1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/blk-integrity.h> 25 #include <linux/ratelimit.h> 26 #include <linux/unaligned.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_dbg.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_driver.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport.h> /* scsi_init_limits() */ 36 #include <scsi/scsi_dh.h> 37 38 #include <trace/events/scsi.h> 39 40 #include "scsi_debugfs.h" 41 #include "scsi_priv.h" 42 #include "scsi_logging.h" 43 44 /* 45 * Size of integrity metadata is usually small, 1 inline sg should 46 * cover normal cases. 47 */ 48 #ifdef CONFIG_ARCH_NO_SG_CHAIN 49 #define SCSI_INLINE_PROT_SG_CNT 0 50 #define SCSI_INLINE_SG_CNT 0 51 #else 52 #define SCSI_INLINE_PROT_SG_CNT 1 53 #define SCSI_INLINE_SG_CNT 2 54 #endif 55 56 static struct kmem_cache *scsi_sense_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 int scsi_init_sense_cache(struct Scsi_Host *shost) 62 { 63 int ret = 0; 64 65 mutex_lock(&scsi_sense_cache_mutex); 66 if (!scsi_sense_cache) { 67 scsi_sense_cache = 68 kmem_cache_create_usercopy("scsi_sense_cache", 69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 70 0, SCSI_SENSE_BUFFERSIZE, NULL); 71 if (!scsi_sense_cache) 72 ret = -ENOMEM; 73 } 74 mutex_unlock(&scsi_sense_cache_mutex); 75 return ret; 76 } 77 78 static void 79 scsi_set_blocked(struct scsi_cmnd *cmd, enum scsi_qc_status reason) 80 { 81 struct Scsi_Host *host = cmd->device->host; 82 struct scsi_device *device = cmd->device; 83 struct scsi_target *starget = scsi_target(device); 84 85 /* 86 * Set the appropriate busy bit for the device/host. 87 * 88 * If the host/device isn't busy, assume that something actually 89 * completed, and that we should be able to queue a command now. 90 * 91 * Note that the prior mid-layer assumption that any host could 92 * always queue at least one command is now broken. The mid-layer 93 * will implement a user specifiable stall (see 94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 95 * if a command is requeued with no other commands outstanding 96 * either for the device or for the host. 97 */ 98 switch (reason) { 99 case SCSI_MLQUEUE_HOST_BUSY: 100 atomic_set(&host->host_blocked, host->max_host_blocked); 101 break; 102 case SCSI_MLQUEUE_DEVICE_BUSY: 103 case SCSI_MLQUEUE_EH_RETRY: 104 atomic_set(&device->device_blocked, 105 device->max_device_blocked); 106 break; 107 case SCSI_MLQUEUE_TARGET_BUSY: 108 atomic_set(&starget->target_blocked, 109 starget->max_target_blocked); 110 break; 111 } 112 } 113 114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs) 115 { 116 struct request *rq = scsi_cmd_to_rq(cmd); 117 118 if (rq->rq_flags & RQF_DONTPREP) { 119 rq->rq_flags &= ~RQF_DONTPREP; 120 scsi_mq_uninit_cmd(cmd); 121 } else { 122 WARN_ON_ONCE(true); 123 } 124 125 blk_mq_requeue_request(rq, false); 126 if (!scsi_host_in_recovery(cmd->device->host)) 127 blk_mq_delay_kick_requeue_list(rq->q, msecs); 128 } 129 130 /** 131 * __scsi_queue_insert - private queue insertion 132 * @cmd: The SCSI command being requeued 133 * @reason: The reason for the requeue 134 * @unbusy: Whether the queue should be unbusied 135 * 136 * This is a private queue insertion. The public interface 137 * scsi_queue_insert() always assumes the queue should be unbusied 138 * because it's always called before the completion. This function is 139 * for a requeue after completion, which should only occur in this 140 * file. 141 */ 142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, 143 enum scsi_qc_status reason, bool unbusy) 144 { 145 struct scsi_device *device = cmd->device; 146 147 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 148 "Inserting command %p into mlqueue\n", cmd)); 149 150 scsi_set_blocked(cmd, reason); 151 152 /* 153 * Decrement the counters, since these commands are no longer 154 * active on the host/device. 155 */ 156 if (unbusy) 157 scsi_device_unbusy(device, cmd); 158 159 /* 160 * Requeue this command. It will go before all other commands 161 * that are already in the queue. Schedule requeue work under 162 * lock such that the kblockd_schedule_work() call happens 163 * before blk_mq_destroy_queue() finishes. 164 */ 165 cmd->result = 0; 166 167 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), 168 !scsi_host_in_recovery(cmd->device->host)); 169 } 170 171 /** 172 * scsi_queue_insert - Reinsert a command in the queue. 173 * @cmd: command that we are adding to queue. 174 * @reason: why we are inserting command to queue. 175 * 176 * We do this for one of two cases. Either the host is busy and it cannot accept 177 * any more commands for the time being, or the device returned QUEUE_FULL and 178 * can accept no more commands. 179 * 180 * Context: This could be called either from an interrupt context or a normal 181 * process context. 182 */ 183 void scsi_queue_insert(struct scsi_cmnd *cmd, enum scsi_qc_status reason) 184 { 185 __scsi_queue_insert(cmd, reason, true); 186 } 187 188 /** 189 * scsi_failures_reset_retries - reset all failures to zero 190 * @failures: &struct scsi_failures with specific failure modes set 191 */ 192 void scsi_failures_reset_retries(struct scsi_failures *failures) 193 { 194 struct scsi_failure *failure; 195 196 failures->total_retries = 0; 197 198 for (failure = failures->failure_definitions; failure->result; 199 failure++) 200 failure->retries = 0; 201 } 202 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries); 203 204 /** 205 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry. 206 * @scmd: scsi_cmnd to check. 207 * @failures: scsi_failures struct that lists failures to check for. 208 * 209 * Returns -EAGAIN if the caller should retry else 0. 210 */ 211 static int scsi_check_passthrough(struct scsi_cmnd *scmd, 212 struct scsi_failures *failures) 213 { 214 struct scsi_failure *failure; 215 struct scsi_sense_hdr sshdr; 216 enum sam_status status; 217 218 if (!scmd->result) 219 return 0; 220 221 if (!failures) 222 return 0; 223 224 for (failure = failures->failure_definitions; failure->result; 225 failure++) { 226 if (failure->result == SCMD_FAILURE_RESULT_ANY) 227 goto maybe_retry; 228 229 if (host_byte(scmd->result) && 230 host_byte(scmd->result) == host_byte(failure->result)) 231 goto maybe_retry; 232 233 status = status_byte(scmd->result); 234 if (!status) 235 continue; 236 237 if (failure->result == SCMD_FAILURE_STAT_ANY && 238 !scsi_status_is_good(scmd->result)) 239 goto maybe_retry; 240 241 if (status != status_byte(failure->result)) 242 continue; 243 244 if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION || 245 failure->sense == SCMD_FAILURE_SENSE_ANY) 246 goto maybe_retry; 247 248 if (!scsi_command_normalize_sense(scmd, &sshdr)) 249 return 0; 250 251 if (failure->sense != sshdr.sense_key) 252 continue; 253 254 if (failure->asc == SCMD_FAILURE_ASC_ANY) 255 goto maybe_retry; 256 257 if (failure->asc != sshdr.asc) 258 continue; 259 260 if (failure->ascq == SCMD_FAILURE_ASCQ_ANY || 261 failure->ascq == sshdr.ascq) 262 goto maybe_retry; 263 } 264 265 return 0; 266 267 maybe_retry: 268 if (failure->allowed) { 269 if (failure->allowed == SCMD_FAILURE_NO_LIMIT || 270 ++failure->retries <= failure->allowed) 271 return -EAGAIN; 272 } else { 273 if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT || 274 ++failures->total_retries <= failures->total_allowed) 275 return -EAGAIN; 276 } 277 278 return 0; 279 } 280 281 /** 282 * scsi_execute_cmd - insert request and wait for the result 283 * @sdev: scsi_device 284 * @cmd: scsi command 285 * @opf: block layer request cmd_flags 286 * @buffer: data buffer 287 * @bufflen: len of buffer 288 * @timeout: request timeout in HZ 289 * @ml_retries: number of times SCSI midlayer will retry request 290 * @args: Optional args. See struct definition for field descriptions 291 * 292 * Returns the scsi_cmnd result field if a command was executed, or a negative 293 * Linux error code if we didn't get that far. 294 */ 295 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd, 296 blk_opf_t opf, void *buffer, unsigned int bufflen, 297 int timeout, int ml_retries, 298 const struct scsi_exec_args *args) 299 { 300 static const struct scsi_exec_args default_args; 301 struct request *req; 302 struct scsi_cmnd *scmd; 303 int ret; 304 305 if (!args) 306 args = &default_args; 307 else if (WARN_ON_ONCE(args->sense && 308 args->sense_len != SCSI_SENSE_BUFFERSIZE)) 309 return -EINVAL; 310 311 retry: 312 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags); 313 if (IS_ERR(req)) 314 return PTR_ERR(req); 315 316 if (bufflen) { 317 ret = blk_rq_map_kern(req, buffer, bufflen, GFP_NOIO); 318 if (ret) 319 goto out; 320 } 321 scmd = blk_mq_rq_to_pdu(req); 322 scmd->cmd_len = COMMAND_SIZE(cmd[0]); 323 memcpy(scmd->cmnd, cmd, scmd->cmd_len); 324 scmd->allowed = ml_retries; 325 scmd->flags |= args->scmd_flags; 326 req->timeout = timeout; 327 req->rq_flags |= RQF_QUIET; 328 329 /* 330 * head injection *required* here otherwise quiesce won't work 331 */ 332 blk_execute_rq(req, true); 333 334 if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) { 335 blk_mq_free_request(req); 336 goto retry; 337 } 338 339 /* 340 * Some devices (USB mass-storage in particular) may transfer 341 * garbage data together with a residue indicating that the data 342 * is invalid. Prevent the garbage from being misinterpreted 343 * and prevent security leaks by zeroing out the excess data. 344 */ 345 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen)) 346 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len); 347 348 if (args->resid) 349 *args->resid = scmd->resid_len; 350 if (args->sense) 351 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE); 352 if (args->sshdr) 353 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len, 354 args->sshdr); 355 356 ret = scmd->result; 357 out: 358 blk_mq_free_request(req); 359 360 return ret; 361 } 362 EXPORT_SYMBOL(scsi_execute_cmd); 363 364 /* 365 * Wake up the error handler if necessary. Avoid as follows that the error 366 * handler is not woken up if host in-flight requests number == 367 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 368 * with an RCU read lock in this function to ensure that this function in 369 * its entirety either finishes before scsi_eh_scmd_add() increases the 370 * host_failed counter or that it notices the shost state change made by 371 * scsi_eh_scmd_add(). 372 */ 373 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 374 { 375 unsigned long flags; 376 377 rcu_read_lock(); 378 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 379 if (unlikely(scsi_host_in_recovery(shost))) { 380 /* 381 * Ensure the clear of SCMD_STATE_INFLIGHT is visible to 382 * other CPUs before counting busy requests. Otherwise, 383 * reordering can cause CPUs to race and miss an eh wakeup 384 * when no CPU sees all busy requests as done or timed out. 385 */ 386 smp_mb(); 387 388 unsigned int busy = scsi_host_busy(shost); 389 390 spin_lock_irqsave(shost->host_lock, flags); 391 if (shost->host_failed || shost->host_eh_scheduled) 392 scsi_eh_wakeup(shost, busy); 393 spin_unlock_irqrestore(shost->host_lock, flags); 394 } 395 rcu_read_unlock(); 396 } 397 398 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 399 { 400 struct Scsi_Host *shost = sdev->host; 401 struct scsi_target *starget = scsi_target(sdev); 402 403 scsi_dec_host_busy(shost, cmd); 404 405 if (starget->can_queue > 0) 406 atomic_dec(&starget->target_busy); 407 408 if (sdev->budget_map.map) 409 sbitmap_put(&sdev->budget_map, cmd->budget_token); 410 cmd->budget_token = -1; 411 } 412 413 /* 414 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with 415 * interrupts disabled. 416 */ 417 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data) 418 { 419 struct scsi_device *current_sdev = data; 420 421 if (sdev != current_sdev) 422 blk_mq_run_hw_queues(sdev->request_queue, true); 423 } 424 425 /* 426 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 427 * and call blk_run_queue for all the scsi_devices on the target - 428 * including current_sdev first. 429 * 430 * Called with *no* scsi locks held. 431 */ 432 static void scsi_single_lun_run(struct scsi_device *current_sdev) 433 { 434 struct Scsi_Host *shost = current_sdev->host; 435 struct scsi_target *starget = scsi_target(current_sdev); 436 unsigned long flags; 437 438 spin_lock_irqsave(shost->host_lock, flags); 439 starget->starget_sdev_user = NULL; 440 spin_unlock_irqrestore(shost->host_lock, flags); 441 442 /* 443 * Call blk_run_queue for all LUNs on the target, starting with 444 * current_sdev. We race with others (to set starget_sdev_user), 445 * but in most cases, we will be first. Ideally, each LU on the 446 * target would get some limited time or requests on the target. 