xref: /linux/drivers/usb/host/xhci-mem.c (revision df02351331671abb26788bc13f6d276e26ae068f)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * xHCI host controller driver
4   *
5   * Copyright (C) 2008 Intel Corp.
6   *
7   * Author: Sarah Sharp
8   * Some code borrowed from the Linux EHCI driver.
9   */
10  
11  #include <linux/usb.h>
12  #include <linux/overflow.h>
13  #include <linux/pci.h>
14  #include <linux/slab.h>
15  #include <linux/dmapool.h>
16  #include <linux/dma-mapping.h>
17  
18  #include "xhci.h"
19  #include "xhci-trace.h"
20  #include "xhci-debugfs.h"
21  
22  /*
23   * Allocates a generic ring segment from the ring pool, sets the dma address,
24   * initializes the segment to zero, and sets the private next pointer to NULL.
25   *
26   * Section 4.11.1.1:
27   * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28   */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int max_packet,unsigned int num,gfp_t flags)29  static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30  					       unsigned int max_packet,
31  					       unsigned int num,
32  					       gfp_t flags)
33  {
34  	struct xhci_segment *seg;
35  	dma_addr_t	dma;
36  	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37  
38  	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39  	if (!seg)
40  		return NULL;
41  
42  	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43  	if (!seg->trbs) {
44  		kfree(seg);
45  		return NULL;
46  	}
47  
48  	if (max_packet) {
49  		seg->bounce_buf = kzalloc_node(max_packet, flags,
50  					dev_to_node(dev));
51  		if (!seg->bounce_buf) {
52  			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53  			kfree(seg);
54  			return NULL;
55  		}
56  	}
57  	seg->num = num;
58  	seg->dma = dma;
59  	seg->next = NULL;
60  
61  	return seg;
62  }
63  
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)64  static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
65  {
66  	if (seg->trbs) {
67  		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
68  		seg->trbs = NULL;
69  	}
70  	kfree(seg->bounce_buf);
71  	kfree(seg);
72  }
73  
xhci_ring_segments_free(struct xhci_hcd * xhci,struct xhci_ring * ring)74  static void xhci_ring_segments_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
75  {
76  	struct xhci_segment *seg, *next;
77  
78  	ring->last_seg->next = NULL;
79  	seg = ring->first_seg;
80  
81  	while (seg) {
82  		next = seg->next;
83  		xhci_segment_free(xhci, seg);
84  		seg = next;
85  	}
86  }
87  
88  /*
89   * Only for transfer and command rings where driver is the producer, not for
90   * event rings.
91   *
92   * Change the last TRB in the segment to be a Link TRB which points to the
93   * DMA address of the next segment.  The caller needs to set any Link TRB
94   * related flags, such as End TRB, Toggle Cycle, and no snoop.
95   */
xhci_set_link_trb(struct xhci_segment * seg,bool chain_links)96  static void xhci_set_link_trb(struct xhci_segment *seg, bool chain_links)
97  {
98  	union xhci_trb *trb;
99  	u32 val;
100  
101  	if (!seg || !seg->next)
102  		return;
103  
104  	trb = &seg->trbs[TRBS_PER_SEGMENT - 1];
105  
106  	/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
107  	val = le32_to_cpu(trb->link.control);
108  	val &= ~TRB_TYPE_BITMASK;
109  	val |= TRB_TYPE(TRB_LINK);
110  	if (chain_links)
111  		val |= TRB_CHAIN;
112  	trb->link.control = cpu_to_le32(val);
113  	trb->link.segment_ptr = cpu_to_le64(seg->next->dma);
114  }
115  
xhci_initialize_ring_segments(struct xhci_hcd * xhci,struct xhci_ring * ring)116  static void xhci_initialize_ring_segments(struct xhci_hcd *xhci, struct xhci_ring *ring)
117  {
118  	struct xhci_segment *seg;
119  	bool chain_links;
120  
121  	if (ring->type == TYPE_EVENT)
122  		return;
123  
124  	chain_links = xhci_link_chain_quirk(xhci, ring->type);
125  	xhci_for_each_ring_seg(ring->first_seg, seg)
126  		xhci_set_link_trb(seg, chain_links);
127  
128  	/* See section 4.9.2.1 and 6.4.4.1 */
129  	ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE);
130  }
131  
132  /*
133   * Link the src ring segments to the dst ring.
134   * Set Toggle Cycle for the new ring if needed.
135   */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * src,struct xhci_ring * dst)136  static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *src, struct xhci_ring *dst)
137  {
138  	struct xhci_segment *seg;
139  	bool chain_links;
140  
141  	if (!src || !dst)
142  		return;
143  
144  	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
145  	if (dst->cycle_state == 0) {
146  		xhci_for_each_ring_seg(src->first_seg, seg) {
147  			for (int i = 0; i < TRBS_PER_SEGMENT; i++)
148  				seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
149  		}
150  	}
151  
152  	src->last_seg->next = dst->enq_seg->next;
153  	dst->enq_seg->next = src->first_seg;
154  	if (dst->type != TYPE_EVENT) {
155  		chain_links = xhci_link_chain_quirk(xhci, dst->type);
156  		xhci_set_link_trb(dst->enq_seg, chain_links);
157  		xhci_set_link_trb(src->last_seg, chain_links);
158  	}
159  	dst->num_segs += src->num_segs;
160  
161  	if (dst->enq_seg == dst->last_seg) {
162  		if (dst->type != TYPE_EVENT)
163  			dst->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
164  				&= ~cpu_to_le32(LINK_TOGGLE);
165  
166  		dst->last_seg = src->last_seg;
167  	} else if (dst->type != TYPE_EVENT) {
168  		src->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control &= ~cpu_to_le32(LINK_TOGGLE);
169  	}
170  
171  	for (seg = dst->enq_seg; seg != dst->last_seg; seg = seg->next)
172  		seg->next->num = seg->num + 1;
173  }
174  
175  /*
176   * We need a radix tree for mapping physical addresses of TRBs to which stream
177   * ID they belong to.  We need to do this because the host controller won't tell
178   * us which stream ring the TRB came from.  We could store the stream ID in an
179   * event data TRB, but that doesn't help us for the cancellation case, since the
180   * endpoint may stop before it reaches that event data TRB.
181   *
182   * The radix tree maps the upper portion of the TRB DMA address to a ring
183   * segment that has the same upper portion of DMA addresses.  For example, say I
184   * have segments of size 1KB, that are always 1KB aligned.  A segment may
185   * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
186   * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
187   * pass the radix tree a key to get the right stream ID:
188   *
189   *	0x10c90fff >> 10 = 0x43243
190   *	0x10c912c0 >> 10 = 0x43244
191   *	0x10c91400 >> 10 = 0x43245
192   *
193   * Obviously, only those TRBs with DMA addresses that are within the segment
194   * will make the radix tree return the stream ID for that ring.
195   *
196   * Caveats for the radix tree:
197   *
198   * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
199   * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
200   * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
201   * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
202   * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
203   * extended systems (where the DMA address can be bigger than 32-bits),
204   * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
205   */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)206  static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
207  		struct xhci_ring *ring,
208  		struct xhci_segment *seg,
209  		gfp_t mem_flags)
210  {
211  	unsigned long key;
212  	int ret;
213  
214  	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215  	/* Skip any segments that were already added. */
216  	if (radix_tree_lookup(trb_address_map, key))
217  		return 0;
218  
219  	ret = radix_tree_maybe_preload(mem_flags);
220  	if (ret)
221  		return ret;
222  	ret = radix_tree_insert(trb_address_map,
223  			key, ring);
224  	radix_tree_preload_end();
225  	return ret;
226  }
227  
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)228  static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
229  		struct xhci_segment *seg)
230  {
231  	unsigned long key;
232  
233  	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
234  	if (radix_tree_lookup(trb_address_map, key))
235  		radix_tree_delete(trb_address_map, key);
236  }
237  
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,gfp_t mem_flags)238  static int xhci_update_stream_segment_mapping(
239  		struct radix_tree_root *trb_address_map,
240  		struct xhci_ring *ring,
241  		struct xhci_segment *first_seg,
242  		gfp_t mem_flags)
243  {
244  	struct xhci_segment *seg;
245  	struct xhci_segment *failed_seg;
246  	int ret;
247  
248  	if (WARN_ON_ONCE(trb_address_map == NULL))
249  		return 0;
250  
251  	xhci_for_each_ring_seg(first_seg, seg) {
252  		ret = xhci_insert_segment_mapping(trb_address_map,
253  				ring, seg, mem_flags);
254  		if (ret)
255  			goto remove_streams;
256  	}
257  
258  	return 0;
259  
260  remove_streams:
261  	failed_seg = seg;
262  	xhci_for_each_ring_seg(first_seg, seg) {
263  		xhci_remove_segment_mapping(trb_address_map, seg);
264  		if (seg == failed_seg)
265  			return ret;
266  	}
267  
268  	return ret;
269  }
270  
xhci_remove_stream_mapping(struct xhci_ring * ring)271  static void xhci_remove_stream_mapping(struct xhci_ring *ring)
272  {
273  	struct xhci_segment *seg;
274  
275  	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
276  		return;
277  
278  	xhci_for_each_ring_seg(ring->first_seg, seg)
279  		xhci_remove_segment_mapping(ring->trb_address_map, seg);
280  }
281  
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)282  static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
283  {
284  	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
285  			ring->first_seg, mem_flags);
286  }
287  
288  /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)289  void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
290  {
291  	if (!ring)
292  		return;
293  
294  	trace_xhci_ring_free(ring);
295  
296  	if (ring->first_seg) {
297  		if (ring->type == TYPE_STREAM)
298  			xhci_remove_stream_mapping(ring);
299  		xhci_ring_segments_free(xhci, ring);
300  	}
301  
302  	kfree(ring);
303  }
304  
xhci_initialize_ring_info(struct xhci_ring * ring)305  void xhci_initialize_ring_info(struct xhci_ring *ring)
306  {
307  	/* The ring is empty, so the enqueue pointer == dequeue pointer */
308  	ring->enqueue = ring->first_seg->trbs;
309  	ring->enq_seg = ring->first_seg;
310  	ring->dequeue = ring->enqueue;
311  	ring->deq_seg = ring->first_seg;
312  	/* The ring is initialized to 0. The producer must write 1 to the cycle
313  	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
314  	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
315  	 *
316  	 * New rings are initialized with cycle state equal to 1; if we are
317  	 * handling ring expansion, set the cycle state equal to the old ring.
