1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4 *
5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7 * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8 */
9 #include <linux/btf_ids.h>
10 #include "ext_idle.h"
11
12 /*
13 * NOTE: sched_ext is in the process of growing multiple scheduler support and
14 * scx_root usage is in a transitional state. Naked dereferences are safe if the
15 * caller is one of the tasks attached to SCX and explicit RCU dereference is
16 * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but
17 * are used as temporary markers to indicate that the dereferences need to be
18 * updated to point to the associated scheduler instances rather than scx_root.
19 */
20 static struct scx_sched __rcu *scx_root;
21
22 /*
23 * During exit, a task may schedule after losing its PIDs. When disabling the
24 * BPF scheduler, we need to be able to iterate tasks in every state to
25 * guarantee system safety. Maintain a dedicated task list which contains every
26 * task between its fork and eventual free.
27 */
28 static DEFINE_SPINLOCK(scx_tasks_lock);
29 static LIST_HEAD(scx_tasks);
30
31 /* ops enable/disable */
32 static DEFINE_MUTEX(scx_enable_mutex);
33 DEFINE_STATIC_KEY_FALSE(__scx_enabled);
34 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
35 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED);
36 static unsigned long scx_in_softlockup;
37 static atomic_t scx_breather_depth = ATOMIC_INIT(0);
38 static int scx_bypass_depth;
39 static bool scx_init_task_enabled;
40 static bool scx_switching_all;
41 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
42
43 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
44 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
45
46 /*
47 * A monotically increasing sequence number that is incremented every time a
48 * scheduler is enabled. This can be used by to check if any custom sched_ext
49 * scheduler has ever been used in the system.
50 */
51 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
52
53 /*
54 * The maximum amount of time in jiffies that a task may be runnable without
55 * being scheduled on a CPU. If this timeout is exceeded, it will trigger
56 * scx_error().
57 */
58 static unsigned long scx_watchdog_timeout;
59
60 /*
61 * The last time the delayed work was run. This delayed work relies on
62 * ksoftirqd being able to run to service timer interrupts, so it's possible
63 * that this work itself could get wedged. To account for this, we check that
64 * it's not stalled in the timer tick, and trigger an error if it is.
65 */
66 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
67
68 static struct delayed_work scx_watchdog_work;
69
70 /* for %SCX_KICK_WAIT */
71 static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
72
73 /*
74 * Direct dispatch marker.
75 *
76 * Non-NULL values are used for direct dispatch from enqueue path. A valid
77 * pointer points to the task currently being enqueued. An ERR_PTR value is used
78 * to indicate that direct dispatch has already happened.
79 */
80 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
81
82 static const struct rhashtable_params dsq_hash_params = {
83 .key_len = sizeof_field(struct scx_dispatch_q, id),
84 .key_offset = offsetof(struct scx_dispatch_q, id),
85 .head_offset = offsetof(struct scx_dispatch_q, hash_node),
86 };
87
88 static LLIST_HEAD(dsqs_to_free);
89
90 /* dispatch buf */
91 struct scx_dsp_buf_ent {
92 struct task_struct *task;
93 unsigned long qseq;
94 u64 dsq_id;
95 u64 enq_flags;
96 };
97
98 static u32 scx_dsp_max_batch;
99
100 struct scx_dsp_ctx {
101 struct rq *rq;
102 u32 cursor;
103 u32 nr_tasks;
104 struct scx_dsp_buf_ent buf[];
105 };
106
107 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
108
109 /* string formatting from BPF */
110 struct scx_bstr_buf {
111 u64 data[MAX_BPRINTF_VARARGS];
112 char line[SCX_EXIT_MSG_LEN];
113 };
114
115 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
116 static struct scx_bstr_buf scx_exit_bstr_buf;
117
118 /* ops debug dump */
119 struct scx_dump_data {
120 s32 cpu;
121 bool first;
122 s32 cursor;
123 struct seq_buf *s;
124 const char *prefix;
125 struct scx_bstr_buf buf;
126 };
127
128 static struct scx_dump_data scx_dump_data = {
129 .cpu = -1,
130 };
131
132 /* /sys/kernel/sched_ext interface */
133 static struct kset *scx_kset;
134
135 #define CREATE_TRACE_POINTS
136 #include <trace/events/sched_ext.h>
137
138 static void process_ddsp_deferred_locals(struct rq *rq);
139 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags);
140 static void scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind,
141 s64 exit_code, const char *fmt, va_list args);
142
scx_exit(struct scx_sched * sch,enum scx_exit_kind kind,s64 exit_code,const char * fmt,...)143 static __printf(4, 5) void scx_exit(struct scx_sched *sch,
144 enum scx_exit_kind kind, s64 exit_code,
145 const char *fmt, ...)
146 {
147 va_list args;
148
149 va_start(args, fmt);
150 scx_vexit(sch, kind, exit_code, fmt, args);
151 va_end(args);
152 }
153
154 #define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args)
155
156 #define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op)
157
jiffies_delta_msecs(unsigned long at,unsigned long now)158 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
159 {
160 if (time_after(at, now))
161 return jiffies_to_msecs(at - now);
162 else
163 return -(long)jiffies_to_msecs(now - at);
164 }
165
166 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
higher_bits(u32 flags)167 static u32 higher_bits(u32 flags)
168 {
169 return ~((1 << fls(flags)) - 1);
170 }
171
172 /* return the mask with only the highest bit set */
highest_bit(u32 flags)173 static u32 highest_bit(u32 flags)
174 {
175 int bit = fls(flags);
176 return ((u64)1 << bit) >> 1;
177 }
178
u32_before(u32 a,u32 b)179 static bool u32_before(u32 a, u32 b)
180 {
181 return (s32)(a - b) < 0;
182 }
183
find_global_dsq(struct scx_sched * sch,struct task_struct * p)184 static struct scx_dispatch_q *find_global_dsq(struct scx_sched *sch,
185 struct task_struct *p)
186 {
187 return sch->global_dsqs[cpu_to_node(task_cpu(p))];
188 }
189
find_user_dsq(struct scx_sched * sch,u64 dsq_id)190 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id)
191 {
192 return rhashtable_lookup_fast(&sch->dsq_hash, &dsq_id, dsq_hash_params);
193 }
194
195 /*
196 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
197 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
198 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
199 * whether it's running from an allowed context.
200 *
201 * @mask is constant, always inline to cull the mask calculations.
202 */
scx_kf_allow(u32 mask)203 static __always_inline void scx_kf_allow(u32 mask)
204 {
205 /* nesting is allowed only in increasing scx_kf_mask order */
206 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
207 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
208 current->scx.kf_mask, mask);
209 current->scx.kf_mask |= mask;
210 barrier();
211 }
212
scx_kf_disallow(u32 mask)213 static void scx_kf_disallow(u32 mask)
214 {
215 barrier();
216 current->scx.kf_mask &= ~mask;
217 }
218
219 /*
220 * Track the rq currently locked.
221 *
222 * This allows kfuncs to safely operate on rq from any scx ops callback,
223 * knowing which rq is already locked.
224 */
225 DEFINE_PER_CPU(struct rq *, scx_locked_rq_state);
226
update_locked_rq(struct rq * rq)227 static inline void update_locked_rq(struct rq *rq)
228 {
229 /*
230 * Check whether @rq is actually locked. This can help expose bugs
231 * or incorrect assumptions about the context in which a kfunc or
232 * callback is executed.
233 */
234 if (rq)
235 lockdep_assert_rq_held(rq);
236 __this_cpu_write(scx_locked_rq_state, rq);
237 }
238
239 #define SCX_CALL_OP(sch, mask, op, rq, args...) \
240 do { \
241 if (rq) \
242 update_locked_rq(rq); \
243 if (mask) { \
244 scx_kf_allow(mask); \
245 (sch)->ops.op(args); \
246 scx_kf_disallow(mask); \
247 } else { \
248 (sch)->ops.op(args); \
249 } \
250 if (rq) \
251 update_locked_rq(NULL); \
252 } while (0)
253
254 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \
255 ({ \
256 __typeof__((sch)->ops.op(args)) __ret; \
257 \
258 if (rq) \
259 update_locked_rq(rq); \
260 if (mask) { \
261 scx_kf_allow(mask); \
262 __ret = (sch)->ops.op(args); \
263 scx_kf_disallow(mask); \
264 } else { \
265 __ret = (sch)->ops.op(args); \
266 } \
267 if (rq) \
268 update_locked_rq(NULL); \
269 __ret; \
270 })
271
272 /*
273 * Some kfuncs are allowed only on the tasks that are subjects of the
274 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
275 * restrictions, the following SCX_CALL_OP_*() variants should be used when
276 * invoking scx_ops operations that take task arguments. These can only be used
277 * for non-nesting operations due to the way the tasks are tracked.
278 *
279 * kfuncs which can only operate on such tasks can in turn use
280 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
281 * the specific task.
282 */
283 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \
284 do { \
285 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
286 current->scx.kf_tasks[0] = task; \
287 SCX_CALL_OP((sch), mask, op, rq, task, ##args); \
288 current->scx.kf_tasks[0] = NULL; \
289 } while (0)
290
291 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \
292 ({ \
293 __typeof__((sch)->ops.op(task, ##args)) __ret; \
294 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
295 current->scx.kf_tasks[0] = task; \
296 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \
297 current->scx.kf_tasks[0] = NULL; \
298 __ret; \
299 })
300
301 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \
302 ({ \
303 __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \
304 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
305 current->scx.kf_tasks[0] = task0; \
306 current->scx.kf_tasks[1] = task1; \
307 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \
308 current->scx.kf_tasks[0] = NULL; \
309 current->scx.kf_tasks[1] = NULL; \
310 __ret; \
311 })
312
313 /* @mask is constant, always inline to cull unnecessary branches */
scx_kf_allowed(struct scx_sched * sch,u32 mask)314 static __always_inline bool scx_kf_allowed(struct scx_sched *sch, u32 mask)
315 {
316 if (unlikely(!(current->scx.kf_mask & mask))) {
317 scx_error(sch, "kfunc with mask 0x%x called from an operation only allowing 0x%x",
318 mask, current->scx.kf_mask);
319 return false;
320 }
321
322 /*
323 * Enforce nesting boundaries. e.g. A kfunc which can be called from
324 * DISPATCH must not be called if we're running DEQUEUE which is nested
325 * inside ops.dispatch(). We don't need to check boundaries for any
326 * blocking kfuncs as the verifier ensures they're only called from
327 * sleepable progs.
328 */
329 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
330 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
331 scx_error(sch, "cpu_release kfunc called from a nested operation");
332 return false;
333 }
334
335 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
336 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
337 scx_error(sch, "dispatch kfunc called from a nested operation");
338 return false;
339 }
340
341 return true;
342 }
343
344 /* see SCX_CALL_OP_TASK() */
scx_kf_allowed_on_arg_tasks(struct scx_sched * sch,u32 mask,struct task_struct * p)345 static __always_inline bool scx_kf_allowed_on_arg_tasks(struct scx_sched *sch,
346 u32 mask,
347 struct task_struct *p)
348 {
349 if (!scx_kf_allowed(sch, mask))
350 return false;
351
352 if (unlikely((p != current->scx.kf_tasks[0] &&
353 p != current->scx.kf_tasks[1]))) {
354 scx_error(sch, "called on a task not being operated on");
355 return false;
356 }
357
358 return true;
359 }
360
361 /**
362 * nldsq_next_task - Iterate to the next task in a non-local DSQ
363 * @dsq: user dsq being iterated
364 * @cur: current position, %NULL to start iteration
365 * @rev: walk backwards
366 *
367 * Returns %NULL when iteration is finished.
368 */
nldsq_next_task(struct scx_dispatch_q * dsq,struct task_struct * cur,bool rev)369 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
370 struct task_struct *cur, bool rev)
371 {
372 struct list_head *list_node;
373 struct scx_dsq_list_node *dsq_lnode;
374
375 lockdep_assert_held(&dsq->lock);
376
377 if (cur)
378 list_node = &cur->scx.dsq_list.node;
379 else
380 list_node = &dsq->list;
381
382 /* find the next task, need to skip BPF iteration cursors */
383 do {
384 if (rev)
385 list_node = list_node->prev;
386 else
387 list_node = list_node->next;
388
389 if (list_node == &dsq->list)
390 return NULL;
391
392 dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
393 node);
394 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
395
396 return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
397 }
398
399 #define nldsq_for_each_task(p, dsq) \
400 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \
401 (p) = nldsq_next_task((dsq), (p), false))
402
403
404 /*
405 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
406 * dispatch order. BPF-visible iterator is opaque and larger to allow future
407 * changes without breaking backward compatibility. Can be used with
408 * bpf_for_each(). See bpf_iter_scx_dsq_*().
409 */
410 enum scx_dsq_iter_flags {
411 /* iterate in the reverse dispatch order */
412 SCX_DSQ_ITER_REV = 1U << 16,
413
414 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30,
415 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31,
416
417 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV,
418 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS |
419 __SCX_DSQ_ITER_HAS_SLICE |
420 __SCX_DSQ_ITER_HAS_VTIME,
421 };
422
423 struct bpf_iter_scx_dsq_kern {
424 struct scx_dsq_list_node cursor;
425 struct scx_dispatch_q *dsq;
426 u64 slice;
427 u64 vtime;
428 } __attribute__((aligned(8)));
429
430 struct bpf_iter_scx_dsq {
431 u64 __opaque[6];
432 } __attribute__((aligned(8)));
433
434
435 /*
436 * SCX task iterator.
437 */
438 struct scx_task_iter {
439 struct sched_ext_entity cursor;
440 struct task_struct *locked_task;
441 struct rq *rq;
442 struct rq_flags rf;
443 u32 cnt;
444 bool list_locked;
445 };
446
447 /**
448 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
449 * @iter: iterator to init
450 *
451 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
452 * must eventually be stopped with scx_task_iter_stop().
453 *
454 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
455 * between this and the first next() call or between any two next() calls. If
456 * the locks are released between two next() calls, the caller is responsible
457 * for ensuring that the task being iterated remains accessible either through
458 * RCU read lock or obtaining a reference count.
459 *
460 * All tasks which existed when the iteration started are guaranteed to be
461 * visited as long as they still exist.
462 */
scx_task_iter_start(struct scx_task_iter * iter)463 static void scx_task_iter_start(struct scx_task_iter *iter)
464 {
465 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
466 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
467
468 spin_lock_irq(&scx_tasks_lock);
469
470 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
471 list_add(&iter->cursor.tasks_node, &scx_tasks);
472 iter->locked_task = NULL;
473 iter->cnt = 0;
474 iter->list_locked = true;
475 }
476
__scx_task_iter_rq_unlock(struct scx_task_iter * iter)477 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
478 {
479 if (iter->locked_task) {
480 task_rq_unlock(iter->rq, iter->locked_task, &iter->rf);
481 iter->locked_task = NULL;
482 }
483 }
484
485 /**
486 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
487 * @iter: iterator to unlock
488 *
489 * If @iter is in the middle of a locked iteration, it may be locking the rq of
490 * the task currently being visited in addition to scx_tasks_lock. Unlock both.
491 * This function can be safely called anytime during an iteration. The next
492 * iterator operation will automatically restore the necessary locking.
493 */
scx_task_iter_unlock(struct scx_task_iter * iter)494 static void scx_task_iter_unlock(struct scx_task_iter *iter)
495 {
496 __scx_task_iter_rq_unlock(iter);
497 if (iter->list_locked) {
498 iter->list_locked = false;
499 spin_unlock_irq(&scx_tasks_lock);
500 }
501 }
502
__scx_task_iter_maybe_relock(struct scx_task_iter * iter)503 static void __scx_task_iter_maybe_relock(struct scx_task_iter *iter)
504 {
505 if (!iter->list_locked) {
506 spin_lock_irq(&scx_tasks_lock);
507 iter->list_locked = true;
508 }
509 }
510
511 /**
512 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
513 * @iter: iterator to exit
514 *
515 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held
516 * which is released on return. If the iterator holds a task's rq lock, that rq
517 * lock is also released. See scx_task_iter_start() for details.
518 */
scx_task_iter_stop(struct scx_task_iter * iter)519 static void scx_task_iter_stop(struct scx_task_iter *iter)
520 {
521 __scx_task_iter_maybe_relock(iter);
522 list_del_init(&iter->cursor.tasks_node);
523 scx_task_iter_unlock(iter);
524 }
525
526 /**
527 * scx_task_iter_next - Next task
528 * @iter: iterator to walk
529 *
530 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped
531 * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls
532 * by holding scx_tasks_lock for too long.
533 */
scx_task_iter_next(struct scx_task_iter * iter)534 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
535 {
536 struct list_head *cursor = &iter->cursor.tasks_node;
537 struct sched_ext_entity *pos;
538
539 __scx_task_iter_maybe_relock(iter);
540
541 if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) {
542 scx_task_iter_unlock(iter);
543 cond_resched();
544 __scx_task_iter_maybe_relock(iter);
545 }
546
547 list_for_each_entry(pos, cursor, tasks_node) {
548 if (&pos->tasks_node == &scx_tasks)
549 return NULL;
550 if (!(pos->flags & SCX_TASK_CURSOR)) {
551 list_move(cursor, &pos->tasks_node);
552 return container_of(pos, struct task_struct, scx);
553 }
554 }
555
556 /* can't happen, should always terminate at scx_tasks above */
557 BUG();
558 }
559
560 /**
561 * scx_task_iter_next_locked - Next non-idle task with its rq locked
562 * @iter: iterator to walk
563 *
564 * Visit the non-idle task with its rq lock held. Allows callers to specify
565 * whether they would like to filter out dead tasks. See scx_task_iter_start()
566 * for details.
567 */
scx_task_iter_next_locked(struct scx_task_iter * iter)568 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
569 {
570 struct task_struct *p;
571
572 __scx_task_iter_rq_unlock(iter);
573
574 while ((p = scx_task_iter_next(iter))) {
575 /*
576 * scx_task_iter is used to prepare and move tasks into SCX
577 * while loading the BPF scheduler and vice-versa while
578 * unloading. The init_tasks ("swappers") should be excluded
579 * from the iteration because:
580 *
581 * - It's unsafe to use __setschduler_prio() on an init_task to
582 * determine the sched_class to use as it won't preserve its
583 * idle_sched_class.
584 *
585 * - ops.init/exit_task() can easily be confused if called with
586 * init_tasks as they, e.g., share PID 0.
587 *
588 * As init_tasks are never scheduled through SCX, they can be
589 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
590 * doesn't work here:
591 *
592 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
593 * yet been onlined.
594 *
595 * - %PF_IDLE can be set on tasks that are not init_tasks. See
596 * play_idle_precise() used by CONFIG_IDLE_INJECT.
597 *
598 * Test for idle_sched_class as only init_tasks are on it.
599 */
600 if (p->sched_class != &idle_sched_class)
601 break;
602 }
603 if (!p)
604 return NULL;
605
606 iter->rq = task_rq_lock(p, &iter->rf);
607 iter->locked_task = p;
608
609 return p;
610 }
611
612 /**
613 * scx_add_event - Increase an event counter for 'name' by 'cnt'
614 * @sch: scx_sched to account events for
615 * @name: an event name defined in struct scx_event_stats
616 * @cnt: the number of the event occurred
617 *
618 * This can be used when preemption is not disabled.
619 */
620 #define scx_add_event(sch, name, cnt) do { \
621 this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \
622 trace_sched_ext_event(#name, (cnt)); \
623 } while(0)
624
625 /**
626 * __scx_add_event - Increase an event counter for 'name' by 'cnt'
627 * @sch: scx_sched to account events for
628 * @name: an event name defined in struct scx_event_stats
629 * @cnt: the number of the event occurred
630 *
631 * This should be used only when preemption is disabled.
632 */
633 #define __scx_add_event(sch, name, cnt) do { \
634 __this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \
635 trace_sched_ext_event(#name, cnt); \
636 } while(0)
637
638 /**
639 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e'
640 * @dst_e: destination event stats
641 * @src_e: source event stats
642 * @kind: a kind of event to be aggregated
643 */
644 #define scx_agg_event(dst_e, src_e, kind) do { \
645 (dst_e)->kind += READ_ONCE((src_e)->kind); \
646 } while(0)
647
648 /**
649 * scx_dump_event - Dump an event 'kind' in 'events' to 's'
650 * @s: output seq_buf
651 * @events: event stats
652 * @kind: a kind of event to dump
653 */
654 #define scx_dump_event(s, events, kind) do { \
655 dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \
656 } while (0)
657
658
659 static void scx_read_events(struct scx_sched *sch,
660 struct scx_event_stats *events);
661
scx_enable_state(void)662 static enum scx_enable_state scx_enable_state(void)
663 {
664 return atomic_read(&scx_enable_state_var);
665 }
666
scx_set_enable_state(enum scx_enable_state to)667 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to)
668 {
669 return atomic_xchg(&scx_enable_state_var, to);
670 }
671
scx_tryset_enable_state(enum scx_enable_state to,enum scx_enable_state from)672 static bool scx_tryset_enable_state(enum scx_enable_state to,
673 enum scx_enable_state from)
674 {
675 int from_v = from;
676
677 return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to);
678 }
679
680 /**
681 * wait_ops_state - Busy-wait the specified ops state to end
682 * @p: target task
683 * @opss: state to wait the end of
684 *
685 * Busy-wait for @p to transition out of @opss. This can only be used when the
686 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
687 * has load_acquire semantics to ensure that the caller can see the updates made
688 * in the enqueueing and dispatching paths.
689 */
wait_ops_state(struct task_struct * p,unsigned long opss)690 static void wait_ops_state(struct task_struct *p, unsigned long opss)
691 {
692 do {
693 cpu_relax();
694 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
695 }
696
__cpu_valid(s32 cpu)697 static inline bool __cpu_valid(s32 cpu)
698 {
699 return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu));
700 }
701
702 /**
703 * ops_cpu_valid - Verify a cpu number, to be used on ops input args
704 * @sch: scx_sched to abort on error
705 * @cpu: cpu number which came from a BPF ops
706 * @where: extra information reported on error
707 *
708 * @cpu is a cpu number which came from the BPF scheduler and can be any value.
709 * Verify that it is in range and one of the possible cpus. If invalid, trigger
710 * an ops error.
711 */
ops_cpu_valid(struct scx_sched * sch,s32 cpu,const char * where)712 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where)
713 {
714 if (__cpu_valid(cpu)) {
715 return true;
716 } else {
717 scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: "");
718 return false;
719 }
720 }
721
722 /**
723 * ops_sanitize_err - Sanitize a -errno value
724 * @sch: scx_sched to error out on error
725 * @ops_name: operation to blame on failure
726 * @err: -errno value to sanitize
727 *
728 * Verify @err is a valid -errno. If not, trigger scx_error() and return
729 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
730 * cause misbehaviors. For an example, a large negative return from
731 * ops.init_task() triggers an oops when passed up the call chain because the
732 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
733 * handled as a pointer.
734 */
ops_sanitize_err(struct scx_sched * sch,const char * ops_name,s32 err)735 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err)
736 {
737 if (err < 0 && err >= -MAX_ERRNO)
738 return err;
739
740 scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err);
741 return -EPROTO;
742 }
743
run_deferred(struct rq * rq)744 static void run_deferred(struct rq *rq)
745 {
746 process_ddsp_deferred_locals(rq);
747 }
748
deferred_bal_cb_workfn(struct rq * rq)749 static void deferred_bal_cb_workfn(struct rq *rq)
750 {
751 run_deferred(rq);
752 }
753
deferred_irq_workfn(struct irq_work * irq_work)754 static void deferred_irq_workfn(struct irq_work *irq_work)
755 {
756 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
757
758 raw_spin_rq_lock(rq);
759 run_deferred(rq);
760 raw_spin_rq_unlock(rq);
761 }
762
763 /**
764 * schedule_deferred - Schedule execution of deferred actions on an rq
765 * @rq: target rq
766 *
767 * Schedule execution of deferred actions on @rq. Must be called with @rq
768 * locked. Deferred actions are executed with @rq locked but unpinned, and thus
769 * can unlock @rq to e.g. migrate tasks to other rqs.
770 */
schedule_deferred(struct rq * rq)771 static void schedule_deferred(struct rq *rq)
772 {
773 lockdep_assert_rq_held(rq);
774
775 /*
776 * If in the middle of waking up a task, task_woken_scx() will be called
777 * afterwards which will then run the deferred actions, no need to
778 * schedule anything.
779 */
780 if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
781 return;
782
783 /*
784 * If in balance, the balance callbacks will be called before rq lock is
785 * released. Schedule one.
786 */
787 if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
788 queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
789 deferred_bal_cb_workfn);
790 return;
791 }
792
793 /*
794 * No scheduler hooks available. Queue an irq work. They are executed on
795 * IRQ re-enable which may take a bit longer than the scheduler hooks.
796 * The above WAKEUP and BALANCE paths should cover most of the cases and
797 * the time to IRQ re-enable shouldn't be long.
798 */
799 irq_work_queue(&rq->scx.deferred_irq_work);
800 }
801
802 /**
803 * touch_core_sched - Update timestamp used for core-sched task ordering
804 * @rq: rq to read clock from, must be locked
805 * @p: task to update the timestamp for
806 *
807 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
808 * implement global or local-DSQ FIFO ordering for core-sched. Should be called
809 * when a task becomes runnable and its turn on the CPU ends (e.g. slice
810 * exhaustion).
811 */
touch_core_sched(struct rq * rq,struct task_struct * p)812 static void touch_core_sched(struct rq *rq, struct task_struct *p)
813 {
814 lockdep_assert_rq_held(rq);
815
816 #ifdef CONFIG_SCHED_CORE
817 /*
818 * It's okay to update the timestamp spuriously. Use
819 * sched_core_disabled() which is cheaper than enabled().
820 *
821 * As this is used to determine ordering between tasks of sibling CPUs,
822 * it may be better to use per-core dispatch sequence instead.
823 */
824 if (!sched_core_disabled())
825 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
826 #endif
827 }
828
829 /**
830 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
831 * @rq: rq to read clock from, must be locked
832 * @p: task being dispatched
833 *
834 * If the BPF scheduler implements custom core-sched ordering via
835 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
836 * ordering within each local DSQ. This function is called from dispatch paths
837 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
838 */
touch_core_sched_dispatch(struct rq * rq,struct task_struct * p)839 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
840 {
841 lockdep_assert_rq_held(rq);
842
843 #ifdef CONFIG_SCHED_CORE
844 if (unlikely(SCX_HAS_OP(scx_root, core_sched_before)))
845 touch_core_sched(rq, p);
846 #endif
847 }
848
update_curr_scx(struct rq * rq)849 static void update_curr_scx(struct rq *rq)
850 {
851 struct task_struct *curr = rq->curr;
852 s64 delta_exec;
853
854 delta_exec = update_curr_common(rq);
855 if (unlikely(delta_exec <= 0))
856 return;
857
858 if (curr->scx.slice != SCX_SLICE_INF) {
859 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
860 if (!curr->scx.slice)
861 touch_core_sched(rq, curr);
862 }
863 }
864
scx_dsq_priq_less(struct rb_node * node_a,const struct rb_node * node_b)865 static bool scx_dsq_priq_less(struct rb_node *node_a,
866 const struct rb_node *node_b)
867 {
868 const struct task_struct *a =
869 container_of(node_a, struct task_struct, scx.dsq_priq);
870 const struct task_struct *b =
871 container_of(node_b, struct task_struct, scx.dsq_priq);
872
873 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
874 }
875
dsq_mod_nr(struct scx_dispatch_q * dsq,s32 delta)876 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
877 {
878 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
879 WRITE_ONCE(dsq->nr, dsq->nr + delta);
880 }
881
refill_task_slice_dfl(struct scx_sched * sch,struct task_struct * p)882 static void refill_task_slice_dfl(struct scx_sched *sch, struct task_struct *p)
883 {
884 p->scx.slice = SCX_SLICE_DFL;
885 __scx_add_event(sch, SCX_EV_REFILL_SLICE_DFL, 1);
886 }
887
dispatch_enqueue(struct scx_sched * sch,struct scx_dispatch_q * dsq,struct task_struct * p,u64 enq_flags)888 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq,
889 struct task_struct *p, u64 enq_flags)
890 {
891 bool is_local = dsq->id == SCX_DSQ_LOCAL;
892
893 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
894 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
895 !RB_EMPTY_NODE(&p->scx.dsq_priq));
896
897 if (!is_local) {
898 raw_spin_lock(&dsq->lock);
899 if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
900 scx_error(sch, "attempting to dispatch to a destroyed dsq");
901 /* fall back to the global dsq */
902 raw_spin_unlock(&dsq->lock);
903 dsq = find_global_dsq(sch, p);
904 raw_spin_lock(&dsq->lock);
905 }
906 }
907
908 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
909 (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
910 /*
911 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
912 * their FIFO queues. To avoid confusion and accidentally
913 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
914 * disallow any internal DSQ from doing vtime ordering of
915 * tasks.
