1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4 *
5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7 * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8 */
9 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
10
11 enum scx_consts {
12 SCX_DSP_DFL_MAX_BATCH = 32,
13 SCX_DSP_MAX_LOOPS = 32,
14 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ,
15
16 SCX_EXIT_BT_LEN = 64,
17 SCX_EXIT_MSG_LEN = 1024,
18 SCX_EXIT_DUMP_DFL_LEN = 32768,
19
20 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE,
21
22 /*
23 * Iterating all tasks may take a while. Periodically drop
24 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls.
25 */
26 SCX_OPS_TASK_ITER_BATCH = 32,
27 };
28
29 enum scx_exit_kind {
30 SCX_EXIT_NONE,
31 SCX_EXIT_DONE,
32
33 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */
34 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */
35 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */
36 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */
37
38 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */
39 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */
40 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */
41 };
42
43 /*
44 * An exit code can be specified when exiting with scx_bpf_exit() or
45 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
46 * respectively. The codes are 64bit of the format:
47 *
48 * Bits: [63 .. 48 47 .. 32 31 .. 0]
49 * [ SYS ACT ] [ SYS RSN ] [ USR ]
50 *
51 * SYS ACT: System-defined exit actions
52 * SYS RSN: System-defined exit reasons
53 * USR : User-defined exit codes and reasons
54 *
55 * Using the above, users may communicate intention and context by ORing system
56 * actions and/or system reasons with a user-defined exit code.
57 */
58 enum scx_exit_code {
59 /* Reasons */
60 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32,
61
62 /* Actions */
63 SCX_ECODE_ACT_RESTART = 1LLU << 48,
64 };
65
66 /*
67 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
68 * being disabled.
69 */
70 struct scx_exit_info {
71 /* %SCX_EXIT_* - broad category of the exit reason */
72 enum scx_exit_kind kind;
73
74 /* exit code if gracefully exiting */
75 s64 exit_code;
76
77 /* textual representation of the above */
78 const char *reason;
79
80 /* backtrace if exiting due to an error */
81 unsigned long *bt;
82 u32 bt_len;
83
84 /* informational message */
85 char *msg;
86
87 /* debug dump */
88 char *dump;
89 };
90
91 /* sched_ext_ops.flags */
92 enum scx_ops_flags {
93 /*
94 * Keep built-in idle tracking even if ops.update_idle() is implemented.
95 */
96 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
97
98 /*
99 * By default, if there are no other task to run on the CPU, ext core
100 * keeps running the current task even after its slice expires. If this
101 * flag is specified, such tasks are passed to ops.enqueue() with
102 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
103 */
104 SCX_OPS_ENQ_LAST = 1LLU << 1,
105
106 /*
107 * An exiting task may schedule after PF_EXITING is set. In such cases,
108 * bpf_task_from_pid() may not be able to find the task and if the BPF
109 * scheduler depends on pid lookup for dispatching, the task will be
110 * lost leading to various issues including RCU grace period stalls.
111 *
112 * To mask this problem, by default, unhashed tasks are automatically
113 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
114 * depend on pid lookups and wants to handle these tasks directly, the
115 * following flag can be used.
116 */
117 SCX_OPS_ENQ_EXITING = 1LLU << 2,
118
119 /*
120 * If set, only tasks with policy set to SCHED_EXT are attached to
121 * sched_ext. If clear, SCHED_NORMAL tasks are also included.
122 */
123 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3,
124
125 /*
126 * CPU cgroup support flags
127 */
128 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */
129
130 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE |
131 SCX_OPS_ENQ_LAST |
132 SCX_OPS_ENQ_EXITING |
133 SCX_OPS_SWITCH_PARTIAL |
134 SCX_OPS_HAS_CGROUP_WEIGHT,
135 };
136
137 /* argument container for ops.init_task() */
138 struct scx_init_task_args {
139 /*
140 * Set if ops.init_task() is being invoked on the fork path, as opposed
141 * to the scheduler transition path.
142 */
143 bool fork;
144 #ifdef CONFIG_EXT_GROUP_SCHED
145 /* the cgroup the task is joining */
146 struct cgroup *cgroup;
147 #endif
148 };
149
150 /* argument container for ops.exit_task() */
151 struct scx_exit_task_args {
152 /* Whether the task exited before running on sched_ext. */
153 bool cancelled;
154 };
155
156 /* argument container for ops->cgroup_init() */
157 struct scx_cgroup_init_args {
158 /* the weight of the cgroup [1..10000] */
159 u32 weight;
160 };
161
162 enum scx_cpu_preempt_reason {
163 /* next task is being scheduled by &sched_class_rt */
164 SCX_CPU_PREEMPT_RT,
165 /* next task is being scheduled by &sched_class_dl */
166 SCX_CPU_PREEMPT_DL,
167 /* next task is being scheduled by &sched_class_stop */
168 SCX_CPU_PREEMPT_STOP,
169 /* unknown reason for SCX being preempted */
170 SCX_CPU_PREEMPT_UNKNOWN,
171 };
172
173 /*
174 * Argument container for ops->cpu_acquire(). Currently empty, but may be
175 * expanded in the future.
176 */
177 struct scx_cpu_acquire_args {};
178
179 /* argument container for ops->cpu_release() */
180 struct scx_cpu_release_args {
181 /* the reason the CPU was preempted */
182 enum scx_cpu_preempt_reason reason;
183
184 /* the task that's going to be scheduled on the CPU */
185 struct task_struct *task;
186 };
187
188 /*
189 * Informational context provided to dump operations.
190 */
191 struct scx_dump_ctx {
192 enum scx_exit_kind kind;
193 s64 exit_code;
194 const char *reason;
195 u64 at_ns;
196 u64 at_jiffies;
197 };
198
199 /**
200 * struct sched_ext_ops - Operation table for BPF scheduler implementation
201 *
202 * Userland can implement an arbitrary scheduling policy by implementing and
203 * loading operations in this table.
204 */
205 struct sched_ext_ops {
206 /**
207 * select_cpu - Pick the target CPU for a task which is being woken up
208 * @p: task being woken up
209 * @prev_cpu: the cpu @p was on before sleeping
210 * @wake_flags: SCX_WAKE_*
211 *
212 * Decision made here isn't final. @p may be moved to any CPU while it
213 * is getting dispatched for execution later. However, as @p is not on
214 * the rq at this point, getting the eventual execution CPU right here
215 * saves a small bit of overhead down the line.
216 *
217 * If an idle CPU is returned, the CPU is kicked and will try to
218 * dispatch. While an explicit custom mechanism can be added,
219 * select_cpu() serves as the default way to wake up idle CPUs.
220 *
221 * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p
222 * is dispatched, the ops.enqueue() callback will be skipped. Finally,
223 * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the
224 * local DSQ of whatever CPU is returned by this callback.
225 */
226 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
227
228 /**
229 * enqueue - Enqueue a task on the BPF scheduler
230 * @p: task being enqueued
231 * @enq_flags: %SCX_ENQ_*
232 *
233 * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch()
234 * or enqueue on the BPF scheduler. If not directly dispatched, the bpf
235 * scheduler owns @p and if it fails to dispatch @p, the task will
236 * stall.
237 *
238 * If @p was dispatched from ops.select_cpu(), this callback is
239 * skipped.
240 */
241 void (*enqueue)(struct task_struct *p, u64 enq_flags);
242
243 /**
244 * dequeue - Remove a task from the BPF scheduler
245 * @p: task being dequeued
246 * @deq_flags: %SCX_DEQ_*
247 *
248 * Remove @p from the BPF scheduler. This is usually called to isolate
249 * the task while updating its scheduling properties (e.g. priority).
250 *
251 * The ext core keeps track of whether the BPF side owns a given task or
252 * not and can gracefully ignore spurious dispatches from BPF side,
253 * which makes it safe to not implement this method. However, depending
254 * on the scheduling logic, this can lead to confusing behaviors - e.g.
255 * scheduling position not being updated across a priority change.
256 */
257 void (*dequeue)(struct task_struct *p, u64 deq_flags);
258
259 /**
260 * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs
261 * @cpu: CPU to dispatch tasks for
262 * @prev: previous task being switched out
263 *
264 * Called when a CPU's local dsq is empty. The operation should dispatch
265 * one or more tasks from the BPF scheduler into the DSQs using
266 * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using
267 * scx_bpf_consume().
268 *
269 * The maximum number of times scx_bpf_dispatch() can be called without
270 * an intervening scx_bpf_consume() is specified by
271 * ops.dispatch_max_batch. See the comments on top of the two functions
272 * for more details.
273 *
274 * When not %NULL, @prev is an SCX task with its slice depleted. If
275 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
276 * @prev->scx.flags, it is not enqueued yet and will be enqueued after
277 * ops.dispatch() returns. To keep executing @prev, return without
278 * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST.
279 */
280 void (*dispatch)(s32 cpu, struct task_struct *prev);
281
282 /**
283 * tick - Periodic tick
284 * @p: task running currently
285 *
286 * This operation is called every 1/HZ seconds on CPUs which are
287 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
288 * immediate dispatch cycle on the CPU.
289 */
290 void (*tick)(struct task_struct *p);
291
292 /**
293 * runnable - A task is becoming runnable on its associated CPU
294 * @p: task becoming runnable
295 * @enq_flags: %SCX_ENQ_*
296 *
297 * This and the following three functions can be used to track a task's
298 * execution state transitions. A task becomes ->runnable() on a CPU,
299 * and then goes through one or more ->running() and ->stopping() pairs
300 * as it runs on the CPU, and eventually becomes ->quiescent() when it's
301 * done running on the CPU.
302 *
303 * @p is becoming runnable on the CPU because it's
304 *
305 * - waking up (%SCX_ENQ_WAKEUP)
306 * - being moved from another CPU
307 * - being restored after temporarily taken off the queue for an
308 * attribute change.
309 *
310 * This and ->enqueue() are related but not coupled. This operation
311 * notifies @p's state transition and may not be followed by ->enqueue()
312 * e.g. when @p is being dispatched to a remote CPU, or when @p is
313 * being enqueued on a CPU experiencing a hotplug event. Likewise, a
314 * task may be ->enqueue()'d without being preceded by this operation
315 * e.g. after exhausting its slice.
316 */
317 void (*runnable)(struct task_struct *p, u64 enq_flags);
318
319 /**
320 * running - A task is starting to run on its associated CPU
321 * @p: task starting to run
322 *
323 * See ->runnable() for explanation on the task state notifiers.
324 */
325 void (*running)(struct task_struct *p);
326
327 /**
328 * stopping - A task is stopping execution
329 * @p: task stopping to run
330 * @runnable: is task @p still runnable?
331 *
332 * See ->runnable() for explanation on the task state notifiers. If
333 * !@runnable, ->quiescent() will be invoked after this operation
334 * returns.
335 */
336 void (*stopping)(struct task_struct *p, bool runnable);
337
338 /**
339 * quiescent - A task is becoming not runnable on its associated CPU
340 * @p: task becoming not runnable
341 * @deq_flags: %SCX_DEQ_*
342 *
343 * See ->runnable() for explanation on the task state notifiers.
344 *
345 * @p is becoming quiescent on the CPU because it's
346 *
347 * - sleeping (%SCX_DEQ_SLEEP)
348 * - being moved to another CPU
349 * - being temporarily taken off the queue for an attribute change
350 * (%SCX_DEQ_SAVE)
351 *
352 * This and ->dequeue() are related but not coupled. This operation
353 * notifies @p's state transition and may not be preceded by ->dequeue()
354 * e.g. when @p is being dispatched to a remote CPU.
355 */
356 void (*quiescent)(struct task_struct *p, u64 deq_flags);
357
358 /**
359 * yield - Yield CPU
360 * @from: yielding task
361 * @to: optional yield target task
362 *
363 * If @to is NULL, @from is yielding the CPU to other runnable tasks.
364 * The BPF scheduler should ensure that other available tasks are
365 * dispatched before the yielding task. Return value is ignored in this
366 * case.
367 *
368 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
369 * scheduler can implement the request, return %true; otherwise, %false.
370 */
371 bool (*yield)(struct task_struct *from, struct task_struct *to);
372
373 /**
374 * core_sched_before - Task ordering for core-sched
375 * @a: task A
376 * @b: task B
377 *
378 * Used by core-sched to determine the ordering between two tasks. See
379 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
380 * core-sched.
381 *
382 * Both @a and @b are runnable and may or may not currently be queued on
383 * the BPF scheduler. Should return %true if @a should run before @b.
384 * %false if there's no required ordering or @b should run before @a.
385 *
386 * If not specified, the default is ordering them according to when they
387 * became runnable.
388 */
389 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
390
391 /**
392 * set_weight - Set task weight
393 * @p: task to set weight for
394 * @weight: new weight [1..10000]
395 *
396 * Update @p's weight to @weight.
397 */
398 void (*set_weight)(struct task_struct *p, u32 weight);
399
400 /**
401 * set_cpumask - Set CPU affinity
402 * @p: task to set CPU affinity for
403 * @cpumask: cpumask of cpus that @p can run on
404 *
405 * Update @p's CPU affinity to @cpumask.
406 */
407 void (*set_cpumask)(struct task_struct *p,
408 const struct cpumask *cpumask);
409
410 /**
411 * update_idle - Update the idle state of a CPU
412 * @cpu: CPU to udpate the idle state for
413 * @idle: whether entering or exiting the idle state
414 *
415 * This operation is called when @rq's CPU goes or leaves the idle
416 * state. By default, implementing this operation disables the built-in
417 * idle CPU tracking and the following helpers become unavailable:
418 *
419 * - scx_bpf_select_cpu_dfl()
420 * - scx_bpf_test_and_clear_cpu_idle()
421 * - scx_bpf_pick_idle_cpu()
422 *
423 * The user also must implement ops.select_cpu() as the default
424 * implementation relies on scx_bpf_select_cpu_dfl().
425 *
426 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
427 * tracking.
428 */
429 void (*update_idle)(s32 cpu, bool idle);
430
431 /**
432 * cpu_acquire - A CPU is becoming available to the BPF scheduler
433 * @cpu: The CPU being acquired by the BPF scheduler.
434 * @args: Acquire arguments, see the struct definition.
435 *
436 * A CPU that was previously released from the BPF scheduler is now once
437 * again under its control.
438 */
439 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
440
441 /**
442 * cpu_release - A CPU is taken away from the BPF scheduler
443 * @cpu: The CPU being released by the BPF scheduler.
444 * @args: Release arguments, see the struct definition.
445 *
446 * The specified CPU is no longer under the control of the BPF
447 * scheduler. This could be because it was preempted by a higher
448 * priority sched_class, though there may be other reasons as well. The
449 * caller should consult @args->reason to determine the cause.
450 */
451 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
452
453 /**
454 * init_task - Initialize a task to run in a BPF scheduler
455 * @p: task to initialize for BPF scheduling
456 * @args: init arguments, see the struct definition
457 *
458 * Either we're loading a BPF scheduler or a new task is being forked.
459 * Initialize @p for BPF scheduling. This operation may block and can
460 * be used for allocations, and is called exactly once for a task.
461 *
462 * Return 0 for success, -errno for failure. An error return while
463 * loading will abort loading of the BPF scheduler. During a fork, it
464 * will abort that specific fork.
465 */
466 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
467
468 /**
469 * exit_task - Exit a previously-running task from the system
470 * @p: task to exit
471 *
472 * @p is exiting or the BPF scheduler is being unloaded. Perform any
473 * necessary cleanup for @p.
474 */
475 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
476
477 /**
478 * enable - Enable BPF scheduling for a task
479 * @p: task to enable BPF scheduling for
480 *
481 * Enable @p for BPF scheduling. enable() is called on @p any time it
482 * enters SCX, and is always paired with a matching disable().
483 */
484 void (*enable)(struct task_struct *p);
485
486 /**
487 * disable - Disable BPF scheduling for a task
488 * @p: task to disable BPF scheduling for
489 *
490 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
491 * Disable BPF scheduling for @p. A disable() call is always matched
492 * with a prior enable() call.
493 */
494 void (*disable)(struct task_struct *p);
495
496 /**
497 * dump - Dump BPF scheduler state on error
498 * @ctx: debug dump context
499 *
500 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
501 */
502 void (*dump)(struct scx_dump_ctx *ctx);
503
504 /**
505 * dump_cpu - Dump BPF scheduler state for a CPU on error
506 * @ctx: debug dump context
507 * @cpu: CPU to generate debug dump for
508 * @idle: @cpu is currently idle without any runnable tasks
509 *
510 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
511 * @cpu. If @idle is %true and this operation doesn't produce any
512 * output, @cpu is skipped for dump.
513 */
514 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
515
516 /**
517 * dump_task - Dump BPF scheduler state for a runnable task on error
518 * @ctx: debug dump context
519 * @p: runnable task to generate debug dump for
520 *
521 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
522 * @p.
523 */
524 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
525
526 #ifdef CONFIG_EXT_GROUP_SCHED
527 /**
528 * cgroup_init - Initialize a cgroup
529 * @cgrp: cgroup being initialized
530 * @args: init arguments, see the struct definition
531 *
532 * Either the BPF scheduler is being loaded or @cgrp created, initialize
533 * @cgrp for sched_ext. This operation may block.
534 *
535 * Return 0 for success, -errno for failure. An error return while
536 * loading will abort loading of the BPF scheduler. During cgroup
537 * creation, it will abort the specific cgroup creation.
538 */
539 s32 (*cgroup_init)(struct cgroup *cgrp,
540 struct scx_cgroup_init_args *args);
541
542 /**
543 * cgroup_exit - Exit a cgroup
544 * @cgrp: cgroup being exited
545 *
546 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
547 * @cgrp for sched_ext. This operation my block.
548 */
549 void (*cgroup_exit)(struct cgroup *cgrp);
550
551 /**
552 * cgroup_prep_move - Prepare a task to be moved to a different cgroup
553 * @p: task being moved
554 * @from: cgroup @p is being moved from
555 * @to: cgroup @p is being moved to
556 *
557 * Prepare @p for move from cgroup @from to @to. This operation may
558 * block and can be used for allocations.
559 *
560 * Return 0 for success, -errno for failure. An error return aborts the
561 * migration.
562 */
563 s32 (*cgroup_prep_move)(struct task_struct *p,
564 struct cgroup *from, struct cgroup *to);
565
566 /**
567 * cgroup_move - Commit cgroup move
568 * @p: task being moved
569 * @from: cgroup @p is being moved from
570 * @to: cgroup @p is being moved to
571 *
572 * Commit the move. @p is dequeued during this operation.
573 */
574 void (*cgroup_move)(struct task_struct *p,
575 struct cgroup *from, struct cgroup *to);
576
577 /**
578 * cgroup_cancel_move - Cancel cgroup move
579 * @p: task whose cgroup move is being canceled
580 * @from: cgroup @p was being moved from
581 * @to: cgroup @p was being moved to
582 *
583 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
584 * Undo the preparation.
585 */
586 void (*cgroup_cancel_move)(struct task_struct *p,
587 struct cgroup *from, struct cgroup *to);
588
589 /**
590 * cgroup_set_weight - A cgroup's weight is being changed
591 * @cgrp: cgroup whose weight is being updated
592 * @weight: new weight [1..10000]
593 *
594 * Update @tg's weight to @weight.
595 */
596 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
597 #endif /* CONFIG_CGROUPS */
598
599 /*
600 * All online ops must come before ops.cpu_online().
601 */
602
603 /**
604 * cpu_online - A CPU became online
605 * @cpu: CPU which just came up
606 *
607 * @cpu just came online. @cpu will not call ops.enqueue() or
608 * ops.dispatch(), nor run tasks associated with other CPUs beforehand.
609 */
610 void (*cpu_online)(s32 cpu);
611
612 /**
613 * cpu_offline - A CPU is going offline
614 * @cpu: CPU which is going offline
615 *
616 * @cpu is going offline. @cpu will not call ops.enqueue() or
617 * ops.dispatch(), nor run tasks associated with other CPUs afterwards.
618 */
619 void (*cpu_offline)(s32 cpu);
620
621 /*
622 * All CPU hotplug ops must come before ops.init().
623 */
624
625 /**
626 * init - Initialize the BPF scheduler
627 */
628 s32 (*init)(void);
629
630 /**
631 * exit - Clean up after the BPF scheduler
632 * @info: Exit info
633 *
634 * ops.exit() is also called on ops.init() failure, which is a bit
635 * unusual. This is to allow rich reporting through @info on how
636 * ops.init() failed.
637 */
638 void (*exit)(struct scx_exit_info *info);
639
640 /**
641 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
642 */
643 u32 dispatch_max_batch;
644
645 /**
646 * flags - %SCX_OPS_* flags
647 */
648 u64 flags;
649
650 /**
651 * timeout_ms - The maximum amount of time, in milliseconds, that a
652 * runnable task should be able to wait before being scheduled. The
653 * maximum timeout may not exceed the default timeout of 30 seconds.
654 *
655 * Defaults to the maximum allowed timeout value of 30 seconds.
656 */
657 u32 timeout_ms;
658
659 /**
660 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
661 * value of 32768 is used.
662 */
663 u32 exit_dump_len;
664
665 /**
666 * hotplug_seq - A sequence number that may be set by the scheduler to
667 * detect when a hotplug event has occurred during the loading process.
668 * If 0, no detection occurs. Otherwise, the scheduler will fail to
669 * load if the sequence number does not match @scx_hotplug_seq on the
670 * enable path.
671 */
672 u64 hotplug_seq;
673
674 /**
675 * name - BPF scheduler's name
676 *
677 * Must be a non-zero valid BPF object name including only isalnum(),
678 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
679 * BPF scheduler is enabled.
680 */
681 char name[SCX_OPS_NAME_LEN];
682 };
683
684 enum scx_opi {
685 SCX_OPI_BEGIN = 0,
686 SCX_OPI_NORMAL_BEGIN = 0,
687 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online),
688 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online),
689 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init),
690 SCX_OPI_END = SCX_OP_IDX(init),
691 };
692
693 enum scx_wake_flags {
694 /* expose select WF_* flags as enums */
695 SCX_WAKE_FORK = WF_FORK,
696 SCX_WAKE_TTWU = WF_TTWU,
697 SCX_WAKE_SYNC = WF_SYNC,
698 };
699
700 enum scx_enq_flags {
701 /* expose select ENQUEUE_* flags as enums */
702 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP,
703 SCX_ENQ_HEAD = ENQUEUE_HEAD,
704 SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED,
705
706 /* high 32bits are SCX specific */
707
708 /*
709 * Set the following to trigger preemption when calling
710 * scx_bpf_dispatch() with a local dsq as the target. The slice of the
711 * current task is cleared to zero and the CPU is kicked into the
712 * scheduling path. Implies %SCX_ENQ_HEAD.
713 */
714 SCX_ENQ_PREEMPT = 1LLU << 32,
715
716 /*
717 * The task being enqueued was previously enqueued on the current CPU's
718 * %SCX_DSQ_LOCAL, but was removed from it in a call to the
719 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
720 * invoked in a ->cpu_release() callback, and the task is again
721 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
722 * task will not be scheduled on the CPU until at least the next invocation
723 * of the ->cpu_acquire() callback.
724 */
725 SCX_ENQ_REENQ = 1LLU << 40,
726
727 /*
728 * The task being enqueued is the only task available for the cpu. By
729 * default, ext core keeps executing such tasks but when
730 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
731 * %SCX_ENQ_LAST flag set.
732 *
733 * The BPF scheduler is responsible for triggering a follow-up
734 * scheduling event. Otherwise, Execution may stall.
735 */
736 SCX_ENQ_LAST = 1LLU << 41,
737
738 /* high 8 bits are internal */
739 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56,
740
741 SCX_ENQ_CLEAR_OPSS = 1LLU << 56,
742 SCX_ENQ_DSQ_PRIQ = 1LLU << 57,
743 };
744
745 enum scx_deq_flags {
746 /* expose select DEQUEUE_* flags as enums */
747 SCX_DEQ_SLEEP = DEQUEUE_SLEEP,
748
749 /* high 32bits are SCX specific */
750
751 /*
752 * The generic core-sched layer decided to execute the task even though
753 * it hasn't been dispatched yet. Dequeue from the BPF side.
754 */
755 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32,
756 };
757
758 enum scx_pick_idle_cpu_flags {
759 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */
760 };
761
762 enum scx_kick_flags {
763 /*
764 * Kick the target CPU if idle. Guarantees that the target CPU goes
765 * through at least one full scheduling cycle before going idle. If the
766 * target CPU can be determined to be currently not idle and going to go
767 * through a scheduling cycle before going idle, noop.
768 */
769 SCX_KICK_IDLE = 1LLU << 0,
770
771 /*
772 * Preempt the current task and execute the dispatch path. If the
773 * current task of the target CPU is an SCX task, its ->scx.slice is
774 * cleared to zero before the scheduling path is invoked so that the
775 * task expires and the dispatch path is invoked.
776 */
777 SCX_KICK_PREEMPT = 1LLU << 1,
778
779 /*
780 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
781 * return after the target CPU finishes picking the next task.
782 */
783 SCX_KICK_WAIT = 1LLU << 2,
784 };
785
786 enum scx_tg_flags {
787 SCX_TG_ONLINE = 1U << 0,
788 SCX_TG_INITED = 1U << 1,
789 };
790
791 enum scx_ops_enable_state {
792 SCX_OPS_ENABLING,
793 SCX_OPS_ENABLED,
794 SCX_OPS_DISABLING,
795 SCX_OPS_DISABLED,
796 };
797
798 static const char *scx_ops_enable_state_str[] = {
799 [SCX_OPS_ENABLING] = "enabling",
800 [SCX_OPS_ENABLED] = "enabled",
801 [SCX_OPS_DISABLING] = "disabling",
802 [SCX_OPS_DISABLED] = "disabled",
803 };
804
805 /*
806 * sched_ext_entity->ops_state
807 *
808 * Used to track the task ownership between the SCX core and the BPF scheduler.
809 * State transitions look as follows:
810 *
811 * NONE -> QUEUEING -> QUEUED -> DISPATCHING
812 * ^ | |
813 * | v v
814 * \-------------------------------/
815 *
816 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
817 * sites for explanations on the conditions being waited upon and why they are
818 * safe. Transitions out of them into NONE or QUEUED must store_release and the
819 * waiters should load_acquire.
820 *
821 * Tracking scx_ops_state enables sched_ext core to reliably determine whether
822 * any given task can be dispatched by the BPF scheduler at all times and thus
823 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
824 * to try to dispatch any task anytime regardless of its state as the SCX core
825 * can safely reject invalid dispatches.
826 */
827 enum scx_ops_state {
828 SCX_OPSS_NONE, /* owned by the SCX core */
829 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */
830 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */
831 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */
832
833 /*
834 * QSEQ brands each QUEUED instance so that, when dispatch races
835 * dequeue/requeue, the dispatcher can tell whether it still has a claim
836 * on the task being dispatched.
837 *
838 * As some 32bit archs can't do 64bit store_release/load_acquire,
839 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
840 * 32bit machines. The dispatch race window QSEQ protects is very narrow
841 * and runs with IRQ disabled. 30 bits should be sufficient.
842 */
843 SCX_OPSS_QSEQ_SHIFT = 2,
844 };
845
846 /* Use macros to ensure that the type is unsigned long for the masks */
847 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
848 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK)
849
850 /*
851 * During exit, a task may schedule after losing its PIDs. When disabling the
852 * BPF scheduler, we need to be able to iterate tasks in every state to
853 * guarantee system safety. Maintain a dedicated task list which contains every
854 * task between its fork and eventual free.
855 */
856 static DEFINE_SPINLOCK(scx_tasks_lock);
857 static LIST_HEAD(scx_tasks);
858
859 /* ops enable/disable */
860 static struct kthread_worker *scx_ops_helper;
861 static DEFINE_MUTEX(scx_ops_enable_mutex);
862 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
863 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
864 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
865 static int scx_ops_bypass_depth;
866 static DEFINE_RAW_SPINLOCK(__scx_ops_bypass_lock);
867 static bool scx_ops_init_task_enabled;
868 static bool scx_switching_all;
869 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
870
871 static struct sched_ext_ops scx_ops;
872 static bool scx_warned_zero_slice;
873
874 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
875 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
876 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
877 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
878
879 static struct static_key_false scx_has_op[SCX_OPI_END] =
880 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
881
882 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
883 static struct scx_exit_info *scx_exit_info;
884
885 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
886 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
887
888 /*
889 * A monotically increasing sequence number that is incremented every time a
890 * scheduler is enabled. This can be used by to check if any custom sched_ext
891 * scheduler has ever been used in the system.
892 */
893 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
894
895 /*
896 * The maximum amount of time in jiffies that a task may be runnable without
897 * being scheduled on a CPU. If this timeout is exceeded, it will trigger
898 * scx_ops_error().
899 */
900 static unsigned long scx_watchdog_timeout;
901
902 /*
903 * The last time the delayed work was run. This delayed work relies on
904 * ksoftirqd being able to run to service timer interrupts, so it's possible
905 * that this work itself could get wedged. To account for this, we check that
906 * it's not stalled in the timer tick, and trigger an error if it is.
907 */
908 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
909
910 static struct delayed_work scx_watchdog_work;
911
912 /* idle tracking */
913 #ifdef CONFIG_SMP
914 #ifdef CONFIG_CPUMASK_OFFSTACK
915 #define CL_ALIGNED_IF_ONSTACK
916 #else
917 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
918 #endif
919
920 static struct {
921 cpumask_var_t cpu;
922 cpumask_var_t smt;
923 } idle_masks CL_ALIGNED_IF_ONSTACK;
924
925 #endif /* CONFIG_SMP */
926
927 /* for %SCX_KICK_WAIT */
928 static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
929
930 /*
931 * Direct dispatch marker.