447 */ 448 blk_mq_run_hw_queues(current_sdev->request_queue, 449 shost->queuecommand_may_block); 450 451 spin_lock_irqsave(shost->host_lock, flags); 452 if (!starget->starget_sdev_user) 453 __starget_for_each_device(starget, current_sdev, 454 scsi_kick_sdev_queue); 455 spin_unlock_irqrestore(shost->host_lock, flags); 456 } 457 458 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 459 { 460 if (scsi_device_busy(sdev) >= sdev->queue_depth) 461 return true; 462 if (atomic_read(&sdev->device_blocked) > 0) 463 return true; 464 return false; 465 } 466 467 static inline bool scsi_target_is_busy(struct scsi_target *starget) 468 { 469 if (starget->can_queue > 0) { 470 if (atomic_read(&starget->target_busy) >= starget->can_queue) 471 return true; 472 if (atomic_read(&starget->target_blocked) > 0) 473 return true; 474 } 475 return false; 476 } 477 478 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 479 { 480 if (atomic_read(&shost->host_blocked) > 0) 481 return true; 482 if (shost->host_self_blocked) 483 return true; 484 return false; 485 } 486 487 static void scsi_starved_list_run(struct Scsi_Host *shost) 488 { 489 LIST_HEAD(starved_list); 490 struct scsi_device *sdev; 491 unsigned long flags; 492 493 spin_lock_irqsave(shost->host_lock, flags); 494 list_splice_init(&shost->starved_list, &starved_list); 495 496 while (!list_empty(&starved_list)) { 497 struct request_queue *slq; 498 499 /* 500 * As long as shost is accepting commands and we have 501 * starved queues, call blk_run_queue. scsi_request_fn 502 * drops the queue_lock and can add us back to the 503 * starved_list. 504 * 505 * host_lock protects the starved_list and starved_entry. 506 * scsi_request_fn must get the host_lock before checking 507 * or modifying starved_list or starved_entry. 508 */ 509 if (scsi_host_is_busy(shost)) 510 break; 511 512 sdev = list_entry(starved_list.next, 513 struct scsi_device, starved_entry); 514 list_del_init(&sdev->starved_entry); 515 if (scsi_target_is_busy(scsi_target(sdev))) { 516 list_move_tail(&sdev->starved_entry, 517 &shost->starved_list); 518 continue; 519 } 520 521 /* 522 * Once we drop the host lock, a racing scsi_remove_device() 523 * call may remove the sdev from the starved list and destroy 524 * it and the queue. Mitigate by taking a reference to the 525 * queue and never touching the sdev again after we drop the 526 * host lock. Note: if __scsi_remove_device() invokes 527 * blk_mq_destroy_queue() before the queue is run from this 528 * function then blk_run_queue() will return immediately since 529 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING. 530 */ 531 slq = sdev->request_queue; 532 if (!blk_get_queue(slq)) 533 continue; 534 spin_unlock_irqrestore(shost->host_lock, flags); 535 536 blk_mq_run_hw_queues(slq, false); 537 blk_put_queue(slq); 538 539 spin_lock_irqsave(shost->host_lock, flags); 540 } 541 /* put any unprocessed entries back */ 542 list_splice(&starved_list, &shost->starved_list); 543 spin_unlock_irqrestore(shost->host_lock, flags); 544 } 545 546 /** 547 * scsi_run_queue - Select a proper request queue to serve next. 548 * @q: last request's queue 549 * 550 * The previous command was completely finished, start a new one if possible. 551 */ 552 static void scsi_run_queue(struct request_queue *q) 553 { 554 struct scsi_device *sdev = q->queuedata; 555 556 if (scsi_target(sdev)->single_lun) 557 scsi_single_lun_run(sdev); 558 if (!list_empty(&sdev->host->starved_list)) 559 scsi_starved_list_run(sdev->host); 560 561 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */ 562 blk_mq_kick_requeue_list(q); 563 } 564 565 void scsi_requeue_run_queue(struct work_struct *work) 566 { 567 struct scsi_device *sdev; 568 struct request_queue *q; 569 570 sdev = container_of(work, struct scsi_device, requeue_work); 571 q = sdev->request_queue; 572 scsi_run_queue(q); 573 } 574 575 void scsi_run_host_queues(struct Scsi_Host *shost) 576 { 577 struct scsi_device *sdev; 578 579 shost_for_each_device(sdev, shost) 580 scsi_run_queue(sdev->request_queue); 581 } 582 583 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 584 { 585 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) { 586 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 587 588 if (drv->uninit_command) 589 drv->uninit_command(cmd); 590 } 591 } 592 593 void scsi_free_sgtables(struct scsi_cmnd *cmd) 594 { 595 if (cmd->sdb.table.nents) 596 sg_free_table_chained(&cmd->sdb.table, 597 SCSI_INLINE_SG_CNT); 598 if (scsi_prot_sg_count(cmd)) 599 sg_free_table_chained(&cmd->prot_sdb->table, 600 SCSI_INLINE_PROT_SG_CNT); 601 } 602 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 603 604 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 605 { 606 scsi_free_sgtables(cmd); 607 scsi_uninit_cmd(cmd); 608 } 609 610 static void scsi_run_queue_async(struct scsi_device *sdev) 611 { 612 if (scsi_host_in_recovery(sdev->host)) 613 return; 614 615 if (scsi_target(sdev)->single_lun || 616 !list_empty(&sdev->host->starved_list)) { 617 kblockd_schedule_work(&sdev->requeue_work); 618 } else { 619 /* 620 * smp_mb() present in sbitmap_queue_clear() or implied in 621 * .end_io is for ordering writing .device_busy in 622 * scsi_device_unbusy() and reading sdev->restarts. 623 */ 624 int old = atomic_read(&sdev->restarts); 625 626 /* 627 * ->restarts has to be kept as non-zero if new budget 628 * contention occurs. 629 * 630 * No need to run queue when either another re-run 631 * queue wins in updating ->restarts or a new budget 632 * contention occurs. 633 */ 634 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 635 blk_mq_run_hw_queues(sdev->request_queue, true); 636 } 637 } 638 639 /* Returns false when no more bytes to process, true if there are more */ 640 static bool scsi_end_request(struct request *req, blk_status_t error, 641 unsigned int bytes) 642 { 643 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 644 struct scsi_device *sdev = cmd->device; 645 struct request_queue *q = sdev->request_queue; 646 647 if (blk_update_request(req, error, bytes)) 648 return true; 649 650 if (q->limits.features & BLK_FEAT_ADD_RANDOM) 651 add_disk_randomness(req->q->disk); 652 653 WARN_ON_ONCE(!blk_rq_is_passthrough(req) && 654 !(cmd->flags & SCMD_INITIALIZED)); 655 cmd->flags = 0; 656 657 /* 658 * Calling rcu_barrier() is not necessary here because the 659 * SCSI error handler guarantees that the function called by 660 * call_rcu() has been called before scsi_end_request() is 661 * called. 662 */ 663 destroy_rcu_head(&cmd->rcu); 664 665 /* 666 * In the MQ case the command gets freed by __blk_mq_end_request, 667 * so we have to do all cleanup that depends on it earlier. 668 * 669 * We also can't kick the queues from irq context, so we 670 * will have to defer it to a workqueue. 671 */ 672 scsi_mq_uninit_cmd(cmd); 673 674 /* 675 * queue is still alive, so grab the ref for preventing it 676 * from being cleaned up during running queue. 677 */ 678 percpu_ref_get(&q->q_usage_counter); 679 680 __blk_mq_end_request(req, error); 681 682 scsi_run_queue_async(sdev); 683 684 percpu_ref_put(&q->q_usage_counter); 685 return false; 686 } 687 688 /** 689 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 690 * @result: scsi error code 691 * 692 * Translate a SCSI result code into a blk_status_t value. 693 */ 694 static blk_status_t scsi_result_to_blk_status(int result) 695 { 696 /* 697 * Check the scsi-ml byte first in case we converted a host or status 698 * byte. 699 */ 700 switch (scsi_ml_byte(result)) { 701 case SCSIML_STAT_OK: 702 break; 703 case SCSIML_STAT_RESV_CONFLICT: 704 return BLK_STS_RESV_CONFLICT; 705 case SCSIML_STAT_NOSPC: 706 return BLK_STS_NOSPC; 707 case SCSIML_STAT_MED_ERROR: 708 return BLK_STS_MEDIUM; 709 case SCSIML_STAT_TGT_FAILURE: 710 return BLK_STS_TARGET; 711 case SCSIML_STAT_DL_TIMEOUT: 712 return BLK_STS_DURATION_LIMIT; 713 } 714 715 switch (host_byte(result)) { 716 case DID_OK: 717 if (scsi_status_is_good(result)) 718 return BLK_STS_OK; 719 return BLK_STS_IOERR; 720 case DID_TRANSPORT_FAILFAST: 721 case DID_TRANSPORT_MARGINAL: 722 return BLK_STS_TRANSPORT; 723 default: 724 return BLK_STS_IOERR; 725 } 726 } 727 728 /** 729 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary 730 * @rq: request to examine 731 * 732 * Description: 733 * A request could be merge of IOs which require different failure 734 * handling. This function determines the number of bytes which 735 * can be failed from the beginning of the request without 736 * crossing into area which need to be retried further. 737 * 738 * Return: 739 * The number of bytes to fail. 740 */ 741 static unsigned int scsi_rq_err_bytes(const struct request *rq) 742 { 743 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 744 unsigned int bytes = 0; 745 struct bio *bio; 746 747 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 748 return blk_rq_bytes(rq); 749 750 /* 751 * Currently the only 'mixing' which can happen is between 752 * different fastfail types. We can safely fail portions 753 * which have all the failfast bits that the first one has - 754 * the ones which are at least as eager to fail as the first 755 * one. 756 */ 757 for (bio = rq->bio; bio; bio = bio->bi_next) { 758 if ((bio->bi_opf & ff) != ff) 759 break; 760 bytes += bio->bi_iter.bi_size; 761 } 762 763 /* this could lead to infinite loop */ 764 BUG_ON(blk_rq_bytes(rq) && !bytes); 765 return bytes; 766 } 767 768 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 769 { 770 struct request *req = scsi_cmd_to_rq(cmd); 771 unsigned long wait_for; 772 773 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 774 return false; 775 776 wait_for = (cmd->allowed + 1) * req->timeout; 777 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 778 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 779 wait_for/HZ); 780 return true; 781 } 782 return false; 783 } 784 785 /* 786 * When ALUA transition state is returned, reprep the cmd to 787 * use the ALUA handler's transition timeout. Delay the reprep 788 * 1 sec to avoid aggressive retries of the target in that 789 * state. 790 */ 791 #define ALUA_TRANSITION_REPREP_DELAY 1000 792 793 /* Helper for scsi_io_completion() when special action required. */ 794 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 795 { 796 struct request *req = scsi_cmd_to_rq(cmd); 797 int level = 0; 798 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP, 799 ACTION_RETRY, ACTION_DELAYED_RETRY} action; 800 struct scsi_sense_hdr sshdr; 801 bool sense_valid; 802 bool sense_current = true; /* false implies "deferred sense" */ 803 blk_status_t blk_stat; 804 805 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 806 if (sense_valid) 807 sense_current = !scsi_sense_is_deferred(&sshdr); 808 809 blk_stat = scsi_result_to_blk_status(result); 810 811 if (host_byte(result) == DID_RESET) { 812 /* Third party bus reset or reset for error recovery 813 * reasons. Just retry the command and see what 814 * happens. 815 */ 816 action = ACTION_RETRY; 817 } else if (sense_valid && sense_current) { 818 switch (sshdr.sense_key) { 819 case UNIT_ATTENTION: 820 if (cmd->device->removable) { 821 /* Detected disc change. Set a bit 822 * and quietly refuse further access. 823 */ 824 cmd->device->changed = 1; 825 action = ACTION_FAIL; 826 } else { 827 /* Must have been a power glitch, or a 828 * bus reset. Could not have been a 829 * media change, so we just retry the 830 * command and see what happens. 831 */ 832 action = ACTION_RETRY; 833 } 834 break; 835 case ILLEGAL_REQUEST: 836 /* If we had an ILLEGAL REQUEST returned, then 837 * we may have performed an unsupported 838 * command. The only thing this should be 839 * would be a ten byte read where only a six 840 * byte read was supported. Also, on a system 841 * where READ CAPACITY failed, we may have 842 * read past the end of the disk. 843 */ 844 if ((cmd->device->use_10_for_rw && 845 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 846 (cmd->cmnd[0] == READ_10 || 847 cmd->cmnd[0] == WRITE_10)) { 848 /* This will issue a new 6-byte command. */ 849 cmd->device->use_10_for_rw = 0; 850 action = ACTION_REPREP; 851 } else if (sshdr.asc == 0x10) /* DIX */ { 852 action = ACTION_FAIL; 853 blk_stat = BLK_STS_PROTECTION; 854 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 855 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 856 action = ACTION_FAIL; 857 blk_stat = BLK_STS_TARGET; 858 } else 859 action = ACTION_FAIL; 860 break; 861 case ABORTED_COMMAND: 862 action = ACTION_FAIL; 863 if (sshdr.asc == 0x10) /* DIF */ 864 blk_stat = BLK_STS_PROTECTION; 865 break; 866 case NOT_READY: 867 /* If the device is in the process of becoming 868 * ready, or has a temporary blockage, retry. 869 */ 870 if (sshdr.asc == 0x04) { 871 switch (sshdr.ascq) { 872 case 0x01: /* becoming ready */ 873 case 0x04: /* format in progress */ 874 case 0x05: /* rebuild in progress */ 875 case 0x06: /* recalculation in progress */ 876 case 0x07: /* operation in progress */ 877 case 0x08: /* Long write in progress */ 878 case 0x09: /* self test in progress */ 879 case 0x11: /* notify (enable spinup) required */ 880 case 0x14: /* space allocation in progress */ 881 case 0x1a: /* start stop unit in progress */ 882 case 0x1b: /* sanitize in progress */ 883 case 0x1d: /* configuration in progress */ 884 action = ACTION_DELAYED_RETRY; 885 break; 886 case 0x0a: /* ALUA state transition */ 887 action = ACTION_DELAYED_REPREP; 888 break; 889 /* 890 * Depopulation might take many hours, 891 * thus it is not worthwhile to retry. 