318  	 */
319  	ring->cycle_state = 1;
320  
321  	/*
322  	 * Each segment has a link TRB, and leave an extra TRB for SW
323  	 * accounting purpose
324  	 */
325  	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
326  }
327  EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
328  
329  /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_ring * ring,gfp_t flags)330  static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, gfp_t flags)
331  {
332  	struct xhci_segment *prev;
333  	unsigned int num = 0;
334  
335  	prev = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags);
336  	if (!prev)
337  		return -ENOMEM;
338  	num++;
339  
340  	ring->first_seg = prev;
341  	while (num < ring->num_segs) {
342  		struct xhci_segment	*next;
343  
344  		next = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags);
345  		if (!next)
346  			goto free_segments;
347  
348  		prev->next = next;
349  		prev = next;
350  		num++;
351  	}
352  	ring->last_seg = prev;
353  
354  	ring->last_seg->next = ring->first_seg;
355  	return 0;
356  
357  free_segments:
358  	ring->last_seg = prev;
359  	xhci_ring_segments_free(xhci, ring);
360  	return -ENOMEM;
361  }
362  
363  /*
364   * Create a new ring with zero or more segments.
365   *
366   * Link each segment together into a ring.
367   * Set the end flag and the cycle toggle bit on the last segment.
368   * See section 4.9.1 and figures 15 and 16.
369   */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)370  struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, unsigned int num_segs,
371  				  enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
372  {
373  	struct xhci_ring	*ring;
374  	int ret;
375  	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
376  
377  	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
378  	if (!ring)
379  		return NULL;
380  
381  	ring->num_segs = num_segs;
382  	ring->bounce_buf_len = max_packet;
383  	INIT_LIST_HEAD(&ring->td_list);
384  	ring->type = type;
385  	if (num_segs == 0)
386  		return ring;
387  
388  	ret = xhci_alloc_segments_for_ring(xhci, ring, flags);
389  	if (ret)
390  		goto fail;
391  
392  	xhci_initialize_ring_segments(xhci, ring);
393  	xhci_initialize_ring_info(ring);
394  	trace_xhci_ring_alloc(ring);
395  	return ring;
396  
397  fail:
398  	kfree(ring);
399  	return NULL;
400  }
401  
xhci_free_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)402  void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
403  		struct xhci_virt_device *virt_dev,
404  		unsigned int ep_index)
405  {
406  	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
407  	virt_dev->eps[ep_index].ring = NULL;
408  }
409  
410  /*
411   * Expand an existing ring.
412   * Allocate a new ring which has same segment numbers and link the two rings.
413   */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_new_segs,gfp_t flags)414  int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
415  				unsigned int num_new_segs, gfp_t flags)
416  {
417  	struct xhci_ring new_ring;
418  	int ret;
419  
420  	if (num_new_segs == 0)
421  		return 0;
422  
423  	new_ring.num_segs = num_new_segs;
424  	new_ring.bounce_buf_len = ring->bounce_buf_len;
425  	new_ring.type = ring->type;
426  	ret = xhci_alloc_segments_for_ring(xhci, &new_ring, flags);
427  	if (ret)
428  		return -ENOMEM;
429  
430  	xhci_initialize_ring_segments(xhci, &new_ring);
431  
432  	if (ring->type == TYPE_STREAM) {
433  		ret = xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
434  							 new_ring.first_seg, flags);
435  		if (ret)
436  			goto free_segments;
437  	}
438  
439  	xhci_link_rings(xhci, &new_ring, ring);
440  	trace_xhci_ring_expansion(ring);
441  	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
442  			"ring expansion succeed, now has %d segments",
443  			ring->num_segs);
444  
445  	return 0;
446  
447  free_segments:
448  	xhci_ring_segments_free(xhci, &new_ring);
449  	return ret;
450  }
451  
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)452  struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
453  						    int type, gfp_t flags)
454  {
455  	struct xhci_container_ctx *ctx;
456  	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
457  
458  	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
459  		return NULL;
460  
461  	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
462  	if (!ctx)
463  		return NULL;
464  
465  	ctx->type = type;
466  	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
467  	if (type == XHCI_CTX_TYPE_INPUT)
468  		ctx->size += CTX_SIZE(xhci->hcc_params);
469  
470  	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
471  	if (!ctx->bytes) {
472  		kfree(ctx);
473  		return NULL;
474  	}
475  	return ctx;
476  }
477  
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)478  void xhci_free_container_ctx(struct xhci_hcd *xhci,
479  			     struct xhci_container_ctx *ctx)
480  {
481  	if (!ctx)
482  		return;
483  	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
484  	kfree(ctx);
485  }
486  
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)487  struct xhci_input_control_ctx *xhci_get_input_control_ctx(
488  					      struct xhci_container_ctx *ctx)
489  {
490  	if (ctx->type != XHCI_CTX_TYPE_INPUT)
491  		return NULL;
492  
493  	return (struct xhci_input_control_ctx *)ctx->bytes;
494  }
495  
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)496  struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
497  					struct xhci_container_ctx *ctx)
498  {
499  	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
500  		return (struct xhci_slot_ctx *)ctx->bytes;
501  
502  	return (struct xhci_slot_ctx *)
503  		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
504  }
505  
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)506  struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
507  				    struct xhci_container_ctx *ctx,
508  				    unsigned int ep_index)
509  {
510  	/* increment ep index by offset of start of ep ctx array */
511  	ep_index++;
512  	if (ctx->type == XHCI_CTX_TYPE_INPUT)
513  		ep_index++;
514  
515  	return (struct xhci_ep_ctx *)
516  		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
517  }
518  EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
519  
520  /***************** Streams structures manipulation *************************/
521  
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)522  static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
523  		unsigned int num_stream_ctxs,
524  		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
525  {
526  	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
527  	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
528  
529  	if (size > MEDIUM_STREAM_ARRAY_SIZE)
530  		dma_free_coherent(dev, size, stream_ctx, dma);
531  	else if (size > SMALL_STREAM_ARRAY_SIZE)
532  		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
533  	else
534  		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
535  }
536  
537  /*
538   * The stream context array for each endpoint with bulk streams enabled can
539   * vary in size, based on:
540   *  - how many streams the endpoint supports,
541   *  - the maximum primary stream array size the host controller supports,
542   *  - and how many streams the device driver asks for.
543   *
544   * The stream context array must be a power of 2, and can be as small as
545   * 64 bytes or as large as 1MB.
546   */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)547  static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
548  		unsigned int num_stream_ctxs, dma_addr_t *dma,
549  		gfp_t mem_flags)
550  {
551  	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
552  	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
553  
554  	if (size > MEDIUM_STREAM_ARRAY_SIZE)
555  		return dma_alloc_coherent(dev, size, dma, mem_flags);
556  	if (size > SMALL_STREAM_ARRAY_SIZE)
557  		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
558  	else
559  		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
560  }
561  
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)562  struct xhci_ring *xhci_dma_to_transfer_ring(
563  		struct xhci_virt_ep *ep,
564  		u64 address)
565  {
566  	if (ep->ep_state & EP_HAS_STREAMS)
567  		return radix_tree_lookup(&ep->stream_info->trb_address_map,
568  				address >> TRB_SEGMENT_SHIFT);
569  	return ep->ring;
570  }
571  
572  /*
573   * Change an endpoint's internal structure so it supports stream IDs.  The
574   * number of requested streams includes stream 0, which cannot be used by device
575   * drivers.
576   *
577   * The number of stream contexts in the stream context array may be bigger than
578   * the number of streams the driver wants to use.  This is because the number of
579   * stream context array entries must be a power of two.
580   */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,unsigned int max_packet,gfp_t mem_flags)581  struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
582  		unsigned int num_stream_ctxs,
583  		unsigned int num_streams,
584  		unsigned int max_packet, gfp_t mem_flags)
585  {
586  	struct xhci_stream_info *stream_info;
587  	u32 cur_stream;
588  	struct xhci_ring *cur_ring;
589  	u64 addr;
590  	int ret;
591  	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
592  
593  	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
594  			num_streams, num_stream_ctxs);
595  	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
596  		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
597  		return NULL;
598  	}
599  	xhci->cmd_ring_reserved_trbs++;
600  
601  	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
602  			dev_to_node(dev));
603  	if (!stream_info)
604  		goto cleanup_trbs;
605  
606  	stream_info->num_streams = num_streams;
607  	stream_info->num_stream_ctxs = num_stream_ctxs;
608  
609  	/* Initialize the array of virtual pointers to stream rings. */
610  	stream_info->stream_rings = kcalloc_node(
611  			num_streams, sizeof(struct xhci_ring *), mem_flags,
612  			dev_to_node(dev));
613  	if (!stream_info->stream_rings)
614  		goto cleanup_info;
615  
616  	/* Initialize the array of DMA addresses for stream rings for the HW. */
617  	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
618  			num_stream_ctxs, &stream_info->ctx_array_dma,
619  			mem_flags);
620  	if (!stream_info->stream_ctx_array)
621  		goto cleanup_ring_array;
622  
623  	/* Allocate everything needed to free the stream rings later */
624  	stream_info->free_streams_command =
625  		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
626  	if (!stream_info->free_streams_command)
627  		goto cleanup_ctx;
628  
629  	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
630  
631  	/* Allocate rings for all the streams that the driver will use,
632  	 * and add their segment DMA addresses to the radix tree.
633  	 * Stream 0 is reserved.
634  	 */
635  
636  	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
637  		stream_info->stream_rings[cur_stream] =
638  			xhci_ring_alloc(xhci, 2, TYPE_STREAM, max_packet, mem_flags);
639  		cur_ring = stream_info->stream_rings[cur_stream];
640  		if (!cur_ring)
641  			goto cleanup_rings;
642  		cur_ring->stream_id = cur_stream;
643  		cur_ring->trb_address_map = &stream_info->trb_address_map;
644  		/* Set deq ptr, cycle bit, and stream context type */
645  		addr = cur_ring->first_seg->dma |
646  			SCT_FOR_CTX(SCT_PRI_TR) |
647  			cur_ring->cycle_state;
648  		stream_info->stream_ctx_array[cur_stream].stream_ring =
649  			cpu_to_le64(addr);
650  		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
651  
652  		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
653  
654  		trace_xhci_alloc_stream_info_ctx(stream_info, cur_stream);
655  		if (ret) {
656  			xhci_ring_free(xhci, cur_ring);
657  			stream_info->stream_rings[cur_stream] = NULL;
658  			goto cleanup_rings;
659  		}
660  	}
661  	/* Leave the other unused stream ring pointers in the stream context
662  	 * array initialized to zero.  This will cause the xHC to give us an
663  	 * error if the device asks for a stream ID we don't have setup (if it
664  	 * was any other way, the host controller would assume the ring is
665  	 * "empty" and wait forever for data to be queued to that stream ID).