932 *
933 * Non-NULL values are used for direct dispatch from enqueue path. A valid
934 * pointer points to the task currently being enqueued. An ERR_PTR value is used
935 * to indicate that direct dispatch has already happened.
936 */
937 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
938
939 /*
940 * Dispatch queues.
941 *
942 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is
943 * to avoid live-locking in bypass mode where all tasks are dispatched to
944 * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't
945 * sufficient, it can be further split.
946 */
947 static struct scx_dispatch_q **global_dsqs;
948
949 static const struct rhashtable_params dsq_hash_params = {
950 .key_len = 8,
951 .key_offset = offsetof(struct scx_dispatch_q, id),
952 .head_offset = offsetof(struct scx_dispatch_q, hash_node),
953 };
954
955 static struct rhashtable dsq_hash;
956 static LLIST_HEAD(dsqs_to_free);
957
958 /* dispatch buf */
959 struct scx_dsp_buf_ent {
960 struct task_struct *task;
961 unsigned long qseq;
962 u64 dsq_id;
963 u64 enq_flags;
964 };
965
966 static u32 scx_dsp_max_batch;
967
968 struct scx_dsp_ctx {
969 struct rq *rq;
970 u32 cursor;
971 u32 nr_tasks;
972 struct scx_dsp_buf_ent buf[];
973 };
974
975 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
976
977 /* string formatting from BPF */
978 struct scx_bstr_buf {
979 u64 data[MAX_BPRINTF_VARARGS];
980 char line[SCX_EXIT_MSG_LEN];
981 };
982
983 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
984 static struct scx_bstr_buf scx_exit_bstr_buf;
985
986 /* ops debug dump */
987 struct scx_dump_data {
988 s32 cpu;
989 bool first;
990 s32 cursor;
991 struct seq_buf *s;
992 const char *prefix;
993 struct scx_bstr_buf buf;
994 };
995
996 static struct scx_dump_data scx_dump_data = {
997 .cpu = -1,
998 };
999
1000 /* /sys/kernel/sched_ext interface */
1001 static struct kset *scx_kset;
1002 static struct kobject *scx_root_kobj;
1003
1004 #define CREATE_TRACE_POINTS
1005 #include <trace/events/sched_ext.h>
1006
1007 static void process_ddsp_deferred_locals(struct rq *rq);
1008 static void scx_bpf_kick_cpu(s32 cpu, u64 flags);
1009 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
1010 s64 exit_code,
1011 const char *fmt, ...);
1012
1013 #define scx_ops_error_kind(err, fmt, args...) \
1014 scx_ops_exit_kind((err), 0, fmt, ##args)
1015
1016 #define scx_ops_exit(code, fmt, args...) \
1017 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
1018
1019 #define scx_ops_error(fmt, args...) \
1020 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
1021
1022 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
1023
jiffies_delta_msecs(unsigned long at,unsigned long now)1024 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
1025 {
1026 if (time_after(at, now))
1027 return jiffies_to_msecs(at - now);
1028 else
1029 return -(long)jiffies_to_msecs(now - at);
1030 }
1031
1032 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
higher_bits(u32 flags)1033 static u32 higher_bits(u32 flags)
1034 {
1035 return ~((1 << fls(flags)) - 1);
1036 }
1037
1038 /* return the mask with only the highest bit set */
highest_bit(u32 flags)1039 static u32 highest_bit(u32 flags)
1040 {
1041 int bit = fls(flags);
1042 return ((u64)1 << bit) >> 1;
1043 }
1044
u32_before(u32 a,u32 b)1045 static bool u32_before(u32 a, u32 b)
1046 {
1047 return (s32)(a - b) < 0;
1048 }
1049
find_global_dsq(struct task_struct * p)1050 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p)
1051 {
1052 return global_dsqs[cpu_to_node(task_cpu(p))];
1053 }
1054
find_user_dsq(u64 dsq_id)1055 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
1056 {
1057 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
1058 }
1059
1060 /*
1061 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
1062 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
1063 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
1064 * whether it's running from an allowed context.
1065 *
1066 * @mask is constant, always inline to cull the mask calculations.
1067 */
scx_kf_allow(u32 mask)1068 static __always_inline void scx_kf_allow(u32 mask)
1069 {
1070 /* nesting is allowed only in increasing scx_kf_mask order */
1071 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
1072 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
1073 current->scx.kf_mask, mask);
1074 current->scx.kf_mask |= mask;
1075 barrier();
1076 }
1077
scx_kf_disallow(u32 mask)1078 static void scx_kf_disallow(u32 mask)
1079 {
1080 barrier();
1081 current->scx.kf_mask &= ~mask;
1082 }
1083
1084 #define SCX_CALL_OP(mask, op, args...) \
1085 do { \
1086 if (mask) { \
1087 scx_kf_allow(mask); \
1088 scx_ops.op(args); \
1089 scx_kf_disallow(mask); \
1090 } else { \
1091 scx_ops.op(args); \
1092 } \
1093 } while (0)
1094
1095 #define SCX_CALL_OP_RET(mask, op, args...) \
1096 ({ \
1097 __typeof__(scx_ops.op(args)) __ret; \
1098 if (mask) { \
1099 scx_kf_allow(mask); \
1100 __ret = scx_ops.op(args); \
1101 scx_kf_disallow(mask); \
1102 } else { \
1103 __ret = scx_ops.op(args); \
1104 } \
1105 __ret; \
1106 })
1107
1108 /*
1109 * Some kfuncs are allowed only on the tasks that are subjects of the
1110 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
1111 * restrictions, the following SCX_CALL_OP_*() variants should be used when
1112 * invoking scx_ops operations that take task arguments. These can only be used
1113 * for non-nesting operations due to the way the tasks are tracked.
1114 *
1115 * kfuncs which can only operate on such tasks can in turn use
1116 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
1117 * the specific task.
1118 */
1119 #define SCX_CALL_OP_TASK(mask, op, task, args...) \
1120 do { \
1121 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
1122 current->scx.kf_tasks[0] = task; \
1123 SCX_CALL_OP(mask, op, task, ##args); \
1124 current->scx.kf_tasks[0] = NULL; \
1125 } while (0)
1126
1127 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \
1128 ({ \
1129 __typeof__(scx_ops.op(task, ##args)) __ret; \
1130 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
1131 current->scx.kf_tasks[0] = task; \
1132 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \
1133 current->scx.kf_tasks[0] = NULL; \
1134 __ret; \
1135 })
1136
1137 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \
1138 ({ \
1139 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \
1140 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
1141 current->scx.kf_tasks[0] = task0; \
1142 current->scx.kf_tasks[1] = task1; \
1143 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \
1144 current->scx.kf_tasks[0] = NULL; \
1145 current->scx.kf_tasks[1] = NULL; \
1146 __ret; \
1147 })
1148
1149 /* @mask is constant, always inline to cull unnecessary branches */
scx_kf_allowed(u32 mask)1150 static __always_inline bool scx_kf_allowed(u32 mask)
1151 {
1152 if (unlikely(!(current->scx.kf_mask & mask))) {
1153 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
1154 mask, current->scx.kf_mask);
1155 return false;
1156 }
1157
1158 /*
1159 * Enforce nesting boundaries. e.g. A kfunc which can be called from
1160 * DISPATCH must not be called if we're running DEQUEUE which is nested
1161 * inside ops.dispatch(). We don't need to check boundaries for any
1162 * blocking kfuncs as the verifier ensures they're only called from
1163 * sleepable progs.
1164 */
1165 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
1166 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
1167 scx_ops_error("cpu_release kfunc called from a nested operation");
1168 return false;
1169 }
1170
1171 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
1172 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
1173 scx_ops_error("dispatch kfunc called from a nested operation");
1174 return false;
1175 }
1176
1177 return true;
1178 }
1179
1180 /* see SCX_CALL_OP_TASK() */
scx_kf_allowed_on_arg_tasks(u32 mask,struct task_struct * p)1181 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask,
1182 struct task_struct *p)
1183 {
1184 if (!scx_kf_allowed(mask))
1185 return false;
1186
1187 if (unlikely((p != current->scx.kf_tasks[0] &&
1188 p != current->scx.kf_tasks[1]))) {
1189 scx_ops_error("called on a task not being operated on");
1190 return false;
1191 }
1192
1193 return true;
1194 }
1195
scx_kf_allowed_if_unlocked(void)1196 static bool scx_kf_allowed_if_unlocked(void)
1197 {
1198 return !current->scx.kf_mask;
1199 }
1200
1201 /**
1202 * nldsq_next_task - Iterate to the next task in a non-local DSQ
1203 * @dsq: user dsq being interated
1204 * @cur: current position, %NULL to start iteration
1205 * @rev: walk backwards
1206 *
1207 * Returns %NULL when iteration is finished.
1208 */
nldsq_next_task(struct scx_dispatch_q * dsq,struct task_struct * cur,bool rev)1209 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
1210 struct task_struct *cur, bool rev)
1211 {
1212 struct list_head *list_node;
1213 struct scx_dsq_list_node *dsq_lnode;
1214
1215 lockdep_assert_held(&dsq->lock);
1216
1217 if (cur)
1218 list_node = &cur->scx.dsq_list.node;
1219 else
1220 list_node = &dsq->list;
1221
1222 /* find the next task, need to skip BPF iteration cursors */
1223 do {
1224 if (rev)
1225 list_node = list_node->prev;
1226 else
1227 list_node = list_node->next;
1228
1229 if (list_node == &dsq->list)
1230 return NULL;
1231
1232 dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
1233 node);
1234 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
1235
1236 return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
1237 }
1238
1239 #define nldsq_for_each_task(p, dsq) \
1240 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \
1241 (p) = nldsq_next_task((dsq), (p), false))
1242
1243
1244 /*
1245 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
1246 * dispatch order. BPF-visible iterator is opaque and larger to allow future
1247 * changes without breaking backward compatibility. Can be used with
1248 * bpf_for_each(). See bpf_iter_scx_dsq_*().
1249 */
1250 enum scx_dsq_iter_flags {
1251 /* iterate in the reverse dispatch order */
1252 SCX_DSQ_ITER_REV = 1U << 16,
1253
1254 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30,
1255 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31,
1256
1257 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV,
1258 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS |
1259 __SCX_DSQ_ITER_HAS_SLICE |
1260 __SCX_DSQ_ITER_HAS_VTIME,
1261 };
1262
1263 struct bpf_iter_scx_dsq_kern {
1264 struct scx_dsq_list_node cursor;
1265 struct scx_dispatch_q *dsq;
1266 u64 slice;
1267 u64 vtime;
1268 } __attribute__((aligned(8)));
1269
1270 struct bpf_iter_scx_dsq {
1271 u64 __opaque[6];
1272 } __attribute__((aligned(8)));
1273
1274
1275 /*
1276 * SCX task iterator.
1277 */
1278 struct scx_task_iter {
1279 struct sched_ext_entity cursor;
1280 struct task_struct *locked;
1281 struct rq *rq;
1282 struct rq_flags rf;
1283 u32 cnt;
1284 };
1285
1286 /**
1287 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
1288 * @iter: iterator to init
1289 *
1290 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
1291 * must eventually be stopped with scx_task_iter_stop().
1292 *
1293 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
1294 * between this and the first next() call or between any two next() calls. If
1295 * the locks are released between two next() calls, the caller is responsible
1296 * for ensuring that the task being iterated remains accessible either through
1297 * RCU read lock or obtaining a reference count.
1298 *
1299 * All tasks which existed when the iteration started are guaranteed to be
1300 * visited as long as they still exist.
1301 */
scx_task_iter_start(struct scx_task_iter * iter)1302 static void scx_task_iter_start(struct scx_task_iter *iter)
1303 {
1304 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
1305 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
1306
1307 spin_lock_irq(&scx_tasks_lock);
1308
1309 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
1310 list_add(&iter->cursor.tasks_node, &scx_tasks);
1311 iter->locked = NULL;
1312 iter->cnt = 0;
1313 }
1314
__scx_task_iter_rq_unlock(struct scx_task_iter * iter)1315 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
1316 {
1317 if (iter->locked) {
1318 task_rq_unlock(iter->rq, iter->locked, &iter->rf);
1319 iter->locked = NULL;
1320 }
1321 }
1322
1323 /**
1324 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
1325 * @iter: iterator to unlock
1326 *
1327 * If @iter is in the middle of a locked iteration, it may be locking the rq of
1328 * the task currently being visited in addition to scx_tasks_lock. Unlock both.
1329 * This function can be safely called anytime during an iteration.
1330 */
scx_task_iter_unlock(struct scx_task_iter * iter)1331 static void scx_task_iter_unlock(struct scx_task_iter *iter)
1332 {
1333 __scx_task_iter_rq_unlock(iter);
1334 spin_unlock_irq(&scx_tasks_lock);
1335 }
1336
1337 /**
1338 * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock()
1339 * @iter: iterator to re-lock
1340 *
1341 * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it
1342 * doesn't re-lock the rq lock. Must be called before other iterator operations.
1343 */
scx_task_iter_relock(struct scx_task_iter * iter)1344 static void scx_task_iter_relock(struct scx_task_iter *iter)
1345 {
1346 spin_lock_irq(&scx_tasks_lock);
1347 }
1348
1349 /**
1350 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
1351 * @iter: iterator to exit
1352 *
1353 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held
1354 * which is released on return. If the iterator holds a task's rq lock, that rq
1355 * lock is also released. See scx_task_iter_start() for details.
1356 */
scx_task_iter_stop(struct scx_task_iter * iter)1357 static void scx_task_iter_stop(struct scx_task_iter *iter)
1358 {
1359 list_del_init(&iter->cursor.tasks_node);
1360 scx_task_iter_unlock(iter);
1361 }
1362
1363 /**
1364 * scx_task_iter_next - Next task
1365 * @iter: iterator to walk
1366 *
1367 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped
1368 * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing
1369 * stalls by holding scx_tasks_lock for too long.
1370 */
scx_task_iter_next(struct scx_task_iter * iter)1371 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
1372 {
1373 struct list_head *cursor = &iter->cursor.tasks_node;
1374 struct sched_ext_entity *pos;
1375
1376 if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) {
1377 scx_task_iter_unlock(iter);
1378 cond_resched();
1379 scx_task_iter_relock(iter);
1380 }
1381
1382 list_for_each_entry(pos, cursor, tasks_node) {
1383 if (&pos->tasks_node == &scx_tasks)
1384 return NULL;
1385 if (!(pos->flags & SCX_TASK_CURSOR)) {
1386 list_move(cursor, &pos->tasks_node);
1387 return container_of(pos, struct task_struct, scx);
1388 }
1389 }
1390
1391 /* can't happen, should always terminate at scx_tasks above */
1392 BUG();
1393 }
1394
1395 /**
1396 * scx_task_iter_next_locked - Next non-idle task with its rq locked
1397 * @iter: iterator to walk
1398 * @include_dead: Whether we should include dead tasks in the iteration
1399 *
1400 * Visit the non-idle task with its rq lock held. Allows callers to specify
1401 * whether they would like to filter out dead tasks. See scx_task_iter_start()
1402 * for details.
1403 */
scx_task_iter_next_locked(struct scx_task_iter * iter)1404 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
1405 {
1406 struct task_struct *p;
1407
1408 __scx_task_iter_rq_unlock(iter);
1409
1410 while ((p = scx_task_iter_next(iter))) {
1411 /*
1412 * scx_task_iter is used to prepare and move tasks into SCX
1413 * while loading the BPF scheduler and vice-versa while
1414 * unloading. The init_tasks ("swappers") should be excluded
1415 * from the iteration because:
1416 *
1417 * - It's unsafe to use __setschduler_prio() on an init_task to
1418 * determine the sched_class to use as it won't preserve its
1419 * idle_sched_class.
1420 *
1421 * - ops.init/exit_task() can easily be confused if called with
1422 * init_tasks as they, e.g., share PID 0.
1423 *
1424 * As init_tasks are never scheduled through SCX, they can be
1425 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
1426 * doesn't work here:
1427 *
1428 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
1429 * yet been onlined.
1430 *
1431 * - %PF_IDLE can be set on tasks that are not init_tasks. See
1432 * play_idle_precise() used by CONFIG_IDLE_INJECT.
1433 *
1434 * Test for idle_sched_class as only init_tasks are on it.
1435 */
1436 if (p->sched_class != &idle_sched_class)
1437 break;
1438 }
1439 if (!p)
1440 return NULL;
1441
1442 iter->rq = task_rq_lock(p, &iter->rf);
1443 iter->locked = p;
1444
1445 return p;
1446 }
1447
scx_ops_enable_state(void)1448 static enum scx_ops_enable_state scx_ops_enable_state(void)
1449 {
1450 return atomic_read(&scx_ops_enable_state_var);
1451 }
1452
1453 static enum scx_ops_enable_state
scx_ops_set_enable_state(enum scx_ops_enable_state to)1454 scx_ops_set_enable_state(enum scx_ops_enable_state to)
1455 {
1456 return atomic_xchg(&scx_ops_enable_state_var, to);
1457 }
1458
scx_ops_tryset_enable_state(enum scx_ops_enable_state to,enum scx_ops_enable_state from)1459 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
1460 enum scx_ops_enable_state from)
1461 {
1462 int from_v = from;
1463
1464 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
1465 }
1466
scx_rq_bypassing(struct rq * rq)1467 static bool scx_rq_bypassing(struct rq *rq)
1468 {
1469 return unlikely(rq->scx.flags & SCX_RQ_BYPASSING);
1470 }
1471
1472 /**
1473 * wait_ops_state - Busy-wait the specified ops state to end
1474 * @p: target task
1475 * @opss: state to wait the end of
1476 *
1477 * Busy-wait for @p to transition out of @opss. This can only be used when the
1478 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
1479 * has load_acquire semantics to ensure that the caller can see the updates made
1480 * in the enqueueing and dispatching paths.
1481 */
wait_ops_state(struct task_struct * p,unsigned long opss)1482 static void wait_ops_state(struct task_struct *p, unsigned long opss)
1483 {
1484 do {
1485 cpu_relax();
1486 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
1487 }
1488
1489 /**
1490 * ops_cpu_valid - Verify a cpu number
1491 * @cpu: cpu number which came from a BPF ops
1492 * @where: extra information reported on error
1493 *
1494 * @cpu is a cpu number which came from the BPF scheduler and can be any value.
1495 * Verify that it is in range and one of the possible cpus. If invalid, trigger
1496 * an ops error.
1497 */
ops_cpu_valid(s32 cpu,const char * where)1498 static bool ops_cpu_valid(s32 cpu, const char *where)
1499 {
1500 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
1501 return true;
1502 } else {
1503 scx_ops_error("invalid CPU %d%s%s", cpu,
1504 where ? " " : "", where ?: "");
1505 return false;
1506 }
1507 }
1508
1509 /**
1510 * ops_sanitize_err - Sanitize a -errno value
1511 * @ops_name: operation to blame on failure
1512 * @err: -errno value to sanitize
1513 *
1514 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
1515 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
1516 * cause misbehaviors. For an example, a large negative return from
1517 * ops.init_task() triggers an oops when passed up the call chain because the
1518 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
1519 * handled as a pointer.
1520 */
ops_sanitize_err(const char * ops_name,s32 err)1521 static int ops_sanitize_err(const char *ops_name, s32 err)
1522 {
1523 if (err < 0 && err >= -MAX_ERRNO)
1524 return err;
1525
1526 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
1527 return -EPROTO;
1528 }
1529
run_deferred(struct rq * rq)1530 static void run_deferred(struct rq *rq)
1531 {
1532 process_ddsp_deferred_locals(rq);
1533 }
1534
1535 #ifdef CONFIG_SMP
deferred_bal_cb_workfn(struct rq * rq)1536 static void deferred_bal_cb_workfn(struct rq *rq)
1537 {
1538 run_deferred(rq);
1539 }
1540 #endif
1541
deferred_irq_workfn(struct irq_work * irq_work)1542 static void deferred_irq_workfn(struct irq_work *irq_work)
1543 {
1544 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
1545
1546 raw_spin_rq_lock(rq);
1547 run_deferred(rq);
1548 raw_spin_rq_unlock(rq);
1549 }
1550
1551 /**
1552 * schedule_deferred - Schedule execution of deferred actions on an rq
1553 * @rq: target rq
1554 *
1555 * Schedule execution of deferred actions on @rq. Must be called with @rq
1556 * locked. Deferred actions are executed with @rq locked but unpinned, and thus
1557 * can unlock @rq to e.g. migrate tasks to other rqs.
1558 */
schedule_deferred(struct rq * rq)1559 static void schedule_deferred(struct rq *rq)
1560 {
1561 lockdep_assert_rq_held(rq);
1562
1563 #ifdef CONFIG_SMP
1564 /*
1565 * If in the middle of waking up a task, task_woken_scx() will be called
1566 * afterwards which will then run the deferred actions, no need to
1567 * schedule anything.
1568 */
1569 if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
1570 return;
1571
1572 /*
1573 * If in balance, the balance callbacks will be called before rq lock is
1574 * released. Schedule one.
1575 */
1576 if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
1577 queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
1578 deferred_bal_cb_workfn);
1579 return;
1580 }
1581 #endif
1582 /*
1583 * No scheduler hooks available. Queue an irq work. They are executed on
1584 * IRQ re-enable which may take a bit longer than the scheduler hooks.
1585 * The above WAKEUP and BALANCE paths should cover most of the cases and
1586 * the time to IRQ re-enable shouldn't be long.
1587 */
1588 irq_work_queue(&rq->scx.deferred_irq_work);
1589 }
1590
1591 /**
1592 * touch_core_sched - Update timestamp used for core-sched task ordering
1593 * @rq: rq to read clock from, must be locked
1594 * @p: task to update the timestamp for
1595 *
1596 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
1597 * implement global or local-DSQ FIFO ordering for core-sched. Should be called
1598 * when a task becomes runnable and its turn on the CPU ends (e.g. slice
1599 * exhaustion).
1600 */
touch_core_sched(struct rq * rq,struct task_struct * p)1601 static void touch_core_sched(struct rq *rq, struct task_struct *p)
1602 {
1603 lockdep_assert_rq_held(rq);
1604
1605 #ifdef CONFIG_SCHED_CORE
1606 /*
1607 * It's okay to update the timestamp spuriously. Use
1608 * sched_core_disabled() which is cheaper than enabled().
1609 *
1610 * As this is used to determine ordering between tasks of sibling CPUs,
1611 * it may be better to use per-core dispatch sequence instead.
1612 */
1613 if (!sched_core_disabled())
1614 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
1615 #endif
1616 }
1617
1618 /**
1619 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
1620 * @rq: rq to read clock from, must be locked
1621 * @p: task being dispatched
1622 *
1623 * If the BPF scheduler implements custom core-sched ordering via
1624 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
1625 * ordering within each local DSQ. This function is called from dispatch paths
1626 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
1627 */
touch_core_sched_dispatch(struct rq * rq,struct task_struct * p)1628 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
1629 {
1630 lockdep_assert_rq_held(rq);
1631
1632 #ifdef CONFIG_SCHED_CORE
1633 if (SCX_HAS_OP(core_sched_before))
1634 touch_core_sched(rq, p);
1635 #endif
1636 }
1637
update_curr_scx(struct rq * rq)1638 static void update_curr_scx(struct rq *rq)
1639 {
1640 struct task_struct *curr = rq->curr;
1641 s64 delta_exec;
1642
1643 delta_exec = update_curr_common(rq);
1644 if (unlikely(delta_exec <= 0))
1645 return;
1646
1647 if (curr->scx.slice != SCX_SLICE_INF) {
1648 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
1649 if (!curr->scx.slice)
1650 touch_core_sched(rq, curr);
1651 }
1652 }
1653
scx_dsq_priq_less(struct rb_node * node_a,const struct rb_node * node_b)1654 static bool scx_dsq_priq_less(struct rb_node *node_a,
1655 const struct rb_node *node_b)
1656 {
1657 const struct task_struct *a =
1658 container_of(node_a, struct task_struct, scx.dsq_priq);
1659 const struct task_struct *b =
1660 container_of(node_b, struct task_struct, scx.dsq_priq);
1661
1662 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
1663 }
1664
dsq_mod_nr(struct scx_dispatch_q * dsq,s32 delta)1665 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
1666 {
1667 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
1668 WRITE_ONCE(dsq->nr, dsq->nr + delta);
1669 }
1670
dispatch_enqueue(struct scx_dispatch_q * dsq,struct task_struct * p,u64 enq_flags)1671 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
1672 u64 enq_flags)
1673 {
1674 bool is_local = dsq->id == SCX_DSQ_LOCAL;
1675
1676 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1677 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
1678 !RB_EMPTY_NODE(&p->scx.dsq_priq));
1679
1680 if (!is_local) {
1681 raw_spin_lock(&dsq->lock);
1682 if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
1683 scx_ops_error("attempting to dispatch to a destroyed dsq");
1684 /* fall back to the global dsq */
1685 raw_spin_unlock(&dsq->lock);
1686 dsq = find_global_dsq(p);
1687 raw_spin_lock(&dsq->lock);
1688 }
1689 }
1690
1691 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
1692 (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
1693 /*
1694 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
1695 * their FIFO queues. To avoid confusion and accidentally
1696 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
1697 * disallow any internal DSQ from doing vtime ordering of
1698 * tasks.
1699 */
1700 scx_ops_error("cannot use vtime ordering for built-in DSQs");
1701 enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
1702 }
1703
1704 if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
1705 struct rb_node *rbp;
1706
1707 /*
1708 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
1709 * linked to both the rbtree and list on PRIQs, this can only be
1710 * tested easily when adding the first task.
1711 */
1712 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
1713 nldsq_next_task(dsq, NULL, false)))
1714 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
1715 dsq->id);
1716
1717 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
1718 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
1719
1720 /*
1721 * Find the previous task and insert after it on the list so
1722 * that @dsq->list is vtime ordered.
1723 */
1724 rbp = rb_prev(&p->scx.dsq_priq);
1725 if (rbp) {
1726 struct task_struct *prev =
1727 container_of(rbp, struct task_struct,
1728 scx.dsq_priq);
1729 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
1730 } else {
1731 list_add(&p->scx.dsq_list.node, &dsq->list);
1732 }
1733 } else {
1734 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */
1735 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
1736 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
1737 dsq->id);
1738
1739 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1740 list_add(&p->scx.dsq_list.node, &dsq->list);
1741 else
1742 list_add_tail(&p->scx.dsq_list.node, &dsq->list);
1743 }
1744
1745 /* seq records the order tasks are queued, used by BPF DSQ iterator */
1746 dsq->seq++;
1747 p->scx.dsq_seq = dsq->seq;
1748
1749 dsq_mod_nr(dsq, 1);
1750 p->scx.dsq = dsq;
1751
1752 /*
1753 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
1754 * direct dispatch path, but we clear them here because the direct
1755 * dispatch verdict may be overridden on the enqueue path during e.g.
1756 * bypass.
1757 */
1758 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
1759 p->scx.ddsp_enq_flags = 0;
1760
1761 /*
1762 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1763 * match waiters' load_acquire.
1764 */
1765 if (enq_flags & SCX_ENQ_CLEAR_OPSS)
1766 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1767
1768 if (is_local) {
1769 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
1770 bool preempt = false;
1771
1772 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
1773 rq->curr->sched_class == &ext_sched_class) {
1774 rq->curr->scx.slice = 0;
1775 preempt = true;
1776 }
1777
1778 if (preempt || sched_class_above(&ext_sched_class,
1779 rq->curr->sched_class))
1780 resched_curr(rq);
1781 } else {
1782 raw_spin_unlock(&dsq->lock);
1783 }
1784 }
1785
task_unlink_from_dsq(struct task_struct * p,struct scx_dispatch_q * dsq)1786 static void task_unlink_from_dsq(struct task_struct *p,
1787 struct scx_dispatch_q *dsq)
1788 {
1789 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1790
1791 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1792 rb_erase(&p->scx.dsq_priq, &dsq->priq);
1793 RB_CLEAR_NODE(&p->scx.dsq_priq);
1794 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1795 }
1796
1797 list_del_init(&p->scx.dsq_list.node);
1798 dsq_mod_nr(dsq, -1);
1799 }
1800
dispatch_dequeue(struct rq * rq,struct task_struct * p)1801 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1802 {
1803 struct scx_dispatch_q *dsq = p->scx.dsq;
1804 bool is_local = dsq == &rq->scx.local_dsq;
1805
1806 if (!dsq) {
1807 /*
1808 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1809 * Unlinking is all that's needed to cancel.
1810 */
1811 if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1812 list_del_init(&p->scx.dsq_list.node);
1813
1814 /*
1815 * When dispatching directly from the BPF scheduler to a local
1816 * DSQ, the task isn't associated with any DSQ but
1817 * @p->scx.holding_cpu may be set under the protection of
1818 * %SCX_OPSS_DISPATCHING.
1819 */
1820 if (p->scx.holding_cpu >= 0)
1821 p->scx.holding_cpu = -1;
1822
1823 return;
1824 }
1825
1826 if (!is_local)
1827 raw_spin_lock(&dsq->lock);
1828
1829 /*
1830 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1831 * change underneath us.
1832 */
1833 if (p->scx.holding_cpu < 0) {
1834 /* @p must still be on @dsq, dequeue */
1835 task_unlink_from_dsq(p, dsq);
1836 } else {
1837 /*
1838 * We're racing against dispatch_to_local_dsq() which already
1839 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1840 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1841 * the race.