916 */
917 scx_error(sch, "cannot use vtime ordering for built-in DSQs");
918 enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
919 }
920
921 if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
922 struct rb_node *rbp;
923
924 /*
925 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
926 * linked to both the rbtree and list on PRIQs, this can only be
927 * tested easily when adding the first task.
928 */
929 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
930 nldsq_next_task(dsq, NULL, false)))
931 scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks",
932 dsq->id);
933
934 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
935 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
936
937 /*
938 * Find the previous task and insert after it on the list so
939 * that @dsq->list is vtime ordered.
940 */
941 rbp = rb_prev(&p->scx.dsq_priq);
942 if (rbp) {
943 struct task_struct *prev =
944 container_of(rbp, struct task_struct,
945 scx.dsq_priq);
946 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
947 } else {
948 list_add(&p->scx.dsq_list.node, &dsq->list);
949 }
950 } else {
951 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */
952 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
953 scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
954 dsq->id);
955
956 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
957 list_add(&p->scx.dsq_list.node, &dsq->list);
958 else
959 list_add_tail(&p->scx.dsq_list.node, &dsq->list);
960 }
961
962 /* seq records the order tasks are queued, used by BPF DSQ iterator */
963 dsq->seq++;
964 p->scx.dsq_seq = dsq->seq;
965
966 dsq_mod_nr(dsq, 1);
967 p->scx.dsq = dsq;
968
969 /*
970 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
971 * direct dispatch path, but we clear them here because the direct
972 * dispatch verdict may be overridden on the enqueue path during e.g.
973 * bypass.
974 */
975 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
976 p->scx.ddsp_enq_flags = 0;
977
978 /*
979 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
980 * match waiters' load_acquire.
981 */
982 if (enq_flags & SCX_ENQ_CLEAR_OPSS)
983 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
984
985 if (is_local) {
986 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
987 bool preempt = false;
988
989 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
990 rq->curr->sched_class == &ext_sched_class) {
991 rq->curr->scx.slice = 0;
992 preempt = true;
993 }
994
995 if (preempt || sched_class_above(&ext_sched_class,
996 rq->curr->sched_class))
997 resched_curr(rq);
998 } else {
999 raw_spin_unlock(&dsq->lock);
1000 }
1001 }
1002
task_unlink_from_dsq(struct task_struct * p,struct scx_dispatch_q * dsq)1003 static void task_unlink_from_dsq(struct task_struct *p,
1004 struct scx_dispatch_q *dsq)
1005 {
1006 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1007
1008 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1009 rb_erase(&p->scx.dsq_priq, &dsq->priq);
1010 RB_CLEAR_NODE(&p->scx.dsq_priq);
1011 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1012 }
1013
1014 list_del_init(&p->scx.dsq_list.node);
1015 dsq_mod_nr(dsq, -1);
1016 }
1017
dispatch_dequeue(struct rq * rq,struct task_struct * p)1018 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1019 {
1020 struct scx_dispatch_q *dsq = p->scx.dsq;
1021 bool is_local = dsq == &rq->scx.local_dsq;
1022
1023 if (!dsq) {
1024 /*
1025 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1026 * Unlinking is all that's needed to cancel.
1027 */
1028 if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1029 list_del_init(&p->scx.dsq_list.node);
1030
1031 /*
1032 * When dispatching directly from the BPF scheduler to a local
1033 * DSQ, the task isn't associated with any DSQ but
1034 * @p->scx.holding_cpu may be set under the protection of
1035 * %SCX_OPSS_DISPATCHING.
1036 */
1037 if (p->scx.holding_cpu >= 0)
1038 p->scx.holding_cpu = -1;
1039
1040 return;
1041 }
1042
1043 if (!is_local)
1044 raw_spin_lock(&dsq->lock);
1045
1046 /*
1047 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1048 * change underneath us.
1049 */
1050 if (p->scx.holding_cpu < 0) {
1051 /* @p must still be on @dsq, dequeue */
1052 task_unlink_from_dsq(p, dsq);
1053 } else {
1054 /*
1055 * We're racing against dispatch_to_local_dsq() which already
1056 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1057 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1058 * the race.
1059 */
1060 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1061 p->scx.holding_cpu = -1;
1062 }
1063 p->scx.dsq = NULL;
1064
1065 if (!is_local)
1066 raw_spin_unlock(&dsq->lock);
1067 }
1068
find_dsq_for_dispatch(struct scx_sched * sch,struct rq * rq,u64 dsq_id,struct task_struct * p)1069 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch,
1070 struct rq *rq, u64 dsq_id,
1071 struct task_struct *p)
1072 {
1073 struct scx_dispatch_q *dsq;
1074
1075 if (dsq_id == SCX_DSQ_LOCAL)
1076 return &rq->scx.local_dsq;
1077
1078 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1079 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1080
1081 if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1082 return find_global_dsq(sch, p);
1083
1084 return &cpu_rq(cpu)->scx.local_dsq;
1085 }
1086
1087 if (dsq_id == SCX_DSQ_GLOBAL)
1088 dsq = find_global_dsq(sch, p);
1089 else
1090 dsq = find_user_dsq(sch, dsq_id);
1091
1092 if (unlikely(!dsq)) {
1093 scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]",
1094 dsq_id, p->comm, p->pid);
1095 return find_global_dsq(sch, p);
1096 }
1097
1098 return dsq;
1099 }
1100
mark_direct_dispatch(struct scx_sched * sch,struct task_struct * ddsp_task,struct task_struct * p,u64 dsq_id,u64 enq_flags)1101 static void mark_direct_dispatch(struct scx_sched *sch,
1102 struct task_struct *ddsp_task,
1103 struct task_struct *p, u64 dsq_id,
1104 u64 enq_flags)
1105 {
1106 /*
1107 * Mark that dispatch already happened from ops.select_cpu() or
1108 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1109 * which can never match a valid task pointer.
1110 */
1111 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1112
1113 /* @p must match the task on the enqueue path */
1114 if (unlikely(p != ddsp_task)) {
1115 if (IS_ERR(ddsp_task))
1116 scx_error(sch, "%s[%d] already direct-dispatched",
1117 p->comm, p->pid);
1118 else
1119 scx_error(sch, "scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1120 ddsp_task->comm, ddsp_task->pid,
1121 p->comm, p->pid);
1122 return;
1123 }
1124
1125 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1126 WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1127
1128 p->scx.ddsp_dsq_id = dsq_id;
1129 p->scx.ddsp_enq_flags = enq_flags;
1130 }
1131
direct_dispatch(struct scx_sched * sch,struct task_struct * p,u64 enq_flags)1132 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p,
1133 u64 enq_flags)
1134 {
1135 struct rq *rq = task_rq(p);
1136 struct scx_dispatch_q *dsq =
1137 find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p);
1138
1139 touch_core_sched_dispatch(rq, p);
1140
1141 p->scx.ddsp_enq_flags |= enq_flags;
1142
1143 /*
1144 * We are in the enqueue path with @rq locked and pinned, and thus can't
1145 * double lock a remote rq and enqueue to its local DSQ. For
1146 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1147 * the enqueue so that it's executed when @rq can be unlocked.
1148 */
1149 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
1150 unsigned long opss;
1151
1152 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1153
1154 switch (opss & SCX_OPSS_STATE_MASK) {
1155 case SCX_OPSS_NONE:
1156 break;
1157 case SCX_OPSS_QUEUEING:
1158 /*
1159 * As @p was never passed to the BPF side, _release is
1160 * not strictly necessary. Still do it for consistency.
1161 */
1162 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1163 break;
1164 default:
1165 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1166 p->comm, p->pid, opss);
1167 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1168 break;
1169 }
1170
1171 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1172 list_add_tail(&p->scx.dsq_list.node,
1173 &rq->scx.ddsp_deferred_locals);
1174 schedule_deferred(rq);
1175 return;
1176 }
1177
1178 dispatch_enqueue(sch, dsq, p,
1179 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1180 }
1181
scx_rq_online(struct rq * rq)1182 static bool scx_rq_online(struct rq *rq)
1183 {
1184 /*
1185 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1186 * the online state as seen from the BPF scheduler. cpu_active() test
1187 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1188 * stay set until the current scheduling operation is complete even if
1189 * we aren't locking @rq.
1190 */
1191 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1192 }
1193
do_enqueue_task(struct rq * rq,struct task_struct * p,u64 enq_flags,int sticky_cpu)1194 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1195 int sticky_cpu)
1196 {
1197 struct scx_sched *sch = scx_root;
1198 struct task_struct **ddsp_taskp;
1199 unsigned long qseq;
1200
1201 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1202
1203 /* rq migration */
1204 if (sticky_cpu == cpu_of(rq))
1205 goto local_norefill;
1206
1207 /*
1208 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
1209 * is offline and are just running the hotplug path. Don't bother the
1210 * BPF scheduler.
1211 */
1212 if (!scx_rq_online(rq))
1213 goto local;
1214
1215 if (scx_rq_bypassing(rq)) {
1216 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1);
1217 goto global;
1218 }
1219
1220 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1221 goto direct;
1222
1223 /* see %SCX_OPS_ENQ_EXITING */
1224 if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) &&
1225 unlikely(p->flags & PF_EXITING)) {
1226 __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1);
1227 goto local;
1228 }
1229
1230 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */
1231 if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) &&
1232 is_migration_disabled(p)) {
1233 __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1);
1234 goto local;
1235 }
1236
1237 if (unlikely(!SCX_HAS_OP(sch, enqueue)))
1238 goto global;
1239
1240 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
1241 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
1242
1243 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
1244 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
1245
1246 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
1247 WARN_ON_ONCE(*ddsp_taskp);
1248 *ddsp_taskp = p;
1249
1250 SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags);
1251
1252 *ddsp_taskp = NULL;
1253 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1254 goto direct;
1255
1256 /*
1257 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
1258 * dequeue may be waiting. The store_release matches their load_acquire.
1259 */
1260 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
1261 return;
1262
1263 direct:
1264 direct_dispatch(sch, p, enq_flags);
1265 return;
1266
1267 local:
1268 /*
1269 * For task-ordering, slice refill must be treated as implying the end
1270 * of the current slice. Otherwise, the longer @p stays on the CPU, the
1271 * higher priority it becomes from scx_prio_less()'s POV.
1272 */
1273 touch_core_sched(rq, p);
1274 refill_task_slice_dfl(sch, p);
1275 local_norefill:
1276 dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags);
1277 return;
1278
1279 global:
1280 touch_core_sched(rq, p); /* see the comment in local: */
1281 refill_task_slice_dfl(sch, p);
1282 dispatch_enqueue(sch, find_global_dsq(sch, p), p, enq_flags);
1283 }
1284
task_runnable(const struct task_struct * p)1285 static bool task_runnable(const struct task_struct *p)
1286 {
1287 return !list_empty(&p->scx.runnable_node);
1288 }
1289
set_task_runnable(struct rq * rq,struct task_struct * p)1290 static void set_task_runnable(struct rq *rq, struct task_struct *p)
1291 {
1292 lockdep_assert_rq_held(rq);
1293
1294 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
1295 p->scx.runnable_at = jiffies;
1296 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
1297 }
1298
1299 /*
1300 * list_add_tail() must be used. scx_bypass() depends on tasks being
1301 * appended to the runnable_list.
1302 */
1303 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
1304 }
1305
clr_task_runnable(struct task_struct * p,bool reset_runnable_at)1306 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
1307 {
1308 list_del_init(&p->scx.runnable_node);
1309 if (reset_runnable_at)
1310 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
1311 }
1312
enqueue_task_scx(struct rq * rq,struct task_struct * p,int enq_flags)1313 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
1314 {
1315 struct scx_sched *sch = scx_root;
1316 int sticky_cpu = p->scx.sticky_cpu;
1317
1318 if (enq_flags & ENQUEUE_WAKEUP)
1319 rq->scx.flags |= SCX_RQ_IN_WAKEUP;
1320
1321 enq_flags |= rq->scx.extra_enq_flags;
1322
1323 if (sticky_cpu >= 0)
1324 p->scx.sticky_cpu = -1;
1325
1326 /*
1327 * Restoring a running task will be immediately followed by
1328 * set_next_task_scx() which expects the task to not be on the BPF
1329 * scheduler as tasks can only start running through local DSQs. Force
1330 * direct-dispatch into the local DSQ by setting the sticky_cpu.
1331 */
1332 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
1333 sticky_cpu = cpu_of(rq);
1334
1335 if (p->scx.flags & SCX_TASK_QUEUED) {
1336 WARN_ON_ONCE(!task_runnable(p));
1337 goto out;
1338 }
1339
1340 set_task_runnable(rq, p);
1341 p->scx.flags |= SCX_TASK_QUEUED;
1342 rq->scx.nr_running++;
1343 add_nr_running(rq, 1);
1344
1345 if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p))
1346 SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags);
1347
1348 if (enq_flags & SCX_ENQ_WAKEUP)
1349 touch_core_sched(rq, p);
1350
1351 do_enqueue_task(rq, p, enq_flags, sticky_cpu);
1352 out:
1353 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
1354
1355 if ((enq_flags & SCX_ENQ_CPU_SELECTED) &&
1356 unlikely(cpu_of(rq) != p->scx.selected_cpu))
1357 __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1);
1358 }
1359
ops_dequeue(struct rq * rq,struct task_struct * p,u64 deq_flags)1360 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags)
1361 {
1362 struct scx_sched *sch = scx_root;
1363 unsigned long opss;
1364
1365 /* dequeue is always temporary, don't reset runnable_at */
1366 clr_task_runnable(p, false);
1367
1368 /* acquire ensures that we see the preceding updates on QUEUED */
1369 opss = atomic_long_read_acquire(&p->scx.ops_state);
1370
1371 switch (opss & SCX_OPSS_STATE_MASK) {
1372 case SCX_OPSS_NONE:
1373 break;
1374 case SCX_OPSS_QUEUEING:
1375 /*
1376 * QUEUEING is started and finished while holding @p's rq lock.
1377 * As we're holding the rq lock now, we shouldn't see QUEUEING.
1378 */
1379 BUG();
1380 case SCX_OPSS_QUEUED:
1381 if (SCX_HAS_OP(sch, dequeue))
1382 SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq,
1383 p, deq_flags);
1384
1385 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
1386 SCX_OPSS_NONE))
1387 break;
1388 fallthrough;
1389 case SCX_OPSS_DISPATCHING:
1390 /*
1391 * If @p is being dispatched from the BPF scheduler to a DSQ,
1392 * wait for the transfer to complete so that @p doesn't get
1393 * added to its DSQ after dequeueing is complete.
1394 *
1395 * As we're waiting on DISPATCHING with the rq locked, the
1396 * dispatching side shouldn't try to lock the rq while
1397 * DISPATCHING is set. See dispatch_to_local_dsq().
1398 *
1399 * DISPATCHING shouldn't have qseq set and control can reach
1400 * here with NONE @opss from the above QUEUED case block.
1401 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
1402 */
1403 wait_ops_state(p, SCX_OPSS_DISPATCHING);
1404 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
1405 break;
1406 }
1407 }
1408
dequeue_task_scx(struct rq * rq,struct task_struct * p,int deq_flags)1409 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
1410 {
1411 struct scx_sched *sch = scx_root;
1412
1413 if (!(p->scx.flags & SCX_TASK_QUEUED)) {
1414 WARN_ON_ONCE(task_runnable(p));
1415 return true;
1416 }
1417
1418 ops_dequeue(rq, p, deq_flags);
1419
1420 /*
1421 * A currently running task which is going off @rq first gets dequeued
1422 * and then stops running. As we want running <-> stopping transitions
1423 * to be contained within runnable <-> quiescent transitions, trigger
1424 * ->stopping() early here instead of in put_prev_task_scx().
1425 *
1426 * @p may go through multiple stopping <-> running transitions between
1427 * here and put_prev_task_scx() if task attribute changes occur while
1428 * balance_scx() leaves @rq unlocked. However, they don't contain any
1429 * information meaningful to the BPF scheduler and can be suppressed by
1430 * skipping the callbacks if the task is !QUEUED.
1431 */
1432 if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) {
1433 update_curr_scx(rq);
1434 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false);
1435 }
1436
1437 if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p))
1438 SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags);
1439
1440 if (deq_flags & SCX_DEQ_SLEEP)
1441 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
1442 else
1443 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
1444
1445 p->scx.flags &= ~SCX_TASK_QUEUED;
1446 rq->scx.nr_running--;
1447 sub_nr_running(rq, 1);
1448
1449 dispatch_dequeue(rq, p);
1450 return true;
1451 }
1452
yield_task_scx(struct rq * rq)1453 static void yield_task_scx(struct rq *rq)
1454 {
1455 struct scx_sched *sch = scx_root;
1456 struct task_struct *p = rq->curr;
1457
1458 if (SCX_HAS_OP(sch, yield))
1459 SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL);
1460 else
1461 p->scx.slice = 0;
1462 }
1463
yield_to_task_scx(struct rq * rq,struct task_struct * to)1464 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
1465 {
1466 struct scx_sched *sch = scx_root;
1467 struct task_struct *from = rq->curr;
1468
1469 if (SCX_HAS_OP(sch, yield))
1470 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq,
1471 from, to);
1472 else
1473 return false;
1474 }
1475
move_local_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct scx_dispatch_q * src_dsq,struct rq * dst_rq)1476 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
1477 struct scx_dispatch_q *src_dsq,
1478 struct rq *dst_rq)
1479 {
1480 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
1481
1482 /* @dsq is locked and @p is on @dst_rq */
1483 lockdep_assert_held(&src_dsq->lock);
1484 lockdep_assert_rq_held(dst_rq);
1485
1486 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
1487
1488 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1489 list_add(&p->scx.dsq_list.node, &dst_dsq->list);
1490 else
1491 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
1492
1493 dsq_mod_nr(dst_dsq, 1);
1494 p->scx.dsq = dst_dsq;
1495 }
1496
1497 /**
1498 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
1499 * @p: task to move
1500 * @enq_flags: %SCX_ENQ_*
1501 * @src_rq: rq to move the task from, locked on entry, released on return
1502 * @dst_rq: rq to move the task into, locked on return
1503 *
1504 * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
1505 */
move_remote_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct rq * src_rq,struct rq * dst_rq)1506 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
1507 struct rq *src_rq, struct rq *dst_rq)
1508 {
1509 lockdep_assert_rq_held(src_rq);
1510
1511 /* the following marks @p MIGRATING which excludes dequeue */
1512 deactivate_task(src_rq, p, 0);
1513 set_task_cpu(p, cpu_of(dst_rq));
1514 p->scx.sticky_cpu = cpu_of(dst_rq);
1515
1516 raw_spin_rq_unlock(src_rq);
1517 raw_spin_rq_lock(dst_rq);
1518
1519 /*
1520 * We want to pass scx-specific enq_flags but activate_task() will
1521 * truncate the upper 32 bit. As we own @rq, we can pass them through
1522 * @rq->scx.extra_enq_flags instead.
1523 */
1524 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
1525 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
1526 dst_rq->scx.extra_enq_flags = enq_flags;
1527 activate_task(dst_rq, p, 0);
1528 dst_rq->scx.extra_enq_flags = 0;
1529 }
1530
1531 /*
1532 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
1533 * differences:
1534 *
1535 * - is_cpu_allowed() asks "Can this task run on this CPU?" while
1536 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
1537 * this CPU?".
1538 *
1539 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task
1540 * must be allowed to finish on the CPU that it's currently on regardless of
1541 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
1542 * BPF scheduler shouldn't attempt to migrate a task which has migration
1543 * disabled.
1544 *
1545 * - The BPF scheduler is bypassed while the rq is offline and we can always say
1546 * no to the BPF scheduler initiated migrations while offline.
1547 *
1548 * The caller must ensure that @p and @rq are on different CPUs.
1549 */
task_can_run_on_remote_rq(struct scx_sched * sch,struct task_struct * p,struct rq * rq,bool enforce)1550 static bool task_can_run_on_remote_rq(struct scx_sched *sch,
1551 struct task_struct *p, struct rq *rq,
1552 bool enforce)
1553 {
1554 int cpu = cpu_of(rq);
1555
1556 WARN_ON_ONCE(task_cpu(p) == cpu);
1557
1558 /*
1559 * If @p has migration disabled, @p->cpus_ptr is updated to contain only
1560 * the pinned CPU in migrate_disable_switch() while @p is being switched
1561 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is
1562 * updated and thus another CPU may see @p on a DSQ inbetween leading to
1563 * @p passing the below task_allowed_on_cpu() check while migration is
1564 * disabled.
1565 *
1566 * Test the migration disabled state first as the race window is narrow
1567 * and the BPF scheduler failing to check migration disabled state can
1568 * easily be masked if task_allowed_on_cpu() is done first.
1569 */
1570 if (unlikely(is_migration_disabled(p))) {
1571 if (enforce)
1572 scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d",
1573 p->comm, p->pid, task_cpu(p), cpu);
1574 return false;
1575 }
1576
1577 /*
1578 * We don't require the BPF scheduler to avoid dispatching to offline
1579 * CPUs mostly for convenience but also because CPUs can go offline
1580 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the
1581 * picked CPU is outside the allowed mask.
1582 */
1583 if (!task_allowed_on_cpu(p, cpu)) {
1584 if (enforce)
1585 scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]",
1586 cpu, p->comm, p->pid);
1587 return false;
1588 }
1589
1590 if (!scx_rq_online(rq)) {
1591 if (enforce)
1592 __scx_add_event(sch, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1);
1593 return false;
1594 }
1595
1596 return true;
1597 }
1598
1599 /**
1600 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
1601 * @p: target task
1602 * @dsq: locked DSQ @p is currently on
1603 * @src_rq: rq @p is currently on, stable with @dsq locked
1604 *
1605 * Called with @dsq locked but no rq's locked. We want to move @p to a different
1606 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
1607 * required when transferring into a local DSQ. Even when transferring into a
1608 * non-local DSQ, it's better to use the same mechanism to protect against
1609 * dequeues and maintain the invariant that @p->scx.dsq can only change while
1610 * @src_rq is locked, which e.g. scx_dump_task() depends on.
1611 *
1612 * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
1613 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
1614 * this may race with dequeue, which can't drop the rq lock or fail, do a little
1615 * dancing from our side.
1616 *
1617 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
1618 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
1619 * would be cleared to -1. While other cpus may have updated it to different
1620 * values afterwards, as this operation can't be preempted or recurse, the
1621 * holding_cpu can never become this CPU again before we're done. Thus, we can
1622 * tell whether we lost to dequeue by testing whether the holding_cpu still
1623 * points to this CPU. See dispatch_dequeue() for the counterpart.
1624 *
1625 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
1626 * still valid. %false if lost to dequeue.
1627 */
unlink_dsq_and_lock_src_rq(struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)1628 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
1629 struct scx_dispatch_q *dsq,
1630 struct rq *src_rq)
1631 {
1632 s32 cpu = raw_smp_processor_id();
1633
1634 lockdep_assert_held(&dsq->lock);
1635
1636 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
1637 task_unlink_from_dsq(p, dsq);
1638 p->scx.holding_cpu = cpu;
1639
1640 raw_spin_unlock(&dsq->lock);
1641 raw_spin_rq_lock(src_rq);
1642
1643 /* task_rq couldn't have changed if we're still the holding cpu */
1644 return likely(p->scx.holding_cpu == cpu) &&
1645 !WARN_ON_ONCE(src_rq != task_rq(p));
1646 }
1647
consume_remote_task(struct rq * this_rq,struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)1648 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
1649 struct scx_dispatch_q *dsq, struct rq *src_rq)
1650 {
1651 raw_spin_rq_unlock(this_rq);
1652
1653 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
1654 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
1655 return true;
1656 } else {
1657 raw_spin_rq_unlock(src_rq);
1658 raw_spin_rq_lock(this_rq);
1659 return false;
1660 }
1661 }
1662
1663 /**
1664 * move_task_between_dsqs() - Move a task from one DSQ to another
1665 * @sch: scx_sched being operated on
1666 * @p: target task
1667 * @enq_flags: %SCX_ENQ_*
1668 * @src_dsq: DSQ @p is currently on, must not be a local DSQ
1669 * @dst_dsq: DSQ @p is being moved to, can be any DSQ
1670 *
1671 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local
1672 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq
1673 * will change. As @p's task_rq is locked, this function doesn't need to use the
1674 * holding_cpu mechanism.
1675 *
1676 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the
1677 * return value, is locked.
1678 */
move_task_between_dsqs(struct scx_sched * sch,struct task_struct * p,u64 enq_flags,struct scx_dispatch_q * src_dsq,struct scx_dispatch_q * dst_dsq)1679 static struct rq *move_task_between_dsqs(struct scx_sched *sch,
1680 struct task_struct *p, u64 enq_flags,
1681 struct scx_dispatch_q *src_dsq,
1682 struct scx_dispatch_q *dst_dsq)
1683 {
1684 struct rq *src_rq = task_rq(p), *dst_rq;
1685
1686 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL);
1687 lockdep_assert_held(&src_dsq->lock);
1688 lockdep_assert_rq_held(src_rq);
1689
1690 if (dst_dsq->id == SCX_DSQ_LOCAL) {
1691 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
1692 if (src_rq != dst_rq &&
1693 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) {
1694 dst_dsq = find_global_dsq(sch, p);
1695 dst_rq = src_rq;
1696 }
1697 } else {
1698 /* no need to migrate if destination is a non-local DSQ */
1699 dst_rq = src_rq;
1700 }
1701
1702 /*
1703 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
1704 * CPU, @p will be migrated.
1705 */
1706 if (dst_dsq->id == SCX_DSQ_LOCAL) {
1707 /* @p is going from a non-local DSQ to a local DSQ */
1708 if (src_rq == dst_rq) {
1709 task_unlink_from_dsq(p, src_dsq);
1710 move_local_task_to_local_dsq(p, enq_flags,
1711 src_dsq, dst_rq);
1712 raw_spin_unlock(&src_dsq->lock);
1713 } else {
1714 raw_spin_unlock(&src_dsq->lock);
1715 move_remote_task_to_local_dsq(p, enq_flags,
1716 src_rq, dst_rq);
1717 }
1718 } else {
1719 /*
1720 * @p is going from a non-local DSQ to a non-local DSQ. As
1721 * $src_dsq is already locked, do an abbreviated dequeue.
1722 */
1723 task_unlink_from_dsq(p, src_dsq);
1724 p->scx.dsq = NULL;
1725 raw_spin_unlock(&src_dsq->lock);
1726
1727 dispatch_enqueue(sch, dst_dsq, p, enq_flags);
1728 }
1729
1730 return dst_rq;
1731 }
1732
1733 /*
1734 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly
1735 * banging on the same DSQ on a large NUMA system to the point where switching
1736 * to the bypass mode can take a long time. Inject artificial delays while the
1737 * bypass mode is switching to guarantee timely completion.