892 */ 893 case 0x24: /* depopulation in progress */ 894 case 0x25: /* depopulation restore in progress */ 895 fallthrough; 896 default: 897 action = ACTION_FAIL; 898 break; 899 } 900 } else 901 action = ACTION_FAIL; 902 break; 903 case VOLUME_OVERFLOW: 904 /* See SSC3rXX or current. */ 905 action = ACTION_FAIL; 906 break; 907 case DATA_PROTECT: 908 action = ACTION_FAIL; 909 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 910 (sshdr.asc == 0x55 && 911 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 912 /* Insufficient zone resources */ 913 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 914 } 915 break; 916 case COMPLETED: 917 fallthrough; 918 default: 919 action = ACTION_FAIL; 920 break; 921 } 922 } else 923 action = ACTION_FAIL; 924 925 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 926 action = ACTION_FAIL; 927 928 switch (action) { 929 case ACTION_FAIL: 930 /* Give up and fail the remainder of the request */ 931 if (!(req->rq_flags & RQF_QUIET)) { 932 static DEFINE_RATELIMIT_STATE(_rs, 933 DEFAULT_RATELIMIT_INTERVAL, 934 DEFAULT_RATELIMIT_BURST); 935 936 if (unlikely(scsi_logging_level)) 937 level = 938 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 939 SCSI_LOG_MLCOMPLETE_BITS); 940 941 /* 942 * if logging is enabled the failure will be printed 943 * in scsi_log_completion(), so avoid duplicate messages 944 */ 945 if (!level && __ratelimit(&_rs)) { 946 scsi_print_result(cmd, NULL, FAILED); 947 if (sense_valid) 948 scsi_print_sense(cmd); 949 scsi_print_command(cmd); 950 } 951 } 952 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req))) 953 return; 954 fallthrough; 955 case ACTION_REPREP: 956 scsi_mq_requeue_cmd(cmd, 0); 957 break; 958 case ACTION_DELAYED_REPREP: 959 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY); 960 break; 961 case ACTION_RETRY: 962 /* Retry the same command immediately */ 963 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 964 break; 965 case ACTION_DELAYED_RETRY: 966 /* Retry the same command after a delay */ 967 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 968 break; 969 } 970 } 971 972 /* 973 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 974 * new result that may suppress further error checking. Also modifies 975 * *blk_statp in some cases. 976 */ 977 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 978 blk_status_t *blk_statp) 979 { 980 bool sense_valid; 981 bool sense_current = true; /* false implies "deferred sense" */ 982 struct request *req = scsi_cmd_to_rq(cmd); 983 struct scsi_sense_hdr sshdr; 984 985 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 986 if (sense_valid) 987 sense_current = !scsi_sense_is_deferred(&sshdr); 988 989 if (blk_rq_is_passthrough(req)) { 990 if (sense_valid) { 991 /* 992 * SG_IO wants current and deferred errors 993 */ 994 cmd->sense_len = min(8 + cmd->sense_buffer[7], 995 SCSI_SENSE_BUFFERSIZE); 996 } 997 if (sense_current) 998 *blk_statp = scsi_result_to_blk_status(result); 999 } else if (blk_rq_bytes(req) == 0 && sense_current) { 1000 /* 1001 * Flush commands do not transfers any data, and thus cannot use 1002 * good_bytes != blk_rq_bytes(req) as the signal for an error. 1003 * This sets *blk_statp explicitly for the problem case. 1004 */ 1005 *blk_statp = scsi_result_to_blk_status(result); 1006 } 1007 /* 1008 * Recovered errors need reporting, but they're always treated as 1009 * success, so fiddle the result code here. For passthrough requests 1010 * we already took a copy of the original into sreq->result which 1011 * is what gets returned to the user 1012 */ 1013 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 1014 bool do_print = true; 1015 /* 1016 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 1017 * skip print since caller wants ATA registers. Only occurs 1018 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 1019 */ 1020 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 1021 do_print = false; 1022 else if (req->rq_flags & RQF_QUIET) 1023 do_print = false; 1024 if (do_print) 1025 scsi_print_sense(cmd); 1026 result = 0; 1027 /* for passthrough, *blk_statp may be set */ 1028 *blk_statp = BLK_STS_OK; 1029 } 1030 /* 1031 * Another corner case: the SCSI status byte is non-zero but 'good'. 1032 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 1033 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 1034 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 1035 * intermediate statuses (both obsolete in SAM-4) as good. 1036 */ 1037 if ((result & 0xff) && scsi_status_is_good(result)) { 1038 result = 0; 1039 *blk_statp = BLK_STS_OK; 1040 } 1041 return result; 1042 } 1043 1044 /** 1045 * scsi_io_completion - Completion processing for SCSI commands. 1046 * @cmd: command that is finished. 1047 * @good_bytes: number of processed bytes. 1048 * 1049 * We will finish off the specified number of sectors. If we are done, the 1050 * command block will be released and the queue function will be goosed. If we 1051 * are not done then we have to figure out what to do next: 1052 * 1053 * a) We can call scsi_mq_requeue_cmd(). The request will be 1054 * unprepared and put back on the queue. Then a new command will 1055 * be created for it. This should be used if we made forward 1056 * progress, or if we want to switch from READ(10) to READ(6) for 1057 * example. 1058 * 1059 * b) We can call scsi_io_completion_action(). The request will be 1060 * put back on the queue and retried using the same command as 1061 * before, possibly after a delay. 1062 * 1063 * c) We can call scsi_end_request() with blk_stat other than 1064 * BLK_STS_OK, to fail the remainder of the request. 1065 */ 1066 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 1067 { 1068 int result = cmd->result; 1069 struct request *req = scsi_cmd_to_rq(cmd); 1070 blk_status_t blk_stat = BLK_STS_OK; 1071 1072 if (unlikely(result)) /* a nz result may or may not be an error */ 1073 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 1074 1075 /* 1076 * Next deal with any sectors which we were able to correctly 1077 * handle. 1078 */ 1079 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 1080 "%u sectors total, %d bytes done.\n", 1081 blk_rq_sectors(req), good_bytes)); 1082 1083 /* 1084 * Failed, zero length commands always need to drop down 1085 * to retry code. Fast path should return in this block. 1086 */ 1087 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 1088 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 1089 return; /* no bytes remaining */ 1090 } 1091 1092 /* Kill remainder if no retries. */ 1093 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 1094 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 1095 WARN_ONCE(true, 1096 "Bytes remaining after failed, no-retry command"); 1097 return; 1098 } 1099 1100 /* 1101 * If there had been no error, but we have leftover bytes in the 1102 * request just queue the command up again. 1103 */ 1104 if (likely(result == 0)) 1105 scsi_mq_requeue_cmd(cmd, 0); 1106 else 1107 scsi_io_completion_action(cmd, result); 1108 } 1109 1110 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 1111 struct request *rq) 1112 { 1113 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 1114 !op_is_write(req_op(rq)) && 1115 sdev->host->hostt->dma_need_drain(rq); 1116 } 1117 1118 /** 1119 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 1120 * @cmd: SCSI command data structure to initialize. 1121 * 1122 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 1123 * for @cmd. 1124 * 1125 * Returns: 1126 * * BLK_STS_OK - on success 1127 * * BLK_STS_RESOURCE - if the failure is retryable 1128 * * BLK_STS_IOERR - if the failure is fatal 1129 */ 1130 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 1131 { 1132 struct scsi_device *sdev = cmd->device; 1133 struct request *rq = scsi_cmd_to_rq(cmd); 1134 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1135 struct scatterlist *last_sg = NULL; 1136 blk_status_t ret; 1137 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1138 int count; 1139 1140 if (WARN_ON_ONCE(!nr_segs)) 1141 return BLK_STS_IOERR; 1142 1143 /* 1144 * Make sure there is space for the drain. The driver must adjust 1145 * max_hw_segments to be prepared for this. 1146 */ 1147 if (need_drain) 1148 nr_segs++; 1149 1150 /* 1151 * If sg table allocation fails, requeue request later. 1152 */ 1153 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1154 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1155 return BLK_STS_RESOURCE; 1156 1157 /* 1158 * Next, walk the list, and fill in the addresses and sizes of 1159 * each segment. 1160 */ 1161 count = __blk_rq_map_sg(rq, cmd->sdb.table.sgl, &last_sg); 1162 1163 if (blk_rq_bytes(rq) & rq->q->limits.dma_pad_mask) { 1164 unsigned int pad_len = 1165 (rq->q->limits.dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1166 1167 last_sg->length += pad_len; 1168 cmd->extra_len += pad_len; 1169 } 1170 1171 if (need_drain) { 1172 sg_unmark_end(last_sg); 1173 last_sg = sg_next(last_sg); 1174 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1175 sg_mark_end(last_sg); 1176 1177 cmd->extra_len += sdev->dma_drain_len; 1178 count++; 1179 } 1180 1181 BUG_ON(count > cmd->sdb.table.nents); 1182 cmd->sdb.table.nents = count; 1183 cmd->sdb.length = blk_rq_payload_bytes(rq); 1184 1185 if (blk_integrity_rq(rq)) { 1186 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1187 1188 if (WARN_ON_ONCE(!prot_sdb)) { 1189 /* 1190 * This can happen if someone (e.g. multipath) 1191 * queues a command to a device on an adapter 1192 * that does not support DIX. 1193 */ 1194 ret = BLK_STS_IOERR; 1195 goto out_free_sgtables; 1196 } 1197 1198 if (sg_alloc_table_chained(&prot_sdb->table, 1199 rq->nr_integrity_segments, 1200 prot_sdb->table.sgl, 1201 SCSI_INLINE_PROT_SG_CNT)) { 1202 ret = BLK_STS_RESOURCE; 1203 goto out_free_sgtables; 1204 } 1205 1206 count = blk_rq_map_integrity_sg(rq, prot_sdb->table.sgl); 1207 cmd->prot_sdb = prot_sdb; 1208 cmd->prot_sdb->table.nents = count; 1209 } 1210 1211 return BLK_STS_OK; 1212 out_free_sgtables: 1213 scsi_free_sgtables(cmd); 1214 return ret; 1215 } 1216 EXPORT_SYMBOL(scsi_alloc_sgtables); 1217 1218 /** 1219 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1220 * @rq: Request associated with the SCSI command to be initialized. 1221 * 1222 * This function initializes the members of struct scsi_cmnd that must be 1223 * initialized before request processing starts and that won't be 1224 * reinitialized if a SCSI command is requeued. 1225 */ 1226 static void scsi_initialize_rq(struct request *rq) 1227 { 1228 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1229 1230 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1231 cmd->cmd_len = MAX_COMMAND_SIZE; 1232 cmd->sense_len = 0; 1233 init_rcu_head(&cmd->rcu); 1234 cmd->jiffies_at_alloc = jiffies; 1235 cmd->retries = 0; 1236 } 1237 1238 /** 1239 * scsi_alloc_request - allocate a block request and partially 1240 * initialize its &scsi_cmnd 1241 * @q: the device's request queue 1242 * @opf: the request operation code 1243 * @flags: block layer allocation flags 1244 * 1245 * Return: &struct request pointer on success or %NULL on failure 1246 */ 1247 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf, 1248 blk_mq_req_flags_t flags) 1249 { 1250 struct request *rq; 1251 1252 rq = blk_mq_alloc_request(q, opf, flags); 1253 if (!IS_ERR(rq)) 1254 scsi_initialize_rq(rq); 1255 return rq; 1256 } 1257 EXPORT_SYMBOL_GPL(scsi_alloc_request); 1258 1259 /* 1260 * Only called when the request isn't completed by SCSI, and not freed by 1261 * SCSI 1262 */ 1263 static void scsi_cleanup_rq(struct request *rq) 1264 { 1265 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1266 1267 cmd->flags = 0; 1268 1269 if (rq->rq_flags & RQF_DONTPREP) { 1270 scsi_mq_uninit_cmd(cmd); 1271 rq->rq_flags &= ~RQF_DONTPREP; 1272 } 1273 } 1274 1275 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1276 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1277 { 1278 struct request *rq = scsi_cmd_to_rq(cmd); 1279 1280 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) { 1281 cmd->flags |= SCMD_INITIALIZED; 1282 scsi_initialize_rq(rq); 1283 } 1284 1285 cmd->device = dev; 1286 INIT_LIST_HEAD(&cmd->eh_entry); 1287 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1288 } 1289 1290 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1291 struct request *req) 1292 { 1293 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1294 1295 /* 1296 * Passthrough requests may transfer data, in which case they must 1297 * a bio attached to them. Or they might contain a SCSI command 1298 * that does not transfer data, in which case they may optionally 1299 * submit a request without an attached bio. 1300 */ 1301 if (req->bio) { 1302 blk_status_t ret = scsi_alloc_sgtables(cmd); 1303 if (unlikely(ret != BLK_STS_OK)) 1304 return ret; 1305 } else { 1306 BUG_ON(blk_rq_bytes(req)); 1307 1308 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1309 } 1310 1311 cmd->transfersize = blk_rq_bytes(req); 1312 return BLK_STS_OK; 1313 } 1314 1315 static blk_status_t 1316 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1317 { 1318 switch (sdev->sdev_state) { 1319 case SDEV_CREATED: 1320 return BLK_STS_OK; 1321 case SDEV_OFFLINE: 1322 case SDEV_TRANSPORT_OFFLINE: 1323 /* 1324 * If the device is offline we refuse to process any 1325 * commands. The device must be brought online 1326 * before trying any recovery commands. 