1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges 4 * 5 * Copyright (c) 2019-2020 Red Hat GmbH 6 * 7 * Author: Stefano Brivio <sbrivio@redhat.com> 8 */ 9 10 /** 11 * DOC: Theory of Operation 12 * 13 * 14 * Problem 15 * ------- 16 * 17 * Match packet bytes against entries composed of ranged or non-ranged packet 18 * field specifiers, mapping them to arbitrary references. For example: 19 * 20 * :: 21 * 22 * --- fields ---> 23 * | [net],[port],[net]... => [reference] 24 * entries [net],[port],[net]... => [reference] 25 * | [net],[port],[net]... => [reference] 26 * V ... 27 * 28 * where [net] fields can be IP ranges or netmasks, and [port] fields are port 29 * ranges. Arbitrary packet fields can be matched. 30 * 31 * 32 * Algorithm Overview 33 * ------------------ 34 * 35 * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally 36 * relies on the consideration that every contiguous range in a space of b bits 37 * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010], 38 * as also illustrated in Section 9 of [Kogan 2014]. 39 * 40 * Classification against a number of entries, that require matching given bits 41 * of a packet field, is performed by grouping those bits in sets of arbitrary 42 * size, and classifying packet bits one group at a time. 43 * 44 * Example: 45 * to match the source port (16 bits) of a packet, we can divide those 16 bits 46 * in 4 groups of 4 bits each. Given the entry: 47 * 0000 0001 0101 1001 48 * and a packet with source port: 49 * 0000 0001 1010 1001 50 * first and second groups match, but the third doesn't. We conclude that the 51 * packet doesn't match the given entry. 52 * 53 * Translate the set to a sequence of lookup tables, one per field. Each table 54 * has two dimensions: bit groups to be matched for a single packet field, and 55 * all the possible values of said groups (buckets). Input entries are 56 * represented as one or more rules, depending on the number of composing 57 * netmasks for the given field specifier, and a group match is indicated as a 58 * set bit, with number corresponding to the rule index, in all the buckets 59 * whose value matches the entry for a given group. 60 * 61 * Rules are mapped between fields through an array of x, n pairs, with each 62 * item mapping a matched rule to one or more rules. The position of the pair in 63 * the array indicates the matched rule to be mapped to the next field, x 64 * indicates the first rule index in the next field, and n the amount of 65 * next-field rules the current rule maps to. 66 * 67 * The mapping array for the last field maps to the desired references. 68 * 69 * To match, we perform table lookups using the values of grouped packet bits, 70 * and use a sequence of bitwise operations to progressively evaluate rule 71 * matching. 72 * 73 * A stand-alone, reference implementation, also including notes about possible 74 * future optimisations, is available at: 75 * https://pipapo.lameexcu.se/ 76 * 77 * Insertion 78 * --------- 79 * 80 * - For each packet field: 81 * 82 * - divide the b packet bits we want to classify into groups of size t, 83 * obtaining ceil(b / t) groups 84 * 85 * Example: match on destination IP address, with t = 4: 32 bits, 8 groups 86 * of 4 bits each 87 * 88 * - allocate a lookup table with one column ("bucket") for each possible 89 * value of a group, and with one row for each group 90 * 91 * Example: 8 groups, 2^4 buckets: 92 * 93 * :: 94 * 95 * bucket 96 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 97 * 0 98 * 1 99 * 2 100 * 3 101 * 4 102 * 5 103 * 6 104 * 7 105 * 106 * - map the bits we want to classify for the current field, for a given 107 * entry, to a single rule for non-ranged and netmask set items, and to one 108 * or multiple rules for ranges. Ranges are expanded to composing netmasks 109 * by pipapo_expand(). 110 * 111 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048 112 * - rule #0: 10.0.0.5 113 * - rule #1: 192.168.1.0/24 114 * - rule #2: 192.168.2.0/31 115 * 116 * - insert references to the rules in the lookup table, selecting buckets 117 * according to bit values of a rule in the given group. This is done by 118 * pipapo_insert(). 119 * 120 * Example: given: 121 * - rule #0: 10.0.0.5 mapping to buckets 122 * < 0 10 0 0 0 0 0 5 > 123 * - rule #1: 192.168.1.0/24 mapping to buckets 124 * < 12 0 10 8 0 1 < 0..15 > < 0..15 > > 125 * - rule #2: 192.168.2.0/31 mapping to buckets 126 * < 12 0 10 8 0 2 0 < 0..1 > > 127 * 128 * these bits are set in the lookup table: 129 * 130 * :: 131 * 132 * bucket 133 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 134 * 0 0 1,2 135 * 1 1,2 0 136 * 2 0 1,2 137 * 3 0 1,2 138 * 4 0,1,2 139 * 5 0 1 2 140 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 141 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1 142 * 143 * - if this is not the last field in the set, fill a mapping array that maps 144 * rules from the lookup table to rules belonging to the same entry in 145 * the next lookup table, done by pipapo_map(). 146 * 147 * Note that as rules map to contiguous ranges of rules, given how netmask 148 * expansion and insertion is performed, &union nft_pipapo_map_bucket stores 149 * this information as pairs of first rule index, rule count. 150 * 151 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048, 152 * given lookup table #0 for field 0 (see example above): 153 * 154 * :: 155 * 156 * bucket 157 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 158 * 0 0 1,2 159 * 1 1,2 0 160 * 2 0 1,2 161 * 3 0 1,2 162 * 4 0,1,2 163 * 5 0 1 2 164 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 165 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1 166 * 167 * and lookup table #1 for field 1 with: 168 * - rule #0: 1024 mapping to buckets 169 * < 0 0 4 0 > 170 * - rule #1: 2048 mapping to buckets 171 * < 0 0 5 0 > 172 * 173 * :: 174 * 175 * bucket 176 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 177 * 0 0,1 178 * 1 0,1 179 * 2 0 1 180 * 3 0,1 181 * 182 * we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024 183 * in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1 184 * (rules #1, #2) to 2048 in lookup table #2 (rule #1): 185 * 186 * :: 187 * 188 * rule indices in current field: 0 1 2 189 * map to rules in next field: 0 1 1 190 * 191 * - if this is the last field in the set, fill a mapping array that maps 192 * rules from the last lookup table to element pointers, also done by 193 * pipapo_map(). 194 * 195 * Note that, in this implementation, we have two elements (start, end) for 196 * each entry. The pointer to the end element is stored in this array, and 197 * the pointer to the start element is linked from it. 198 * 199 * Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem 200 * pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42. 201 * From the rules of lookup table #1 as mapped above: 202 * 203 * :: 204 * 205 * rule indices in last field: 0 1 206 * map to elements: 0x66 0x42 207 * 208 * 209 * Matching 210 * -------- 211 * 212 * We use a result bitmap, with the size of a single lookup table bucket, to 213 * represent the matching state that applies at every algorithm step. This is 214 * done by pipapo_lookup(). 215 * 216 * - For each packet field: 217 * 218 * - start with an all-ones result bitmap (res_map in pipapo_lookup()) 219 * 220 * - perform a lookup into the table corresponding to the current field, 221 * for each group, and at every group, AND the current result bitmap with 222 * the value from the lookup table bucket 223 * 224 * :: 225 * 226 * Example: 192.168.1.5 < 12 0 10 8 0 1 0 5 >, with lookup table from 227 * insertion examples. 228 * Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for 229 * convenience in this example. Initial result bitmap is 0xff, the steps 230 * below show the value of the result bitmap after each group is processed: 231 * 232 * bucket 233 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 234 * 0 0 1,2 235 * result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6 236 * 237 * 1 1,2 0 238 * result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6 239 * 240 * 2 0 1,2 241 * result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6 242 * 243 * 3 0 1,2 244 * result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6 245 * 246 * 4 0,1,2 247 * result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6 248 * 249 * 5 0 1 2 250 * result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2 251 * 252 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 253 * result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2 254 * 255 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1 256 * final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2 257 * 258 * - at the next field, start with a new, all-zeroes result bitmap. For each 259 * bit set in the previous result bitmap, fill the new result bitmap 260 * (fill_map in pipapo_lookup()) with the rule indices from the 261 * corresponding buckets of the mapping field for this field, done by 262 * pipapo_refill() 263 * 264 * Example: with mapping table from insertion examples, with the current 265 * result bitmap from the previous example, 0x02: 266 * 267 * :: 268 * 269 * rule indices in current field: 0 1 2 270 * map to rules in next field: 0 1 1 271 * 272 * the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be 273 * set. 274 * 275 * We can now extend this example to cover the second iteration of the step 276 * above (lookup and AND bitmap): assuming the port field is 277 * 2048 < 0 0 5 0 >, with starting result bitmap 0x2, and lookup table 278 * for "port" field from pre-computation example: 279 * 280 * :: 281 * 282 * bucket 283 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 284 * 0 0,1 285 * 1 0,1 286 * 2 0 1 287 * 3 0,1 288 * 289 * operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5] 290 * & 0x3 [bucket 0], resulting bitmap is 0x2. 