1738 */
scx_breather(struct rq * rq)1739 static void scx_breather(struct rq *rq)
1740 {
1741 u64 until;
1742
1743 lockdep_assert_rq_held(rq);
1744
1745 if (likely(!atomic_read(&scx_breather_depth)))
1746 return;
1747
1748 raw_spin_rq_unlock(rq);
1749
1750 until = ktime_get_ns() + NSEC_PER_MSEC;
1751
1752 do {
1753 int cnt = 1024;
1754 while (atomic_read(&scx_breather_depth) && --cnt)
1755 cpu_relax();
1756 } while (atomic_read(&scx_breather_depth) &&
1757 time_before64(ktime_get_ns(), until));
1758
1759 raw_spin_rq_lock(rq);
1760 }
1761
consume_dispatch_q(struct scx_sched * sch,struct rq * rq,struct scx_dispatch_q * dsq)1762 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq,
1763 struct scx_dispatch_q *dsq)
1764 {
1765 struct task_struct *p;
1766 retry:
1767 /*
1768 * This retry loop can repeatedly race against scx_bypass() dequeueing
1769 * tasks from @dsq trying to put the system into the bypass mode. On
1770 * some multi-socket machines (e.g. 2x Intel 8480c), this can live-lock
1771 * the machine into soft lockups. Give a breather.
1772 */
1773 scx_breather(rq);
1774
1775 /*
1776 * The caller can't expect to successfully consume a task if the task's
1777 * addition to @dsq isn't guaranteed to be visible somehow. Test
1778 * @dsq->list without locking and skip if it seems empty.
1779 */
1780 if (list_empty(&dsq->list))
1781 return false;
1782
1783 raw_spin_lock(&dsq->lock);
1784
1785 nldsq_for_each_task(p, dsq) {
1786 struct rq *task_rq = task_rq(p);
1787
1788 if (rq == task_rq) {
1789 task_unlink_from_dsq(p, dsq);
1790 move_local_task_to_local_dsq(p, 0, dsq, rq);
1791 raw_spin_unlock(&dsq->lock);
1792 return true;
1793 }
1794
1795 if (task_can_run_on_remote_rq(sch, p, rq, false)) {
1796 if (likely(consume_remote_task(rq, p, dsq, task_rq)))
1797 return true;
1798 goto retry;
1799 }
1800 }
1801
1802 raw_spin_unlock(&dsq->lock);
1803 return false;
1804 }
1805
consume_global_dsq(struct scx_sched * sch,struct rq * rq)1806 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq)
1807 {
1808 int node = cpu_to_node(cpu_of(rq));
1809
1810 return consume_dispatch_q(sch, rq, sch->global_dsqs[node]);
1811 }
1812
1813 /**
1814 * dispatch_to_local_dsq - Dispatch a task to a local dsq
1815 * @sch: scx_sched being operated on
1816 * @rq: current rq which is locked
1817 * @dst_dsq: destination DSQ
1818 * @p: task to dispatch
1819 * @enq_flags: %SCX_ENQ_*
1820 *
1821 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
1822 * DSQ. This function performs all the synchronization dancing needed because
1823 * local DSQs are protected with rq locks.
1824 *
1825 * The caller must have exclusive ownership of @p (e.g. through
1826 * %SCX_OPSS_DISPATCHING).
1827 */
dispatch_to_local_dsq(struct scx_sched * sch,struct rq * rq,struct scx_dispatch_q * dst_dsq,struct task_struct * p,u64 enq_flags)1828 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq,
1829 struct scx_dispatch_q *dst_dsq,
1830 struct task_struct *p, u64 enq_flags)
1831 {
1832 struct rq *src_rq = task_rq(p);
1833 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
1834 struct rq *locked_rq = rq;
1835
1836 /*
1837 * We're synchronized against dequeue through DISPATCHING. As @p can't
1838 * be dequeued, its task_rq and cpus_allowed are stable too.
1839 *
1840 * If dispatching to @rq that @p is already on, no lock dancing needed.
1841 */
1842 if (rq == src_rq && rq == dst_rq) {
1843 dispatch_enqueue(sch, dst_dsq, p,
1844 enq_flags | SCX_ENQ_CLEAR_OPSS);
1845 return;
1846 }
1847
1848 if (src_rq != dst_rq &&
1849 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) {
1850 dispatch_enqueue(sch, find_global_dsq(sch, p), p,
1851 enq_flags | SCX_ENQ_CLEAR_OPSS);
1852 return;
1853 }
1854
1855 /*
1856 * @p is on a possibly remote @src_rq which we need to lock to move the
1857 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
1858 * on DISPATCHING, so we can't grab @src_rq lock while holding
1859 * DISPATCHING.
1860 *
1861 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
1862 * we're moving from a DSQ and use the same mechanism - mark the task
1863 * under transfer with holding_cpu, release DISPATCHING and then follow
1864 * the same protocol. See unlink_dsq_and_lock_src_rq().
1865 */
1866 p->scx.holding_cpu = raw_smp_processor_id();
1867
1868 /* store_release ensures that dequeue sees the above */
1869 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1870
1871 /* switch to @src_rq lock */
1872 if (locked_rq != src_rq) {
1873 raw_spin_rq_unlock(locked_rq);
1874 locked_rq = src_rq;
1875 raw_spin_rq_lock(src_rq);
1876 }
1877
1878 /* task_rq couldn't have changed if we're still the holding cpu */
1879 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
1880 !WARN_ON_ONCE(src_rq != task_rq(p))) {
1881 /*
1882 * If @p is staying on the same rq, there's no need to go
1883 * through the full deactivate/activate cycle. Optimize by
1884 * abbreviating move_remote_task_to_local_dsq().
1885 */
1886 if (src_rq == dst_rq) {
1887 p->scx.holding_cpu = -1;
1888 dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p,
1889 enq_flags);
1890 } else {
1891 move_remote_task_to_local_dsq(p, enq_flags,
1892 src_rq, dst_rq);
1893 /* task has been moved to dst_rq, which is now locked */
1894 locked_rq = dst_rq;
1895 }
1896
1897 /* if the destination CPU is idle, wake it up */
1898 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
1899 resched_curr(dst_rq);
1900 }
1901
1902 /* switch back to @rq lock */
1903 if (locked_rq != rq) {
1904 raw_spin_rq_unlock(locked_rq);
1905 raw_spin_rq_lock(rq);
1906 }
1907 }
1908
1909 /**
1910 * finish_dispatch - Asynchronously finish dispatching a task
1911 * @rq: current rq which is locked
1912 * @p: task to finish dispatching
1913 * @qseq_at_dispatch: qseq when @p started getting dispatched
1914 * @dsq_id: destination DSQ ID
1915 * @enq_flags: %SCX_ENQ_*
1916 *
1917 * Dispatching to local DSQs may need to wait for queueing to complete or
1918 * require rq lock dancing. As we don't wanna do either while inside
1919 * ops.dispatch() to avoid locking order inversion, we split dispatching into
1920 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the
1921 * task and its qseq. Once ops.dispatch() returns, this function is called to
1922 * finish up.
1923 *
1924 * There is no guarantee that @p is still valid for dispatching or even that it
1925 * was valid in the first place. Make sure that the task is still owned by the
1926 * BPF scheduler and claim the ownership before dispatching.
1927 */
finish_dispatch(struct scx_sched * sch,struct rq * rq,struct task_struct * p,unsigned long qseq_at_dispatch,u64 dsq_id,u64 enq_flags)1928 static void finish_dispatch(struct scx_sched *sch, struct rq *rq,
1929 struct task_struct *p,
1930 unsigned long qseq_at_dispatch,
1931 u64 dsq_id, u64 enq_flags)
1932 {
1933 struct scx_dispatch_q *dsq;
1934 unsigned long opss;
1935
1936 touch_core_sched_dispatch(rq, p);
1937 retry:
1938 /*
1939 * No need for _acquire here. @p is accessed only after a successful
1940 * try_cmpxchg to DISPATCHING.
1941 */
1942 opss = atomic_long_read(&p->scx.ops_state);
1943
1944 switch (opss & SCX_OPSS_STATE_MASK) {
1945 case SCX_OPSS_DISPATCHING:
1946 case SCX_OPSS_NONE:
1947 /* someone else already got to it */
1948 return;
1949 case SCX_OPSS_QUEUED:
1950 /*
1951 * If qseq doesn't match, @p has gone through at least one
1952 * dispatch/dequeue and re-enqueue cycle between
1953 * scx_bpf_dsq_insert() and here and we have no claim on it.
1954 */
1955 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
1956 return;
1957
1958 /*
1959 * While we know @p is accessible, we don't yet have a claim on
1960 * it - the BPF scheduler is allowed to dispatch tasks
1961 * spuriously and there can be a racing dequeue attempt. Let's
1962 * claim @p by atomically transitioning it from QUEUED to
1963 * DISPATCHING.
1964 */
1965 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
1966 SCX_OPSS_DISPATCHING)))
1967 break;
1968 goto retry;
1969 case SCX_OPSS_QUEUEING:
1970 /*
1971 * do_enqueue_task() is in the process of transferring the task
1972 * to the BPF scheduler while holding @p's rq lock. As we aren't
1973 * holding any kernel or BPF resource that the enqueue path may
1974 * depend upon, it's safe to wait.
1975 */
1976 wait_ops_state(p, opss);
1977 goto retry;
1978 }
1979
1980 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
1981
1982 dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p);
1983
1984 if (dsq->id == SCX_DSQ_LOCAL)
1985 dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags);
1986 else
1987 dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
1988 }
1989
flush_dispatch_buf(struct scx_sched * sch,struct rq * rq)1990 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq)
1991 {
1992 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
1993 u32 u;
1994
1995 for (u = 0; u < dspc->cursor; u++) {
1996 struct scx_dsp_buf_ent *ent = &dspc->buf[u];
1997
1998 finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id,
1999 ent->enq_flags);
2000 }
2001
2002 dspc->nr_tasks += dspc->cursor;
2003 dspc->cursor = 0;
2004 }
2005
balance_one(struct rq * rq,struct task_struct * prev)2006 static int balance_one(struct rq *rq, struct task_struct *prev)
2007 {
2008 struct scx_sched *sch = scx_root;
2009 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2010 bool prev_on_scx = prev->sched_class == &ext_sched_class;
2011 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED;
2012 int nr_loops = SCX_DSP_MAX_LOOPS;
2013
2014 lockdep_assert_rq_held(rq);
2015 rq->scx.flags |= SCX_RQ_IN_BALANCE;
2016 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP);
2017
2018 if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) &&
2019 unlikely(rq->scx.cpu_released)) {
2020 /*
2021 * If the previous sched_class for the current CPU was not SCX,
2022 * notify the BPF scheduler that it again has control of the
2023 * core. This callback complements ->cpu_release(), which is
2024 * emitted in switch_class().
2025 */
2026 if (SCX_HAS_OP(sch, cpu_acquire))
2027 SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq,
2028 cpu_of(rq), NULL);
2029 rq->scx.cpu_released = false;
2030 }
2031
2032 if (prev_on_scx) {
2033 update_curr_scx(rq);
2034
2035 /*
2036 * If @prev is runnable & has slice left, it has priority and
2037 * fetching more just increases latency for the fetched tasks.
2038 * Tell pick_task_scx() to keep running @prev. If the BPF
2039 * scheduler wants to handle this explicitly, it should
2040 * implement ->cpu_release().
2041 *
2042 * See scx_disable_workfn() for the explanation on the bypassing
2043 * test.
2044 */
2045 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) {
2046 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2047 goto has_tasks;
2048 }
2049 }
2050
2051 /* if there already are tasks to run, nothing to do */
2052 if (rq->scx.local_dsq.nr)
2053 goto has_tasks;
2054
2055 if (consume_global_dsq(sch, rq))
2056 goto has_tasks;
2057
2058 if (unlikely(!SCX_HAS_OP(sch, dispatch)) ||
2059 scx_rq_bypassing(rq) || !scx_rq_online(rq))
2060 goto no_tasks;
2061
2062 dspc->rq = rq;
2063
2064 /*
2065 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2066 * the local DSQ might still end up empty after a successful
2067 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2068 * produced some tasks, retry. The BPF scheduler may depend on this
2069 * looping behavior to simplify its implementation.
2070 */
2071 do {
2072 dspc->nr_tasks = 0;
2073
2074 SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq,
2075 cpu_of(rq), prev_on_scx ? prev : NULL);
2076
2077 flush_dispatch_buf(sch, rq);
2078
2079 if (prev_on_rq && prev->scx.slice) {
2080 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2081 goto has_tasks;
2082 }
2083 if (rq->scx.local_dsq.nr)
2084 goto has_tasks;
2085 if (consume_global_dsq(sch, rq))
2086 goto has_tasks;
2087
2088 /*
2089 * ops.dispatch() can trap us in this loop by repeatedly
2090 * dispatching ineligible tasks. Break out once in a while to
2091 * allow the watchdog to run. As IRQ can't be enabled in
2092 * balance(), we want to complete this scheduling cycle and then
2093 * start a new one. IOW, we want to call resched_curr() on the
2094 * next, most likely idle, task, not the current one. Use
2095 * scx_kick_cpu() for deferred kicking.
2096 */
2097 if (unlikely(!--nr_loops)) {
2098 scx_kick_cpu(sch, cpu_of(rq), 0);
2099 break;
2100 }
2101 } while (dspc->nr_tasks);
2102
2103 no_tasks:
2104 /*
2105 * Didn't find another task to run. Keep running @prev unless
2106 * %SCX_OPS_ENQ_LAST is in effect.
2107 */
2108 if (prev_on_rq &&
2109 (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) {
2110 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2111 __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1);
2112 goto has_tasks;
2113 }
2114 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2115 return false;
2116
2117 has_tasks:
2118 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2119 return true;
2120 }
2121
balance_scx(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)2122 static int balance_scx(struct rq *rq, struct task_struct *prev,
2123 struct rq_flags *rf)
2124 {
2125 int ret;
2126
2127 rq_unpin_lock(rq, rf);
2128
2129 ret = balance_one(rq, prev);
2130
2131 #ifdef CONFIG_SCHED_SMT
2132 /*
2133 * When core-sched is enabled, this ops.balance() call will be followed
2134 * by pick_task_scx() on this CPU and the SMT siblings. Balance the
2135 * siblings too.
2136 */
2137 if (sched_core_enabled(rq)) {
2138 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
2139 int scpu;
2140
2141 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
2142 struct rq *srq = cpu_rq(scpu);
2143 struct task_struct *sprev = srq->curr;
2144
2145 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
2146 update_rq_clock(srq);
2147 balance_one(srq, sprev);
2148 }
2149 }
2150 #endif
2151 rq_repin_lock(rq, rf);
2152
2153 return ret;
2154 }
2155
process_ddsp_deferred_locals(struct rq * rq)2156 static void process_ddsp_deferred_locals(struct rq *rq)
2157 {
2158 struct task_struct *p;
2159
2160 lockdep_assert_rq_held(rq);
2161
2162 /*
2163 * Now that @rq can be unlocked, execute the deferred enqueueing of
2164 * tasks directly dispatched to the local DSQs of other CPUs. See
2165 * direct_dispatch(). Keep popping from the head instead of using
2166 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2167 * temporarily.
2168 */
2169 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2170 struct task_struct, scx.dsq_list.node))) {
2171 struct scx_sched *sch = scx_root;
2172 struct scx_dispatch_q *dsq;
2173
2174 list_del_init(&p->scx.dsq_list.node);
2175
2176 dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p);
2177 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
2178 dispatch_to_local_dsq(sch, rq, dsq, p,
2179 p->scx.ddsp_enq_flags);
2180 }
2181 }
2182
set_next_task_scx(struct rq * rq,struct task_struct * p,bool first)2183 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2184 {
2185 struct scx_sched *sch = scx_root;
2186
2187 if (p->scx.flags & SCX_TASK_QUEUED) {
2188 /*
2189 * Core-sched might decide to execute @p before it is
2190 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2191 */
2192 ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC);
2193 dispatch_dequeue(rq, p);
2194 }
2195
2196 p->se.exec_start = rq_clock_task(rq);
2197
2198 /* see dequeue_task_scx() on why we skip when !QUEUED */
2199 if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED))
2200 SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p);
2201
2202 clr_task_runnable(p, true);
2203
2204 /*
2205 * @p is getting newly scheduled or got kicked after someone updated its
2206 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2207 */
2208 if ((p->scx.slice == SCX_SLICE_INF) !=
2209 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2210 if (p->scx.slice == SCX_SLICE_INF)
2211 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2212 else
2213 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2214
2215 sched_update_tick_dependency(rq);
2216
2217 /*
2218 * For now, let's refresh the load_avgs just when transitioning
2219 * in and out of nohz. In the future, we might want to add a
2220 * mechanism which calls the following periodically on
2221 * tick-stopped CPUs.
2222 */
2223 update_other_load_avgs(rq);
2224 }
2225 }
2226
2227 static enum scx_cpu_preempt_reason
preempt_reason_from_class(const struct sched_class * class)2228 preempt_reason_from_class(const struct sched_class *class)
2229 {
2230 if (class == &stop_sched_class)
2231 return SCX_CPU_PREEMPT_STOP;
2232 if (class == &dl_sched_class)
2233 return SCX_CPU_PREEMPT_DL;
2234 if (class == &rt_sched_class)
2235 return SCX_CPU_PREEMPT_RT;
2236 return SCX_CPU_PREEMPT_UNKNOWN;
2237 }
2238
switch_class(struct rq * rq,struct task_struct * next)2239 static void switch_class(struct rq *rq, struct task_struct *next)
2240 {
2241 struct scx_sched *sch = scx_root;
2242 const struct sched_class *next_class = next->sched_class;
2243
2244 /*
2245 * Pairs with the smp_load_acquire() issued by a CPU in
2246 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
2247 * resched.
2248 */
2249 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
2250 if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT))
2251 return;
2252
2253 /*
2254 * The callback is conceptually meant to convey that the CPU is no
2255 * longer under the control of SCX. Therefore, don't invoke the callback
2256 * if the next class is below SCX (in which case the BPF scheduler has
2257 * actively decided not to schedule any tasks on the CPU).
2258 */
2259 if (sched_class_above(&ext_sched_class, next_class))
2260 return;
2261
2262 /*
2263 * At this point we know that SCX was preempted by a higher priority
2264 * sched_class, so invoke the ->cpu_release() callback if we have not
2265 * done so already. We only send the callback once between SCX being
2266 * preempted, and it regaining control of the CPU.
2267 *
2268 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
2269 * next time that balance_scx() is invoked.
2270 */
2271 if (!rq->scx.cpu_released) {
2272 if (SCX_HAS_OP(sch, cpu_release)) {
2273 struct scx_cpu_release_args args = {
2274 .reason = preempt_reason_from_class(next_class),
2275 .task = next,
2276 };
2277
2278 SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq,
2279 cpu_of(rq), &args);
2280 }
2281 rq->scx.cpu_released = true;
2282 }
2283 }
2284
put_prev_task_scx(struct rq * rq,struct task_struct * p,struct task_struct * next)2285 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
2286 struct task_struct *next)
2287 {
2288 struct scx_sched *sch = scx_root;
2289 update_curr_scx(rq);
2290
2291 /* see dequeue_task_scx() on why we skip when !QUEUED */
2292 if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED))
2293 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true);
2294
2295 if (p->scx.flags & SCX_TASK_QUEUED) {
2296 set_task_runnable(rq, p);
2297
2298 /*
2299 * If @p has slice left and is being put, @p is getting
2300 * preempted by a higher priority scheduler class or core-sched
2301 * forcing a different task. Leave it at the head of the local
2302 * DSQ.
2303 */
2304 if (p->scx.slice && !scx_rq_bypassing(rq)) {
2305 dispatch_enqueue(sch, &rq->scx.local_dsq, p,
2306 SCX_ENQ_HEAD);
2307 goto switch_class;
2308 }
2309
2310 /*
2311 * If @p is runnable but we're about to enter a lower
2312 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
2313 * ops.enqueue() that @p is the only one available for this cpu,
2314 * which should trigger an explicit follow-up scheduling event.
2315 */
2316 if (sched_class_above(&ext_sched_class, next->sched_class)) {
2317 WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST));
2318 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
2319 } else {
2320 do_enqueue_task(rq, p, 0, -1);
2321 }
2322 }
2323
2324 switch_class:
2325 if (next && next->sched_class != &ext_sched_class)
2326 switch_class(rq, next);
2327 }
2328
first_local_task(struct rq * rq)2329 static struct task_struct *first_local_task(struct rq *rq)
2330 {
2331 return list_first_entry_or_null(&rq->scx.local_dsq.list,
2332 struct task_struct, scx.dsq_list.node);
2333 }
2334
pick_task_scx(struct rq * rq)2335 static struct task_struct *pick_task_scx(struct rq *rq)
2336 {
2337 struct task_struct *prev = rq->curr;
2338 struct task_struct *p;
2339 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP;
2340 bool kick_idle = false;
2341
2342 /*
2343 * WORKAROUND:
2344 *
2345 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
2346 * have gone through balance_scx(). Unfortunately, there currently is a
2347 * bug where fair could say yes on balance() but no on pick_task(),
2348 * which then ends up calling pick_task_scx() without preceding
2349 * balance_scx().
2350 *
2351 * Keep running @prev if possible and avoid stalling from entering idle
2352 * without balancing.
2353 *
2354 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE()
2355 * if pick_task_scx() is called without preceding balance_scx().
2356 */
2357 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) {
2358 if (prev->scx.flags & SCX_TASK_QUEUED) {
2359 keep_prev = true;
2360 } else {
2361 keep_prev = false;
2362 kick_idle = true;
2363 }
2364 } else if (unlikely(keep_prev &&
2365 prev->sched_class != &ext_sched_class)) {
2366 /*
2367 * Can happen while enabling as SCX_RQ_BAL_PENDING assertion is
2368 * conditional on scx_enabled() and may have been skipped.
2369 */
2370 WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED);
2371 keep_prev = false;
2372 }
2373
2374 /*
2375 * If balance_scx() is telling us to keep running @prev, replenish slice
2376 * if necessary and keep running @prev. Otherwise, pop the first one
2377 * from the local DSQ.
2378 */
2379 if (keep_prev) {
2380 p = prev;
2381 if (!p->scx.slice)
2382 refill_task_slice_dfl(rcu_dereference_sched(scx_root), p);
2383 } else {
2384 p = first_local_task(rq);
2385 if (!p) {
2386 if (kick_idle)
2387 scx_kick_cpu(rcu_dereference_sched(scx_root),
2388 cpu_of(rq), SCX_KICK_IDLE);
2389 return NULL;
2390 }
2391
2392 if (unlikely(!p->scx.slice)) {
2393 struct scx_sched *sch = rcu_dereference_sched(scx_root);
2394
2395 if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) {
2396 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
2397 p->comm, p->pid, __func__);
2398 sch->warned_zero_slice = true;
2399 }
2400 refill_task_slice_dfl(sch, p);
2401 }
2402 }
2403
2404 return p;
2405 }
2406
2407 #ifdef CONFIG_SCHED_CORE
2408 /**
2409 * scx_prio_less - Task ordering for core-sched
2410 * @a: task A
2411 * @b: task B
2412 * @in_fi: in forced idle state
2413 *
2414 * Core-sched is implemented as an additional scheduling layer on top of the
2415 * usual sched_class'es and needs to find out the expected task ordering. For
2416 * SCX, core-sched calls this function to interrogate the task ordering.
2417 *
2418 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
2419 * to implement the default task ordering. The older the timestamp, the higher
2420 * priority the task - the global FIFO ordering matching the default scheduling
2421 * behavior.
2422 *
2423 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
2424 * implement FIFO ordering within each local DSQ. See pick_task_scx().
2425 */
scx_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)2426 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
2427 bool in_fi)
2428 {
2429 struct scx_sched *sch = scx_root;
2430
2431 /*
2432 * The const qualifiers are dropped from task_struct pointers when
2433 * calling ops.core_sched_before(). Accesses are controlled by the
2434 * verifier.
2435 */
2436 if (SCX_HAS_OP(sch, core_sched_before) &&
2437 !scx_rq_bypassing(task_rq(a)))
2438 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before,
2439 NULL,
2440 (struct task_struct *)a,
2441 (struct task_struct *)b);
2442 else
2443 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
2444 }
2445 #endif /* CONFIG_SCHED_CORE */
2446
select_task_rq_scx(struct task_struct * p,int prev_cpu,int wake_flags)2447 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
2448 {
2449 struct scx_sched *sch = scx_root;
2450 bool rq_bypass;
2451
2452 /*
2453 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
2454 * can be a good migration opportunity with low cache and memory
2455 * footprint. Returning a CPU different than @prev_cpu triggers
2456 * immediate rq migration. However, for SCX, as the current rq
2457 * association doesn't dictate where the task is going to run, this
2458 * doesn't fit well. If necessary, we can later add a dedicated method
2459 * which can decide to preempt self to force it through the regular
2460 * scheduling path.
2461 */
2462 if (unlikely(wake_flags & WF_EXEC))
2463 return prev_cpu;
2464
2465 rq_bypass = scx_rq_bypassing(task_rq(p));
2466 if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) {
2467 s32 cpu;
2468 struct task_struct **ddsp_taskp;
2469
2470 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
2471 WARN_ON_ONCE(*ddsp_taskp);
2472 *ddsp_taskp = p;
2473
2474 cpu = SCX_CALL_OP_TASK_RET(sch,
2475 SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
2476 select_cpu, NULL, p, prev_cpu,
2477 wake_flags);
2478 p->scx.selected_cpu = cpu;
2479 *ddsp_taskp = NULL;
2480 if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()"))
2481 return cpu;
2482 else
2483 return prev_cpu;
2484 } else {
2485 s32 cpu;
2486
2487 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0);
2488 if (cpu >= 0) {
2489 refill_task_slice_dfl(sch, p);
2490 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
2491 } else {
2492 cpu = prev_cpu;
2493 }
2494 p->scx.selected_cpu = cpu;
2495
2496 if (rq_bypass)
2497 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1);
2498 return cpu;
2499 }
2500 }
2501
task_woken_scx(struct rq * rq,struct task_struct * p)2502 static void task_woken_scx(struct rq *rq, struct task_struct *p)
2503 {
2504 run_deferred(rq);
2505 }
2506
set_cpus_allowed_scx(struct task_struct * p,struct affinity_context * ac)2507 static void set_cpus_allowed_scx(struct task_struct *p,
2508 struct affinity_context *ac)
2509 {
2510 struct scx_sched *sch = scx_root;
2511
2512 set_cpus_allowed_common(p, ac);
2513
2514 /*
2515 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
2516 * differ from the configured one in @p->cpus_mask. Always tell the bpf
2517 * scheduler the effective one.
2518 *
2519 * Fine-grained memory write control is enforced by BPF making the const
2520 * designation pointless. Cast it away when calling the operation.
2521 */
2522 if (SCX_HAS_OP(sch, set_cpumask))
2523 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL,
2524 p, (struct cpumask *)p->cpus_ptr);
2525 }
2526
handle_hotplug(struct rq * rq,bool online)2527 static void handle_hotplug(struct rq *rq, bool online)
2528 {
2529 struct scx_sched *sch = scx_root;
2530 int cpu = cpu_of(rq);
2531
2532 atomic_long_inc(&scx_hotplug_seq);
2533
2534 /*
2535 * scx_root updates are protected by cpus_read_lock() and will stay
2536 * stable here. Note that we can't depend on scx_enabled() test as the
2537 * hotplug ops need to be enabled before __scx_enabled is set.