1327 */ 1328 if (!sdev->offline_already) { 1329 sdev->offline_already = true; 1330 sdev_printk(KERN_ERR, sdev, 1331 "rejecting I/O to offline device\n"); 1332 } 1333 return BLK_STS_IOERR; 1334 case SDEV_DEL: 1335 /* 1336 * If the device is fully deleted, we refuse to 1337 * process any commands as well. 1338 */ 1339 sdev_printk(KERN_ERR, sdev, 1340 "rejecting I/O to dead device\n"); 1341 return BLK_STS_IOERR; 1342 case SDEV_BLOCK: 1343 case SDEV_CREATED_BLOCK: 1344 return BLK_STS_RESOURCE; 1345 case SDEV_QUIESCE: 1346 /* 1347 * If the device is blocked we only accept power management 1348 * commands. 1349 */ 1350 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1351 return BLK_STS_RESOURCE; 1352 return BLK_STS_OK; 1353 default: 1354 /* 1355 * For any other not fully online state we only allow 1356 * power management commands. 1357 */ 1358 if (req && !(req->rq_flags & RQF_PM)) 1359 return BLK_STS_OFFLINE; 1360 return BLK_STS_OK; 1361 } 1362 } 1363 1364 /* 1365 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1366 * and return the token else return -1. 1367 */ 1368 static inline int scsi_dev_queue_ready(struct request_queue *q, 1369 struct scsi_device *sdev) 1370 { 1371 int token; 1372 1373 if (!sdev->budget_map.map) 1374 return INT_MAX; 1375 1376 token = sbitmap_get(&sdev->budget_map); 1377 if (token < 0) 1378 return -1; 1379 1380 if (!atomic_read(&sdev->device_blocked)) 1381 return token; 1382 1383 /* 1384 * Only unblock if no other commands are pending and 1385 * if device_blocked has decreased to zero 1386 */ 1387 if (scsi_device_busy(sdev) > 1 || 1388 atomic_dec_return(&sdev->device_blocked) > 0) { 1389 sbitmap_put(&sdev->budget_map, token); 1390 return -1; 1391 } 1392 1393 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1394 "unblocking device at zero depth\n")); 1395 1396 return token; 1397 } 1398 1399 /* 1400 * scsi_target_queue_ready: checks if there we can send commands to target 1401 * @sdev: scsi device on starget to check. 1402 */ 1403 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1404 struct scsi_device *sdev) 1405 { 1406 struct scsi_target *starget = scsi_target(sdev); 1407 unsigned int busy; 1408 1409 if (starget->single_lun) { 1410 spin_lock_irq(shost->host_lock); 1411 if (starget->starget_sdev_user && 1412 starget->starget_sdev_user != sdev) { 1413 spin_unlock_irq(shost->host_lock); 1414 return 0; 1415 } 1416 starget->starget_sdev_user = sdev; 1417 spin_unlock_irq(shost->host_lock); 1418 } 1419 1420 if (starget->can_queue <= 0) 1421 return 1; 1422 1423 busy = atomic_inc_return(&starget->target_busy) - 1; 1424 if (atomic_read(&starget->target_blocked) > 0) { 1425 if (busy) 1426 goto starved; 1427 1428 /* 1429 * unblock after target_blocked iterates to zero 1430 */ 1431 if (atomic_dec_return(&starget->target_blocked) > 0) 1432 goto out_dec; 1433 1434 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1435 "unblocking target at zero depth\n")); 1436 } 1437 1438 if (busy >= starget->can_queue) 1439 goto starved; 1440 1441 return 1; 1442 1443 starved: 1444 spin_lock_irq(shost->host_lock); 1445 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1446 spin_unlock_irq(shost->host_lock); 1447 out_dec: 1448 if (starget->can_queue > 0) 1449 atomic_dec(&starget->target_busy); 1450 return 0; 1451 } 1452 1453 /* 1454 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1455 * return 0. We must end up running the queue again whenever 0 is 1456 * returned, else IO can hang. 1457 */ 1458 static inline int scsi_host_queue_ready(struct request_queue *q, 1459 struct Scsi_Host *shost, 1460 struct scsi_device *sdev, 1461 struct scsi_cmnd *cmd) 1462 { 1463 if (atomic_read(&shost->host_blocked) > 0) { 1464 if (scsi_host_busy(shost) > 0) 1465 goto starved; 1466 1467 /* 1468 * unblock after host_blocked iterates to zero 1469 */ 1470 if (atomic_dec_return(&shost->host_blocked) > 0) 1471 goto out_dec; 1472 1473 SCSI_LOG_MLQUEUE(3, 1474 shost_printk(KERN_INFO, shost, 1475 "unblocking host at zero depth\n")); 1476 } 1477 1478 if (shost->host_self_blocked) 1479 goto starved; 1480 1481 /* We're OK to process the command, so we can't be starved */ 1482 if (!list_empty(&sdev->starved_entry)) { 1483 spin_lock_irq(shost->host_lock); 1484 if (!list_empty(&sdev->starved_entry)) 1485 list_del_init(&sdev->starved_entry); 1486 spin_unlock_irq(shost->host_lock); 1487 } 1488 1489 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1490 1491 return 1; 1492 1493 starved: 1494 spin_lock_irq(shost->host_lock); 1495 if (list_empty(&sdev->starved_entry)) 1496 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1497 spin_unlock_irq(shost->host_lock); 1498 out_dec: 1499 scsi_dec_host_busy(shost, cmd); 1500 return 0; 1501 } 1502 1503 /* 1504 * Busy state exporting function for request stacking drivers. 1505 * 1506 * For efficiency, no lock is taken to check the busy state of 1507 * shost/starget/sdev, since the returned value is not guaranteed and 1508 * may be changed after request stacking drivers call the function, 1509 * regardless of taking lock or not. 1510 * 1511 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1512 * needs to return 'not busy'. Otherwise, request stacking drivers 1513 * may hold requests forever. 1514 */ 1515 static bool scsi_mq_lld_busy(struct request_queue *q) 1516 { 1517 struct scsi_device *sdev = q->queuedata; 1518 struct Scsi_Host *shost; 1519 1520 if (blk_queue_dying(q)) 1521 return false; 1522 1523 shost = sdev->host; 1524 1525 /* 1526 * Ignore host/starget busy state. 1527 * Since block layer does not have a concept of fairness across 1528 * multiple queues, congestion of host/starget needs to be handled 1529 * in SCSI layer. 1530 */ 1531 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1532 return true; 1533 1534 return false; 1535 } 1536 1537 /* 1538 * Block layer request completion callback. May be called from interrupt 1539 * context. 1540 */ 1541 static void scsi_complete(struct request *rq) 1542 { 1543 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1544 enum scsi_disposition disposition; 1545 1546 if (blk_mq_is_reserved_rq(rq)) { 1547 /* Only pass-through requests are supported in this code path. */ 1548 WARN_ON_ONCE(!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))); 1549 scsi_mq_uninit_cmd(cmd); 1550 __blk_mq_end_request(rq, scsi_result_to_blk_status(cmd->result)); 1551 return; 1552 } 1553 1554 INIT_LIST_HEAD(&cmd->eh_entry); 1555 1556 atomic_inc(&cmd->device->iodone_cnt); 1557 if (cmd->result) 1558 atomic_inc(&cmd->device->ioerr_cnt); 1559 1560 disposition = scsi_decide_disposition(cmd); 1561 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1562 disposition = SUCCESS; 1563 1564 scsi_log_completion(cmd, disposition); 1565 1566 switch (disposition) { 1567 case SUCCESS: 1568 scsi_finish_command(cmd); 1569 break; 1570 case NEEDS_RETRY: 1571 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1572 break; 1573 case ADD_TO_MLQUEUE: 1574 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1575 break; 1576 default: 1577 scsi_eh_scmd_add(cmd); 1578 break; 1579 } 1580 } 1581 1582 /** 1583 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1584 * @cmd: command block we are dispatching. 1585 * 1586 * Return: nonzero return request was rejected and device's queue needs to be 1587 * plugged. 1588 */ 1589 static enum scsi_qc_status scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1590 { 1591 struct Scsi_Host *host = cmd->device->host; 1592 int rtn = 0; 1593 1594 atomic_inc(&cmd->device->iorequest_cnt); 1595 1596 /* check if the device is still usable */ 1597 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1598 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1599 * returns an immediate error upwards, and signals 1600 * that the device is no longer present */ 1601 cmd->result = DID_NO_CONNECT << 16; 1602 goto done; 1603 } 1604 1605 /* Check to see if the scsi lld made this device blocked. */ 1606 if (unlikely(scsi_device_blocked(cmd->device))) { 1607 /* 1608 * in blocked state, the command is just put back on 1609 * the device queue. The suspend state has already 1610 * blocked the queue so future requests should not 1611 * occur until the device transitions out of the 1612 * suspend state. 1613 */ 1614 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1615 "queuecommand : device blocked\n")); 1616 atomic_dec(&cmd->device->iorequest_cnt); 1617 return SCSI_MLQUEUE_DEVICE_BUSY; 1618 } 1619 1620 /* Store the LUN value in cmnd, if needed. */ 1621 if (cmd->device->lun_in_cdb) 1622 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1623 (cmd->device->lun << 5 & 0xe0); 1624 1625 scsi_log_send(cmd); 1626 1627 /* 1628 * Before we queue this command, check if the command 1629 * length exceeds what the host adapter can handle. 1630 */ 1631 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1632 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1633 "queuecommand : command too long. " 1634 "cdb_size=%d host->max_cmd_len=%d\n", 1635 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1636 cmd->result = (DID_ABORT << 16); 1637 goto done; 1638 } 1639 1640 if (unlikely(host->shost_state == SHOST_DEL)) { 1641 cmd->result = (DID_NO_CONNECT << 16); 1642 goto done; 1643 1644 } 1645 1646 trace_scsi_dispatch_cmd_start(cmd); 1647 rtn = host->hostt->queuecommand(host, cmd); 1648 if (rtn) { 1649 atomic_dec(&cmd->device->iorequest_cnt); 1650 trace_scsi_dispatch_cmd_error(cmd, rtn); 1651 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1652 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1653 rtn = SCSI_MLQUEUE_HOST_BUSY; 1654 1655 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1656 "queuecommand : request rejected\n")); 1657 } 1658 1659 return rtn; 1660 done: 1661 scsi_done(cmd); 1662 return 0; 1663 } 1664 1665 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1666 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1667 { 1668 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1669 sizeof(struct scatterlist); 1670 } 1671 1672 static blk_status_t scsi_prepare_cmd(struct request *req) 1673 { 1674 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1675 struct scsi_device *sdev = req->q->queuedata; 1676 struct Scsi_Host *shost = sdev->host; 1677 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1678 struct scatterlist *sg; 1679 1680 scsi_init_command(sdev, cmd); 1681 1682 cmd->eh_eflags = 0; 1683 cmd->prot_type = 0; 1684 cmd->prot_flags = 0; 1685 cmd->submitter = 0; 1686 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1687 cmd->underflow = 0; 1688 cmd->transfersize = 0; 1689 cmd->host_scribble = NULL; 1690 cmd->result = 0; 1691 cmd->extra_len = 0; 1692 cmd->state = 0; 1693 if (in_flight) 1694 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1695 1696 cmd->prot_op = SCSI_PROT_NORMAL; 1697 if (blk_rq_bytes(req)) 1698 cmd->sc_data_direction = rq_dma_dir(req); 1699 else 1700 cmd->sc_data_direction = DMA_NONE; 1701 1702 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1703 cmd->sdb.table.sgl = sg; 1704 1705 if (scsi_host_get_prot(shost)) { 1706 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1707 1708 cmd->prot_sdb->table.sgl = 1709 (struct scatterlist *)(cmd->prot_sdb + 1); 1710 } 1711 1712 /* 1713 * Special handling for passthrough commands, which don't go to the ULP 1714 * at all: 1715 */ 1716 if (blk_rq_is_passthrough(req)) 1717 return scsi_setup_scsi_cmnd(sdev, req); 1718 1719 if (sdev->handler && sdev->handler->prep_fn) { 1720 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1721 1722 if (ret != BLK_STS_OK) 1723 return ret; 1724 } 1725 1726 /* Usually overridden by the ULP */ 1727 cmd->allowed = 0; 1728 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1729 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1730 } 1731 1732 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly) 1733 { 1734 struct request *req = scsi_cmd_to_rq(cmd); 1735 1736 switch (cmd->submitter) { 1737 case SUBMITTED_BY_BLOCK_LAYER: 1738 break; 1739 case SUBMITTED_BY_SCSI_ERROR_HANDLER: 1740 return scsi_eh_done(cmd); 1741 case SUBMITTED_BY_SCSI_RESET_IOCTL: 1742 return; 1743 } 1744 1745 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q))) 1746 return; 1747 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1748 return; 1749 trace_scsi_dispatch_cmd_done(cmd); 1750 1751 if (complete_directly) 1752 blk_mq_complete_request_direct(req, scsi_complete); 1753 else 1754 blk_mq_complete_request(req); 1755 } 1756 1757 void scsi_done(struct scsi_cmnd *cmd) 1758 { 1759 scsi_done_internal(cmd, false); 1760 } 1761 EXPORT_SYMBOL(scsi_done); 1762 1763 void scsi_done_direct(struct scsi_cmnd *cmd) 1764 { 1765 scsi_done_internal(cmd, true); 1766 } 1767 EXPORT_SYMBOL(scsi_done_direct); 1768 1769 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1770 { 1771 struct scsi_device *sdev = q->queuedata; 1772 1773 if (sdev->budget_map.map) 1774 sbitmap_put(&sdev->budget_map, budget_token); 1775 } 1776 1777 /* 1778 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 1779 * not change behaviour from the previous unplug mechanism, experimentation 1780 * may prove this needs changing. 