1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * System Control and Management Interface (SCMI) Sensor Protocol
4 *
5 * Copyright (C) 2018-2022 ARM Ltd.
6 */
7
8 #define pr_fmt(fmt) "SCMI Notifications SENSOR - " fmt
9
10 #include <linux/bitfield.h>
11 #include <linux/module.h>
12 #include <linux/scmi_protocol.h>
13
14 #include "protocols.h"
15 #include "notify.h"
16
17 /* Updated only after ALL the mandatory features for that version are merged */
18 #define SCMI_PROTOCOL_SUPPORTED_VERSION 0x30001
19
20 #define SCMI_MAX_NUM_SENSOR_AXIS 63
21 #define SCMIv2_SENSOR_PROTOCOL 0x10000
22
23 enum scmi_sensor_protocol_cmd {
24 SENSOR_DESCRIPTION_GET = 0x3,
25 SENSOR_TRIP_POINT_NOTIFY = 0x4,
26 SENSOR_TRIP_POINT_CONFIG = 0x5,
27 SENSOR_READING_GET = 0x6,
28 SENSOR_AXIS_DESCRIPTION_GET = 0x7,
29 SENSOR_LIST_UPDATE_INTERVALS = 0x8,
30 SENSOR_CONFIG_GET = 0x9,
31 SENSOR_CONFIG_SET = 0xA,
32 SENSOR_CONTINUOUS_UPDATE_NOTIFY = 0xB,
33 SENSOR_NAME_GET = 0xC,
34 SENSOR_AXIS_NAME_GET = 0xD,
35 };
36
37 struct scmi_msg_resp_sensor_attributes {
38 __le16 num_sensors;
39 u8 max_requests;
40 u8 reserved;
41 __le32 reg_addr_low;
42 __le32 reg_addr_high;
43 __le32 reg_size;
44 };
45
46 /* v3 attributes_low macros */
47 #define SUPPORTS_UPDATE_NOTIFY(x) FIELD_GET(BIT(30), (x))
48 #define SENSOR_TSTAMP_EXP(x) FIELD_GET(GENMASK(14, 10), (x))
49 #define SUPPORTS_TIMESTAMP(x) FIELD_GET(BIT(9), (x))
50 #define SUPPORTS_EXTEND_ATTRS(x) FIELD_GET(BIT(8), (x))
51
52 /* v2 attributes_high macros */
53 #define SENSOR_UPDATE_BASE(x) FIELD_GET(GENMASK(31, 27), (x))
54 #define SENSOR_UPDATE_SCALE(x) FIELD_GET(GENMASK(26, 22), (x))
55
56 /* v3 attributes_high macros */
57 #define SENSOR_AXIS_NUMBER(x) FIELD_GET(GENMASK(21, 16), (x))
58 #define SUPPORTS_AXIS(x) FIELD_GET(BIT(8), (x))
59
60 /* v3 resolution macros */
61 #define SENSOR_RES(x) FIELD_GET(GENMASK(26, 0), (x))
62 #define SENSOR_RES_EXP(x) FIELD_GET(GENMASK(31, 27), (x))
63
64 struct scmi_msg_resp_attrs {
65 __le32 min_range_low;
66 __le32 min_range_high;
67 __le32 max_range_low;
68 __le32 max_range_high;
69 };
70
71 struct scmi_msg_sensor_description {
72 __le32 desc_index;
73 };
74
75 struct scmi_msg_resp_sensor_description {
76 __le16 num_returned;
77 __le16 num_remaining;
78 struct scmi_sensor_descriptor {
79 __le32 id;
80 __le32 attributes_low;
81 /* Common attributes_low macros */
82 #define SUPPORTS_ASYNC_READ(x) FIELD_GET(BIT(31), (x))
83 #define SUPPORTS_EXTENDED_NAMES(x) FIELD_GET(BIT(29), (x))
84 #define NUM_TRIP_POINTS(x) FIELD_GET(GENMASK(7, 0), (x))
85 __le32 attributes_high;
86 /* Common attributes_high macros */
87 #define SENSOR_SCALE(x) FIELD_GET(GENMASK(15, 11), (x))
88 #define SENSOR_SCALE_SIGN BIT(4)
89 #define SENSOR_SCALE_EXTEND GENMASK(31, 5)
90 #define SENSOR_TYPE(x) FIELD_GET(GENMASK(7, 0), (x))
91 u8 name[SCMI_SHORT_NAME_MAX_SIZE];
92 /* only for version > 2.0 */
93 __le32 power;
94 __le32 resolution;
95 struct scmi_msg_resp_attrs scalar_attrs;
96 } desc[];
97 };
98
99 /* Base scmi_sensor_descriptor size excluding extended attrs after name */
100 #define SCMI_MSG_RESP_SENS_DESCR_BASE_SZ 28
101
102 /* Sign extend to a full s32 */
103 #define S32_EXT(v) \
104 ({ \
105 int __v = (v); \
106 \
107 if (__v & SENSOR_SCALE_SIGN) \
108 __v |= SENSOR_SCALE_EXTEND; \
109 __v; \
110 })
111
112 struct scmi_msg_sensor_axis_description_get {
113 __le32 id;
114 __le32 axis_desc_index;
115 };
116
117 struct scmi_msg_resp_sensor_axis_description {
118 __le32 num_axis_flags;
119 #define NUM_AXIS_RETURNED(x) FIELD_GET(GENMASK(5, 0), (x))
120 #define NUM_AXIS_REMAINING(x) FIELD_GET(GENMASK(31, 26), (x))
121 struct scmi_axis_descriptor {
122 __le32 id;
123 __le32 attributes_low;
124 #define SUPPORTS_EXTENDED_AXIS_NAMES(x) FIELD_GET(BIT(9), (x))
125 __le32 attributes_high;
126 u8 name[SCMI_SHORT_NAME_MAX_SIZE];
127 __le32 resolution;
