const struct cpumask * cpumask)6945 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
6946 {
6947 /*
6948 * Empty function body because we aren't actually acquiring or releasing
6949 * a reference to a global cpumask, which is read-only in the caller and
6950 * is never released. The acquire / release semantics here are just used
6951 * to make the cpumask is a trusted pointer in the caller.
6952 */
6953 }
6954
6955 /**
6956 * scx_bpf_task_running - Is task currently running?
6957 * @p: task of interest
6958 */
scx_bpf_task_running(const struct task_struct * p)6959 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
6960 {
6961 return task_rq(p)->curr == p;
6962 }
6963
6964 /**
6965 * scx_bpf_task_cpu - CPU a task is currently associated with
6966 * @p: task of interest
6967 */
scx_bpf_task_cpu(const struct task_struct * p)6968 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
6969 {
6970 return task_cpu(p);
6971 }
6972
6973 /**
6974 * scx_bpf_cpu_rq - Fetch the rq of a CPU
6975 * @cpu: CPU of the rq
6976 */
scx_bpf_cpu_rq(s32 cpu)6977 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
6978 {
6979 struct scx_sched *sch;
6980
6981 guard(rcu)();
6982
6983 sch = rcu_dereference(scx_root);
6984 if (unlikely(!sch))
6985 return NULL;
6986
6987 if (!ops_cpu_valid(sch, cpu, NULL))
6988 return NULL;
6989
6990 if (!sch->warned_deprecated_rq) {
6991 printk_deferred(KERN_WARNING "sched_ext: %s() is deprecated; "
6992 "use scx_bpf_locked_rq() when holding rq lock "
6993 "or scx_bpf_cpu_curr() to read remote curr safely.\n", __func__);
6994 sch->warned_deprecated_rq = true;
6995 }
6996
6997 return cpu_rq(cpu);
6998 }
6999
7000 /**
7001 * scx_bpf_locked_rq - Return the rq currently locked by SCX
7002 *
7003 * Returns the rq if a rq lock is currently held by SCX.
7004 * Otherwise emits an error and returns NULL.
7005 */
scx_bpf_locked_rq(void)7006 __bpf_kfunc struct rq *scx_bpf_locked_rq(void)
7007 {
7008 struct scx_sched *sch;
7009 struct rq *rq;
7010
7011 guard(preempt)();
7012
7013 sch = rcu_dereference_sched(scx_root);
7014 if (unlikely(!sch))
7015 return NULL;
7016
7017 rq = scx_locked_rq();
7018 if (!rq) {
7019 scx_error(sch, "accessing rq without holding rq lock");
7020 return NULL;
7021 }
7022
7023 return rq;
7024 }
7025
7026 /**
7027 * scx_bpf_cpu_curr - Return remote CPU's curr task
7028 * @cpu: CPU of interest
7029 *
7030 * Callers must hold RCU read lock (KF_RCU).
7031 */
scx_bpf_cpu_curr(s32 cpu)7032 __bpf_kfunc struct task_struct *scx_bpf_cpu_curr(s32 cpu)
7033 {
7034 struct scx_sched *sch;
7035
7036 guard(rcu)();
7037
7038 sch = rcu_dereference(scx_root);
7039 if (unlikely(!sch))
7040 return NULL;
7041
7042 if (!ops_cpu_valid(sch, cpu, NULL))
7043 return NULL;
7044
7045 return rcu_dereference(cpu_rq(cpu)->curr);
7046 }
7047
7048 /**
7049 * scx_bpf_task_cgroup - Return the sched cgroup of a task
7050 * @p: task of interest
7051 *
7052 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
7053 * from the scheduler's POV. SCX operations should use this function to
7054 * determine @p's current cgroup as, unlike following @p->cgroups,
7055 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
7056 * rq-locked operations. Can be called on the parameter tasks of rq-locked
7057 * operations. The restriction guarantees that @p's rq is locked by the caller.