1781 */ 1782 #define SCSI_QUEUE_DELAY 3 1783 1784 static int scsi_mq_get_budget(struct request_queue *q) 1785 { 1786 struct scsi_device *sdev = q->queuedata; 1787 int token = scsi_dev_queue_ready(q, sdev); 1788 1789 if (token >= 0) 1790 return token; 1791 1792 atomic_inc(&sdev->restarts); 1793 1794 /* 1795 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1796 * .restarts must be incremented before .device_busy is read because the 1797 * code in scsi_run_queue_async() depends on the order of these operations. 1798 */ 1799 smp_mb__after_atomic(); 1800 1801 /* 1802 * If all in-flight requests originated from this LUN are completed 1803 * before reading .device_busy, sdev->device_busy will be observed as 1804 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1805 * soon. Otherwise, completion of one of these requests will observe 1806 * the .restarts flag, and the request queue will be run for handling 1807 * this request, see scsi_end_request(). 1808 */ 1809 if (unlikely(scsi_device_busy(sdev) == 0 && 1810 !scsi_device_blocked(sdev))) 1811 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1812 return -1; 1813 } 1814 1815 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1816 { 1817 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1818 1819 cmd->budget_token = token; 1820 } 1821 1822 static int scsi_mq_get_rq_budget_token(struct request *req) 1823 { 1824 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1825 1826 return cmd->budget_token; 1827 } 1828 1829 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1830 const struct blk_mq_queue_data *bd) 1831 { 1832 struct request *req = bd->rq; 1833 struct request_queue *q = req->q; 1834 struct scsi_device *sdev = q->queuedata; 1835 struct Scsi_Host *shost = sdev->host; 1836 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1837 blk_status_t ret; 1838 enum scsi_qc_status reason; 1839 1840 WARN_ON_ONCE(cmd->budget_token < 0); 1841 1842 /* 1843 * Bypass the SCSI device, SCSI target and SCSI host checks for 1844 * reserved commands. 1845 */ 1846 if (!blk_mq_is_reserved_rq(req)) { 1847 /* 1848 * If the device is not in running state we will reject some or 1849 * all commands. 1850 */ 1851 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1852 ret = scsi_device_state_check(sdev, req); 1853 if (ret != BLK_STS_OK) 1854 goto out_put_budget; 1855 } 1856 1857 ret = BLK_STS_RESOURCE; 1858 if (!scsi_target_queue_ready(shost, sdev)) 1859 goto out_put_budget; 1860 if (unlikely(scsi_host_in_recovery(shost))) { 1861 if (cmd->flags & SCMD_FAIL_IF_RECOVERING) 1862 ret = BLK_STS_OFFLINE; 1863 goto out_dec_target_busy; 1864 } 1865 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1866 goto out_dec_target_busy; 1867 } 1868 1869 /* 1870 * Only clear the driver-private command data if the LLD does not supply 1871 * a function to initialize that data. 1872 */ 1873 if (shost->hostt->cmd_size && !shost->hostt->init_cmd_priv) 1874 memset(scsi_cmd_priv(cmd), 0, shost->hostt->cmd_size); 1875 1876 if (!(req->rq_flags & RQF_DONTPREP)) { 1877 ret = scsi_prepare_cmd(req); 1878 if (ret != BLK_STS_OK) 1879 goto out_dec_host_busy; 1880 req->rq_flags |= RQF_DONTPREP; 1881 } else { 1882 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1883 } 1884 1885 cmd->flags &= SCMD_PRESERVED_FLAGS; 1886 if (sdev->simple_tags) 1887 cmd->flags |= SCMD_TAGGED; 1888 if (bd->last) 1889 cmd->flags |= SCMD_LAST; 1890 1891 scsi_set_resid(cmd, 0); 1892 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1893 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER; 1894 1895 blk_mq_start_request(req); 1896 if (blk_mq_is_reserved_rq(req)) { 1897 reason = shost->hostt->queue_reserved_command(shost, cmd); 1898 if (reason) { 1899 ret = BLK_STS_RESOURCE; 1900 goto out_put_budget; 1901 } 1902 return BLK_STS_OK; 1903 } 1904 reason = scsi_dispatch_cmd(cmd); 1905 if (reason) { 1906 scsi_set_blocked(cmd, reason); 1907 ret = BLK_STS_RESOURCE; 1908 goto out_dec_host_busy; 1909 } 1910 1911 return BLK_STS_OK; 1912 1913 out_dec_host_busy: 1914 scsi_dec_host_busy(shost, cmd); 1915 out_dec_target_busy: 1916 if (scsi_target(sdev)->can_queue > 0) 1917 atomic_dec(&scsi_target(sdev)->target_busy); 1918 out_put_budget: 1919 scsi_mq_put_budget(q, cmd->budget_token); 1920 cmd->budget_token = -1; 1921 switch (ret) { 1922 case BLK_STS_OK: 1923 break; 1924 case BLK_STS_RESOURCE: 1925 if (scsi_device_blocked(sdev)) 1926 ret = BLK_STS_DEV_RESOURCE; 1927 break; 1928 case BLK_STS_AGAIN: 1929 cmd->result = DID_BUS_BUSY << 16; 1930 if (req->rq_flags & RQF_DONTPREP) 1931 scsi_mq_uninit_cmd(cmd); 1932 break; 1933 default: 1934 if (unlikely(!scsi_device_online(sdev))) 1935 cmd->result = DID_NO_CONNECT << 16; 1936 else 1937 cmd->result = DID_ERROR << 16; 1938 /* 1939 * Make sure to release all allocated resources when 1940 * we hit an error, as we will never see this command 1941 * again. 1942 */ 1943 if (req->rq_flags & RQF_DONTPREP) 1944 scsi_mq_uninit_cmd(cmd); 1945 scsi_run_queue_async(sdev); 1946 break; 1947 } 1948 return ret; 1949 } 1950 1951 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1952 unsigned int hctx_idx, unsigned int numa_node) 1953 { 1954 struct Scsi_Host *shost = set->driver_data; 1955 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1956 struct scatterlist *sg; 1957 int ret = 0; 1958 1959 cmd->sense_buffer = 1960 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1961 if (!cmd->sense_buffer) 1962 return -ENOMEM; 1963 1964 if (scsi_host_get_prot(shost)) { 1965 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1966 shost->hostt->cmd_size; 1967 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1968 } 1969 1970 if (shost->hostt->init_cmd_priv) { 1971 ret = shost->hostt->init_cmd_priv(shost, cmd); 1972 if (ret < 0) 1973 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1974 } 1975 1976 return ret; 1977 } 1978 1979 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1980 unsigned int hctx_idx) 1981 { 1982 struct Scsi_Host *shost = set->driver_data; 1983 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1984 1985 if (shost->hostt->exit_cmd_priv) 1986 shost->hostt->exit_cmd_priv(shost, cmd); 1987 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1988 } 1989 1990 1991 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1992 { 1993 struct Scsi_Host *shost = hctx->driver_data; 1994 1995 if (shost->hostt->mq_poll) 1996 return shost->hostt->mq_poll(shost, hctx->queue_num); 1997 1998 return 0; 1999 } 2000 2001 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 2002 unsigned int hctx_idx) 2003 { 2004 struct Scsi_Host *shost = data; 2005 2006 hctx->driver_data = shost; 2007 return 0; 2008 } 2009 2010 static void scsi_map_queues(struct blk_mq_tag_set *set) 2011 { 2012 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2013 2014 if (shost->hostt->map_queues) 2015 return shost->hostt->map_queues(shost); 2016 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2017 } 2018 2019 void scsi_init_limits(struct Scsi_Host *shost, struct queue_limits *lim) 2020 { 2021 struct device *dev = shost->dma_dev; 2022 2023 memset(lim, 0, sizeof(*lim)); 2024 lim->max_segments = 2025 min_t(unsigned short, shost->sg_tablesize, SG_MAX_SEGMENTS); 2026 2027 if (scsi_host_prot_dma(shost)) { 2028 shost->sg_prot_tablesize = 2029 min_not_zero(shost->sg_prot_tablesize, 2030 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2031 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2032 lim->max_integrity_segments = shost->sg_prot_tablesize; 2033 } 2034 2035 lim->max_hw_sectors = shost->max_sectors; 2036 lim->seg_boundary_mask = shost->dma_boundary; 2037 lim->max_segment_size = shost->max_segment_size; 2038 lim->virt_boundary_mask = shost->virt_boundary_mask; 2039 lim->dma_alignment = max_t(unsigned int, 2040 shost->dma_alignment, dma_get_cache_alignment() - 1); 2041 2042 /* 2043 * Propagate the DMA formation properties to the dma-mapping layer as 2044 * a courtesy service to the LLDDs. This needs to check that the buses 2045 * actually support the DMA API first, though. 2046 */ 2047 if (dev->dma_parms) { 2048 dma_set_seg_boundary(dev, shost->dma_boundary); 2049 dma_set_max_seg_size(dev, shost->max_segment_size); 2050 } 2051 } 2052 EXPORT_SYMBOL_GPL(scsi_init_limits); 2053 2054 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 2055 .get_budget = scsi_mq_get_budget, 2056 .put_budget = scsi_mq_put_budget, 2057 .queue_rq = scsi_queue_rq, 2058 .complete = scsi_complete, 2059 .timeout = scsi_timeout, 2060 #ifdef CONFIG_BLK_DEBUG_FS 2061 .show_rq = scsi_show_rq, 2062 #endif 2063 .init_request = scsi_mq_init_request, 2064 .exit_request = scsi_mq_exit_request, 2065 .cleanup_rq = scsi_cleanup_rq, 2066 .busy = scsi_mq_lld_busy, 2067 .map_queues = scsi_map_queues, 2068 .init_hctx = scsi_init_hctx, 2069 .poll = scsi_mq_poll, 2070 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 2071 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 2072 }; 2073 2074 2075 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 2076 { 2077 struct Scsi_Host *shost = hctx->driver_data; 2078 2079 shost->hostt->commit_rqs(shost, hctx->queue_num); 2080 } 2081 2082 static const struct blk_mq_ops scsi_mq_ops = { 2083 .get_budget = scsi_mq_get_budget, 2084 .put_budget = scsi_mq_put_budget, 2085 .queue_rq = scsi_queue_rq, 2086 .commit_rqs = scsi_commit_rqs, 2087 .complete = scsi_complete, 2088 .timeout = scsi_timeout, 2089 #ifdef CONFIG_BLK_DEBUG_FS 2090 .show_rq = scsi_show_rq, 2091 #endif 2092 .init_request = scsi_mq_init_request, 2093 .exit_request = scsi_mq_exit_request, 2094 .cleanup_rq = scsi_cleanup_rq, 2095 .busy = scsi_mq_lld_busy, 2096 .map_queues = scsi_map_queues, 2097 .init_hctx = scsi_init_hctx, 2098 .poll = scsi_mq_poll, 2099 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 2100 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 2101 }; 2102 2103 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2104 { 2105 unsigned int cmd_size, sgl_size; 2106 struct blk_mq_tag_set *tag_set = &shost->tag_set; 2107 2108 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 2109 scsi_mq_inline_sgl_size(shost)); 2110 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2111 if (scsi_host_get_prot(shost)) 2112 cmd_size += sizeof(struct scsi_data_buffer) + 2113 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 2114 2115 memset(tag_set, 0, sizeof(*tag_set)); 2116 if (shost->hostt->commit_rqs) 2117 tag_set->ops = &scsi_mq_ops; 2118 else 2119 tag_set->ops = &scsi_mq_ops_no_commit; 2120 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 2121 tag_set->nr_maps = shost->nr_maps ? : 1; 2122 tag_set->queue_depth = shost->can_queue + shost->nr_reserved_cmds; 2123 tag_set->reserved_tags = shost->nr_reserved_cmds; 2124 tag_set->cmd_size = cmd_size; 2125 tag_set->numa_node = dev_to_node(shost->dma_dev); 2126 if (shost->hostt->tag_alloc_policy_rr) 2127 tag_set->flags |= BLK_MQ_F_TAG_RR; 2128 if (shost->queuecommand_may_block) 2129 tag_set->flags |= BLK_MQ_F_BLOCKING; 2130 tag_set->driver_data = shost; 2131 if (shost->host_tagset) 2132 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 2133 2134 return blk_mq_alloc_tag_set(tag_set); 2135 } 2136 2137 void scsi_mq_free_tags(struct kref *kref) 2138 { 2139 struct Scsi_Host *shost = container_of(kref, typeof(*shost), 2140 tagset_refcnt); 2141 2142 blk_mq_free_tag_set(&shost->tag_set); 2143 complete(&shost->tagset_freed); 2144 } 2145 2146 /** 2147 * scsi_get_internal_cmd() - Allocate an internal SCSI command. 2148 * @sdev: SCSI device from which to allocate the command 2149 * @data_direction: Data direction for the allocated command 2150 * @flags: request allocation flags, e.g. BLK_MQ_REQ_RESERVED or 2151 * BLK_MQ_REQ_NOWAIT. 2152 * 2153 * Allocates a SCSI command for internal LLDD use. 2154 */ 2155 struct scsi_cmnd *scsi_get_internal_cmd(struct scsi_device *sdev, 2156 enum dma_data_direction data_direction, 2157 blk_mq_req_flags_t flags) 2158 { 2159 enum req_op op = data_direction == DMA_TO_DEVICE ? REQ_OP_DRV_OUT : 2160 REQ_OP_DRV_IN; 2161 struct scsi_cmnd *scmd; 2162 struct request *rq; 2163 2164 rq = scsi_alloc_request(sdev->request_queue, op, flags); 2165 if (IS_ERR(rq)) 2166 return NULL; 2167 scmd = blk_mq_rq_to_pdu(rq); 2168 scmd->device = sdev; 2169 2170 return scmd; 2171 } 2172 EXPORT_SYMBOL_GPL(scsi_get_internal_cmd); 2173 2174 /** 2175 * scsi_put_internal_cmd() - Free an internal SCSI command. 