128 struct scmi_msg_resp_attrs attrs;
129 } desc[];
130 };
131
132 struct scmi_msg_resp_sensor_axis_names_description {
133 __le32 num_axis_flags;
134 struct scmi_sensor_axis_name_descriptor {
135 __le32 axis_id;
136 u8 name[SCMI_MAX_STR_SIZE];
137 } desc[];
138 };
139
140 /* Base scmi_axis_descriptor size excluding extended attrs after name */
141 #define SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ 28
142
143 struct scmi_msg_sensor_list_update_intervals {
144 __le32 id;
145 __le32 index;
146 };
147
148 struct scmi_msg_resp_sensor_list_update_intervals {
149 __le32 num_intervals_flags;
150 #define NUM_INTERVALS_RETURNED(x) FIELD_GET(GENMASK(11, 0), (x))
151 #define SEGMENTED_INTVL_FORMAT(x) FIELD_GET(BIT(12), (x))
152 #define NUM_INTERVALS_REMAINING(x) FIELD_GET(GENMASK(31, 16), (x))
153 __le32 intervals[];
154 };
155
156 struct scmi_msg_sensor_request_notify {
157 __le32 id;
158 __le32 event_control;
159 #define SENSOR_NOTIFY_ALL BIT(0)
160 };
161
162 struct scmi_msg_set_sensor_trip_point {
163 __le32 id;
164 __le32 event_control;
165 #define SENSOR_TP_EVENT_MASK (0x3)
166 #define SENSOR_TP_DISABLED 0x0
167 #define SENSOR_TP_POSITIVE 0x1
168 #define SENSOR_TP_NEGATIVE 0x2
169 #define SENSOR_TP_BOTH 0x3
170 #define SENSOR_TP_ID(x) (((x) & 0xff) << 4)
171 __le32 value_low;
172 __le32 value_high;
173 };
174
175 struct scmi_msg_sensor_config_set {
176 __le32 id;
177 __le32 sensor_config;
178 };
179
180 struct scmi_msg_sensor_reading_get {
181 __le32 id;
182 __le32 flags;
183 #define SENSOR_READ_ASYNC BIT(0)
184 };
185
186 struct scmi_resp_sensor_reading_complete {
187 __le32 id;
188 __le32 readings_low;
189 __le32 readings_high;
190 };
191
192 struct scmi_sensor_reading_resp {
193 __le32 sensor_value_low;
194 __le32 sensor_value_high;
195 __le32 timestamp_low;
196 __le32 timestamp_high;
197 };
198
199 struct scmi_resp_sensor_reading_complete_v3 {
200 __le32 id;
201 struct scmi_sensor_reading_resp readings[];
202 };
203
204 struct scmi_sensor_trip_notify_payld {
205 __le32 agent_id;
206 __le32 sensor_id;
207 __le32 trip_point_desc;
208 };
209
210 struct scmi_sensor_update_notify_payld {
211 __le32 agent_id;
212 __le32 sensor_id;
213 struct scmi_sensor_reading_resp readings[];
214 };
215
216 struct sensors_info {
217 u32 version;
218 bool notify_trip_point_cmd;
219 bool notify_continuos_update_cmd;
220 int num_sensors;
221 int max_requests;
222 u64 reg_addr;
223 u32 reg_size;
224 struct scmi_sensor_info *sensors;
225 };
226
scmi_sensor_attributes_get(const struct scmi_protocol_handle * ph,struct sensors_info * si)227 static int scmi_sensor_attributes_get(const struct scmi_protocol_handle *ph,
228 struct sensors_info *si)
229 {
230 int ret;
231 struct scmi_xfer *t;
232 struct scmi_msg_resp_sensor_attributes *attr;
233
234 ret = ph->xops->xfer_get_init(ph, PROTOCOL_ATTRIBUTES,
235 0, sizeof(*attr), &t);
236 if (ret)
237 return ret;
238
239 attr = t->rx.buf;
240
241 ret = ph->xops->do_xfer(ph, t);
242 if (!ret) {
243 si->num_sensors = le16_to_cpu(attr->num_sensors);
244 si->max_requests = attr->max_requests;
245 si->reg_addr = le32_to_cpu(attr->reg_addr_low) |
246 (u64)le32_to_cpu(attr->reg_addr_high) << 32;
247 si->reg_size = le32_to_cpu(attr->reg_size);
248 }
249
250 ph->xops->xfer_put(ph, t);
251
252 if (!ret) {
253 if (!ph->hops->protocol_msg_check(ph,
254 SENSOR_TRIP_POINT_NOTIFY, NULL))
255 si->notify_trip_point_cmd = true;
256
257 if (!ph->hops->protocol_msg_check(ph,
258 SENSOR_CONTINUOUS_UPDATE_NOTIFY,
259 NULL))
260 si->notify_continuos_update_cmd = true;
261 }
262
263 return ret;
264 }
265
scmi_parse_range_attrs(struct scmi_range_attrs * out,const struct scmi_msg_resp_attrs * in)266 static inline void scmi_parse_range_attrs(struct scmi_range_attrs *out,
267 const struct scmi_msg_resp_attrs *in)
268 {
269 out->min_range = get_unaligned_le64((void *)&in->min_range_low);