291 * 292 * - if this is the last field in the set, look up the value from the mapping 293 * array corresponding to the final result bitmap 294 * 295 * Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for 296 * last field from insertion example: 297 * 298 * :: 299 * 300 * rule indices in last field: 0 1 301 * map to elements: 0x66 0x42 302 * 303 * the matching element is at 0x42. 304 * 305 * 306 * References 307 * ---------- 308 * 309 * [Ligatti 2010] 310 * A Packet-classification Algorithm for Arbitrary Bitmask Rules, with 311 * Automatic Time-space Tradeoffs 312 * Jay Ligatti, Josh Kuhn, and Chris Gage. 313 * Proceedings of the IEEE International Conference on Computer 314 * Communication Networks (ICCCN), August 2010. 315 * https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf 316 * 317 * [Rottenstreich 2010] 318 * Worst-Case TCAM Rule Expansion 319 * Ori Rottenstreich and Isaac Keslassy. 320 * 2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010. 321 * http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf 322 * 323 * [Kogan 2014] 324 * SAX-PAC (Scalable And eXpressive PAcket Classification) 325 * Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane, 326 * and Patrick Eugster. 327 * Proceedings of the 2014 ACM conference on SIGCOMM, August 2014. 328 * https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf 329 */ 330 331 #include <linux/kernel.h> 332 #include <linux/init.h> 333 #include <linux/module.h> 334 #include <linux/netlink.h> 335 #include <linux/netfilter.h> 336 #include <linux/netfilter/nf_tables.h> 337 #include <net/netfilter/nf_tables_core.h> 338 #include <uapi/linux/netfilter/nf_tables.h> 339 #include <linux/bitmap.h> 340 #include <linux/bitops.h> 341 342 #include "nft_set_pipapo_avx2.h" 343 #include "nft_set_pipapo.h" 344 345 /** 346 * pipapo_refill() - For each set bit, set bits from selected mapping table item 347 * @map: Bitmap to be scanned for set bits 348 * @len: Length of bitmap in longs 349 * @rules: Number of rules in field 350 * @dst: Destination bitmap 351 * @mt: Mapping table containing bit set specifiers 352 * @match_only: Find a single bit and return, don't fill 353 * 354 * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain. 355 * 356 * For each bit set in map, select the bucket from mapping table with index 357 * corresponding to the position of the bit set. Use start bit and amount of 358 * bits specified in bucket to fill region in dst. 359 * 360 * Return: -1 on no match, bit position on 'match_only', 0 otherwise. 361 */ 362 int pipapo_refill(unsigned long *map, unsigned int len, unsigned int rules, 363 unsigned long *dst, 364 const union nft_pipapo_map_bucket *mt, bool match_only) 365 { 366 unsigned long bitset; 367 unsigned int k; 368 int ret = -1; 369 370 for (k = 0; k < len; k++) { 371 bitset = map[k]; 372 while (bitset) { 373 unsigned long t = bitset & -bitset; 374 int r = __builtin_ctzl(bitset); 375 int i = k * BITS_PER_LONG + r; 376 377 if (unlikely(i >= rules)) { 378 map[k] = 0; 379 return -1; 380 } 381 382 if (match_only) { 383 bitmap_clear(map, i, 1); 384 return i; 385 } 386 387 ret = 0; 388 389 bitmap_set(dst, mt[i].to, mt[i].n); 390 391 bitset ^= t; 392 } 393 map[k] = 0; 394 } 395 396 return ret; 397 } 398 399 /** 400 * pipapo_get() - Get matching element reference given key data 401 * @m: storage containing the set elements 402 * @data: Key data to be matched against existing elements 403 * @genmask: If set, check that element is active in given genmask 404 * @tstamp: timestamp to check for expired elements 405 * 406 * For more details, see DOC: Theory of Operation. 407 * 408 * This is the main lookup function. It matches key data against either 409 * the working match set or the uncommitted copy, depending on what the 410 * caller passed to us. 411 * nft_pipapo_get (lookup from userspace/control plane) and nft_pipapo_lookup 412 * (datapath lookup) pass the active copy. 413 * The insertion path will pass the uncommitted working copy. 414 * 415 * Return: pointer to &struct nft_pipapo_elem on match, NULL otherwise. 416 */ 417 static struct nft_pipapo_elem *pipapo_get(const struct nft_pipapo_match *m, 418 const u8 *data, u8 genmask, 419 u64 tstamp) 420 { 421 struct nft_pipapo_scratch *scratch; 422 unsigned long *res_map, *fill_map; 423 const struct nft_pipapo_field *f; 424 bool map_index; 425 int i; 426 427 local_bh_disable(); 428 429 scratch = *raw_cpu_ptr(m->scratch); 430 if (unlikely(!scratch)) 431 goto out; 432 433 map_index = scratch->map_index; 434 435 res_map = scratch->map + (map_index ? m->bsize_max : 0); 436 fill_map = scratch->map + (map_index ? 0 : m->bsize_max); 437 438 pipapo_resmap_init(m, res_map); 439 440 nft_pipapo_for_each_field(f, i, m) { 441 bool last = i == m->field_count - 1; 442 int b; 443 444 /* For each bit group: select lookup table bucket depending on 445 * packet bytes value, then AND bucket value 446 */ 447 if (likely(f->bb == 8)) 448 pipapo_and_field_buckets_8bit(f, res_map, data); 449 else 450 pipapo_and_field_buckets_4bit(f, res_map, data); 451 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4; 452 453 data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f); 454 455 /* Now populate the bitmap for the next field, unless this is 456 * the last field, in which case return the matched 'ext' 457 * pointer if any. 458 * 459 * Now res_map contains the matching bitmap, and fill_map is the 460 * bitmap for the next field. 461 */ 462 next_match: 463 b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt, 464 last); 465 if (b < 0) { 466 scratch->map_index = map_index; 467 local_bh_enable(); 468 469 return NULL; 470 } 471 472 if (last) { 473 struct nft_pipapo_elem *e; 474 475 e = f->mt[b].e; 476 if (unlikely(__nft_set_elem_expired(&e->ext, tstamp) || 477 !nft_set_elem_active(&e->ext, genmask))) 478 goto next_match; 479 480 /* Last field: we're just returning the key without 481 * filling the initial bitmap for the next field, so the 482 * current inactive bitmap is clean and can be reused as 483 * *next* bitmap (not initial) for the next packet. 484 */ 485 scratch->map_index = map_index; 486 local_bh_enable(); 487 return e; 488 } 489 490 /* Swap bitmap indices: res_map is the initial bitmap for the 491 * next field, and fill_map is guaranteed to be all-zeroes at 492 * this point. 493 */ 494 map_index = !map_index; 495 swap(res_map, fill_map); 496 497 data += NFT_PIPAPO_GROUPS_PADDING(f); 498 } 499 500 out: 501 local_bh_enable(); 502 return NULL; 503 } 504 505 /** 506 * nft_pipapo_lookup() - Dataplane fronted for main lookup function 507 * @net: Network namespace 508 * @set: nftables API set representation 509 * @key: pointer to nft registers containing key data 510 * 511 * This function is called from the data path. It will search for 512 * an element matching the given key in the current active copy. 513 * Unlike other set types, this uses NFT_GENMASK_ANY instead of 514 * nft_genmask_cur(). 515 * 516 * This is because new (future) elements are not reachable from 517 * priv->match, they get added to priv->clone instead. 518 * When the commit phase flips the generation bitmask, the 519 * 'now old' entries are skipped but without the 'now current' 520 * elements becoming visible. Using nft_genmask_cur() thus creates 521 * inconsistent state: matching old entries get skipped but thew 522 * newly matching entries are unreachable. 523 * 524 * GENMASK will still find the 'now old' entries which ensures consistent 525 * priv->match view. 526 * 527 * nft_pipapo_commit swaps ->clone and ->match shortly after the 528 * genbit flip. As ->clone doesn't contain the old entries in the first 529 * place, lookup will only find the now-current ones. 530 * 531 * Return: ntables API extension pointer or NULL if no match. 532 */ 533 const struct nft_set_ext * 534 nft_pipapo_lookup(const struct net *net, const struct nft_set *set, 535 const u32 *key) 536 { 537 struct nft_pipapo *priv = nft_set_priv(set); 538 const struct nft_pipapo_match *m; 539 const struct nft_pipapo_elem *e; 540 541 m = rcu_dereference(priv->match); 542 e = pipapo_get(m, (const u8 *)key, NFT_GENMASK_ANY, get_jiffies_64()); 543 544 return e ? &e->ext : NULL; 545 } 546 547 /** 548 * nft_pipapo_get() - Get matching element reference given key data 549 * @net: Network namespace 550 * @set: nftables API set representation 551 * @elem: nftables API element representation containing key data 552 * @flags: Unused 553 * 554 * This function is called from the control plane path under 555 * RCU read lock. 556 * 557 * Return: set element private pointer or ERR_PTR(-ENOENT). 