2538 */
2539 if (unlikely(!sch))
2540 return;
2541
2542 if (scx_enabled())
2543 scx_idle_update_selcpu_topology(&sch->ops);
2544
2545 if (online && SCX_HAS_OP(sch, cpu_online))
2546 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu);
2547 else if (!online && SCX_HAS_OP(sch, cpu_offline))
2548 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu);
2549 else
2550 scx_exit(sch, SCX_EXIT_UNREG_KERN,
2551 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
2552 "cpu %d going %s, exiting scheduler", cpu,
2553 online ? "online" : "offline");
2554 }
2555
scx_rq_activate(struct rq * rq)2556 void scx_rq_activate(struct rq *rq)
2557 {
2558 handle_hotplug(rq, true);
2559 }
2560
scx_rq_deactivate(struct rq * rq)2561 void scx_rq_deactivate(struct rq *rq)
2562 {
2563 handle_hotplug(rq, false);
2564 }
2565
rq_online_scx(struct rq * rq)2566 static void rq_online_scx(struct rq *rq)
2567 {
2568 rq->scx.flags |= SCX_RQ_ONLINE;
2569 }
2570
rq_offline_scx(struct rq * rq)2571 static void rq_offline_scx(struct rq *rq)
2572 {
2573 rq->scx.flags &= ~SCX_RQ_ONLINE;
2574 }
2575
2576
check_rq_for_timeouts(struct rq * rq)2577 static bool check_rq_for_timeouts(struct rq *rq)
2578 {
2579 struct scx_sched *sch;
2580 struct task_struct *p;
2581 struct rq_flags rf;
2582 bool timed_out = false;
2583
2584 rq_lock_irqsave(rq, &rf);
2585 sch = rcu_dereference_bh(scx_root);
2586 if (unlikely(!sch))
2587 goto out_unlock;
2588
2589 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
2590 unsigned long last_runnable = p->scx.runnable_at;
2591
2592 if (unlikely(time_after(jiffies,
2593 last_runnable + scx_watchdog_timeout))) {
2594 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
2595
2596 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0,
2597 "%s[%d] failed to run for %u.%03us",
2598 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000);
2599 timed_out = true;
2600 break;
2601 }
2602 }
2603 out_unlock:
2604 rq_unlock_irqrestore(rq, &rf);
2605 return timed_out;
2606 }
2607
scx_watchdog_workfn(struct work_struct * work)2608 static void scx_watchdog_workfn(struct work_struct *work)
2609 {
2610 int cpu;
2611
2612 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
2613
2614 for_each_online_cpu(cpu) {
2615 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
2616 break;
2617
2618 cond_resched();
2619 }
2620 queue_delayed_work(system_unbound_wq, to_delayed_work(work),
2621 scx_watchdog_timeout / 2);
2622 }
2623
scx_tick(struct rq * rq)2624 void scx_tick(struct rq *rq)
2625 {
2626 struct scx_sched *sch;
2627 unsigned long last_check;
2628
2629 if (!scx_enabled())
2630 return;
2631
2632 sch = rcu_dereference_bh(scx_root);
2633 if (unlikely(!sch))
2634 return;
2635
2636 last_check = READ_ONCE(scx_watchdog_timestamp);
2637 if (unlikely(time_after(jiffies,
2638 last_check + READ_ONCE(scx_watchdog_timeout)))) {
2639 u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
2640
2641 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0,
2642 "watchdog failed to check in for %u.%03us",
2643 dur_ms / 1000, dur_ms % 1000);
2644 }
2645
2646 update_other_load_avgs(rq);
2647 }
2648
task_tick_scx(struct rq * rq,struct task_struct * curr,int queued)2649 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
2650 {
2651 struct scx_sched *sch = scx_root;
2652
2653 update_curr_scx(rq);
2654
2655 /*
2656 * While disabling, always resched and refresh core-sched timestamp as
2657 * we can't trust the slice management or ops.core_sched_before().
2658 */
2659 if (scx_rq_bypassing(rq)) {
2660 curr->scx.slice = 0;
2661 touch_core_sched(rq, curr);
2662 } else if (SCX_HAS_OP(sch, tick)) {
2663 SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr);
2664 }
2665
2666 if (!curr->scx.slice)
2667 resched_curr(rq);
2668 }
2669
2670 #ifdef CONFIG_EXT_GROUP_SCHED
tg_cgrp(struct task_group * tg)2671 static struct cgroup *tg_cgrp(struct task_group *tg)
2672 {
2673 /*
2674 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
2675 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
2676 * root cgroup.
2677 */
2678 if (tg && tg->css.cgroup)
2679 return tg->css.cgroup;
2680 else
2681 return &cgrp_dfl_root.cgrp;
2682 }
2683
2684 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg),
2685
2686 #else /* CONFIG_EXT_GROUP_SCHED */
2687
2688 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
2689
2690 #endif /* CONFIG_EXT_GROUP_SCHED */
2691
scx_get_task_state(const struct task_struct * p)2692 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
2693 {
2694 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
2695 }
2696
scx_set_task_state(struct task_struct * p,enum scx_task_state state)2697 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
2698 {
2699 enum scx_task_state prev_state = scx_get_task_state(p);
2700 bool warn = false;
2701
2702 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
2703
2704 switch (state) {
2705 case SCX_TASK_NONE:
2706 break;
2707 case SCX_TASK_INIT:
2708 warn = prev_state != SCX_TASK_NONE;
2709 break;
2710 case SCX_TASK_READY:
2711 warn = prev_state == SCX_TASK_NONE;
2712 break;
2713 case SCX_TASK_ENABLED:
2714 warn = prev_state != SCX_TASK_READY;
2715 break;
2716 default:
2717 warn = true;
2718 return;
2719 }
2720
2721 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
2722 prev_state, state, p->comm, p->pid);
2723
2724 p->scx.flags &= ~SCX_TASK_STATE_MASK;
2725 p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
2726 }
2727
scx_init_task(struct task_struct * p,struct task_group * tg,bool fork)2728 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork)
2729 {
2730 struct scx_sched *sch = scx_root;
2731 int ret;
2732
2733 p->scx.disallow = false;
2734
2735 if (SCX_HAS_OP(sch, init_task)) {
2736 struct scx_init_task_args args = {
2737 SCX_INIT_TASK_ARGS_CGROUP(tg)
2738 .fork = fork,
2739 };
2740
2741 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL,
2742 p, &args);
2743 if (unlikely(ret)) {
2744 ret = ops_sanitize_err(sch, "init_task", ret);
2745 return ret;
2746 }
2747 }
2748
2749 scx_set_task_state(p, SCX_TASK_INIT);
2750
2751 if (p->scx.disallow) {
2752 if (!fork) {
2753 struct rq *rq;
2754 struct rq_flags rf;
2755
2756 rq = task_rq_lock(p, &rf);
2757
2758 /*
2759 * We're in the load path and @p->policy will be applied
2760 * right after. Reverting @p->policy here and rejecting
2761 * %SCHED_EXT transitions from scx_check_setscheduler()
2762 * guarantees that if ops.init_task() sets @p->disallow,
2763 * @p can never be in SCX.
2764 */
2765 if (p->policy == SCHED_EXT) {
2766 p->policy = SCHED_NORMAL;
2767 atomic_long_inc(&scx_nr_rejected);
2768 }
2769
2770 task_rq_unlock(rq, p, &rf);
2771 } else if (p->policy == SCHED_EXT) {
2772 scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork",
2773 p->comm, p->pid);
2774 }
2775 }
2776
2777 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2778 return 0;
2779 }
2780
scx_enable_task(struct task_struct * p)2781 static void scx_enable_task(struct task_struct *p)
2782 {
2783 struct scx_sched *sch = scx_root;
2784 struct rq *rq = task_rq(p);
2785 u32 weight;
2786
2787 lockdep_assert_rq_held(rq);
2788
2789 /*
2790 * Set the weight before calling ops.enable() so that the scheduler
2791 * doesn't see a stale value if they inspect the task struct.
2792 */
2793 if (task_has_idle_policy(p))
2794 weight = WEIGHT_IDLEPRIO;
2795 else
2796 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
2797
2798 p->scx.weight = sched_weight_to_cgroup(weight);
2799
2800 if (SCX_HAS_OP(sch, enable))
2801 SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p);
2802 scx_set_task_state(p, SCX_TASK_ENABLED);
2803
2804 if (SCX_HAS_OP(sch, set_weight))
2805 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq,
2806 p, p->scx.weight);
2807 }
2808
scx_disable_task(struct task_struct * p)2809 static void scx_disable_task(struct task_struct *p)
2810 {
2811 struct scx_sched *sch = scx_root;
2812 struct rq *rq = task_rq(p);
2813
2814 lockdep_assert_rq_held(rq);
2815 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
2816
2817 if (SCX_HAS_OP(sch, disable))
2818 SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p);
2819 scx_set_task_state(p, SCX_TASK_READY);
2820 }
2821
scx_exit_task(struct task_struct * p)2822 static void scx_exit_task(struct task_struct *p)
2823 {
2824 struct scx_sched *sch = scx_root;
2825 struct scx_exit_task_args args = {
2826 .cancelled = false,
2827 };
2828
2829 lockdep_assert_rq_held(task_rq(p));
2830
2831 switch (scx_get_task_state(p)) {
2832 case SCX_TASK_NONE:
2833 return;
2834 case SCX_TASK_INIT:
2835 args.cancelled = true;
2836 break;
2837 case SCX_TASK_READY:
2838 break;
2839 case SCX_TASK_ENABLED:
2840 scx_disable_task(p);
2841 break;
2842 default:
2843 WARN_ON_ONCE(true);
2844 return;
2845 }
2846
2847 if (SCX_HAS_OP(sch, exit_task))
2848 SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p),
2849 p, &args);
2850 scx_set_task_state(p, SCX_TASK_NONE);
2851 }
2852
init_scx_entity(struct sched_ext_entity * scx)2853 void init_scx_entity(struct sched_ext_entity *scx)
2854 {
2855 memset(scx, 0, sizeof(*scx));
2856 INIT_LIST_HEAD(&scx->dsq_list.node);
2857 RB_CLEAR_NODE(&scx->dsq_priq);
2858 scx->sticky_cpu = -1;
2859 scx->holding_cpu = -1;
2860 INIT_LIST_HEAD(&scx->runnable_node);
2861 scx->runnable_at = jiffies;
2862 scx->ddsp_dsq_id = SCX_DSQ_INVALID;
2863 scx->slice = SCX_SLICE_DFL;
2864 }
2865
scx_pre_fork(struct task_struct * p)2866 void scx_pre_fork(struct task_struct *p)
2867 {
2868 /*
2869 * BPF scheduler enable/disable paths want to be able to iterate and
2870 * update all tasks which can become complex when racing forks. As
2871 * enable/disable are very cold paths, let's use a percpu_rwsem to
2872 * exclude forks.
2873 */
2874 percpu_down_read(&scx_fork_rwsem);
2875 }
2876
scx_fork(struct task_struct * p)2877 int scx_fork(struct task_struct *p)
2878 {
2879 percpu_rwsem_assert_held(&scx_fork_rwsem);
2880
2881 if (scx_init_task_enabled)
2882 return scx_init_task(p, task_group(p), true);
2883 else
2884 return 0;
2885 }
2886
scx_post_fork(struct task_struct * p)2887 void scx_post_fork(struct task_struct *p)
2888 {
2889 if (scx_init_task_enabled) {
2890 scx_set_task_state(p, SCX_TASK_READY);
2891
2892 /*
2893 * Enable the task immediately if it's running on sched_ext.
2894 * Otherwise, it'll be enabled in switching_to_scx() if and
2895 * when it's ever configured to run with a SCHED_EXT policy.
2896 */
2897 if (p->sched_class == &ext_sched_class) {
2898 struct rq_flags rf;
2899 struct rq *rq;
2900
2901 rq = task_rq_lock(p, &rf);
2902 scx_enable_task(p);
2903 task_rq_unlock(rq, p, &rf);
2904 }
2905 }
2906
2907 spin_lock_irq(&scx_tasks_lock);
2908 list_add_tail(&p->scx.tasks_node, &scx_tasks);
2909 spin_unlock_irq(&scx_tasks_lock);
2910
2911 percpu_up_read(&scx_fork_rwsem);
2912 }
2913
scx_cancel_fork(struct task_struct * p)2914 void scx_cancel_fork(struct task_struct *p)
2915 {
2916 if (scx_enabled()) {
2917 struct rq *rq;
2918 struct rq_flags rf;
2919
2920 rq = task_rq_lock(p, &rf);
2921 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
2922 scx_exit_task(p);
2923 task_rq_unlock(rq, p, &rf);
2924 }
2925
2926 percpu_up_read(&scx_fork_rwsem);
2927 }
2928
sched_ext_free(struct task_struct * p)2929 void sched_ext_free(struct task_struct *p)
2930 {
2931 unsigned long flags;
2932
2933 spin_lock_irqsave(&scx_tasks_lock, flags);
2934 list_del_init(&p->scx.tasks_node);
2935 spin_unlock_irqrestore(&scx_tasks_lock, flags);
2936
2937 /*
2938 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED
2939 * transitions can't race us. Disable ops for @p.
2940 */
2941 if (scx_get_task_state(p) != SCX_TASK_NONE) {
2942 struct rq_flags rf;
2943 struct rq *rq;
2944
2945 rq = task_rq_lock(p, &rf);
2946 scx_exit_task(p);
2947 task_rq_unlock(rq, p, &rf);
2948 }
2949 }
2950
reweight_task_scx(struct rq * rq,struct task_struct * p,const struct load_weight * lw)2951 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
2952 const struct load_weight *lw)
2953 {
2954 struct scx_sched *sch = scx_root;
2955
2956 lockdep_assert_rq_held(task_rq(p));
2957
2958 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
2959 if (SCX_HAS_OP(sch, set_weight))
2960 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq,
2961 p, p->scx.weight);
2962 }
2963
prio_changed_scx(struct rq * rq,struct task_struct * p,int oldprio)2964 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
2965 {
2966 }
2967
switching_to_scx(struct rq * rq,struct task_struct * p)2968 static void switching_to_scx(struct rq *rq, struct task_struct *p)
2969 {
2970 struct scx_sched *sch = scx_root;
2971
2972 scx_enable_task(p);
2973
2974 /*
2975 * set_cpus_allowed_scx() is not called while @p is associated with a
2976 * different scheduler class. Keep the BPF scheduler up-to-date.
2977 */
2978 if (SCX_HAS_OP(sch, set_cpumask))
2979 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq,
2980 p, (struct cpumask *)p->cpus_ptr);
2981 }
2982
switched_from_scx(struct rq * rq,struct task_struct * p)2983 static void switched_from_scx(struct rq *rq, struct task_struct *p)
2984 {
2985 scx_disable_task(p);
2986 }
2987
wakeup_preempt_scx(struct rq * rq,struct task_struct * p,int wake_flags)2988 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
switched_to_scx(struct rq * rq,struct task_struct * p)2989 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
2990
scx_check_setscheduler(struct task_struct * p,int policy)2991 int scx_check_setscheduler(struct task_struct *p, int policy)
2992 {
2993 lockdep_assert_rq_held(task_rq(p));
2994
2995 /* if disallow, reject transitioning into SCX */
2996 if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
2997 p->policy != policy && policy == SCHED_EXT)
2998 return -EACCES;
2999
3000 return 0;
3001 }
3002
3003 #ifdef CONFIG_NO_HZ_FULL
scx_can_stop_tick(struct rq * rq)3004 bool scx_can_stop_tick(struct rq *rq)
3005 {
3006 struct task_struct *p = rq->curr;
3007
3008 if (scx_rq_bypassing(rq))
3009 return false;
3010
3011 if (p->sched_class != &ext_sched_class)
3012 return true;
3013
3014 /*
3015 * @rq can dispatch from different DSQs, so we can't tell whether it
3016 * needs the tick or not by looking at nr_running. Allow stopping ticks
3017 * iff the BPF scheduler indicated so. See set_next_task_scx().
3018 */
3019 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
3020 }
3021 #endif
3022
3023 #ifdef CONFIG_EXT_GROUP_SCHED
3024
3025 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_ops_rwsem);
3026 static bool scx_cgroup_enabled;
3027
scx_tg_init(struct task_group * tg)3028 void scx_tg_init(struct task_group *tg)
3029 {
3030 tg->scx.weight = CGROUP_WEIGHT_DFL;
3031 tg->scx.bw_period_us = default_bw_period_us();
3032 tg->scx.bw_quota_us = RUNTIME_INF;
3033 }
3034
scx_tg_online(struct task_group * tg)3035 int scx_tg_online(struct task_group *tg)
3036 {
3037 struct scx_sched *sch = scx_root;
3038 int ret = 0;
3039
3040 WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED));
3041
3042 if (scx_cgroup_enabled) {
3043 if (SCX_HAS_OP(sch, cgroup_init)) {
3044 struct scx_cgroup_init_args args =
3045 { .weight = tg->scx.weight,
3046 .bw_period_us = tg->scx.bw_period_us,
3047 .bw_quota_us = tg->scx.bw_quota_us,
3048 .bw_burst_us = tg->scx.bw_burst_us };
3049
3050 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init,
3051 NULL, tg->css.cgroup, &args);
3052 if (ret)
3053 ret = ops_sanitize_err(sch, "cgroup_init", ret);
3054 }
3055 if (ret == 0)
3056 tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED;
3057 } else {
3058 tg->scx.flags |= SCX_TG_ONLINE;
3059 }
3060
3061 return ret;
3062 }
3063
scx_tg_offline(struct task_group * tg)3064 void scx_tg_offline(struct task_group *tg)
3065 {
3066 struct scx_sched *sch = scx_root;
3067
3068 WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE));
3069
3070 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) &&
3071 (tg->scx.flags & SCX_TG_INITED))
3072 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL,
3073 tg->css.cgroup);
3074 tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
3075 }
3076
scx_cgroup_can_attach(struct cgroup_taskset * tset)3077 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
3078 {
3079 struct scx_sched *sch = scx_root;
3080 struct cgroup_subsys_state *css;
3081 struct task_struct *p;
3082 int ret;
3083
3084 if (!scx_cgroup_enabled)
3085 return 0;
3086
3087 cgroup_taskset_for_each(p, css, tset) {
3088 struct cgroup *from = tg_cgrp(task_group(p));
3089 struct cgroup *to = tg_cgrp(css_tg(css));
3090
3091 WARN_ON_ONCE(p->scx.cgrp_moving_from);
3092
3093 /*
3094 * sched_move_task() omits identity migrations. Let's match the
3095 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
3096 * always match one-to-one.
3097 */
3098 if (from == to)
3099 continue;
3100
3101 if (SCX_HAS_OP(sch, cgroup_prep_move)) {
3102 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED,
3103 cgroup_prep_move, NULL,
3104 p, from, css->cgroup);
3105 if (ret)
3106 goto err;
3107 }
3108
3109 p->scx.cgrp_moving_from = from;
3110 }
3111
3112 return 0;
3113
3114 err:
3115 cgroup_taskset_for_each(p, css, tset) {
3116 if (SCX_HAS_OP(sch, cgroup_cancel_move) &&
3117 p->scx.cgrp_moving_from)
3118 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL,
3119 p, p->scx.cgrp_moving_from, css->cgroup);
3120 p->scx.cgrp_moving_from = NULL;
3121 }
3122
3123 return ops_sanitize_err(sch, "cgroup_prep_move", ret);
3124 }
3125
scx_cgroup_move_task(struct task_struct * p)3126 void scx_cgroup_move_task(struct task_struct *p)
3127 {
3128 struct scx_sched *sch = scx_root;
3129
3130 if (!scx_cgroup_enabled)
3131 return;
3132
3133 /*
3134 * @p must have ops.cgroup_prep_move() called on it and thus
3135 * cgrp_moving_from set.
3136 */
3137 if (SCX_HAS_OP(sch, cgroup_move) &&
3138 !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
3139 SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL,
3140 p, p->scx.cgrp_moving_from,
3141 tg_cgrp(task_group(p)));
3142 p->scx.cgrp_moving_from = NULL;
3143 }
3144
scx_cgroup_cancel_attach(struct cgroup_taskset * tset)3145 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
3146 {
3147 struct scx_sched *sch = scx_root;
3148 struct cgroup_subsys_state *css;
3149 struct task_struct *p;
3150
3151 if (!scx_cgroup_enabled)
3152 return;
3153
3154 cgroup_taskset_for_each(p, css, tset) {
3155 if (SCX_HAS_OP(sch, cgroup_cancel_move) &&
3156 p->scx.cgrp_moving_from)
3157 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL,
3158 p, p->scx.cgrp_moving_from, css->cgroup);
3159 p->scx.cgrp_moving_from = NULL;
3160 }
3161 }
3162
scx_group_set_weight(struct task_group * tg,unsigned long weight)3163 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
3164 {
3165 struct scx_sched *sch = scx_root;
3166
3167 percpu_down_read(&scx_cgroup_ops_rwsem);
3168
3169 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) &&
3170 tg->scx.weight != weight)
3171 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL,
3172 tg_cgrp(tg), weight);
3173
3174 tg->scx.weight = weight;
3175
3176 percpu_up_read(&scx_cgroup_ops_rwsem);
3177 }
3178
scx_group_set_idle(struct task_group * tg,bool idle)3179 void scx_group_set_idle(struct task_group *tg, bool idle)
3180 {
3181 /* TODO: Implement ops->cgroup_set_idle() */
3182 }
3183
scx_group_set_bandwidth(struct task_group * tg,u64 period_us,u64 quota_us,u64 burst_us)3184 void scx_group_set_bandwidth(struct task_group *tg,
3185 u64 period_us, u64 quota_us, u64 burst_us)
3186 {
3187 struct scx_sched *sch = scx_root;
3188
3189 percpu_down_read(&scx_cgroup_ops_rwsem);
3190
3191 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) &&
3192 (tg->scx.bw_period_us != period_us ||
3193 tg->scx.bw_quota_us != quota_us ||
3194 tg->scx.bw_burst_us != burst_us))
3195 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL,
3196 tg_cgrp(tg), period_us, quota_us, burst_us);
3197
3198 tg->scx.bw_period_us = period_us;
3199 tg->scx.bw_quota_us = quota_us;
3200 tg->scx.bw_burst_us = burst_us;
3201
3202 percpu_up_read(&scx_cgroup_ops_rwsem);
3203 }
3204
scx_cgroup_lock(void)3205 static void scx_cgroup_lock(void)
3206 {
3207 percpu_down_write(&scx_cgroup_ops_rwsem);
3208 cgroup_lock();
3209 }
3210
scx_cgroup_unlock(void)3211 static void scx_cgroup_unlock(void)
3212 {
3213 cgroup_unlock();
3214 percpu_up_write(&scx_cgroup_ops_rwsem);
3215 }
3216
3217 #else /* CONFIG_EXT_GROUP_SCHED */
3218
scx_cgroup_lock(void)3219 static void scx_cgroup_lock(void) {}
scx_cgroup_unlock(void)3220 static void scx_cgroup_unlock(void) {}
3221
3222 #endif /* CONFIG_EXT_GROUP_SCHED */
3223
3224 /*
3225 * Omitted operations:
3226 *
3227 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
3228 * isn't tied to the CPU at that point. Preemption is implemented by resetting
3229 * the victim task's slice to 0 and triggering reschedule on the target CPU.
3230 *
3231 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
3232 *
3233 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
3234 * their current sched_class. Call them directly from sched core instead.
3235 */
3236 DEFINE_SCHED_CLASS(ext) = {
3237 .enqueue_task = enqueue_task_scx,
3238 .dequeue_task = dequeue_task_scx,
3239 .yield_task = yield_task_scx,
3240 .yield_to_task = yield_to_task_scx,
3241
3242 .wakeup_preempt = wakeup_preempt_scx,
3243
3244 .balance = balance_scx,
3245 .pick_task = pick_task_scx,
3246
3247 .put_prev_task = put_prev_task_scx,
3248 .set_next_task = set_next_task_scx,
3249
3250 .select_task_rq = select_task_rq_scx,
3251 .task_woken = task_woken_scx,
3252 .set_cpus_allowed = set_cpus_allowed_scx,
3253
3254 .rq_online = rq_online_scx,
3255 .rq_offline = rq_offline_scx,
3256
3257 .task_tick = task_tick_scx,
3258
3259 .switching_to = switching_to_scx,
3260 .switched_from = switched_from_scx,
3261 .switched_to = switched_to_scx,
3262 .reweight_task = reweight_task_scx,
3263 .prio_changed = prio_changed_scx,
3264
3265 .update_curr = update_curr_scx,
3266
3267 #ifdef CONFIG_UCLAMP_TASK
3268 .uclamp_enabled = 1,
3269 #endif
3270 };
3271
init_dsq(struct scx_dispatch_q * dsq,u64 dsq_id)3272 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
3273 {
3274 memset(dsq, 0, sizeof(*dsq));
3275
3276 raw_spin_lock_init(&dsq->lock);
3277 INIT_LIST_HEAD(&dsq->list);
3278 dsq->id = dsq_id;
3279 }
3280
free_dsq_irq_workfn(struct irq_work * irq_work)3281 static void free_dsq_irq_workfn(struct irq_work *irq_work)
3282 {
3283 struct llist_node *to_free = llist_del_all(&dsqs_to_free);
3284 struct scx_dispatch_q *dsq, *tmp_dsq;
3285
3286 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
3287 kfree_rcu(dsq, rcu);
3288 }
3289
3290 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
3291
destroy_dsq(struct scx_sched * sch,u64 dsq_id)3292 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id)
3293 {
3294 struct scx_dispatch_q *dsq;
3295 unsigned long flags;
3296
3297 rcu_read_lock();
3298
3299 dsq = find_user_dsq(sch, dsq_id);
3300 if (!dsq)
3301 goto out_unlock_rcu;
3302
3303 raw_spin_lock_irqsave(&dsq->lock, flags);
3304
3305 if (dsq->nr) {
3306 scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)",
3307 dsq->id, dsq->nr);
3308 goto out_unlock_dsq;
3309 }
3310
3311 if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node,
3312 dsq_hash_params))
3313 goto out_unlock_dsq;
3314
3315 /*
3316 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
3317 * queueing more tasks. As this function can be called from anywhere,
3318 * freeing is bounced through an irq work to avoid nesting RCU
3319 * operations inside scheduler locks.
3320 */
3321 dsq->id = SCX_DSQ_INVALID;
3322 llist_add(&dsq->free_node, &dsqs_to_free);
3323 irq_work_queue(&free_dsq_irq_work);
3324
3325 out_unlock_dsq:
3326 raw_spin_unlock_irqrestore(&dsq->lock, flags);
3327 out_unlock_rcu:
3328 rcu_read_unlock();
3329 }
3330
3331 #ifdef CONFIG_EXT_GROUP_SCHED
scx_cgroup_exit(struct scx_sched * sch)3332 static void scx_cgroup_exit(struct scx_sched *sch)
3333 {
3334 struct cgroup_subsys_state *css;
3335
3336 scx_cgroup_enabled = false;
3337
3338 /*
3339 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk
3340 * cgroups and exit all the inited ones, all online cgroups are exited.
3341 */
3342 css_for_each_descendant_post(css, &root_task_group.css) {
3343 struct task_group *tg = css_tg(css);
3344
3345 if (!(tg->scx.flags & SCX_TG_INITED))
3346 continue;
3347 tg->scx.flags &= ~SCX_TG_INITED;
3348
3349 if (!sch->ops.cgroup_exit)
3350 continue;
3351
3352 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL,
3353 css->cgroup);
3354 }
3355 }
3356
scx_cgroup_init(struct scx_sched * sch)3357 static int scx_cgroup_init(struct scx_sched *sch)
3358 {
3359 struct cgroup_subsys_state *css;
3360 int ret;
3361
3362 /*
3363 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk
3364 * cgroups and init, all online cgroups are initialized.