2176 * @scmd: SCSI command to be freed 2177 */ 2178 void scsi_put_internal_cmd(struct scsi_cmnd *scmd) 2179 { 2180 blk_mq_free_request(blk_mq_rq_from_pdu(scmd)); 2181 } 2182 EXPORT_SYMBOL_GPL(scsi_put_internal_cmd); 2183 2184 /** 2185 * scsi_device_from_queue - return sdev associated with a request_queue 2186 * @q: The request queue to return the sdev from 2187 * 2188 * Return the sdev associated with a request queue or NULL if the 2189 * request_queue does not reference a SCSI device. 2190 */ 2191 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2192 { 2193 struct scsi_device *sdev = NULL; 2194 2195 if (q->mq_ops == &scsi_mq_ops_no_commit || 2196 q->mq_ops == &scsi_mq_ops) 2197 sdev = q->queuedata; 2198 if (!sdev || !get_device(&sdev->sdev_gendev)) 2199 sdev = NULL; 2200 2201 return sdev; 2202 } 2203 /* 2204 * pktcdvd should have been integrated into the SCSI layers, but for historical 2205 * reasons like the old IDE driver it isn't. This export allows it to safely 2206 * probe if a given device is a SCSI one and only attach to that. 2207 */ 2208 #ifdef CONFIG_CDROM_PKTCDVD_MODULE 2209 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2210 #endif 2211 2212 /** 2213 * scsi_block_requests - Utility function used by low-level drivers to prevent 2214 * further commands from being queued to the device. 2215 * @shost: host in question 2216 * 2217 * There is no timer nor any other means by which the requests get unblocked 2218 * other than the low-level driver calling scsi_unblock_requests(). 2219 */ 2220 void scsi_block_requests(struct Scsi_Host *shost) 2221 { 2222 shost->host_self_blocked = 1; 2223 } 2224 EXPORT_SYMBOL(scsi_block_requests); 2225 2226 /** 2227 * scsi_unblock_requests - Utility function used by low-level drivers to allow 2228 * further commands to be queued to the device. 2229 * @shost: host in question 2230 * 2231 * There is no timer nor any other means by which the requests get unblocked 2232 * other than the low-level driver calling scsi_unblock_requests(). This is done 2233 * as an API function so that changes to the internals of the scsi mid-layer 2234 * won't require wholesale changes to drivers that use this feature. 2235 */ 2236 void scsi_unblock_requests(struct Scsi_Host *shost) 2237 { 2238 shost->host_self_blocked = 0; 2239 scsi_run_host_queues(shost); 2240 } 2241 EXPORT_SYMBOL(scsi_unblock_requests); 2242 2243 void scsi_exit_queue(void) 2244 { 2245 kmem_cache_destroy(scsi_sense_cache); 2246 } 2247 2248 /** 2249 * scsi_mode_select - issue a mode select 2250 * @sdev: SCSI device to be queried 2251 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2252 * @sp: Save page bit (0 == don't save, 1 == save) 2253 * @buffer: request buffer (may not be smaller than eight bytes) 2254 * @len: length of request buffer. 2255 * @timeout: command timeout 2256 * @retries: number of retries before failing 2257 * @data: returns a structure abstracting the mode header data 2258 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2259 * must be SCSI_SENSE_BUFFERSIZE big. 2260 * 2261 * Returns zero if successful; negative error number or scsi 2262 * status on error 2263 * 2264 */ 2265 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, 2266 unsigned char *buffer, int len, int timeout, int retries, 2267 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2268 { 2269 unsigned char cmd[10]; 2270 unsigned char *real_buffer; 2271 const struct scsi_exec_args exec_args = { 2272 .sshdr = sshdr, 2273 }; 2274 int ret; 2275 2276 memset(cmd, 0, sizeof(cmd)); 2277 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2278 2279 /* 2280 * Use MODE SELECT(10) if the device asked for it or if the mode page 2281 * and the mode select header cannot fit within the maximumm 255 bytes 2282 * of the MODE SELECT(6) command. 2283 */ 2284 if (sdev->use_10_for_ms || 2285 len + 4 > 255 || 2286 data->block_descriptor_length > 255) { 2287 if (len > 65535 - 8) 2288 return -EINVAL; 2289 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2290 if (!real_buffer) 2291 return -ENOMEM; 2292 memcpy(real_buffer + 8, buffer, len); 2293 len += 8; 2294 real_buffer[0] = 0; 2295 real_buffer[1] = 0; 2296 real_buffer[2] = data->medium_type; 2297 real_buffer[3] = data->device_specific; 2298 real_buffer[4] = data->longlba ? 0x01 : 0; 2299 real_buffer[5] = 0; 2300 put_unaligned_be16(data->block_descriptor_length, 2301 &real_buffer[6]); 2302 2303 cmd[0] = MODE_SELECT_10; 2304 put_unaligned_be16(len, &cmd[7]); 2305 } else { 2306 if (data->longlba) 2307 return -EINVAL; 2308 2309 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2310 if (!real_buffer) 2311 return -ENOMEM; 2312 memcpy(real_buffer + 4, buffer, len); 2313 len += 4; 2314 real_buffer[0] = 0; 2315 real_buffer[1] = data->medium_type; 2316 real_buffer[2] = data->device_specific; 2317 real_buffer[3] = data->block_descriptor_length; 2318 2319 cmd[0] = MODE_SELECT; 2320 cmd[4] = len; 2321 } 2322 2323 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len, 2324 timeout, retries, &exec_args); 2325 kfree(real_buffer); 2326 return ret; 2327 } 2328 EXPORT_SYMBOL_GPL(scsi_mode_select); 2329 2330 /** 2331 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2332 * @sdev: SCSI device to be queried 2333 * @dbd: set to prevent mode sense from returning block descriptors 2334 * @modepage: mode page being requested 2335 * @subpage: sub-page of the mode page being requested 2336 * @buffer: request buffer (may not be smaller than eight bytes) 2337 * @len: length of request buffer. 2338 * @timeout: command timeout 2339 * @retries: number of retries before failing 2340 * @data: returns a structure abstracting the mode header data 2341 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2342 * must be SCSI_SENSE_BUFFERSIZE big. 2343 * 2344 * Returns zero if successful, or a negative error number on failure 2345 */ 2346 int 2347 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage, 2348 unsigned char *buffer, int len, int timeout, int retries, 2349 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2350 { 2351 unsigned char cmd[12]; 2352 int use_10_for_ms; 2353 int header_length; 2354 int result; 2355 struct scsi_sense_hdr my_sshdr; 2356 struct scsi_failure failure_defs[] = { 2357 { 2358 .sense = UNIT_ATTENTION, 2359 .asc = SCMD_FAILURE_ASC_ANY, 2360 .ascq = SCMD_FAILURE_ASCQ_ANY, 2361 .allowed = retries, 2362 .result = SAM_STAT_CHECK_CONDITION, 2363 }, 2364 {} 2365 }; 2366 struct scsi_failures failures = { 2367 .failure_definitions = failure_defs, 2368 }; 2369 const struct scsi_exec_args exec_args = { 2370 /* caller might not be interested in sense, but we need it */ 2371 .sshdr = sshdr ? : &my_sshdr, 2372 .failures = &failures, 2373 }; 2374 2375 memset(data, 0, sizeof(*data)); 2376 memset(&cmd[0], 0, 12); 2377 2378 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2379 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2380 cmd[2] = modepage; 2381 cmd[3] = subpage; 2382 2383 sshdr = exec_args.sshdr; 2384 2385 retry: 2386 use_10_for_ms = sdev->use_10_for_ms || len > 255; 2387 2388 if (use_10_for_ms) { 2389 if (len < 8 || len > 65535) 2390 return -EINVAL; 2391 2392 cmd[0] = MODE_SENSE_10; 2393 put_unaligned_be16(len, &cmd[7]); 2394 header_length = 8; 2395 } else { 2396 if (len < 4) 2397 return -EINVAL; 2398 2399 cmd[0] = MODE_SENSE; 2400 cmd[4] = len; 2401 header_length = 4; 2402 } 2403 2404 memset(buffer, 0, len); 2405 2406 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len, 2407 timeout, retries, &exec_args); 2408 if (result < 0) 2409 return result; 2410 2411 /* This code looks awful: what it's doing is making sure an 2412 * ILLEGAL REQUEST sense return identifies the actual command 2413 * byte as the problem. MODE_SENSE commands can return 2414 * ILLEGAL REQUEST if the code page isn't supported */ 2415 2416 if (!scsi_status_is_good(result)) { 2417 if (scsi_sense_valid(sshdr)) { 2418 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2419 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2420 /* 2421 * Invalid command operation code: retry using 2422 * MODE SENSE(6) if this was a MODE SENSE(10) 2423 * request, except if the request mode page is 2424 * too large for MODE SENSE single byte 2425 * allocation length field. 2426 */ 2427 if (use_10_for_ms) { 2428 if (len > 255) 2429 return -EIO; 2430 sdev->use_10_for_ms = 0; 2431 goto retry; 2432 } 2433 } 2434 } 2435 return -EIO; 2436 } 2437 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2438 (modepage == 6 || modepage == 8))) { 2439 /* Initio breakage? */ 2440 header_length = 0; 2441 data->length = 13; 2442 data->medium_type = 0; 2443 data->device_specific = 0; 2444 data->longlba = 0; 2445 data->block_descriptor_length = 0; 2446 } else if (use_10_for_ms) { 2447 data->length = get_unaligned_be16(&buffer[0]) + 2; 2448 data->medium_type = buffer[2]; 2449 data->device_specific = buffer[3]; 2450 data->longlba = buffer[4] & 0x01; 2451 data->block_descriptor_length = get_unaligned_be16(&buffer[6]); 2452 } else { 2453 data->length = buffer[0] + 1; 2454 data->medium_type = buffer[1]; 2455 data->device_specific = buffer[2]; 2456 data->block_descriptor_length = buffer[3]; 2457 } 2458 data->header_length = header_length; 2459 2460 return 0; 2461 } 2462 EXPORT_SYMBOL(scsi_mode_sense); 2463 2464 /** 2465 * scsi_test_unit_ready - test if unit is ready 2466 * @sdev: scsi device to change the state of. 2467 * @timeout: command timeout 2468 * @retries: number of retries before failing 2469 * @sshdr: outpout pointer for decoded sense information. 2470 * 2471 * Returns zero if successful or an error if TUR failed. For 2472 * removable media, UNIT_ATTENTION sets ->changed flag. 2473 **/ 2474 int 2475 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2476 struct scsi_sense_hdr *sshdr) 2477 { 2478 char cmd[] = { 2479 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2480 }; 2481 const struct scsi_exec_args exec_args = { 2482 .sshdr = sshdr, 2483 }; 2484 int result; 2485 2486 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2487 do { 2488 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0, 2489 timeout, 1, &exec_args); 2490 if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) && 2491 sshdr->sense_key == UNIT_ATTENTION) 2492 sdev->changed = 1; 2493 } while (result > 0 && scsi_sense_valid(sshdr) && 2494 sshdr->sense_key == UNIT_ATTENTION && --retries); 2495 2496 return result; 2497 } 2498 EXPORT_SYMBOL(scsi_test_unit_ready); 2499 2500 /** 2501 * scsi_device_set_state - Take the given device through the device state model. 2502 * @sdev: scsi device to change the state of. 2503 * @state: state to change to. 2504 * 2505 * Returns zero if successful or an error if the requested 2506 * transition is illegal. 2507 */ 2508 int 2509 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2510 { 2511 enum scsi_device_state oldstate = sdev->sdev_state; 2512 2513 if (state == oldstate) 2514 return 0; 2515 2516 switch (state) { 2517 case SDEV_CREATED: 2518 switch (oldstate) { 2519 case SDEV_CREATED_BLOCK: 2520 break; 2521 default: 2522 goto illegal; 2523 } 2524 break; 2525 2526 case SDEV_RUNNING: 2527 switch (oldstate) { 2528 case SDEV_CREATED: 2529 case SDEV_OFFLINE: 2530 case SDEV_TRANSPORT_OFFLINE: 2531 case SDEV_QUIESCE: 2532 case SDEV_BLOCK: 2533 break; 2534 default: 2535 goto illegal; 2536 } 2537 break; 2538 2539 case SDEV_QUIESCE: 2540 switch (oldstate) { 2541 case SDEV_RUNNING: 2542 case SDEV_OFFLINE: 2543 case SDEV_TRANSPORT_OFFLINE: 2544 break; 2545 default: 2546 goto illegal; 2547 } 2548 break; 2549 2550 case SDEV_OFFLINE: 2551 case SDEV_TRANSPORT_OFFLINE: 2552 switch (oldstate) { 2553 case SDEV_CREATED: 2554 case SDEV_RUNNING: 2555 case SDEV_QUIESCE: 2556 case SDEV_BLOCK: 2557 break; 2558 default: 2559 goto illegal; 2560 } 2561 break; 2562 2563 case SDEV_BLOCK: 2564 switch (oldstate) { 2565 case SDEV_RUNNING: 2566 case SDEV_CREATED_BLOCK: 2567 case SDEV_QUIESCE: 2568 case SDEV_OFFLINE: 2569 break; 2570 default: 2571 goto illegal; 2572 } 2573 break; 2574 2575 case SDEV_CREATED_BLOCK: 2576 switch (oldstate) { 2577 case SDEV_CREATED: 2578 break; 2579 default: 2580 goto illegal; 2581 } 2582 break; 2583 2584 case SDEV_CANCEL: 2585 switch (oldstate) { 2586 case SDEV_CREATED: 2587 case SDEV_RUNNING: 2588 case SDEV_QUIESCE: 2589 case SDEV_OFFLINE: 2590 case SDEV_TRANSPORT_OFFLINE: 2591 break; 2592 default: 2593 goto illegal; 2594 } 2595 break; 2596 2597 case SDEV_DEL: 2598 switch (oldstate) { 2599 case SDEV_CREATED: 2600 case SDEV_RUNNING: 2601 case SDEV_OFFLINE: 2602 case SDEV_TRANSPORT_OFFLINE: 2603 case SDEV_CANCEL: 2604 case SDEV_BLOCK: 2605 case SDEV_CREATED_BLOCK: 2606 break; 2607 default: 2608 goto illegal; 2609 } 2610 break; 2611 2612 } 2613 sdev->offline_already = false; 2614 sdev->sdev_state = state; 2615 return 0; 2616 2617 illegal: 2618 SCSI_LOG_ERROR_RECOVERY(1, 2619 sdev_printk(KERN_ERR, sdev, 2620 "Illegal state transition %s->%s", 2621 scsi_device_state_name(oldstate), 2622 scsi_device_state_name(state)) 2623 ); 2624 return -EINVAL; 2625 } 2626 EXPORT_SYMBOL(scsi_device_set_state); 2627 2628 /** 2629 * scsi_evt_emit - emit a single SCSI device uevent 2630 * @sdev: associated SCSI device 2631 * @evt: event to emit 2632 * 2633 * Send a single uevent (scsi_event) to the associated scsi_device. 