558 */ 559 static struct nft_elem_priv * 560 nft_pipapo_get(const struct net *net, const struct nft_set *set, 561 const struct nft_set_elem *elem, unsigned int flags) 562 { 563 struct nft_pipapo *priv = nft_set_priv(set); 564 struct nft_pipapo_match *m = rcu_dereference(priv->match); 565 struct nft_pipapo_elem *e; 566 567 e = pipapo_get(m, (const u8 *)elem->key.val.data, 568 nft_genmask_cur(net), get_jiffies_64()); 569 if (!e) 570 return ERR_PTR(-ENOENT); 571 572 return &e->priv; 573 } 574 575 /** 576 * pipapo_realloc_mt() - Reallocate mapping table if needed upon resize 577 * @f: Field containing mapping table 578 * @old_rules: Amount of existing mapped rules 579 * @rules: Amount of new rules to map 580 * 581 * Return: 0 on success, negative error code on failure. 582 */ 583 static int pipapo_realloc_mt(struct nft_pipapo_field *f, 584 unsigned int old_rules, unsigned int rules) 585 { 586 union nft_pipapo_map_bucket *new_mt = NULL, *old_mt = f->mt; 587 const unsigned int extra = PAGE_SIZE / sizeof(*new_mt); 588 unsigned int rules_alloc = rules; 589 590 might_sleep(); 591 592 if (unlikely(rules == 0)) 593 goto out_free; 594 595 /* growing and enough space left, no action needed */ 596 if (rules > old_rules && f->rules_alloc > rules) 597 return 0; 598 599 /* downsize and extra slack has not grown too large */ 600 if (rules < old_rules) { 601 unsigned int remove = f->rules_alloc - rules; 602 603 if (remove < (2u * extra)) 604 return 0; 605 } 606 607 /* If set needs more than one page of memory for rules then 608 * allocate another extra page to avoid frequent reallocation. 609 */ 610 if (rules > extra && 611 check_add_overflow(rules, extra, &rules_alloc)) 612 return -EOVERFLOW; 613 614 if (rules_alloc > (INT_MAX / sizeof(*new_mt))) 615 return -ENOMEM; 616 617 new_mt = kvmalloc_array(rules_alloc, sizeof(*new_mt), GFP_KERNEL_ACCOUNT); 618 if (!new_mt) 619 return -ENOMEM; 620 621 if (old_mt) 622 memcpy(new_mt, old_mt, min(old_rules, rules) * sizeof(*new_mt)); 623 624 if (rules > old_rules) { 625 memset(new_mt + old_rules, 0, 626 (rules - old_rules) * sizeof(*new_mt)); 627 } 628 out_free: 629 f->rules_alloc = rules_alloc; 630 f->mt = new_mt; 631 632 kvfree(old_mt); 633 634 return 0; 635 } 636 637 638 /** 639 * lt_calculate_size() - Get storage size for lookup table with overflow check 640 * @groups: Amount of bit groups 641 * @bb: Number of bits grouped together in lookup table buckets 642 * @bsize: Size of each bucket in lookup table, in longs 643 * 644 * Return: allocation size including alignment overhead, negative on overflow 645 */ 646 static ssize_t lt_calculate_size(unsigned int groups, unsigned int bb, 647 unsigned int bsize) 648 { 649 ssize_t ret = groups * NFT_PIPAPO_BUCKETS(bb) * sizeof(long); 650 651 if (check_mul_overflow(ret, bsize, &ret)) 652 return -1; 653 if (check_add_overflow(ret, NFT_PIPAPO_ALIGN_HEADROOM, &ret)) 654 return -1; 655 if (ret > INT_MAX) 656 return -1; 657 658 return ret; 659 } 660 661 /** 662 * pipapo_resize() - Resize lookup or mapping table, or both 663 * @f: Field containing lookup and mapping tables 664 * @old_rules: Previous amount of rules in field 665 * @rules: New amount of rules 666 * 667 * Increase, decrease or maintain tables size depending on new amount of rules, 668 * and copy data over. In case the new size is smaller, throw away data for 669 * highest-numbered rules. 670 * 671 * Return: 0 on success, -ENOMEM on allocation failure. 672 */ 673 static int pipapo_resize(struct nft_pipapo_field *f, 674 unsigned int old_rules, unsigned int rules) 675 { 676 long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p; 677 unsigned int new_bucket_size, copy; 678 int group, bucket, err; 679 ssize_t lt_size; 680 681 if (rules >= NFT_PIPAPO_RULE0_MAX) 682 return -ENOSPC; 683 684 new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG); 685 #ifdef NFT_PIPAPO_ALIGN 686 new_bucket_size = roundup(new_bucket_size, 687 NFT_PIPAPO_ALIGN / sizeof(*new_lt)); 688 #endif 689 690 if (new_bucket_size == f->bsize) 691 goto mt; 692 693 if (new_bucket_size > f->bsize) 694 copy = f->bsize; 695 else 696 copy = new_bucket_size; 697 698 lt_size = lt_calculate_size(f->groups, f->bb, new_bucket_size); 699 if (lt_size < 0) 700 return -ENOMEM; 701 702 new_lt = kvzalloc(lt_size, GFP_KERNEL_ACCOUNT); 703 if (!new_lt) 704 return -ENOMEM; 705 706 new_p = NFT_PIPAPO_LT_ALIGN(new_lt); 707 old_p = NFT_PIPAPO_LT_ALIGN(old_lt); 708 709 for (group = 0; group < f->groups; group++) { 710 for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) { 711 memcpy(new_p, old_p, copy * sizeof(*new_p)); 712 new_p += copy; 713 old_p += copy; 714 715 if (new_bucket_size > f->bsize) 716 new_p += new_bucket_size - f->bsize; 717 else 718 old_p += f->bsize - new_bucket_size; 719 } 720 } 721 722 mt: 723 err = pipapo_realloc_mt(f, old_rules, rules); 724 if (err) { 725 kvfree(new_lt); 726 return err; 727 } 728 729 if (new_lt) { 730 f->bsize = new_bucket_size; 731 f->lt = new_lt; 732 kvfree(old_lt); 733 } 734 735 return 0; 736 } 737 738 /** 739 * pipapo_bucket_set() - Set rule bit in bucket given group and group value 740 * @f: Field containing lookup table 741 * @rule: Rule index 742 * @group: Group index 743 * @v: Value of bit group 744 */ 745 static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group, 746 int v) 747 { 748 unsigned long *pos; 749 750 pos = NFT_PIPAPO_LT_ALIGN(f->lt); 751 pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group; 752 pos += f->bsize * v; 753 754 __set_bit(rule, pos); 755 } 756 757 /** 758 * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits 759 * @old_groups: Number of current groups 760 * @bsize: Size of one bucket, in longs 761 * @old_lt: Pointer to the current lookup table 762 * @new_lt: Pointer to the new, pre-allocated lookup table 763 * 764 * Each bucket with index b in the new lookup table, belonging to group g, is 765 * filled with the bit intersection between: 766 * - bucket with index given by the upper 4 bits of b, from group g, and 767 * - bucket with index given by the lower 4 bits of b, from group g + 1 768 * 769 * That is, given buckets from the new lookup table N(x, y) and the old lookup 770 * table O(x, y), with x bucket index, and y group index: 771 * 772 * N(b, g) := O(b / 16, g) & O(b % 16, g + 1) 773 * 774 * This ensures equivalence of the matching results on lookup. Two examples in 775 * pictures: 776 * 777 * bucket 778 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... 254 255 779 * 0 ^ 780 * 1 | ^ 781 * ... ( & ) | 782 * / \ | 783 * / \ .-( & )-. 784 * / bucket \ | | 785 * group 0 / 1 2 3 \ 4 5 6 7 8 9 10 11 12 13 |14 15 | 786 * 0 / \ | | 787 * 1 \ | | 788 * 2 | --' 789 * 3 '- 790 * ... 791 */ 792 static void pipapo_lt_4b_to_8b(int old_groups, int bsize, 793 unsigned long *old_lt, unsigned long *new_lt) 794 { 795 int g, b, i; 796 797 for (g = 0; g < old_groups / 2; g++) { 798 int src_g0 = g * 2, src_g1 = g * 2 + 1; 799 800 for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) { 801 int src_b0 = b / NFT_PIPAPO_BUCKETS(4); 802 int src_b1 = b % NFT_PIPAPO_BUCKETS(4); 803 int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0; 804 int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1; 805 806 for (i = 0; i < bsize; i++) { 807 *new_lt = old_lt[src_i0 * bsize + i] & 808 old_lt[src_i1 * bsize + i]; 809 new_lt++; 810 } 811 } 812 } 813 } 814 815 /** 816 * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits 817 * @old_groups: Number of current groups 818 * @bsize: Size of one bucket, in longs 819 * @old_lt: Pointer to the current lookup table 820 * @new_lt: Pointer to the new, pre-allocated lookup table 821 * 822 * Each bucket with index b in the new lookup table, belonging to group g, is 823 * filled with the bit union of: 824 * - all the buckets with index such that the upper four bits of the lower byte 825 * equal b, from group g, with g odd 826 * - all the buckets with index such that the lower four bits equal b, from 827 * group g, with g even 828 * 829 * That is, given buckets from the new lookup table N(x, y) and the old lookup 830 * table O(x, y), with x bucket index, and y group index: 831 * 832 * - with g odd: N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4) 833 * - with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f) 834 * 835 * where U() denotes the arbitrary union operation (binary OR of n terms). This 836 * ensures equivalence of the matching results on lookup. 