1842 */
1843 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1844 p->scx.holding_cpu = -1;
1845 }
1846 p->scx.dsq = NULL;
1847
1848 if (!is_local)
1849 raw_spin_unlock(&dsq->lock);
1850 }
1851
find_dsq_for_dispatch(struct rq * rq,u64 dsq_id,struct task_struct * p)1852 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
1853 struct task_struct *p)
1854 {
1855 struct scx_dispatch_q *dsq;
1856
1857 if (dsq_id == SCX_DSQ_LOCAL)
1858 return &rq->scx.local_dsq;
1859
1860 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1861 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1862
1863 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1864 return find_global_dsq(p);
1865
1866 return &cpu_rq(cpu)->scx.local_dsq;
1867 }
1868
1869 if (dsq_id == SCX_DSQ_GLOBAL)
1870 dsq = find_global_dsq(p);
1871 else
1872 dsq = find_user_dsq(dsq_id);
1873
1874 if (unlikely(!dsq)) {
1875 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
1876 dsq_id, p->comm, p->pid);
1877 return find_global_dsq(p);
1878 }
1879
1880 return dsq;
1881 }
1882
mark_direct_dispatch(struct task_struct * ddsp_task,struct task_struct * p,u64 dsq_id,u64 enq_flags)1883 static void mark_direct_dispatch(struct task_struct *ddsp_task,
1884 struct task_struct *p, u64 dsq_id,
1885 u64 enq_flags)
1886 {
1887 /*
1888 * Mark that dispatch already happened from ops.select_cpu() or
1889 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1890 * which can never match a valid task pointer.
1891 */
1892 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1893
1894 /* @p must match the task on the enqueue path */
1895 if (unlikely(p != ddsp_task)) {
1896 if (IS_ERR(ddsp_task))
1897 scx_ops_error("%s[%d] already direct-dispatched",
1898 p->comm, p->pid);
1899 else
1900 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1901 ddsp_task->comm, ddsp_task->pid,
1902 p->comm, p->pid);
1903 return;
1904 }
1905
1906 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1907 WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1908
1909 p->scx.ddsp_dsq_id = dsq_id;
1910 p->scx.ddsp_enq_flags = enq_flags;
1911 }
1912
direct_dispatch(struct task_struct * p,u64 enq_flags)1913 static void direct_dispatch(struct task_struct *p, u64 enq_flags)
1914 {
1915 struct rq *rq = task_rq(p);
1916 struct scx_dispatch_q *dsq =
1917 find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
1918
1919 touch_core_sched_dispatch(rq, p);
1920
1921 p->scx.ddsp_enq_flags |= enq_flags;
1922
1923 /*
1924 * We are in the enqueue path with @rq locked and pinned, and thus can't
1925 * double lock a remote rq and enqueue to its local DSQ. For
1926 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1927 * the enqueue so that it's executed when @rq can be unlocked.
1928 */
1929 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
1930 unsigned long opss;
1931
1932 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1933
1934 switch (opss & SCX_OPSS_STATE_MASK) {
1935 case SCX_OPSS_NONE:
1936 break;
1937 case SCX_OPSS_QUEUEING:
1938 /*
1939 * As @p was never passed to the BPF side, _release is
1940 * not strictly necessary. Still do it for consistency.
1941 */
1942 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1943 break;
1944 default:
1945 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1946 p->comm, p->pid, opss);
1947 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1948 break;
1949 }
1950
1951 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1952 list_add_tail(&p->scx.dsq_list.node,
1953 &rq->scx.ddsp_deferred_locals);
1954 schedule_deferred(rq);
1955 return;
1956 }
1957
1958 dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1959 }
1960
scx_rq_online(struct rq * rq)1961 static bool scx_rq_online(struct rq *rq)
1962 {
1963 /*
1964 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1965 * the online state as seen from the BPF scheduler. cpu_active() test
1966 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1967 * stay set until the current scheduling operation is complete even if
1968 * we aren't locking @rq.
1969 */
1970 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1971 }
1972
do_enqueue_task(struct rq * rq,struct task_struct * p,u64 enq_flags,int sticky_cpu)1973 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1974 int sticky_cpu)
1975 {
1976 struct task_struct **ddsp_taskp;
1977 unsigned long qseq;
1978
1979 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1980
1981 /* rq migration */
1982 if (sticky_cpu == cpu_of(rq))
1983 goto local_norefill;
1984
1985 /*
1986 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
1987 * is offline and are just running the hotplug path. Don't bother the
1988 * BPF scheduler.
1989 */
1990 if (!scx_rq_online(rq))
1991 goto local;
1992
1993 if (scx_rq_bypassing(rq))
1994 goto global;
1995
1996 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1997 goto direct;
1998
1999 /* see %SCX_OPS_ENQ_EXITING */
2000 if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
2001 unlikely(p->flags & PF_EXITING))
2002 goto local;
2003
2004 if (!SCX_HAS_OP(enqueue))
2005 goto global;
2006
2007 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
2008 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
2009
2010 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2011 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
2012
2013 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
2014 WARN_ON_ONCE(*ddsp_taskp);
2015 *ddsp_taskp = p;
2016
2017 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
2018
2019 *ddsp_taskp = NULL;
2020 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
2021 goto direct;
2022
2023 /*
2024 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
2025 * dequeue may be waiting. The store_release matches their load_acquire.
2026 */
2027 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
2028 return;
2029
2030 direct:
2031 direct_dispatch(p, enq_flags);
2032 return;
2033
2034 local:
2035 /*
2036 * For task-ordering, slice refill must be treated as implying the end
2037 * of the current slice. Otherwise, the longer @p stays on the CPU, the
2038 * higher priority it becomes from scx_prio_less()'s POV.
2039 */
2040 touch_core_sched(rq, p);
2041 p->scx.slice = SCX_SLICE_DFL;
2042 local_norefill:
2043 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
2044 return;
2045
2046 global:
2047 touch_core_sched(rq, p); /* see the comment in local: */
2048 p->scx.slice = SCX_SLICE_DFL;
2049 dispatch_enqueue(find_global_dsq(p), p, enq_flags);
2050 }
2051
task_runnable(const struct task_struct * p)2052 static bool task_runnable(const struct task_struct *p)
2053 {
2054 return !list_empty(&p->scx.runnable_node);
2055 }
2056
set_task_runnable(struct rq * rq,struct task_struct * p)2057 static void set_task_runnable(struct rq *rq, struct task_struct *p)
2058 {
2059 lockdep_assert_rq_held(rq);
2060
2061 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
2062 p->scx.runnable_at = jiffies;
2063 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
2064 }
2065
2066 /*
2067 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being
2068 * appened to the runnable_list.
2069 */
2070 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
2071 }
2072
clr_task_runnable(struct task_struct * p,bool reset_runnable_at)2073 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
2074 {
2075 list_del_init(&p->scx.runnable_node);
2076 if (reset_runnable_at)
2077 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2078 }
2079
enqueue_task_scx(struct rq * rq,struct task_struct * p,int enq_flags)2080 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
2081 {
2082 int sticky_cpu = p->scx.sticky_cpu;
2083
2084 if (enq_flags & ENQUEUE_WAKEUP)
2085 rq->scx.flags |= SCX_RQ_IN_WAKEUP;
2086
2087 enq_flags |= rq->scx.extra_enq_flags;
2088
2089 if (sticky_cpu >= 0)
2090 p->scx.sticky_cpu = -1;
2091
2092 /*
2093 * Restoring a running task will be immediately followed by
2094 * set_next_task_scx() which expects the task to not be on the BPF
2095 * scheduler as tasks can only start running through local DSQs. Force
2096 * direct-dispatch into the local DSQ by setting the sticky_cpu.
2097 */
2098 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
2099 sticky_cpu = cpu_of(rq);
2100
2101 if (p->scx.flags & SCX_TASK_QUEUED) {
2102 WARN_ON_ONCE(!task_runnable(p));
2103 goto out;
2104 }
2105
2106 set_task_runnable(rq, p);
2107 p->scx.flags |= SCX_TASK_QUEUED;
2108 rq->scx.nr_running++;
2109 add_nr_running(rq, 1);
2110
2111 if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p))
2112 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags);
2113
2114 if (enq_flags & SCX_ENQ_WAKEUP)
2115 touch_core_sched(rq, p);
2116
2117 do_enqueue_task(rq, p, enq_flags, sticky_cpu);
2118 out:
2119 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
2120 }
2121
ops_dequeue(struct task_struct * p,u64 deq_flags)2122 static void ops_dequeue(struct task_struct *p, u64 deq_flags)
2123 {
2124 unsigned long opss;
2125
2126 /* dequeue is always temporary, don't reset runnable_at */
2127 clr_task_runnable(p, false);
2128
2129 /* acquire ensures that we see the preceding updates on QUEUED */
2130 opss = atomic_long_read_acquire(&p->scx.ops_state);
2131
2132 switch (opss & SCX_OPSS_STATE_MASK) {
2133 case SCX_OPSS_NONE:
2134 break;
2135 case SCX_OPSS_QUEUEING:
2136 /*
2137 * QUEUEING is started and finished while holding @p's rq lock.
2138 * As we're holding the rq lock now, we shouldn't see QUEUEING.
2139 */
2140 BUG();
2141 case SCX_OPSS_QUEUED:
2142 if (SCX_HAS_OP(dequeue))
2143 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags);
2144
2145 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2146 SCX_OPSS_NONE))
2147 break;
2148 fallthrough;
2149 case SCX_OPSS_DISPATCHING:
2150 /*
2151 * If @p is being dispatched from the BPF scheduler to a DSQ,
2152 * wait for the transfer to complete so that @p doesn't get
2153 * added to its DSQ after dequeueing is complete.
2154 *
2155 * As we're waiting on DISPATCHING with the rq locked, the
2156 * dispatching side shouldn't try to lock the rq while
2157 * DISPATCHING is set. See dispatch_to_local_dsq().
2158 *
2159 * DISPATCHING shouldn't have qseq set and control can reach
2160 * here with NONE @opss from the above QUEUED case block.
2161 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
2162 */
2163 wait_ops_state(p, SCX_OPSS_DISPATCHING);
2164 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2165 break;
2166 }
2167 }
2168
dequeue_task_scx(struct rq * rq,struct task_struct * p,int deq_flags)2169 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
2170 {
2171 if (!(p->scx.flags & SCX_TASK_QUEUED)) {
2172 WARN_ON_ONCE(task_runnable(p));
2173 return true;
2174 }
2175
2176 ops_dequeue(p, deq_flags);
2177
2178 /*
2179 * A currently running task which is going off @rq first gets dequeued
2180 * and then stops running. As we want running <-> stopping transitions
2181 * to be contained within runnable <-> quiescent transitions, trigger
2182 * ->stopping() early here instead of in put_prev_task_scx().
2183 *
2184 * @p may go through multiple stopping <-> running transitions between
2185 * here and put_prev_task_scx() if task attribute changes occur while
2186 * balance_scx() leaves @rq unlocked. However, they don't contain any
2187 * information meaningful to the BPF scheduler and can be suppressed by
2188 * skipping the callbacks if the task is !QUEUED.
2189 */
2190 if (SCX_HAS_OP(stopping) && task_current(rq, p)) {
2191 update_curr_scx(rq);
2192 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false);
2193 }
2194
2195 if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p))
2196 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags);
2197
2198 if (deq_flags & SCX_DEQ_SLEEP)
2199 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
2200 else
2201 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
2202
2203 p->scx.flags &= ~SCX_TASK_QUEUED;
2204 rq->scx.nr_running--;
2205 sub_nr_running(rq, 1);
2206
2207 dispatch_dequeue(rq, p);
2208 return true;
2209 }
2210
yield_task_scx(struct rq * rq)2211 static void yield_task_scx(struct rq *rq)
2212 {
2213 struct task_struct *p = rq->curr;
2214
2215 if (SCX_HAS_OP(yield))
2216 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL);
2217 else
2218 p->scx.slice = 0;
2219 }
2220
yield_to_task_scx(struct rq * rq,struct task_struct * to)2221 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
2222 {
2223 struct task_struct *from = rq->curr;
2224
2225 if (SCX_HAS_OP(yield))
2226 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to);
2227 else
2228 return false;
2229 }
2230
move_local_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct scx_dispatch_q * src_dsq,struct rq * dst_rq)2231 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2232 struct scx_dispatch_q *src_dsq,
2233 struct rq *dst_rq)
2234 {
2235 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
2236
2237 /* @dsq is locked and @p is on @dst_rq */
2238 lockdep_assert_held(&src_dsq->lock);
2239 lockdep_assert_rq_held(dst_rq);
2240
2241 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2242
2243 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
2244 list_add(&p->scx.dsq_list.node, &dst_dsq->list);
2245 else
2246 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
2247
2248 dsq_mod_nr(dst_dsq, 1);
2249 p->scx.dsq = dst_dsq;
2250 }
2251
2252 #ifdef CONFIG_SMP
2253 /**
2254 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
2255 * @p: task to move
2256 * @enq_flags: %SCX_ENQ_*
2257 * @src_rq: rq to move the task from, locked on entry, released on return
2258 * @dst_rq: rq to move the task into, locked on return
2259 *
2260 * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
2261 */
move_remote_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct rq * src_rq,struct rq * dst_rq)2262 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2263 struct rq *src_rq, struct rq *dst_rq)
2264 {
2265 lockdep_assert_rq_held(src_rq);
2266
2267 /* the following marks @p MIGRATING which excludes dequeue */
2268 deactivate_task(src_rq, p, 0);
2269 set_task_cpu(p, cpu_of(dst_rq));
2270 p->scx.sticky_cpu = cpu_of(dst_rq);
2271
2272 raw_spin_rq_unlock(src_rq);
2273 raw_spin_rq_lock(dst_rq);
2274
2275 /*
2276 * We want to pass scx-specific enq_flags but activate_task() will
2277 * truncate the upper 32 bit. As we own @rq, we can pass them through
2278 * @rq->scx.extra_enq_flags instead.
2279 */
2280 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
2281 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
2282 dst_rq->scx.extra_enq_flags = enq_flags;
2283 activate_task(dst_rq, p, 0);
2284 dst_rq->scx.extra_enq_flags = 0;
2285 }
2286
2287 /*
2288 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
2289 * differences:
2290 *
2291 * - is_cpu_allowed() asks "Can this task run on this CPU?" while
2292 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
2293 * this CPU?".
2294 *
2295 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task
2296 * must be allowed to finish on the CPU that it's currently on regardless of
2297 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
2298 * BPF scheduler shouldn't attempt to migrate a task which has migration
2299 * disabled.
2300 *
2301 * - The BPF scheduler is bypassed while the rq is offline and we can always say
2302 * no to the BPF scheduler initiated migrations while offline.
2303 */
task_can_run_on_remote_rq(struct task_struct * p,struct rq * rq,bool trigger_error)2304 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
2305 bool trigger_error)
2306 {
2307 int cpu = cpu_of(rq);
2308
2309 /*
2310 * We don't require the BPF scheduler to avoid dispatching to offline
2311 * CPUs mostly for convenience but also because CPUs can go offline
2312 * between scx_bpf_dispatch() calls and here. Trigger error iff the
2313 * picked CPU is outside the allowed mask.
2314 */
2315 if (!task_allowed_on_cpu(p, cpu)) {
2316 if (trigger_error)
2317 scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
2318 cpu_of(rq), p->comm, p->pid);
2319 return false;
2320 }
2321
2322 if (unlikely(is_migration_disabled(p)))
2323 return false;
2324
2325 if (!scx_rq_online(rq))
2326 return false;
2327
2328 return true;
2329 }
2330
2331 /**
2332 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
2333 * @p: target task
2334 * @dsq: locked DSQ @p is currently on
2335 * @src_rq: rq @p is currently on, stable with @dsq locked
2336 *
2337 * Called with @dsq locked but no rq's locked. We want to move @p to a different
2338 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
2339 * required when transferring into a local DSQ. Even when transferring into a
2340 * non-local DSQ, it's better to use the same mechanism to protect against
2341 * dequeues and maintain the invariant that @p->scx.dsq can only change while
2342 * @src_rq is locked, which e.g. scx_dump_task() depends on.
2343 *
2344 * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
2345 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
2346 * this may race with dequeue, which can't drop the rq lock or fail, do a little
2347 * dancing from our side.
2348 *
2349 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
2350 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
2351 * would be cleared to -1. While other cpus may have updated it to different
2352 * values afterwards, as this operation can't be preempted or recurse, the
2353 * holding_cpu can never become this CPU again before we're done. Thus, we can
2354 * tell whether we lost to dequeue by testing whether the holding_cpu still
2355 * points to this CPU. See dispatch_dequeue() for the counterpart.
2356 *
2357 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
2358 * still valid. %false if lost to dequeue.
2359 */
unlink_dsq_and_lock_src_rq(struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)2360 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
2361 struct scx_dispatch_q *dsq,
2362 struct rq *src_rq)
2363 {
2364 s32 cpu = raw_smp_processor_id();
2365
2366 lockdep_assert_held(&dsq->lock);
2367
2368 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2369 task_unlink_from_dsq(p, dsq);
2370 p->scx.holding_cpu = cpu;
2371
2372 raw_spin_unlock(&dsq->lock);
2373 raw_spin_rq_lock(src_rq);
2374
2375 /* task_rq couldn't have changed if we're still the holding cpu */
2376 return likely(p->scx.holding_cpu == cpu) &&
2377 !WARN_ON_ONCE(src_rq != task_rq(p));
2378 }
2379
consume_remote_task(struct rq * this_rq,struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)2380 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
2381 struct scx_dispatch_q *dsq, struct rq *src_rq)
2382 {
2383 raw_spin_rq_unlock(this_rq);
2384
2385 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
2386 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
2387 return true;
2388 } else {
2389 raw_spin_rq_unlock(src_rq);
2390 raw_spin_rq_lock(this_rq);
2391 return false;
2392 }
2393 }
2394 #else /* CONFIG_SMP */
move_remote_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct rq * src_rq,struct rq * dst_rq)2395 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); }
task_can_run_on_remote_rq(struct task_struct * p,struct rq * rq,bool trigger_error)2396 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; }
consume_remote_task(struct rq * this_rq,struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * task_rq)2397 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; }
2398 #endif /* CONFIG_SMP */
2399
consume_dispatch_q(struct rq * rq,struct scx_dispatch_q * dsq)2400 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
2401 {
2402 struct task_struct *p;
2403 retry:
2404 /*
2405 * The caller can't expect to successfully consume a task if the task's
2406 * addition to @dsq isn't guaranteed to be visible somehow. Test
2407 * @dsq->list without locking and skip if it seems empty.
2408 */
2409 if (list_empty(&dsq->list))
2410 return false;
2411
2412 raw_spin_lock(&dsq->lock);
2413
2414 nldsq_for_each_task(p, dsq) {
2415 struct rq *task_rq = task_rq(p);
2416
2417 if (rq == task_rq) {
2418 task_unlink_from_dsq(p, dsq);
2419 move_local_task_to_local_dsq(p, 0, dsq, rq);
2420 raw_spin_unlock(&dsq->lock);
2421 return true;
2422 }
2423
2424 if (task_can_run_on_remote_rq(p, rq, false)) {
2425 if (likely(consume_remote_task(rq, p, dsq, task_rq)))
2426 return true;
2427 goto retry;
2428 }
2429 }
2430
2431 raw_spin_unlock(&dsq->lock);
2432 return false;
2433 }
2434
consume_global_dsq(struct rq * rq)2435 static bool consume_global_dsq(struct rq *rq)
2436 {
2437 int node = cpu_to_node(cpu_of(rq));
2438
2439 return consume_dispatch_q(rq, global_dsqs[node]);
2440 }
2441
2442 /**
2443 * dispatch_to_local_dsq - Dispatch a task to a local dsq
2444 * @rq: current rq which is locked
2445 * @dst_dsq: destination DSQ
2446 * @p: task to dispatch
2447 * @enq_flags: %SCX_ENQ_*
2448 *
2449 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
2450 * DSQ. This function performs all the synchronization dancing needed because
2451 * local DSQs are protected with rq locks.
2452 *
2453 * The caller must have exclusive ownership of @p (e.g. through
2454 * %SCX_OPSS_DISPATCHING).
2455 */
dispatch_to_local_dsq(struct rq * rq,struct scx_dispatch_q * dst_dsq,struct task_struct * p,u64 enq_flags)2456 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
2457 struct task_struct *p, u64 enq_flags)
2458 {
2459 struct rq *src_rq = task_rq(p);
2460 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
2461
2462 /*
2463 * We're synchronized against dequeue through DISPATCHING. As @p can't
2464 * be dequeued, its task_rq and cpus_allowed are stable too.
2465 *
2466 * If dispatching to @rq that @p is already on, no lock dancing needed.
2467 */
2468 if (rq == src_rq && rq == dst_rq) {
2469 dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2470 return;
2471 }
2472
2473 #ifdef CONFIG_SMP
2474 if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) {
2475 dispatch_enqueue(find_global_dsq(p), p,
2476 enq_flags | SCX_ENQ_CLEAR_OPSS);
2477 return;
2478 }
2479
2480 /*
2481 * @p is on a possibly remote @src_rq which we need to lock to move the
2482 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
2483 * on DISPATCHING, so we can't grab @src_rq lock while holding
2484 * DISPATCHING.
2485 *
2486 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
2487 * we're moving from a DSQ and use the same mechanism - mark the task
2488 * under transfer with holding_cpu, release DISPATCHING and then follow
2489 * the same protocol. See unlink_dsq_and_lock_src_rq().
2490 */
2491 p->scx.holding_cpu = raw_smp_processor_id();
2492
2493 /* store_release ensures that dequeue sees the above */
2494 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
2495
2496 /* switch to @src_rq lock */
2497 if (rq != src_rq) {
2498 raw_spin_rq_unlock(rq);
2499 raw_spin_rq_lock(src_rq);
2500 }
2501
2502 /* task_rq couldn't have changed if we're still the holding cpu */
2503 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
2504 !WARN_ON_ONCE(src_rq != task_rq(p))) {
2505 /*
2506 * If @p is staying on the same rq, there's no need to go
2507 * through the full deactivate/activate cycle. Optimize by
2508 * abbreviating move_remote_task_to_local_dsq().
2509 */
2510 if (src_rq == dst_rq) {
2511 p->scx.holding_cpu = -1;
2512 dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags);
2513 } else {
2514 move_remote_task_to_local_dsq(p, enq_flags,
2515 src_rq, dst_rq);
2516 }
2517
2518 /* if the destination CPU is idle, wake it up */
2519 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
2520 resched_curr(dst_rq);
2521 }
2522
2523 /* switch back to @rq lock */
2524 if (rq != dst_rq) {
2525 raw_spin_rq_unlock(dst_rq);
2526 raw_spin_rq_lock(rq);
2527 }
2528 #else /* CONFIG_SMP */
2529 BUG(); /* control can not reach here on UP */
2530 #endif /* CONFIG_SMP */
2531 }
2532
2533 /**
2534 * finish_dispatch - Asynchronously finish dispatching a task
2535 * @rq: current rq which is locked
2536 * @p: task to finish dispatching
2537 * @qseq_at_dispatch: qseq when @p started getting dispatched
2538 * @dsq_id: destination DSQ ID
2539 * @enq_flags: %SCX_ENQ_*
2540 *
2541 * Dispatching to local DSQs may need to wait for queueing to complete or
2542 * require rq lock dancing. As we don't wanna do either while inside
2543 * ops.dispatch() to avoid locking order inversion, we split dispatching into
2544 * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the
2545 * task and its qseq. Once ops.dispatch() returns, this function is called to
2546 * finish up.
2547 *
2548 * There is no guarantee that @p is still valid for dispatching or even that it
2549 * was valid in the first place. Make sure that the task is still owned by the
2550 * BPF scheduler and claim the ownership before dispatching.
2551 */
finish_dispatch(struct rq * rq,struct task_struct * p,unsigned long qseq_at_dispatch,u64 dsq_id,u64 enq_flags)2552 static void finish_dispatch(struct rq *rq, struct task_struct *p,
2553 unsigned long qseq_at_dispatch,
2554 u64 dsq_id, u64 enq_flags)
2555 {
2556 struct scx_dispatch_q *dsq;
2557 unsigned long opss;
2558
2559 touch_core_sched_dispatch(rq, p);
2560 retry:
2561 /*
2562 * No need for _acquire here. @p is accessed only after a successful
2563 * try_cmpxchg to DISPATCHING.
2564 */
2565 opss = atomic_long_read(&p->scx.ops_state);
2566
2567 switch (opss & SCX_OPSS_STATE_MASK) {
2568 case SCX_OPSS_DISPATCHING:
2569 case SCX_OPSS_NONE:
2570 /* someone else already got to it */
2571 return;
2572 case SCX_OPSS_QUEUED:
2573 /*
2574 * If qseq doesn't match, @p has gone through at least one
2575 * dispatch/dequeue and re-enqueue cycle between
2576 * scx_bpf_dispatch() and here and we have no claim on it.
2577 */
2578 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
2579 return;
2580
2581 /*
2582 * While we know @p is accessible, we don't yet have a claim on
2583 * it - the BPF scheduler is allowed to dispatch tasks
2584 * spuriously and there can be a racing dequeue attempt. Let's
2585 * claim @p by atomically transitioning it from QUEUED to
2586 * DISPATCHING.
2587 */
2588 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2589 SCX_OPSS_DISPATCHING)))
2590 break;
2591 goto retry;
2592 case SCX_OPSS_QUEUEING:
2593 /*
2594 * do_enqueue_task() is in the process of transferring the task
2595 * to the BPF scheduler while holding @p's rq lock. As we aren't
2596 * holding any kernel or BPF resource that the enqueue path may
2597 * depend upon, it's safe to wait.
2598 */
2599 wait_ops_state(p, opss);
2600 goto retry;
2601 }
2602
2603 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
2604
2605 dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p);
2606
2607 if (dsq->id == SCX_DSQ_LOCAL)
2608 dispatch_to_local_dsq(rq, dsq, p, enq_flags);
2609 else
2610 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2611 }
2612
flush_dispatch_buf(struct rq * rq)2613 static void flush_dispatch_buf(struct rq *rq)
2614 {
2615 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2616 u32 u;
2617
2618 for (u = 0; u < dspc->cursor; u++) {
2619 struct scx_dsp_buf_ent *ent = &dspc->buf[u];
2620
2621 finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id,
2622 ent->enq_flags);
2623 }
2624
2625 dspc->nr_tasks += dspc->cursor;
2626 dspc->cursor = 0;
2627 }
2628
balance_one(struct rq * rq,struct task_struct * prev)2629 static int balance_one(struct rq *rq, struct task_struct *prev)
2630 {
2631 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2632 bool prev_on_scx = prev->sched_class == &ext_sched_class;
2633 int nr_loops = SCX_DSP_MAX_LOOPS;
2634
2635 lockdep_assert_rq_held(rq);
2636 rq->scx.flags |= SCX_RQ_IN_BALANCE;
2637 rq->scx.flags &= ~SCX_RQ_BAL_KEEP;
2638
2639 if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
2640 unlikely(rq->scx.cpu_released)) {
2641 /*
2642 * If the previous sched_class for the current CPU was not SCX,
2643 * notify the BPF scheduler that it again has control of the
2644 * core. This callback complements ->cpu_release(), which is
2645 * emitted in scx_next_task_picked().
2646 */
2647 if (SCX_HAS_OP(cpu_acquire))
2648 SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL);
2649 rq->scx.cpu_released = false;
2650 }
2651
2652 if (prev_on_scx) {
2653 update_curr_scx(rq);
2654
2655 /*
2656 * If @prev is runnable & has slice left, it has priority and
2657 * fetching more just increases latency for the fetched tasks.
2658 * Tell pick_task_scx() to keep running @prev. If the BPF
2659 * scheduler wants to handle this explicitly, it should
2660 * implement ->cpu_release().
2661 *
2662 * See scx_ops_disable_workfn() for the explanation on the
2663 * bypassing test.
2664 */
2665 if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2666 prev->scx.slice && !scx_rq_bypassing(rq)) {
2667 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2668 goto has_tasks;
2669 }
2670 }
2671
2672 /* if there already are tasks to run, nothing to do */
2673 if (rq->scx.local_dsq.nr)
2674 goto has_tasks;
2675
2676 if (consume_global_dsq(rq))
2677 goto has_tasks;
2678
2679 if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq))
2680 goto no_tasks;
2681
2682 dspc->rq = rq;
2683
2684 /*
2685 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2686 * the local DSQ might still end up empty after a successful
2687 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2688 * produced some tasks, retry. The BPF scheduler may depend on this
2689 * looping behavior to simplify its implementation.
2690 */
2691 do {
2692 dspc->nr_tasks = 0;
2693
2694 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
2695 prev_on_scx ? prev : NULL);
2696
2697 flush_dispatch_buf(rq);
2698
2699 if (rq->scx.local_dsq.nr)
2700 goto has_tasks;
2701 if (consume_global_dsq(rq))
2702 goto has_tasks;
2703
2704 /*
2705 * ops.dispatch() can trap us in this loop by repeatedly
2706 * dispatching ineligible tasks. Break out once in a while to
2707 * allow the watchdog to run. As IRQ can't be enabled in
2708 * balance(), we want to complete this scheduling cycle and then
2709 * start a new one. IOW, we want to call resched_curr() on the
2710 * next, most likely idle, task, not the current one. Use
2711 * scx_bpf_kick_cpu() for deferred kicking.
2712 */
2713 if (unlikely(!--nr_loops)) {
2714 scx_bpf_kick_cpu(cpu_of(rq), 0);
2715 break;
2716 }
2717 } while (dspc->nr_tasks);
2718
2719 no_tasks:
2720 /*
2721 * Didn't find another task to run. Keep running @prev unless
2722 * %SCX_OPS_ENQ_LAST is in effect.