3365 */
3366 css_for_each_descendant_pre(css, &root_task_group.css) {
3367 struct task_group *tg = css_tg(css);
3368 struct scx_cgroup_init_args args = {
3369 .weight = tg->scx.weight,
3370 .bw_period_us = tg->scx.bw_period_us,
3371 .bw_quota_us = tg->scx.bw_quota_us,
3372 .bw_burst_us = tg->scx.bw_burst_us,
3373 };
3374
3375 if ((tg->scx.flags &
3376 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
3377 continue;
3378
3379 if (!sch->ops.cgroup_init) {
3380 tg->scx.flags |= SCX_TG_INITED;
3381 continue;
3382 }
3383
3384 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL,
3385 css->cgroup, &args);
3386 if (ret) {
3387 css_put(css);
3388 scx_error(sch, "ops.cgroup_init() failed (%d)", ret);
3389 return ret;
3390 }
3391 tg->scx.flags |= SCX_TG_INITED;
3392 }
3393
3394 WARN_ON_ONCE(scx_cgroup_enabled);
3395 scx_cgroup_enabled = true;
3396
3397 return 0;
3398 }
3399
3400 #else
scx_cgroup_exit(struct scx_sched * sch)3401 static void scx_cgroup_exit(struct scx_sched *sch) {}
scx_cgroup_init(struct scx_sched * sch)3402 static int scx_cgroup_init(struct scx_sched *sch) { return 0; }
3403 #endif
3404
3405
3406 /********************************************************************************
3407 * Sysfs interface and ops enable/disable.
3408 */
3409
3410 #define SCX_ATTR(_name) \
3411 static struct kobj_attribute scx_attr_##_name = { \
3412 .attr = { .name = __stringify(_name), .mode = 0444 }, \
3413 .show = scx_attr_##_name##_show, \
3414 }
3415
scx_attr_state_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3416 static ssize_t scx_attr_state_show(struct kobject *kobj,
3417 struct kobj_attribute *ka, char *buf)
3418 {
3419 return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]);
3420 }
3421 SCX_ATTR(state);
3422
scx_attr_switch_all_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3423 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
3424 struct kobj_attribute *ka, char *buf)
3425 {
3426 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
3427 }
3428 SCX_ATTR(switch_all);
3429
scx_attr_nr_rejected_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3430 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
3431 struct kobj_attribute *ka, char *buf)
3432 {
3433 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
3434 }
3435 SCX_ATTR(nr_rejected);
3436
scx_attr_hotplug_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3437 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
3438 struct kobj_attribute *ka, char *buf)
3439 {
3440 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
3441 }
3442 SCX_ATTR(hotplug_seq);
3443
scx_attr_enable_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3444 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
3445 struct kobj_attribute *ka, char *buf)
3446 {
3447 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
3448 }
3449 SCX_ATTR(enable_seq);
3450
3451 static struct attribute *scx_global_attrs[] = {
3452 &scx_attr_state.attr,
3453 &scx_attr_switch_all.attr,
3454 &scx_attr_nr_rejected.attr,
3455 &scx_attr_hotplug_seq.attr,
3456 &scx_attr_enable_seq.attr,
3457 NULL,
3458 };
3459
3460 static const struct attribute_group scx_global_attr_group = {
3461 .attrs = scx_global_attrs,
3462 };
3463
3464 static void free_exit_info(struct scx_exit_info *ei);
3465
scx_sched_free_rcu_work(struct work_struct * work)3466 static void scx_sched_free_rcu_work(struct work_struct *work)
3467 {
3468 struct rcu_work *rcu_work = to_rcu_work(work);
3469 struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work);
3470 struct rhashtable_iter rht_iter;
3471 struct scx_dispatch_q *dsq;
3472 int node;
3473
3474 kthread_stop(sch->helper->task);
3475 free_percpu(sch->pcpu);
3476
3477 for_each_node_state(node, N_POSSIBLE)
3478 kfree(sch->global_dsqs[node]);
3479 kfree(sch->global_dsqs);
3480
3481 rhashtable_walk_enter(&sch->dsq_hash, &rht_iter);
3482 do {
3483 rhashtable_walk_start(&rht_iter);
3484
3485 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
3486 destroy_dsq(sch, dsq->id);
3487
3488 rhashtable_walk_stop(&rht_iter);
3489 } while (dsq == ERR_PTR(-EAGAIN));
3490 rhashtable_walk_exit(&rht_iter);
3491
3492 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL);
3493 free_exit_info(sch->exit_info);
3494 kfree(sch);
3495 }
3496
scx_kobj_release(struct kobject * kobj)3497 static void scx_kobj_release(struct kobject *kobj)
3498 {
3499 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj);
3500
3501 INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work);
3502 queue_rcu_work(system_unbound_wq, &sch->rcu_work);
3503 }
3504
scx_attr_ops_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3505 static ssize_t scx_attr_ops_show(struct kobject *kobj,
3506 struct kobj_attribute *ka, char *buf)
3507 {
3508 return sysfs_emit(buf, "%s\n", scx_root->ops.name);
3509 }
3510 SCX_ATTR(ops);
3511
3512 #define scx_attr_event_show(buf, at, events, kind) ({ \
3513 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \
3514 })
3515
scx_attr_events_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3516 static ssize_t scx_attr_events_show(struct kobject *kobj,
3517 struct kobj_attribute *ka, char *buf)
3518 {
3519 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj);
3520 struct scx_event_stats events;
3521 int at = 0;
3522
3523 scx_read_events(sch, &events);
3524 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK);
3525 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
3526 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST);
3527 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING);
3528 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
3529 at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL);
3530 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION);
3531 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH);
3532 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE);
3533 return at;
3534 }
3535 SCX_ATTR(events);
3536
3537 static struct attribute *scx_sched_attrs[] = {
3538 &scx_attr_ops.attr,
3539 &scx_attr_events.attr,
3540 NULL,
3541 };
3542 ATTRIBUTE_GROUPS(scx_sched);
3543
3544 static const struct kobj_type scx_ktype = {
3545 .release = scx_kobj_release,
3546 .sysfs_ops = &kobj_sysfs_ops,
3547 .default_groups = scx_sched_groups,
3548 };
3549
scx_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)3550 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
3551 {
3552 return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name);
3553 }
3554
3555 static const struct kset_uevent_ops scx_uevent_ops = {
3556 .uevent = scx_uevent,
3557 };
3558
3559 /*
3560 * Used by sched_fork() and __setscheduler_prio() to pick the matching
3561 * sched_class. dl/rt are already handled.
3562 */
task_should_scx(int policy)3563 bool task_should_scx(int policy)
3564 {
3565 if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING))
3566 return false;
3567 if (READ_ONCE(scx_switching_all))
3568 return true;
3569 return policy == SCHED_EXT;
3570 }
3571
scx_allow_ttwu_queue(const struct task_struct * p)3572 bool scx_allow_ttwu_queue(const struct task_struct *p)
3573 {
3574 struct scx_sched *sch;
3575
3576 if (!scx_enabled())
3577 return true;
3578
3579 sch = rcu_dereference_sched(scx_root);
3580 if (unlikely(!sch))
3581 return true;
3582
3583 if (sch->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP)
3584 return true;
3585
3586 if (unlikely(p->sched_class != &ext_sched_class))
3587 return true;
3588
3589 return false;
3590 }
3591
3592 /**
3593 * scx_rcu_cpu_stall - sched_ext RCU CPU stall handler
3594 *
3595 * While there are various reasons why RCU CPU stalls can occur on a system
3596 * that may not be caused by the current BPF scheduler, try kicking out the
3597 * current scheduler in an attempt to recover the system to a good state before
3598 * issuing panics.
3599 */
scx_rcu_cpu_stall(void)3600 bool scx_rcu_cpu_stall(void)
3601 {
3602 struct scx_sched *sch;
3603
3604 rcu_read_lock();
3605
3606 sch = rcu_dereference(scx_root);
3607 if (unlikely(!sch)) {
3608 rcu_read_unlock();
3609 return false;
3610 }
3611
3612 switch (scx_enable_state()) {
3613 case SCX_ENABLING:
3614 case SCX_ENABLED:
3615 break;
3616 default:
3617 rcu_read_unlock();
3618 return false;
3619 }
3620
3621 scx_error(sch, "RCU CPU stall detected!");
3622 rcu_read_unlock();
3623
3624 return true;
3625 }
3626
3627 /**
3628 * scx_softlockup - sched_ext softlockup handler
3629 * @dur_s: number of seconds of CPU stuck due to soft lockup
3630 *
3631 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can
3632 * live-lock the system by making many CPUs target the same DSQ to the point
3633 * where soft-lockup detection triggers. This function is called from
3634 * soft-lockup watchdog when the triggering point is close and tries to unjam
3635 * the system by enabling the breather and aborting the BPF scheduler.
3636 */
scx_softlockup(u32 dur_s)3637 void scx_softlockup(u32 dur_s)
3638 {
3639 struct scx_sched *sch;
3640
3641 rcu_read_lock();
3642
3643 sch = rcu_dereference(scx_root);
3644 if (unlikely(!sch))
3645 goto out_unlock;
3646
3647 switch (scx_enable_state()) {
3648 case SCX_ENABLING:
3649 case SCX_ENABLED:
3650 break;
3651 default:
3652 goto out_unlock;
3653 }
3654
3655 /* allow only one instance, cleared at the end of scx_bypass() */
3656 if (test_and_set_bit(0, &scx_in_softlockup))
3657 goto out_unlock;
3658
3659 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n",
3660 smp_processor_id(), dur_s, scx_root->ops.name);
3661
3662 /*
3663 * Some CPUs may be trapped in the dispatch paths. Enable breather
3664 * immediately; otherwise, we might even be able to get to scx_bypass().
3665 */
3666 atomic_inc(&scx_breather_depth);
3667
3668 scx_error(sch, "soft lockup - CPU#%d stuck for %us", smp_processor_id(), dur_s);
3669 out_unlock:
3670 rcu_read_unlock();
3671 }
3672
scx_clear_softlockup(void)3673 static void scx_clear_softlockup(void)
3674 {
3675 if (test_and_clear_bit(0, &scx_in_softlockup))
3676 atomic_dec(&scx_breather_depth);
3677 }
3678
3679 /**
3680 * scx_bypass - [Un]bypass scx_ops and guarantee forward progress
3681 * @bypass: true for bypass, false for unbypass
3682 *
3683 * Bypassing guarantees that all runnable tasks make forward progress without
3684 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
3685 * be held by tasks that the BPF scheduler is forgetting to run, which
3686 * unfortunately also excludes toggling the static branches.
3687 *
3688 * Let's work around by overriding a couple ops and modifying behaviors based on
3689 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
3690 * to force global FIFO scheduling.
3691 *
3692 * - ops.select_cpu() is ignored and the default select_cpu() is used.
3693 *
3694 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
3695 * %SCX_OPS_ENQ_LAST is also ignored.
3696 *
3697 * - ops.dispatch() is ignored.
3698 *
3699 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
3700 * can't be trusted. Whenever a tick triggers, the running task is rotated to
3701 * the tail of the queue with core_sched_at touched.
3702 *
3703 * - pick_next_task() suppresses zero slice warning.
3704 *
3705 * - scx_kick_cpu() is disabled to avoid irq_work malfunction during PM
3706 * operations.
3707 *
3708 * - scx_prio_less() reverts to the default core_sched_at order.
3709 */
scx_bypass(bool bypass)3710 static void scx_bypass(bool bypass)
3711 {
3712 static DEFINE_RAW_SPINLOCK(bypass_lock);
3713 static unsigned long bypass_timestamp;
3714 struct scx_sched *sch;
3715 unsigned long flags;
3716 int cpu;
3717
3718 raw_spin_lock_irqsave(&bypass_lock, flags);
3719 sch = rcu_dereference_bh(scx_root);
3720
3721 if (bypass) {
3722 scx_bypass_depth++;
3723 WARN_ON_ONCE(scx_bypass_depth <= 0);
3724 if (scx_bypass_depth != 1)
3725 goto unlock;
3726 bypass_timestamp = ktime_get_ns();
3727 if (sch)
3728 scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1);
3729 } else {
3730 scx_bypass_depth--;
3731 WARN_ON_ONCE(scx_bypass_depth < 0);
3732 if (scx_bypass_depth != 0)
3733 goto unlock;
3734 if (sch)
3735 scx_add_event(sch, SCX_EV_BYPASS_DURATION,
3736 ktime_get_ns() - bypass_timestamp);
3737 }
3738
3739 atomic_inc(&scx_breather_depth);
3740
3741 /*
3742 * No task property is changing. We just need to make sure all currently
3743 * queued tasks are re-queued according to the new scx_rq_bypassing()
3744 * state. As an optimization, walk each rq's runnable_list instead of
3745 * the scx_tasks list.
3746 *
3747 * This function can't trust the scheduler and thus can't use
3748 * cpus_read_lock(). Walk all possible CPUs instead of online.
3749 */
3750 for_each_possible_cpu(cpu) {
3751 struct rq *rq = cpu_rq(cpu);
3752 struct task_struct *p, *n;
3753
3754 raw_spin_rq_lock(rq);
3755
3756 if (bypass) {
3757 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
3758 rq->scx.flags |= SCX_RQ_BYPASSING;
3759 } else {
3760 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
3761 rq->scx.flags &= ~SCX_RQ_BYPASSING;
3762 }
3763
3764 /*
3765 * We need to guarantee that no tasks are on the BPF scheduler
3766 * while bypassing. Either we see enabled or the enable path
3767 * sees scx_rq_bypassing() before moving tasks to SCX.
3768 */
3769 if (!scx_enabled()) {
3770 raw_spin_rq_unlock(rq);
3771 continue;
3772 }
3773
3774 /*
3775 * The use of list_for_each_entry_safe_reverse() is required
3776 * because each task is going to be removed from and added back
3777 * to the runnable_list during iteration. Because they're added
3778 * to the tail of the list, safe reverse iteration can still
3779 * visit all nodes.
3780 */
3781 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
3782 scx.runnable_node) {
3783 struct sched_enq_and_set_ctx ctx;
3784
3785 /* cycling deq/enq is enough, see the function comment */
3786 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
3787 sched_enq_and_set_task(&ctx);
3788 }
3789
3790 /* resched to restore ticks and idle state */
3791 if (cpu_online(cpu) || cpu == smp_processor_id())
3792 resched_curr(rq);
3793
3794 raw_spin_rq_unlock(rq);
3795 }
3796
3797 atomic_dec(&scx_breather_depth);
3798 unlock:
3799 raw_spin_unlock_irqrestore(&bypass_lock, flags);
3800 scx_clear_softlockup();
3801 }
3802
free_exit_info(struct scx_exit_info * ei)3803 static void free_exit_info(struct scx_exit_info *ei)
3804 {
3805 kvfree(ei->dump);
3806 kfree(ei->msg);
3807 kfree(ei->bt);
3808 kfree(ei);
3809 }
3810
alloc_exit_info(size_t exit_dump_len)3811 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
3812 {
3813 struct scx_exit_info *ei;
3814
3815 ei = kzalloc(sizeof(*ei), GFP_KERNEL);
3816 if (!ei)
3817 return NULL;
3818
3819 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
3820 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
3821 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL);
3822
3823 if (!ei->bt || !ei->msg || !ei->dump) {
3824 free_exit_info(ei);
3825 return NULL;
3826 }
3827
3828 return ei;
3829 }
3830
scx_exit_reason(enum scx_exit_kind kind)3831 static const char *scx_exit_reason(enum scx_exit_kind kind)
3832 {
3833 switch (kind) {
3834 case SCX_EXIT_UNREG:
3835 return "unregistered from user space";
3836 case SCX_EXIT_UNREG_BPF:
3837 return "unregistered from BPF";
3838 case SCX_EXIT_UNREG_KERN:
3839 return "unregistered from the main kernel";
3840 case SCX_EXIT_SYSRQ:
3841 return "disabled by sysrq-S";
3842 case SCX_EXIT_ERROR:
3843 return "runtime error";
3844 case SCX_EXIT_ERROR_BPF:
3845 return "scx_bpf_error";
3846 case SCX_EXIT_ERROR_STALL:
3847 return "runnable task stall";
3848 default:
3849 return "<UNKNOWN>";
3850 }
3851 }
3852
scx_disable_workfn(struct kthread_work * work)3853 static void scx_disable_workfn(struct kthread_work *work)
3854 {
3855 struct scx_sched *sch = container_of(work, struct scx_sched, disable_work);
3856 struct scx_exit_info *ei = sch->exit_info;
3857 struct scx_task_iter sti;
3858 struct task_struct *p;
3859 int kind, cpu;
3860
3861 kind = atomic_read(&sch->exit_kind);
3862 while (true) {
3863 if (kind == SCX_EXIT_DONE) /* already disabled? */
3864 return;
3865 WARN_ON_ONCE(kind == SCX_EXIT_NONE);
3866 if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE))
3867 break;
3868 }
3869 ei->kind = kind;
3870 ei->reason = scx_exit_reason(ei->kind);
3871
3872 /* guarantee forward progress by bypassing scx_ops */
3873 scx_bypass(true);
3874
3875 switch (scx_set_enable_state(SCX_DISABLING)) {
3876 case SCX_DISABLING:
3877 WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
3878 break;
3879 case SCX_DISABLED:
3880 pr_warn("sched_ext: ops error detected without ops (%s)\n",
3881 sch->exit_info->msg);
3882 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING);
3883 goto done;
3884 default:
3885 break;
3886 }
3887
3888 /*
3889 * Here, every runnable task is guaranteed to make forward progress and
3890 * we can safely use blocking synchronization constructs. Actually
3891 * disable ops.
3892 */
3893 mutex_lock(&scx_enable_mutex);
3894
3895 static_branch_disable(&__scx_switched_all);
3896 WRITE_ONCE(scx_switching_all, false);
3897
3898 /*
3899 * Shut down cgroup support before tasks so that the cgroup attach path
3900 * doesn't race against scx_exit_task().
3901 */
3902 scx_cgroup_lock();
3903 scx_cgroup_exit(sch);
3904 scx_cgroup_unlock();
3905
3906 /*
3907 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
3908 * must be switched out and exited synchronously.
3909 */
3910 percpu_down_write(&scx_fork_rwsem);
3911
3912 scx_init_task_enabled = false;
3913
3914 scx_task_iter_start(&sti);
3915 while ((p = scx_task_iter_next_locked(&sti))) {
3916 const struct sched_class *old_class = p->sched_class;
3917 const struct sched_class *new_class =
3918 __setscheduler_class(p->policy, p->prio);
3919 struct sched_enq_and_set_ctx ctx;
3920
3921 if (old_class != new_class && p->se.sched_delayed)
3922 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
3923
3924 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
3925
3926 p->sched_class = new_class;
3927 check_class_changing(task_rq(p), p, old_class);
3928
3929 sched_enq_and_set_task(&ctx);
3930
3931 check_class_changed(task_rq(p), p, old_class, p->prio);
3932 scx_exit_task(p);
3933 }
3934 scx_task_iter_stop(&sti);
3935 percpu_up_write(&scx_fork_rwsem);
3936
3937 /*
3938 * Invalidate all the rq clocks to prevent getting outdated
3939 * rq clocks from a previous scx scheduler.
3940 */
3941 for_each_possible_cpu(cpu) {
3942 struct rq *rq = cpu_rq(cpu);
3943 scx_rq_clock_invalidate(rq);
3944 }
3945
3946 /* no task is on scx, turn off all the switches and flush in-progress calls */
3947 static_branch_disable(&__scx_enabled);
3948 bitmap_zero(sch->has_op, SCX_OPI_END);
3949 scx_idle_disable();
3950 synchronize_rcu();
3951
3952 if (ei->kind >= SCX_EXIT_ERROR) {
3953 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
3954 sch->ops.name, ei->reason);
3955
3956 if (ei->msg[0] != '\0')
3957 pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg);
3958 #ifdef CONFIG_STACKTRACE
3959 stack_trace_print(ei->bt, ei->bt_len, 2);
3960 #endif
3961 } else {
3962 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
3963 sch->ops.name, ei->reason);
3964 }
3965
3966 if (sch->ops.exit)
3967 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei);
3968
3969 cancel_delayed_work_sync(&scx_watchdog_work);
3970
3971 /*
3972 * scx_root clearing must be inside cpus_read_lock(). See
3973 * handle_hotplug().
3974 */
3975 cpus_read_lock();
3976 RCU_INIT_POINTER(scx_root, NULL);
3977 cpus_read_unlock();
3978
3979 /*
3980 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs
3981 * could observe an object of the same name still in the hierarchy when
3982 * the next scheduler is loaded.
3983 */
3984 kobject_del(&sch->kobj);
3985
3986 free_percpu(scx_dsp_ctx);
3987 scx_dsp_ctx = NULL;
3988 scx_dsp_max_batch = 0;
3989
3990 mutex_unlock(&scx_enable_mutex);
3991
3992 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING);
3993 done:
3994 scx_bypass(false);
3995 }
3996
scx_disable(enum scx_exit_kind kind)3997 static void scx_disable(enum scx_exit_kind kind)
3998 {
3999 int none = SCX_EXIT_NONE;
4000 struct scx_sched *sch;
4001
4002 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
4003 kind = SCX_EXIT_ERROR;
4004
4005 rcu_read_lock();
4006 sch = rcu_dereference(scx_root);
4007 if (sch) {
4008 atomic_try_cmpxchg(&sch->exit_kind, &none, kind);
4009 kthread_queue_work(sch->helper, &sch->disable_work);
4010 }
4011 rcu_read_unlock();
4012 }
4013
dump_newline(struct seq_buf * s)4014 static void dump_newline(struct seq_buf *s)
4015 {
4016 trace_sched_ext_dump("");
4017
4018 /* @s may be zero sized and seq_buf triggers WARN if so */
4019 if (s->size)
4020 seq_buf_putc(s, '\n');
4021 }
4022
dump_line(struct seq_buf * s,const char * fmt,...)4023 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
4024 {
4025 va_list args;
4026
4027 #ifdef CONFIG_TRACEPOINTS
4028 if (trace_sched_ext_dump_enabled()) {
4029 /* protected by scx_dump_state()::dump_lock */
4030 static char line_buf[SCX_EXIT_MSG_LEN];
4031
4032 va_start(args, fmt);
4033 vscnprintf(line_buf, sizeof(line_buf), fmt, args);
4034 va_end(args);
4035
4036 trace_sched_ext_dump(line_buf);
4037 }
4038 #endif
4039 /* @s may be zero sized and seq_buf triggers WARN if so */
4040 if (s->size) {
4041 va_start(args, fmt);
4042 seq_buf_vprintf(s, fmt, args);
4043 va_end(args);
4044
4045 seq_buf_putc(s, '\n');
4046 }
4047 }
4048
dump_stack_trace(struct seq_buf * s,const char * prefix,const unsigned long * bt,unsigned int len)4049 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
4050 const unsigned long *bt, unsigned int len)
4051 {
4052 unsigned int i;
4053
4054 for (i = 0; i < len; i++)
4055 dump_line(s, "%s%pS", prefix, (void *)bt[i]);
4056 }
4057
ops_dump_init(struct seq_buf * s,const char * prefix)4058 static void ops_dump_init(struct seq_buf *s, const char *prefix)
4059 {
4060 struct scx_dump_data *dd = &scx_dump_data;
4061
4062 lockdep_assert_irqs_disabled();
4063
4064 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */
4065 dd->first = true;
4066 dd->cursor = 0;
4067 dd->s = s;
4068 dd->prefix = prefix;
4069 }
4070
ops_dump_flush(void)4071 static void ops_dump_flush(void)
4072 {
4073 struct scx_dump_data *dd = &scx_dump_data;
4074 char *line = dd->buf.line;
4075
4076 if (!dd->cursor)
4077 return;
4078
4079 /*
4080 * There's something to flush and this is the first line. Insert a blank
4081 * line to distinguish ops dump.
4082 */
4083 if (dd->first) {
4084 dump_newline(dd->s);
4085 dd->first = false;
4086 }
4087
4088 /*
4089 * There may be multiple lines in $line. Scan and emit each line
4090 * separately.
4091 */
4092 while (true) {
4093 char *end = line;
4094 char c;
4095
4096 while (*end != '\n' && *end != '\0')
4097 end++;
4098
4099 /*
4100 * If $line overflowed, it may not have newline at the end.
4101 * Always emit with a newline.
4102 */
4103 c = *end;
4104 *end = '\0';
4105 dump_line(dd->s, "%s%s", dd->prefix, line);
4106 if (c == '\0')
4107 break;
4108
4109 /* move to the next line */
4110 end++;
4111 if (*end == '\0')
4112 break;
4113 line = end;
4114 }
4115
4116 dd->cursor = 0;
4117 }
4118
ops_dump_exit(void)4119 static void ops_dump_exit(void)
4120 {
4121 ops_dump_flush();
4122 scx_dump_data.cpu = -1;
4123 }
4124
scx_dump_task(struct seq_buf * s,struct scx_dump_ctx * dctx,struct task_struct * p,char marker)4125 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
4126 struct task_struct *p, char marker)
4127 {
4128 static unsigned long bt[SCX_EXIT_BT_LEN];
4129 struct scx_sched *sch = scx_root;
4130 char dsq_id_buf[19] = "(n/a)";
4131 unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
4132 unsigned int bt_len = 0;
4133
4134 if (p->scx.dsq)
4135 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
4136 (unsigned long long)p->scx.dsq->id);
4137
4138 dump_newline(s);
4139 dump_line(s, " %c%c %s[%d] %+ldms",
4140 marker, task_state_to_char(p), p->comm, p->pid,
4141 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
4142 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
4143 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
4144 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
4145 ops_state >> SCX_OPSS_QSEQ_SHIFT);
4146 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s",
4147 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf);
4148 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u",
4149 p->scx.dsq_vtime, p->scx.slice, p->scx.weight);
4150 dump_line(s, " cpus=%*pb no_mig=%u", cpumask_pr_args(p->cpus_ptr),
4151 p->migration_disabled);
4152
4153 if (SCX_HAS_OP(sch, dump_task)) {
4154 ops_dump_init(s, " ");
4155 SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p);
4156 ops_dump_exit();
4157 }
4158
4159 #ifdef CONFIG_STACKTRACE
4160 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
4161 #endif
4162 if (bt_len) {
4163 dump_newline(s);
4164 dump_stack_trace(s, " ", bt, bt_len);
4165 }
4166 }
4167
scx_dump_state(struct scx_exit_info * ei,size_t dump_len)4168 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
4169 {
4170 static DEFINE_SPINLOCK(dump_lock);
4171 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
4172 struct scx_sched *sch = scx_root;
4173 struct scx_dump_ctx dctx = {
4174 .kind = ei->kind,
4175 .exit_code = ei->exit_code,
4176 .reason = ei->reason,
4177 .at_ns = ktime_get_ns(),
4178 .at_jiffies = jiffies,
4179 };
4180 struct seq_buf s;
4181 struct scx_event_stats events;
4182 unsigned long flags;
4183 char *buf;
4184 int cpu;
4185
4186 spin_lock_irqsave(&dump_lock, flags);
4187
4188 seq_buf_init(&s, ei->dump, dump_len);
4189
4190 if (ei->kind == SCX_EXIT_NONE) {
4191 dump_line(&s, "Debug dump triggered by %s", ei->reason);
4192 } else {
4193 dump_line(&s, "%s[%d] triggered exit kind %d:",
4194 current->comm, current->pid, ei->kind);
4195 dump_line(&s, " %s (%s)", ei->reason, ei->msg);
4196 dump_newline(&s);
4197 dump_line(&s, "Backtrace:");
4198 dump_stack_trace(&s, " ", ei->bt, ei->bt_len);
4199 }
4200
4201 if (SCX_HAS_OP(sch, dump)) {
4202 ops_dump_init(&s, "");
4203 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx);
4204 ops_dump_exit();
4205 }
4206
4207 dump_newline(&s);
4208 dump_line(&s, "CPU states");
4209 dump_line(&s, "----------");
4210
4211 for_each_possible_cpu(cpu) {
4212 struct rq *rq = cpu_rq(cpu);
4213 struct rq_flags rf;
4214 struct task_struct *p;
4215 struct seq_buf ns;
4216 size_t avail, used;
4217 bool idle;
4218
4219 rq_lock(rq, &rf);
4220
4221 idle = list_empty(&rq->scx.runnable_list) &&
4222 rq->curr->sched_class == &idle_sched_class;
4223
4224 if (idle && !SCX_HAS_OP(sch, dump_cpu))
4225 goto next;
4226
4227 /*
4228 * We don't yet know whether ops.dump_cpu() will produce output
4229 * and we may want to skip the default CPU dump if it doesn't.