666  	 */
667  
668  	return stream_info;
669  
670  cleanup_rings:
671  	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
672  		cur_ring = stream_info->stream_rings[cur_stream];
673  		if (cur_ring) {
674  			xhci_ring_free(xhci, cur_ring);
675  			stream_info->stream_rings[cur_stream] = NULL;
676  		}
677  	}
678  	xhci_free_command(xhci, stream_info->free_streams_command);
679  cleanup_ctx:
680  	xhci_free_stream_ctx(xhci,
681  		stream_info->num_stream_ctxs,
682  		stream_info->stream_ctx_array,
683  		stream_info->ctx_array_dma);
684  cleanup_ring_array:
685  	kfree(stream_info->stream_rings);
686  cleanup_info:
687  	kfree(stream_info);
688  cleanup_trbs:
689  	xhci->cmd_ring_reserved_trbs--;
690  	return NULL;
691  }
692  /*
693   * Sets the MaxPStreams field and the Linear Stream Array field.
694   * Sets the dequeue pointer to the stream context array.
695   */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)696  void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
697  		struct xhci_ep_ctx *ep_ctx,
698  		struct xhci_stream_info *stream_info)
699  {
700  	u32 max_primary_streams;
701  	/* MaxPStreams is the number of stream context array entries, not the
702  	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
703  	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
704  	 */
705  	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
706  	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
707  			"Setting number of stream ctx array entries to %u",
708  			1 << (max_primary_streams + 1));
709  	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
710  	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
711  				       | EP_HAS_LSA);
712  	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
713  }
714  
715  /*
716   * Sets the MaxPStreams field and the Linear Stream Array field to 0.
717   * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
718   * not at the beginning of the ring).
719   */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)720  void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
721  		struct xhci_virt_ep *ep)
722  {
723  	dma_addr_t addr;
724  	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
725  	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
726  	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
727  }
728  
729  /* Frees all stream contexts associated with the endpoint,
730   *
731   * Caller should fix the endpoint context streams fields.
732   */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)733  void xhci_free_stream_info(struct xhci_hcd *xhci,
734  		struct xhci_stream_info *stream_info)
735  {
736  	int cur_stream;
737  	struct xhci_ring *cur_ring;
738  
739  	if (!stream_info)
740  		return;
741  
742  	for (cur_stream = 1; cur_stream < stream_info->num_streams;
743  			cur_stream++) {
744  		cur_ring = stream_info->stream_rings[cur_stream];
745  		if (cur_ring) {
746  			xhci_ring_free(xhci, cur_ring);
747  			stream_info->stream_rings[cur_stream] = NULL;
748  		}
749  	}
750  	xhci_free_command(xhci, stream_info->free_streams_command);
751  	xhci->cmd_ring_reserved_trbs--;
752  	if (stream_info->stream_ctx_array)
753  		xhci_free_stream_ctx(xhci,
754  				stream_info->num_stream_ctxs,
755  				stream_info->stream_ctx_array,
756  				stream_info->ctx_array_dma);
757  
758  	kfree(stream_info->stream_rings);
759  	kfree(stream_info);
760  }
761  
762  
763  /***************** Device context manipulation *************************/
764  
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)765  static void xhci_free_tt_info(struct xhci_hcd *xhci,
766  		struct xhci_virt_device *virt_dev,
767  		int slot_id)
768  {
769  	struct list_head *tt_list_head;
770  	struct xhci_tt_bw_info *tt_info, *next;
771  	bool slot_found = false;
772  
773  	/* If the device never made it past the Set Address stage,
774  	 * it may not have the root hub port pointer set correctly.
775  	 */
776  	if (!virt_dev->rhub_port) {
777  		xhci_dbg(xhci, "Bad rhub port.\n");
778  		return;
779  	}
780  
781  	tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
782  	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
783  		/* Multi-TT hubs will have more than one entry */
784  		if (tt_info->slot_id == slot_id) {
785  			slot_found = true;
786  			list_del(&tt_info->tt_list);
787  			kfree(tt_info);
788  		} else if (slot_found) {
789  			break;
790  		}
791  	}
792  }
793  
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)794  int xhci_alloc_tt_info(struct xhci_hcd *xhci,
795  		struct xhci_virt_device *virt_dev,
796  		struct usb_device *hdev,
797  		struct usb_tt *tt, gfp_t mem_flags)
798  {
799  	struct xhci_tt_bw_info		*tt_info;
800  	unsigned int			num_ports;
801  	int				i, j;
802  	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
803  
804  	if (!tt->multi)
805  		num_ports = 1;
806  	else
807  		num_ports = hdev->maxchild;
808  
809  	for (i = 0; i < num_ports; i++, tt_info++) {
810  		struct xhci_interval_bw_table *bw_table;
811  
812  		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
813  				dev_to_node(dev));
814  		if (!tt_info)
815  			goto free_tts;
816  		INIT_LIST_HEAD(&tt_info->tt_list);
817  		list_add(&tt_info->tt_list,
818  				&xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
819  		tt_info->slot_id = virt_dev->udev->slot_id;
820  		if (tt->multi)
821  			tt_info->ttport = i+1;
822  		bw_table = &tt_info->bw_table;
823  		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
824  			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
825  	}
826  	return 0;
827  
828  free_tts:
829  	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
830  	return -ENOMEM;
831  }
832  
833  
834  /* All the xhci_tds in the ring's TD list should be freed at this point.
835   * Should be called with xhci->lock held if there is any chance the TT lists
836   * will be manipulated by the configure endpoint, allocate device, or update
837   * hub functions while this function is removing the TT entries from the list.
838   */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)839  void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
840  {
841  	struct xhci_virt_device *dev;
842  	int i;
843  	int old_active_eps = 0;
844  
845  	/* Slot ID 0 is reserved */
846  	if (slot_id == 0 || !xhci->devs[slot_id])
847  		return;
848  
849  	dev = xhci->devs[slot_id];
850  
851  	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
852  	if (!dev)
853  		return;
854  
855  	trace_xhci_free_virt_device(dev);
856  
857  	if (dev->tt_info)
858  		old_active_eps = dev->tt_info->active_eps;
859  
860  	for (i = 0; i < 31; i++) {
861  		if (dev->eps[i].ring)
862  			xhci_ring_free(xhci, dev->eps[i].ring);
863  		if (dev->eps[i].stream_info)
864  			xhci_free_stream_info(xhci,
865  					dev->eps[i].stream_info);
866  		/*
867  		 * Endpoints are normally deleted from the bandwidth list when
868  		 * endpoints are dropped, before device is freed.
869  		 * If host is dying or being removed then endpoints aren't
870  		 * dropped cleanly, so delete the endpoint from list here.
871  		 * Only applicable for hosts with software bandwidth checking.
872  		 */
873  
874  		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
875  			list_del_init(&dev->eps[i].bw_endpoint_list);
876  			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
877  				 slot_id, i);
878  		}
879  	}
880  	/* If this is a hub, free the TT(s) from the TT list */
881  	xhci_free_tt_info(xhci, dev, slot_id);
882  	/* If necessary, update the number of active TTs on this root port */
883  	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
884  
885  	if (dev->in_ctx)
886  		xhci_free_container_ctx(xhci, dev->in_ctx);
887  	if (dev->out_ctx)
888  		xhci_free_container_ctx(xhci, dev->out_ctx);
889  
890  	if (dev->udev && dev->udev->slot_id)
891  		dev->udev->slot_id = 0;
892  	if (dev->rhub_port && dev->rhub_port->slot_id == slot_id)
893  		dev->rhub_port->slot_id = 0;
894  	kfree(xhci->devs[slot_id]);
895  	xhci->devs[slot_id] = NULL;
896  }
897  
898  /*
899   * Free a virt_device structure.
900   * If the virt_device added a tt_info (a hub) and has children pointing to
901   * that tt_info, then free the child first. Recursive.
902   * We can't rely on udev at this point to find child-parent relationships.
903   */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)904  static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
905  {
906  	struct xhci_virt_device *vdev;
907  	struct list_head *tt_list_head;
908  	struct xhci_tt_bw_info *tt_info, *next;
909  	int i;
910  
911  	vdev = xhci->devs[slot_id];
912  	if (!vdev)
913  		return;
914  
915  	if (!vdev->rhub_port) {
916  		xhci_dbg(xhci, "Bad rhub port.\n");
917  		goto out;
918  	}
919  
920  	tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts);
921  	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
922  		/* is this a hub device that added a tt_info to the tts list */
923  		if (tt_info->slot_id == slot_id) {
924  			/* are any devices using this tt_info? */
925  			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
926  				vdev = xhci->devs[i];
927  				if (vdev && (vdev->tt_info == tt_info))
928  					xhci_free_virt_devices_depth_first(
929  						xhci, i);
930  			}
931  		}
932  	}
933  out:
934  	/* we are now at a leaf device */
935  	xhci_debugfs_remove_slot(xhci, slot_id);
936  	xhci_free_virt_device(xhci, slot_id);
937  }
938  
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)939  int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
940  		struct usb_device *udev, gfp_t flags)
941  {
942  	struct xhci_virt_device *dev;
943  	int i;
944  
945  	/* Slot ID 0 is reserved */
946  	if (slot_id == 0 || xhci->devs[slot_id]) {
947  		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
948  		return 0;
949  	}
950  
951  	dev = kzalloc(sizeof(*dev), flags);
952  	if (!dev)
953  		return 0;
954  
955  	dev->slot_id = slot_id;
956  
957  	/* Allocate the (output) device context that will be used in the HC. */
958  	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
959  	if (!dev->out_ctx)
960  		goto fail;
961  
962  	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
963  
964  	/* Allocate the (input) device context for address device command */
965  	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
966  	if (!dev->in_ctx)
967  		goto fail;
968  
969  	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
970  
971  	/* Initialize the cancellation and bandwidth list for each ep */
972  	for (i = 0; i < 31; i++) {
973  		dev->eps[i].ep_index = i;
974  		dev->eps[i].vdev = dev;
975  		dev->eps[i].xhci = xhci;
976  		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
977  		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
978  	}
979  
980  	/* Allocate endpoint 0 ring */
981  	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, TYPE_CTRL, 0, flags);
982  	if (!dev->eps[0].ring)
983  		goto fail;
984  
985  	dev->udev = udev;
986  
987  	/* Point to output device context in dcbaa. */
988  	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
989  	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
990  		 slot_id,
991  		 &xhci->dcbaa->dev_context_ptrs[slot_id],
992  		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
993  
994  	trace_xhci_alloc_virt_device(dev);
995  
996  	xhci->devs[slot_id] = dev;
997  
998  	return 1;
999  fail:
1000  
1001  	if (dev->in_ctx)
1002  		xhci_free_container_ctx(xhci, dev->in_ctx);
1003  	if (dev->out_ctx)
1004  		xhci_free_container_ctx(xhci, dev->out_ctx);
1005  	kfree(dev);
1006  
1007  	return 0;
1008  }
1009  
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1010  void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1011  		struct usb_device *udev)
1012  {
1013  	struct xhci_virt_device *virt_dev;
1014  	struct xhci_ep_ctx	*ep0_ctx;
1015  	struct xhci_ring	*ep_ring;
1016  
1017  	virt_dev = xhci->devs[udev->slot_id];
1018  	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1019  	ep_ring = virt_dev->eps[0].ring;
1020  	/*
1021  	 * FIXME we don't keep track of the dequeue pointer very well after a
1022  	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1023  	 * host to our enqueue pointer.  This should only be called after a
1024  	 * configured device has reset, so all control transfers should have
1025  	 * been completed or cancelled before the reset.