837 */ 838 static void pipapo_lt_8b_to_4b(int old_groups, int bsize, 839 unsigned long *old_lt, unsigned long *new_lt) 840 { 841 int g, b, bsrc, i; 842 843 memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize * 844 sizeof(unsigned long)); 845 846 for (g = 0; g < old_groups * 2; g += 2) { 847 int src_g = g / 2; 848 849 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) { 850 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g; 851 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1); 852 bsrc++) { 853 if (((bsrc & 0xf0) >> 4) != b) 854 continue; 855 856 for (i = 0; i < bsize; i++) 857 new_lt[i] |= old_lt[bsrc * bsize + i]; 858 } 859 860 new_lt += bsize; 861 } 862 863 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) { 864 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g; 865 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1); 866 bsrc++) { 867 if ((bsrc & 0x0f) != b) 868 continue; 869 870 for (i = 0; i < bsize; i++) 871 new_lt[i] |= old_lt[bsrc * bsize + i]; 872 } 873 874 new_lt += bsize; 875 } 876 } 877 } 878 879 /** 880 * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed 881 * @f: Field containing lookup table 882 */ 883 static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f) 884 { 885 unsigned int groups, bb; 886 unsigned long *new_lt; 887 ssize_t lt_size; 888 889 lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize * 890 sizeof(*f->lt); 891 892 if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET && 893 lt_size > NFT_PIPAPO_LT_SIZE_HIGH) { 894 groups = f->groups * 2; 895 bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET; 896 897 lt_size = lt_calculate_size(groups, bb, f->bsize); 898 if (lt_size < 0) 899 return; 900 } else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET && 901 lt_size < NFT_PIPAPO_LT_SIZE_LOW) { 902 groups = f->groups / 2; 903 bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET; 904 905 lt_size = lt_calculate_size(groups, bb, f->bsize); 906 if (lt_size < 0) 907 return; 908 909 /* Don't increase group width if the resulting lookup table size 910 * would exceed the upper size threshold for a "small" set. 911 */ 912 if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH) 913 return; 914 } else { 915 return; 916 } 917 918 new_lt = kvzalloc(lt_size, GFP_KERNEL_ACCOUNT); 919 if (!new_lt) 920 return; 921 922 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4; 923 if (f->bb == 4 && bb == 8) { 924 pipapo_lt_4b_to_8b(f->groups, f->bsize, 925 NFT_PIPAPO_LT_ALIGN(f->lt), 926 NFT_PIPAPO_LT_ALIGN(new_lt)); 927 } else if (f->bb == 8 && bb == 4) { 928 pipapo_lt_8b_to_4b(f->groups, f->bsize, 929 NFT_PIPAPO_LT_ALIGN(f->lt), 930 NFT_PIPAPO_LT_ALIGN(new_lt)); 931 } else { 932 BUG(); 933 } 934 935 f->groups = groups; 936 f->bb = bb; 937 kvfree(f->lt); 938 f->lt = new_lt; 939 } 940 941 /** 942 * pipapo_insert() - Insert new rule in field given input key and mask length 943 * @f: Field containing lookup table 944 * @k: Input key for classification, without nftables padding 945 * @mask_bits: Length of mask; matches field length for non-ranged entry 946 * 947 * Insert a new rule reference in lookup buckets corresponding to k and 948 * mask_bits. 949 * 950 * Return: 1 on success (one rule inserted), negative error code on failure. 951 */ 952 static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k, 953 int mask_bits) 954 { 955 unsigned int rule = f->rules, group, ret, bit_offset = 0; 956 957 ret = pipapo_resize(f, f->rules, f->rules + 1); 958 if (ret) 959 return ret; 960 961 f->rules++; 962 963 for (group = 0; group < f->groups; group++) { 964 int i, v; 965 u8 mask; 966 967 v = k[group / (BITS_PER_BYTE / f->bb)]; 968 v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0); 969 v >>= (BITS_PER_BYTE - bit_offset) - f->bb; 970 971 bit_offset += f->bb; 972 bit_offset %= BITS_PER_BYTE; 973 974 if (mask_bits >= (group + 1) * f->bb) { 975 /* Not masked */ 976 pipapo_bucket_set(f, rule, group, v); 977 } else if (mask_bits <= group * f->bb) { 978 /* Completely masked */ 979 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) 980 pipapo_bucket_set(f, rule, group, i); 981 } else { 982 /* The mask limit falls on this group */ 983 mask = GENMASK(f->bb - 1, 0); 984 mask >>= mask_bits - group * f->bb; 985 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) { 986 if ((i & ~mask) == (v & ~mask)) 987 pipapo_bucket_set(f, rule, group, i); 988 } 989 } 990 } 991 992 pipapo_lt_bits_adjust(f); 993 994 return 1; 995 } 996 997 /** 998 * pipapo_step_diff() - Check if setting @step bit in netmask would change it 999 * @base: Mask we are expanding 1000 * @step: Step bit for given expansion step 1001 * @len: Total length of mask space (set and unset bits), bytes 1002 * 1003 * Convenience function for mask expansion. 1004 * 1005 * Return: true if step bit changes mask (i.e. isn't set), false otherwise. 1006 */ 1007 static bool pipapo_step_diff(u8 *base, int step, int len) 1008 { 1009 /* Network order, byte-addressed */ 1010 #ifdef __BIG_ENDIAN__ 1011 return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]); 1012 #else 1013 return !(BIT(step % BITS_PER_BYTE) & 1014 base[len - 1 - step / BITS_PER_BYTE]); 1015 #endif 1016 } 1017 1018 /** 1019 * pipapo_step_after_end() - Check if mask exceeds range end with given step 1020 * @base: Mask we are expanding 1021 * @end: End of range 1022 * @step: Step bit for given expansion step, highest bit to be set 1023 * @len: Total length of mask space (set and unset bits), bytes 1024 * 1025 * Convenience function for mask expansion. 1026 * 1027 * Return: true if mask exceeds range setting step bits, false otherwise. 1028 */ 1029 static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step, 1030 int len) 1031 { 1032 u8 tmp[NFT_PIPAPO_MAX_BYTES]; 1033 int i; 1034 1035 memcpy(tmp, base, len); 1036 1037 /* Network order, byte-addressed */ 1038 for (i = 0; i <= step; i++) 1039 #ifdef __BIG_ENDIAN__ 1040 tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE); 1041 #else 1042 tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE); 1043 #endif 1044 1045 return memcmp(tmp, end, len) > 0; 1046 } 1047 1048 /** 1049 * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry 1050 * @base: Netmask base 1051 * @step: Step bit to sum 1052 * @len: Netmask length, bytes 1053 */ 1054 static void pipapo_base_sum(u8 *base, int step, int len) 1055 { 1056 bool carry = false; 1057 int i; 1058 1059 /* Network order, byte-addressed */ 1060 #ifdef __BIG_ENDIAN__ 1061 for (i = step / BITS_PER_BYTE; i < len; i++) { 1062 #else 1063 for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) { 1064 #endif 1065 if (carry) 1066 base[i]++; 1067 else 1068 base[i] += 1 << (step % BITS_PER_BYTE); 1069 1070 if (base[i]) 1071 break; 1072 1073 carry = true; 1074 } 1075 } 1076 1077 /** 1078 * pipapo_expand() - Expand to composing netmasks, insert into lookup table 1079 * @f: Field containing lookup table 1080 * @start: Start of range 1081 * @end: End of range 1082 * @len: Length of value in bits 1083 * 1084 * Expand range to composing netmasks and insert corresponding rule references 1085 * in lookup buckets. 1086 * 1087 * Return: number of inserted rules on success, negative error code on failure. 1088 */ 1089 static int pipapo_expand(struct nft_pipapo_field *f, 1090 const u8 *start, const u8 *end, int len) 1091 { 1092 int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE); 1093 u8 base[NFT_PIPAPO_MAX_BYTES]; 1094 1095 memcpy(base, start, bytes); 1096 while (memcmp(base, end, bytes) <= 0) { 1097 int err; 1098 1099 step = 0; 1100 while (pipapo_step_diff(base, step, bytes)) { 1101 if (pipapo_step_after_end(base, end, step, bytes)) 1102 break; 1103 1104 step++; 1105 if (step >= len) { 1106 if (!masks) { 1107 err = pipapo_insert(f, base, 0); 1108 if (err < 0) 1109 return err; 1110 masks = 1; 1111 } 1112 goto out; 1113 } 1114 } 1115 1116 err = pipapo_insert(f, base, len - step); 1117 1118 if (err < 0) 1119 return err; 1120 1121 masks++; 1122 pipapo_base_sum(base, step, bytes); 1123 } 1124 out: 1125 return masks; 1126 } 1127 1128 /** 1129 * pipapo_map() - Insert rules in mapping tables, mapping them between fields 1130 * @m: Matching data, including mapping table 1131 * @map: Table of rule maps: array of first rule and amount of rules 1132 * in next field a given rule maps to, for each field 1133 * @e: For last field, nft_set_ext pointer matching rules map to 1134 */ 1135 static void pipapo_map(struct nft_pipapo_match *m, 1136 union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS], 1137 struct nft_pipapo_elem *e) 1138 { 1139 struct nft_pipapo_field *f; 1140 int i, j; 1141 1142 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) { 1143 for (j = 0; j < map[i].n; j++) { 1144 f->mt[map[i].to + j].to = map[i + 1].to; 1145 f->mt[map[i].to + j].n = map[i + 1].n; 1146 } 1147 } 1148 1149 /* Last field: map to ext instead of mapping to next field */ 1150 for (j = 0; j < map[i].n; j++) 1151 f->mt[map[i].to + j].e = e; 1152 } 1153 1154 /** 1155 * pipapo_free_scratch() - Free per-CPU map at original (not aligned) address 1156 * @m: Matching data 1157 * @cpu: CPU number 1158 */ 1159 static void pipapo_free_scratch(const struct nft_pipapo_match *m, unsigned int cpu) 1160 { 1161 struct nft_pipapo_scratch *s; 1162 void *mem; 1163 1164 s = *per_cpu_ptr(m->scratch, cpu); 1165 if (!s) 1166 return; 1167 1168 mem = s; 1169 mem -= s->align_off; 1170 kvfree(mem); 1171 } 1172 1173 /** 1174 * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results 1175 * @clone: Copy of matching data with pending insertions and deletions 1176 * @bsize_max: Maximum bucket size, scratch maps cover two buckets 1177 * 1178 * Return: 0 on success, -ENOMEM on failure. 