2723 */
2724 if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2725 (!static_branch_unlikely(&scx_ops_enq_last) ||
2726 scx_rq_bypassing(rq))) {
2727 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2728 goto has_tasks;
2729 }
2730 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2731 return false;
2732
2733 has_tasks:
2734 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2735 return true;
2736 }
2737
balance_scx(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)2738 static int balance_scx(struct rq *rq, struct task_struct *prev,
2739 struct rq_flags *rf)
2740 {
2741 int ret;
2742
2743 rq_unpin_lock(rq, rf);
2744
2745 ret = balance_one(rq, prev);
2746
2747 #ifdef CONFIG_SCHED_SMT
2748 /*
2749 * When core-sched is enabled, this ops.balance() call will be followed
2750 * by pick_task_scx() on this CPU and the SMT siblings. Balance the
2751 * siblings too.
2752 */
2753 if (sched_core_enabled(rq)) {
2754 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
2755 int scpu;
2756
2757 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
2758 struct rq *srq = cpu_rq(scpu);
2759 struct task_struct *sprev = srq->curr;
2760
2761 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
2762 update_rq_clock(srq);
2763 balance_one(srq, sprev);
2764 }
2765 }
2766 #endif
2767 rq_repin_lock(rq, rf);
2768
2769 return ret;
2770 }
2771
process_ddsp_deferred_locals(struct rq * rq)2772 static void process_ddsp_deferred_locals(struct rq *rq)
2773 {
2774 struct task_struct *p;
2775
2776 lockdep_assert_rq_held(rq);
2777
2778 /*
2779 * Now that @rq can be unlocked, execute the deferred enqueueing of
2780 * tasks directly dispatched to the local DSQs of other CPUs. See
2781 * direct_dispatch(). Keep popping from the head instead of using
2782 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2783 * temporarily.
2784 */
2785 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2786 struct task_struct, scx.dsq_list.node))) {
2787 struct scx_dispatch_q *dsq;
2788
2789 list_del_init(&p->scx.dsq_list.node);
2790
2791 dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
2792 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
2793 dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags);
2794 }
2795 }
2796
set_next_task_scx(struct rq * rq,struct task_struct * p,bool first)2797 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2798 {
2799 if (p->scx.flags & SCX_TASK_QUEUED) {
2800 /*
2801 * Core-sched might decide to execute @p before it is
2802 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2803 */
2804 ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC);
2805 dispatch_dequeue(rq, p);
2806 }
2807
2808 p->se.exec_start = rq_clock_task(rq);
2809
2810 /* see dequeue_task_scx() on why we skip when !QUEUED */
2811 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED))
2812 SCX_CALL_OP_TASK(SCX_KF_REST, running, p);
2813
2814 clr_task_runnable(p, true);
2815
2816 /*
2817 * @p is getting newly scheduled or got kicked after someone updated its
2818 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2819 */
2820 if ((p->scx.slice == SCX_SLICE_INF) !=
2821 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2822 if (p->scx.slice == SCX_SLICE_INF)
2823 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2824 else
2825 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2826
2827 sched_update_tick_dependency(rq);
2828
2829 /*
2830 * For now, let's refresh the load_avgs just when transitioning
2831 * in and out of nohz. In the future, we might want to add a
2832 * mechanism which calls the following periodically on
2833 * tick-stopped CPUs.
2834 */
2835 update_other_load_avgs(rq);
2836 }
2837 }
2838
2839 static enum scx_cpu_preempt_reason
preempt_reason_from_class(const struct sched_class * class)2840 preempt_reason_from_class(const struct sched_class *class)
2841 {
2842 #ifdef CONFIG_SMP
2843 if (class == &stop_sched_class)
2844 return SCX_CPU_PREEMPT_STOP;
2845 #endif
2846 if (class == &dl_sched_class)
2847 return SCX_CPU_PREEMPT_DL;
2848 if (class == &rt_sched_class)
2849 return SCX_CPU_PREEMPT_RT;
2850 return SCX_CPU_PREEMPT_UNKNOWN;
2851 }
2852
switch_class(struct rq * rq,struct task_struct * next)2853 static void switch_class(struct rq *rq, struct task_struct *next)
2854 {
2855 const struct sched_class *next_class = next->sched_class;
2856
2857 #ifdef CONFIG_SMP
2858 /*
2859 * Pairs with the smp_load_acquire() issued by a CPU in
2860 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
2861 * resched.
2862 */
2863 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
2864 #endif
2865 if (!static_branch_unlikely(&scx_ops_cpu_preempt))
2866 return;
2867
2868 /*
2869 * The callback is conceptually meant to convey that the CPU is no
2870 * longer under the control of SCX. Therefore, don't invoke the callback
2871 * if the next class is below SCX (in which case the BPF scheduler has
2872 * actively decided not to schedule any tasks on the CPU).
2873 */
2874 if (sched_class_above(&ext_sched_class, next_class))
2875 return;
2876
2877 /*
2878 * At this point we know that SCX was preempted by a higher priority
2879 * sched_class, so invoke the ->cpu_release() callback if we have not
2880 * done so already. We only send the callback once between SCX being
2881 * preempted, and it regaining control of the CPU.
2882 *
2883 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
2884 * next time that balance_scx() is invoked.
2885 */
2886 if (!rq->scx.cpu_released) {
2887 if (SCX_HAS_OP(cpu_release)) {
2888 struct scx_cpu_release_args args = {
2889 .reason = preempt_reason_from_class(next_class),
2890 .task = next,
2891 };
2892
2893 SCX_CALL_OP(SCX_KF_CPU_RELEASE,
2894 cpu_release, cpu_of(rq), &args);
2895 }
2896 rq->scx.cpu_released = true;
2897 }
2898 }
2899
put_prev_task_scx(struct rq * rq,struct task_struct * p,struct task_struct * next)2900 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
2901 struct task_struct *next)
2902 {
2903 update_curr_scx(rq);
2904
2905 /* see dequeue_task_scx() on why we skip when !QUEUED */
2906 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED))
2907 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true);
2908
2909 if (p->scx.flags & SCX_TASK_QUEUED) {
2910 set_task_runnable(rq, p);
2911
2912 /*
2913 * If @p has slice left and is being put, @p is getting
2914 * preempted by a higher priority scheduler class or core-sched
2915 * forcing a different task. Leave it at the head of the local
2916 * DSQ.
2917 */
2918 if (p->scx.slice && !scx_rq_bypassing(rq)) {
2919 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
2920 return;
2921 }
2922
2923 /*
2924 * If @p is runnable but we're about to enter a lower
2925 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
2926 * ops.enqueue() that @p is the only one available for this cpu,
2927 * which should trigger an explicit follow-up scheduling event.
2928 */
2929 if (sched_class_above(&ext_sched_class, next->sched_class)) {
2930 WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last));
2931 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
2932 } else {
2933 do_enqueue_task(rq, p, 0, -1);
2934 }
2935 }
2936
2937 if (next && next->sched_class != &ext_sched_class)
2938 switch_class(rq, next);
2939 }
2940
first_local_task(struct rq * rq)2941 static struct task_struct *first_local_task(struct rq *rq)
2942 {
2943 return list_first_entry_or_null(&rq->scx.local_dsq.list,
2944 struct task_struct, scx.dsq_list.node);
2945 }
2946
pick_task_scx(struct rq * rq)2947 static struct task_struct *pick_task_scx(struct rq *rq)
2948 {
2949 struct task_struct *prev = rq->curr;
2950 struct task_struct *p;
2951
2952 /*
2953 * If balance_scx() is telling us to keep running @prev, replenish slice
2954 * if necessary and keep running @prev. Otherwise, pop the first one
2955 * from the local DSQ.
2956 *
2957 * WORKAROUND:
2958 *
2959 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
2960 * have gone through balance_scx(). Unfortunately, there currently is a
2961 * bug where fair could say yes on balance() but no on pick_task(),
2962 * which then ends up calling pick_task_scx() without preceding
2963 * balance_scx().
2964 *
2965 * For now, ignore cases where $prev is not on SCX. This isn't great and
2966 * can theoretically lead to stalls. However, for switch_all cases, this
2967 * happens only while a BPF scheduler is being loaded or unloaded, and,
2968 * for partial cases, fair will likely keep triggering this CPU.
2969 *
2970 * Once fair is fixed, restore WARN_ON_ONCE().
2971 */
2972 if ((rq->scx.flags & SCX_RQ_BAL_KEEP) &&
2973 prev->sched_class == &ext_sched_class) {
2974 p = prev;
2975 if (!p->scx.slice)
2976 p->scx.slice = SCX_SLICE_DFL;
2977 } else {
2978 p = first_local_task(rq);
2979 if (!p)
2980 return NULL;
2981
2982 if (unlikely(!p->scx.slice)) {
2983 if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) {
2984 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
2985 p->comm, p->pid, __func__);
2986 scx_warned_zero_slice = true;
2987 }
2988 p->scx.slice = SCX_SLICE_DFL;
2989 }
2990 }
2991
2992 return p;
2993 }
2994
2995 #ifdef CONFIG_SCHED_CORE
2996 /**
2997 * scx_prio_less - Task ordering for core-sched
2998 * @a: task A
2999 * @b: task B
3000 *
3001 * Core-sched is implemented as an additional scheduling layer on top of the
3002 * usual sched_class'es and needs to find out the expected task ordering. For
3003 * SCX, core-sched calls this function to interrogate the task ordering.
3004 *
3005 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
3006 * to implement the default task ordering. The older the timestamp, the higher
3007 * prority the task - the global FIFO ordering matching the default scheduling
3008 * behavior.
3009 *
3010 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
3011 * implement FIFO ordering within each local DSQ. See pick_task_scx().
3012 */
scx_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)3013 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
3014 bool in_fi)
3015 {
3016 /*
3017 * The const qualifiers are dropped from task_struct pointers when
3018 * calling ops.core_sched_before(). Accesses are controlled by the
3019 * verifier.
3020 */
3021 if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a)))
3022 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before,
3023 (struct task_struct *)a,
3024 (struct task_struct *)b);
3025 else
3026 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
3027 }
3028 #endif /* CONFIG_SCHED_CORE */
3029
3030 #ifdef CONFIG_SMP
3031
test_and_clear_cpu_idle(int cpu)3032 static bool test_and_clear_cpu_idle(int cpu)
3033 {
3034 #ifdef CONFIG_SCHED_SMT
3035 /*
3036 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
3037 * cluster is not wholly idle either way. This also prevents
3038 * scx_pick_idle_cpu() from getting caught in an infinite loop.
3039 */
3040 if (sched_smt_active()) {
3041 const struct cpumask *smt = cpu_smt_mask(cpu);
3042
3043 /*
3044 * If offline, @cpu is not its own sibling and
3045 * scx_pick_idle_cpu() can get caught in an infinite loop as
3046 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
3047 * is eventually cleared.
3048 */
3049 if (cpumask_intersects(smt, idle_masks.smt))
3050 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3051 else if (cpumask_test_cpu(cpu, idle_masks.smt))
3052 __cpumask_clear_cpu(cpu, idle_masks.smt);
3053 }
3054 #endif
3055 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
3056 }
3057
scx_pick_idle_cpu(const struct cpumask * cpus_allowed,u64 flags)3058 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
3059 {
3060 int cpu;
3061
3062 retry:
3063 if (sched_smt_active()) {
3064 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
3065 if (cpu < nr_cpu_ids)
3066 goto found;
3067
3068 if (flags & SCX_PICK_IDLE_CORE)
3069 return -EBUSY;
3070 }
3071
3072 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
3073 if (cpu >= nr_cpu_ids)
3074 return -EBUSY;
3075
3076 found:
3077 if (test_and_clear_cpu_idle(cpu))
3078 return cpu;
3079 else
3080 goto retry;
3081 }
3082
scx_select_cpu_dfl(struct task_struct * p,s32 prev_cpu,u64 wake_flags,bool * found)3083 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
3084 u64 wake_flags, bool *found)
3085 {
3086 s32 cpu;
3087
3088 *found = false;
3089
3090 /*
3091 * If WAKE_SYNC, the waker's local DSQ is empty, and the system is
3092 * under utilized, wake up @p to the local DSQ of the waker. Checking
3093 * only for an empty local DSQ is insufficient as it could give the
3094 * wakee an unfair advantage when the system is oversaturated.
3095 * Checking only for the presence of idle CPUs is also insufficient as
3096 * the local DSQ of the waker could have tasks piled up on it even if
3097 * there is an idle core elsewhere on the system.
3098 */
3099 cpu = smp_processor_id();
3100 if ((wake_flags & SCX_WAKE_SYNC) &&
3101 !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) &&
3102 cpu_rq(cpu)->scx.local_dsq.nr == 0) {
3103 if (cpumask_test_cpu(cpu, p->cpus_ptr))
3104 goto cpu_found;
3105 }
3106
3107 /*
3108 * If CPU has SMT, any wholly idle CPU is likely a better pick than
3109 * partially idle @prev_cpu.
3110 */
3111 if (sched_smt_active()) {
3112 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
3113 test_and_clear_cpu_idle(prev_cpu)) {
3114 cpu = prev_cpu;
3115 goto cpu_found;
3116 }
3117
3118 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
3119 if (cpu >= 0)
3120 goto cpu_found;
3121 }
3122
3123 if (test_and_clear_cpu_idle(prev_cpu)) {
3124 cpu = prev_cpu;
3125 goto cpu_found;
3126 }
3127
3128 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
3129 if (cpu >= 0)
3130 goto cpu_found;
3131
3132 return prev_cpu;
3133
3134 cpu_found:
3135 *found = true;
3136 return cpu;
3137 }
3138
select_task_rq_scx(struct task_struct * p,int prev_cpu,int wake_flags)3139 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
3140 {
3141 /*
3142 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
3143 * can be a good migration opportunity with low cache and memory
3144 * footprint. Returning a CPU different than @prev_cpu triggers
3145 * immediate rq migration. However, for SCX, as the current rq
3146 * association doesn't dictate where the task is going to run, this
3147 * doesn't fit well. If necessary, we can later add a dedicated method
3148 * which can decide to preempt self to force it through the regular
3149 * scheduling path.
3150 */
3151 if (unlikely(wake_flags & WF_EXEC))
3152 return prev_cpu;
3153
3154 if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) {
3155 s32 cpu;
3156 struct task_struct **ddsp_taskp;
3157
3158 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
3159 WARN_ON_ONCE(*ddsp_taskp);
3160 *ddsp_taskp = p;
3161
3162 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
3163 select_cpu, p, prev_cpu, wake_flags);
3164 *ddsp_taskp = NULL;
3165 if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
3166 return cpu;
3167 else
3168 return prev_cpu;
3169 } else {
3170 bool found;
3171 s32 cpu;
3172
3173 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
3174 if (found) {
3175 p->scx.slice = SCX_SLICE_DFL;
3176 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
3177 }
3178 return cpu;
3179 }
3180 }
3181
task_woken_scx(struct rq * rq,struct task_struct * p)3182 static void task_woken_scx(struct rq *rq, struct task_struct *p)
3183 {
3184 run_deferred(rq);
3185 }
3186
set_cpus_allowed_scx(struct task_struct * p,struct affinity_context * ac)3187 static void set_cpus_allowed_scx(struct task_struct *p,
3188 struct affinity_context *ac)
3189 {
3190 set_cpus_allowed_common(p, ac);
3191
3192 /*
3193 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
3194 * differ from the configured one in @p->cpus_mask. Always tell the bpf
3195 * scheduler the effective one.
3196 *
3197 * Fine-grained memory write control is enforced by BPF making the const
3198 * designation pointless. Cast it away when calling the operation.
3199 */
3200 if (SCX_HAS_OP(set_cpumask))
3201 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3202 (struct cpumask *)p->cpus_ptr);
3203 }
3204
reset_idle_masks(void)3205 static void reset_idle_masks(void)
3206 {
3207 /*
3208 * Consider all online cpus idle. Should converge to the actual state
3209 * quickly.
3210 */
3211 cpumask_copy(idle_masks.cpu, cpu_online_mask);
3212 cpumask_copy(idle_masks.smt, cpu_online_mask);
3213 }
3214
__scx_update_idle(struct rq * rq,bool idle)3215 void __scx_update_idle(struct rq *rq, bool idle)
3216 {
3217 int cpu = cpu_of(rq);
3218
3219 if (SCX_HAS_OP(update_idle) && !scx_rq_bypassing(rq)) {
3220 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
3221 if (!static_branch_unlikely(&scx_builtin_idle_enabled))
3222 return;
3223 }
3224
3225 if (idle)
3226 cpumask_set_cpu(cpu, idle_masks.cpu);
3227 else
3228 cpumask_clear_cpu(cpu, idle_masks.cpu);
3229
3230 #ifdef CONFIG_SCHED_SMT
3231 if (sched_smt_active()) {
3232 const struct cpumask *smt = cpu_smt_mask(cpu);
3233
3234 if (idle) {
3235 /*
3236 * idle_masks.smt handling is racy but that's fine as
3237 * it's only for optimization and self-correcting.
3238 */
3239 for_each_cpu(cpu, smt) {
3240 if (!cpumask_test_cpu(cpu, idle_masks.cpu))
3241 return;
3242 }
3243 cpumask_or(idle_masks.smt, idle_masks.smt, smt);
3244 } else {
3245 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3246 }
3247 }
3248 #endif
3249 }
3250
handle_hotplug(struct rq * rq,bool online)3251 static void handle_hotplug(struct rq *rq, bool online)
3252 {
3253 int cpu = cpu_of(rq);
3254
3255 atomic_long_inc(&scx_hotplug_seq);
3256
3257 if (online && SCX_HAS_OP(cpu_online))
3258 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
3259 else if (!online && SCX_HAS_OP(cpu_offline))
3260 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu);
3261 else
3262 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
3263 "cpu %d going %s, exiting scheduler", cpu,
3264 online ? "online" : "offline");
3265 }
3266
scx_rq_activate(struct rq * rq)3267 void scx_rq_activate(struct rq *rq)
3268 {
3269 handle_hotplug(rq, true);
3270 }
3271
scx_rq_deactivate(struct rq * rq)3272 void scx_rq_deactivate(struct rq *rq)
3273 {
3274 handle_hotplug(rq, false);
3275 }
3276
rq_online_scx(struct rq * rq)3277 static void rq_online_scx(struct rq *rq)
3278 {
3279 rq->scx.flags |= SCX_RQ_ONLINE;
3280 }
3281
rq_offline_scx(struct rq * rq)3282 static void rq_offline_scx(struct rq *rq)
3283 {
3284 rq->scx.flags &= ~SCX_RQ_ONLINE;
3285 }
3286
3287 #else /* CONFIG_SMP */
3288
test_and_clear_cpu_idle(int cpu)3289 static bool test_and_clear_cpu_idle(int cpu) { return false; }
scx_pick_idle_cpu(const struct cpumask * cpus_allowed,u64 flags)3290 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
reset_idle_masks(void)3291 static void reset_idle_masks(void) {}
3292
3293 #endif /* CONFIG_SMP */
3294
check_rq_for_timeouts(struct rq * rq)3295 static bool check_rq_for_timeouts(struct rq *rq)
3296 {
3297 struct task_struct *p;
3298 struct rq_flags rf;
3299 bool timed_out = false;
3300
3301 rq_lock_irqsave(rq, &rf);
3302 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
3303 unsigned long last_runnable = p->scx.runnable_at;
3304
3305 if (unlikely(time_after(jiffies,
3306 last_runnable + scx_watchdog_timeout))) {
3307 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
3308
3309 scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3310 "%s[%d] failed to run for %u.%03us",
3311 p->comm, p->pid,
3312 dur_ms / 1000, dur_ms % 1000);
3313 timed_out = true;
3314 break;
3315 }
3316 }
3317 rq_unlock_irqrestore(rq, &rf);
3318
3319 return timed_out;
3320 }
3321
scx_watchdog_workfn(struct work_struct * work)3322 static void scx_watchdog_workfn(struct work_struct *work)
3323 {
3324 int cpu;
3325
3326 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
3327
3328 for_each_online_cpu(cpu) {
3329 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
3330 break;
3331
3332 cond_resched();
3333 }
3334 queue_delayed_work(system_unbound_wq, to_delayed_work(work),
3335 scx_watchdog_timeout / 2);
3336 }
3337
scx_tick(struct rq * rq)3338 void scx_tick(struct rq *rq)
3339 {
3340 unsigned long last_check;
3341
3342 if (!scx_enabled())
3343 return;
3344
3345 last_check = READ_ONCE(scx_watchdog_timestamp);
3346 if (unlikely(time_after(jiffies,
3347 last_check + READ_ONCE(scx_watchdog_timeout)))) {
3348 u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
3349
3350 scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3351 "watchdog failed to check in for %u.%03us",
3352 dur_ms / 1000, dur_ms % 1000);
3353 }
3354
3355 update_other_load_avgs(rq);
3356 }
3357
task_tick_scx(struct rq * rq,struct task_struct * curr,int queued)3358 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
3359 {
3360 update_curr_scx(rq);
3361
3362 /*
3363 * While disabling, always resched and refresh core-sched timestamp as
3364 * we can't trust the slice management or ops.core_sched_before().
3365 */
3366 if (scx_rq_bypassing(rq)) {
3367 curr->scx.slice = 0;
3368 touch_core_sched(rq, curr);
3369 } else if (SCX_HAS_OP(tick)) {
3370 SCX_CALL_OP(SCX_KF_REST, tick, curr);
3371 }
3372
3373 if (!curr->scx.slice)
3374 resched_curr(rq);
3375 }
3376
3377 #ifdef CONFIG_EXT_GROUP_SCHED
tg_cgrp(struct task_group * tg)3378 static struct cgroup *tg_cgrp(struct task_group *tg)
3379 {
3380 /*
3381 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
3382 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
3383 * root cgroup.
3384 */
3385 if (tg && tg->css.cgroup)
3386 return tg->css.cgroup;
3387 else
3388 return &cgrp_dfl_root.cgrp;
3389 }
3390
3391 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg),
3392
3393 #else /* CONFIG_EXT_GROUP_SCHED */
3394
3395 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
3396
3397 #endif /* CONFIG_EXT_GROUP_SCHED */
3398
scx_get_task_state(const struct task_struct * p)3399 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
3400 {
3401 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
3402 }
3403
scx_set_task_state(struct task_struct * p,enum scx_task_state state)3404 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
3405 {
3406 enum scx_task_state prev_state = scx_get_task_state(p);
3407 bool warn = false;
3408
3409 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
3410
3411 switch (state) {
3412 case SCX_TASK_NONE:
3413 break;
3414 case SCX_TASK_INIT:
3415 warn = prev_state != SCX_TASK_NONE;
3416 break;
3417 case SCX_TASK_READY:
3418 warn = prev_state == SCX_TASK_NONE;
3419 break;
3420 case SCX_TASK_ENABLED:
3421 warn = prev_state != SCX_TASK_READY;
3422 break;
3423 default:
3424 warn = true;
3425 return;
3426 }
3427
3428 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
3429 prev_state, state, p->comm, p->pid);
3430
3431 p->scx.flags &= ~SCX_TASK_STATE_MASK;
3432 p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
3433 }
3434
scx_ops_init_task(struct task_struct * p,struct task_group * tg,bool fork)3435 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
3436 {
3437 int ret;
3438
3439 p->scx.disallow = false;
3440
3441 if (SCX_HAS_OP(init_task)) {
3442 struct scx_init_task_args args = {
3443 SCX_INIT_TASK_ARGS_CGROUP(tg)
3444 .fork = fork,
3445 };
3446
3447 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args);
3448 if (unlikely(ret)) {
3449 ret = ops_sanitize_err("init_task", ret);
3450 return ret;
3451 }
3452 }
3453
3454 scx_set_task_state(p, SCX_TASK_INIT);
3455
3456 if (p->scx.disallow) {
3457 if (!fork) {
3458 struct rq *rq;
3459 struct rq_flags rf;
3460
3461 rq = task_rq_lock(p, &rf);
3462
3463 /*
3464 * We're in the load path and @p->policy will be applied
3465 * right after. Reverting @p->policy here and rejecting
3466 * %SCHED_EXT transitions from scx_check_setscheduler()
3467 * guarantees that if ops.init_task() sets @p->disallow,
3468 * @p can never be in SCX.
3469 */
3470 if (p->policy == SCHED_EXT) {
3471 p->policy = SCHED_NORMAL;
3472 atomic_long_inc(&scx_nr_rejected);
3473 }
3474
3475 task_rq_unlock(rq, p, &rf);
3476 } else if (p->policy == SCHED_EXT) {
3477 scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
3478 p->comm, p->pid);
3479 }
3480 }
3481
3482 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
3483 return 0;
3484 }
3485
scx_ops_enable_task(struct task_struct * p)3486 static void scx_ops_enable_task(struct task_struct *p)
3487 {
3488 u32 weight;
3489
3490 lockdep_assert_rq_held(task_rq(p));
3491
3492 /*
3493 * Set the weight before calling ops.enable() so that the scheduler
3494 * doesn't see a stale value if they inspect the task struct.
3495 */
3496 if (task_has_idle_policy(p))
3497 weight = WEIGHT_IDLEPRIO;
3498 else
3499 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
3500
3501 p->scx.weight = sched_weight_to_cgroup(weight);
3502
3503 if (SCX_HAS_OP(enable))
3504 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p);
3505 scx_set_task_state(p, SCX_TASK_ENABLED);
3506
3507 if (SCX_HAS_OP(set_weight))
3508 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3509 }
3510
scx_ops_disable_task(struct task_struct * p)3511 static void scx_ops_disable_task(struct task_struct *p)
3512 {
3513 lockdep_assert_rq_held(task_rq(p));
3514 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
3515
3516 if (SCX_HAS_OP(disable))
3517 SCX_CALL_OP(SCX_KF_REST, disable, p);
3518 scx_set_task_state(p, SCX_TASK_READY);
3519 }
3520
scx_ops_exit_task(struct task_struct * p)3521 static void scx_ops_exit_task(struct task_struct *p)
3522 {
3523 struct scx_exit_task_args args = {
3524 .cancelled = false,
3525 };
3526
3527 lockdep_assert_rq_held(task_rq(p));
3528
3529 switch (scx_get_task_state(p)) {
3530 case SCX_TASK_NONE:
3531 return;
3532 case SCX_TASK_INIT:
3533 args.cancelled = true;
3534 break;
3535 case SCX_TASK_READY:
3536 break;
3537 case SCX_TASK_ENABLED:
3538 scx_ops_disable_task(p);
3539 break;
3540 default:
3541 WARN_ON_ONCE(true);
3542 return;
3543 }
3544
3545 if (SCX_HAS_OP(exit_task))
3546 SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args);
3547 scx_set_task_state(p, SCX_TASK_NONE);
3548 }
3549
init_scx_entity(struct sched_ext_entity * scx)3550 void init_scx_entity(struct sched_ext_entity *scx)
3551 {
3552 /*
3553 * init_idle() calls this function again after fork sequence is
3554 * complete. Don't touch ->tasks_node as it's already linked.
3555 */
3556 memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node));
3557
3558 INIT_LIST_HEAD(&scx->dsq_list.node);
3559 RB_CLEAR_NODE(&scx->dsq_priq);
3560 scx->sticky_cpu = -1;
3561 scx->holding_cpu = -1;
3562 INIT_LIST_HEAD(&scx->runnable_node);
3563 scx->runnable_at = jiffies;
3564 scx->ddsp_dsq_id = SCX_DSQ_INVALID;
3565 scx->slice = SCX_SLICE_DFL;
3566 }
3567
scx_pre_fork(struct task_struct * p)3568 void scx_pre_fork(struct task_struct *p)
3569 {
3570 /*
3571 * BPF scheduler enable/disable paths want to be able to iterate and
3572 * update all tasks which can become complex when racing forks. As
3573 * enable/disable are very cold paths, let's use a percpu_rwsem to
3574 * exclude forks.
3575 */
3576 percpu_down_read(&scx_fork_rwsem);
3577 }
3578
scx_fork(struct task_struct * p)3579 int scx_fork(struct task_struct *p)
3580 {
3581 percpu_rwsem_assert_held(&scx_fork_rwsem);
3582
3583 if (scx_ops_init_task_enabled)
3584 return scx_ops_init_task(p, task_group(p), true);
3585 else
3586 return 0;
3587 }
3588
scx_post_fork(struct task_struct * p)3589 void scx_post_fork(struct task_struct *p)
3590 {
3591 if (scx_ops_init_task_enabled) {
3592 scx_set_task_state(p, SCX_TASK_READY);
3593
3594 /*
3595 * Enable the task immediately if it's running on sched_ext.
3596 * Otherwise, it'll be enabled in switching_to_scx() if and
3597 * when it's ever configured to run with a SCHED_EXT policy.
3598 */
3599 if (p->sched_class == &ext_sched_class) {
3600 struct rq_flags rf;
3601 struct rq *rq;
3602
3603 rq = task_rq_lock(p, &rf);
3604 scx_ops_enable_task(p);
3605 task_rq_unlock(rq, p, &rf);
3606 }
3607 }
3608
3609 spin_lock_irq(&scx_tasks_lock);
3610 list_add_tail(&p->scx.tasks_node, &scx_tasks);
3611 spin_unlock_irq(&scx_tasks_lock);
3612
3613 percpu_up_read(&scx_fork_rwsem);
3614 }
3615
scx_cancel_fork(struct task_struct * p)3616 void scx_cancel_fork(struct task_struct *p)
3617 {
3618 if (scx_enabled()) {
3619 struct rq *rq;
3620 struct rq_flags rf;
3621
3622 rq = task_rq_lock(p, &rf);
3623 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
3624 scx_ops_exit_task(p);
3625 task_rq_unlock(rq, p, &rf);
3626 }
3627
3628 percpu_up_read(&scx_fork_rwsem);
3629 }
3630
sched_ext_free(struct task_struct * p)3631 void sched_ext_free(struct task_struct *p)
3632 {
3633 unsigned long flags;
3634
3635 spin_lock_irqsave(&scx_tasks_lock, flags);
3636 list_del_init(&p->scx.tasks_node);
3637 spin_unlock_irqrestore(&scx_tasks_lock, flags);
3638
3639 /*
3640 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
3641 * ENABLED transitions can't race us. Disable ops for @p.