7058 */
7059 #ifdef CONFIG_CGROUP_SCHED
scx_bpf_task_cgroup(struct task_struct * p)7060 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
7061 {
7062 struct task_group *tg = p->sched_task_group;
7063 struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
7064 struct scx_sched *sch;
7065
7066 guard(rcu)();
7067
7068 sch = rcu_dereference(scx_root);
7069 if (unlikely(!sch))
7070 goto out;
7071
7072 if (!scx_kf_allowed_on_arg_tasks(sch, __SCX_KF_RQ_LOCKED, p))
7073 goto out;
7074
7075 cgrp = tg_cgrp(tg);
7076
7077 out:
7078 cgroup_get(cgrp);
7079 return cgrp;
7080 }
7081 #endif
7082
7083 /**
7084 * scx_bpf_now - Returns a high-performance monotonically non-decreasing
7085 * clock for the current CPU. The clock returned is in nanoseconds.
7086 *
7087 * It provides the following properties:
7088 *
7089 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently
7090 * to account for execution time and track tasks' runtime properties.
7091 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which
7092 * eventually reads a hardware timestamp counter -- is neither performant nor
7093 * scalable. scx_bpf_now() aims to provide a high-performance clock by
7094 * using the rq clock in the scheduler core whenever possible.
7095 *
7096 * 2) High enough resolution for the BPF scheduler use cases: In most BPF
7097 * scheduler use cases, the required clock resolution is lower than the most
7098 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically
7099 * uses the rq clock in the scheduler core whenever it is valid. It considers
7100 * that the rq clock is valid from the time the rq clock is updated
7101 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock).
7102 *
7103 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now()
7104 * guarantees the clock never goes backward when comparing them in the same
7105 * CPU. On the other hand, when comparing clocks in different CPUs, there
7106 * is no such guarantee -- the clock can go backward. It provides a
7107 * monotonically *non-decreasing* clock so that it would provide the same
7108 * clock values in two different scx_bpf_now() calls in the same CPU
7109 * during the same period of when the rq clock is valid.
7110 */
scx_bpf_now(void)7111 __bpf_kfunc u64 scx_bpf_now(void)
7112 {
7113 struct rq *rq;
7114 u64 clock;
7115
7116 preempt_disable();
7117
7118 rq = this_rq();
7119 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) {
7120 /*
7121 * If the rq clock is valid, use the cached rq clock.
7122 *
7123 * Note that scx_bpf_now() is re-entrant between a process
7124 * context and an interrupt context (e.g., timer interrupt).
7125 * However, we don't need to consider the race between them
7126 * because such race is not observable from a caller.
7127 */
7128 clock = READ_ONCE(rq->scx.clock);
7129 } else {
7130 /*
7131 * Otherwise, return a fresh rq clock.
7132 *
7133 * The rq clock is updated outside of the rq lock.
7134 * In this case, keep the updated rq clock invalid so the next
7135 * kfunc call outside the rq lock gets a fresh rq clock.
7136 */
7137 clock = sched_clock_cpu(cpu_of(rq));
7138 }
7139
7140 preempt_enable();
7141
7142 return clock;
7143 }
7144
scx_read_events(struct scx_sched * sch,struct scx_event_stats * events)7145 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events)
7146 {
7147 struct scx_event_stats *e_cpu;
7148 int cpu;
7149
7150 /* Aggregate per-CPU event counters into @events. */
7151 memset(events, 0, sizeof(*events));
7152 for_each_possible_cpu(cpu) {
7153 e_cpu = &per_cpu_ptr(sch->pcpu, cpu)->event_stats;
7154 scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK);
7155 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
7156 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST);
7157 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING);
7158 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
7159 scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL);
7160 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION);
7161 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH);
7162 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE);
7163 }
7164 }
7165
7166 /*
7167 * scx_bpf_events - Get a system-wide event counter to
7168 * @events: output buffer from a BPF program
7169 * @events__sz: @events len, must end in '__sz'' for the verifier
7170 */
scx_bpf_events(struct scx_event_stats * events,size_t events__sz)7171 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events,
7172 size_t events__sz)
7173 {
7174 struct scx_sched *sch;
7175 struct scx_event_stats e_sys;
7176
7177 rcu_read_lock();
7178 sch = rcu_dereference(scx_root);
7179 if (sch)
7180 scx_read_events(sch, &e_sys);
7181 else
7182 memset(&e_sys, 0, sizeof(e_sys));
7183 rcu_read_unlock();
7184
7185 /*
7186 * We cannot entirely trust a BPF-provided size since a BPF program
7187 * might be compiled against a different vmlinux.h, of which
7188 * scx_event_stats would be larger (a newer vmlinux.h) or smaller
7189 * (an older vmlinux.h). Hence, we use the smaller size to avoid
7190 * memory corruption.