1026  	 */
1027  	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1028  							ep_ring->enqueue)
1029  				   | ep_ring->cycle_state);
1030  }
1031  
1032  /*
1033   * The xHCI roothub may have ports of differing speeds in any order in the port
1034   * status registers.
1035   *
1036   * The xHCI hardware wants to know the roothub port that the USB device
1037   * is attached to (or the roothub port its ancestor hub is attached to).  All we
1038   * know is the index of that port under either the USB 2.0 or the USB 3.0
1039   * roothub, but that doesn't give us the real index into the HW port status
1040   * registers.
1041   */
xhci_find_rhub_port(struct xhci_hcd * xhci,struct usb_device * udev)1042  static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev)
1043  {
1044  	struct usb_device *top_dev;
1045  	struct xhci_hub *rhub;
1046  	struct usb_hcd *hcd;
1047  
1048  	if (udev->speed >= USB_SPEED_SUPER)
1049  		hcd = xhci_get_usb3_hcd(xhci);
1050  	else
1051  		hcd = xhci->main_hcd;
1052  
1053  	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1054  			top_dev = top_dev->parent)
1055  		/* Found device below root hub */;
1056  
1057  	rhub = xhci_get_rhub(hcd);
1058  	return rhub->ports[top_dev->portnum - 1];
1059  }
1060  
1061  /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1062  int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1063  {
1064  	struct xhci_virt_device *dev;
1065  	struct xhci_ep_ctx	*ep0_ctx;
1066  	struct xhci_slot_ctx    *slot_ctx;
1067  	u32			max_packets;
1068  
1069  	dev = xhci->devs[udev->slot_id];
1070  	/* Slot ID 0 is reserved */
1071  	if (udev->slot_id == 0 || !dev) {
1072  		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1073  				udev->slot_id);
1074  		return -EINVAL;
1075  	}
1076  	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1077  	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1078  
1079  	/* 3) Only the control endpoint is valid - one endpoint context */
1080  	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1081  	switch (udev->speed) {
1082  	case USB_SPEED_SUPER_PLUS:
1083  		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1084  		max_packets = MAX_PACKET(512);
1085  		break;
1086  	case USB_SPEED_SUPER:
1087  		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1088  		max_packets = MAX_PACKET(512);
1089  		break;
1090  	case USB_SPEED_HIGH:
1091  		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1092  		max_packets = MAX_PACKET(64);
1093  		break;
1094  	/* USB core guesses at a 64-byte max packet first for FS devices */
1095  	case USB_SPEED_FULL:
1096  		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1097  		max_packets = MAX_PACKET(64);
1098  		break;
1099  	case USB_SPEED_LOW:
1100  		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1101  		max_packets = MAX_PACKET(8);
1102  		break;
1103  	default:
1104  		/* Speed was set earlier, this shouldn't happen. */
1105  		return -EINVAL;
1106  	}
1107  	/* Find the root hub port this device is under */
1108  	dev->rhub_port = xhci_find_rhub_port(xhci, udev);
1109  	if (!dev->rhub_port)
1110  		return -EINVAL;
1111  	/* Slot ID is set to the device directly below the root hub */
1112  	if (!udev->parent->parent)
1113  		dev->rhub_port->slot_id = udev->slot_id;
1114  	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1));
1115  	xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n",
1116  		 udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum);
1117  
1118  	/* Find the right bandwidth table that this device will be a part of.
1119  	 * If this is a full speed device attached directly to a root port (or a
1120  	 * decendent of one), it counts as a primary bandwidth domain, not a
1121  	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1122  	 * will never be created for the HS root hub.
1123  	 */
1124  	if (!udev->tt || !udev->tt->hub->parent) {
1125  		dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table;
1126  	} else {
1127  		struct xhci_root_port_bw_info *rh_bw;
1128  		struct xhci_tt_bw_info *tt_bw;
1129  
1130  		rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum];
1131  		/* Find the right TT. */
1132  		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1133  			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1134  				continue;
1135  
1136  			if (!dev->udev->tt->multi ||
1137  					(udev->tt->multi &&
1138  					 tt_bw->ttport == dev->udev->ttport)) {
1139  				dev->bw_table = &tt_bw->bw_table;
1140  				dev->tt_info = tt_bw;
1141  				break;
1142  			}
1143  		}
1144  		if (!dev->tt_info)
1145  			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1146  	}
1147  
1148  	/* Is this a LS/FS device under an external HS hub? */
1149  	if (udev->tt && udev->tt->hub->parent) {
1150  		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1151  						(udev->ttport << 8));
1152  		if (udev->tt->multi)
1153  			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1154  	}
1155  	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1156  	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1157  
1158  	/* Step 4 - ring already allocated */
1159  	/* Step 5 */
1160  	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1161  
1162  	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1163  	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1164  					 max_packets);
1165  
1166  	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1167  				   dev->eps[0].ring->cycle_state);
1168  
1169  	trace_xhci_setup_addressable_virt_device(dev);
1170  
1171  	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1172  
1173  	return 0;
1174  }
1175  
1176  /*
1177   * Convert interval expressed as 2^(bInterval - 1) == interval into
1178   * straight exponent value 2^n == interval.
1179   *
1180   */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1181  static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1182  		struct usb_host_endpoint *ep)
1183  {
1184  	unsigned int interval;
1185  
1186  	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1187  	if (interval != ep->desc.bInterval - 1)
1188  		dev_warn(&udev->dev,
1189  			 "ep %#x - rounding interval to %d %sframes\n",
1190  			 ep->desc.bEndpointAddress,
1191  			 1 << interval,
1192  			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1193  
1194  	if (udev->speed == USB_SPEED_FULL) {
1195  		/*
1196  		 * Full speed isoc endpoints specify interval in frames,
1197  		 * not microframes. We are using microframes everywhere,
1198  		 * so adjust accordingly.
1199  		 */
1200  		interval += 3;	/* 1 frame = 2^3 uframes */
1201  	}
1202  
1203  	return interval;
1204  }
1205  
1206  /*
1207   * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1208   * microframes, rounded down to nearest power of 2.
1209   */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1210  static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1211  		struct usb_host_endpoint *ep, unsigned int desc_interval,
1212  		unsigned int min_exponent, unsigned int max_exponent)
1213  {
1214  	unsigned int interval;
1215  
1216  	interval = fls(desc_interval) - 1;
1217  	interval = clamp_val(interval, min_exponent, max_exponent);
1218  	if ((1 << interval) != desc_interval)
1219  		dev_dbg(&udev->dev,
1220  			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1221  			 ep->desc.bEndpointAddress,
1222  			 1 << interval,
1223  			 desc_interval);
1224  
1225  	return interval;
1226  }
1227  
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1228  static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1229  		struct usb_host_endpoint *ep)
1230  {
1231  	if (ep->desc.bInterval == 0)
1232  		return 0;
1233  	return xhci_microframes_to_exponent(udev, ep,
1234  			ep->desc.bInterval, 0, 15);
1235  }
1236  
1237  
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1238  static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1239  		struct usb_host_endpoint *ep)
1240  {
1241  	return xhci_microframes_to_exponent(udev, ep,
1242  			ep->desc.bInterval * 8, 3, 10);
1243  }
1244  
1245  /* Return the polling or NAK interval.
1246   *
1247   * The polling interval is expressed in "microframes".  If xHCI's Interval field
1248   * is set to N, it will service the endpoint every 2^(Interval)*125us.
1249   *
1250   * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1251   * is set to 0.
1252   */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1253  static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1254  		struct usb_host_endpoint *ep)
1255  {
1256  	unsigned int interval = 0;
1257  
1258  	switch (udev->speed) {
1259  	case USB_SPEED_HIGH:
1260  		/* Max NAK rate */
1261  		if (usb_endpoint_xfer_control(&ep->desc) ||
1262  		    usb_endpoint_xfer_bulk(&ep->desc)) {
1263  			interval = xhci_parse_microframe_interval(udev, ep);
1264  			break;
1265  		}
1266  		fallthrough;	/* SS and HS isoc/int have same decoding */
1267  
1268  	case USB_SPEED_SUPER_PLUS:
1269  	case USB_SPEED_SUPER:
1270  		if (usb_endpoint_xfer_int(&ep->desc) ||
1271  		    usb_endpoint_xfer_isoc(&ep->desc)) {
1272  			interval = xhci_parse_exponent_interval(udev, ep);
1273  		}
1274  		break;
1275  
1276  	case USB_SPEED_FULL:
1277  		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1278  			interval = xhci_parse_exponent_interval(udev, ep);
1279  			break;
1280  		}
1281  		/*
1282  		 * Fall through for interrupt endpoint interval decoding
1283  		 * since it uses the same rules as low speed interrupt
1284  		 * endpoints.