4230 * Use a nested seq_buf to generate the standard dump so that we
4231 * can decide whether to commit later.
4232 */
4233 avail = seq_buf_get_buf(&s, &buf);
4234 seq_buf_init(&ns, buf, avail);
4235
4236 dump_newline(&ns);
4237 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
4238 cpu, rq->scx.nr_running, rq->scx.flags,
4239 rq->scx.cpu_released, rq->scx.ops_qseq,
4240 rq->scx.pnt_seq);
4241 dump_line(&ns, " curr=%s[%d] class=%ps",
4242 rq->curr->comm, rq->curr->pid,
4243 rq->curr->sched_class);
4244 if (!cpumask_empty(rq->scx.cpus_to_kick))
4245 dump_line(&ns, " cpus_to_kick : %*pb",
4246 cpumask_pr_args(rq->scx.cpus_to_kick));
4247 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
4248 dump_line(&ns, " idle_to_kick : %*pb",
4249 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
4250 if (!cpumask_empty(rq->scx.cpus_to_preempt))
4251 dump_line(&ns, " cpus_to_preempt: %*pb",
4252 cpumask_pr_args(rq->scx.cpus_to_preempt));
4253 if (!cpumask_empty(rq->scx.cpus_to_wait))
4254 dump_line(&ns, " cpus_to_wait : %*pb",
4255 cpumask_pr_args(rq->scx.cpus_to_wait));
4256
4257 used = seq_buf_used(&ns);
4258 if (SCX_HAS_OP(sch, dump_cpu)) {
4259 ops_dump_init(&ns, " ");
4260 SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL,
4261 &dctx, cpu, idle);
4262 ops_dump_exit();
4263 }
4264
4265 /*
4266 * If idle && nothing generated by ops.dump_cpu(), there's
4267 * nothing interesting. Skip.
4268 */
4269 if (idle && used == seq_buf_used(&ns))
4270 goto next;
4271
4272 /*
4273 * $s may already have overflowed when $ns was created. If so,
4274 * calling commit on it will trigger BUG.
4275 */
4276 if (avail) {
4277 seq_buf_commit(&s, seq_buf_used(&ns));
4278 if (seq_buf_has_overflowed(&ns))
4279 seq_buf_set_overflow(&s);
4280 }
4281
4282 if (rq->curr->sched_class == &ext_sched_class)
4283 scx_dump_task(&s, &dctx, rq->curr, '*');
4284
4285 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
4286 scx_dump_task(&s, &dctx, p, ' ');
4287 next:
4288 rq_unlock(rq, &rf);
4289 }
4290
4291 dump_newline(&s);
4292 dump_line(&s, "Event counters");
4293 dump_line(&s, "--------------");
4294
4295 scx_read_events(sch, &events);
4296 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK);
4297 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
4298 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST);
4299 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING);
4300 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
4301 scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL);
4302 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION);
4303 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH);
4304 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE);
4305
4306 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
4307 memcpy(ei->dump + dump_len - sizeof(trunc_marker),
4308 trunc_marker, sizeof(trunc_marker));
4309
4310 spin_unlock_irqrestore(&dump_lock, flags);
4311 }
4312
scx_error_irq_workfn(struct irq_work * irq_work)4313 static void scx_error_irq_workfn(struct irq_work *irq_work)
4314 {
4315 struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work);
4316 struct scx_exit_info *ei = sch->exit_info;
4317
4318 if (ei->kind >= SCX_EXIT_ERROR)
4319 scx_dump_state(ei, sch->ops.exit_dump_len);
4320
4321 kthread_queue_work(sch->helper, &sch->disable_work);
4322 }
4323
scx_vexit(struct scx_sched * sch,enum scx_exit_kind kind,s64 exit_code,const char * fmt,va_list args)4324 static void scx_vexit(struct scx_sched *sch,
4325 enum scx_exit_kind kind, s64 exit_code,
4326 const char *fmt, va_list args)
4327 {
4328 struct scx_exit_info *ei = sch->exit_info;
4329 int none = SCX_EXIT_NONE;
4330
4331 if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind))
4332 return;
4333
4334 ei->exit_code = exit_code;
4335 #ifdef CONFIG_STACKTRACE
4336 if (kind >= SCX_EXIT_ERROR)
4337 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
4338 #endif
4339 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
4340
4341 /*
4342 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
4343 * in scx_disable_workfn().
4344 */
4345 ei->kind = kind;
4346 ei->reason = scx_exit_reason(ei->kind);
4347
4348 irq_work_queue(&sch->error_irq_work);
4349 }
4350
scx_alloc_and_add_sched(struct sched_ext_ops * ops)4351 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops)
4352 {
4353 struct scx_sched *sch;
4354 int node, ret;
4355
4356 sch = kzalloc(sizeof(*sch), GFP_KERNEL);
4357 if (!sch)
4358 return ERR_PTR(-ENOMEM);
4359
4360 sch->exit_info = alloc_exit_info(ops->exit_dump_len);
4361 if (!sch->exit_info) {
4362 ret = -ENOMEM;
4363 goto err_free_sch;
4364 }
4365
4366 ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params);
4367 if (ret < 0)
4368 goto err_free_ei;
4369
4370 sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]),
4371 GFP_KERNEL);
4372 if (!sch->global_dsqs) {
4373 ret = -ENOMEM;
4374 goto err_free_hash;
4375 }
4376
4377 for_each_node_state(node, N_POSSIBLE) {
4378 struct scx_dispatch_q *dsq;
4379
4380 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
4381 if (!dsq) {
4382 ret = -ENOMEM;
4383 goto err_free_gdsqs;
4384 }
4385
4386 init_dsq(dsq, SCX_DSQ_GLOBAL);
4387 sch->global_dsqs[node] = dsq;
4388 }
4389
4390 sch->pcpu = alloc_percpu(struct scx_sched_pcpu);
4391 if (!sch->pcpu)
4392 goto err_free_gdsqs;
4393
4394 sch->helper = kthread_run_worker(0, "sched_ext_helper");
4395 if (!sch->helper)
4396 goto err_free_pcpu;
4397 sched_set_fifo(sch->helper->task);
4398
4399 atomic_set(&sch->exit_kind, SCX_EXIT_NONE);
4400 init_irq_work(&sch->error_irq_work, scx_error_irq_workfn);
4401 kthread_init_work(&sch->disable_work, scx_disable_workfn);
4402 sch->ops = *ops;
4403 ops->priv = sch;
4404
4405 sch->kobj.kset = scx_kset;
4406 ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root");
4407 if (ret < 0)
4408 goto err_stop_helper;
4409
4410 return sch;
4411
4412 err_stop_helper:
4413 kthread_stop(sch->helper->task);
4414 err_free_pcpu:
4415 free_percpu(sch->pcpu);
4416 err_free_gdsqs:
4417 for_each_node_state(node, N_POSSIBLE)
4418 kfree(sch->global_dsqs[node]);
4419 kfree(sch->global_dsqs);
4420 err_free_hash:
4421 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL);
4422 err_free_ei:
4423 free_exit_info(sch->exit_info);
4424 err_free_sch:
4425 kfree(sch);
4426 return ERR_PTR(ret);
4427 }
4428
check_hotplug_seq(struct scx_sched * sch,const struct sched_ext_ops * ops)4429 static void check_hotplug_seq(struct scx_sched *sch,
4430 const struct sched_ext_ops *ops)
4431 {
4432 unsigned long long global_hotplug_seq;
4433
4434 /*
4435 * If a hotplug event has occurred between when a scheduler was
4436 * initialized, and when we were able to attach, exit and notify user
4437 * space about it.
4438 */
4439 if (ops->hotplug_seq) {
4440 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
4441 if (ops->hotplug_seq != global_hotplug_seq) {
4442 scx_exit(sch, SCX_EXIT_UNREG_KERN,
4443 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
4444 "expected hotplug seq %llu did not match actual %llu",
4445 ops->hotplug_seq, global_hotplug_seq);
4446 }
4447 }
4448 }
4449
validate_ops(struct scx_sched * sch,const struct sched_ext_ops * ops)4450 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops)
4451 {
4452 /*
4453 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
4454 * ops.enqueue() callback isn't implemented.
4455 */
4456 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
4457 scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
4458 return -EINVAL;
4459 }
4460
4461 /*
4462 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle
4463 * selection policy to be enabled.
4464 */
4465 if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) &&
4466 (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) {
4467 scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled");
4468 return -EINVAL;
4469 }
4470
4471 if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT)
4472 pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n");
4473
4474 return 0;
4475 }
4476
scx_enable(struct sched_ext_ops * ops,struct bpf_link * link)4477 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link)
4478 {
4479 struct scx_sched *sch;
4480 struct scx_task_iter sti;
4481 struct task_struct *p;
4482 unsigned long timeout;
4483 int i, cpu, ret;
4484
4485 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
4486 cpu_possible_mask)) {
4487 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n");
4488 return -EINVAL;
4489 }
4490
4491 mutex_lock(&scx_enable_mutex);
4492
4493 if (scx_enable_state() != SCX_DISABLED) {
4494 ret = -EBUSY;
4495 goto err_unlock;
4496 }
4497
4498 sch = scx_alloc_and_add_sched(ops);
4499 if (IS_ERR(sch)) {
4500 ret = PTR_ERR(sch);
4501 goto err_unlock;
4502 }
4503
4504 /*
4505 * Transition to ENABLING and clear exit info to arm the disable path.
4506 * Failure triggers full disabling from here on.
4507 */
4508 WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED);
4509 WARN_ON_ONCE(scx_root);
4510
4511 atomic_long_set(&scx_nr_rejected, 0);
4512
4513 for_each_possible_cpu(cpu)
4514 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
4515
4516 /*
4517 * Keep CPUs stable during enable so that the BPF scheduler can track
4518 * online CPUs by watching ->on/offline_cpu() after ->init().
4519 */
4520 cpus_read_lock();
4521
4522 /*
4523 * Make the scheduler instance visible. Must be inside cpus_read_lock().
4524 * See handle_hotplug().
4525 */
4526 rcu_assign_pointer(scx_root, sch);
4527
4528 scx_idle_enable(ops);
4529
4530 if (sch->ops.init) {
4531 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL);
4532 if (ret) {
4533 ret = ops_sanitize_err(sch, "init", ret);
4534 cpus_read_unlock();
4535 scx_error(sch, "ops.init() failed (%d)", ret);
4536 goto err_disable;
4537 }
4538 sch->exit_info->flags |= SCX_EFLAG_INITIALIZED;
4539 }
4540
4541 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
4542 if (((void (**)(void))ops)[i])
4543 set_bit(i, sch->has_op);
4544
4545 check_hotplug_seq(sch, ops);
4546 scx_idle_update_selcpu_topology(ops);
4547
4548 cpus_read_unlock();
4549
4550 ret = validate_ops(sch, ops);
4551 if (ret)
4552 goto err_disable;
4553
4554 WARN_ON_ONCE(scx_dsp_ctx);
4555 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
4556 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
4557 scx_dsp_max_batch),
4558 __alignof__(struct scx_dsp_ctx));
4559 if (!scx_dsp_ctx) {
4560 ret = -ENOMEM;
4561 goto err_disable;
4562 }
4563
4564 if (ops->timeout_ms)
4565 timeout = msecs_to_jiffies(ops->timeout_ms);
4566 else
4567 timeout = SCX_WATCHDOG_MAX_TIMEOUT;
4568
4569 WRITE_ONCE(scx_watchdog_timeout, timeout);
4570 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
4571 queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
4572 scx_watchdog_timeout / 2);
4573
4574 /*
4575 * Once __scx_enabled is set, %current can be switched to SCX anytime.
4576 * This can lead to stalls as some BPF schedulers (e.g. userspace
4577 * scheduling) may not function correctly before all tasks are switched.
4578 * Init in bypass mode to guarantee forward progress.
4579 */
4580 scx_bypass(true);
4581
4582 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
4583 if (((void (**)(void))ops)[i])
4584 set_bit(i, sch->has_op);
4585
4586 if (sch->ops.cpu_acquire || sch->ops.cpu_release)
4587 sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT;
4588
4589 /*
4590 * Lock out forks, cgroup on/offlining and moves before opening the
4591 * floodgate so that they don't wander into the operations prematurely.
4592 */
4593 percpu_down_write(&scx_fork_rwsem);
4594
4595 WARN_ON_ONCE(scx_init_task_enabled);
4596 scx_init_task_enabled = true;
4597
4598 /*
4599 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
4600 * preventing new tasks from being added. No need to exclude tasks
4601 * leaving as sched_ext_free() can handle both prepped and enabled
4602 * tasks. Prep all tasks first and then enable them with preemption
4603 * disabled.
4604 *
4605 * All cgroups should be initialized before scx_init_task() so that the
4606 * BPF scheduler can reliably track each task's cgroup membership from
4607 * scx_init_task(). Lock out cgroup on/offlining and task migrations
4608 * while tasks are being initialized so that scx_cgroup_can_attach()
4609 * never sees uninitialized tasks.
4610 */
4611 scx_cgroup_lock();
4612 ret = scx_cgroup_init(sch);
4613 if (ret)
4614 goto err_disable_unlock_all;
4615
4616 scx_task_iter_start(&sti);
4617 while ((p = scx_task_iter_next_locked(&sti))) {
4618 /*
4619 * @p may already be dead, have lost all its usages counts and
4620 * be waiting for RCU grace period before being freed. @p can't
4621 * be initialized for SCX in such cases and should be ignored.
4622 */
4623 if (!tryget_task_struct(p))
4624 continue;
4625
4626 scx_task_iter_unlock(&sti);
4627
4628 ret = scx_init_task(p, task_group(p), false);
4629 if (ret) {
4630 put_task_struct(p);
4631 scx_task_iter_stop(&sti);
4632 scx_error(sch, "ops.init_task() failed (%d) for %s[%d]",
4633 ret, p->comm, p->pid);
4634 goto err_disable_unlock_all;
4635 }
4636
4637 scx_set_task_state(p, SCX_TASK_READY);
4638
4639 put_task_struct(p);
4640 }
4641 scx_task_iter_stop(&sti);
4642 scx_cgroup_unlock();
4643 percpu_up_write(&scx_fork_rwsem);
4644
4645 /*
4646 * All tasks are READY. It's safe to turn on scx_enabled() and switch
4647 * all eligible tasks.
4648 */
4649 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
4650 static_branch_enable(&__scx_enabled);
4651
4652 /*
4653 * We're fully committed and can't fail. The task READY -> ENABLED
4654 * transitions here are synchronized against sched_ext_free() through
4655 * scx_tasks_lock.
4656 */
4657 percpu_down_write(&scx_fork_rwsem);
4658 scx_task_iter_start(&sti);
4659 while ((p = scx_task_iter_next_locked(&sti))) {
4660 const struct sched_class *old_class = p->sched_class;
4661 const struct sched_class *new_class =
4662 __setscheduler_class(p->policy, p->prio);
4663 struct sched_enq_and_set_ctx ctx;
4664
4665 if (!tryget_task_struct(p))
4666 continue;
4667
4668 if (old_class != new_class && p->se.sched_delayed)
4669 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
4670
4671 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4672
4673 p->scx.slice = SCX_SLICE_DFL;
4674 p->sched_class = new_class;
4675 check_class_changing(task_rq(p), p, old_class);
4676
4677 sched_enq_and_set_task(&ctx);
4678
4679 check_class_changed(task_rq(p), p, old_class, p->prio);
4680 put_task_struct(p);
4681 }
4682 scx_task_iter_stop(&sti);
4683 percpu_up_write(&scx_fork_rwsem);
4684
4685 scx_bypass(false);
4686
4687 if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) {
4688 WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE);
4689 goto err_disable;
4690 }
4691
4692 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
4693 static_branch_enable(&__scx_switched_all);
4694
4695 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
4696 sch->ops.name, scx_switched_all() ? "" : " (partial)");
4697 kobject_uevent(&sch->kobj, KOBJ_ADD);
4698 mutex_unlock(&scx_enable_mutex);
4699
4700 atomic_long_inc(&scx_enable_seq);
4701
4702 return 0;
4703
4704 err_unlock:
4705 mutex_unlock(&scx_enable_mutex);
4706 return ret;
4707
4708 err_disable_unlock_all:
4709 scx_cgroup_unlock();
4710 percpu_up_write(&scx_fork_rwsem);
4711 /* we'll soon enter disable path, keep bypass on */
4712 err_disable:
4713 mutex_unlock(&scx_enable_mutex);
4714 /*
4715 * Returning an error code here would not pass all the error information
4716 * to userspace. Record errno using scx_error() for cases scx_error()
4717 * wasn't already invoked and exit indicating success so that the error
4718 * is notified through ops.exit() with all the details.
4719 *
4720 * Flush scx_disable_work to ensure that error is reported before init
4721 * completion. sch's base reference will be put by bpf_scx_unreg().
4722 */
4723 scx_error(sch, "scx_enable() failed (%d)", ret);
4724 kthread_flush_work(&sch->disable_work);
4725 return 0;
4726 }
4727
4728
4729 /********************************************************************************
4730 * bpf_struct_ops plumbing.
4731 */
4732 #include <linux/bpf_verifier.h>
4733 #include <linux/bpf.h>
4734 #include <linux/btf.h>
4735
4736 static const struct btf_type *task_struct_type;
4737
bpf_scx_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)4738 static bool bpf_scx_is_valid_access(int off, int size,
4739 enum bpf_access_type type,
4740 const struct bpf_prog *prog,
4741 struct bpf_insn_access_aux *info)
4742 {
4743 if (type != BPF_READ)
4744 return false;
4745 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
4746 return false;
4747 if (off % size != 0)
4748 return false;
4749
4750 return btf_ctx_access(off, size, type, prog, info);
4751 }
4752
bpf_scx_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)4753 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
4754 const struct bpf_reg_state *reg, int off,
4755 int size)
4756 {
4757 const struct btf_type *t;
4758
4759 t = btf_type_by_id(reg->btf, reg->btf_id);
4760 if (t == task_struct_type) {
4761 if (off >= offsetof(struct task_struct, scx.slice) &&
4762 off + size <= offsetofend(struct task_struct, scx.slice))
4763 return SCALAR_VALUE;
4764 if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
4765 off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
4766 return SCALAR_VALUE;
4767 if (off >= offsetof(struct task_struct, scx.disallow) &&
4768 off + size <= offsetofend(struct task_struct, scx.disallow))
4769 return SCALAR_VALUE;
4770 }
4771
4772 return -EACCES;
4773 }
4774
4775 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
4776 .get_func_proto = bpf_base_func_proto,
4777 .is_valid_access = bpf_scx_is_valid_access,
4778 .btf_struct_access = bpf_scx_btf_struct_access,
4779 };
4780
bpf_scx_init_member(const struct btf_type * t,const struct btf_member * member,void * kdata,const void * udata)4781 static int bpf_scx_init_member(const struct btf_type *t,
4782 const struct btf_member *member,
4783 void *kdata, const void *udata)
4784 {
4785 const struct sched_ext_ops *uops = udata;
4786 struct sched_ext_ops *ops = kdata;
4787 u32 moff = __btf_member_bit_offset(t, member) / 8;
4788 int ret;
4789
4790 switch (moff) {
4791 case offsetof(struct sched_ext_ops, dispatch_max_batch):
4792 if (*(u32 *)(udata + moff) > INT_MAX)
4793 return -E2BIG;
4794 ops->dispatch_max_batch = *(u32 *)(udata + moff);
4795 return 1;
4796 case offsetof(struct sched_ext_ops, flags):
4797 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
4798 return -EINVAL;
4799 ops->flags = *(u64 *)(udata + moff);
4800 return 1;
4801 case offsetof(struct sched_ext_ops, name):
4802 ret = bpf_obj_name_cpy(ops->name, uops->name,
4803 sizeof(ops->name));
4804 if (ret < 0)
4805 return ret;
4806 if (ret == 0)
4807 return -EINVAL;
4808 return 1;
4809 case offsetof(struct sched_ext_ops, timeout_ms):
4810 if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
4811 SCX_WATCHDOG_MAX_TIMEOUT)
4812 return -E2BIG;
4813 ops->timeout_ms = *(u32 *)(udata + moff);
4814 return 1;
4815 case offsetof(struct sched_ext_ops, exit_dump_len):
4816 ops->exit_dump_len =
4817 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
4818 return 1;
4819 case offsetof(struct sched_ext_ops, hotplug_seq):
4820 ops->hotplug_seq = *(u64 *)(udata + moff);
4821 return 1;
4822 }
4823
4824 return 0;
4825 }
4826
bpf_scx_check_member(const struct btf_type * t,const struct btf_member * member,const struct bpf_prog * prog)4827 static int bpf_scx_check_member(const struct btf_type *t,
4828 const struct btf_member *member,
4829 const struct bpf_prog *prog)
4830 {
4831 u32 moff = __btf_member_bit_offset(t, member) / 8;
4832
4833 switch (moff) {
4834 case offsetof(struct sched_ext_ops, init_task):
4835 #ifdef CONFIG_EXT_GROUP_SCHED
4836 case offsetof(struct sched_ext_ops, cgroup_init):
4837 case offsetof(struct sched_ext_ops, cgroup_exit):
4838 case offsetof(struct sched_ext_ops, cgroup_prep_move):
4839 #endif
4840 case offsetof(struct sched_ext_ops, cpu_online):
4841 case offsetof(struct sched_ext_ops, cpu_offline):
4842 case offsetof(struct sched_ext_ops, init):
4843 case offsetof(struct sched_ext_ops, exit):
4844 break;
4845 default:
4846 if (prog->sleepable)
4847 return -EINVAL;
4848 }
4849
4850 return 0;
4851 }
4852
bpf_scx_reg(void * kdata,struct bpf_link * link)4853 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
4854 {
4855 return scx_enable(kdata, link);
4856 }
4857
bpf_scx_unreg(void * kdata,struct bpf_link * link)4858 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
4859 {
4860 struct sched_ext_ops *ops = kdata;
4861 struct scx_sched *sch = ops->priv;
4862
4863 scx_disable(SCX_EXIT_UNREG);
4864 kthread_flush_work(&sch->disable_work);
4865 kobject_put(&sch->kobj);
4866 }
4867
bpf_scx_init(struct btf * btf)4868 static int bpf_scx_init(struct btf *btf)
4869 {
4870 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]);
4871
4872 return 0;
4873 }
4874
bpf_scx_update(void * kdata,void * old_kdata,struct bpf_link * link)4875 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
4876 {
4877 /*
4878 * sched_ext does not support updating the actively-loaded BPF
4879 * scheduler, as registering a BPF scheduler can always fail if the
4880 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
4881 * etc. Similarly, we can always race with unregistration happening
4882 * elsewhere, such as with sysrq.
4883 */
4884 return -EOPNOTSUPP;
4885 }
4886
bpf_scx_validate(void * kdata)4887 static int bpf_scx_validate(void *kdata)
4888 {
4889 return 0;
4890 }
4891
sched_ext_ops__select_cpu(struct task_struct * p,s32 prev_cpu,u64 wake_flags)4892 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
sched_ext_ops__enqueue(struct task_struct * p,u64 enq_flags)4893 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__dequeue(struct task_struct * p,u64 enq_flags)4894 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__dispatch(s32 prev_cpu,struct task_struct * prev__nullable)4895 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {}
sched_ext_ops__tick(struct task_struct * p)4896 static void sched_ext_ops__tick(struct task_struct *p) {}
sched_ext_ops__runnable(struct task_struct * p,u64 enq_flags)4897 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__running(struct task_struct * p)4898 static void sched_ext_ops__running(struct task_struct *p) {}
sched_ext_ops__stopping(struct task_struct * p,bool runnable)4899 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {}
sched_ext_ops__quiescent(struct task_struct * p,u64 deq_flags)4900 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {}
sched_ext_ops__yield(struct task_struct * from,struct task_struct * to__nullable)4901 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; }
sched_ext_ops__core_sched_before(struct task_struct * a,struct task_struct * b)4902 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; }
sched_ext_ops__set_weight(struct task_struct * p,u32 weight)4903 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {}
sched_ext_ops__set_cpumask(struct task_struct * p,const struct cpumask * mask)4904 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {}
sched_ext_ops__update_idle(s32 cpu,bool idle)4905 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {}
sched_ext_ops__cpu_acquire(s32 cpu,struct scx_cpu_acquire_args * args)4906 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {}
sched_ext_ops__cpu_release(s32 cpu,struct scx_cpu_release_args * args)4907 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {}
sched_ext_ops__init_task(struct task_struct * p,struct scx_init_task_args * args)4908 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
sched_ext_ops__exit_task(struct task_struct * p,struct scx_exit_task_args * args)4909 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {}
sched_ext_ops__enable(struct task_struct * p)4910 static void sched_ext_ops__enable(struct task_struct *p) {}
sched_ext_ops__disable(struct task_struct * p)4911 static void sched_ext_ops__disable(struct task_struct *p) {}
4912 #ifdef CONFIG_EXT_GROUP_SCHED
sched_ext_ops__cgroup_init(struct cgroup * cgrp,struct scx_cgroup_init_args * args)4913 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
sched_ext_ops__cgroup_exit(struct cgroup * cgrp)4914 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {}
sched_ext_ops__cgroup_prep_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)4915 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
sched_ext_ops__cgroup_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)4916 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
sched_ext_ops__cgroup_cancel_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)4917 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
sched_ext_ops__cgroup_set_weight(struct cgroup * cgrp,u32 weight)4918 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {}
sched_ext_ops__cgroup_set_bandwidth(struct cgroup * cgrp,u64 period_us,u64 quota_us,u64 burst_us)4919 static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {}
4920 #endif
sched_ext_ops__cpu_online(s32 cpu)4921 static void sched_ext_ops__cpu_online(s32 cpu) {}
sched_ext_ops__cpu_offline(s32 cpu)4922 static void sched_ext_ops__cpu_offline(s32 cpu) {}
sched_ext_ops__init(void)4923 static s32 sched_ext_ops__init(void) { return -EINVAL; }
sched_ext_ops__exit(struct scx_exit_info * info)4924 static void sched_ext_ops__exit(struct scx_exit_info *info) {}
sched_ext_ops__dump(struct scx_dump_ctx * ctx)4925 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {}
sched_ext_ops__dump_cpu(struct scx_dump_ctx * ctx,s32 cpu,bool idle)4926 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
sched_ext_ops__dump_task(struct scx_dump_ctx * ctx,struct task_struct * p)4927 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {}
4928
4929 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
4930 .select_cpu = sched_ext_ops__select_cpu,
4931 .enqueue = sched_ext_ops__enqueue,
4932 .dequeue = sched_ext_ops__dequeue,
4933 .dispatch = sched_ext_ops__dispatch,
4934 .tick = sched_ext_ops__tick,
4935 .runnable = sched_ext_ops__runnable,
4936 .running = sched_ext_ops__running,
4937 .stopping = sched_ext_ops__stopping,
4938 .quiescent = sched_ext_ops__quiescent,
4939 .yield = sched_ext_ops__yield,
4940 .core_sched_before = sched_ext_ops__core_sched_before,
4941 .set_weight = sched_ext_ops__set_weight,
4942 .set_cpumask = sched_ext_ops__set_cpumask,
4943 .update_idle = sched_ext_ops__update_idle,
4944 .cpu_acquire = sched_ext_ops__cpu_acquire,
4945 .cpu_release = sched_ext_ops__cpu_release,
4946 .init_task = sched_ext_ops__init_task,
4947 .exit_task = sched_ext_ops__exit_task,
4948 .enable = sched_ext_ops__enable,
4949 .disable = sched_ext_ops__disable,
4950 #ifdef CONFIG_EXT_GROUP_SCHED
4951 .cgroup_init = sched_ext_ops__cgroup_init,
4952 .cgroup_exit = sched_ext_ops__cgroup_exit,
4953 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move,
4954 .cgroup_move = sched_ext_ops__cgroup_move,
4955 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move,
4956 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight,
4957 .cgroup_set_bandwidth = sched_ext_ops__cgroup_set_bandwidth,
4958 #endif
4959 .cpu_online = sched_ext_ops__cpu_online,
4960 .cpu_offline = sched_ext_ops__cpu_offline,
4961 .init = sched_ext_ops__init,
4962 .exit = sched_ext_ops__exit,
4963 .dump = sched_ext_ops__dump,
4964 .dump_cpu = sched_ext_ops__dump_cpu,
4965 .dump_task = sched_ext_ops__dump_task,
4966 };
4967
4968 static struct bpf_struct_ops bpf_sched_ext_ops = {
4969 .verifier_ops = &bpf_scx_verifier_ops,
4970 .reg = bpf_scx_reg,
4971 .unreg = bpf_scx_unreg,
4972 .check_member = bpf_scx_check_member,
4973 .init_member = bpf_scx_init_member,
4974 .init = bpf_scx_init,
4975 .update = bpf_scx_update,
4976 .validate = bpf_scx_validate,
4977 .name = "sched_ext_ops",
4978 .owner = THIS_MODULE,
4979 .cfi_stubs = &__bpf_ops_sched_ext_ops
4980 };
4981
4982
4983 /********************************************************************************
4984 * System integration and init.