3642 */
3643 if (scx_get_task_state(p) != SCX_TASK_NONE) {
3644 struct rq_flags rf;
3645 struct rq *rq;
3646
3647 rq = task_rq_lock(p, &rf);
3648 scx_ops_exit_task(p);
3649 task_rq_unlock(rq, p, &rf);
3650 }
3651 }
3652
reweight_task_scx(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3653 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
3654 const struct load_weight *lw)
3655 {
3656 lockdep_assert_rq_held(task_rq(p));
3657
3658 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
3659 if (SCX_HAS_OP(set_weight))
3660 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3661 }
3662
prio_changed_scx(struct rq * rq,struct task_struct * p,int oldprio)3663 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
3664 {
3665 }
3666
switching_to_scx(struct rq * rq,struct task_struct * p)3667 static void switching_to_scx(struct rq *rq, struct task_struct *p)
3668 {
3669 scx_ops_enable_task(p);
3670
3671 /*
3672 * set_cpus_allowed_scx() is not called while @p is associated with a
3673 * different scheduler class. Keep the BPF scheduler up-to-date.
3674 */
3675 if (SCX_HAS_OP(set_cpumask))
3676 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3677 (struct cpumask *)p->cpus_ptr);
3678 }
3679
switched_from_scx(struct rq * rq,struct task_struct * p)3680 static void switched_from_scx(struct rq *rq, struct task_struct *p)
3681 {
3682 scx_ops_disable_task(p);
3683 }
3684
wakeup_preempt_scx(struct rq * rq,struct task_struct * p,int wake_flags)3685 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
switched_to_scx(struct rq * rq,struct task_struct * p)3686 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
3687
scx_check_setscheduler(struct task_struct * p,int policy)3688 int scx_check_setscheduler(struct task_struct *p, int policy)
3689 {
3690 lockdep_assert_rq_held(task_rq(p));
3691
3692 /* if disallow, reject transitioning into SCX */
3693 if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
3694 p->policy != policy && policy == SCHED_EXT)
3695 return -EACCES;
3696
3697 return 0;
3698 }
3699
3700 #ifdef CONFIG_NO_HZ_FULL
scx_can_stop_tick(struct rq * rq)3701 bool scx_can_stop_tick(struct rq *rq)
3702 {
3703 struct task_struct *p = rq->curr;
3704
3705 if (scx_rq_bypassing(rq))
3706 return false;
3707
3708 if (p->sched_class != &ext_sched_class)
3709 return true;
3710
3711 /*
3712 * @rq can dispatch from different DSQs, so we can't tell whether it
3713 * needs the tick or not by looking at nr_running. Allow stopping ticks
3714 * iff the BPF scheduler indicated so. See set_next_task_scx().
3715 */
3716 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
3717 }
3718 #endif
3719
3720 #ifdef CONFIG_EXT_GROUP_SCHED
3721
3722 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem);
3723 static bool scx_cgroup_enabled;
3724 static bool cgroup_warned_missing_weight;
3725 static bool cgroup_warned_missing_idle;
3726
scx_cgroup_warn_missing_weight(struct task_group * tg)3727 static void scx_cgroup_warn_missing_weight(struct task_group *tg)
3728 {
3729 if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
3730 cgroup_warned_missing_weight)
3731 return;
3732
3733 if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent)
3734 return;
3735
3736 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n",
3737 scx_ops.name);
3738 cgroup_warned_missing_weight = true;
3739 }
3740
scx_cgroup_warn_missing_idle(struct task_group * tg)3741 static void scx_cgroup_warn_missing_idle(struct task_group *tg)
3742 {
3743 if (!scx_cgroup_enabled || cgroup_warned_missing_idle)
3744 return;
3745
3746 if (!tg->idle)
3747 return;
3748
3749 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n",
3750 scx_ops.name);
3751 cgroup_warned_missing_idle = true;
3752 }
3753
scx_tg_online(struct task_group * tg)3754 int scx_tg_online(struct task_group *tg)
3755 {
3756 int ret = 0;
3757
3758 WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED));
3759
3760 percpu_down_read(&scx_cgroup_rwsem);
3761
3762 scx_cgroup_warn_missing_weight(tg);
3763
3764 if (scx_cgroup_enabled) {
3765 if (SCX_HAS_OP(cgroup_init)) {
3766 struct scx_cgroup_init_args args =
3767 { .weight = tg->scx_weight };
3768
3769 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
3770 tg->css.cgroup, &args);
3771 if (ret)
3772 ret = ops_sanitize_err("cgroup_init", ret);
3773 }
3774 if (ret == 0)
3775 tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED;
3776 } else {
3777 tg->scx_flags |= SCX_TG_ONLINE;
3778 }
3779
3780 percpu_up_read(&scx_cgroup_rwsem);
3781 return ret;
3782 }
3783
scx_tg_offline(struct task_group * tg)3784 void scx_tg_offline(struct task_group *tg)
3785 {
3786 WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE));
3787
3788 percpu_down_read(&scx_cgroup_rwsem);
3789
3790 if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED))
3791 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup);
3792 tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
3793
3794 percpu_up_read(&scx_cgroup_rwsem);
3795 }
3796
scx_cgroup_can_attach(struct cgroup_taskset * tset)3797 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
3798 {
3799 struct cgroup_subsys_state *css;
3800 struct task_struct *p;
3801 int ret;
3802
3803 /* released in scx_finish/cancel_attach() */
3804 percpu_down_read(&scx_cgroup_rwsem);
3805
3806 if (!scx_cgroup_enabled)
3807 return 0;
3808
3809 cgroup_taskset_for_each(p, css, tset) {
3810 struct cgroup *from = tg_cgrp(task_group(p));
3811 struct cgroup *to = tg_cgrp(css_tg(css));
3812
3813 WARN_ON_ONCE(p->scx.cgrp_moving_from);
3814
3815 /*
3816 * sched_move_task() omits identity migrations. Let's match the
3817 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
3818 * always match one-to-one.
3819 */
3820 if (from == to)
3821 continue;
3822
3823 if (SCX_HAS_OP(cgroup_prep_move)) {
3824 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move,
3825 p, from, css->cgroup);
3826 if (ret)
3827 goto err;
3828 }
3829
3830 p->scx.cgrp_moving_from = from;
3831 }
3832
3833 return 0;
3834
3835 err:
3836 cgroup_taskset_for_each(p, css, tset) {
3837 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
3838 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
3839 p->scx.cgrp_moving_from, css->cgroup);
3840 p->scx.cgrp_moving_from = NULL;
3841 }
3842
3843 percpu_up_read(&scx_cgroup_rwsem);
3844 return ops_sanitize_err("cgroup_prep_move", ret);
3845 }
3846
scx_move_task(struct task_struct * p)3847 void scx_move_task(struct task_struct *p)
3848 {
3849 if (!scx_cgroup_enabled)
3850 return;
3851
3852 /*
3853 * We're called from sched_move_task() which handles both cgroup and
3854 * autogroup moves. Ignore the latter.
3855 *
3856 * Also ignore exiting tasks, because in the exit path tasks transition
3857 * from the autogroup to the root group, so task_group_is_autogroup()
3858 * alone isn't able to catch exiting autogroup tasks. This is safe for
3859 * cgroup_move(), because cgroup migrations never happen for PF_EXITING
3860 * tasks.
3861 */
3862 if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING))
3863 return;
3864
3865 /*
3866 * @p must have ops.cgroup_prep_move() called on it and thus
3867 * cgrp_moving_from set.
3868 */
3869 if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
3870 SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p,
3871 p->scx.cgrp_moving_from, tg_cgrp(task_group(p)));
3872 p->scx.cgrp_moving_from = NULL;
3873 }
3874
scx_cgroup_finish_attach(void)3875 void scx_cgroup_finish_attach(void)
3876 {
3877 percpu_up_read(&scx_cgroup_rwsem);
3878 }
3879
scx_cgroup_cancel_attach(struct cgroup_taskset * tset)3880 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
3881 {
3882 struct cgroup_subsys_state *css;
3883 struct task_struct *p;
3884
3885 if (!scx_cgroup_enabled)
3886 goto out_unlock;
3887
3888 cgroup_taskset_for_each(p, css, tset) {
3889 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
3890 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
3891 p->scx.cgrp_moving_from, css->cgroup);
3892 p->scx.cgrp_moving_from = NULL;
3893 }
3894 out_unlock:
3895 percpu_up_read(&scx_cgroup_rwsem);
3896 }
3897
scx_group_set_weight(struct task_group * tg,unsigned long weight)3898 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
3899 {
3900 percpu_down_read(&scx_cgroup_rwsem);
3901
3902 if (scx_cgroup_enabled && tg->scx_weight != weight) {
3903 if (SCX_HAS_OP(cgroup_set_weight))
3904 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight,
3905 tg_cgrp(tg), weight);
3906 tg->scx_weight = weight;
3907 }
3908
3909 percpu_up_read(&scx_cgroup_rwsem);
3910 }
3911
scx_group_set_idle(struct task_group * tg,bool idle)3912 void scx_group_set_idle(struct task_group *tg, bool idle)
3913 {
3914 percpu_down_read(&scx_cgroup_rwsem);
3915 scx_cgroup_warn_missing_idle(tg);
3916 percpu_up_read(&scx_cgroup_rwsem);
3917 }
3918
scx_cgroup_lock(void)3919 static void scx_cgroup_lock(void)
3920 {
3921 percpu_down_write(&scx_cgroup_rwsem);
3922 }
3923
scx_cgroup_unlock(void)3924 static void scx_cgroup_unlock(void)
3925 {
3926 percpu_up_write(&scx_cgroup_rwsem);
3927 }
3928
3929 #else /* CONFIG_EXT_GROUP_SCHED */
3930
scx_cgroup_lock(void)3931 static inline void scx_cgroup_lock(void) {}
scx_cgroup_unlock(void)3932 static inline void scx_cgroup_unlock(void) {}
3933
3934 #endif /* CONFIG_EXT_GROUP_SCHED */
3935
3936 /*
3937 * Omitted operations:
3938 *
3939 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
3940 * isn't tied to the CPU at that point. Preemption is implemented by resetting
3941 * the victim task's slice to 0 and triggering reschedule on the target CPU.
3942 *
3943 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
3944 *
3945 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
3946 * their current sched_class. Call them directly from sched core instead.
3947 */
3948 DEFINE_SCHED_CLASS(ext) = {
3949 .enqueue_task = enqueue_task_scx,
3950 .dequeue_task = dequeue_task_scx,
3951 .yield_task = yield_task_scx,
3952 .yield_to_task = yield_to_task_scx,
3953
3954 .wakeup_preempt = wakeup_preempt_scx,
3955
3956 .balance = balance_scx,
3957 .pick_task = pick_task_scx,
3958
3959 .put_prev_task = put_prev_task_scx,
3960 .set_next_task = set_next_task_scx,
3961
3962 #ifdef CONFIG_SMP
3963 .select_task_rq = select_task_rq_scx,
3964 .task_woken = task_woken_scx,
3965 .set_cpus_allowed = set_cpus_allowed_scx,
3966
3967 .rq_online = rq_online_scx,
3968 .rq_offline = rq_offline_scx,
3969 #endif
3970
3971 .task_tick = task_tick_scx,
3972
3973 .switching_to = switching_to_scx,
3974 .switched_from = switched_from_scx,
3975 .switched_to = switched_to_scx,
3976 .reweight_task = reweight_task_scx,
3977 .prio_changed = prio_changed_scx,
3978
3979 .update_curr = update_curr_scx,
3980
3981 #ifdef CONFIG_UCLAMP_TASK
3982 .uclamp_enabled = 1,
3983 #endif
3984 };
3985
init_dsq(struct scx_dispatch_q * dsq,u64 dsq_id)3986 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
3987 {
3988 memset(dsq, 0, sizeof(*dsq));
3989
3990 raw_spin_lock_init(&dsq->lock);
3991 INIT_LIST_HEAD(&dsq->list);
3992 dsq->id = dsq_id;
3993 }
3994
create_dsq(u64 dsq_id,int node)3995 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
3996 {
3997 struct scx_dispatch_q *dsq;
3998 int ret;
3999
4000 if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
4001 return ERR_PTR(-EINVAL);
4002
4003 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
4004 if (!dsq)
4005 return ERR_PTR(-ENOMEM);
4006
4007 init_dsq(dsq, dsq_id);
4008
4009 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node,
4010 dsq_hash_params);
4011 if (ret) {
4012 kfree(dsq);
4013 return ERR_PTR(ret);
4014 }
4015 return dsq;
4016 }
4017
free_dsq_irq_workfn(struct irq_work * irq_work)4018 static void free_dsq_irq_workfn(struct irq_work *irq_work)
4019 {
4020 struct llist_node *to_free = llist_del_all(&dsqs_to_free);
4021 struct scx_dispatch_q *dsq, *tmp_dsq;
4022
4023 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
4024 kfree_rcu(dsq, rcu);
4025 }
4026
4027 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
4028
destroy_dsq(u64 dsq_id)4029 static void destroy_dsq(u64 dsq_id)
4030 {
4031 struct scx_dispatch_q *dsq;
4032 unsigned long flags;
4033
4034 rcu_read_lock();
4035
4036 dsq = find_user_dsq(dsq_id);
4037 if (!dsq)
4038 goto out_unlock_rcu;
4039
4040 raw_spin_lock_irqsave(&dsq->lock, flags);
4041
4042 if (dsq->nr) {
4043 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
4044 dsq->id, dsq->nr);
4045 goto out_unlock_dsq;
4046 }
4047
4048 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
4049 goto out_unlock_dsq;
4050
4051 /*
4052 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
4053 * queueing more tasks. As this function can be called from anywhere,
4054 * freeing is bounced through an irq work to avoid nesting RCU
4055 * operations inside scheduler locks.
4056 */
4057 dsq->id = SCX_DSQ_INVALID;
4058 llist_add(&dsq->free_node, &dsqs_to_free);
4059 irq_work_queue(&free_dsq_irq_work);
4060
4061 out_unlock_dsq:
4062 raw_spin_unlock_irqrestore(&dsq->lock, flags);
4063 out_unlock_rcu:
4064 rcu_read_unlock();
4065 }
4066
4067 #ifdef CONFIG_EXT_GROUP_SCHED
scx_cgroup_exit(void)4068 static void scx_cgroup_exit(void)
4069 {
4070 struct cgroup_subsys_state *css;
4071
4072 percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4073
4074 scx_cgroup_enabled = false;
4075
4076 /*
4077 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk
4078 * cgroups and exit all the inited ones, all online cgroups are exited.
4079 */
4080 rcu_read_lock();
4081 css_for_each_descendant_post(css, &root_task_group.css) {
4082 struct task_group *tg = css_tg(css);
4083
4084 if (!(tg->scx_flags & SCX_TG_INITED))
4085 continue;
4086 tg->scx_flags &= ~SCX_TG_INITED;
4087
4088 if (!scx_ops.cgroup_exit)
4089 continue;
4090
4091 if (WARN_ON_ONCE(!css_tryget(css)))
4092 continue;
4093 rcu_read_unlock();
4094
4095 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup);
4096
4097 rcu_read_lock();
4098 css_put(css);
4099 }
4100 rcu_read_unlock();
4101 }
4102
scx_cgroup_init(void)4103 static int scx_cgroup_init(void)
4104 {
4105 struct cgroup_subsys_state *css;
4106 int ret;
4107
4108 percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4109
4110 cgroup_warned_missing_weight = false;
4111 cgroup_warned_missing_idle = false;
4112
4113 /*
4114 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk
4115 * cgroups and init, all online cgroups are initialized.
4116 */
4117 rcu_read_lock();
4118 css_for_each_descendant_pre(css, &root_task_group.css) {
4119 struct task_group *tg = css_tg(css);
4120 struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
4121
4122 scx_cgroup_warn_missing_weight(tg);
4123 scx_cgroup_warn_missing_idle(tg);
4124
4125 if ((tg->scx_flags &
4126 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
4127 continue;
4128
4129 if (!scx_ops.cgroup_init) {
4130 tg->scx_flags |= SCX_TG_INITED;
4131 continue;
4132 }
4133
4134 if (WARN_ON_ONCE(!css_tryget(css)))
4135 continue;
4136 rcu_read_unlock();
4137
4138 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
4139 css->cgroup, &args);
4140 if (ret) {
4141 css_put(css);
4142 scx_ops_error("ops.cgroup_init() failed (%d)", ret);
4143 return ret;
4144 }
4145 tg->scx_flags |= SCX_TG_INITED;
4146
4147 rcu_read_lock();
4148 css_put(css);
4149 }
4150 rcu_read_unlock();
4151
4152 WARN_ON_ONCE(scx_cgroup_enabled);
4153 scx_cgroup_enabled = true;
4154
4155 return 0;
4156 }
4157
4158 #else
scx_cgroup_exit(void)4159 static void scx_cgroup_exit(void) {}
scx_cgroup_init(void)4160 static int scx_cgroup_init(void) { return 0; }
4161 #endif
4162
4163
4164 /********************************************************************************
4165 * Sysfs interface and ops enable/disable.
4166 */
4167
4168 #define SCX_ATTR(_name) \
4169 static struct kobj_attribute scx_attr_##_name = { \
4170 .attr = { .name = __stringify(_name), .mode = 0444 }, \
4171 .show = scx_attr_##_name##_show, \
4172 }
4173
scx_attr_state_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4174 static ssize_t scx_attr_state_show(struct kobject *kobj,
4175 struct kobj_attribute *ka, char *buf)
4176 {
4177 return sysfs_emit(buf, "%s\n",
4178 scx_ops_enable_state_str[scx_ops_enable_state()]);
4179 }
4180 SCX_ATTR(state);
4181
scx_attr_switch_all_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4182 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
4183 struct kobj_attribute *ka, char *buf)
4184 {
4185 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
4186 }
4187 SCX_ATTR(switch_all);
4188
scx_attr_nr_rejected_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4189 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
4190 struct kobj_attribute *ka, char *buf)
4191 {
4192 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
4193 }
4194 SCX_ATTR(nr_rejected);
4195
scx_attr_hotplug_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4196 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
4197 struct kobj_attribute *ka, char *buf)
4198 {
4199 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
4200 }
4201 SCX_ATTR(hotplug_seq);
4202
scx_attr_enable_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4203 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
4204 struct kobj_attribute *ka, char *buf)
4205 {
4206 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
4207 }
4208 SCX_ATTR(enable_seq);
4209
4210 static struct attribute *scx_global_attrs[] = {
4211 &scx_attr_state.attr,
4212 &scx_attr_switch_all.attr,
4213 &scx_attr_nr_rejected.attr,
4214 &scx_attr_hotplug_seq.attr,
4215 &scx_attr_enable_seq.attr,
4216 NULL,
4217 };
4218
4219 static const struct attribute_group scx_global_attr_group = {
4220 .attrs = scx_global_attrs,
4221 };
4222
scx_kobj_release(struct kobject * kobj)4223 static void scx_kobj_release(struct kobject *kobj)
4224 {
4225 kfree(kobj);
4226 }
4227
scx_attr_ops_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4228 static ssize_t scx_attr_ops_show(struct kobject *kobj,
4229 struct kobj_attribute *ka, char *buf)
4230 {
4231 return sysfs_emit(buf, "%s\n", scx_ops.name);
4232 }
4233 SCX_ATTR(ops);
4234
4235 static struct attribute *scx_sched_attrs[] = {
4236 &scx_attr_ops.attr,
4237 NULL,
4238 };
4239 ATTRIBUTE_GROUPS(scx_sched);
4240
4241 static const struct kobj_type scx_ktype = {
4242 .release = scx_kobj_release,
4243 .sysfs_ops = &kobj_sysfs_ops,
4244 .default_groups = scx_sched_groups,
4245 };
4246
scx_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)4247 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
4248 {
4249 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
4250 }
4251
4252 static const struct kset_uevent_ops scx_uevent_ops = {
4253 .uevent = scx_uevent,
4254 };
4255
4256 /*
4257 * Used by sched_fork() and __setscheduler_prio() to pick the matching
4258 * sched_class. dl/rt are already handled.
4259 */
task_should_scx(int policy)4260 bool task_should_scx(int policy)
4261 {
4262 if (!scx_enabled() ||
4263 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
4264 return false;
4265 if (READ_ONCE(scx_switching_all))
4266 return true;
4267 return policy == SCHED_EXT;
4268 }
4269
4270 /**
4271 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
4272 *
4273 * Bypassing guarantees that all runnable tasks make forward progress without
4274 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
4275 * be held by tasks that the BPF scheduler is forgetting to run, which
4276 * unfortunately also excludes toggling the static branches.
4277 *
4278 * Let's work around by overriding a couple ops and modifying behaviors based on
4279 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
4280 * to force global FIFO scheduling.
4281 *
4282 * - ops.select_cpu() is ignored and the default select_cpu() is used.
4283 *
4284 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
4285 * %SCX_OPS_ENQ_LAST is also ignored.
4286 *
4287 * - ops.dispatch() is ignored.
4288 *
4289 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
4290 * can't be trusted. Whenever a tick triggers, the running task is rotated to
4291 * the tail of the queue with core_sched_at touched.
4292 *
4293 * - pick_next_task() suppresses zero slice warning.
4294 *
4295 * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
4296 * operations.
4297 *
4298 * - scx_prio_less() reverts to the default core_sched_at order.
4299 */
scx_ops_bypass(bool bypass)4300 static void scx_ops_bypass(bool bypass)
4301 {
4302 int cpu;
4303 unsigned long flags;
4304
4305 raw_spin_lock_irqsave(&__scx_ops_bypass_lock, flags);
4306 if (bypass) {
4307 scx_ops_bypass_depth++;
4308 WARN_ON_ONCE(scx_ops_bypass_depth <= 0);
4309 if (scx_ops_bypass_depth != 1)
4310 goto unlock;
4311 } else {
4312 scx_ops_bypass_depth--;
4313 WARN_ON_ONCE(scx_ops_bypass_depth < 0);
4314 if (scx_ops_bypass_depth != 0)
4315 goto unlock;
4316 }
4317
4318 /*
4319 * No task property is changing. We just need to make sure all currently
4320 * queued tasks are re-queued according to the new scx_rq_bypassing()
4321 * state. As an optimization, walk each rq's runnable_list instead of
4322 * the scx_tasks list.
4323 *
4324 * This function can't trust the scheduler and thus can't use
4325 * cpus_read_lock(). Walk all possible CPUs instead of online.
4326 */
4327 for_each_possible_cpu(cpu) {
4328 struct rq *rq = cpu_rq(cpu);
4329 struct rq_flags rf;
4330 struct task_struct *p, *n;
4331
4332 rq_lock(rq, &rf);
4333
4334 if (bypass) {
4335 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
4336 rq->scx.flags |= SCX_RQ_BYPASSING;
4337 } else {
4338 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
4339 rq->scx.flags &= ~SCX_RQ_BYPASSING;
4340 }
4341
4342 /*
4343 * We need to guarantee that no tasks are on the BPF scheduler
4344 * while bypassing. Either we see enabled or the enable path
4345 * sees scx_rq_bypassing() before moving tasks to SCX.
4346 */
4347 if (!scx_enabled()) {
4348 rq_unlock_irqrestore(rq, &rf);
4349 continue;
4350 }
4351
4352 /*
4353 * The use of list_for_each_entry_safe_reverse() is required
4354 * because each task is going to be removed from and added back
4355 * to the runnable_list during iteration. Because they're added
4356 * to the tail of the list, safe reverse iteration can still
4357 * visit all nodes.
4358 */
4359 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
4360 scx.runnable_node) {
4361 struct sched_enq_and_set_ctx ctx;
4362
4363 /* cycling deq/enq is enough, see the function comment */
4364 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4365 sched_enq_and_set_task(&ctx);
4366 }
4367
4368 rq_unlock(rq, &rf);
4369
4370 /* resched to restore ticks and idle state */
4371 resched_cpu(cpu);
4372 }
4373 unlock:
4374 raw_spin_unlock_irqrestore(&__scx_ops_bypass_lock, flags);
4375 }
4376
free_exit_info(struct scx_exit_info * ei)4377 static void free_exit_info(struct scx_exit_info *ei)
4378 {
4379 kfree(ei->dump);
4380 kfree(ei->msg);
4381 kfree(ei->bt);
4382 kfree(ei);
4383 }
4384
alloc_exit_info(size_t exit_dump_len)4385 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
4386 {
4387 struct scx_exit_info *ei;
4388
4389 ei = kzalloc(sizeof(*ei), GFP_KERNEL);
4390 if (!ei)
4391 return NULL;
4392
4393 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
4394 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
4395 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL);
4396
4397 if (!ei->bt || !ei->msg || !ei->dump) {
4398 free_exit_info(ei);
4399 return NULL;
4400 }
4401
4402 return ei;
4403 }
4404
scx_exit_reason(enum scx_exit_kind kind)4405 static const char *scx_exit_reason(enum scx_exit_kind kind)
4406 {
4407 switch (kind) {
4408 case SCX_EXIT_UNREG:
4409 return "unregistered from user space";
4410 case SCX_EXIT_UNREG_BPF:
4411 return "unregistered from BPF";
4412 case SCX_EXIT_UNREG_KERN:
4413 return "unregistered from the main kernel";
4414 case SCX_EXIT_SYSRQ:
4415 return "disabled by sysrq-S";
4416 case SCX_EXIT_ERROR:
4417 return "runtime error";
4418 case SCX_EXIT_ERROR_BPF:
4419 return "scx_bpf_error";
4420 case SCX_EXIT_ERROR_STALL:
4421 return "runnable task stall";
4422 default:
4423 return "<UNKNOWN>";
4424 }
4425 }
4426
scx_ops_disable_workfn(struct kthread_work * work)4427 static void scx_ops_disable_workfn(struct kthread_work *work)
4428 {
4429 struct scx_exit_info *ei = scx_exit_info;
4430 struct scx_task_iter sti;
4431 struct task_struct *p;
4432 struct rhashtable_iter rht_iter;
4433 struct scx_dispatch_q *dsq;
4434 int i, kind;
4435
4436 kind = atomic_read(&scx_exit_kind);
4437 while (true) {
4438 /*
4439 * NONE indicates that a new scx_ops has been registered since
4440 * disable was scheduled - don't kill the new ops. DONE
4441 * indicates that the ops has already been disabled.
4442 */
4443 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
4444 return;
4445 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
4446 break;
4447 }
4448 ei->kind = kind;
4449 ei->reason = scx_exit_reason(ei->kind);
4450
4451 /* guarantee forward progress by bypassing scx_ops */
4452 scx_ops_bypass(true);
4453
4454 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
4455 case SCX_OPS_DISABLING:
4456 WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
4457 break;
4458 case SCX_OPS_DISABLED:
4459 pr_warn("sched_ext: ops error detected without ops (%s)\n",
4460 scx_exit_info->msg);
4461 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4462 SCX_OPS_DISABLING);
4463 goto done;
4464 default:
4465 break;
4466 }
4467
4468 /*
4469 * Here, every runnable task is guaranteed to make forward progress and
4470 * we can safely use blocking synchronization constructs. Actually
4471 * disable ops.
4472 */
4473 mutex_lock(&scx_ops_enable_mutex);
4474
4475 static_branch_disable(&__scx_switched_all);
4476 WRITE_ONCE(scx_switching_all, false);
4477
4478 /*
4479 * Shut down cgroup support before tasks so that the cgroup attach path
4480 * doesn't race against scx_ops_exit_task().
4481 */
4482 scx_cgroup_lock();
4483 scx_cgroup_exit();
4484 scx_cgroup_unlock();
4485
4486 /*
4487 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
4488 * must be switched out and exited synchronously.
4489 */
4490 percpu_down_write(&scx_fork_rwsem);
4491
4492 scx_ops_init_task_enabled = false;
4493
4494 scx_task_iter_start(&sti);
4495 while ((p = scx_task_iter_next_locked(&sti))) {
4496 const struct sched_class *old_class = p->sched_class;
4497 const struct sched_class *new_class =
4498 __setscheduler_class(p->policy, p->prio);
4499 struct sched_enq_and_set_ctx ctx;
4500
4501 if (old_class != new_class && p->se.sched_delayed)
4502 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
4503
4504 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4505
4506 p->sched_class = new_class;
4507 check_class_changing(task_rq(p), p, old_class);
4508
4509 sched_enq_and_set_task(&ctx);
4510
4511 check_class_changed(task_rq(p), p, old_class, p->prio);
4512 scx_ops_exit_task(p);
4513 }
4514 scx_task_iter_stop(&sti);
4515 percpu_up_write(&scx_fork_rwsem);
4516
4517 /* no task is on scx, turn off all the switches and flush in-progress calls */
4518 static_branch_disable(&__scx_ops_enabled);
4519 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
4520 static_branch_disable(&scx_has_op[i]);
4521 static_branch_disable(&scx_ops_enq_last);
4522 static_branch_disable(&scx_ops_enq_exiting);
4523 static_branch_disable(&scx_ops_cpu_preempt);
4524 static_branch_disable(&scx_builtin_idle_enabled);
4525 synchronize_rcu();
4526
4527 if (ei->kind >= SCX_EXIT_ERROR) {
4528 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4529 scx_ops.name, ei->reason);
4530
4531 if (ei->msg[0] != '\0')
4532 pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg);
4533 #ifdef CONFIG_STACKTRACE
4534 stack_trace_print(ei->bt, ei->bt_len, 2);
4535 #endif
4536 } else {
4537 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4538 scx_ops.name, ei->reason);
4539 }
4540
4541 if (scx_ops.exit)
4542 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
4543
4544 cancel_delayed_work_sync(&scx_watchdog_work);
4545
4546 /*
4547 * Delete the kobject from the hierarchy eagerly in addition to just
4548 * dropping a reference. Otherwise, if the object is deleted
4549 * asynchronously, sysfs could observe an object of the same name still
4550 * in the hierarchy when another scheduler is loaded.