1285  		 */
1286  		fallthrough;
1287  
1288  	case USB_SPEED_LOW:
1289  		if (usb_endpoint_xfer_int(&ep->desc) ||
1290  		    usb_endpoint_xfer_isoc(&ep->desc)) {
1291  
1292  			interval = xhci_parse_frame_interval(udev, ep);
1293  		}
1294  		break;
1295  
1296  	default:
1297  		BUG();
1298  	}
1299  	return interval;
1300  }
1301  
1302  /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1303   * High speed endpoint descriptors can define "the number of additional
1304   * transaction opportunities per microframe", but that goes in the Max Burst
1305   * endpoint context field.
1306   */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1307  static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1308  		struct usb_host_endpoint *ep)
1309  {
1310  	if (udev->speed < USB_SPEED_SUPER ||
1311  			!usb_endpoint_xfer_isoc(&ep->desc))
1312  		return 0;
1313  	return ep->ss_ep_comp.bmAttributes;
1314  }
1315  
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_host_endpoint * ep)1316  static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1317  				       struct usb_host_endpoint *ep)
1318  {
1319  	/* Super speed and Plus have max burst in ep companion desc */
1320  	if (udev->speed >= USB_SPEED_SUPER)
1321  		return ep->ss_ep_comp.bMaxBurst;
1322  
1323  	if (udev->speed == USB_SPEED_HIGH &&
1324  	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1325  	     usb_endpoint_xfer_int(&ep->desc)))
1326  		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1327  
1328  	return 0;
1329  }
1330  
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1331  static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1332  {
1333  	int in;
1334  
1335  	in = usb_endpoint_dir_in(&ep->desc);
1336  
1337  	switch (usb_endpoint_type(&ep->desc)) {
1338  	case USB_ENDPOINT_XFER_CONTROL:
1339  		return CTRL_EP;
1340  	case USB_ENDPOINT_XFER_BULK:
1341  		return in ? BULK_IN_EP : BULK_OUT_EP;
1342  	case USB_ENDPOINT_XFER_ISOC:
1343  		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1344  	case USB_ENDPOINT_XFER_INT:
1345  		return in ? INT_IN_EP : INT_OUT_EP;
1346  	}
1347  	return 0;
1348  }
1349  
1350  /* Return the maximum endpoint service interval time (ESIT) payload.
1351   * Basically, this is the maxpacket size, multiplied by the burst size
1352   * and mult size.
1353   */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_host_endpoint * ep)1354  static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1355  		struct usb_host_endpoint *ep)
1356  {
1357  	int max_burst;
1358  	int max_packet;
1359  
1360  	/* Only applies for interrupt or isochronous endpoints */
1361  	if (usb_endpoint_xfer_control(&ep->desc) ||
1362  			usb_endpoint_xfer_bulk(&ep->desc))
1363  		return 0;
1364  
1365  	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1366  	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1367  	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1368  		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1369  
1370  	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1371  	if (udev->speed >= USB_SPEED_SUPER)
1372  		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1373  
1374  	max_packet = usb_endpoint_maxp(&ep->desc);
1375  	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1376  	/* A 0 in max burst means 1 transfer per ESIT */
1377  	return max_packet * max_burst;
1378  }
1379  
1380  /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1381   * Drivers will have to call usb_alloc_streams() to do that.
1382   */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1383  int xhci_endpoint_init(struct xhci_hcd *xhci,
1384  		struct xhci_virt_device *virt_dev,
1385  		struct usb_device *udev,
1386  		struct usb_host_endpoint *ep,
1387  		gfp_t mem_flags)
1388  {
1389  	unsigned int ep_index;
1390  	struct xhci_ep_ctx *ep_ctx;
1391  	struct xhci_ring *ep_ring;
1392  	unsigned int max_packet;
1393  	enum xhci_ring_type ring_type;
1394  	u32 max_esit_payload;
1395  	u32 endpoint_type;
1396  	unsigned int max_burst;
1397  	unsigned int interval;
1398  	unsigned int mult;
1399  	unsigned int avg_trb_len;
1400  	unsigned int err_count = 0;
1401  
1402  	ep_index = xhci_get_endpoint_index(&ep->desc);
1403  	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1404  
1405  	endpoint_type = xhci_get_endpoint_type(ep);
1406  	if (!endpoint_type)
1407  		return -EINVAL;
1408  
1409  	ring_type = usb_endpoint_type(&ep->desc);
1410  
1411  	/*
1412  	 * Get values to fill the endpoint context, mostly from ep descriptor.
1413  	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1414  	 * have no clue on scatter gather list entry size. For Isoc and Int,
1415  	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1416  	 */
1417  	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1418  	interval = xhci_get_endpoint_interval(udev, ep);
1419  
1420  	/* Periodic endpoint bInterval limit quirk */
1421  	if (usb_endpoint_xfer_int(&ep->desc) ||
1422  	    usb_endpoint_xfer_isoc(&ep->desc)) {
1423  		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1424  		    udev->speed >= USB_SPEED_HIGH &&
1425  		    interval >= 7) {
1426  			interval = 6;
1427  		}
1428  	}
1429  
1430  	mult = xhci_get_endpoint_mult(udev, ep);
1431  	max_packet = usb_endpoint_maxp(&ep->desc);
1432  	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1433  	avg_trb_len = max_esit_payload;
1434  
1435  	/* FIXME dig Mult and streams info out of ep companion desc */
1436  
1437  	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1438  	if (!usb_endpoint_xfer_isoc(&ep->desc))
1439  		err_count = 3;
1440  	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1441  	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1442  		if (udev->speed == USB_SPEED_HIGH)
1443  			max_packet = 512;
1444  		if (udev->speed == USB_SPEED_FULL) {
1445  			max_packet = rounddown_pow_of_two(max_packet);
1446  			max_packet = clamp_val(max_packet, 8, 64);
1447  		}
1448  	}
1449  	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1450  	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1451  		avg_trb_len = 8;
1452  	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1453  	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1454  		mult = 0;
1455  
1456  	/* Set up the endpoint ring */
1457  	virt_dev->eps[ep_index].new_ring =
1458  		xhci_ring_alloc(xhci, 2, ring_type, max_packet, mem_flags);
1459  	if (!virt_dev->eps[ep_index].new_ring)
1460  		return -ENOMEM;
1461  
1462  	virt_dev->eps[ep_index].skip = false;
1463  	ep_ring = virt_dev->eps[ep_index].new_ring;
1464  
1465  	/* Fill the endpoint context */
1466  	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1467  				      EP_INTERVAL(interval) |
1468  				      EP_MULT(mult));
1469  	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1470  				       MAX_PACKET(max_packet) |
1471  				       MAX_BURST(max_burst) |
1472  				       ERROR_COUNT(err_count));
1473  	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1474  				  ep_ring->cycle_state);
1475  
1476  	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1477  				      EP_AVG_TRB_LENGTH(avg_trb_len));
1478  
1479  	return 0;
1480  }
1481  
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1482  void xhci_endpoint_zero(struct xhci_hcd *xhci,
1483  		struct xhci_virt_device *virt_dev,
1484  		struct usb_host_endpoint *ep)
1485  {
1486  	unsigned int ep_index;
1487  	struct xhci_ep_ctx *ep_ctx;
1488  
1489  	ep_index = xhci_get_endpoint_index(&ep->desc);
1490  	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1491  
1492  	ep_ctx->ep_info = 0;
1493  	ep_ctx->ep_info2 = 0;
1494  	ep_ctx->deq = 0;
1495  	ep_ctx->tx_info = 0;
1496  	/* Don't free the endpoint ring until the set interface or configuration
1497  	 * request succeeds.
1498  	 */
1499  }
1500  
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1501  void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1502  {
1503  	bw_info->ep_interval = 0;
1504  	bw_info->mult = 0;
1505  	bw_info->num_packets = 0;
1506  	bw_info->max_packet_size = 0;
1507  	bw_info->type = 0;
1508  	bw_info->max_esit_payload = 0;
1509  }
1510  
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1511  void xhci_update_bw_info(struct xhci_hcd *xhci,
1512  		struct xhci_container_ctx *in_ctx,
1513  		struct xhci_input_control_ctx *ctrl_ctx,
1514  		struct xhci_virt_device *virt_dev)
1515  {
1516  	struct xhci_bw_info *bw_info;
1517  	struct xhci_ep_ctx *ep_ctx;
1518  	unsigned int ep_type;
1519  	int i;
1520  
1521  	for (i = 1; i < 31; i++) {
1522  		bw_info = &virt_dev->eps[i].bw_info;
1523  
1524  		/* We can't tell what endpoint type is being dropped, but
1525  		 * unconditionally clearing the bandwidth info for non-periodic
1526  		 * endpoints should be harmless because the info will never be
1527  		 * set in the first place.
1528  		 */
1529  		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1530  			/* Dropped endpoint */
1531  			xhci_clear_endpoint_bw_info(bw_info);
1532  			continue;
1533  		}
1534  
1535  		if (EP_IS_ADDED(ctrl_ctx, i)) {
1536  			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1537  			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1538  
1539  			/* Ignore non-periodic endpoints */
1540  			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1541  					ep_type != ISOC_IN_EP &&
1542  					ep_type != INT_IN_EP)
1543  				continue;
1544  
1545  			/* Added or changed endpoint */
1546  			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1547  					le32_to_cpu(ep_ctx->ep_info));
1548  			/* Number of packets and mult are zero-based in the
1549  			 * input context, but we want one-based for the
1550  			 * interval table.
1551  			 */
1552  			bw_info->mult = CTX_TO_EP_MULT(
1553  					le32_to_cpu(ep_ctx->ep_info)) + 1;
1554  			bw_info->num_packets = CTX_TO_MAX_BURST(
1555  					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1556  			bw_info->max_packet_size = MAX_PACKET_DECODED(
1557  					le32_to_cpu(ep_ctx->ep_info2));
1558  			bw_info->type = ep_type;
1559  			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1560  					le32_to_cpu(ep_ctx->tx_info));
1561  		}
1562  	}
1563  }
1564  
1565  /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1566   * Useful when you want to change one particular aspect of the endpoint and then
1567   * issue a configure endpoint command.
1568   */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1569  void xhci_endpoint_copy(struct xhci_hcd *xhci,
1570  		struct xhci_container_ctx *in_ctx,
1571  		struct xhci_container_ctx *out_ctx,
1572  		unsigned int ep_index)
1573  {
1574  	struct xhci_ep_ctx *out_ep_ctx;
1575  	struct xhci_ep_ctx *in_ep_ctx;
1576  
1577  	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1578  	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1579  
1580  	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1581  	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1582  	in_ep_ctx->deq = out_ep_ctx->deq;
1583  	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1584  	if (xhci->quirks & XHCI_MTK_HOST) {
1585  		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1586  		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1587  	}
1588  }
1589  
1590  /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1591   * Useful when you want to change one particular aspect of the endpoint and then
1592   * issue a configure endpoint command.  Only the context entries field matters,
1593   * but we'll copy the whole thing anyway.