4985 */
4986
sysrq_handle_sched_ext_reset(u8 key)4987 static void sysrq_handle_sched_ext_reset(u8 key)
4988 {
4989 scx_disable(SCX_EXIT_SYSRQ);
4990 }
4991
4992 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
4993 .handler = sysrq_handle_sched_ext_reset,
4994 .help_msg = "reset-sched-ext(S)",
4995 .action_msg = "Disable sched_ext and revert all tasks to CFS",
4996 .enable_mask = SYSRQ_ENABLE_RTNICE,
4997 };
4998
sysrq_handle_sched_ext_dump(u8 key)4999 static void sysrq_handle_sched_ext_dump(u8 key)
5000 {
5001 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
5002
5003 if (scx_enabled())
5004 scx_dump_state(&ei, 0);
5005 }
5006
5007 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
5008 .handler = sysrq_handle_sched_ext_dump,
5009 .help_msg = "dump-sched-ext(D)",
5010 .action_msg = "Trigger sched_ext debug dump",
5011 .enable_mask = SYSRQ_ENABLE_RTNICE,
5012 };
5013
can_skip_idle_kick(struct rq * rq)5014 static bool can_skip_idle_kick(struct rq *rq)
5015 {
5016 lockdep_assert_rq_held(rq);
5017
5018 /*
5019 * We can skip idle kicking if @rq is going to go through at least one
5020 * full SCX scheduling cycle before going idle. Just checking whether
5021 * curr is not idle is insufficient because we could be racing
5022 * balance_one() trying to pull the next task from a remote rq, which
5023 * may fail, and @rq may become idle afterwards.
5024 *
5025 * The race window is small and we don't and can't guarantee that @rq is
5026 * only kicked while idle anyway. Skip only when sure.
5027 */
5028 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
5029 }
5030
kick_one_cpu(s32 cpu,struct rq * this_rq,unsigned long * pseqs)5031 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
5032 {
5033 struct rq *rq = cpu_rq(cpu);
5034 struct scx_rq *this_scx = &this_rq->scx;
5035 bool should_wait = false;
5036 unsigned long flags;
5037
5038 raw_spin_rq_lock_irqsave(rq, flags);
5039
5040 /*
5041 * During CPU hotplug, a CPU may depend on kicking itself to make
5042 * forward progress. Allow kicking self regardless of online state.
5043 */
5044 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
5045 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
5046 if (rq->curr->sched_class == &ext_sched_class)
5047 rq->curr->scx.slice = 0;
5048 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5049 }
5050
5051 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
5052 pseqs[cpu] = rq->scx.pnt_seq;
5053 should_wait = true;
5054 }
5055
5056 resched_curr(rq);
5057 } else {
5058 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5059 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5060 }
5061
5062 raw_spin_rq_unlock_irqrestore(rq, flags);
5063
5064 return should_wait;
5065 }
5066
kick_one_cpu_if_idle(s32 cpu,struct rq * this_rq)5067 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
5068 {
5069 struct rq *rq = cpu_rq(cpu);
5070 unsigned long flags;
5071
5072 raw_spin_rq_lock_irqsave(rq, flags);
5073
5074 if (!can_skip_idle_kick(rq) &&
5075 (cpu_online(cpu) || cpu == cpu_of(this_rq)))
5076 resched_curr(rq);
5077
5078 raw_spin_rq_unlock_irqrestore(rq, flags);
5079 }
5080
kick_cpus_irq_workfn(struct irq_work * irq_work)5081 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
5082 {
5083 struct rq *this_rq = this_rq();
5084 struct scx_rq *this_scx = &this_rq->scx;
5085 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
5086 bool should_wait = false;
5087 s32 cpu;
5088
5089 for_each_cpu(cpu, this_scx->cpus_to_kick) {
5090 should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
5091 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
5092 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5093 }
5094
5095 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
5096 kick_one_cpu_if_idle(cpu, this_rq);
5097 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5098 }
5099
5100 if (!should_wait)
5101 return;
5102
5103 for_each_cpu(cpu, this_scx->cpus_to_wait) {
5104 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
5105
5106 if (cpu != cpu_of(this_rq)) {
5107 /*
5108 * Pairs with smp_store_release() issued by this CPU in
5109 * switch_class() on the resched path.
5110 *
5111 * We busy-wait here to guarantee that no other task can
5112 * be scheduled on our core before the target CPU has
5113 * entered the resched path.
5114 */
5115 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
5116 cpu_relax();
5117 }
5118
5119 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5120 }
5121 }
5122
5123 /**
5124 * print_scx_info - print out sched_ext scheduler state
5125 * @log_lvl: the log level to use when printing
5126 * @p: target task
5127 *
5128 * If a sched_ext scheduler is enabled, print the name and state of the
5129 * scheduler. If @p is on sched_ext, print further information about the task.
5130 *
5131 * This function can be safely called on any task as long as the task_struct
5132 * itself is accessible. While safe, this function isn't synchronized and may
5133 * print out mixups or garbages of limited length.
5134 */
print_scx_info(const char * log_lvl,struct task_struct * p)5135 void print_scx_info(const char *log_lvl, struct task_struct *p)
5136 {
5137 struct scx_sched *sch = scx_root;
5138 enum scx_enable_state state = scx_enable_state();
5139 const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
5140 char runnable_at_buf[22] = "?";
5141 struct sched_class *class;
5142 unsigned long runnable_at;
5143
5144 if (state == SCX_DISABLED)
5145 return;
5146
5147 /*
5148 * Carefully check if the task was running on sched_ext, and then
5149 * carefully copy the time it's been runnable, and its state.
5150 */
5151 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
5152 class != &ext_sched_class) {
5153 printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name,
5154 scx_enable_state_str[state], all);
5155 return;
5156 }
5157
5158 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
5159 sizeof(runnable_at)))
5160 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
5161 jiffies_delta_msecs(runnable_at, jiffies));
5162
5163 /* print everything onto one line to conserve console space */
5164 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
5165 log_lvl, sch->ops.name, scx_enable_state_str[state], all,
5166 runnable_at_buf);
5167 }
5168
scx_pm_handler(struct notifier_block * nb,unsigned long event,void * ptr)5169 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
5170 {
5171 /*
5172 * SCX schedulers often have userspace components which are sometimes
5173 * involved in critial scheduling paths. PM operations involve freezing
5174 * userspace which can lead to scheduling misbehaviors including stalls.
5175 * Let's bypass while PM operations are in progress.
5176 */
5177 switch (event) {
5178 case PM_HIBERNATION_PREPARE:
5179 case PM_SUSPEND_PREPARE:
5180 case PM_RESTORE_PREPARE:
5181 scx_bypass(true);
5182 break;
5183 case PM_POST_HIBERNATION:
5184 case PM_POST_SUSPEND:
5185 case PM_POST_RESTORE:
5186 scx_bypass(false);
5187 break;
5188 }
5189
5190 return NOTIFY_OK;
5191 }
5192
5193 static struct notifier_block scx_pm_notifier = {
5194 .notifier_call = scx_pm_handler,
5195 };
5196
init_sched_ext_class(void)5197 void __init init_sched_ext_class(void)
5198 {
5199 s32 cpu, v;
5200
5201 /*
5202 * The following is to prevent the compiler from optimizing out the enum
5203 * definitions so that BPF scheduler implementations can use them
5204 * through the generated vmlinux.h.
5205 */
5206 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
5207 SCX_TG_ONLINE);
5208
5209 scx_idle_init_masks();
5210
5211 scx_kick_cpus_pnt_seqs =
5212 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
5213 __alignof__(scx_kick_cpus_pnt_seqs[0]));
5214 BUG_ON(!scx_kick_cpus_pnt_seqs);
5215
5216 for_each_possible_cpu(cpu) {
5217 struct rq *rq = cpu_rq(cpu);
5218 int n = cpu_to_node(cpu);
5219
5220 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
5221 INIT_LIST_HEAD(&rq->scx.runnable_list);
5222 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
5223
5224 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n));
5225 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n));
5226 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n));
5227 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n));
5228 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
5229 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
5230
5231 if (cpu_online(cpu))
5232 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
5233 }
5234
5235 register_sysrq_key('S', &sysrq_sched_ext_reset_op);
5236 register_sysrq_key('D', &sysrq_sched_ext_dump_op);
5237 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
5238 }
5239
5240
5241 /********************************************************************************
5242 * Helpers that can be called from the BPF scheduler.
5243 */
scx_dsq_insert_preamble(struct scx_sched * sch,struct task_struct * p,u64 enq_flags)5244 static bool scx_dsq_insert_preamble(struct scx_sched *sch, struct task_struct *p,
5245 u64 enq_flags)
5246 {
5247 if (!scx_kf_allowed(sch, SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
5248 return false;
5249
5250 lockdep_assert_irqs_disabled();
5251
5252 if (unlikely(!p)) {
5253 scx_error(sch, "called with NULL task");
5254 return false;
5255 }
5256
5257 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
5258 scx_error(sch, "invalid enq_flags 0x%llx", enq_flags);
5259 return false;
5260 }
5261
5262 return true;
5263 }
5264
scx_dsq_insert_commit(struct scx_sched * sch,struct task_struct * p,u64 dsq_id,u64 enq_flags)5265 static void scx_dsq_insert_commit(struct scx_sched *sch, struct task_struct *p,
5266 u64 dsq_id, u64 enq_flags)
5267 {
5268 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
5269 struct task_struct *ddsp_task;
5270
5271 ddsp_task = __this_cpu_read(direct_dispatch_task);
5272 if (ddsp_task) {
5273 mark_direct_dispatch(sch, ddsp_task, p, dsq_id, enq_flags);
5274 return;
5275 }
5276
5277 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
5278 scx_error(sch, "dispatch buffer overflow");
5279 return;
5280 }
5281
5282 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
5283 .task = p,
5284 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
5285 .dsq_id = dsq_id,
5286 .enq_flags = enq_flags,
5287 };
5288 }
5289
5290 __bpf_kfunc_start_defs();
5291
5292 /**
5293 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ
5294 * @p: task_struct to insert
5295 * @dsq_id: DSQ to insert into
5296 * @slice: duration @p can run for in nsecs, 0 to keep the current value
5297 * @enq_flags: SCX_ENQ_*
5298 *
5299 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to
5300 * call this function spuriously. Can be called from ops.enqueue(),
5301 * ops.select_cpu(), and ops.dispatch().
5302 *
5303 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
5304 * and @p must match the task being enqueued.
5305 *
5306 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
5307 * will be directly inserted into the corresponding dispatch queue after
5308 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be
5309 * inserted into the local DSQ of the CPU returned by ops.select_cpu().
5310 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
5311 * task is inserted.
5312 *
5313 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
5314 * and this function can be called upto ops.dispatch_max_batch times to insert
5315 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
5316 * remaining slots. scx_bpf_dsq_move_to_local() flushes the batch and resets the
5317 * counter.
5318 *
5319 * This function doesn't have any locking restrictions and may be called under
5320 * BPF locks (in the future when BPF introduces more flexible locking).
5321 *
5322 * @p is allowed to run for @slice. The scheduling path is triggered on slice
5323 * exhaustion. If zero, the current residual slice is maintained. If
5324 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
5325 * scx_bpf_kick_cpu() to trigger scheduling.
5326 */
scx_bpf_dsq_insert(struct task_struct * p,u64 dsq_id,u64 slice,u64 enq_flags)5327 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice,
5328 u64 enq_flags)
5329 {
5330 struct scx_sched *sch;
5331
5332 guard(rcu)();
5333 sch = rcu_dereference(scx_root);
5334 if (unlikely(!sch))
5335 return;
5336
5337 if (!scx_dsq_insert_preamble(sch, p, enq_flags))
5338 return;
5339
5340 if (slice)
5341 p->scx.slice = slice;
5342 else
5343 p->scx.slice = p->scx.slice ?: 1;
5344
5345 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags);
5346 }
5347
5348 /**
5349 * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ
5350 * @p: task_struct to insert
5351 * @dsq_id: DSQ to insert into
5352 * @slice: duration @p can run for in nsecs, 0 to keep the current value
5353 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
5354 * @enq_flags: SCX_ENQ_*
5355 *
5356 * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id.
5357 * Tasks queued into the priority queue are ordered by @vtime. All other aspects
5358 * are identical to scx_bpf_dsq_insert().
5359 *
5360 * @vtime ordering is according to time_before64() which considers wrapping. A
5361 * numerically larger vtime may indicate an earlier position in the ordering and
5362 * vice-versa.
5363 *
5364 * A DSQ can only be used as a FIFO or priority queue at any given time and this
5365 * function must not be called on a DSQ which already has one or more FIFO tasks
5366 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and
5367 * SCX_DSQ_GLOBAL) cannot be used as priority queues.
5368 */
scx_bpf_dsq_insert_vtime(struct task_struct * p,u64 dsq_id,u64 slice,u64 vtime,u64 enq_flags)5369 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id,
5370 u64 slice, u64 vtime, u64 enq_flags)
5371 {
5372 struct scx_sched *sch;
5373
5374 guard(rcu)();
5375 sch = rcu_dereference(scx_root);
5376 if (unlikely(!sch))
5377 return;
5378
5379 if (!scx_dsq_insert_preamble(sch, p, enq_flags))
5380 return;
5381
5382 if (slice)
5383 p->scx.slice = slice;
5384 else
5385 p->scx.slice = p->scx.slice ?: 1;
5386
5387 p->scx.dsq_vtime = vtime;
5388
5389 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
5390 }
5391
5392 __bpf_kfunc_end_defs();
5393
5394 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
5395 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU)
5396 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU)
5397 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
5398
5399 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
5400 .owner = THIS_MODULE,
5401 .set = &scx_kfunc_ids_enqueue_dispatch,
5402 };
5403
scx_dsq_move(struct bpf_iter_scx_dsq_kern * kit,struct task_struct * p,u64 dsq_id,u64 enq_flags)5404 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit,
5405 struct task_struct *p, u64 dsq_id, u64 enq_flags)
5406 {
5407 struct scx_sched *sch = scx_root;
5408 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
5409 struct rq *this_rq, *src_rq, *locked_rq;
5410 bool dispatched = false;
5411 bool in_balance;
5412 unsigned long flags;
5413
5414 if (!scx_kf_allowed_if_unlocked() &&
5415 !scx_kf_allowed(sch, SCX_KF_DISPATCH))
5416 return false;
5417
5418 /*
5419 * Can be called from either ops.dispatch() locking this_rq() or any
5420 * context where no rq lock is held. If latter, lock @p's task_rq which
5421 * we'll likely need anyway.
5422 */
5423 src_rq = task_rq(p);
5424
5425 local_irq_save(flags);
5426 this_rq = this_rq();
5427 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
5428
5429 if (in_balance) {
5430 if (this_rq != src_rq) {
5431 raw_spin_rq_unlock(this_rq);
5432 raw_spin_rq_lock(src_rq);
5433 }
5434 } else {
5435 raw_spin_rq_lock(src_rq);
5436 }
5437
5438 /*
5439 * If the BPF scheduler keeps calling this function repeatedly, it can
5440 * cause similar live-lock conditions as consume_dispatch_q(). Insert a
5441 * breather if necessary.
5442 */
5443 scx_breather(src_rq);
5444
5445 locked_rq = src_rq;
5446 raw_spin_lock(&src_dsq->lock);
5447
5448 /*
5449 * Did someone else get to it? @p could have already left $src_dsq, got
5450 * re-enqueud, or be in the process of being consumed by someone else.
5451 */
5452 if (unlikely(p->scx.dsq != src_dsq ||
5453 u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
5454 p->scx.holding_cpu >= 0) ||
5455 WARN_ON_ONCE(src_rq != task_rq(p))) {
5456 raw_spin_unlock(&src_dsq->lock);
5457 goto out;
5458 }
5459
5460 /* @p is still on $src_dsq and stable, determine the destination */
5461 dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p);
5462
5463 /*
5464 * Apply vtime and slice updates before moving so that the new time is
5465 * visible before inserting into $dst_dsq. @p is still on $src_dsq but
5466 * this is safe as we're locking it.
5467 */
5468 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
5469 p->scx.dsq_vtime = kit->vtime;
5470 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
5471 p->scx.slice = kit->slice;
5472
5473 /* execute move */
5474 locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq);
5475 dispatched = true;
5476 out:
5477 if (in_balance) {
5478 if (this_rq != locked_rq) {
5479 raw_spin_rq_unlock(locked_rq);
5480 raw_spin_rq_lock(this_rq);
5481 }
5482 } else {
5483 raw_spin_rq_unlock_irqrestore(locked_rq, flags);
5484 }
5485
5486 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
5487 __SCX_DSQ_ITER_HAS_VTIME);
5488 return dispatched;
5489 }
5490
5491 __bpf_kfunc_start_defs();
5492
5493 /**
5494 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
5495 *
5496 * Can only be called from ops.dispatch().
5497 */
scx_bpf_dispatch_nr_slots(void)5498 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
5499 {
5500 struct scx_sched *sch;
5501
5502 guard(rcu)();
5503
5504 sch = rcu_dereference(scx_root);
5505 if (unlikely(!sch))
5506 return 0;
5507
5508 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
5509 return 0;
5510
5511 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
5512 }
5513
5514 /**
5515 * scx_bpf_dispatch_cancel - Cancel the latest dispatch
5516 *
5517 * Cancel the latest dispatch. Can be called multiple times to cancel further
5518 * dispatches. Can only be called from ops.dispatch().
5519 */
scx_bpf_dispatch_cancel(void)5520 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
5521 {
5522 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
5523 struct scx_sched *sch;
5524
5525 guard(rcu)();
5526
5527 sch = rcu_dereference(scx_root);
5528 if (unlikely(!sch))
5529 return;
5530
5531 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
5532 return;
5533
5534 if (dspc->cursor > 0)
5535 dspc->cursor--;
5536 else
5537 scx_error(sch, "dispatch buffer underflow");
5538 }
5539
5540 /**
5541 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ
5542 * @dsq_id: DSQ to move task from
5543 *
5544 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's
5545 * local DSQ for execution. Can only be called from ops.dispatch().
5546 *
5547 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert()
5548 * before trying to move from the specified DSQ. It may also grab rq locks and
5549 * thus can't be called under any BPF locks.
5550 *
5551 * Returns %true if a task has been moved, %false if there isn't any task to
5552 * move.
5553 */
scx_bpf_dsq_move_to_local(u64 dsq_id)5554 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id)
5555 {
5556 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
5557 struct scx_dispatch_q *dsq;
5558 struct scx_sched *sch;
5559
5560 guard(rcu)();
5561
5562 sch = rcu_dereference(scx_root);
5563 if (unlikely(!sch))
5564 return false;
5565
5566 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
5567 return false;
5568
5569 flush_dispatch_buf(sch, dspc->rq);
5570
5571 dsq = find_user_dsq(sch, dsq_id);
5572 if (unlikely(!dsq)) {
5573 scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id);
5574 return false;
5575 }
5576
5577 if (consume_dispatch_q(sch, dspc->rq, dsq)) {
5578 /*
5579 * A successfully consumed task can be dequeued before it starts
5580 * running while the CPU is trying to migrate other dispatched
5581 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
5582 * local DSQ.
5583 */
5584 dspc->nr_tasks++;
5585 return true;
5586 } else {
5587 return false;
5588 }
5589 }
5590
5591 /**
5592 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs
5593 * @it__iter: DSQ iterator in progress
5594 * @slice: duration the moved task can run for in nsecs
5595 *
5596 * Override the slice of the next task that will be moved from @it__iter using
5597 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous
5598 * slice duration is kept.
5599 */
scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq * it__iter,u64 slice)5600 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter,
5601 u64 slice)
5602 {
5603 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
5604
5605 kit->slice = slice;
5606 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
5607 }
5608
5609 /**
5610 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs
5611 * @it__iter: DSQ iterator in progress
5612 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
5613 *
5614 * Override the vtime of the next task that will be moved from @it__iter using
5615 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice
5616 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the
5617 * override is ignored and cleared.
5618 */
scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq * it__iter,u64 vtime)5619 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter,
5620 u64 vtime)
5621 {
5622 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
5623
5624 kit->vtime = vtime;
5625 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
5626 }
5627
5628 /**
5629 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ
5630 * @it__iter: DSQ iterator in progress
5631 * @p: task to transfer
5632 * @dsq_id: DSQ to move @p to
5633 * @enq_flags: SCX_ENQ_*
5634 *
5635 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
5636 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
5637 * be the destination.
5638 *
5639 * For the transfer to be successful, @p must still be on the DSQ and have been
5640 * queued before the DSQ iteration started. This function doesn't care whether
5641 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
5642 * been queued before the iteration started.
5643 *
5644 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update.
5645 *
5646 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
5647 * lock (e.g. BPF timers or SYSCALL programs).
5648 *
5649 * Returns %true if @p has been consumed, %false if @p had already been consumed
5650 * or dequeued.
5651 */
scx_bpf_dsq_move(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)5652 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter,
5653 struct task_struct *p, u64 dsq_id,
5654 u64 enq_flags)
5655 {
5656 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
5657 p, dsq_id, enq_flags);
5658 }
5659
5660 /**
5661 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ
5662 * @it__iter: DSQ iterator in progress
5663 * @p: task to transfer
5664 * @dsq_id: DSQ to move @p to
5665 * @enq_flags: SCX_ENQ_*
5666 *
5667 * Transfer @p which is on the DSQ currently iterated by @it__iter to the
5668 * priority queue of the DSQ specified by @dsq_id. The destination must be a
5669 * user DSQ as only user DSQs support priority queue.
5670 *
5671 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice()
5672 * and scx_bpf_dsq_move_set_vtime() to update.
5673 *
5674 * All other aspects are identical to scx_bpf_dsq_move(). See
5675 * scx_bpf_dsq_insert_vtime() for more information on @vtime.
5676 */
scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)5677 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter,
5678 struct task_struct *p, u64 dsq_id,
5679 u64 enq_flags)
5680 {
5681 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
5682 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
5683 }
5684
5685 __bpf_kfunc_end_defs();
5686
5687 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
5688 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
5689 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
5690 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local)
5691 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice)
5692 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime)
5693 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
5694 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
5695 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
5696
5697 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
5698 .owner = THIS_MODULE,
5699 .set = &scx_kfunc_ids_dispatch,
5700 };
5701
5702 __bpf_kfunc_start_defs();
5703
5704 /**
5705 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
5706 *
5707 * Iterate over all of the tasks currently enqueued on the local DSQ of the
5708 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
5709 * processed tasks. Can only be called from ops.cpu_release().
5710 */
scx_bpf_reenqueue_local(void)5711 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
5712 {
5713 struct scx_sched *sch;
5714 LIST_HEAD(tasks);
5715 u32 nr_enqueued = 0;
5716 struct rq *rq;
5717 struct task_struct *p, *n;
5718
5719 guard(rcu)();
5720 sch = rcu_dereference(scx_root);
5721 if (unlikely(!sch))
5722 return 0;
5723
5724 if (!scx_kf_allowed(sch, SCX_KF_CPU_RELEASE))
5725 return 0;
5726
5727 rq = cpu_rq(smp_processor_id());
5728 lockdep_assert_rq_held(rq);
5729
5730 /*
5731 * The BPF scheduler may choose to dispatch tasks back to
5732 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
5733 * first to avoid processing the same tasks repeatedly.
5734 */
5735 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
5736 scx.dsq_list.node) {
5737 /*
5738 * If @p is being migrated, @p's current CPU may not agree with
5739 * its allowed CPUs and the migration_cpu_stop is about to
5740 * deactivate and re-activate @p anyway. Skip re-enqueueing.
5741 *
5742 * While racing sched property changes may also dequeue and
5743 * re-enqueue a migrating task while its current CPU and allowed
5744 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
5745 * the current local DSQ for running tasks and thus are not
5746 * visible to the BPF scheduler.
5747 */
5748 if (p->migration_pending)
5749 continue;
5750
5751 dispatch_dequeue(rq, p);
5752 list_add_tail(&p->scx.dsq_list.node, &tasks);
5753 }
5754
5755 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
5756 list_del_init(&p->scx.dsq_list.node);
5757 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
5758 nr_enqueued++;
5759 }
5760
5761 return nr_enqueued;
5762 }
5763
5764 __bpf_kfunc_end_defs();
5765
5766 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
5767 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
5768 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
5769
5770 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
5771 .owner = THIS_MODULE,
5772 .set = &scx_kfunc_ids_cpu_release,
5773 };
5774
5775 __bpf_kfunc_start_defs();
5776
5777 /**
5778 * scx_bpf_create_dsq - Create a custom DSQ
5779 * @dsq_id: DSQ to create
5780 * @node: NUMA node to allocate from
5781 *
5782 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
5783 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
5784 */
scx_bpf_create_dsq(u64 dsq_id,s32 node)5785 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
5786 {
5787 struct scx_dispatch_q *dsq;
5788 struct scx_sched *sch;
5789 s32 ret;
5790
5791 if (unlikely(node >= (int)nr_node_ids ||
5792 (node < 0 && node != NUMA_NO_NODE)))
5793 return -EINVAL;
5794
5795 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN))
5796 return -EINVAL;
5797
5798 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
5799 if (!dsq)
5800 return -ENOMEM;
5801
5802 init_dsq(dsq, dsq_id);
5803
5804 rcu_read_lock();
5805
5806 sch = rcu_dereference(scx_root);
5807 if (sch)
5808 ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node,
5809 dsq_hash_params);
5810 else
5811 ret = -ENODEV;
5812
5813 rcu_read_unlock();
5814 if (ret)
5815 kfree(dsq);
5816 return ret;
5817 }
5818
5819 __bpf_kfunc_end_defs();
5820
5821 BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
5822 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
5823 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice)
5824 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime)
5825 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
5826 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
5827 BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
5828
5829 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
5830 .owner = THIS_MODULE,
5831 .set = &scx_kfunc_ids_unlocked,
5832 };
5833
5834 __bpf_kfunc_start_defs();
5835
scx_kick_cpu(struct scx_sched * sch,s32 cpu,u64 flags)5836 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags)
5837 {
5838 struct rq *this_rq;
5839 unsigned long irq_flags;
5840
5841 if (!ops_cpu_valid(sch, cpu, NULL))
5842 return;
5843
5844 local_irq_save(irq_flags);
5845
5846 this_rq = this_rq();
5847
5848 /*
5849 * While bypassing for PM ops, IRQ handling may not be online which can
5850 * lead to irq_work_queue() malfunction such as infinite busy wait for
5851 * IRQ status update. Suppress kicking.