1179 */ 1180 static int pipapo_realloc_scratch(struct nft_pipapo_match *clone, 1181 unsigned long bsize_max) 1182 { 1183 int i; 1184 1185 for_each_possible_cpu(i) { 1186 struct nft_pipapo_scratch *scratch; 1187 #ifdef NFT_PIPAPO_ALIGN 1188 void *scratch_aligned; 1189 u32 align_off; 1190 #endif 1191 scratch = kvzalloc_node(struct_size(scratch, map, bsize_max * 2) + 1192 NFT_PIPAPO_ALIGN_HEADROOM, 1193 GFP_KERNEL_ACCOUNT, cpu_to_node(i)); 1194 if (!scratch) { 1195 /* On failure, there's no need to undo previous 1196 * allocations: this means that some scratch maps have 1197 * a bigger allocated size now (this is only called on 1198 * insertion), but the extra space won't be used by any 1199 * CPU as new elements are not inserted and m->bsize_max 1200 * is not updated. 1201 */ 1202 return -ENOMEM; 1203 } 1204 1205 pipapo_free_scratch(clone, i); 1206 1207 #ifdef NFT_PIPAPO_ALIGN 1208 /* Align &scratch->map (not the struct itself): the extra 1209 * %NFT_PIPAPO_ALIGN_HEADROOM bytes passed to kzalloc_node() 1210 * above guarantee we can waste up to those bytes in order 1211 * to align the map field regardless of its offset within 1212 * the struct. 1213 */ 1214 BUILD_BUG_ON(offsetof(struct nft_pipapo_scratch, map) > NFT_PIPAPO_ALIGN_HEADROOM); 1215 1216 scratch_aligned = NFT_PIPAPO_LT_ALIGN(&scratch->map); 1217 scratch_aligned -= offsetof(struct nft_pipapo_scratch, map); 1218 align_off = scratch_aligned - (void *)scratch; 1219 1220 scratch = scratch_aligned; 1221 scratch->align_off = align_off; 1222 #endif 1223 *per_cpu_ptr(clone->scratch, i) = scratch; 1224 } 1225 1226 return 0; 1227 } 1228 1229 static bool nft_pipapo_transaction_mutex_held(const struct nft_set *set) 1230 { 1231 #ifdef CONFIG_PROVE_LOCKING 1232 const struct net *net = read_pnet(&set->net); 1233 1234 return lockdep_is_held(&nft_pernet(net)->commit_mutex); 1235 #else 1236 return true; 1237 #endif 1238 } 1239 1240 static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old); 1241 1242 /** 1243 * pipapo_maybe_clone() - Build clone for pending data changes, if not existing 1244 * @set: nftables API set representation 1245 * 1246 * Return: newly created or existing clone, if any. NULL on allocation failure 1247 */ 1248 static struct nft_pipapo_match *pipapo_maybe_clone(const struct nft_set *set) 1249 { 1250 struct nft_pipapo *priv = nft_set_priv(set); 1251 struct nft_pipapo_match *m; 1252 1253 if (priv->clone) 1254 return priv->clone; 1255 1256 m = rcu_dereference_protected(priv->match, 1257 nft_pipapo_transaction_mutex_held(set)); 1258 priv->clone = pipapo_clone(m); 1259 1260 return priv->clone; 1261 } 1262 1263 /** 1264 * nft_pipapo_insert() - Validate and insert ranged elements 1265 * @net: Network namespace 1266 * @set: nftables API set representation 1267 * @elem: nftables API element representation containing key data 1268 * @elem_priv: Filled with pointer to &struct nft_set_ext in inserted element 1269 * 1270 * Return: 0 on success, error pointer on failure. 1271 */ 1272 static int nft_pipapo_insert(const struct net *net, const struct nft_set *set, 1273 const struct nft_set_elem *elem, 1274 struct nft_elem_priv **elem_priv) 1275 { 1276 const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv); 1277 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS]; 1278 const u8 *start = (const u8 *)elem->key.val.data, *end; 1279 struct nft_pipapo_match *m = pipapo_maybe_clone(set); 1280 u8 genmask = nft_genmask_next(net); 1281 struct nft_pipapo_elem *e, *dup; 1282 u64 tstamp = nft_net_tstamp(net); 1283 struct nft_pipapo_field *f; 1284 const u8 *start_p, *end_p; 1285 int i, bsize_max, err = 0; 1286 1287 if (!m) 1288 return -ENOMEM; 1289 1290 if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END)) 1291 end = (const u8 *)nft_set_ext_key_end(ext)->data; 1292 else 1293 end = start; 1294 1295 dup = pipapo_get(m, start, genmask, tstamp); 1296 if (dup) { 1297 /* Check if we already have the same exact entry */ 1298 const struct nft_data *dup_key, *dup_end; 1299 1300 dup_key = nft_set_ext_key(&dup->ext); 1301 if (nft_set_ext_exists(&dup->ext, NFT_SET_EXT_KEY_END)) 1302 dup_end = nft_set_ext_key_end(&dup->ext); 1303 else 1304 dup_end = dup_key; 1305 1306 if (!memcmp(start, dup_key->data, sizeof(*dup_key->data)) && 1307 !memcmp(end, dup_end->data, sizeof(*dup_end->data))) { 1308 *elem_priv = &dup->priv; 1309 return -EEXIST; 1310 } 1311 1312 return -ENOTEMPTY; 1313 } 1314 1315 /* Look for partially overlapping entries */ 1316 dup = pipapo_get(m, end, nft_genmask_next(net), tstamp); 1317 if (dup) { 1318 *elem_priv = &dup->priv; 1319 return -ENOTEMPTY; 1320 } 1321 1322 /* Validate */ 1323 start_p = start; 1324 end_p = end; 1325 1326 /* some helpers return -1, or 0 >= for valid rule pos, 1327 * so we cannot support more than INT_MAX rules at this time. 1328 */ 1329 BUILD_BUG_ON(NFT_PIPAPO_RULE0_MAX > INT_MAX); 1330 1331 nft_pipapo_for_each_field(f, i, m) { 1332 if (f->rules >= NFT_PIPAPO_RULE0_MAX) 1333 return -ENOSPC; 1334 1335 if (memcmp(start_p, end_p, 1336 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0) 1337 return -EINVAL; 1338 1339 start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); 1340 end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); 1341 } 1342 1343 /* Insert */ 1344 bsize_max = m->bsize_max; 1345 1346 nft_pipapo_for_each_field(f, i, m) { 1347 int ret; 1348 1349 rulemap[i].to = f->rules; 1350 1351 ret = memcmp(start, end, 1352 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)); 1353 if (!ret) 1354 ret = pipapo_insert(f, start, f->groups * f->bb); 1355 else 1356 ret = pipapo_expand(f, start, end, f->groups * f->bb); 1357 1358 if (ret < 0) 1359 return ret; 1360 1361 if (f->bsize > bsize_max) 1362 bsize_max = f->bsize; 1363 1364 rulemap[i].n = ret; 1365 1366 start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); 1367 end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); 1368 } 1369 1370 if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) { 1371 put_cpu_ptr(m->scratch); 1372 1373 err = pipapo_realloc_scratch(m, bsize_max); 1374 if (err) 1375 return err; 1376 1377 m->bsize_max = bsize_max; 1378 } else { 1379 put_cpu_ptr(m->scratch); 1380 } 1381 1382 e = nft_elem_priv_cast(elem->priv); 1383 *elem_priv = &e->priv; 1384 1385 pipapo_map(m, rulemap, e); 1386 1387 return 0; 1388 } 1389 1390 /** 1391 * pipapo_clone() - Clone matching data to create new working copy 1392 * @old: Existing matching data 1393 * 1394 * Return: copy of matching data passed as 'old' or NULL. 1395 */ 1396 static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old) 1397 { 1398 struct nft_pipapo_field *dst, *src; 1399 struct nft_pipapo_match *new; 1400 int i; 1401 1402 new = kmalloc(struct_size(new, f, old->field_count), GFP_KERNEL_ACCOUNT); 1403 if (!new) 1404 return NULL; 1405 1406 new->field_count = old->field_count; 1407 new->bsize_max = old->bsize_max; 1408 1409 new->scratch = alloc_percpu(*new->scratch); 1410 if (!new->scratch) 1411 goto out_scratch; 1412 1413 for_each_possible_cpu(i) 1414 *per_cpu_ptr(new->scratch, i) = NULL; 1415 1416 if (pipapo_realloc_scratch(new, old->bsize_max)) 1417 goto out_scratch_realloc; 1418 1419 rcu_head_init(&new->rcu); 1420 1421 src = old->f; 1422 dst = new->f; 1423 1424 for (i = 0; i < old->field_count; i++) { 1425 unsigned long *new_lt; 1426 ssize_t lt_size; 1427 1428 memcpy(dst, src, offsetof(struct nft_pipapo_field, lt)); 1429 1430 lt_size = lt_calculate_size(src->groups, src->bb, src->bsize); 1431 if (lt_size < 0) 1432 goto out_lt; 1433 1434 new_lt = kvzalloc(lt_size, GFP_KERNEL_ACCOUNT); 1435 if (!new_lt) 1436 goto out_lt; 1437 1438 dst->lt = new_lt; 1439 1440 memcpy(NFT_PIPAPO_LT_ALIGN(new_lt), 1441 NFT_PIPAPO_LT_ALIGN(src->lt), 1442 src->bsize * sizeof(*dst->lt) * 1443 src->groups * NFT_PIPAPO_BUCKETS(src->bb)); 1444 1445 if (src->rules > 0) { 1446 if (src->rules_alloc > (INT_MAX / sizeof(*src->mt))) 1447 goto out_mt; 1448 1449 dst->mt = kvmalloc_array(src->rules_alloc, 1450 sizeof(*src->mt), 1451 GFP_KERNEL_ACCOUNT); 1452 if (!dst->mt) 1453 goto out_mt; 1454 1455 memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt)); 1456 } else { 1457 dst->mt = NULL; 1458 dst->rules_alloc = 0; 1459 } 1460 1461 src++; 1462 dst++; 1463 } 1464 1465 return new; 1466 1467 out_mt: 1468 kvfree(dst->lt); 1469 out_lt: 1470 for (dst--; i > 0; i--) { 1471 kvfree(dst->mt); 1472 kvfree(dst->lt); 1473 dst--; 1474 } 1475 out_scratch_realloc: 1476 for_each_possible_cpu(i) 1477 pipapo_free_scratch(new, i); 1478 out_scratch: 1479 free_percpu(new->scratch); 1480 kfree(new); 1481 1482 return NULL; 1483 } 1484 1485 /** 1486 * pipapo_rules_same_key() - Get number of rules originated from the same entry 1487 * @f: Field containing mapping table 1488 * @first: Index of first rule in set of rules mapping to same entry 1489 * 1490 * Using the fact that all rules in a field that originated from the same entry 1491 * will map to the same set of rules in the next field, or to the same element 1492 * reference, return the cardinality of the set of rules that originated from 1493 * the same entry as the rule with index @first, @first rule included. 