2634 */ 2635 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2636 { 2637 int idx = 0; 2638 char *envp[3]; 2639 2640 switch (evt->evt_type) { 2641 case SDEV_EVT_MEDIA_CHANGE: 2642 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2643 break; 2644 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2645 scsi_rescan_device(sdev); 2646 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2647 break; 2648 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2649 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2650 break; 2651 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2652 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2653 break; 2654 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2655 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2656 break; 2657 case SDEV_EVT_LUN_CHANGE_REPORTED: 2658 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2659 break; 2660 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2661 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2662 break; 2663 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2664 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2665 break; 2666 default: 2667 /* do nothing */ 2668 break; 2669 } 2670 2671 envp[idx++] = NULL; 2672 2673 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2674 } 2675 2676 /** 2677 * scsi_evt_thread - send a uevent for each scsi event 2678 * @work: work struct for scsi_device 2679 * 2680 * Dispatch queued events to their associated scsi_device kobjects 2681 * as uevents. 2682 */ 2683 void scsi_evt_thread(struct work_struct *work) 2684 { 2685 struct scsi_device *sdev; 2686 enum scsi_device_event evt_type; 2687 LIST_HEAD(event_list); 2688 2689 sdev = container_of(work, struct scsi_device, event_work); 2690 2691 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2692 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2693 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2694 2695 while (1) { 2696 struct scsi_event *evt; 2697 struct list_head *this, *tmp; 2698 unsigned long flags; 2699 2700 spin_lock_irqsave(&sdev->list_lock, flags); 2701 list_splice_init(&sdev->event_list, &event_list); 2702 spin_unlock_irqrestore(&sdev->list_lock, flags); 2703 2704 if (list_empty(&event_list)) 2705 break; 2706 2707 list_for_each_safe(this, tmp, &event_list) { 2708 evt = list_entry(this, struct scsi_event, node); 2709 list_del(&evt->node); 2710 scsi_evt_emit(sdev, evt); 2711 kfree(evt); 2712 } 2713 } 2714 } 2715 2716 /** 2717 * sdev_evt_send - send asserted event to uevent thread 2718 * @sdev: scsi_device event occurred on 2719 * @evt: event to send 2720 * 2721 * Assert scsi device event asynchronously. 2722 */ 2723 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2724 { 2725 unsigned long flags; 2726 2727 #if 0 2728 /* FIXME: currently this check eliminates all media change events 2729 * for polled devices. Need to update to discriminate between AN 2730 * and polled events */ 2731 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2732 kfree(evt); 2733 return; 2734 } 2735 #endif 2736 2737 spin_lock_irqsave(&sdev->list_lock, flags); 2738 list_add_tail(&evt->node, &sdev->event_list); 2739 schedule_work(&sdev->event_work); 2740 spin_unlock_irqrestore(&sdev->list_lock, flags); 2741 } 2742 EXPORT_SYMBOL_GPL(sdev_evt_send); 2743 2744 /** 2745 * sdev_evt_alloc - allocate a new scsi event 2746 * @evt_type: type of event to allocate 2747 * @gfpflags: GFP flags for allocation 2748 * 2749 * Allocates and returns a new scsi_event. 2750 */ 2751 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2752 gfp_t gfpflags) 2753 { 2754 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2755 if (!evt) 2756 return NULL; 2757 2758 evt->evt_type = evt_type; 2759 INIT_LIST_HEAD(&evt->node); 2760 2761 /* evt_type-specific initialization, if any */ 2762 switch (evt_type) { 2763 case SDEV_EVT_MEDIA_CHANGE: 2764 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2765 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2766 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2767 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2768 case SDEV_EVT_LUN_CHANGE_REPORTED: 2769 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2770 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2771 default: 2772 /* do nothing */ 2773 break; 2774 } 2775 2776 return evt; 2777 } 2778 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2779 2780 /** 2781 * sdev_evt_send_simple - send asserted event to uevent thread 2782 * @sdev: scsi_device event occurred on 2783 * @evt_type: type of event to send 2784 * @gfpflags: GFP flags for allocation 2785 * 2786 * Assert scsi device event asynchronously, given an event type. 2787 */ 2788 void sdev_evt_send_simple(struct scsi_device *sdev, 2789 enum scsi_device_event evt_type, gfp_t gfpflags) 2790 { 2791 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2792 if (!evt) { 2793 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2794 evt_type); 2795 return; 2796 } 2797 2798 sdev_evt_send(sdev, evt); 2799 } 2800 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2801 2802 /** 2803 * scsi_device_quiesce - Block all commands except power management. 2804 * @sdev: scsi device to quiesce. 2805 * 2806 * This works by trying to transition to the SDEV_QUIESCE state 2807 * (which must be a legal transition). When the device is in this 2808 * state, only power management requests will be accepted, all others will 2809 * be deferred. 2810 * 2811 * Must be called with user context, may sleep. 2812 * 2813 * Returns zero if successful or an error if not. 2814 */ 2815 int 2816 scsi_device_quiesce(struct scsi_device *sdev) 2817 { 2818 struct request_queue *q = sdev->request_queue; 2819 unsigned int memflags; 2820 int err; 2821 2822 /* 2823 * It is allowed to call scsi_device_quiesce() multiple times from 2824 * the same context but concurrent scsi_device_quiesce() calls are 2825 * not allowed. 2826 */ 2827 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2828 2829 if (sdev->quiesced_by == current) 2830 return 0; 2831 2832 blk_set_pm_only(q); 2833 2834 memflags = blk_mq_freeze_queue(q); 2835 /* 2836 * Ensure that the effect of blk_set_pm_only() will be visible 2837 * for percpu_ref_tryget() callers that occur after the queue 2838 * unfreeze even if the queue was already frozen before this function 2839 * was called. See also https://lwn.net/Articles/573497/. 2840 */ 2841 synchronize_rcu(); 2842 blk_mq_unfreeze_queue(q, memflags); 2843 2844 mutex_lock(&sdev->state_mutex); 2845 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2846 if (err == 0) 2847 sdev->quiesced_by = current; 2848 else 2849 blk_clear_pm_only(q); 2850 mutex_unlock(&sdev->state_mutex); 2851 2852 return err; 2853 } 2854 EXPORT_SYMBOL(scsi_device_quiesce); 2855 2856 /** 2857 * scsi_device_resume - Restart user issued commands to a quiesced device. 2858 * @sdev: scsi device to resume. 2859 * 2860 * Moves the device from quiesced back to running and restarts the 2861 * queues. 2862 * 2863 * Must be called with user context, may sleep. 2864 */ 2865 void scsi_device_resume(struct scsi_device *sdev) 2866 { 2867 /* check if the device state was mutated prior to resume, and if 2868 * so assume the state is being managed elsewhere (for example 2869 * device deleted during suspend) 2870 */ 2871 mutex_lock(&sdev->state_mutex); 2872 if (sdev->sdev_state == SDEV_QUIESCE) 2873 scsi_device_set_state(sdev, SDEV_RUNNING); 2874 if (sdev->quiesced_by) { 2875 sdev->quiesced_by = NULL; 2876 blk_clear_pm_only(sdev->request_queue); 2877 } 2878 mutex_unlock(&sdev->state_mutex); 2879 } 2880 EXPORT_SYMBOL(scsi_device_resume); 2881 2882 static void 2883 device_quiesce_fn(struct scsi_device *sdev, void *data) 2884 { 2885 scsi_device_quiesce(sdev); 2886 } 2887 2888 void 2889 scsi_target_quiesce(struct scsi_target *starget) 2890 { 2891 starget_for_each_device(starget, NULL, device_quiesce_fn); 2892 } 2893 EXPORT_SYMBOL(scsi_target_quiesce); 2894 2895 static void 2896 device_resume_fn(struct scsi_device *sdev, void *data) 2897 { 2898 scsi_device_resume(sdev); 2899 } 2900 2901 void 2902 scsi_target_resume(struct scsi_target *starget) 2903 { 2904 starget_for_each_device(starget, NULL, device_resume_fn); 2905 } 2906 EXPORT_SYMBOL(scsi_target_resume); 2907 2908 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev) 2909 { 2910 if (scsi_device_set_state(sdev, SDEV_BLOCK)) 2911 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2912 2913 return 0; 2914 } 2915 2916 void scsi_start_queue(struct scsi_device *sdev) 2917 { 2918 if (cmpxchg(&sdev->queue_stopped, 1, 0)) 2919 blk_mq_unquiesce_queue(sdev->request_queue); 2920 } 2921 2922 static void scsi_stop_queue(struct scsi_device *sdev) 2923 { 2924 /* 2925 * The atomic variable of ->queue_stopped covers that 2926 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue. 2927 * 2928 * The caller needs to wait until quiesce is done. 2929 */ 2930 if (!cmpxchg(&sdev->queue_stopped, 0, 1)) 2931 blk_mq_quiesce_queue_nowait(sdev->request_queue); 2932 } 2933 2934 /** 2935 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2936 * @sdev: device to block 2937 * 2938 * Pause SCSI command processing on the specified device. Does not sleep. 2939 * 2940 * Returns zero if successful or a negative error code upon failure. 2941 * 2942 * Notes: 2943 * This routine transitions the device to the SDEV_BLOCK state (which must be 2944 * a legal transition). When the device is in this state, command processing 2945 * is paused until the device leaves the SDEV_BLOCK state. See also 2946 * scsi_internal_device_unblock_nowait(). 2947 */ 2948 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2949 { 2950 int ret = __scsi_internal_device_block_nowait(sdev); 2951 2952 /* 2953 * The device has transitioned to SDEV_BLOCK. Stop the 2954 * block layer from calling the midlayer with this device's 2955 * request queue. 2956 */ 2957 if (!ret) 2958 scsi_stop_queue(sdev); 2959 return ret; 2960 } 2961 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2962 2963 /** 2964 * scsi_device_block - try to transition to the SDEV_BLOCK state 2965 * @sdev: device to block 2966 * @data: dummy argument, ignored 2967 * 2968 * Pause SCSI command processing on the specified device. Callers must wait 2969 * until all ongoing scsi_queue_rq() calls have finished after this function 2970 * returns. 2971 * 2972 * Note: 2973 * This routine transitions the device to the SDEV_BLOCK state (which must be 2974 * a legal transition). When the device is in this state, command processing 2975 * is paused until the device leaves the SDEV_BLOCK state. See also 2976 * scsi_internal_device_unblock(). 2977 */ 2978 static void scsi_device_block(struct scsi_device *sdev, void *data) 2979 { 2980 int err; 2981 enum scsi_device_state state; 2982 2983 mutex_lock(&sdev->state_mutex); 2984 err = __scsi_internal_device_block_nowait(sdev); 2985 state = sdev->sdev_state; 2986 if (err == 0) 2987 /* 2988 * scsi_stop_queue() must be called with the state_mutex 2989 * held. Otherwise a simultaneous scsi_start_queue() call 2990 * might unquiesce the queue before we quiesce it. 2991 */ 2992 scsi_stop_queue(sdev); 2993 2994 mutex_unlock(&sdev->state_mutex); 2995 2996 WARN_ONCE(err, "%s: failed to block %s in state %d\n", 2997 __func__, dev_name(&sdev->sdev_gendev), state); 2998 } 2999 3000 /** 3001 * scsi_internal_device_unblock_nowait - resume a device after a block request 3002 * @sdev: device to resume 3003 * @new_state: state to set the device to after unblocking 3004 * 3005 * Restart the device queue for a previously suspended SCSI device. Does not 3006 * sleep. 3007 * 3008 * Returns zero if successful or a negative error code upon failure. 3009 * 3010 * Notes: 3011 * This routine transitions the device to the SDEV_RUNNING state or to one of 3012 * the offline states (which must be a legal transition) allowing the midlayer 3013 * to goose the queue for this device. 3014 */ 3015 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 3016 enum scsi_device_state new_state) 3017 { 3018 switch (new_state) { 3019 case SDEV_RUNNING: 3020 case SDEV_TRANSPORT_OFFLINE: 3021 break; 3022 default: 3023 return -EINVAL; 3024 } 3025 3026 /* 3027 * Try to transition the scsi device to SDEV_RUNNING or one of the 3028 * offlined states and goose the device queue if successful. 