4551 */
4552 kobject_del(scx_root_kobj);
4553 kobject_put(scx_root_kobj);
4554 scx_root_kobj = NULL;
4555
4556 memset(&scx_ops, 0, sizeof(scx_ops));
4557
4558 rhashtable_walk_enter(&dsq_hash, &rht_iter);
4559 do {
4560 rhashtable_walk_start(&rht_iter);
4561
4562 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
4563 destroy_dsq(dsq->id);
4564
4565 rhashtable_walk_stop(&rht_iter);
4566 } while (dsq == ERR_PTR(-EAGAIN));
4567 rhashtable_walk_exit(&rht_iter);
4568
4569 free_percpu(scx_dsp_ctx);
4570 scx_dsp_ctx = NULL;
4571 scx_dsp_max_batch = 0;
4572
4573 free_exit_info(scx_exit_info);
4574 scx_exit_info = NULL;
4575
4576 mutex_unlock(&scx_ops_enable_mutex);
4577
4578 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4579 SCX_OPS_DISABLING);
4580 done:
4581 scx_ops_bypass(false);
4582 }
4583
4584 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
4585
schedule_scx_ops_disable_work(void)4586 static void schedule_scx_ops_disable_work(void)
4587 {
4588 struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
4589
4590 /*
4591 * We may be called spuriously before the first bpf_sched_ext_reg(). If
4592 * scx_ops_helper isn't set up yet, there's nothing to do.
4593 */
4594 if (helper)
4595 kthread_queue_work(helper, &scx_ops_disable_work);
4596 }
4597
scx_ops_disable(enum scx_exit_kind kind)4598 static void scx_ops_disable(enum scx_exit_kind kind)
4599 {
4600 int none = SCX_EXIT_NONE;
4601
4602 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
4603 kind = SCX_EXIT_ERROR;
4604
4605 atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
4606
4607 schedule_scx_ops_disable_work();
4608 }
4609
dump_newline(struct seq_buf * s)4610 static void dump_newline(struct seq_buf *s)
4611 {
4612 trace_sched_ext_dump("");
4613
4614 /* @s may be zero sized and seq_buf triggers WARN if so */
4615 if (s->size)
4616 seq_buf_putc(s, '\n');
4617 }
4618
dump_line(struct seq_buf * s,const char * fmt,...)4619 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
4620 {
4621 va_list args;
4622
4623 #ifdef CONFIG_TRACEPOINTS
4624 if (trace_sched_ext_dump_enabled()) {
4625 /* protected by scx_dump_state()::dump_lock */
4626 static char line_buf[SCX_EXIT_MSG_LEN];
4627
4628 va_start(args, fmt);
4629 vscnprintf(line_buf, sizeof(line_buf), fmt, args);
4630 va_end(args);
4631
4632 trace_sched_ext_dump(line_buf);
4633 }
4634 #endif
4635 /* @s may be zero sized and seq_buf triggers WARN if so */
4636 if (s->size) {
4637 va_start(args, fmt);
4638 seq_buf_vprintf(s, fmt, args);
4639 va_end(args);
4640
4641 seq_buf_putc(s, '\n');
4642 }
4643 }
4644
dump_stack_trace(struct seq_buf * s,const char * prefix,const unsigned long * bt,unsigned int len)4645 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
4646 const unsigned long *bt, unsigned int len)
4647 {
4648 unsigned int i;
4649
4650 for (i = 0; i < len; i++)
4651 dump_line(s, "%s%pS", prefix, (void *)bt[i]);
4652 }
4653
ops_dump_init(struct seq_buf * s,const char * prefix)4654 static void ops_dump_init(struct seq_buf *s, const char *prefix)
4655 {
4656 struct scx_dump_data *dd = &scx_dump_data;
4657
4658 lockdep_assert_irqs_disabled();
4659
4660 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */
4661 dd->first = true;
4662 dd->cursor = 0;
4663 dd->s = s;
4664 dd->prefix = prefix;
4665 }
4666
ops_dump_flush(void)4667 static void ops_dump_flush(void)
4668 {
4669 struct scx_dump_data *dd = &scx_dump_data;
4670 char *line = dd->buf.line;
4671
4672 if (!dd->cursor)
4673 return;
4674
4675 /*
4676 * There's something to flush and this is the first line. Insert a blank
4677 * line to distinguish ops dump.
4678 */
4679 if (dd->first) {
4680 dump_newline(dd->s);
4681 dd->first = false;
4682 }
4683
4684 /*
4685 * There may be multiple lines in $line. Scan and emit each line
4686 * separately.
4687 */
4688 while (true) {
4689 char *end = line;
4690 char c;
4691
4692 while (*end != '\n' && *end != '\0')
4693 end++;
4694
4695 /*
4696 * If $line overflowed, it may not have newline at the end.
4697 * Always emit with a newline.
4698 */
4699 c = *end;
4700 *end = '\0';
4701 dump_line(dd->s, "%s%s", dd->prefix, line);
4702 if (c == '\0')
4703 break;
4704
4705 /* move to the next line */
4706 end++;
4707 if (*end == '\0')
4708 break;
4709 line = end;
4710 }
4711
4712 dd->cursor = 0;
4713 }
4714
ops_dump_exit(void)4715 static void ops_dump_exit(void)
4716 {
4717 ops_dump_flush();
4718 scx_dump_data.cpu = -1;
4719 }
4720
scx_dump_task(struct seq_buf * s,struct scx_dump_ctx * dctx,struct task_struct * p,char marker)4721 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
4722 struct task_struct *p, char marker)
4723 {
4724 static unsigned long bt[SCX_EXIT_BT_LEN];
4725 char dsq_id_buf[19] = "(n/a)";
4726 unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
4727 unsigned int bt_len = 0;
4728
4729 if (p->scx.dsq)
4730 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
4731 (unsigned long long)p->scx.dsq->id);
4732
4733 dump_newline(s);
4734 dump_line(s, " %c%c %s[%d] %+ldms",
4735 marker, task_state_to_char(p), p->comm, p->pid,
4736 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
4737 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
4738 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
4739 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
4740 ops_state >> SCX_OPSS_QSEQ_SHIFT);
4741 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu",
4742 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf,
4743 p->scx.dsq_vtime);
4744 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr));
4745
4746 if (SCX_HAS_OP(dump_task)) {
4747 ops_dump_init(s, " ");
4748 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p);
4749 ops_dump_exit();
4750 }
4751
4752 #ifdef CONFIG_STACKTRACE
4753 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
4754 #endif
4755 if (bt_len) {
4756 dump_newline(s);
4757 dump_stack_trace(s, " ", bt, bt_len);
4758 }
4759 }
4760
scx_dump_state(struct scx_exit_info * ei,size_t dump_len)4761 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
4762 {
4763 static DEFINE_SPINLOCK(dump_lock);
4764 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
4765 struct scx_dump_ctx dctx = {
4766 .kind = ei->kind,
4767 .exit_code = ei->exit_code,
4768 .reason = ei->reason,
4769 .at_ns = ktime_get_ns(),
4770 .at_jiffies = jiffies,
4771 };
4772 struct seq_buf s;
4773 unsigned long flags;
4774 char *buf;
4775 int cpu;
4776
4777 spin_lock_irqsave(&dump_lock, flags);
4778
4779 seq_buf_init(&s, ei->dump, dump_len);
4780
4781 if (ei->kind == SCX_EXIT_NONE) {
4782 dump_line(&s, "Debug dump triggered by %s", ei->reason);
4783 } else {
4784 dump_line(&s, "%s[%d] triggered exit kind %d:",
4785 current->comm, current->pid, ei->kind);
4786 dump_line(&s, " %s (%s)", ei->reason, ei->msg);
4787 dump_newline(&s);
4788 dump_line(&s, "Backtrace:");
4789 dump_stack_trace(&s, " ", ei->bt, ei->bt_len);
4790 }
4791
4792 if (SCX_HAS_OP(dump)) {
4793 ops_dump_init(&s, "");
4794 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx);
4795 ops_dump_exit();
4796 }
4797
4798 dump_newline(&s);
4799 dump_line(&s, "CPU states");
4800 dump_line(&s, "----------");
4801
4802 for_each_possible_cpu(cpu) {
4803 struct rq *rq = cpu_rq(cpu);
4804 struct rq_flags rf;
4805 struct task_struct *p;
4806 struct seq_buf ns;
4807 size_t avail, used;
4808 bool idle;
4809
4810 rq_lock(rq, &rf);
4811
4812 idle = list_empty(&rq->scx.runnable_list) &&
4813 rq->curr->sched_class == &idle_sched_class;
4814
4815 if (idle && !SCX_HAS_OP(dump_cpu))
4816 goto next;
4817
4818 /*
4819 * We don't yet know whether ops.dump_cpu() will produce output
4820 * and we may want to skip the default CPU dump if it doesn't.
4821 * Use a nested seq_buf to generate the standard dump so that we
4822 * can decide whether to commit later.
4823 */
4824 avail = seq_buf_get_buf(&s, &buf);
4825 seq_buf_init(&ns, buf, avail);
4826
4827 dump_newline(&ns);
4828 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
4829 cpu, rq->scx.nr_running, rq->scx.flags,
4830 rq->scx.cpu_released, rq->scx.ops_qseq,
4831 rq->scx.pnt_seq);
4832 dump_line(&ns, " curr=%s[%d] class=%ps",
4833 rq->curr->comm, rq->curr->pid,
4834 rq->curr->sched_class);
4835 if (!cpumask_empty(rq->scx.cpus_to_kick))
4836 dump_line(&ns, " cpus_to_kick : %*pb",
4837 cpumask_pr_args(rq->scx.cpus_to_kick));
4838 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
4839 dump_line(&ns, " idle_to_kick : %*pb",
4840 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
4841 if (!cpumask_empty(rq->scx.cpus_to_preempt))
4842 dump_line(&ns, " cpus_to_preempt: %*pb",
4843 cpumask_pr_args(rq->scx.cpus_to_preempt));
4844 if (!cpumask_empty(rq->scx.cpus_to_wait))
4845 dump_line(&ns, " cpus_to_wait : %*pb",
4846 cpumask_pr_args(rq->scx.cpus_to_wait));
4847
4848 used = seq_buf_used(&ns);
4849 if (SCX_HAS_OP(dump_cpu)) {
4850 ops_dump_init(&ns, " ");
4851 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle);
4852 ops_dump_exit();
4853 }
4854
4855 /*
4856 * If idle && nothing generated by ops.dump_cpu(), there's
4857 * nothing interesting. Skip.
4858 */
4859 if (idle && used == seq_buf_used(&ns))
4860 goto next;
4861
4862 /*
4863 * $s may already have overflowed when $ns was created. If so,
4864 * calling commit on it will trigger BUG.
4865 */
4866 if (avail) {
4867 seq_buf_commit(&s, seq_buf_used(&ns));
4868 if (seq_buf_has_overflowed(&ns))
4869 seq_buf_set_overflow(&s);
4870 }
4871
4872 if (rq->curr->sched_class == &ext_sched_class)
4873 scx_dump_task(&s, &dctx, rq->curr, '*');
4874
4875 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
4876 scx_dump_task(&s, &dctx, p, ' ');
4877 next:
4878 rq_unlock(rq, &rf);
4879 }
4880
4881 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
4882 memcpy(ei->dump + dump_len - sizeof(trunc_marker),
4883 trunc_marker, sizeof(trunc_marker));
4884
4885 spin_unlock_irqrestore(&dump_lock, flags);
4886 }
4887
scx_ops_error_irq_workfn(struct irq_work * irq_work)4888 static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
4889 {
4890 struct scx_exit_info *ei = scx_exit_info;
4891
4892 if (ei->kind >= SCX_EXIT_ERROR)
4893 scx_dump_state(ei, scx_ops.exit_dump_len);
4894
4895 schedule_scx_ops_disable_work();
4896 }
4897
4898 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
4899
scx_ops_exit_kind(enum scx_exit_kind kind,s64 exit_code,const char * fmt,...)4900 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
4901 s64 exit_code,
4902 const char *fmt, ...)
4903 {
4904 struct scx_exit_info *ei = scx_exit_info;
4905 int none = SCX_EXIT_NONE;
4906 va_list args;
4907
4908 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
4909 return;
4910
4911 ei->exit_code = exit_code;
4912 #ifdef CONFIG_STACKTRACE
4913 if (kind >= SCX_EXIT_ERROR)
4914 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
4915 #endif
4916 va_start(args, fmt);
4917 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
4918 va_end(args);
4919
4920 /*
4921 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
4922 * in scx_ops_disable_workfn().
4923 */
4924 ei->kind = kind;
4925 ei->reason = scx_exit_reason(ei->kind);
4926
4927 irq_work_queue(&scx_ops_error_irq_work);
4928 }
4929
scx_create_rt_helper(const char * name)4930 static struct kthread_worker *scx_create_rt_helper(const char *name)
4931 {
4932 struct kthread_worker *helper;
4933
4934 helper = kthread_create_worker(0, name);
4935 if (helper)
4936 sched_set_fifo(helper->task);
4937 return helper;
4938 }
4939
check_hotplug_seq(const struct sched_ext_ops * ops)4940 static void check_hotplug_seq(const struct sched_ext_ops *ops)
4941 {
4942 unsigned long long global_hotplug_seq;
4943
4944 /*
4945 * If a hotplug event has occurred between when a scheduler was
4946 * initialized, and when we were able to attach, exit and notify user
4947 * space about it.
4948 */
4949 if (ops->hotplug_seq) {
4950 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
4951 if (ops->hotplug_seq != global_hotplug_seq) {
4952 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
4953 "expected hotplug seq %llu did not match actual %llu",
4954 ops->hotplug_seq, global_hotplug_seq);
4955 }
4956 }
4957 }
4958
validate_ops(const struct sched_ext_ops * ops)4959 static int validate_ops(const struct sched_ext_ops *ops)
4960 {
4961 /*
4962 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
4963 * ops.enqueue() callback isn't implemented.
4964 */
4965 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
4966 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
4967 return -EINVAL;
4968 }
4969
4970 return 0;
4971 }
4972
scx_ops_enable(struct sched_ext_ops * ops,struct bpf_link * link)4973 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
4974 {
4975 struct scx_task_iter sti;
4976 struct task_struct *p;
4977 unsigned long timeout;
4978 int i, cpu, node, ret;
4979
4980 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
4981 cpu_possible_mask)) {
4982 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation");
4983 return -EINVAL;
4984 }
4985
4986 mutex_lock(&scx_ops_enable_mutex);
4987
4988 if (!scx_ops_helper) {
4989 WRITE_ONCE(scx_ops_helper,
4990 scx_create_rt_helper("sched_ext_ops_helper"));
4991 if (!scx_ops_helper) {
4992 ret = -ENOMEM;
4993 goto err_unlock;
4994 }
4995 }
4996
4997 if (!global_dsqs) {
4998 struct scx_dispatch_q **dsqs;
4999
5000 dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL);
5001 if (!dsqs) {
5002 ret = -ENOMEM;
5003 goto err_unlock;
5004 }
5005
5006 for_each_node_state(node, N_POSSIBLE) {
5007 struct scx_dispatch_q *dsq;
5008
5009 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
5010 if (!dsq) {
5011 for_each_node_state(node, N_POSSIBLE)
5012 kfree(dsqs[node]);
5013 kfree(dsqs);
5014 ret = -ENOMEM;
5015 goto err_unlock;
5016 }
5017
5018 init_dsq(dsq, SCX_DSQ_GLOBAL);
5019 dsqs[node] = dsq;
5020 }
5021
5022 global_dsqs = dsqs;
5023 }
5024
5025 if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
5026 ret = -EBUSY;
5027 goto err_unlock;
5028 }
5029
5030 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
5031 if (!scx_root_kobj) {
5032 ret = -ENOMEM;
5033 goto err_unlock;
5034 }
5035
5036 scx_root_kobj->kset = scx_kset;
5037 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
5038 if (ret < 0)
5039 goto err;
5040
5041 scx_exit_info = alloc_exit_info(ops->exit_dump_len);
5042 if (!scx_exit_info) {
5043 ret = -ENOMEM;
5044 goto err_del;
5045 }
5046
5047 /*
5048 * Set scx_ops, transition to ENABLING and clear exit info to arm the
5049 * disable path. Failure triggers full disabling from here on.
5050 */
5051 scx_ops = *ops;
5052
5053 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) !=
5054 SCX_OPS_DISABLED);
5055
5056 atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
5057 scx_warned_zero_slice = false;
5058
5059 atomic_long_set(&scx_nr_rejected, 0);
5060
5061 for_each_possible_cpu(cpu)
5062 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
5063
5064 /*
5065 * Keep CPUs stable during enable so that the BPF scheduler can track
5066 * online CPUs by watching ->on/offline_cpu() after ->init().
5067 */
5068 cpus_read_lock();
5069
5070 if (scx_ops.init) {
5071 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init);
5072 if (ret) {
5073 ret = ops_sanitize_err("init", ret);
5074 cpus_read_unlock();
5075 scx_ops_error("ops.init() failed (%d)", ret);
5076 goto err_disable;
5077 }
5078 }
5079
5080 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
5081 if (((void (**)(void))ops)[i])
5082 static_branch_enable_cpuslocked(&scx_has_op[i]);
5083
5084 check_hotplug_seq(ops);
5085 cpus_read_unlock();
5086
5087 ret = validate_ops(ops);
5088 if (ret)
5089 goto err_disable;
5090
5091 WARN_ON_ONCE(scx_dsp_ctx);
5092 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
5093 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
5094 scx_dsp_max_batch),
5095 __alignof__(struct scx_dsp_ctx));
5096 if (!scx_dsp_ctx) {
5097 ret = -ENOMEM;
5098 goto err_disable;
5099 }
5100
5101 if (ops->timeout_ms)
5102 timeout = msecs_to_jiffies(ops->timeout_ms);
5103 else
5104 timeout = SCX_WATCHDOG_MAX_TIMEOUT;
5105
5106 WRITE_ONCE(scx_watchdog_timeout, timeout);
5107 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
5108 queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
5109 scx_watchdog_timeout / 2);
5110
5111 /*
5112 * Once __scx_ops_enabled is set, %current can be switched to SCX
5113 * anytime. This can lead to stalls as some BPF schedulers (e.g.
5114 * userspace scheduling) may not function correctly before all tasks are
5115 * switched. Init in bypass mode to guarantee forward progress.
5116 */
5117 scx_ops_bypass(true);
5118
5119 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
5120 if (((void (**)(void))ops)[i])
5121 static_branch_enable(&scx_has_op[i]);
5122
5123 if (ops->flags & SCX_OPS_ENQ_LAST)
5124 static_branch_enable(&scx_ops_enq_last);
5125
5126 if (ops->flags & SCX_OPS_ENQ_EXITING)
5127 static_branch_enable(&scx_ops_enq_exiting);
5128 if (scx_ops.cpu_acquire || scx_ops.cpu_release)
5129 static_branch_enable(&scx_ops_cpu_preempt);
5130
5131 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
5132 reset_idle_masks();
5133 static_branch_enable(&scx_builtin_idle_enabled);
5134 } else {
5135 static_branch_disable(&scx_builtin_idle_enabled);
5136 }
5137
5138 /*
5139 * Lock out forks, cgroup on/offlining and moves before opening the
5140 * floodgate so that they don't wander into the operations prematurely.
5141 */
5142 percpu_down_write(&scx_fork_rwsem);
5143
5144 WARN_ON_ONCE(scx_ops_init_task_enabled);
5145 scx_ops_init_task_enabled = true;
5146
5147 /*
5148 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
5149 * preventing new tasks from being added. No need to exclude tasks
5150 * leaving as sched_ext_free() can handle both prepped and enabled
5151 * tasks. Prep all tasks first and then enable them with preemption
5152 * disabled.
5153 *
5154 * All cgroups should be initialized before scx_ops_init_task() so that
5155 * the BPF scheduler can reliably track each task's cgroup membership
5156 * from scx_ops_init_task(). Lock out cgroup on/offlining and task
5157 * migrations while tasks are being initialized so that
5158 * scx_cgroup_can_attach() never sees uninitialized tasks.
5159 */
5160 scx_cgroup_lock();
5161 ret = scx_cgroup_init();
5162 if (ret)
5163 goto err_disable_unlock_all;
5164
5165 scx_task_iter_start(&sti);
5166 while ((p = scx_task_iter_next_locked(&sti))) {
5167 /*
5168 * @p may already be dead, have lost all its usages counts and
5169 * be waiting for RCU grace period before being freed. @p can't
5170 * be initialized for SCX in such cases and should be ignored.
5171 */
5172 if (!tryget_task_struct(p))
5173 continue;
5174
5175 scx_task_iter_unlock(&sti);
5176
5177 ret = scx_ops_init_task(p, task_group(p), false);
5178 if (ret) {
5179 put_task_struct(p);
5180 scx_task_iter_relock(&sti);
5181 scx_task_iter_stop(&sti);
5182 scx_ops_error("ops.init_task() failed (%d) for %s[%d]",
5183 ret, p->comm, p->pid);
5184 goto err_disable_unlock_all;
5185 }
5186
5187 scx_set_task_state(p, SCX_TASK_READY);
5188
5189 put_task_struct(p);
5190 scx_task_iter_relock(&sti);
5191 }
5192 scx_task_iter_stop(&sti);
5193 scx_cgroup_unlock();
5194 percpu_up_write(&scx_fork_rwsem);
5195
5196 /*
5197 * All tasks are READY. It's safe to turn on scx_enabled() and switch
5198 * all eligible tasks.
5199 */
5200 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
5201 static_branch_enable(&__scx_ops_enabled);
5202
5203 /*
5204 * We're fully committed and can't fail. The task READY -> ENABLED
5205 * transitions here are synchronized against sched_ext_free() through
5206 * scx_tasks_lock.
5207 */
5208 percpu_down_write(&scx_fork_rwsem);
5209 scx_task_iter_start(&sti);
5210 while ((p = scx_task_iter_next_locked(&sti))) {
5211 const struct sched_class *old_class = p->sched_class;
5212 const struct sched_class *new_class =
5213 __setscheduler_class(p->policy, p->prio);
5214 struct sched_enq_and_set_ctx ctx;
5215
5216 if (old_class != new_class && p->se.sched_delayed)
5217 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5218
5219 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
5220
5221 p->scx.slice = SCX_SLICE_DFL;
5222 p->sched_class = new_class;
5223 check_class_changing(task_rq(p), p, old_class);
5224
5225 sched_enq_and_set_task(&ctx);
5226
5227 check_class_changed(task_rq(p), p, old_class, p->prio);
5228 }
5229 scx_task_iter_stop(&sti);
5230 percpu_up_write(&scx_fork_rwsem);
5231
5232 scx_ops_bypass(false);
5233
5234 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
5235 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
5236 goto err_disable;
5237 }
5238
5239 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
5240 static_branch_enable(&__scx_switched_all);
5241
5242 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
5243 scx_ops.name, scx_switched_all() ? "" : " (partial)");
5244 kobject_uevent(scx_root_kobj, KOBJ_ADD);
5245 mutex_unlock(&scx_ops_enable_mutex);
5246
5247 atomic_long_inc(&scx_enable_seq);
5248
5249 return 0;
5250
5251 err_del:
5252 kobject_del(scx_root_kobj);
5253 err:
5254 kobject_put(scx_root_kobj);
5255 scx_root_kobj = NULL;
5256 if (scx_exit_info) {
5257 free_exit_info(scx_exit_info);
5258 scx_exit_info = NULL;
5259 }
5260 err_unlock:
5261 mutex_unlock(&scx_ops_enable_mutex);
5262 return ret;
5263
5264 err_disable_unlock_all:
5265 scx_cgroup_unlock();
5266 percpu_up_write(&scx_fork_rwsem);
5267 scx_ops_bypass(false);
5268 err_disable:
5269 mutex_unlock(&scx_ops_enable_mutex);
5270 /*
5271 * Returning an error code here would not pass all the error information
5272 * to userspace. Record errno using scx_ops_error() for cases
5273 * scx_ops_error() wasn't already invoked and exit indicating success so
5274 * that the error is notified through ops.exit() with all the details.
5275 *
5276 * Flush scx_ops_disable_work to ensure that error is reported before
5277 * init completion.
5278 */
5279 scx_ops_error("scx_ops_enable() failed (%d)", ret);
5280 kthread_flush_work(&scx_ops_disable_work);
5281 return 0;
5282 }
5283
5284
5285 /********************************************************************************
5286 * bpf_struct_ops plumbing.
5287 */
5288 #include <linux/bpf_verifier.h>
5289 #include <linux/bpf.h>
5290 #include <linux/btf.h>
5291
5292 extern struct btf *btf_vmlinux;
5293 static const struct btf_type *task_struct_type;
5294 static u32 task_struct_type_id;
5295
set_arg_maybe_null(const char * op,int arg_n,int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5296 static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size,
5297 enum bpf_access_type type,
5298 const struct bpf_prog *prog,
5299 struct bpf_insn_access_aux *info)
5300 {
5301 struct btf *btf = bpf_get_btf_vmlinux();
5302 const struct bpf_struct_ops_desc *st_ops_desc;
5303 const struct btf_member *member;
5304 const struct btf_type *t;
5305 u32 btf_id, member_idx;
5306 const char *mname;
5307
5308 /* struct_ops op args are all sequential, 64-bit numbers */
5309 if (off != arg_n * sizeof(__u64))
5310 return false;
5311
5312 /* btf_id should be the type id of struct sched_ext_ops */
5313 btf_id = prog->aux->attach_btf_id;
5314 st_ops_desc = bpf_struct_ops_find(btf, btf_id);
5315 if (!st_ops_desc)
5316 return false;
5317
5318 /* BTF type of struct sched_ext_ops */
5319 t = st_ops_desc->type;
5320
5321 member_idx = prog->expected_attach_type;
5322 if (member_idx >= btf_type_vlen(t))
5323 return false;
5324
5325 /*
5326 * Get the member name of this struct_ops program, which corresponds to
5327 * a field in struct sched_ext_ops. For example, the member name of the
5328 * dispatch struct_ops program (callback) is "dispatch".
5329 */
5330 member = &btf_type_member(t)[member_idx];
5331 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
5332
5333 if (!strcmp(mname, op)) {
5334 /*
5335 * The value is a pointer to a type (struct task_struct) given
5336 * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED),
5337 * however, can be a NULL (PTR_MAYBE_NULL). The BPF program
5338 * should check the pointer to make sure it is not NULL before
5339 * using it, or the verifier will reject the program.
5340 *
5341 * Longer term, this is something that should be addressed by
5342 * BTF, and be fully contained within the verifier.