1594   */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1595  void xhci_slot_copy(struct xhci_hcd *xhci,
1596  		struct xhci_container_ctx *in_ctx,
1597  		struct xhci_container_ctx *out_ctx)
1598  {
1599  	struct xhci_slot_ctx *in_slot_ctx;
1600  	struct xhci_slot_ctx *out_slot_ctx;
1601  
1602  	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1603  	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1604  
1605  	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1606  	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1607  	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1608  	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1609  }
1610  
1611  /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1612  static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1613  {
1614  	int i;
1615  	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1616  	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1617  
1618  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1619  			"Allocating %d scratchpad buffers", num_sp);
1620  
1621  	if (!num_sp)
1622  		return 0;
1623  
1624  	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1625  				dev_to_node(dev));
1626  	if (!xhci->scratchpad)
1627  		goto fail_sp;
1628  
1629  	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1630  				     array_size(sizeof(u64), num_sp),
1631  				     &xhci->scratchpad->sp_dma, flags);
1632  	if (!xhci->scratchpad->sp_array)
1633  		goto fail_sp2;
1634  
1635  	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1636  					flags, dev_to_node(dev));
1637  	if (!xhci->scratchpad->sp_buffers)
1638  		goto fail_sp3;
1639  
1640  	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1641  	for (i = 0; i < num_sp; i++) {
1642  		dma_addr_t dma;
1643  		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1644  					       flags);
1645  		if (!buf)
1646  			goto fail_sp4;
1647  
1648  		xhci->scratchpad->sp_array[i] = dma;
1649  		xhci->scratchpad->sp_buffers[i] = buf;
1650  	}
1651  
1652  	return 0;
1653  
1654   fail_sp4:
1655  	while (i--)
1656  		dma_free_coherent(dev, xhci->page_size,
1657  				    xhci->scratchpad->sp_buffers[i],
1658  				    xhci->scratchpad->sp_array[i]);
1659  
1660  	kfree(xhci->scratchpad->sp_buffers);
1661  
1662   fail_sp3:
1663  	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1664  			    xhci->scratchpad->sp_array,
1665  			    xhci->scratchpad->sp_dma);
1666  
1667   fail_sp2:
1668  	kfree(xhci->scratchpad);
1669  	xhci->scratchpad = NULL;
1670  
1671   fail_sp:
1672  	return -ENOMEM;
1673  }
1674  
scratchpad_free(struct xhci_hcd * xhci)1675  static void scratchpad_free(struct xhci_hcd *xhci)
1676  {
1677  	int num_sp;
1678  	int i;
1679  	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1680  
1681  	if (!xhci->scratchpad)
1682  		return;
1683  
1684  	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1685  
1686  	for (i = 0; i < num_sp; i++) {
1687  		dma_free_coherent(dev, xhci->page_size,
1688  				    xhci->scratchpad->sp_buffers[i],
1689  				    xhci->scratchpad->sp_array[i]);
1690  	}
1691  	kfree(xhci->scratchpad->sp_buffers);
1692  	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1693  			    xhci->scratchpad->sp_array,
1694  			    xhci->scratchpad->sp_dma);
1695  	kfree(xhci->scratchpad);
1696  	xhci->scratchpad = NULL;
1697  }
1698  
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1699  struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1700  		bool allocate_completion, gfp_t mem_flags)
1701  {
1702  	struct xhci_command *command;
1703  	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1704  
1705  	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1706  	if (!command)
1707  		return NULL;
1708  
1709  	if (allocate_completion) {
1710  		command->completion =
1711  			kzalloc_node(sizeof(struct completion), mem_flags,
1712  				dev_to_node(dev));
1713  		if (!command->completion) {
1714  			kfree(command);
1715  			return NULL;
1716  		}
1717  		init_completion(command->completion);
1718  	}
1719  
1720  	command->status = 0;
1721  	/* set default timeout to 5000 ms */
1722  	command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1723  	INIT_LIST_HEAD(&command->cmd_list);
1724  	return command;
1725  }
1726  
xhci_alloc_command_with_ctx(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1727  struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1728  		bool allocate_completion, gfp_t mem_flags)
1729  {
1730  	struct xhci_command *command;
1731  
1732  	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1733  	if (!command)
1734  		return NULL;
1735  
1736  	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1737  						   mem_flags);
1738  	if (!command->in_ctx) {
1739  		kfree(command->completion);
1740  		kfree(command);
1741  		return NULL;
1742  	}
1743  	return command;
1744  }
1745  
xhci_urb_free_priv(struct urb_priv * urb_priv)1746  void xhci_urb_free_priv(struct urb_priv *urb_priv)
1747  {
1748  	kfree(urb_priv);
1749  }
1750  
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1751  void xhci_free_command(struct xhci_hcd *xhci,
1752  		struct xhci_command *command)
1753  {
1754  	xhci_free_container_ctx(xhci,
1755  			command->in_ctx);
1756  	kfree(command->completion);
1757  	kfree(command);
1758  }
1759  
xhci_alloc_erst(struct xhci_hcd * xhci,struct xhci_ring * evt_ring,struct xhci_erst * erst,gfp_t flags)1760  static int xhci_alloc_erst(struct xhci_hcd *xhci,
1761  		    struct xhci_ring *evt_ring,
1762  		    struct xhci_erst *erst,
1763  		    gfp_t flags)
1764  {
1765  	size_t size;
1766  	unsigned int val;
1767  	struct xhci_segment *seg;
1768  	struct xhci_erst_entry *entry;
1769  
1770  	size = array_size(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1771  	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1772  					   size, &erst->erst_dma_addr, flags);
1773  	if (!erst->entries)
1774  		return -ENOMEM;
1775  
1776  	erst->num_entries = evt_ring->num_segs;
1777  
1778  	seg = evt_ring->first_seg;
1779  	for (val = 0; val < evt_ring->num_segs; val++) {
1780  		entry = &erst->entries[val];
1781  		entry->seg_addr = cpu_to_le64(seg->dma);
1782  		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1783  		entry->rsvd = 0;
1784  		seg = seg->next;
1785  	}
1786  
1787  	return 0;
1788  }
1789  
1790  static void
xhci_remove_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1791  xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1792  {
1793  	u32 tmp;
1794  
1795  	if (!ir)
1796  		return;
1797  
1798  	/*
1799  	 * Clean out interrupter registers except ERSTBA. Clearing either the
1800  	 * low or high 32 bits of ERSTBA immediately causes the controller to
1801  	 * dereference the partially cleared 64 bit address, causing IOMMU error.
1802  	 */
1803  	if (ir->ir_set) {
1804  		tmp = readl(&ir->ir_set->erst_size);
1805  		tmp &= ERST_SIZE_MASK;
1806  		writel(tmp, &ir->ir_set->erst_size);
1807  
1808  		xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue);
1809  	}
1810  }
1811  
1812  static void
xhci_free_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1813  xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1814  {
1815  	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1816  	size_t erst_size;
1817  
1818  	if (!ir)
1819  		return;
1820  
1821  	erst_size = array_size(sizeof(struct xhci_erst_entry), ir->erst.num_entries);
1822  	if (ir->erst.entries)
1823  		dma_free_coherent(dev, erst_size,
1824  				  ir->erst.entries,
1825  				  ir->erst.erst_dma_addr);
1826  	ir->erst.entries = NULL;
1827  
1828  	/* free interrupter event ring */
1829  	if (ir->event_ring)
1830  		xhci_ring_free(xhci, ir->event_ring);
1831  
1832  	ir->event_ring = NULL;
1833  
1834  	kfree(ir);
1835  }
1836  
xhci_remove_secondary_interrupter(struct usb_hcd * hcd,struct xhci_interrupter * ir)1837  void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1838  {
1839  	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1840  	unsigned int intr_num;
1841  
1842  	spin_lock_irq(&xhci->lock);
1843  
1844  	/* interrupter 0 is primary interrupter, don't touch it */
1845  	if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1846  		xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1847  		spin_unlock_irq(&xhci->lock);
1848  		return;
1849  	}
1850  
1851  	intr_num = ir->intr_num;
1852  
1853  	xhci_remove_interrupter(xhci, ir);
1854  	xhci->interrupters[intr_num] = NULL;
1855  
1856  	spin_unlock_irq(&xhci->lock);
1857  
1858  	xhci_free_interrupter(xhci, ir);
1859  }
1860  EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1861  
xhci_mem_cleanup(struct xhci_hcd * xhci)1862  void xhci_mem_cleanup(struct xhci_hcd *xhci)
1863  {
1864  	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1865  	int i, j, num_ports;
1866  
1867  	cancel_delayed_work_sync(&xhci->cmd_timer);
1868  
1869  	for (i = 0; xhci->interrupters && i < xhci->max_interrupters; i++) {
1870  		if (xhci->interrupters[i]) {
1871  			xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1872  			xhci_free_interrupter(xhci, xhci->interrupters[i]);
1873  			xhci->interrupters[i] = NULL;
1874  		}
1875  	}
1876  	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1877  
1878  	if (xhci->cmd_ring)
1879  		xhci_ring_free(xhci, xhci->cmd_ring);
1880  	xhci->cmd_ring = NULL;
1881  	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1882  	xhci_cleanup_command_queue(xhci);
1883  
1884  	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1885  	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1886  		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1887  		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1888  			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1889  			while (!list_empty(ep))
1890  				list_del_init(ep->next);
1891  		}
1892  	}
1893  
1894  	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1895  		xhci_free_virt_devices_depth_first(xhci, i);
1896  
1897  	dma_pool_destroy(xhci->segment_pool);
1898  	xhci->segment_pool = NULL;
1899  	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1900  
1901  	dma_pool_destroy(xhci->device_pool);
1902  	xhci->device_pool = NULL;
1903  	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1904  
1905  	dma_pool_destroy(xhci->small_streams_pool);
1906  	xhci->small_streams_pool = NULL;
1907  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1908  			"Freed small stream array pool");
1909  
1910  	dma_pool_destroy(xhci->medium_streams_pool);
1911  	xhci->medium_streams_pool = NULL;
1912  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1913  			"Freed medium stream array pool");
1914  
1915  	if (xhci->dcbaa)
1916  		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1917  				xhci->dcbaa, xhci->dcbaa->dma);
1918  	xhci->dcbaa = NULL;
1919  
1920  	scratchpad_free(xhci);
1921  
1922  	if (!xhci->rh_bw)
1923  		goto no_bw;
1924  
1925  	for (i = 0; i < num_ports; i++) {
1926  		struct xhci_tt_bw_info *tt, *n;
1927  		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1928  			list_del(&tt->tt_list);
1929  			kfree(tt);
1930  		}
1931  	}
1932  
1933  no_bw:
1934  	xhci->cmd_ring_reserved_trbs = 0;
1935  	xhci->usb2_rhub.num_ports = 0;
1936  	xhci->usb3_rhub.num_ports = 0;
1937  	xhci->num_active_eps = 0;
1938  	kfree(xhci->usb2_rhub.ports);
1939  	kfree(xhci->usb3_rhub.ports);
1940  	kfree(xhci->hw_ports);
1941  	kfree(xhci->rh_bw);
1942  	for (i = 0; i < xhci->num_port_caps; i++)
1943  		kfree(xhci->port_caps[i].psi);
1944  	kfree(xhci->port_caps);
1945  	kfree(xhci->interrupters);
1946  	xhci->num_port_caps = 0;
1947  
1948  	xhci->usb2_rhub.ports = NULL;
1949  	xhci->usb3_rhub.ports = NULL;
1950  	xhci->hw_ports = NULL;
1951  	xhci->rh_bw = NULL;
1952  	xhci->port_caps = NULL;
1953  	xhci->interrupters = NULL;
1954  
1955  	xhci->page_size = 0;
1956  	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1957  	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1958  }
1959  
xhci_set_hc_event_deq(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1960  static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1961  {
1962  	dma_addr_t deq;
1963  
1964  	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1965  			ir->event_ring->dequeue);
1966  	if (!deq)
1967  		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1968  	/* Update HC event ring dequeue pointer */
1969  	/* Don't clear the EHB bit (which is RW1C) because
1970  	 * there might be more events to service.