1494 * 1495 * In pictures: 1496 * rules 1497 * field #0 0 1 2 3 4 1498 * map to: 0 1 2-4 2-4 5-9 1499 * . . ....... . ... 1500 * | | | | \ \ 1501 * | | | | \ \ 1502 * | | | | \ \ 1503 * ' ' ' ' ' \ 1504 * in field #1 0 1 2 3 4 5 ... 1505 * 1506 * if this is called for rule 2 on field #0, it will return 3, as also rules 2 1507 * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field. 1508 * 1509 * For the last field in a set, we can rely on associated entries to map to the 1510 * same element references. 1511 * 1512 * Return: Number of rules that originated from the same entry as @first. 1513 */ 1514 static unsigned int pipapo_rules_same_key(struct nft_pipapo_field *f, unsigned int first) 1515 { 1516 struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */ 1517 unsigned int r; 1518 1519 for (r = first; r < f->rules; r++) { 1520 if (r != first && e != f->mt[r].e) 1521 return r - first; 1522 1523 e = f->mt[r].e; 1524 } 1525 1526 if (r != first) 1527 return r - first; 1528 1529 return 0; 1530 } 1531 1532 /** 1533 * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones 1534 * @mt: Mapping array 1535 * @rules: Original amount of rules in mapping table 1536 * @start: First rule index to be removed 1537 * @n: Amount of rules to be removed 1538 * @to_offset: First rule index, in next field, this group of rules maps to 1539 * @is_last: If this is the last field, delete reference from mapping array 1540 * 1541 * This is used to unmap rules from the mapping table for a single field, 1542 * maintaining consistency and compactness for the existing ones. 1543 * 1544 * In pictures: let's assume that we want to delete rules 2 and 3 from the 1545 * following mapping array: 1546 * 1547 * rules 1548 * 0 1 2 3 4 1549 * map to: 4-10 4-10 11-15 11-15 16-18 1550 * 1551 * the result will be: 1552 * 1553 * rules 1554 * 0 1 2 1555 * map to: 4-10 4-10 11-13 1556 * 1557 * for fields before the last one. In case this is the mapping table for the 1558 * last field in a set, and rules map to pointers to &struct nft_pipapo_elem: 1559 * 1560 * rules 1561 * 0 1 2 3 4 1562 * element pointers: 0x42 0x42 0x33 0x33 0x44 1563 * 1564 * the result will be: 1565 * 1566 * rules 1567 * 0 1 2 1568 * element pointers: 0x42 0x42 0x44 1569 */ 1570 static void pipapo_unmap(union nft_pipapo_map_bucket *mt, unsigned int rules, 1571 unsigned int start, unsigned int n, 1572 unsigned int to_offset, bool is_last) 1573 { 1574 int i; 1575 1576 memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt)); 1577 memset(mt + rules - n, 0, n * sizeof(*mt)); 1578 1579 if (is_last) 1580 return; 1581 1582 for (i = start; i < rules - n; i++) 1583 mt[i].to -= to_offset; 1584 } 1585 1586 /** 1587 * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map 1588 * @m: Matching data 1589 * @rulemap: Table of rule maps, arrays of first rule and amount of rules 1590 * in next field a given entry maps to, for each field 1591 * 1592 * For each rule in lookup table buckets mapping to this set of rules, drop 1593 * all bits set in lookup table mapping. In pictures, assuming we want to drop 1594 * rules 0 and 1 from this lookup table: 1595 * 1596 * bucket 1597 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1598 * 0 0 1,2 1599 * 1 1,2 0 1600 * 2 0 1,2 1601 * 3 0 1,2 1602 * 4 0,1,2 1603 * 5 0 1 2 1604 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1605 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1 1606 * 1607 * rule 2 becomes rule 0, and the result will be: 1608 * 1609 * bucket 1610 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1611 * 0 0 1612 * 1 0 1613 * 2 0 1614 * 3 0 1615 * 4 0 1616 * 5 0 1617 * 6 0 1618 * 7 0 0 1619 * 1620 * once this is done, call unmap() to drop all the corresponding rule references 1621 * from mapping tables. 1622 */ 1623 static void pipapo_drop(struct nft_pipapo_match *m, 1624 union nft_pipapo_map_bucket rulemap[]) 1625 { 1626 struct nft_pipapo_field *f; 1627 int i; 1628 1629 nft_pipapo_for_each_field(f, i, m) { 1630 int g; 1631 1632 for (g = 0; g < f->groups; g++) { 1633 unsigned long *pos; 1634 int b; 1635 1636 pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g * 1637 NFT_PIPAPO_BUCKETS(f->bb) * f->bsize; 1638 1639 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) { 1640 bitmap_cut(pos, pos, rulemap[i].to, 1641 rulemap[i].n, 1642 f->bsize * BITS_PER_LONG); 1643 1644 pos += f->bsize; 1645 } 1646 } 1647 1648 pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n, 1649 rulemap[i + 1].n, i == m->field_count - 1); 1650 if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) { 1651 /* We can ignore this, a failure to shrink tables down 1652 * doesn't make tables invalid. 1653 */ 1654 ; 1655 } 1656 f->rules -= rulemap[i].n; 1657 1658 pipapo_lt_bits_adjust(f); 1659 } 1660 } 1661 1662 static void nft_pipapo_gc_deactivate(struct net *net, struct nft_set *set, 1663 struct nft_pipapo_elem *e) 1664 1665 { 1666 nft_setelem_data_deactivate(net, set, &e->priv); 1667 } 1668 1669 /** 1670 * pipapo_gc() - Drop expired entries from set, destroy start and end elements 1671 * @set: nftables API set representation 1672 * @m: Matching data 1673 */ 1674 static void pipapo_gc(struct nft_set *set, struct nft_pipapo_match *m) 1675 { 1676 struct nft_pipapo *priv = nft_set_priv(set); 1677 struct net *net = read_pnet(&set->net); 1678 unsigned int rules_f0, first_rule = 0; 1679 u64 tstamp = nft_net_tstamp(net); 1680 struct nft_pipapo_elem *e; 1681 struct nft_trans_gc *gc; 1682 1683 gc = nft_trans_gc_alloc(set, 0, GFP_KERNEL); 1684 if (!gc) 1685 return; 1686 1687 while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) { 1688 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS]; 1689 const struct nft_pipapo_field *f; 1690 unsigned int i, start, rules_fx; 1691 1692 start = first_rule; 1693 rules_fx = rules_f0; 1694 1695 nft_pipapo_for_each_field(f, i, m) { 1696 rulemap[i].to = start; 1697 rulemap[i].n = rules_fx; 1698 1699 if (i < m->field_count - 1) { 1700 rules_fx = f->mt[start].n; 1701 start = f->mt[start].to; 1702 } 1703 } 1704 1705 /* Pick the last field, and its last index */ 1706 f--; 1707 i--; 1708 e = f->mt[rulemap[i].to].e; 1709 1710 /* synchronous gc never fails, there is no need to set on 1711 * NFT_SET_ELEM_DEAD_BIT. 1712 */ 1713 if (__nft_set_elem_expired(&e->ext, tstamp)) { 1714 gc = nft_trans_gc_queue_sync(gc, GFP_KERNEL); 1715 if (!gc) 1716 return; 1717 1718 nft_pipapo_gc_deactivate(net, set, e); 1719 pipapo_drop(m, rulemap); 1720 nft_trans_gc_elem_add(gc, e); 1721 1722 /* And check again current first rule, which is now the 1723 * first we haven't checked. 1724 */ 1725 } else { 1726 first_rule += rules_f0; 1727 } 1728 } 1729 1730 gc = nft_trans_gc_catchall_sync(gc); 1731 if (gc) { 1732 nft_trans_gc_queue_sync_done(gc); 1733 priv->last_gc = jiffies; 1734 } 1735 } 1736 1737 /** 1738 * pipapo_free_fields() - Free per-field tables contained in matching data 1739 * @m: Matching data 1740 */ 1741 static void pipapo_free_fields(struct nft_pipapo_match *m) 1742 { 1743 struct nft_pipapo_field *f; 1744 int i; 1745 1746 nft_pipapo_for_each_field(f, i, m) { 1747 kvfree(f->lt); 1748 kvfree(f->mt); 1749 } 1750 } 1751 1752 static void pipapo_free_match(struct nft_pipapo_match *m) 1753 { 1754 int i; 1755 1756 for_each_possible_cpu(i) 1757 pipapo_free_scratch(m, i); 1758 1759 free_percpu(m->scratch); 1760 pipapo_free_fields(m); 1761 1762 kfree(m); 1763 } 1764 1765 /** 1766 * pipapo_reclaim_match - RCU callback to free fields from old matching data 1767 * @rcu: RCU head 1768 */ 1769 static void pipapo_reclaim_match(struct rcu_head *rcu) 1770 { 1771 struct nft_pipapo_match *m; 1772 1773 m = container_of(rcu, struct nft_pipapo_match, rcu); 1774 pipapo_free_match(m); 1775 } 1776 1777 /** 1778 * nft_pipapo_commit() - Replace lookup data with current working copy 1779 * @set: nftables API set representation 1780 * 1781 * While at it, check if we should perform garbage collection on the working 1782 * copy before committing it for lookup, and don't replace the table if the 1783 * working copy doesn't have pending changes. 1784 * 1785 * We also need to create a new working copy for subsequent insertions and 1786 * deletions. 1787 */ 1788 static void nft_pipapo_commit(struct nft_set *set) 1789 { 1790 struct nft_pipapo *priv = nft_set_priv(set); 1791 struct nft_pipapo_match *old; 1792 1793 if (!priv->clone) 1794 return; 1795 1796 if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set))) 1797 pipapo_gc(set, priv->clone); 1798 1799 old = rcu_replace_pointer(priv->match, priv->clone, 1800 nft_pipapo_transaction_mutex_held(set)); 1801 priv->clone = NULL; 1802 1803 if (old) 1804 call_rcu(&old->rcu, pipapo_reclaim_match); 1805 } 1806 1807 static void nft_pipapo_abort(const struct nft_set *set) 1808 { 1809 struct nft_pipapo *priv = nft_set_priv(set); 1810 1811 if (!priv->clone) 1812 return; 1813 pipapo_free_match(priv->clone); 1814 priv->clone = NULL; 1815 } 1816 1817 /** 1818 * nft_pipapo_activate() - Mark element reference as active given key, commit 1819 * @net: Network namespace 1820 * @set: nftables API set representation 1821 * @elem_priv: nftables API element representation containing key data 1822 * 1823 * On insertion, elements are added to a copy of the matching data currently 1824 * in use for lookups, and not directly inserted into current lookup data. Both 1825 * nft_pipapo_insert() and nft_pipapo_activate() are called once for each 1826 * element, hence we can't purpose either one as a real commit operation. 