5343 */
5344 info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED;
5345 info->btf = btf_vmlinux;
5346 info->btf_id = task_struct_type_id;
5347
5348 return true;
5349 }
5350
5351 return false;
5352 }
5353
bpf_scx_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5354 static bool bpf_scx_is_valid_access(int off, int size,
5355 enum bpf_access_type type,
5356 const struct bpf_prog *prog,
5357 struct bpf_insn_access_aux *info)
5358 {
5359 if (type != BPF_READ)
5360 return false;
5361 if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) ||
5362 set_arg_maybe_null("yield", 1, off, size, type, prog, info))
5363 return true;
5364 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
5365 return false;
5366 if (off % size != 0)
5367 return false;
5368
5369 return btf_ctx_access(off, size, type, prog, info);
5370 }
5371
bpf_scx_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)5372 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
5373 const struct bpf_reg_state *reg, int off,
5374 int size)
5375 {
5376 const struct btf_type *t;
5377
5378 t = btf_type_by_id(reg->btf, reg->btf_id);
5379 if (t == task_struct_type) {
5380 if (off >= offsetof(struct task_struct, scx.slice) &&
5381 off + size <= offsetofend(struct task_struct, scx.slice))
5382 return SCALAR_VALUE;
5383 if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
5384 off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
5385 return SCALAR_VALUE;
5386 if (off >= offsetof(struct task_struct, scx.disallow) &&
5387 off + size <= offsetofend(struct task_struct, scx.disallow))
5388 return SCALAR_VALUE;
5389 }
5390
5391 return -EACCES;
5392 }
5393
5394 static const struct bpf_func_proto *
bpf_scx_get_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5395 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5396 {
5397 switch (func_id) {
5398 case BPF_FUNC_task_storage_get:
5399 return &bpf_task_storage_get_proto;
5400 case BPF_FUNC_task_storage_delete:
5401 return &bpf_task_storage_delete_proto;
5402 default:
5403 return bpf_base_func_proto(func_id, prog);
5404 }
5405 }
5406
5407 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
5408 .get_func_proto = bpf_scx_get_func_proto,
5409 .is_valid_access = bpf_scx_is_valid_access,
5410 .btf_struct_access = bpf_scx_btf_struct_access,
5411 };
5412
bpf_scx_init_member(const struct btf_type * t,const struct btf_member * member,void * kdata,const void * udata)5413 static int bpf_scx_init_member(const struct btf_type *t,
5414 const struct btf_member *member,
5415 void *kdata, const void *udata)
5416 {
5417 const struct sched_ext_ops *uops = udata;
5418 struct sched_ext_ops *ops = kdata;
5419 u32 moff = __btf_member_bit_offset(t, member) / 8;
5420 int ret;
5421
5422 switch (moff) {
5423 case offsetof(struct sched_ext_ops, dispatch_max_batch):
5424 if (*(u32 *)(udata + moff) > INT_MAX)
5425 return -E2BIG;
5426 ops->dispatch_max_batch = *(u32 *)(udata + moff);
5427 return 1;
5428 case offsetof(struct sched_ext_ops, flags):
5429 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
5430 return -EINVAL;
5431 ops->flags = *(u64 *)(udata + moff);
5432 return 1;
5433 case offsetof(struct sched_ext_ops, name):
5434 ret = bpf_obj_name_cpy(ops->name, uops->name,
5435 sizeof(ops->name));
5436 if (ret < 0)
5437 return ret;
5438 if (ret == 0)
5439 return -EINVAL;
5440 return 1;
5441 case offsetof(struct sched_ext_ops, timeout_ms):
5442 if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
5443 SCX_WATCHDOG_MAX_TIMEOUT)
5444 return -E2BIG;
5445 ops->timeout_ms = *(u32 *)(udata + moff);
5446 return 1;
5447 case offsetof(struct sched_ext_ops, exit_dump_len):
5448 ops->exit_dump_len =
5449 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
5450 return 1;
5451 case offsetof(struct sched_ext_ops, hotplug_seq):
5452 ops->hotplug_seq = *(u64 *)(udata + moff);
5453 return 1;
5454 }
5455
5456 return 0;
5457 }
5458
bpf_scx_check_member(const struct btf_type * t,const struct btf_member * member,const struct bpf_prog * prog)5459 static int bpf_scx_check_member(const struct btf_type *t,
5460 const struct btf_member *member,
5461 const struct bpf_prog *prog)
5462 {
5463 u32 moff = __btf_member_bit_offset(t, member) / 8;
5464
5465 switch (moff) {
5466 case offsetof(struct sched_ext_ops, init_task):
5467 #ifdef CONFIG_EXT_GROUP_SCHED
5468 case offsetof(struct sched_ext_ops, cgroup_init):
5469 case offsetof(struct sched_ext_ops, cgroup_exit):
5470 case offsetof(struct sched_ext_ops, cgroup_prep_move):
5471 #endif
5472 case offsetof(struct sched_ext_ops, cpu_online):
5473 case offsetof(struct sched_ext_ops, cpu_offline):
5474 case offsetof(struct sched_ext_ops, init):
5475 case offsetof(struct sched_ext_ops, exit):
5476 break;
5477 default:
5478 if (prog->sleepable)
5479 return -EINVAL;
5480 }
5481
5482 return 0;
5483 }
5484
bpf_scx_reg(void * kdata,struct bpf_link * link)5485 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
5486 {
5487 return scx_ops_enable(kdata, link);
5488 }
5489
bpf_scx_unreg(void * kdata,struct bpf_link * link)5490 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
5491 {
5492 scx_ops_disable(SCX_EXIT_UNREG);
5493 kthread_flush_work(&scx_ops_disable_work);
5494 }
5495
bpf_scx_init(struct btf * btf)5496 static int bpf_scx_init(struct btf *btf)
5497 {
5498 s32 type_id;
5499
5500 type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT);
5501 if (type_id < 0)
5502 return -EINVAL;
5503 task_struct_type = btf_type_by_id(btf, type_id);
5504 task_struct_type_id = type_id;
5505
5506 return 0;
5507 }
5508
bpf_scx_update(void * kdata,void * old_kdata,struct bpf_link * link)5509 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
5510 {
5511 /*
5512 * sched_ext does not support updating the actively-loaded BPF
5513 * scheduler, as registering a BPF scheduler can always fail if the
5514 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
5515 * etc. Similarly, we can always race with unregistration happening
5516 * elsewhere, such as with sysrq.
5517 */
5518 return -EOPNOTSUPP;
5519 }
5520
bpf_scx_validate(void * kdata)5521 static int bpf_scx_validate(void *kdata)
5522 {
5523 return 0;
5524 }
5525
select_cpu_stub(struct task_struct * p,s32 prev_cpu,u64 wake_flags)5526 static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
enqueue_stub(struct task_struct * p,u64 enq_flags)5527 static void enqueue_stub(struct task_struct *p, u64 enq_flags) {}
dequeue_stub(struct task_struct * p,u64 enq_flags)5528 static void dequeue_stub(struct task_struct *p, u64 enq_flags) {}
dispatch_stub(s32 prev_cpu,struct task_struct * p)5529 static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {}
tick_stub(struct task_struct * p)5530 static void tick_stub(struct task_struct *p) {}
runnable_stub(struct task_struct * p,u64 enq_flags)5531 static void runnable_stub(struct task_struct *p, u64 enq_flags) {}
running_stub(struct task_struct * p)5532 static void running_stub(struct task_struct *p) {}
stopping_stub(struct task_struct * p,bool runnable)5533 static void stopping_stub(struct task_struct *p, bool runnable) {}
quiescent_stub(struct task_struct * p,u64 deq_flags)5534 static void quiescent_stub(struct task_struct *p, u64 deq_flags) {}
yield_stub(struct task_struct * from,struct task_struct * to)5535 static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; }
core_sched_before_stub(struct task_struct * a,struct task_struct * b)5536 static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; }
set_weight_stub(struct task_struct * p,u32 weight)5537 static void set_weight_stub(struct task_struct *p, u32 weight) {}
set_cpumask_stub(struct task_struct * p,const struct cpumask * mask)5538 static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {}
update_idle_stub(s32 cpu,bool idle)5539 static void update_idle_stub(s32 cpu, bool idle) {}
cpu_acquire_stub(s32 cpu,struct scx_cpu_acquire_args * args)5540 static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {}
cpu_release_stub(s32 cpu,struct scx_cpu_release_args * args)5541 static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {}
init_task_stub(struct task_struct * p,struct scx_init_task_args * args)5542 static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
exit_task_stub(struct task_struct * p,struct scx_exit_task_args * args)5543 static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {}
enable_stub(struct task_struct * p)5544 static void enable_stub(struct task_struct *p) {}
disable_stub(struct task_struct * p)5545 static void disable_stub(struct task_struct *p) {}
5546 #ifdef CONFIG_EXT_GROUP_SCHED
cgroup_init_stub(struct cgroup * cgrp,struct scx_cgroup_init_args * args)5547 static s32 cgroup_init_stub(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
cgroup_exit_stub(struct cgroup * cgrp)5548 static void cgroup_exit_stub(struct cgroup *cgrp) {}
cgroup_prep_move_stub(struct task_struct * p,struct cgroup * from,struct cgroup * to)5549 static s32 cgroup_prep_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
cgroup_move_stub(struct task_struct * p,struct cgroup * from,struct cgroup * to)5550 static void cgroup_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
cgroup_cancel_move_stub(struct task_struct * p,struct cgroup * from,struct cgroup * to)5551 static void cgroup_cancel_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
cgroup_set_weight_stub(struct cgroup * cgrp,u32 weight)5552 static void cgroup_set_weight_stub(struct cgroup *cgrp, u32 weight) {}
5553 #endif
cpu_online_stub(s32 cpu)5554 static void cpu_online_stub(s32 cpu) {}
cpu_offline_stub(s32 cpu)5555 static void cpu_offline_stub(s32 cpu) {}
init_stub(void)5556 static s32 init_stub(void) { return -EINVAL; }
exit_stub(struct scx_exit_info * info)5557 static void exit_stub(struct scx_exit_info *info) {}
dump_stub(struct scx_dump_ctx * ctx)5558 static void dump_stub(struct scx_dump_ctx *ctx) {}
dump_cpu_stub(struct scx_dump_ctx * ctx,s32 cpu,bool idle)5559 static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
dump_task_stub(struct scx_dump_ctx * ctx,struct task_struct * p)5560 static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {}
5561
5562 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
5563 .select_cpu = select_cpu_stub,
5564 .enqueue = enqueue_stub,
5565 .dequeue = dequeue_stub,
5566 .dispatch = dispatch_stub,
5567 .tick = tick_stub,
5568 .runnable = runnable_stub,
5569 .running = running_stub,
5570 .stopping = stopping_stub,
5571 .quiescent = quiescent_stub,
5572 .yield = yield_stub,
5573 .core_sched_before = core_sched_before_stub,
5574 .set_weight = set_weight_stub,
5575 .set_cpumask = set_cpumask_stub,
5576 .update_idle = update_idle_stub,
5577 .cpu_acquire = cpu_acquire_stub,
5578 .cpu_release = cpu_release_stub,
5579 .init_task = init_task_stub,
5580 .exit_task = exit_task_stub,
5581 .enable = enable_stub,
5582 .disable = disable_stub,
5583 #ifdef CONFIG_EXT_GROUP_SCHED
5584 .cgroup_init = cgroup_init_stub,
5585 .cgroup_exit = cgroup_exit_stub,
5586 .cgroup_prep_move = cgroup_prep_move_stub,
5587 .cgroup_move = cgroup_move_stub,
5588 .cgroup_cancel_move = cgroup_cancel_move_stub,
5589 .cgroup_set_weight = cgroup_set_weight_stub,
5590 #endif
5591 .cpu_online = cpu_online_stub,
5592 .cpu_offline = cpu_offline_stub,
5593 .init = init_stub,
5594 .exit = exit_stub,
5595 .dump = dump_stub,
5596 .dump_cpu = dump_cpu_stub,
5597 .dump_task = dump_task_stub,
5598 };
5599
5600 static struct bpf_struct_ops bpf_sched_ext_ops = {
5601 .verifier_ops = &bpf_scx_verifier_ops,
5602 .reg = bpf_scx_reg,
5603 .unreg = bpf_scx_unreg,
5604 .check_member = bpf_scx_check_member,
5605 .init_member = bpf_scx_init_member,
5606 .init = bpf_scx_init,
5607 .update = bpf_scx_update,
5608 .validate = bpf_scx_validate,
5609 .name = "sched_ext_ops",
5610 .owner = THIS_MODULE,
5611 .cfi_stubs = &__bpf_ops_sched_ext_ops
5612 };
5613
5614
5615 /********************************************************************************
5616 * System integration and init.
5617 */
5618
sysrq_handle_sched_ext_reset(u8 key)5619 static void sysrq_handle_sched_ext_reset(u8 key)
5620 {
5621 if (scx_ops_helper)
5622 scx_ops_disable(SCX_EXIT_SYSRQ);
5623 else
5624 pr_info("sched_ext: BPF scheduler not yet used\n");
5625 }
5626
5627 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
5628 .handler = sysrq_handle_sched_ext_reset,
5629 .help_msg = "reset-sched-ext(S)",
5630 .action_msg = "Disable sched_ext and revert all tasks to CFS",
5631 .enable_mask = SYSRQ_ENABLE_RTNICE,
5632 };
5633
sysrq_handle_sched_ext_dump(u8 key)5634 static void sysrq_handle_sched_ext_dump(u8 key)
5635 {
5636 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
5637
5638 if (scx_enabled())
5639 scx_dump_state(&ei, 0);
5640 }
5641
5642 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
5643 .handler = sysrq_handle_sched_ext_dump,
5644 .help_msg = "dump-sched-ext(D)",
5645 .action_msg = "Trigger sched_ext debug dump",
5646 .enable_mask = SYSRQ_ENABLE_RTNICE,
5647 };
5648
can_skip_idle_kick(struct rq * rq)5649 static bool can_skip_idle_kick(struct rq *rq)
5650 {
5651 lockdep_assert_rq_held(rq);
5652
5653 /*
5654 * We can skip idle kicking if @rq is going to go through at least one
5655 * full SCX scheduling cycle before going idle. Just checking whether
5656 * curr is not idle is insufficient because we could be racing
5657 * balance_one() trying to pull the next task from a remote rq, which
5658 * may fail, and @rq may become idle afterwards.
5659 *
5660 * The race window is small and we don't and can't guarantee that @rq is
5661 * only kicked while idle anyway. Skip only when sure.
5662 */
5663 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
5664 }
5665
kick_one_cpu(s32 cpu,struct rq * this_rq,unsigned long * pseqs)5666 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
5667 {
5668 struct rq *rq = cpu_rq(cpu);
5669 struct scx_rq *this_scx = &this_rq->scx;
5670 bool should_wait = false;
5671 unsigned long flags;
5672
5673 raw_spin_rq_lock_irqsave(rq, flags);
5674
5675 /*
5676 * During CPU hotplug, a CPU may depend on kicking itself to make
5677 * forward progress. Allow kicking self regardless of online state.
5678 */
5679 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
5680 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
5681 if (rq->curr->sched_class == &ext_sched_class)
5682 rq->curr->scx.slice = 0;
5683 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5684 }
5685
5686 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
5687 pseqs[cpu] = rq->scx.pnt_seq;
5688 should_wait = true;
5689 }
5690
5691 resched_curr(rq);
5692 } else {
5693 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5694 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5695 }
5696
5697 raw_spin_rq_unlock_irqrestore(rq, flags);
5698
5699 return should_wait;
5700 }
5701
kick_one_cpu_if_idle(s32 cpu,struct rq * this_rq)5702 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
5703 {
5704 struct rq *rq = cpu_rq(cpu);
5705 unsigned long flags;
5706
5707 raw_spin_rq_lock_irqsave(rq, flags);
5708
5709 if (!can_skip_idle_kick(rq) &&
5710 (cpu_online(cpu) || cpu == cpu_of(this_rq)))
5711 resched_curr(rq);
5712
5713 raw_spin_rq_unlock_irqrestore(rq, flags);
5714 }
5715
kick_cpus_irq_workfn(struct irq_work * irq_work)5716 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
5717 {
5718 struct rq *this_rq = this_rq();
5719 struct scx_rq *this_scx = &this_rq->scx;
5720 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
5721 bool should_wait = false;
5722 s32 cpu;
5723
5724 for_each_cpu(cpu, this_scx->cpus_to_kick) {
5725 should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
5726 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
5727 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5728 }
5729
5730 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
5731 kick_one_cpu_if_idle(cpu, this_rq);
5732 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5733 }
5734
5735 if (!should_wait)
5736 return;
5737
5738 for_each_cpu(cpu, this_scx->cpus_to_wait) {
5739 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
5740
5741 if (cpu != cpu_of(this_rq)) {
5742 /*
5743 * Pairs with smp_store_release() issued by this CPU in
5744 * scx_next_task_picked() on the resched path.
5745 *
5746 * We busy-wait here to guarantee that no other task can
5747 * be scheduled on our core before the target CPU has
5748 * entered the resched path.
5749 */
5750 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
5751 cpu_relax();
5752 }
5753
5754 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5755 }
5756 }
5757
5758 /**
5759 * print_scx_info - print out sched_ext scheduler state
5760 * @log_lvl: the log level to use when printing
5761 * @p: target task
5762 *
5763 * If a sched_ext scheduler is enabled, print the name and state of the
5764 * scheduler. If @p is on sched_ext, print further information about the task.
5765 *
5766 * This function can be safely called on any task as long as the task_struct
5767 * itself is accessible. While safe, this function isn't synchronized and may
5768 * print out mixups or garbages of limited length.
5769 */
print_scx_info(const char * log_lvl,struct task_struct * p)5770 void print_scx_info(const char *log_lvl, struct task_struct *p)
5771 {
5772 enum scx_ops_enable_state state = scx_ops_enable_state();
5773 const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
5774 char runnable_at_buf[22] = "?";
5775 struct sched_class *class;
5776 unsigned long runnable_at;
5777
5778 if (state == SCX_OPS_DISABLED)
5779 return;
5780
5781 /*
5782 * Carefully check if the task was running on sched_ext, and then
5783 * carefully copy the time it's been runnable, and its state.
5784 */
5785 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
5786 class != &ext_sched_class) {
5787 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name,
5788 scx_ops_enable_state_str[state], all);
5789 return;
5790 }
5791
5792 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
5793 sizeof(runnable_at)))
5794 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
5795 jiffies_delta_msecs(runnable_at, jiffies));
5796
5797 /* print everything onto one line to conserve console space */
5798 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
5799 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all,
5800 runnable_at_buf);
5801 }
5802
scx_pm_handler(struct notifier_block * nb,unsigned long event,void * ptr)5803 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
5804 {
5805 /*
5806 * SCX schedulers often have userspace components which are sometimes
5807 * involved in critial scheduling paths. PM operations involve freezing
5808 * userspace which can lead to scheduling misbehaviors including stalls.
5809 * Let's bypass while PM operations are in progress.
5810 */
5811 switch (event) {
5812 case PM_HIBERNATION_PREPARE:
5813 case PM_SUSPEND_PREPARE:
5814 case PM_RESTORE_PREPARE:
5815 scx_ops_bypass(true);
5816 break;
5817 case PM_POST_HIBERNATION:
5818 case PM_POST_SUSPEND:
5819 case PM_POST_RESTORE:
5820 scx_ops_bypass(false);
5821 break;
5822 }
5823
5824 return NOTIFY_OK;
5825 }
5826
5827 static struct notifier_block scx_pm_notifier = {
5828 .notifier_call = scx_pm_handler,
5829 };
5830
init_sched_ext_class(void)5831 void __init init_sched_ext_class(void)
5832 {
5833 s32 cpu, v;
5834
5835 /*
5836 * The following is to prevent the compiler from optimizing out the enum
5837 * definitions so that BPF scheduler implementations can use them
5838 * through the generated vmlinux.h.
5839 */
5840 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
5841 SCX_TG_ONLINE);
5842
5843 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
5844 #ifdef CONFIG_SMP
5845 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
5846 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
5847 #endif
5848 scx_kick_cpus_pnt_seqs =
5849 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
5850 __alignof__(scx_kick_cpus_pnt_seqs[0]));
5851 BUG_ON(!scx_kick_cpus_pnt_seqs);
5852
5853 for_each_possible_cpu(cpu) {
5854 struct rq *rq = cpu_rq(cpu);
5855
5856 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
5857 INIT_LIST_HEAD(&rq->scx.runnable_list);
5858 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
5859
5860 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL));
5861 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL));
5862 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL));
5863 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL));
5864 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
5865 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
5866
5867 if (cpu_online(cpu))
5868 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
5869 }
5870
5871 register_sysrq_key('S', &sysrq_sched_ext_reset_op);
5872 register_sysrq_key('D', &sysrq_sched_ext_dump_op);
5873 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
5874 }
5875
5876
5877 /********************************************************************************
5878 * Helpers that can be called from the BPF scheduler.
5879 */
5880 #include <linux/btf_ids.h>
5881
5882 __bpf_kfunc_start_defs();
5883
5884 /**
5885 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
5886 * @p: task_struct to select a CPU for
5887 * @prev_cpu: CPU @p was on previously
5888 * @wake_flags: %SCX_WAKE_* flags
5889 * @is_idle: out parameter indicating whether the returned CPU is idle
5890 *
5891 * Can only be called from ops.select_cpu() if the built-in CPU selection is
5892 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
5893 * @p, @prev_cpu and @wake_flags match ops.select_cpu().
5894 *
5895 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
5896 * currently idle and thus a good candidate for direct dispatching.
5897 */
scx_bpf_select_cpu_dfl(struct task_struct * p,s32 prev_cpu,u64 wake_flags,bool * is_idle)5898 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
5899 u64 wake_flags, bool *is_idle)
5900 {
5901 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
5902 scx_ops_error("built-in idle tracking is disabled");
5903 goto prev_cpu;
5904 }
5905
5906 if (!scx_kf_allowed(SCX_KF_SELECT_CPU))
5907 goto prev_cpu;
5908
5909 #ifdef CONFIG_SMP
5910 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
5911 #endif
5912
5913 prev_cpu:
5914 *is_idle = false;
5915 return prev_cpu;
5916 }
5917
5918 __bpf_kfunc_end_defs();
5919
5920 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
5921 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
5922 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
5923
5924 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
5925 .owner = THIS_MODULE,
5926 .set = &scx_kfunc_ids_select_cpu,
5927 };
5928
scx_dispatch_preamble(struct task_struct * p,u64 enq_flags)5929 static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags)
5930 {
5931 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
5932 return false;
5933
5934 lockdep_assert_irqs_disabled();
5935
5936 if (unlikely(!p)) {
5937 scx_ops_error("called with NULL task");
5938 return false;
5939 }
5940
5941 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
5942 scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
5943 return false;
5944 }
5945
5946 return true;
5947 }
5948
scx_dispatch_commit(struct task_struct * p,u64 dsq_id,u64 enq_flags)5949 static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags)
5950 {
5951 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
5952 struct task_struct *ddsp_task;
5953
5954 ddsp_task = __this_cpu_read(direct_dispatch_task);
5955 if (ddsp_task) {
5956 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
5957 return;
5958 }
5959
5960 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
5961 scx_ops_error("dispatch buffer overflow");
5962 return;
5963 }
5964
5965 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
5966 .task = p,
5967 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
5968 .dsq_id = dsq_id,
5969 .enq_flags = enq_flags,
5970 };
5971 }
5972
5973 __bpf_kfunc_start_defs();
5974
5975 /**
5976 * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ
5977 * @p: task_struct to dispatch
5978 * @dsq_id: DSQ to dispatch to
5979 * @slice: duration @p can run for in nsecs, 0 to keep the current value
5980 * @enq_flags: SCX_ENQ_*
5981 *
5982 * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe
5983 * to call this function spuriously. Can be called from ops.enqueue(),
5984 * ops.select_cpu(), and ops.dispatch().
5985 *
5986 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
5987 * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
5988 * used to target the local DSQ of a CPU other than the enqueueing one. Use
5989 * ops.select_cpu() to be on the target CPU in the first place.
5990 *
5991 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
5992 * will be directly dispatched to the corresponding dispatch queue after
5993 * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be
5994 * dispatched to the local DSQ of the CPU returned by ops.select_cpu().
5995 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
5996 * task is dispatched.
5997 *
5998 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
5999 * and this function can be called upto ops.dispatch_max_batch times to dispatch
6000 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
6001 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
6002 *
6003 * This function doesn't have any locking restrictions and may be called under
6004 * BPF locks (in the future when BPF introduces more flexible locking).
6005 *
6006 * @p is allowed to run for @slice. The scheduling path is triggered on slice
6007 * exhaustion. If zero, the current residual slice is maintained. If
6008 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
6009 * scx_bpf_kick_cpu() to trigger scheduling.
6010 */
scx_bpf_dispatch(struct task_struct * p,u64 dsq_id,u64 slice,u64 enq_flags)6011 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
6012 u64 enq_flags)
6013 {
6014 if (!scx_dispatch_preamble(p, enq_flags))
6015 return;
6016
6017 if (slice)
6018 p->scx.slice = slice;
6019 else
6020 p->scx.slice = p->scx.slice ?: 1;
6021
6022 scx_dispatch_commit(p, dsq_id, enq_flags);
6023 }
6024
6025 /**
6026 * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ
6027 * @p: task_struct to dispatch
6028 * @dsq_id: DSQ to dispatch to
6029 * @slice: duration @p can run for in nsecs, 0 to keep the current value
6030 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
6031 * @enq_flags: SCX_ENQ_*
6032 *
6033 * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id.
6034 * Tasks queued into the priority queue are ordered by @vtime and always
6035 * consumed after the tasks in the FIFO queue. All other aspects are identical
6036 * to scx_bpf_dispatch().
6037 *
6038 * @vtime ordering is according to time_before64() which considers wrapping. A
6039 * numerically larger vtime may indicate an earlier position in the ordering and
6040 * vice-versa.
6041 */
scx_bpf_dispatch_vtime(struct task_struct * p,u64 dsq_id,u64 slice,u64 vtime,u64 enq_flags)6042 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
6043 u64 slice, u64 vtime, u64 enq_flags)
6044 {
6045 if (!scx_dispatch_preamble(p, enq_flags))
6046 return;
6047
6048 if (slice)
6049 p->scx.slice = slice;
6050 else
6051 p->scx.slice = p->scx.slice ?: 1;
6052
6053 p->scx.dsq_vtime = vtime;
6054
6055 scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6056 }
6057
6058 __bpf_kfunc_end_defs();
6059
6060 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
6061 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
6062 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
6063 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
6064
6065 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
6066 .owner = THIS_MODULE,
6067 .set = &scx_kfunc_ids_enqueue_dispatch,
6068 };
6069
scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern * kit,struct task_struct * p,u64 dsq_id,u64 enq_flags)6070 static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit,
6071 struct task_struct *p, u64 dsq_id,
6072 u64 enq_flags)
6073 {
6074 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
6075 struct rq *this_rq, *src_rq, *dst_rq, *locked_rq;
6076 bool dispatched = false;
6077 bool in_balance;
6078 unsigned long flags;
6079
6080 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH))
6081 return false;
6082
6083 /*
6084 * Can be called from either ops.dispatch() locking this_rq() or any
6085 * context where no rq lock is held. If latter, lock @p's task_rq which
6086 * we'll likely need anyway.
6087 */
6088 src_rq = task_rq(p);
6089
6090 local_irq_save(flags);
6091 this_rq = this_rq();
6092 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
6093
6094 if (in_balance) {
6095 if (this_rq != src_rq) {
6096 raw_spin_rq_unlock(this_rq);
6097 raw_spin_rq_lock(src_rq);
6098 }
6099 } else {
6100 raw_spin_rq_lock(src_rq);
6101 }
6102
6103 locked_rq = src_rq;
6104 raw_spin_lock(&src_dsq->lock);
6105
6106 /*
6107 * Did someone else get to it? @p could have already left $src_dsq, got
6108 * re-enqueud, or be in the process of being consumed by someone else.
6109 */
6110 if (unlikely(p->scx.dsq != src_dsq ||
6111 u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
6112 p->scx.holding_cpu >= 0) ||
6113 WARN_ON_ONCE(src_rq != task_rq(p))) {
6114 raw_spin_unlock(&src_dsq->lock);
6115 goto out;
6116 }
6117
6118 /* @p is still on $src_dsq and stable, determine the destination */
6119 dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p);
6120
6121 if (dst_dsq->id == SCX_DSQ_LOCAL) {
6122 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
6123 if (!task_can_run_on_remote_rq(p, dst_rq, true)) {
6124 dst_dsq = find_global_dsq(p);
6125 dst_rq = src_rq;
6126 }
6127 } else {
6128 /* no need to migrate if destination is a non-local DSQ */
6129 dst_rq = src_rq;
6130 }
6131
6132 /*
6133 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
6134 * CPU, @p will be migrated.
6135 */
6136 if (dst_dsq->id == SCX_DSQ_LOCAL) {
6137 /* @p is going from a non-local DSQ to a local DSQ */
6138 if (src_rq == dst_rq) {
6139 task_unlink_from_dsq(p, src_dsq);
6140 move_local_task_to_local_dsq(p, enq_flags,
6141 src_dsq, dst_rq);
6142 raw_spin_unlock(&src_dsq->lock);
6143 } else {
6144 raw_spin_unlock(&src_dsq->lock);
6145 move_remote_task_to_local_dsq(p, enq_flags,
6146 src_rq, dst_rq);
6147 locked_rq = dst_rq;
6148 }
6149 } else {
6150 /*
6151 * @p is going from a non-local DSQ to a non-local DSQ. As
6152 * $src_dsq is already locked, do an abbreviated dequeue.
6153 */
6154 task_unlink_from_dsq(p, src_dsq);
6155 p->scx.dsq = NULL;
6156 raw_spin_unlock(&src_dsq->lock);
6157
6158 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
6159 p->scx.dsq_vtime = kit->vtime;
6160 dispatch_enqueue(dst_dsq, p, enq_flags);
6161 }
6162
6163 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
6164 p->scx.slice = kit->slice;
6165
6166 dispatched = true;
6167 out:
6168 if (in_balance) {
6169 if (this_rq != locked_rq) {
6170 raw_spin_rq_unlock(locked_rq);
6171 raw_spin_rq_lock(this_rq);
6172 }
6173 } else {
6174 raw_spin_rq_unlock_irqrestore(locked_rq, flags);
6175 }
6176
6177 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
6178 __SCX_DSQ_ITER_HAS_VTIME);
6179 return dispatched;
6180 }
6181
6182 __bpf_kfunc_start_defs();
6183
6184 /**
6185 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
6186 *
6187 * Can only be called from ops.dispatch().
6188 */
scx_bpf_dispatch_nr_slots(void)6189 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
6190 {
6191 if (!scx_kf_allowed(SCX_KF_DISPATCH))
6192 return 0;
6193
6194 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
6195 }
6196
6197 /**
6198 * scx_bpf_dispatch_cancel - Cancel the latest dispatch
6199 *
6200 * Cancel the latest dispatch. Can be called multiple times to cancel further
6201 * dispatches. Can only be called from ops.dispatch().
6202 */
scx_bpf_dispatch_cancel(void)6203 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
6204 {
6205 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6206
6207 if (!scx_kf_allowed(SCX_KF_DISPATCH))
6208 return;
6209
6210 if (dspc->cursor > 0)
6211 dspc->cursor--;
6212 else
6213 scx_ops_error("dispatch buffer underflow");
6214 }
6215
6216 /**
6217 * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ
6218 * @dsq_id: DSQ to consume
6219 *
6220 * Consume a task from the non-local DSQ identified by @dsq_id and transfer it
6221 * to the current CPU's local DSQ for execution. Can only be called from
6222 * ops.dispatch().
6223 *
6224 * This function flushes the in-flight dispatches from scx_bpf_dispatch() before
6225 * trying to consume the specified DSQ. It may also grab rq locks and thus can't
6226 * be called under any BPF locks.
6227 *
6228 * Returns %true if a task has been consumed, %false if there isn't any task to
6229 * consume.