1971  	 */
1972  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1973  		       "// Write event ring dequeue pointer, preserving EHB bit");
1974  	xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
1975  }
1976  
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,int max_caps)1977  static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1978  		__le32 __iomem *addr, int max_caps)
1979  {
1980  	u32 temp, port_offset, port_count;
1981  	int i;
1982  	u8 major_revision, minor_revision, tmp_minor_revision;
1983  	struct xhci_hub *rhub;
1984  	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1985  	struct xhci_port_cap *port_cap;
1986  
1987  	temp = readl(addr);
1988  	major_revision = XHCI_EXT_PORT_MAJOR(temp);
1989  	minor_revision = XHCI_EXT_PORT_MINOR(temp);
1990  
1991  	if (major_revision == 0x03) {
1992  		rhub = &xhci->usb3_rhub;
1993  		/*
1994  		 * Some hosts incorrectly use sub-minor version for minor
1995  		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
1996  		 * for bcdUSB 0x310). Since there is no USB release with sub
1997  		 * minor version 0x301 to 0x309, we can assume that they are
1998  		 * incorrect and fix it here.
1999  		 */
2000  		if (minor_revision > 0x00 && minor_revision < 0x10)
2001  			minor_revision <<= 4;
2002  		/*
2003  		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2004  		 * but only support Gen1.
2005  		 */
2006  		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2007  			tmp_minor_revision = minor_revision;
2008  			minor_revision = 0;
2009  		}
2010  
2011  	} else if (major_revision <= 0x02) {
2012  		rhub = &xhci->usb2_rhub;
2013  	} else {
2014  		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2015  				addr, major_revision);
2016  		/* Ignoring port protocol we can't understand. FIXME */
2017  		return;
2018  	}
2019  
2020  	/* Port offset and count in the third dword, see section 7.2 */
2021  	temp = readl(addr + 2);
2022  	port_offset = XHCI_EXT_PORT_OFF(temp);
2023  	port_count = XHCI_EXT_PORT_COUNT(temp);
2024  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2025  		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2026  		       addr, port_offset, port_count, major_revision);
2027  	/* Port count includes the current port offset */
2028  	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2029  		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2030  		return;
2031  
2032  	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2033  	if (xhci->num_port_caps > max_caps)
2034  		return;
2035  
2036  	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2037  
2038  	if (port_cap->psi_count) {
2039  		port_cap->psi = kcalloc_node(port_cap->psi_count,
2040  					     sizeof(*port_cap->psi),
2041  					     GFP_KERNEL, dev_to_node(dev));
2042  		if (!port_cap->psi)
2043  			port_cap->psi_count = 0;
2044  
2045  		port_cap->psi_uid_count++;
2046  		for (i = 0; i < port_cap->psi_count; i++) {
2047  			port_cap->psi[i] = readl(addr + 4 + i);
2048  
2049  			/* count unique ID values, two consecutive entries can
2050  			 * have the same ID if link is assymetric
2051  			 */
2052  			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2053  				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2054  				port_cap->psi_uid_count++;
2055  
2056  			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2057  			    major_revision == 0x03 &&
2058  			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2059  				minor_revision = tmp_minor_revision;
2060  
2061  			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2062  				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2063  				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2064  				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2065  				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2066  				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2067  				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2068  		}
2069  	}
2070  
2071  	rhub->maj_rev = major_revision;
2072  
2073  	if (rhub->min_rev < minor_revision)
2074  		rhub->min_rev = minor_revision;
2075  
2076  	port_cap->maj_rev = major_revision;
2077  	port_cap->min_rev = minor_revision;
2078  	port_cap->protocol_caps = temp;
2079  
2080  	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2081  		 (temp & XHCI_HLC)) {
2082  		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2083  			       "xHCI 1.0: support USB2 hardware lpm");
2084  		xhci->hw_lpm_support = 1;
2085  	}
2086  
2087  	port_offset--;
2088  	for (i = port_offset; i < (port_offset + port_count); i++) {
2089  		struct xhci_port *hw_port = &xhci->hw_ports[i];
2090  		/* Duplicate entry.  Ignore the port if the revisions differ. */
2091  		if (hw_port->rhub) {
2092  			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2093  			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2094  					hw_port->rhub->maj_rev, major_revision);
2095  			/* Only adjust the roothub port counts if we haven't
2096  			 * found a similar duplicate.
2097  			 */
2098  			if (hw_port->rhub != rhub &&
2099  				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2100  				hw_port->rhub->num_ports--;
2101  				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2102  			}
2103  			continue;
2104  		}
2105  		hw_port->rhub = rhub;
2106  		hw_port->port_cap = port_cap;
2107  		rhub->num_ports++;
2108  	}
2109  	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2110  }
2111  
xhci_create_rhub_port_array(struct xhci_hcd * xhci,struct xhci_hub * rhub,gfp_t flags)2112  static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2113  					struct xhci_hub *rhub, gfp_t flags)
2114  {
2115  	int port_index = 0;
2116  	int i;
2117  	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2118  
2119  	if (!rhub->num_ports)
2120  		return;
2121  	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2122  			flags, dev_to_node(dev));
2123  	if (!rhub->ports)
2124  		return;
2125  
2126  	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2127  		if (xhci->hw_ports[i].rhub != rhub ||
2128  		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2129  			continue;
2130  		xhci->hw_ports[i].hcd_portnum = port_index;
2131  		rhub->ports[port_index] = &xhci->hw_ports[i];
2132  		port_index++;
2133  		if (port_index == rhub->num_ports)
2134  			break;
2135  	}
2136  }
2137  
2138  /*
2139   * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2140   * specify what speeds each port is supposed to be.  We can't count on the port
2141   * speed bits in the PORTSC register being correct until a device is connected,
2142   * but we need to set up the two fake roothubs with the correct number of USB
2143   * 3.0 and USB 2.0 ports at host controller initialization time.
2144   */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2145  static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2146  {
2147  	void __iomem *base;
2148  	u32 offset;
2149  	unsigned int num_ports;
2150  	int i, j;
2151  	int cap_count = 0;
2152  	u32 cap_start;
2153  	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2154  
2155  	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2156  	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2157  				flags, dev_to_node(dev));
2158  	if (!xhci->hw_ports)
2159  		return -ENOMEM;
2160  
2161  	for (i = 0; i < num_ports; i++) {
2162  		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2163  			NUM_PORT_REGS * i;
2164  		xhci->hw_ports[i].hw_portnum = i;
2165  
2166  		init_completion(&xhci->hw_ports[i].rexit_done);
2167  		init_completion(&xhci->hw_ports[i].u3exit_done);
2168  	}
2169  
2170  	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2171  				   dev_to_node(dev));
2172  	if (!xhci->rh_bw)
2173  		return -ENOMEM;
2174  	for (i = 0; i < num_ports; i++) {
2175  		struct xhci_interval_bw_table *bw_table;
2176  
2177  		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2178  		bw_table = &xhci->rh_bw[i].bw_table;
2179  		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2180  			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2181  	}
2182  	base = &xhci->cap_regs->hc_capbase;
2183  
2184  	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2185  	if (!cap_start) {
2186  		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2187  		return -ENODEV;
2188  	}
2189  
2190  	offset = cap_start;
2191  	/* count extended protocol capability entries for later caching */
2192  	while (offset) {
2193  		cap_count++;
2194  		offset = xhci_find_next_ext_cap(base, offset,
2195  						      XHCI_EXT_CAPS_PROTOCOL);
2196  	}
2197  
2198  	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2199  				flags, dev_to_node(dev));
2200  	if (!xhci->port_caps)
2201  		return -ENOMEM;
2202  
2203  	offset = cap_start;
2204  
2205  	while (offset) {
2206  		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2207  		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2208  		    num_ports)
2209  			break;
2210  		offset = xhci_find_next_ext_cap(base, offset,
2211  						XHCI_EXT_CAPS_PROTOCOL);
2212  	}
2213  	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2214  		xhci_warn(xhci, "No ports on the roothubs?\n");
2215  		return -ENODEV;
2216  	}
2217  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2218  		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2219  		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2220  
2221  	/* Place limits on the number of roothub ports so that the hub
2222  	 * descriptors aren't longer than the USB core will allocate.