5852 */
5853 if (scx_rq_bypassing(this_rq))
5854 goto out;
5855
5856 /*
5857 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
5858 * rq locks. We can probably be smarter and avoid bouncing if called
5859 * from ops which don't hold a rq lock.
5860 */
5861 if (flags & SCX_KICK_IDLE) {
5862 struct rq *target_rq = cpu_rq(cpu);
5863
5864 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
5865 scx_error(sch, "PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
5866
5867 if (raw_spin_rq_trylock(target_rq)) {
5868 if (can_skip_idle_kick(target_rq)) {
5869 raw_spin_rq_unlock(target_rq);
5870 goto out;
5871 }
5872 raw_spin_rq_unlock(target_rq);
5873 }
5874 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
5875 } else {
5876 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
5877
5878 if (flags & SCX_KICK_PREEMPT)
5879 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
5880 if (flags & SCX_KICK_WAIT)
5881 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
5882 }
5883
5884 irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
5885 out:
5886 local_irq_restore(irq_flags);
5887 }
5888
5889 /**
5890 * scx_bpf_kick_cpu - Trigger reschedule on a CPU
5891 * @cpu: cpu to kick
5892 * @flags: %SCX_KICK_* flags
5893 *
5894 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
5895 * trigger rescheduling on a busy CPU. This can be called from any online
5896 * scx_ops operation and the actual kicking is performed asynchronously through
5897 * an irq work.
5898 */
scx_bpf_kick_cpu(s32 cpu,u64 flags)5899 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
5900 {
5901 struct scx_sched *sch;
5902
5903 guard(rcu)();
5904 sch = rcu_dereference(scx_root);
5905 if (likely(sch))
5906 scx_kick_cpu(sch, cpu, flags);
5907 }
5908
5909 /**
5910 * scx_bpf_dsq_nr_queued - Return the number of queued tasks
5911 * @dsq_id: id of the DSQ
5912 *
5913 * Return the number of tasks in the DSQ matching @dsq_id. If not found,
5914 * -%ENOENT is returned.
5915 */
scx_bpf_dsq_nr_queued(u64 dsq_id)5916 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
5917 {
5918 struct scx_sched *sch;
5919 struct scx_dispatch_q *dsq;
5920 s32 ret;
5921
5922 preempt_disable();
5923
5924 sch = rcu_dereference_sched(scx_root);
5925 if (unlikely(!sch)) {
5926 ret = -ENODEV;
5927 goto out;
5928 }
5929
5930 if (dsq_id == SCX_DSQ_LOCAL) {
5931 ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
5932 goto out;
5933 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
5934 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
5935
5936 if (ops_cpu_valid(sch, cpu, NULL)) {
5937 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
5938 goto out;
5939 }
5940 } else {
5941 dsq = find_user_dsq(sch, dsq_id);
5942 if (dsq) {
5943 ret = READ_ONCE(dsq->nr);
5944 goto out;
5945 }
5946 }
5947 ret = -ENOENT;
5948 out:
5949 preempt_enable();
5950 return ret;
5951 }
5952
5953 /**
5954 * scx_bpf_destroy_dsq - Destroy a custom DSQ
5955 * @dsq_id: DSQ to destroy
5956 *
5957 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
5958 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
5959 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
5960 * which doesn't exist. Can be called from any online scx_ops operations.
5961 */
scx_bpf_destroy_dsq(u64 dsq_id)5962 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
5963 {
5964 struct scx_sched *sch;
5965
5966 rcu_read_lock();
5967 sch = rcu_dereference(scx_root);
5968 if (sch)
5969 destroy_dsq(sch, dsq_id);
5970 rcu_read_unlock();
5971 }
5972
5973 /**
5974 * bpf_iter_scx_dsq_new - Create a DSQ iterator
5975 * @it: iterator to initialize
5976 * @dsq_id: DSQ to iterate
5977 * @flags: %SCX_DSQ_ITER_*
5978 *
5979 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
5980 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
5981 * tasks which are already queued when this function is invoked.
5982 */
bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq * it,u64 dsq_id,u64 flags)5983 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
5984 u64 flags)
5985 {
5986 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
5987 struct scx_sched *sch;
5988
5989 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
5990 sizeof(struct bpf_iter_scx_dsq));
5991 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
5992 __alignof__(struct bpf_iter_scx_dsq));
5993
5994 /*
5995 * next() and destroy() will be called regardless of the return value.
5996 * Always clear $kit->dsq.
5997 */
5998 kit->dsq = NULL;
5999
6000 sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held());
6001 if (unlikely(!sch))
6002 return -ENODEV;
6003
6004 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
6005 return -EINVAL;
6006
6007 kit->dsq = find_user_dsq(sch, dsq_id);
6008 if (!kit->dsq)
6009 return -ENOENT;
6010
6011 INIT_LIST_HEAD(&kit->cursor.node);
6012 kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags;
6013 kit->cursor.priv = READ_ONCE(kit->dsq->seq);
6014
6015 return 0;
6016 }
6017
6018 /**
6019 * bpf_iter_scx_dsq_next - Progress a DSQ iterator
6020 * @it: iterator to progress
6021 *
6022 * Return the next task. See bpf_iter_scx_dsq_new().
6023 */
bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq * it)6024 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
6025 {
6026 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6027 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
6028 struct task_struct *p;
6029 unsigned long flags;
6030
6031 if (!kit->dsq)
6032 return NULL;
6033
6034 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6035
6036 if (list_empty(&kit->cursor.node))
6037 p = NULL;
6038 else
6039 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
6040
6041 /*
6042 * Only tasks which were queued before the iteration started are
6043 * visible. This bounds BPF iterations and guarantees that vtime never
6044 * jumps in the other direction while iterating.
6045 */
6046 do {
6047 p = nldsq_next_task(kit->dsq, p, rev);
6048 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
6049
6050 if (p) {
6051 if (rev)
6052 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
6053 else
6054 list_move(&kit->cursor.node, &p->scx.dsq_list.node);
6055 } else {
6056 list_del_init(&kit->cursor.node);
6057 }
6058
6059 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6060
6061 return p;
6062 }
6063
6064 /**
6065 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
6066 * @it: iterator to destroy
6067 *
6068 * Undo scx_iter_scx_dsq_new().
6069 */
bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq * it)6070 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
6071 {
6072 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6073
6074 if (!kit->dsq)
6075 return;
6076
6077 if (!list_empty(&kit->cursor.node)) {
6078 unsigned long flags;
6079
6080 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6081 list_del_init(&kit->cursor.node);
6082 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6083 }
6084 kit->dsq = NULL;
6085 }
6086
6087 __bpf_kfunc_end_defs();
6088
__bstr_format(struct scx_sched * sch,u64 * data_buf,char * line_buf,size_t line_size,char * fmt,unsigned long long * data,u32 data__sz)6089 static s32 __bstr_format(struct scx_sched *sch, u64 *data_buf, char *line_buf,
6090 size_t line_size, char *fmt, unsigned long long *data,
6091 u32 data__sz)
6092 {
6093 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
6094 s32 ret;
6095
6096 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
6097 (data__sz && !data)) {
6098 scx_error(sch, "invalid data=%p and data__sz=%u", (void *)data, data__sz);
6099 return -EINVAL;
6100 }
6101
6102 ret = copy_from_kernel_nofault(data_buf, data, data__sz);
6103 if (ret < 0) {
6104 scx_error(sch, "failed to read data fields (%d)", ret);
6105 return ret;
6106 }
6107
6108 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
6109 &bprintf_data);
6110 if (ret < 0) {
6111 scx_error(sch, "format preparation failed (%d)", ret);
6112 return ret;
6113 }
6114
6115 ret = bstr_printf(line_buf, line_size, fmt,
6116 bprintf_data.bin_args);
6117 bpf_bprintf_cleanup(&bprintf_data);
6118 if (ret < 0) {
6119 scx_error(sch, "(\"%s\", %p, %u) failed to format", fmt, data, data__sz);
6120 return ret;
6121 }
6122
6123 return ret;
6124 }
6125
bstr_format(struct scx_sched * sch,struct scx_bstr_buf * buf,char * fmt,unsigned long long * data,u32 data__sz)6126 static s32 bstr_format(struct scx_sched *sch, struct scx_bstr_buf *buf,
6127 char *fmt, unsigned long long *data, u32 data__sz)
6128 {
6129 return __bstr_format(sch, buf->data, buf->line, sizeof(buf->line),
6130 fmt, data, data__sz);
6131 }
6132
6133 __bpf_kfunc_start_defs();
6134
6135 /**
6136 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
6137 * @exit_code: Exit value to pass to user space via struct scx_exit_info.
6138 * @fmt: error message format string
6139 * @data: format string parameters packaged using ___bpf_fill() macro
6140 * @data__sz: @data len, must end in '__sz' for the verifier
6141 *
6142 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
6143 * disabling.
6144 */
scx_bpf_exit_bstr(s64 exit_code,char * fmt,unsigned long long * data,u32 data__sz)6145 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
6146 unsigned long long *data, u32 data__sz)
6147 {
6148 struct scx_sched *sch;
6149 unsigned long flags;
6150
6151 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6152 sch = rcu_dereference_bh(scx_root);
6153 if (likely(sch) &&
6154 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6155 scx_exit(sch, SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line);
6156 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6157 }
6158
6159 /**
6160 * scx_bpf_error_bstr - Indicate fatal error
6161 * @fmt: error message format string
6162 * @data: format string parameters packaged using ___bpf_fill() macro
6163 * @data__sz: @data len, must end in '__sz' for the verifier
6164 *
6165 * Indicate that the BPF scheduler encountered a fatal error and initiate ops
6166 * disabling.
6167 */
scx_bpf_error_bstr(char * fmt,unsigned long long * data,u32 data__sz)6168 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
6169 u32 data__sz)
6170 {
6171 struct scx_sched *sch;
6172 unsigned long flags;
6173
6174 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6175 sch = rcu_dereference_bh(scx_root);
6176 if (likely(sch) &&
6177 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6178 scx_exit(sch, SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line);
6179 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6180 }
6181
6182 /**
6183 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler
6184 * @fmt: format string
6185 * @data: format string parameters packaged using ___bpf_fill() macro
6186 * @data__sz: @data len, must end in '__sz' for the verifier
6187 *
6188 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
6189 * dump_task() to generate extra debug dump specific to the BPF scheduler.
6190 *
6191 * The extra dump may be multiple lines. A single line may be split over
6192 * multiple calls. The last line is automatically terminated.
6193 */
scx_bpf_dump_bstr(char * fmt,unsigned long long * data,u32 data__sz)6194 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
6195 u32 data__sz)
6196 {
6197 struct scx_sched *sch;
6198 struct scx_dump_data *dd = &scx_dump_data;
6199 struct scx_bstr_buf *buf = &dd->buf;
6200 s32 ret;
6201
6202 guard(rcu)();
6203
6204 sch = rcu_dereference(scx_root);
6205 if (unlikely(!sch))
6206 return;
6207
6208 if (raw_smp_processor_id() != dd->cpu) {
6209 scx_error(sch, "scx_bpf_dump() must only be called from ops.dump() and friends");
6210 return;
6211 }
6212
6213 /* append the formatted string to the line buf */
6214 ret = __bstr_format(sch, buf->data, buf->line + dd->cursor,
6215 sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
6216 if (ret < 0) {
6217 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
6218 dd->prefix, fmt, data, data__sz, ret);
6219 return;
6220 }
6221
6222 dd->cursor += ret;
6223 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
6224
6225 if (!dd->cursor)
6226 return;
6227
6228 /*
6229 * If the line buf overflowed or ends in a newline, flush it into the
6230 * dump. This is to allow the caller to generate a single line over
6231 * multiple calls. As ops_dump_flush() can also handle multiple lines in
6232 * the line buf, the only case which can lead to an unexpected
6233 * truncation is when the caller keeps generating newlines in the middle
6234 * instead of the end consecutively. Don't do that.
6235 */
6236 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
6237 ops_dump_flush();
6238 }
6239
6240 /**
6241 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
6242 * @cpu: CPU of interest
6243 *
6244 * Return the maximum relative capacity of @cpu in relation to the most
6245 * performant CPU in the system. The return value is in the range [1,
6246 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
6247 */
scx_bpf_cpuperf_cap(s32 cpu)6248 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
6249 {
6250 struct scx_sched *sch;
6251
6252 guard(rcu)();
6253
6254 sch = rcu_dereference(scx_root);
6255 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL))
6256 return arch_scale_cpu_capacity(cpu);
6257 else
6258 return SCX_CPUPERF_ONE;
6259 }
6260
6261 /**
6262 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
6263 * @cpu: CPU of interest
6264 *
6265 * Return the current relative performance of @cpu in relation to its maximum.
6266 * The return value is in the range [1, %SCX_CPUPERF_ONE].
6267 *
6268 * The current performance level of a CPU in relation to the maximum performance
6269 * available in the system can be calculated as follows:
6270 *
6271 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
6272 *
6273 * The result is in the range [1, %SCX_CPUPERF_ONE].
6274 */
scx_bpf_cpuperf_cur(s32 cpu)6275 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
6276 {
6277 struct scx_sched *sch;
6278
6279 guard(rcu)();
6280
6281 sch = rcu_dereference(scx_root);
6282 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL))
6283 return arch_scale_freq_capacity(cpu);
6284 else
6285 return SCX_CPUPERF_ONE;
6286 }
6287
6288 /**
6289 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
6290 * @cpu: CPU of interest
6291 * @perf: target performance level [0, %SCX_CPUPERF_ONE]
6292 *
6293 * Set the target performance level of @cpu to @perf. @perf is in linear
6294 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
6295 * schedutil cpufreq governor chooses the target frequency.
6296 *
6297 * The actual performance level chosen, CPU grouping, and the overhead and
6298 * latency of the operations are dependent on the hardware and cpufreq driver in
6299 * use. Consult hardware and cpufreq documentation for more information. The
6300 * current performance level can be monitored using scx_bpf_cpuperf_cur().
6301 */
scx_bpf_cpuperf_set(s32 cpu,u32 perf)6302 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
6303 {
6304 struct scx_sched *sch;
6305
6306 guard(rcu)();
6307
6308 sch = rcu_dereference(sch);
6309 if (unlikely(!sch))
6310 return;
6311
6312 if (unlikely(perf > SCX_CPUPERF_ONE)) {
6313 scx_error(sch, "Invalid cpuperf target %u for CPU %d", perf, cpu);
6314 return;
6315 }
6316
6317 if (ops_cpu_valid(sch, cpu, NULL)) {
6318 struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq();
6319 struct rq_flags rf;
6320
6321 /*
6322 * When called with an rq lock held, restrict the operation
6323 * to the corresponding CPU to prevent ABBA deadlocks.
6324 */
6325 if (locked_rq && rq != locked_rq) {
6326 scx_error(sch, "Invalid target CPU %d", cpu);
6327 return;
6328 }
6329
6330 /*
6331 * If no rq lock is held, allow to operate on any CPU by
6332 * acquiring the corresponding rq lock.
6333 */
6334 if (!locked_rq) {
6335 rq_lock_irqsave(rq, &rf);
6336 update_rq_clock(rq);
6337 }
6338
6339 rq->scx.cpuperf_target = perf;
6340 cpufreq_update_util(rq, 0);
6341
6342 if (!locked_rq)
6343 rq_unlock_irqrestore(rq, &rf);
6344 }
6345 }
6346
6347 /**
6348 * scx_bpf_nr_node_ids - Return the number of possible node IDs
6349 *
6350 * All valid node IDs in the system are smaller than the returned value.
6351 */
scx_bpf_nr_node_ids(void)6352 __bpf_kfunc u32 scx_bpf_nr_node_ids(void)
6353 {
6354 return nr_node_ids;
6355 }
6356
6357 /**
6358 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
6359 *
6360 * All valid CPU IDs in the system are smaller than the returned value.
6361 */
scx_bpf_nr_cpu_ids(void)6362 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
6363 {
6364 return nr_cpu_ids;
6365 }
6366
6367 /**
6368 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
6369 */
scx_bpf_get_possible_cpumask(void)6370 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
6371 {
6372 return cpu_possible_mask;
6373 }
6374
6375 /**
6376 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
6377 */
scx_bpf_get_online_cpumask(void)6378 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
6379 {
6380 return cpu_online_mask;
6381 }
6382
6383 /**
6384 * scx_bpf_put_cpumask - Release a possible/online cpumask
6385 * @cpumask: cpumask to release
6386 */
scx_bpf_put_cpumask(const struct cpumask * cpumask)6387 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
6388 {
6389 /*
6390 * Empty function body because we aren't actually acquiring or releasing
6391 * a reference to a global cpumask, which is read-only in the caller and
6392 * is never released. The acquire / release semantics here are just used
6393 * to make the cpumask is a trusted pointer in the caller.
6394 */
6395 }
6396
6397 /**
6398 * scx_bpf_task_running - Is task currently running?
6399 * @p: task of interest
6400 */
scx_bpf_task_running(const struct task_struct * p)6401 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
6402 {
6403 return task_rq(p)->curr == p;
6404 }
6405
6406 /**
6407 * scx_bpf_task_cpu - CPU a task is currently associated with
6408 * @p: task of interest
6409 */
scx_bpf_task_cpu(const struct task_struct * p)6410 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
6411 {
6412 return task_cpu(p);
6413 }
6414
6415 /**
6416 * scx_bpf_cpu_rq - Fetch the rq of a CPU
6417 * @cpu: CPU of the rq
6418 */
scx_bpf_cpu_rq(s32 cpu)6419 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
6420 {
6421 struct scx_sched *sch;
6422
6423 guard(rcu)();
6424
6425 sch = rcu_dereference(scx_root);
6426 if (unlikely(!sch))
6427 return NULL;
6428
6429 if (!ops_cpu_valid(sch, cpu, NULL))
6430 return NULL;
6431
6432 if (!sch->warned_deprecated_rq) {
6433 printk_deferred(KERN_WARNING "sched_ext: %s() is deprecated; "
6434 "use scx_bpf_locked_rq() when holding rq lock "
6435 "or scx_bpf_cpu_curr() to read remote curr safely.\n", __func__);
6436 sch->warned_deprecated_rq = true;
6437 }
6438
6439 return cpu_rq(cpu);
6440 }
6441
6442 /**
6443 * scx_bpf_locked_rq - Return the rq currently locked by SCX
6444 *
6445 * Returns the rq if a rq lock is currently held by SCX.
6446 * Otherwise emits an error and returns NULL.
6447 */
scx_bpf_locked_rq(void)6448 __bpf_kfunc struct rq *scx_bpf_locked_rq(void)
6449 {
6450 struct scx_sched *sch;
6451 struct rq *rq;
6452
6453 guard(preempt)();
6454
6455 sch = rcu_dereference_sched(scx_root);
6456 if (unlikely(!sch))
6457 return NULL;
6458
6459 rq = scx_locked_rq();
6460 if (!rq) {
6461 scx_error(sch, "accessing rq without holding rq lock");
6462 return NULL;
6463 }
6464
6465 return rq;
6466 }
6467
6468 /**
6469 * scx_bpf_cpu_curr - Return remote CPU's curr task
6470 * @cpu: CPU of interest
6471 *
6472 * Callers must hold RCU read lock (KF_RCU).
6473 */
scx_bpf_cpu_curr(s32 cpu)6474 __bpf_kfunc struct task_struct *scx_bpf_cpu_curr(s32 cpu)
6475 {
6476 struct scx_sched *sch;
6477
6478 guard(rcu)();
6479
6480 sch = rcu_dereference(scx_root);
6481 if (unlikely(!sch))
6482 return NULL;
6483
6484 if (!ops_cpu_valid(sch, cpu, NULL))
6485 return NULL;
6486
6487 return rcu_dereference(cpu_rq(cpu)->curr);
6488 }
6489
6490 /**
6491 * scx_bpf_task_cgroup - Return the sched cgroup of a task
6492 * @p: task of interest
6493 *
6494 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
6495 * from the scheduler's POV. SCX operations should use this function to
6496 * determine @p's current cgroup as, unlike following @p->cgroups,
6497 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
6498 * rq-locked operations. Can be called on the parameter tasks of rq-locked
6499 * operations. The restriction guarantees that @p's rq is locked by the caller.
6500 */
6501 #ifdef CONFIG_CGROUP_SCHED
scx_bpf_task_cgroup(struct task_struct * p)6502 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
6503 {
6504 struct task_group *tg = p->sched_task_group;
6505 struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
6506 struct scx_sched *sch;
6507
6508 guard(rcu)();
6509
6510 sch = rcu_dereference(scx_root);
6511 if (unlikely(!sch))
6512 goto out;
6513
6514 if (!scx_kf_allowed_on_arg_tasks(sch, __SCX_KF_RQ_LOCKED, p))
6515 goto out;
6516
6517 cgrp = tg_cgrp(tg);
6518
6519 out:
6520 cgroup_get(cgrp);
6521 return cgrp;
6522 }
6523 #endif
6524
6525 /**
6526 * scx_bpf_now - Returns a high-performance monotonically non-decreasing
6527 * clock for the current CPU. The clock returned is in nanoseconds.
6528 *
6529 * It provides the following properties:
6530 *
6531 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently
6532 * to account for execution time and track tasks' runtime properties.
6533 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which
6534 * eventually reads a hardware timestamp counter -- is neither performant nor
6535 * scalable. scx_bpf_now() aims to provide a high-performance clock by
6536 * using the rq clock in the scheduler core whenever possible.
6537 *
6538 * 2) High enough resolution for the BPF scheduler use cases: In most BPF
6539 * scheduler use cases, the required clock resolution is lower than the most
6540 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically
6541 * uses the rq clock in the scheduler core whenever it is valid. It considers
6542 * that the rq clock is valid from the time the rq clock is updated
6543 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock).
6544 *
6545 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now()
6546 * guarantees the clock never goes backward when comparing them in the same
6547 * CPU. On the other hand, when comparing clocks in different CPUs, there
6548 * is no such guarantee -- the clock can go backward. It provides a
6549 * monotonically *non-decreasing* clock so that it would provide the same
6550 * clock values in two different scx_bpf_now() calls in the same CPU
6551 * during the same period of when the rq clock is valid.
6552 */
scx_bpf_now(void)6553 __bpf_kfunc u64 scx_bpf_now(void)
6554 {
6555 struct rq *rq;
6556 u64 clock;
6557
6558 preempt_disable();
6559
6560 rq = this_rq();
6561 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) {
6562 /*
6563 * If the rq clock is valid, use the cached rq clock.
6564 *
6565 * Note that scx_bpf_now() is re-entrant between a process
6566 * context and an interrupt context (e.g., timer interrupt).
6567 * However, we don't need to consider the race between them
6568 * because such race is not observable from a caller.
6569 */
6570 clock = READ_ONCE(rq->scx.clock);
6571 } else {
6572 /*
6573 * Otherwise, return a fresh rq clock.
6574 *
6575 * The rq clock is updated outside of the rq lock.
6576 * In this case, keep the updated rq clock invalid so the next
6577 * kfunc call outside the rq lock gets a fresh rq clock.
6578 */
6579 clock = sched_clock_cpu(cpu_of(rq));
6580 }
6581
6582 preempt_enable();
6583
6584 return clock;
6585 }
6586
scx_read_events(struct scx_sched * sch,struct scx_event_stats * events)6587 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events)
6588 {
6589 struct scx_event_stats *e_cpu;
6590 int cpu;
6591
6592 /* Aggregate per-CPU event counters into @events. */
6593 memset(events, 0, sizeof(*events));
6594 for_each_possible_cpu(cpu) {
6595 e_cpu = &per_cpu_ptr(sch->pcpu, cpu)->event_stats;
6596 scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK);
6597 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
6598 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST);
6599 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING);
6600 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
6601 scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL);
6602 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION);
6603 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH);
6604 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE);
6605 }
6606 }
6607
6608 /*
6609 * scx_bpf_events - Get a system-wide event counter to
6610 * @events: output buffer from a BPF program
6611 * @events__sz: @events len, must end in '__sz'' for the verifier
6612 */
scx_bpf_events(struct scx_event_stats * events,size_t events__sz)6613 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events,
6614 size_t events__sz)
6615 {
6616 struct scx_sched *sch;
6617 struct scx_event_stats e_sys;
6618
6619 rcu_read_lock();
6620 sch = rcu_dereference(scx_root);
6621 if (sch)
6622 scx_read_events(sch, &e_sys);
6623 else
6624 memset(&e_sys, 0, sizeof(e_sys));
6625 rcu_read_unlock();
6626
6627 /*
6628 * We cannot entirely trust a BPF-provided size since a BPF program
6629 * might be compiled against a different vmlinux.h, of which
6630 * scx_event_stats would be larger (a newer vmlinux.h) or smaller
6631 * (an older vmlinux.h). Hence, we use the smaller size to avoid
6632 * memory corruption.
6633 */
6634 events__sz = min(events__sz, sizeof(*events));
6635 memcpy(events, &e_sys, events__sz);
6636 }
6637
6638 __bpf_kfunc_end_defs();
6639
6640 BTF_KFUNCS_START(scx_kfunc_ids_any)
6641 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
6642 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
6643 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
6644 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
6645 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
6646 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
6647 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
6648 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
6649 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
6650 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
6651 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
6652 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
6653 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids)
6654 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
6655 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
6656 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
6657 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
6658 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
6659 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
6660 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
6661 BTF_ID_FLAGS(func, scx_bpf_locked_rq, KF_RET_NULL)
6662 BTF_ID_FLAGS(func, scx_bpf_cpu_curr, KF_RET_NULL | KF_RCU_PROTECTED)
6663 #ifdef CONFIG_CGROUP_SCHED
6664 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
6665 #endif
6666 BTF_ID_FLAGS(func, scx_bpf_now)
6667 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS)
6668 BTF_KFUNCS_END(scx_kfunc_ids_any)
6669
6670 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
6671 .owner = THIS_MODULE,
6672 .set = &scx_kfunc_ids_any,
6673 };
6674
scx_init(void)6675 static int __init scx_init(void)
6676 {
6677 int ret;
6678
6679 /*
6680 * kfunc registration can't be done from init_sched_ext_class() as
6681 * register_btf_kfunc_id_set() needs most of the system to be up.
6682 *
6683 * Some kfuncs are context-sensitive and can only be called from
6684 * specific SCX ops. They are grouped into BTF sets accordingly.
6685 * Unfortunately, BPF currently doesn't have a way of enforcing such
6686 * restrictions. Eventually, the verifier should be able to enforce
6687 * them. For now, register them the same and make each kfunc explicitly
6688 * check using scx_kf_allowed().
6689 */
6690 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
6691 &scx_kfunc_set_enqueue_dispatch)) ||
6692 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
6693 &scx_kfunc_set_dispatch)) ||
6694 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
6695 &scx_kfunc_set_cpu_release)) ||
6696 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
6697 &scx_kfunc_set_unlocked)) ||
6698 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
6699 &scx_kfunc_set_unlocked)) ||
6700 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
6701 &scx_kfunc_set_any)) ||
6702 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
6703 &scx_kfunc_set_any)) ||
6704 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
6705 &scx_kfunc_set_any))) {
6706 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
6707 return ret;
6708 }
6709
6710 ret = scx_idle_init();
6711 if (ret) {
6712 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret);
6713 return ret;
6714 }
6715
6716 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
6717 if (ret) {
6718 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
6719 return ret;
6720 }
6721
6722 ret = register_pm_notifier(&scx_pm_notifier);
6723 if (ret) {
6724 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
6725 return ret;
6726 }
6727
6728 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
6729 if (!scx_kset) {
6730 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
6731 return -ENOMEM;
6732 }
6733
6734 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
6735 if (ret < 0) {
6736 pr_err("sched_ext: Failed to add global attributes\n");
6737 return ret;
6738 }
6739
6740 return 0;
6741 }
6742 __initcall(scx_init);
6743