6230 */
scx_bpf_consume(u64 dsq_id)6231 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
6232 {
6233 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6234 struct scx_dispatch_q *dsq;
6235
6236 if (!scx_kf_allowed(SCX_KF_DISPATCH))
6237 return false;
6238
6239 flush_dispatch_buf(dspc->rq);
6240
6241 dsq = find_user_dsq(dsq_id);
6242 if (unlikely(!dsq)) {
6243 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
6244 return false;
6245 }
6246
6247 if (consume_dispatch_q(dspc->rq, dsq)) {
6248 /*
6249 * A successfully consumed task can be dequeued before it starts
6250 * running while the CPU is trying to migrate other dispatched
6251 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
6252 * local DSQ.
6253 */
6254 dspc->nr_tasks++;
6255 return true;
6256 } else {
6257 return false;
6258 }
6259 }
6260
6261 /**
6262 * scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ
6263 * @it__iter: DSQ iterator in progress
6264 * @slice: duration the dispatched task can run for in nsecs
6265 *
6266 * Override the slice of the next task that will be dispatched from @it__iter
6267 * using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called,
6268 * the previous slice duration is kept.
6269 */
scx_bpf_dispatch_from_dsq_set_slice(struct bpf_iter_scx_dsq * it__iter,u64 slice)6270 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
6271 struct bpf_iter_scx_dsq *it__iter, u64 slice)
6272 {
6273 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6274
6275 kit->slice = slice;
6276 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
6277 }
6278
6279 /**
6280 * scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ
6281 * @it__iter: DSQ iterator in progress
6282 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
6283 *
6284 * Override the vtime of the next task that will be dispatched from @it__iter
6285 * using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the
6286 * previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to
6287 * dispatch the next task, the override is ignored and cleared.
6288 */
scx_bpf_dispatch_from_dsq_set_vtime(struct bpf_iter_scx_dsq * it__iter,u64 vtime)6289 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
6290 struct bpf_iter_scx_dsq *it__iter, u64 vtime)
6291 {
6292 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6293
6294 kit->vtime = vtime;
6295 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
6296 }
6297
6298 /**
6299 * scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ
6300 * @it__iter: DSQ iterator in progress
6301 * @p: task to transfer
6302 * @dsq_id: DSQ to move @p to
6303 * @enq_flags: SCX_ENQ_*
6304 *
6305 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
6306 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
6307 * be the destination.
6308 *
6309 * For the transfer to be successful, @p must still be on the DSQ and have been
6310 * queued before the DSQ iteration started. This function doesn't care whether
6311 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
6312 * been queued before the iteration started.
6313 *
6314 * @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to
6315 * update.
6316 *
6317 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
6318 * lock (e.g. BPF timers or SYSCALL programs).
6319 *
6320 * Returns %true if @p has been consumed, %false if @p had already been consumed
6321 * or dequeued.
6322 */
scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)6323 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6324 struct task_struct *p, u64 dsq_id,
6325 u64 enq_flags)
6326 {
6327 return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
6328 p, dsq_id, enq_flags);
6329 }
6330
6331 /**
6332 * scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ
6333 * @it__iter: DSQ iterator in progress
6334 * @p: task to transfer
6335 * @dsq_id: DSQ to move @p to
6336 * @enq_flags: SCX_ENQ_*
6337 *
6338 * Transfer @p which is on the DSQ currently iterated by @it__iter to the
6339 * priority queue of the DSQ specified by @dsq_id. The destination must be a
6340 * user DSQ as only user DSQs support priority queue.
6341 *
6342 * @p's slice and vtime are kept by default. Use
6343 * scx_bpf_dispatch_from_dsq_set_slice() and
6344 * scx_bpf_dispatch_from_dsq_set_vtime() to update.
6345 *
6346 * All other aspects are identical to scx_bpf_dispatch_from_dsq(). See
6347 * scx_bpf_dispatch_vtime() for more information on @vtime.
6348 */
scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)6349 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6350 struct task_struct *p, u64 dsq_id,
6351 u64 enq_flags)
6352 {
6353 return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
6354 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6355 }
6356
6357 __bpf_kfunc_end_defs();
6358
6359 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
6360 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
6361 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
6362 BTF_ID_FLAGS(func, scx_bpf_consume)
6363 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
6364 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
6365 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6366 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6367 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
6368
6369 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
6370 .owner = THIS_MODULE,
6371 .set = &scx_kfunc_ids_dispatch,
6372 };
6373
6374 __bpf_kfunc_start_defs();
6375
6376 /**
6377 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6378 *
6379 * Iterate over all of the tasks currently enqueued on the local DSQ of the
6380 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
6381 * processed tasks. Can only be called from ops.cpu_release().
6382 */
scx_bpf_reenqueue_local(void)6383 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
6384 {
6385 LIST_HEAD(tasks);
6386 u32 nr_enqueued = 0;
6387 struct rq *rq;
6388 struct task_struct *p, *n;
6389
6390 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE))
6391 return 0;
6392
6393 rq = cpu_rq(smp_processor_id());
6394 lockdep_assert_rq_held(rq);
6395
6396 /*
6397 * The BPF scheduler may choose to dispatch tasks back to
6398 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
6399 * first to avoid processing the same tasks repeatedly.
6400 */
6401 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
6402 scx.dsq_list.node) {
6403 /*
6404 * If @p is being migrated, @p's current CPU may not agree with
6405 * its allowed CPUs and the migration_cpu_stop is about to
6406 * deactivate and re-activate @p anyway. Skip re-enqueueing.
6407 *
6408 * While racing sched property changes may also dequeue and
6409 * re-enqueue a migrating task while its current CPU and allowed
6410 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
6411 * the current local DSQ for running tasks and thus are not
6412 * visible to the BPF scheduler.
6413 */
6414 if (p->migration_pending)
6415 continue;
6416
6417 dispatch_dequeue(rq, p);
6418 list_add_tail(&p->scx.dsq_list.node, &tasks);
6419 }
6420
6421 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
6422 list_del_init(&p->scx.dsq_list.node);
6423 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
6424 nr_enqueued++;
6425 }
6426
6427 return nr_enqueued;
6428 }
6429
6430 __bpf_kfunc_end_defs();
6431
6432 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
6433 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
6434 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
6435
6436 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
6437 .owner = THIS_MODULE,
6438 .set = &scx_kfunc_ids_cpu_release,
6439 };
6440
6441 __bpf_kfunc_start_defs();
6442
6443 /**
6444 * scx_bpf_create_dsq - Create a custom DSQ
6445 * @dsq_id: DSQ to create
6446 * @node: NUMA node to allocate from
6447 *
6448 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
6449 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
6450 */
scx_bpf_create_dsq(u64 dsq_id,s32 node)6451 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
6452 {
6453 if (unlikely(node >= (int)nr_node_ids ||
6454 (node < 0 && node != NUMA_NO_NODE)))
6455 return -EINVAL;
6456 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
6457 }
6458
6459 __bpf_kfunc_end_defs();
6460
6461 BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
6462 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
6463 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6464 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6465 BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
6466
6467 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
6468 .owner = THIS_MODULE,
6469 .set = &scx_kfunc_ids_unlocked,
6470 };
6471
6472 __bpf_kfunc_start_defs();
6473
6474 /**
6475 * scx_bpf_kick_cpu - Trigger reschedule on a CPU
6476 * @cpu: cpu to kick
6477 * @flags: %SCX_KICK_* flags
6478 *
6479 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
6480 * trigger rescheduling on a busy CPU. This can be called from any online
6481 * scx_ops operation and the actual kicking is performed asynchronously through
6482 * an irq work.
6483 */
scx_bpf_kick_cpu(s32 cpu,u64 flags)6484 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
6485 {
6486 struct rq *this_rq;
6487 unsigned long irq_flags;
6488
6489 if (!ops_cpu_valid(cpu, NULL))
6490 return;
6491
6492 local_irq_save(irq_flags);
6493
6494 this_rq = this_rq();
6495
6496 /*
6497 * While bypassing for PM ops, IRQ handling may not be online which can
6498 * lead to irq_work_queue() malfunction such as infinite busy wait for
6499 * IRQ status update. Suppress kicking.
6500 */
6501 if (scx_rq_bypassing(this_rq))
6502 goto out;
6503
6504 /*
6505 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
6506 * rq locks. We can probably be smarter and avoid bouncing if called
6507 * from ops which don't hold a rq lock.
6508 */
6509 if (flags & SCX_KICK_IDLE) {
6510 struct rq *target_rq = cpu_rq(cpu);
6511
6512 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
6513 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
6514
6515 if (raw_spin_rq_trylock(target_rq)) {
6516 if (can_skip_idle_kick(target_rq)) {
6517 raw_spin_rq_unlock(target_rq);
6518 goto out;
6519 }
6520 raw_spin_rq_unlock(target_rq);
6521 }
6522 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
6523 } else {
6524 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
6525
6526 if (flags & SCX_KICK_PREEMPT)
6527 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
6528 if (flags & SCX_KICK_WAIT)
6529 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
6530 }
6531
6532 irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
6533 out:
6534 local_irq_restore(irq_flags);
6535 }
6536
6537 /**
6538 * scx_bpf_dsq_nr_queued - Return the number of queued tasks
6539 * @dsq_id: id of the DSQ
6540 *
6541 * Return the number of tasks in the DSQ matching @dsq_id. If not found,
6542 * -%ENOENT is returned.
6543 */
scx_bpf_dsq_nr_queued(u64 dsq_id)6544 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
6545 {
6546 struct scx_dispatch_q *dsq;
6547 s32 ret;
6548
6549 preempt_disable();
6550
6551 if (dsq_id == SCX_DSQ_LOCAL) {
6552 ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
6553 goto out;
6554 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
6555 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
6556
6557 if (ops_cpu_valid(cpu, NULL)) {
6558 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
6559 goto out;
6560 }
6561 } else {
6562 dsq = find_user_dsq(dsq_id);
6563 if (dsq) {
6564 ret = READ_ONCE(dsq->nr);
6565 goto out;
6566 }
6567 }
6568 ret = -ENOENT;
6569 out:
6570 preempt_enable();
6571 return ret;
6572 }
6573
6574 /**
6575 * scx_bpf_destroy_dsq - Destroy a custom DSQ
6576 * @dsq_id: DSQ to destroy
6577 *
6578 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
6579 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
6580 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
6581 * which doesn't exist. Can be called from any online scx_ops operations.
6582 */
scx_bpf_destroy_dsq(u64 dsq_id)6583 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
6584 {
6585 destroy_dsq(dsq_id);
6586 }
6587
6588 /**
6589 * bpf_iter_scx_dsq_new - Create a DSQ iterator
6590 * @it: iterator to initialize
6591 * @dsq_id: DSQ to iterate
6592 * @flags: %SCX_DSQ_ITER_*
6593 *
6594 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
6595 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
6596 * tasks which are already queued when this function is invoked.
6597 */
bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq * it,u64 dsq_id,u64 flags)6598 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
6599 u64 flags)
6600 {
6601 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6602
6603 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
6604 sizeof(struct bpf_iter_scx_dsq));
6605 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
6606 __alignof__(struct bpf_iter_scx_dsq));
6607
6608 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
6609 return -EINVAL;
6610
6611 kit->dsq = find_user_dsq(dsq_id);
6612 if (!kit->dsq)
6613 return -ENOENT;
6614
6615 INIT_LIST_HEAD(&kit->cursor.node);
6616 kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags;
6617 kit->cursor.priv = READ_ONCE(kit->dsq->seq);
6618
6619 return 0;
6620 }
6621
6622 /**
6623 * bpf_iter_scx_dsq_next - Progress a DSQ iterator
6624 * @it: iterator to progress
6625 *
6626 * Return the next task. See bpf_iter_scx_dsq_new().
6627 */
bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq * it)6628 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
6629 {
6630 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6631 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
6632 struct task_struct *p;
6633 unsigned long flags;
6634
6635 if (!kit->dsq)
6636 return NULL;
6637
6638 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6639
6640 if (list_empty(&kit->cursor.node))
6641 p = NULL;
6642 else
6643 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
6644
6645 /*
6646 * Only tasks which were queued before the iteration started are
6647 * visible. This bounds BPF iterations and guarantees that vtime never
6648 * jumps in the other direction while iterating.
6649 */
6650 do {
6651 p = nldsq_next_task(kit->dsq, p, rev);
6652 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
6653
6654 if (p) {
6655 if (rev)
6656 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
6657 else
6658 list_move(&kit->cursor.node, &p->scx.dsq_list.node);
6659 } else {
6660 list_del_init(&kit->cursor.node);
6661 }
6662
6663 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6664
6665 return p;
6666 }
6667
6668 /**
6669 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
6670 * @it: iterator to destroy
6671 *
6672 * Undo scx_iter_scx_dsq_new().
6673 */
bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq * it)6674 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
6675 {
6676 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6677
6678 if (!kit->dsq)
6679 return;
6680
6681 if (!list_empty(&kit->cursor.node)) {
6682 unsigned long flags;
6683
6684 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6685 list_del_init(&kit->cursor.node);
6686 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6687 }
6688 kit->dsq = NULL;
6689 }
6690
6691 __bpf_kfunc_end_defs();
6692
__bstr_format(u64 * data_buf,char * line_buf,size_t line_size,char * fmt,unsigned long long * data,u32 data__sz)6693 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
6694 char *fmt, unsigned long long *data, u32 data__sz)
6695 {
6696 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
6697 s32 ret;
6698
6699 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
6700 (data__sz && !data)) {
6701 scx_ops_error("invalid data=%p and data__sz=%u",
6702 (void *)data, data__sz);
6703 return -EINVAL;
6704 }
6705
6706 ret = copy_from_kernel_nofault(data_buf, data, data__sz);
6707 if (ret < 0) {
6708 scx_ops_error("failed to read data fields (%d)", ret);
6709 return ret;
6710 }
6711
6712 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
6713 &bprintf_data);
6714 if (ret < 0) {
6715 scx_ops_error("format preparation failed (%d)", ret);
6716 return ret;
6717 }
6718
6719 ret = bstr_printf(line_buf, line_size, fmt,
6720 bprintf_data.bin_args);
6721 bpf_bprintf_cleanup(&bprintf_data);
6722 if (ret < 0) {
6723 scx_ops_error("(\"%s\", %p, %u) failed to format",
6724 fmt, data, data__sz);
6725 return ret;
6726 }
6727
6728 return ret;
6729 }
6730
bstr_format(struct scx_bstr_buf * buf,char * fmt,unsigned long long * data,u32 data__sz)6731 static s32 bstr_format(struct scx_bstr_buf *buf,
6732 char *fmt, unsigned long long *data, u32 data__sz)
6733 {
6734 return __bstr_format(buf->data, buf->line, sizeof(buf->line),
6735 fmt, data, data__sz);
6736 }
6737
6738 __bpf_kfunc_start_defs();
6739
6740 /**
6741 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
6742 * @exit_code: Exit value to pass to user space via struct scx_exit_info.
6743 * @fmt: error message format string
6744 * @data: format string parameters packaged using ___bpf_fill() macro
6745 * @data__sz: @data len, must end in '__sz' for the verifier
6746 *
6747 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
6748 * disabling.
6749 */
scx_bpf_exit_bstr(s64 exit_code,char * fmt,unsigned long long * data,u32 data__sz)6750 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
6751 unsigned long long *data, u32 data__sz)
6752 {
6753 unsigned long flags;
6754
6755 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6756 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6757 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s",
6758 scx_exit_bstr_buf.line);
6759 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6760 }
6761
6762 /**
6763 * scx_bpf_error_bstr - Indicate fatal error
6764 * @fmt: error message format string
6765 * @data: format string parameters packaged using ___bpf_fill() macro
6766 * @data__sz: @data len, must end in '__sz' for the verifier
6767 *
6768 * Indicate that the BPF scheduler encountered a fatal error and initiate ops
6769 * disabling.
6770 */
scx_bpf_error_bstr(char * fmt,unsigned long long * data,u32 data__sz)6771 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
6772 u32 data__sz)
6773 {
6774 unsigned long flags;
6775
6776 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6777 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6778 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s",
6779 scx_exit_bstr_buf.line);
6780 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6781 }
6782
6783 /**
6784 * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
6785 * @fmt: format string
6786 * @data: format string parameters packaged using ___bpf_fill() macro
6787 * @data__sz: @data len, must end in '__sz' for the verifier
6788 *
6789 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
6790 * dump_task() to generate extra debug dump specific to the BPF scheduler.
6791 *
6792 * The extra dump may be multiple lines. A single line may be split over
6793 * multiple calls. The last line is automatically terminated.
6794 */
scx_bpf_dump_bstr(char * fmt,unsigned long long * data,u32 data__sz)6795 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
6796 u32 data__sz)
6797 {
6798 struct scx_dump_data *dd = &scx_dump_data;
6799 struct scx_bstr_buf *buf = &dd->buf;
6800 s32 ret;
6801
6802 if (raw_smp_processor_id() != dd->cpu) {
6803 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
6804 return;
6805 }
6806
6807 /* append the formatted string to the line buf */
6808 ret = __bstr_format(buf->data, buf->line + dd->cursor,
6809 sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
6810 if (ret < 0) {
6811 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
6812 dd->prefix, fmt, data, data__sz, ret);
6813 return;
6814 }
6815
6816 dd->cursor += ret;
6817 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
6818
6819 if (!dd->cursor)
6820 return;
6821
6822 /*
6823 * If the line buf overflowed or ends in a newline, flush it into the
6824 * dump. This is to allow the caller to generate a single line over
6825 * multiple calls. As ops_dump_flush() can also handle multiple lines in
6826 * the line buf, the only case which can lead to an unexpected
6827 * truncation is when the caller keeps generating newlines in the middle
6828 * instead of the end consecutively. Don't do that.
6829 */
6830 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
6831 ops_dump_flush();
6832 }
6833
6834 /**
6835 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
6836 * @cpu: CPU of interest
6837 *
6838 * Return the maximum relative capacity of @cpu in relation to the most
6839 * performant CPU in the system. The return value is in the range [1,
6840 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
6841 */
scx_bpf_cpuperf_cap(s32 cpu)6842 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
6843 {
6844 if (ops_cpu_valid(cpu, NULL))
6845 return arch_scale_cpu_capacity(cpu);
6846 else
6847 return SCX_CPUPERF_ONE;
6848 }
6849
6850 /**
6851 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
6852 * @cpu: CPU of interest
6853 *
6854 * Return the current relative performance of @cpu in relation to its maximum.
6855 * The return value is in the range [1, %SCX_CPUPERF_ONE].
6856 *
6857 * The current performance level of a CPU in relation to the maximum performance
6858 * available in the system can be calculated as follows:
6859 *
6860 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
6861 *
6862 * The result is in the range [1, %SCX_CPUPERF_ONE].
6863 */
scx_bpf_cpuperf_cur(s32 cpu)6864 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
6865 {
6866 if (ops_cpu_valid(cpu, NULL))
6867 return arch_scale_freq_capacity(cpu);
6868 else
6869 return SCX_CPUPERF_ONE;
6870 }
6871
6872 /**
6873 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
6874 * @cpu: CPU of interest
6875 * @perf: target performance level [0, %SCX_CPUPERF_ONE]
6876 * @flags: %SCX_CPUPERF_* flags
6877 *
6878 * Set the target performance level of @cpu to @perf. @perf is in linear
6879 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
6880 * schedutil cpufreq governor chooses the target frequency.
6881 *
6882 * The actual performance level chosen, CPU grouping, and the overhead and
6883 * latency of the operations are dependent on the hardware and cpufreq driver in
6884 * use. Consult hardware and cpufreq documentation for more information. The
6885 * current performance level can be monitored using scx_bpf_cpuperf_cur().
6886 */
scx_bpf_cpuperf_set(s32 cpu,u32 perf)6887 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
6888 {
6889 if (unlikely(perf > SCX_CPUPERF_ONE)) {
6890 scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu);
6891 return;
6892 }
6893
6894 if (ops_cpu_valid(cpu, NULL)) {
6895 struct rq *rq = cpu_rq(cpu);
6896
6897 rq->scx.cpuperf_target = perf;
6898
6899 rcu_read_lock_sched_notrace();
6900 cpufreq_update_util(cpu_rq(cpu), 0);
6901 rcu_read_unlock_sched_notrace();
6902 }
6903 }
6904
6905 /**
6906 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
6907 *
6908 * All valid CPU IDs in the system are smaller than the returned value.
6909 */
scx_bpf_nr_cpu_ids(void)6910 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
6911 {
6912 return nr_cpu_ids;
6913 }
6914
6915 /**
6916 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
6917 */
scx_bpf_get_possible_cpumask(void)6918 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
6919 {
6920 return cpu_possible_mask;
6921 }
6922
6923 /**
6924 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
6925 */
scx_bpf_get_online_cpumask(void)6926 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
6927 {
6928 return cpu_online_mask;
6929 }
6930
6931 /**
6932 * scx_bpf_put_cpumask - Release a possible/online cpumask
6933 * @cpumask: cpumask to release
6934 */
scx_bpf_put_cpumask(const struct cpumask * cpumask)6935 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
6936 {
6937 /*
6938 * Empty function body because we aren't actually acquiring or releasing
6939 * a reference to a global cpumask, which is read-only in the caller and
6940 * is never released. The acquire / release semantics here are just used
6941 * to make the cpumask is a trusted pointer in the caller.
6942 */
6943 }
6944
6945 /**
6946 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
6947 * per-CPU cpumask.
6948 *
6949 * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
6950 */
scx_bpf_get_idle_cpumask(void)6951 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
6952 {
6953 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6954 scx_ops_error("built-in idle tracking is disabled");
6955 return cpu_none_mask;
6956 }
6957
6958 #ifdef CONFIG_SMP
6959 return idle_masks.cpu;
6960 #else
6961 return cpu_none_mask;
6962 #endif
6963 }
6964
6965 /**
6966 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
6967 * per-physical-core cpumask. Can be used to determine if an entire physical
6968 * core is free.
6969 *
6970 * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
6971 */
scx_bpf_get_idle_smtmask(void)6972 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
6973 {
6974 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6975 scx_ops_error("built-in idle tracking is disabled");
6976 return cpu_none_mask;
6977 }
6978
6979 #ifdef CONFIG_SMP
6980 if (sched_smt_active())
6981 return idle_masks.smt;
6982 else
6983 return idle_masks.cpu;
6984 #else
6985 return cpu_none_mask;
6986 #endif
6987 }
6988
6989 /**
6990 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
6991 * either the percpu, or SMT idle-tracking cpumask.
6992 */
scx_bpf_put_idle_cpumask(const struct cpumask * idle_mask)6993 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
6994 {
6995 /*
6996 * Empty function body because we aren't actually acquiring or releasing
6997 * a reference to a global idle cpumask, which is read-only in the
6998 * caller and is never released. The acquire / release semantics here
6999 * are just used to make the cpumask a trusted pointer in the caller.
7000 */
7001 }
7002
7003 /**
7004 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
7005 * @cpu: cpu to test and clear idle for
7006 *
7007 * Returns %true if @cpu was idle and its idle state was successfully cleared.
7008 * %false otherwise.
7009 *
7010 * Unavailable if ops.update_idle() is implemented and
7011 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7012 */
scx_bpf_test_and_clear_cpu_idle(s32 cpu)7013 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
7014 {
7015 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7016 scx_ops_error("built-in idle tracking is disabled");
7017 return false;
7018 }
7019
7020 if (ops_cpu_valid(cpu, NULL))
7021 return test_and_clear_cpu_idle(cpu);
7022 else
7023 return false;
7024 }
7025
7026 /**
7027 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
7028 * @cpus_allowed: Allowed cpumask
7029 * @flags: %SCX_PICK_IDLE_CPU_* flags
7030 *
7031 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
7032 * number on success. -%EBUSY if no matching cpu was found.
7033 *
7034 * Idle CPU tracking may race against CPU scheduling state transitions. For
7035 * example, this function may return -%EBUSY as CPUs are transitioning into the
7036 * idle state. If the caller then assumes that there will be dispatch events on
7037 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
7038 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
7039 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
7040 * event in the near future.
7041 *
7042 * Unavailable if ops.update_idle() is implemented and
7043 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7044 */
scx_bpf_pick_idle_cpu(const struct cpumask * cpus_allowed,u64 flags)7045 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
7046 u64 flags)
7047 {
7048 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7049 scx_ops_error("built-in idle tracking is disabled");
7050 return -EBUSY;
7051 }
7052
7053 return scx_pick_idle_cpu(cpus_allowed, flags);
7054 }
7055
7056 /**
7057 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
7058 * @cpus_allowed: Allowed cpumask
7059 * @flags: %SCX_PICK_IDLE_CPU_* flags
7060 *
7061 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
7062 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
7063 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
7064 * empty.
7065 *
7066 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
7067 * set, this function can't tell which CPUs are idle and will always pick any
7068 * CPU.
7069 */
scx_bpf_pick_any_cpu(const struct cpumask * cpus_allowed,u64 flags)7070 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
7071 u64 flags)
7072 {
7073 s32 cpu;
7074
7075 if (static_branch_likely(&scx_builtin_idle_enabled)) {
7076 cpu = scx_pick_idle_cpu(cpus_allowed, flags);
7077 if (cpu >= 0)
7078 return cpu;
7079 }
7080
7081 cpu = cpumask_any_distribute(cpus_allowed);
7082 if (cpu < nr_cpu_ids)
7083 return cpu;
7084 else
7085 return -EBUSY;
7086 }
7087
7088 /**
7089 * scx_bpf_task_running - Is task currently running?
7090 * @p: task of interest
7091 */
scx_bpf_task_running(const struct task_struct * p)7092 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
7093 {
7094 return task_rq(p)->curr == p;
7095 }
7096
7097 /**
7098 * scx_bpf_task_cpu - CPU a task is currently associated with
7099 * @p: task of interest
7100 */
scx_bpf_task_cpu(const struct task_struct * p)7101 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
7102 {
7103 return task_cpu(p);
7104 }
7105
7106 /**
7107 * scx_bpf_cpu_rq - Fetch the rq of a CPU
7108 * @cpu: CPU of the rq
7109 */
scx_bpf_cpu_rq(s32 cpu)7110 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
7111 {
7112 if (!ops_cpu_valid(cpu, NULL))
7113 return NULL;
7114
7115 return cpu_rq(cpu);
7116 }
7117
7118 /**
7119 * scx_bpf_task_cgroup - Return the sched cgroup of a task
7120 * @p: task of interest
7121 *
7122 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
7123 * from the scheduler's POV. SCX operations should use this function to
7124 * determine @p's current cgroup as, unlike following @p->cgroups,
7125 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
7126 * rq-locked operations. Can be called on the parameter tasks of rq-locked
7127 * operations. The restriction guarantees that @p's rq is locked by the caller.
7128 */
7129 #ifdef CONFIG_CGROUP_SCHED
scx_bpf_task_cgroup(struct task_struct * p)7130 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
7131 {
7132 struct task_group *tg = p->sched_task_group;
7133 struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
7134
7135 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p))
7136 goto out;
7137
7138 /*
7139 * A task_group may either be a cgroup or an autogroup. In the latter
7140 * case, @tg->css.cgroup is %NULL. A task_group can't become the other
7141 * kind once created.
7142 */
7143 if (tg && tg->css.cgroup)
7144 cgrp = tg->css.cgroup;
7145 else
7146 cgrp = &cgrp_dfl_root.cgrp;
7147 out:
7148 cgroup_get(cgrp);
7149 return cgrp;
7150 }
7151 #endif
7152
7153 __bpf_kfunc_end_defs();
7154
7155 BTF_KFUNCS_START(scx_kfunc_ids_any)
7156 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
7157 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
7158 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
7159 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
7160 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
7161 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
7162 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
7163 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
7164 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
7165 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
7166 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
7167 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
7168 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
7169 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
7170 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
7171 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
7172 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
7173 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
7174 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
7175 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
7176 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
7177 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
7178 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
7179 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
7180 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
7181 #ifdef CONFIG_CGROUP_SCHED
7182 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
7183 #endif
7184 BTF_KFUNCS_END(scx_kfunc_ids_any)
7185
7186 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
7187 .owner = THIS_MODULE,
7188 .set = &scx_kfunc_ids_any,
7189 };
7190
scx_init(void)7191 static int __init scx_init(void)
7192 {
7193 int ret;
7194
7195 /*
7196 * kfunc registration can't be done from init_sched_ext_class() as
7197 * register_btf_kfunc_id_set() needs most of the system to be up.
7198 *
7199 * Some kfuncs are context-sensitive and can only be called from
7200 * specific SCX ops. They are grouped into BTF sets accordingly.
7201 * Unfortunately, BPF currently doesn't have a way of enforcing such
7202 * restrictions. Eventually, the verifier should be able to enforce
7203 * them. For now, register them the same and make each kfunc explicitly
7204 * check using scx_kf_allowed().
7205 */
7206 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7207 &scx_kfunc_set_select_cpu)) ||
7208 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7209 &scx_kfunc_set_enqueue_dispatch)) ||
7210 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7211 &scx_kfunc_set_dispatch)) ||
7212 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7213 &scx_kfunc_set_cpu_release)) ||
7214 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7215 &scx_kfunc_set_unlocked)) ||
7216 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7217 &scx_kfunc_set_unlocked)) ||
7218 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7219 &scx_kfunc_set_any)) ||
7220 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
7221 &scx_kfunc_set_any)) ||
7222 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7223 &scx_kfunc_set_any))) {
7224 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
7225 return ret;
7226 }
7227
7228 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
7229 if (ret) {
7230 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
7231 return ret;
7232 }
7233
7234 ret = register_pm_notifier(&scx_pm_notifier);
7235 if (ret) {
7236 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
7237 return ret;
7238 }
7239
7240 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
7241 if (!scx_kset) {
7242 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
7243 return -ENOMEM;
7244 }
7245
7246 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
7247 if (ret < 0) {
7248 pr_err("sched_ext: Failed to add global attributes\n");
7249 return ret;
7250 }
7251
7252 return 0;
7253 }
7254 __initcall(scx_init);
7255