1827 */ 1828 static void nft_pipapo_activate(const struct net *net, 1829 const struct nft_set *set, 1830 struct nft_elem_priv *elem_priv) 1831 { 1832 struct nft_pipapo_elem *e = nft_elem_priv_cast(elem_priv); 1833 1834 nft_clear(net, &e->ext); 1835 } 1836 1837 /** 1838 * nft_pipapo_deactivate() - Search for element and make it inactive 1839 * @net: Network namespace 1840 * @set: nftables API set representation 1841 * @elem: nftables API element representation containing key data 1842 * 1843 * Return: deactivated element if found, NULL otherwise. 1844 */ 1845 static struct nft_elem_priv * 1846 nft_pipapo_deactivate(const struct net *net, const struct nft_set *set, 1847 const struct nft_set_elem *elem) 1848 { 1849 struct nft_pipapo_match *m = pipapo_maybe_clone(set); 1850 struct nft_pipapo_elem *e; 1851 1852 /* removal must occur on priv->clone, if we are low on memory 1853 * we have no choice and must fail the removal request. 1854 */ 1855 if (!m) 1856 return NULL; 1857 1858 e = pipapo_get(m, (const u8 *)elem->key.val.data, 1859 nft_genmask_next(net), nft_net_tstamp(net)); 1860 if (!e) 1861 return NULL; 1862 1863 nft_set_elem_change_active(net, set, &e->ext); 1864 1865 return &e->priv; 1866 } 1867 1868 /** 1869 * nft_pipapo_flush() - make element inactive 1870 * @net: Network namespace 1871 * @set: nftables API set representation 1872 * @elem_priv: nftables API element representation containing key data 1873 * 1874 * This is functionally the same as nft_pipapo_deactivate(), with a slightly 1875 * different interface, and it's also called once for each element in a set 1876 * being flushed, so we can't implement, strictly speaking, a flush operation, 1877 * which would otherwise be as simple as allocating an empty copy of the 1878 * matching data. 1879 * 1880 * Note that we could in theory do that, mark the set as flushed, and ignore 1881 * subsequent calls, but we would leak all the elements after the first one, 1882 * because they wouldn't then be freed as result of API calls. 1883 * 1884 * Return: true if element was found and deactivated. 1885 */ 1886 static void nft_pipapo_flush(const struct net *net, const struct nft_set *set, 1887 struct nft_elem_priv *elem_priv) 1888 { 1889 struct nft_pipapo_elem *e = nft_elem_priv_cast(elem_priv); 1890 1891 nft_set_elem_change_active(net, set, &e->ext); 1892 } 1893 1894 /** 1895 * pipapo_get_boundaries() - Get byte interval for associated rules 1896 * @f: Field including lookup table 1897 * @first_rule: First rule (lowest index) 1898 * @rule_count: Number of associated rules 1899 * @left: Byte expression for left boundary (start of range) 1900 * @right: Byte expression for right boundary (end of range) 1901 * 1902 * Given the first rule and amount of rules that originated from the same entry, 1903 * build the original range associated with the entry, and calculate the length 1904 * of the originating netmask. 1905 * 1906 * In pictures: 1907 * 1908 * bucket 1909 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1910 * 0 1,2 1911 * 1 1,2 1912 * 2 1,2 1913 * 3 1,2 1914 * 4 1,2 1915 * 5 1 2 1916 * 6 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1917 * 7 1,2 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1918 * 1919 * this is the lookup table corresponding to the IPv4 range 1920 * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks, 1921 * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31. 1922 * 1923 * This function fills @left and @right with the byte values of the leftmost 1924 * and rightmost bucket indices for the lowest and highest rule indices, 1925 * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in 1926 * nibbles: 1927 * left: < 12, 0, 10, 8, 0, 1, 0, 0 > 1928 * right: < 12, 0, 10, 8, 0, 2, 2, 1 > 1929 * corresponding to bytes: 1930 * left: < 192, 168, 1, 0 > 1931 * right: < 192, 168, 2, 1 > 1932 * with mask length irrelevant here, unused on return, as the range is already 1933 * defined by its start and end points. The mask length is relevant for a single 1934 * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore 1935 * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes 1936 * < 192, 168, 1, 255 >, and the mask length, calculated from the distances 1937 * between leftmost and rightmost bucket indices for each group, would be 24. 1938 * 1939 * Return: mask length, in bits. 1940 */ 1941 static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule, 1942 int rule_count, u8 *left, u8 *right) 1943 { 1944 int g, mask_len = 0, bit_offset = 0; 1945 u8 *l = left, *r = right; 1946 1947 for (g = 0; g < f->groups; g++) { 1948 int b, x0, x1; 1949 1950 x0 = -1; 1951 x1 = -1; 1952 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) { 1953 unsigned long *pos; 1954 1955 pos = NFT_PIPAPO_LT_ALIGN(f->lt) + 1956 (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize; 1957 if (test_bit(first_rule, pos) && x0 == -1) 1958 x0 = b; 1959 if (test_bit(first_rule + rule_count - 1, pos)) 1960 x1 = b; 1961 } 1962 1963 *l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset); 1964 *r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset); 1965 1966 bit_offset += f->bb; 1967 if (bit_offset >= BITS_PER_BYTE) { 1968 bit_offset %= BITS_PER_BYTE; 1969 l++; 1970 r++; 1971 } 1972 1973 if (x1 - x0 == 0) 1974 mask_len += 4; 1975 else if (x1 - x0 == 1) 1976 mask_len += 3; 1977 else if (x1 - x0 == 3) 1978 mask_len += 2; 1979 else if (x1 - x0 == 7) 1980 mask_len += 1; 1981 } 1982 1983 return mask_len; 1984 } 1985 1986 /** 1987 * pipapo_match_field() - Match rules against byte ranges 1988 * @f: Field including the lookup table 1989 * @first_rule: First of associated rules originating from same entry 1990 * @rule_count: Amount of associated rules 1991 * @start: Start of range to be matched 1992 * @end: End of range to be matched 1993 * 1994 * Return: true on match, false otherwise. 1995 */ 1996 static bool pipapo_match_field(struct nft_pipapo_field *f, 1997 int first_rule, int rule_count, 1998 const u8 *start, const u8 *end) 1999 { 2000 u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 }; 2001 u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 }; 2002 2003 pipapo_get_boundaries(f, first_rule, rule_count, left, right); 2004 2005 return !memcmp(start, left, 2006 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) && 2007 !memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)); 2008 } 2009 2010 /** 2011 * nft_pipapo_remove() - Remove element given key, commit 2012 * @net: Network namespace 2013 * @set: nftables API set representation 2014 * @elem_priv: nftables API element representation containing key data 2015 * 2016 * Similarly to nft_pipapo_activate(), this is used as commit operation by the 2017 * API, but it's called once per element in the pending transaction, so we can't 2018 * implement this as a single commit operation. Closest we can get is to remove 2019 * the matched element here, if any, and commit the updated matching data. 2020 */ 2021 static void nft_pipapo_remove(const struct net *net, const struct nft_set *set, 2022 struct nft_elem_priv *elem_priv) 2023 { 2024 struct nft_pipapo *priv = nft_set_priv(set); 2025 struct nft_pipapo_match *m = priv->clone; 2026 unsigned int rules_f0, first_rule = 0; 2027 struct nft_pipapo_elem *e; 2028 const u8 *data; 2029 2030 e = nft_elem_priv_cast(elem_priv); 2031 data = (const u8 *)nft_set_ext_key(&e->ext); 2032 2033 while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) { 2034 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS]; 2035 const u8 *match_start, *match_end; 2036 struct nft_pipapo_field *f; 2037 int i, start, rules_fx; 2038 2039 match_start = data; 2040 2041 if (nft_set_ext_exists(&e->ext, NFT_SET_EXT_KEY_END)) 2042 match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data; 2043 else 2044 match_end = data; 2045 2046 start = first_rule; 2047 rules_fx = rules_f0; 2048 2049 nft_pipapo_for_each_field(f, i, m) { 2050 bool last = i == m->field_count - 1; 2051 2052 if (!pipapo_match_field(f, start, rules_fx, 2053 match_start, match_end)) 2054 break; 2055 2056 rulemap[i].to = start; 2057 rulemap[i].n = rules_fx; 2058 2059 rules_fx = f->mt[start].n; 2060 start = f->mt[start].to; 2061 2062 match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); 2063 match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f); 2064 2065 if (last && f->mt[rulemap[i].to].e == e) { 2066 pipapo_drop(m, rulemap); 2067 return; 2068 } 2069 } 2070 2071 first_rule += rules_f0; 2072 } 2073 2074 WARN_ON_ONCE(1); /* elem_priv not found */ 2075 } 2076 2077 /** 2078 * nft_pipapo_do_walk() - Walk over elements in m 2079 * @ctx: nftables API context 2080 * @set: nftables API set representation 2081 * @m: matching data pointing to key mapping array 2082 * @iter: Iterator 2083 * 2084 * As elements are referenced in the mapping array for the last field, directly 2085 * scan that array: there's no need to follow rule mappings from the first 2086 * field. @m is protected either by RCU read lock or by transaction mutex. 