2223  	 */
2224  	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2225  		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2226  				"Limiting USB 3.0 roothub ports to %u.",
2227  				USB_SS_MAXPORTS);
2228  		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2229  	}
2230  	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2231  		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2232  				"Limiting USB 2.0 roothub ports to %u.",
2233  				USB_MAXCHILDREN);
2234  		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2235  	}
2236  
2237  	if (!xhci->usb2_rhub.num_ports)
2238  		xhci_info(xhci, "USB2 root hub has no ports\n");
2239  
2240  	if (!xhci->usb3_rhub.num_ports)
2241  		xhci_info(xhci, "USB3 root hub has no ports\n");
2242  
2243  	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2244  	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2245  
2246  	return 0;
2247  }
2248  
2249  static struct xhci_interrupter *
xhci_alloc_interrupter(struct xhci_hcd * xhci,unsigned int segs,gfp_t flags)2250  xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags)
2251  {
2252  	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2253  	struct xhci_interrupter *ir;
2254  	unsigned int max_segs;
2255  	int ret;
2256  
2257  	if (!segs)
2258  		segs = ERST_DEFAULT_SEGS;
2259  
2260  	max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2));
2261  	segs = min(segs, max_segs);
2262  
2263  	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2264  	if (!ir)
2265  		return NULL;
2266  
2267  	ir->event_ring = xhci_ring_alloc(xhci, segs, TYPE_EVENT, 0, flags);
2268  	if (!ir->event_ring) {
2269  		xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2270  		kfree(ir);
2271  		return NULL;
2272  	}
2273  
2274  	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2275  	if (ret) {
2276  		xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2277  		xhci_ring_free(xhci, ir->event_ring);
2278  		kfree(ir);
2279  		return NULL;
2280  	}
2281  
2282  	return ir;
2283  }
2284  
2285  static int
xhci_add_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir,unsigned int intr_num)2286  xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2287  		     unsigned int intr_num)
2288  {
2289  	u64 erst_base;
2290  	u32 erst_size;
2291  
2292  	if (intr_num >= xhci->max_interrupters) {
2293  		xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2294  			  intr_num, xhci->max_interrupters);
2295  		return -EINVAL;
2296  	}
2297  
2298  	if (xhci->interrupters[intr_num]) {
2299  		xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2300  		return -EINVAL;
2301  	}
2302  
2303  	xhci->interrupters[intr_num] = ir;
2304  	ir->intr_num = intr_num;
2305  	ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2306  
2307  	/* set ERST count with the number of entries in the segment table */
2308  	erst_size = readl(&ir->ir_set->erst_size);
2309  	erst_size &= ERST_SIZE_MASK;
2310  	erst_size |= ir->event_ring->num_segs;
2311  	writel(erst_size, &ir->ir_set->erst_size);
2312  
2313  	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2314  	erst_base &= ERST_BASE_RSVDP;
2315  	erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2316  	if (xhci->quirks & XHCI_WRITE_64_HI_LO)
2317  		hi_lo_writeq(erst_base, &ir->ir_set->erst_base);
2318  	else
2319  		xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2320  
2321  	/* Set the event ring dequeue address of this interrupter */
2322  	xhci_set_hc_event_deq(xhci, ir);
2323  
2324  	return 0;
2325  }
2326  
2327  struct xhci_interrupter *
xhci_create_secondary_interrupter(struct usb_hcd * hcd,unsigned int segs,u32 imod_interval)2328  xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs,
2329  				  u32 imod_interval)
2330  {
2331  	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2332  	struct xhci_interrupter *ir;
2333  	unsigned int i;
2334  	int err = -ENOSPC;
2335  
2336  	if (!xhci->interrupters || xhci->max_interrupters <= 1)
2337  		return NULL;
2338  
2339  	ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL);
2340  	if (!ir)
2341  		return NULL;
2342  
2343  	spin_lock_irq(&xhci->lock);
2344  
2345  	/* Find available secondary interrupter, interrupter 0 is reserved for primary */
2346  	for (i = 1; i < xhci->max_interrupters; i++) {
2347  		if (xhci->interrupters[i] == NULL) {
2348  			err = xhci_add_interrupter(xhci, ir, i);
2349  			break;
2350  		}
2351  	}
2352  
2353  	spin_unlock_irq(&xhci->lock);
2354  
2355  	if (err) {
2356  		xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2357  			  xhci->max_interrupters);
2358  		xhci_free_interrupter(xhci, ir);
2359  		return NULL;
2360  	}
2361  
2362  	err = xhci_set_interrupter_moderation(ir, imod_interval);
2363  	if (err)
2364  		xhci_warn(xhci, "Failed to set interrupter %d moderation to %uns\n",
2365  			  i, imod_interval);
2366  
2367  	xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2368  		 i, xhci->max_interrupters);
2369  
2370  	return ir;
2371  }
2372  EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2373  
xhci_hcd_page_size(struct xhci_hcd * xhci)2374  static void xhci_hcd_page_size(struct xhci_hcd *xhci)
2375  {
2376  	u32 page_size;
2377  
2378  	page_size = readl(&xhci->op_regs->page_size) & XHCI_PAGE_SIZE_MASK;
2379  	if (!is_power_of_2(page_size)) {
2380  		xhci_warn(xhci, "Invalid page size register = 0x%x\n", page_size);
2381  		/* Fallback to 4K page size, since that's common */
2382  		page_size = 1;
2383  	}
2384  
2385  	xhci->page_size = page_size << 12;
2386  	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "HCD page size set to %iK",
2387  		       xhci->page_size >> 10);
2388  }
2389  
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2390  int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2391  {
2392  	struct xhci_interrupter *ir;
2393  	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2394  	dma_addr_t	dma;
2395  	unsigned int	val, val2;
2396  	u64		val_64;
2397  	u32		temp;
2398  	int		i;
2399  
2400  	INIT_LIST_HEAD(&xhci->cmd_list);
2401  
2402  	/* init command timeout work */
2403  	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2404  	init_completion(&xhci->cmd_ring_stop_completion);
2405  
2406  	xhci_hcd_page_size(xhci);
2407  
2408  	/*
2409  	 * Program the Number of Device Slots Enabled field in the CONFIG
2410  	 * register with the max value of slots the HC can handle.
2411  	 */
2412  	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2413  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2414  			"// xHC can handle at most %d device slots.", val);
2415  	val2 = readl(&xhci->op_regs->config_reg);
2416  	val |= (val2 & ~HCS_SLOTS_MASK);
2417  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2418  			"// Setting Max device slots reg = 0x%x.", val);
2419  	writel(val, &xhci->op_regs->config_reg);
2420  
2421  	/*
2422  	 * xHCI section 5.4.6 - Device Context array must be
2423  	 * "physically contiguous and 64-byte (cache line) aligned".
2424  	 */
2425  	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2426  			flags);
2427  	if (!xhci->dcbaa)
2428  		goto fail;
2429  	xhci->dcbaa->dma = dma;
2430  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2431  			"// Device context base array address = 0x%pad (DMA), %p (virt)",
2432  			&xhci->dcbaa->dma, xhci->dcbaa);
2433  	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2434  
2435  	/*
2436  	 * Initialize the ring segment pool.  The ring must be a contiguous
2437  	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2438  	 * however, the command ring segment needs 64-byte aligned segments
2439  	 * and our use of dma addresses in the trb_address_map radix tree needs
2440  	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2441  	 */
2442  	if (xhci->quirks & XHCI_TRB_OVERFETCH)
2443  		/* Buggy HC prefetches beyond segment bounds - allocate dummy space at the end */
2444  		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2445  				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2446  	else
2447  		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2448  				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2449  
2450  	/* See Table 46 and Note on Figure 55 */
2451  	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2452  			2112, 64, xhci->page_size);
2453  	if (!xhci->segment_pool || !xhci->device_pool)
2454  		goto fail;
2455  
2456  	/* Linear stream context arrays don't have any boundary restrictions,
2457  	 * and only need to be 16-byte aligned.
2458  	 */
2459  	xhci->small_streams_pool =
2460  		dma_pool_create("xHCI 256 byte stream ctx arrays",
2461  			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2462  	xhci->medium_streams_pool =
2463  		dma_pool_create("xHCI 1KB stream ctx arrays",
2464  			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2465  	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2466  	 * will be allocated with dma_alloc_coherent()
2467  	 */
2468  
2469  	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2470  		goto fail;
2471  
2472  	/* Set up the command ring to have one segments for now. */
2473  	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, TYPE_COMMAND, 0, flags);
2474  	if (!xhci->cmd_ring)
2475  		goto fail;
2476  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2477  			"Allocated command ring at %p", xhci->cmd_ring);
2478  	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2479  			&xhci->cmd_ring->first_seg->dma);
2480  
2481  	/* Set the address in the Command Ring Control register */
2482  	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2483  	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2484  		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2485  		xhci->cmd_ring->cycle_state;
2486  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2487  			"// Setting command ring address to 0x%016llx", val_64);
2488  	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2489  
2490  	/* Reserve one command ring TRB for disabling LPM.
2491  	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2492  	 * disabling LPM, we only need to reserve one TRB for all devices.
2493  	 */
2494  	xhci->cmd_ring_reserved_trbs++;
2495  
2496  	val = readl(&xhci->cap_regs->db_off);
2497  	val &= DBOFF_MASK;
2498  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2499  		       "// Doorbell array is located at offset 0x%x from cap regs base addr",
2500  		       val);
2501  	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2502  
2503  	/* Allocate and set up primary interrupter 0 with an event ring. */
2504  	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2505  		       "Allocating primary event ring");
2506  	xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2507  					  flags, dev_to_node(dev));
2508  
2509  	ir = xhci_alloc_interrupter(xhci, 0, flags);
2510  	if (!ir)
2511  		goto fail;
2512  
2513  	if (xhci_add_interrupter(xhci, ir, 0))
2514  		goto fail;
2515  
2516  	ir->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2517  
2518  	for (i = 0; i < MAX_HC_SLOTS; i++)
2519  		xhci->devs[i] = NULL;
2520  
2521  	if (scratchpad_alloc(xhci, flags))
2522  		goto fail;
2523  	if (xhci_setup_port_arrays(xhci, flags))
2524  		goto fail;
2525  
2526  	/* Enable USB 3.0 device notifications for function remote wake, which
2527  	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2528  	 * U3 (device suspend).
2529  	 */
2530  	temp = readl(&xhci->op_regs->dev_notification);
2531  	temp &= ~DEV_NOTE_MASK;
2532  	temp |= DEV_NOTE_FWAKE;
2533  	writel(temp, &xhci->op_regs->dev_notification);
2534  
2535  	return 0;
2536  
2537  fail:
2538  	xhci_halt(xhci);
2539  	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2540  	xhci_mem_cleanup(xhci);
2541  	return -ENOMEM;
2542  }
2543