7191 */
7192 events__sz = min(events__sz, sizeof(*events));
7193 memcpy(events, &e_sys, events__sz);
7194 }
7195
7196 __bpf_kfunc_end_defs();
7197
7198 BTF_KFUNCS_START(scx_kfunc_ids_any)
7199 BTF_ID_FLAGS(func, scx_bpf_task_set_slice, KF_RCU);
7200 BTF_ID_FLAGS(func, scx_bpf_task_set_dsq_vtime, KF_RCU);
7201 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
7202 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
7203 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
7204 BTF_ID_FLAGS(func, scx_bpf_dsq_peek, KF_RCU_PROTECTED | KF_RET_NULL)
7205 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
7206 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
7207 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
7208 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
7209 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
7210 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
7211 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local___v2)
7212 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
7213 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
7214 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
7215 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids)
7216 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
7217 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
7218 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
7219 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
7220 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
7221 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
7222 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
7223 BTF_ID_FLAGS(func, scx_bpf_locked_rq, KF_RET_NULL)
7224 BTF_ID_FLAGS(func, scx_bpf_cpu_curr, KF_RET_NULL | KF_RCU_PROTECTED)
7225 #ifdef CONFIG_CGROUP_SCHED
7226 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
7227 #endif
7228 BTF_ID_FLAGS(func, scx_bpf_now)
7229 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS)
7230 BTF_KFUNCS_END(scx_kfunc_ids_any)
7231
7232 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
7233 .owner = THIS_MODULE,
7234 .set = &scx_kfunc_ids_any,
7235 };
7236
scx_init(void)7237 static int __init scx_init(void)
7238 {
7239 int ret;
7240
7241 /*
7242 * kfunc registration can't be done from init_sched_ext_class() as
7243 * register_btf_kfunc_id_set() needs most of the system to be up.
7244 *
7245 * Some kfuncs are context-sensitive and can only be called from
7246 * specific SCX ops. They are grouped into BTF sets accordingly.
7247 * Unfortunately, BPF currently doesn't have a way of enforcing such
7248 * restrictions. Eventually, the verifier should be able to enforce
7249 * them. For now, register them the same and make each kfunc explicitly
7250 * check using scx_kf_allowed().
7251 */
7252 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7253 &scx_kfunc_set_enqueue_dispatch)) ||
7254 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7255 &scx_kfunc_set_dispatch)) ||
7256 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7257 &scx_kfunc_set_cpu_release)) ||
7258 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7259 &scx_kfunc_set_unlocked)) ||
7260 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7261 &scx_kfunc_set_unlocked)) ||
7262 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7263 &scx_kfunc_set_any)) ||
7264 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
7265 &scx_kfunc_set_any)) ||
7266 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7267 &scx_kfunc_set_any))) {
7268 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
7269 return ret;
7270 }
7271
7272 ret = scx_idle_init();
7273 if (ret) {
7274 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret);
7275 return ret;
7276 }
7277
7278 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
7279 if (ret) {
7280 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
7281 return ret;
7282 }
7283
7284 ret = register_pm_notifier(&scx_pm_notifier);
7285 if (ret) {
7286 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
7287 return ret;
7288 }
7289
7290 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
7291 if (!scx_kset) {
7292 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
7293 return -ENOMEM;
7294 }
7295
7296 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
7297 if (ret < 0) {
7298 pr_err("sched_ext: Failed to add global attributes\n");
7299 return ret;
7300 }
7301
7302 if (!alloc_cpumask_var(&scx_bypass_lb_donee_cpumask, GFP_KERNEL) ||
7303 !alloc_cpumask_var(&scx_bypass_lb_resched_cpumask, GFP_KERNEL)) {
7304 pr_err("sched_ext: Failed to allocate cpumasks\n");
7305 return -ENOMEM;
7306 }
7307
7308 return 0;
7309 }
7310 __initcall(scx_init);
7311