3029 */ 3030 switch (sdev->sdev_state) { 3031 case SDEV_BLOCK: 3032 case SDEV_TRANSPORT_OFFLINE: 3033 sdev->sdev_state = new_state; 3034 break; 3035 case SDEV_CREATED_BLOCK: 3036 if (new_state == SDEV_TRANSPORT_OFFLINE || 3037 new_state == SDEV_OFFLINE) 3038 sdev->sdev_state = new_state; 3039 else 3040 sdev->sdev_state = SDEV_CREATED; 3041 break; 3042 case SDEV_CANCEL: 3043 case SDEV_OFFLINE: 3044 break; 3045 default: 3046 return -EINVAL; 3047 } 3048 scsi_start_queue(sdev); 3049 3050 return 0; 3051 } 3052 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 3053 3054 /** 3055 * scsi_internal_device_unblock - resume a device after a block request 3056 * @sdev: device to resume 3057 * @new_state: state to set the device to after unblocking 3058 * 3059 * Restart the device queue for a previously suspended SCSI device. May sleep. 3060 * 3061 * Returns zero if successful or a negative error code upon failure. 3062 * 3063 * Notes: 3064 * This routine transitions the device to the SDEV_RUNNING state or to one of 3065 * the offline states (which must be a legal transition) allowing the midlayer 3066 * to goose the queue for this device. 3067 */ 3068 static int scsi_internal_device_unblock(struct scsi_device *sdev, 3069 enum scsi_device_state new_state) 3070 { 3071 int ret; 3072 3073 mutex_lock(&sdev->state_mutex); 3074 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 3075 mutex_unlock(&sdev->state_mutex); 3076 3077 return ret; 3078 } 3079 3080 static int 3081 target_block(struct device *dev, void *data) 3082 { 3083 if (scsi_is_target_device(dev)) 3084 starget_for_each_device(to_scsi_target(dev), NULL, 3085 scsi_device_block); 3086 return 0; 3087 } 3088 3089 /** 3090 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state 3091 * @dev: a parent device of one or more scsi_target devices 3092 * @shost: the Scsi_Host to which this device belongs 3093 * 3094 * Iterate over all children of @dev, which should be scsi_target devices, 3095 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for 3096 * ongoing scsi_queue_rq() calls to finish. May sleep. 3097 * 3098 * Note: 3099 * @dev must not itself be a scsi_target device. 3100 */ 3101 void 3102 scsi_block_targets(struct Scsi_Host *shost, struct device *dev) 3103 { 3104 WARN_ON_ONCE(scsi_is_target_device(dev)); 3105 device_for_each_child(dev, NULL, target_block); 3106 blk_mq_wait_quiesce_done(&shost->tag_set); 3107 } 3108 EXPORT_SYMBOL_GPL(scsi_block_targets); 3109 3110 static void 3111 device_unblock(struct scsi_device *sdev, void *data) 3112 { 3113 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3114 } 3115 3116 static int 3117 target_unblock(struct device *dev, void *data) 3118 { 3119 if (scsi_is_target_device(dev)) 3120 starget_for_each_device(to_scsi_target(dev), data, 3121 device_unblock); 3122 return 0; 3123 } 3124 3125 void 3126 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3127 { 3128 if (scsi_is_target_device(dev)) 3129 starget_for_each_device(to_scsi_target(dev), &new_state, 3130 device_unblock); 3131 else 3132 device_for_each_child(dev, &new_state, target_unblock); 3133 } 3134 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3135 3136 /** 3137 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state 3138 * @shost: device to block 3139 * 3140 * Pause SCSI command processing for all logical units associated with the SCSI 3141 * host and wait until pending scsi_queue_rq() calls have finished. 3142 * 3143 * Returns zero if successful or a negative error code upon failure. 3144 */ 3145 int 3146 scsi_host_block(struct Scsi_Host *shost) 3147 { 3148 struct scsi_device *sdev; 3149 int ret; 3150 3151 /* 3152 * Call scsi_internal_device_block_nowait so we can avoid 3153 * calling synchronize_rcu() for each LUN. 3154 */ 3155 shost_for_each_device(sdev, shost) { 3156 mutex_lock(&sdev->state_mutex); 3157 ret = scsi_internal_device_block_nowait(sdev); 3158 mutex_unlock(&sdev->state_mutex); 3159 if (ret) { 3160 scsi_device_put(sdev); 3161 return ret; 3162 } 3163 } 3164 3165 /* Wait for ongoing scsi_queue_rq() calls to finish. */ 3166 blk_mq_wait_quiesce_done(&shost->tag_set); 3167 3168 return 0; 3169 } 3170 EXPORT_SYMBOL_GPL(scsi_host_block); 3171 3172 int 3173 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 3174 { 3175 struct scsi_device *sdev; 3176 int ret = 0; 3177 3178 shost_for_each_device(sdev, shost) { 3179 ret = scsi_internal_device_unblock(sdev, new_state); 3180 if (ret) { 3181 scsi_device_put(sdev); 3182 break; 3183 } 3184 } 3185 return ret; 3186 } 3187 EXPORT_SYMBOL_GPL(scsi_host_unblock); 3188 3189 /** 3190 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3191 * @sgl: scatter-gather list 3192 * @sg_count: number of segments in sg 3193 * @offset: offset in bytes into sg, on return offset into the mapped area 3194 * @len: bytes to map, on return number of bytes mapped 3195 * 3196 * Returns virtual address of the start of the mapped page 3197 */ 3198 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3199 size_t *offset, size_t *len) 3200 { 3201 int i; 3202 size_t sg_len = 0, len_complete = 0; 3203 struct scatterlist *sg; 3204 struct page *page; 3205 3206 WARN_ON(!irqs_disabled()); 3207 3208 for_each_sg(sgl, sg, sg_count, i) { 3209 len_complete = sg_len; /* Complete sg-entries */ 3210 sg_len += sg->length; 3211 if (sg_len > *offset) 3212 break; 3213 } 3214 3215 if (unlikely(i == sg_count)) { 3216 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3217 "elements %d\n", 3218 __func__, sg_len, *offset, sg_count); 3219 WARN_ON(1); 3220 return NULL; 3221 } 3222 3223 /* Offset starting from the beginning of first page in this sg-entry */ 3224 *offset = *offset - len_complete + sg->offset; 3225 3226 page = sg_page(sg) + (*offset >> PAGE_SHIFT); 3227 *offset &= ~PAGE_MASK; 3228 3229 /* Bytes in this sg-entry from *offset to the end of the page */ 3230 sg_len = PAGE_SIZE - *offset; 3231 if (*len > sg_len) 3232 *len = sg_len; 3233 3234 return kmap_atomic(page); 3235 } 3236 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3237 3238 /** 3239 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3240 * @virt: virtual address to be unmapped 3241 */ 3242 void scsi_kunmap_atomic_sg(void *virt) 3243 { 3244 kunmap_atomic(virt); 3245 } 3246 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3247 3248 void sdev_disable_disk_events(struct scsi_device *sdev) 3249 { 3250 atomic_inc(&sdev->disk_events_disable_depth); 3251 } 3252 EXPORT_SYMBOL(sdev_disable_disk_events); 3253 3254 void sdev_enable_disk_events(struct scsi_device *sdev) 3255 { 3256 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3257 return; 3258 atomic_dec(&sdev->disk_events_disable_depth); 3259 } 3260 EXPORT_SYMBOL(sdev_enable_disk_events); 3261 3262 static unsigned char designator_prio(const unsigned char *d) 3263 { 3264 if (d[1] & 0x30) 3265 /* not associated with LUN */ 3266 return 0; 3267 3268 if (d[3] == 0) 3269 /* invalid length */ 3270 return 0; 3271 3272 /* 3273 * Order of preference for lun descriptor: 3274 * - SCSI name string 3275 * - NAA IEEE Registered Extended 3276 * - EUI-64 based 16-byte 3277 * - EUI-64 based 12-byte 3278 * - NAA IEEE Registered 3279 * - NAA IEEE Extended 3280 * - EUI-64 based 8-byte 3281 * - SCSI name string (truncated) 3282 * - T10 Vendor ID 3283 * as longer descriptors reduce the likelyhood 3284 * of identification clashes. 3285 */ 3286 3287 switch (d[1] & 0xf) { 3288 case 8: 3289 /* SCSI name string, variable-length UTF-8 */ 3290 return 9; 3291 case 3: 3292 switch (d[4] >> 4) { 3293 case 6: 3294 /* NAA registered extended */ 3295 return 8; 3296 case 5: 3297 /* NAA registered */ 3298 return 5; 3299 case 4: 3300 /* NAA extended */ 3301 return 4; 3302 case 3: 3303 /* NAA locally assigned */ 3304 return 1; 3305 default: 3306 break; 3307 } 3308 break; 3309 case 2: 3310 switch (d[3]) { 3311 case 16: 3312 /* EUI64-based, 16 byte */ 3313 return 7; 3314 case 12: 3315 /* EUI64-based, 12 byte */ 3316 return 6; 3317 case 8: 3318 /* EUI64-based, 8 byte */ 3319 return 3; 3320 default: 3321 break; 3322 } 3323 break; 3324 case 1: 3325 /* T10 vendor ID */ 3326 return 1; 3327 default: 3328 break; 3329 } 3330 3331 return 0; 3332 } 3333 3334 /** 3335 * scsi_vpd_lun_id - return a unique device identification 3336 * @sdev: SCSI device 3337 * @id: buffer for the identification 3338 * @id_len: length of the buffer 3339 * 3340 * Copies a unique device identification into @id based 3341 * on the information in the VPD page 0x83 of the device. 3342 * The string will be formatted as a SCSI name string. 3343 * 3344 * Returns the length of the identification or error on failure. 3345 * If the identifier is longer than the supplied buffer the actual 3346 * identifier length is returned and the buffer is not zero-padded. 3347 */ 3348 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3349 { 3350 u8 cur_id_prio = 0; 3351 u8 cur_id_size = 0; 3352 const unsigned char *d, *cur_id_str; 3353 const struct scsi_vpd *vpd_pg83; 3354 int id_size = -EINVAL; 3355 3356 rcu_read_lock(); 3357 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3358 if (!vpd_pg83) { 3359 rcu_read_unlock(); 3360 return -ENXIO; 3361 } 3362 3363 /* The id string must be at least 20 bytes + terminating NULL byte */ 3364 if (id_len < 21) { 3365 rcu_read_unlock(); 3366 return -EINVAL; 3367 } 3368 3369 memset(id, 0, id_len); 3370 for (d = vpd_pg83->data + 4; 3371 d < vpd_pg83->data + vpd_pg83->len; 3372 d += d[3] + 4) { 3373 u8 prio = designator_prio(d); 3374 3375 if (prio == 0 || cur_id_prio > prio) 3376 continue; 3377 3378 switch (d[1] & 0xf) { 3379 case 0x1: 3380 /* T10 Vendor ID */ 3381 if (cur_id_size > d[3]) 3382 break; 3383 cur_id_prio = prio; 3384 cur_id_size = d[3]; 3385 if (cur_id_size + 4 > id_len) 3386 cur_id_size = id_len - 4; 3387 cur_id_str = d + 4; 3388 id_size = snprintf(id, id_len, "t10.%*pE", 3389 cur_id_size, cur_id_str); 3390 break; 3391 case 0x2: 3392 /* EUI-64 */ 3393 cur_id_prio = prio; 3394 cur_id_size = d[3]; 3395 cur_id_str = d + 4; 3396 switch (cur_id_size) { 3397 case 8: 3398 id_size = snprintf(id, id_len, 3399 "eui.%8phN", 3400 cur_id_str); 3401 break; 3402 case 12: 3403 id_size = snprintf(id, id_len, 3404 "eui.%12phN", 3405 cur_id_str); 3406 break; 3407 case 16: 3408 id_size = snprintf(id, id_len, 3409 "eui.%16phN", 3410 cur_id_str); 3411 break; 3412 default: 3413 break; 3414 } 3415 break; 3416 case 0x3: 3417 /* NAA */ 3418 cur_id_prio = prio; 3419 cur_id_size = d[3]; 3420 cur_id_str = d + 4; 3421 switch (cur_id_size) { 3422 case 8: 3423 id_size = snprintf(id, id_len, 3424 "naa.%8phN", 3425 cur_id_str); 3426 break; 3427 case 16: 3428 id_size = snprintf(id, id_len, 3429 "naa.%16phN", 3430 cur_id_str); 3431 break; 3432 default: 3433 break; 3434 } 3435 break; 3436 case 0x8: 3437 /* SCSI name string */ 3438 if (cur_id_size > d[3]) 3439 break; 3440 /* Prefer others for truncated descriptor */ 3441 if (d[3] > id_len) { 3442 prio = 2; 3443 if (cur_id_prio > prio) 3444 break; 3445 } 3446 cur_id_prio = prio; 3447 cur_id_size = id_size = d[3]; 3448 cur_id_str = d + 4; 3449 if (cur_id_size >= id_len) 3450 cur_id_size = id_len - 1; 3451 memcpy(id, cur_id_str, cur_id_size); 3452 break; 3453 default: 3454 break; 3455 } 3456 } 3457 rcu_read_unlock(); 3458 3459 return id_size; 3460 } 3461 EXPORT_SYMBOL(scsi_vpd_lun_id); 3462 3463 /** 3464 * scsi_vpd_tpg_id - return a target port group identifier 3465 * @sdev: SCSI device 3466 * @rel_id: pointer to return relative target port in if not %NULL 3467 * 3468 * Returns the Target Port Group identifier from the information 3469 * from VPD page 0x83 of the device. 3470 * Optionally sets @rel_id to the relative target port on success. 3471 * 3472 * Return: the identifier or error on failure. 3473 */ 3474 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3475 { 3476 const unsigned char *d; 3477 const struct scsi_vpd *vpd_pg83; 3478 int group_id = -EAGAIN, rel_port = -1; 3479 3480 rcu_read_lock(); 3481 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3482 if (!vpd_pg83) { 3483 rcu_read_unlock(); 3484 return -ENXIO; 3485 } 3486 3487 d = vpd_pg83->data + 4; 3488 while (d < vpd_pg83->data + vpd_pg83->len) { 3489 switch (d[1] & 0xf) { 3490 case 0x4: 3491 /* Relative target port */ 3492 rel_port = get_unaligned_be16(&d[6]); 3493 break; 3494 case 0x5: 3495 /* Target port group */ 3496 group_id = get_unaligned_be16(&d[6]); 3497 break; 3498 default: 3499 break; 3500 } 3501 d += d[3] + 4; 3502 } 3503 rcu_read_unlock(); 3504 3505 if (group_id >= 0 && rel_id && rel_port != -1) 3506 *rel_id = rel_port; 3507 3508 return group_id; 3509 } 3510 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3511 3512 /** 3513 * scsi_build_sense - build sense data for a command 3514 * @scmd: scsi command for which the sense should be formatted 3515 * @desc: Sense format (non-zero == descriptor format, 3516 * 0 == fixed format) 3517 * @key: Sense key 3518 * @asc: Additional sense code 3519 * @ascq: Additional sense code qualifier 3520 * 3521 **/ 3522 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3523 { 3524 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3525 scmd->result = SAM_STAT_CHECK_CONDITION; 3526 } 3527 EXPORT_SYMBOL_GPL(scsi_build_sense); 3528 3529 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST 3530 #include "scsi_lib_test.c" 3531 #endif 3532