2087 */ 2088 static void nft_pipapo_do_walk(const struct nft_ctx *ctx, struct nft_set *set, 2089 const struct nft_pipapo_match *m, 2090 struct nft_set_iter *iter) 2091 { 2092 const struct nft_pipapo_field *f; 2093 unsigned int i, r; 2094 2095 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) 2096 ; 2097 2098 for (r = 0; r < f->rules; r++) { 2099 struct nft_pipapo_elem *e; 2100 2101 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e) 2102 continue; 2103 2104 if (iter->count < iter->skip) 2105 goto cont; 2106 2107 e = f->mt[r].e; 2108 2109 iter->err = iter->fn(ctx, set, iter, &e->priv); 2110 if (iter->err < 0) 2111 return; 2112 2113 cont: 2114 iter->count++; 2115 } 2116 } 2117 2118 /** 2119 * nft_pipapo_walk() - Walk over elements 2120 * @ctx: nftables API context 2121 * @set: nftables API set representation 2122 * @iter: Iterator 2123 * 2124 * Test if destructive action is needed or not, clone active backend if needed 2125 * and call the real function to work on the data. 2126 */ 2127 static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set, 2128 struct nft_set_iter *iter) 2129 { 2130 struct nft_pipapo *priv = nft_set_priv(set); 2131 const struct nft_pipapo_match *m; 2132 2133 switch (iter->type) { 2134 case NFT_ITER_UPDATE: 2135 m = pipapo_maybe_clone(set); 2136 if (!m) { 2137 iter->err = -ENOMEM; 2138 return; 2139 } 2140 2141 nft_pipapo_do_walk(ctx, set, m, iter); 2142 break; 2143 case NFT_ITER_READ: 2144 rcu_read_lock(); 2145 m = rcu_dereference(priv->match); 2146 nft_pipapo_do_walk(ctx, set, m, iter); 2147 rcu_read_unlock(); 2148 break; 2149 default: 2150 iter->err = -EINVAL; 2151 WARN_ON_ONCE(1); 2152 break; 2153 } 2154 } 2155 2156 /** 2157 * nft_pipapo_privsize() - Return the size of private data for the set 2158 * @nla: netlink attributes, ignored as size doesn't depend on them 2159 * @desc: Set description, ignored as size doesn't depend on it 2160 * 2161 * Return: size of private data for this set implementation, in bytes 2162 */ 2163 static u64 nft_pipapo_privsize(const struct nlattr * const nla[], 2164 const struct nft_set_desc *desc) 2165 { 2166 return sizeof(struct nft_pipapo); 2167 } 2168 2169 /** 2170 * nft_pipapo_estimate() - Set size, space and lookup complexity 2171 * @desc: Set description, element count and field description used 2172 * @features: Flags: NFT_SET_INTERVAL needs to be there 2173 * @est: Storage for estimation data 2174 * 2175 * Return: true if set description is compatible, false otherwise 2176 */ 2177 static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features, 2178 struct nft_set_estimate *est) 2179 { 2180 if (!(features & NFT_SET_INTERVAL) || 2181 desc->field_count < NFT_PIPAPO_MIN_FIELDS) 2182 return false; 2183 2184 est->size = pipapo_estimate_size(desc); 2185 if (!est->size) 2186 return false; 2187 2188 est->lookup = NFT_SET_CLASS_O_LOG_N; 2189 2190 est->space = NFT_SET_CLASS_O_N; 2191 2192 return true; 2193 } 2194 2195 /** 2196 * nft_pipapo_init() - Initialise data for a set instance 2197 * @set: nftables API set representation 2198 * @desc: Set description 2199 * @nla: netlink attributes 2200 * 2201 * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink 2202 * attributes, initialise internal set parameters, current instance of matching 2203 * data and a copy for subsequent insertions. 2204 * 2205 * Return: 0 on success, negative error code on failure. 2206 */ 2207 static int nft_pipapo_init(const struct nft_set *set, 2208 const struct nft_set_desc *desc, 2209 const struct nlattr * const nla[]) 2210 { 2211 struct nft_pipapo *priv = nft_set_priv(set); 2212 struct nft_pipapo_match *m; 2213 struct nft_pipapo_field *f; 2214 int err, i, field_count; 2215 2216 BUILD_BUG_ON(offsetof(struct nft_pipapo_elem, priv) != 0); 2217 2218 field_count = desc->field_count ? : 1; 2219 2220 BUILD_BUG_ON(NFT_PIPAPO_MAX_FIELDS > 255); 2221 BUILD_BUG_ON(NFT_PIPAPO_MAX_FIELDS != NFT_REG32_COUNT); 2222 2223 if (field_count > NFT_PIPAPO_MAX_FIELDS) 2224 return -EINVAL; 2225 2226 m = kmalloc(struct_size(m, f, field_count), GFP_KERNEL); 2227 if (!m) 2228 return -ENOMEM; 2229 2230 m->field_count = field_count; 2231 m->bsize_max = 0; 2232 2233 m->scratch = alloc_percpu(struct nft_pipapo_scratch *); 2234 if (!m->scratch) { 2235 err = -ENOMEM; 2236 goto out_scratch; 2237 } 2238 for_each_possible_cpu(i) 2239 *per_cpu_ptr(m->scratch, i) = NULL; 2240 2241 rcu_head_init(&m->rcu); 2242 2243 nft_pipapo_for_each_field(f, i, m) { 2244 unsigned int len = desc->field_len[i] ? : set->klen; 2245 2246 /* f->groups is u8 */ 2247 BUILD_BUG_ON((NFT_PIPAPO_MAX_BYTES * 2248 BITS_PER_BYTE / NFT_PIPAPO_GROUP_BITS_LARGE_SET) >= 256); 2249 2250 f->bb = NFT_PIPAPO_GROUP_BITS_INIT; 2251 f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f); 2252 2253 priv->width += round_up(len, sizeof(u32)); 2254 2255 f->bsize = 0; 2256 f->rules = 0; 2257 f->rules_alloc = 0; 2258 f->lt = NULL; 2259 f->mt = NULL; 2260 } 2261 2262 rcu_assign_pointer(priv->match, m); 2263 2264 return 0; 2265 2266 out_scratch: 2267 kfree(m); 2268 2269 return err; 2270 } 2271 2272 /** 2273 * nft_set_pipapo_match_destroy() - Destroy elements from key mapping array 2274 * @ctx: context 2275 * @set: nftables API set representation 2276 * @m: matching data pointing to key mapping array 2277 */ 2278 static void nft_set_pipapo_match_destroy(const struct nft_ctx *ctx, 2279 const struct nft_set *set, 2280 struct nft_pipapo_match *m) 2281 { 2282 struct nft_pipapo_field *f; 2283 unsigned int i, r; 2284 2285 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) 2286 ; 2287 2288 for (r = 0; r < f->rules; r++) { 2289 struct nft_pipapo_elem *e; 2290 2291 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e) 2292 continue; 2293 2294 e = f->mt[r].e; 2295 2296 nf_tables_set_elem_destroy(ctx, set, &e->priv); 2297 } 2298 } 2299 2300 /** 2301 * nft_pipapo_destroy() - Free private data for set and all committed elements 2302 * @ctx: context 2303 * @set: nftables API set representation 2304 */ 2305 static void nft_pipapo_destroy(const struct nft_ctx *ctx, 2306 const struct nft_set *set) 2307 { 2308 struct nft_pipapo *priv = nft_set_priv(set); 2309 struct nft_pipapo_match *m; 2310 2311 m = rcu_dereference_protected(priv->match, true); 2312 2313 if (priv->clone) { 2314 nft_set_pipapo_match_destroy(ctx, set, priv->clone); 2315 pipapo_free_match(priv->clone); 2316 priv->clone = NULL; 2317 } else { 2318 nft_set_pipapo_match_destroy(ctx, set, m); 2319 } 2320 2321 pipapo_free_match(m); 2322 } 2323 2324 /** 2325 * nft_pipapo_gc_init() - Initialise garbage collection 2326 * @set: nftables API set representation 2327 * 2328 * Instead of actually setting up a periodic work for garbage collection, as 2329 * this operation requires a swap of matching data with the working copy, we'll 2330 * do that opportunistically with other commit operations if the interval is 2331 * elapsed, so we just need to set the current jiffies timestamp here. 2332 */ 2333 static void nft_pipapo_gc_init(const struct nft_set *set) 2334 { 2335 struct nft_pipapo *priv = nft_set_priv(set); 2336 2337 priv->last_gc = jiffies; 2338 } 2339 2340 const struct nft_set_type nft_set_pipapo_type = { 2341 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT | 2342 NFT_SET_TIMEOUT, 2343 .ops = { 2344 .lookup = nft_pipapo_lookup, 2345 .insert = nft_pipapo_insert, 2346 .activate = nft_pipapo_activate, 2347 .deactivate = nft_pipapo_deactivate, 2348 .flush = nft_pipapo_flush, 2349 .remove = nft_pipapo_remove, 2350 .walk = nft_pipapo_walk, 2351 .get = nft_pipapo_get, 2352 .privsize = nft_pipapo_privsize, 2353 .estimate = nft_pipapo_estimate, 2354 .init = nft_pipapo_init, 2355 .destroy = nft_pipapo_destroy, 2356 .gc_init = nft_pipapo_gc_init, 2357 .commit = nft_pipapo_commit, 2358 .abort = nft_pipapo_abort, 2359 .elemsize = offsetof(struct nft_pipapo_elem, ext), 2360 }, 2361 }; 2362 2363 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) 2364 const struct nft_set_type nft_set_pipapo_avx2_type = { 2365 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT | 2366 NFT_SET_TIMEOUT, 2367 .ops = { 2368 .lookup = nft_pipapo_avx2_lookup, 2369 .insert = nft_pipapo_insert, 2370 .activate = nft_pipapo_activate, 2371 .deactivate = nft_pipapo_deactivate, 2372 .flush = nft_pipapo_flush, 2373 .remove = nft_pipapo_remove, 2374 .walk = nft_pipapo_walk, 2375 .get = nft_pipapo_get, 2376 .privsize = nft_pipapo_privsize, 2377 .estimate = nft_pipapo_avx2_estimate, 2378 .init = nft_pipapo_init, 2379 .destroy = nft_pipapo_destroy, 2380 .gc_init = nft_pipapo_gc_init, 2381 .commit = nft_pipapo_commit, 2382 .abort = nft_pipapo_abort, 2383 .elemsize = offsetof(struct nft_pipapo_elem, ext), 2384 }, 2385 }; 2386 #endif 2387