270 out->max_range = get_unaligned_le64((void *)&in->max_range_low);
271 }
272
273 struct scmi_sens_ipriv {
274 void *priv;
275 struct device *dev;
276 };
277
iter_intervals_prepare_message(void * message,unsigned int desc_index,const void * p)278 static void iter_intervals_prepare_message(void *message,
279 unsigned int desc_index,
280 const void *p)
281 {
282 struct scmi_msg_sensor_list_update_intervals *msg = message;
283 const struct scmi_sensor_info *s;
284
285 s = ((const struct scmi_sens_ipriv *)p)->priv;
286 /* Set the number of sensors to be skipped/already read */
287 msg->id = cpu_to_le32(s->id);
288 msg->index = cpu_to_le32(desc_index);
289 }
290
iter_intervals_update_state(struct scmi_iterator_state * st,const void * response,void * p)291 static int iter_intervals_update_state(struct scmi_iterator_state *st,
292 const void *response, void *p)
293 {
294 u32 flags;
295 struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
296 struct device *dev = ((struct scmi_sens_ipriv *)p)->dev;
297 const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
298
299 flags = le32_to_cpu(r->num_intervals_flags);
300 st->num_returned = NUM_INTERVALS_RETURNED(flags);
301 st->num_remaining = NUM_INTERVALS_REMAINING(flags);
302
303 /*
304 * Max intervals is not declared previously anywhere so we
305 * assume it's returned+remaining on first call.
306 */
307 if (!st->max_resources) {
308 s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags);
309 s->intervals.count = st->num_returned + st->num_remaining;
310 /* segmented intervals are reported in one triplet */
311 if (s->intervals.segmented &&
312 (st->num_remaining || st->num_returned != 3)) {
313 dev_err(dev,
314 "Sensor ID:%d advertises an invalid segmented interval (%d)\n",
315 s->id, s->intervals.count);
316 s->intervals.segmented = false;
317 s->intervals.count = 0;
318 return -EINVAL;
319 }
320 /* Direct allocation when exceeding pre-allocated */
321 if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) {
322 s->intervals.desc =
323 devm_kcalloc(dev,
324 s->intervals.count,
325 sizeof(*s->intervals.desc),
326 GFP_KERNEL);
327 if (!s->intervals.desc) {
328 s->intervals.segmented = false;
329 s->intervals.count = 0;
330 return -ENOMEM;
331 }
332 }
333
334 st->max_resources = s->intervals.count;
335 }
336
337 return 0;
338 }
339
340 static int
iter_intervals_process_response(const struct scmi_protocol_handle * ph,const void * response,struct scmi_iterator_state * st,void * p)341 iter_intervals_process_response(const struct scmi_protocol_handle *ph,
342 const void *response,
343 struct scmi_iterator_state *st, void *p)
344 {
345 const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
346 struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
347
348 s->intervals.desc[st->desc_index + st->loop_idx] =
349 le32_to_cpu(r->intervals[st->loop_idx]);
350
351 return 0;
352 }
353
scmi_sensor_update_intervals(const struct scmi_protocol_handle * ph,struct scmi_sensor_info * s)354 static int scmi_sensor_update_intervals(const struct scmi_protocol_handle *ph,
355 struct scmi_sensor_info *s)
356 {
357 void *iter;
358 struct scmi_iterator_ops ops = {
359 .prepare_message = iter_intervals_prepare_message,
360 .update_state = iter_intervals_update_state,
361 .process_response = iter_intervals_process_response,
362 };
363 struct scmi_sens_ipriv upriv = {
364 .priv = s,
365 .dev = ph->dev,
366 };
367
368 iter = ph->hops->iter_response_init(ph, &ops, s->intervals.count,
369 SENSOR_LIST_UPDATE_INTERVALS,
370 sizeof(struct scmi_msg_sensor_list_update_intervals),
371 &upriv);
372 if (IS_ERR(iter))
373 return PTR_ERR(iter);
374
375 return ph->hops->iter_response_run(iter);
376 }
377
378 struct scmi_apriv {
379 bool any_axes_support_extended_names;
380 struct scmi_sensor_info *s;
381 };
382
iter_axes_desc_prepare_message(void * message,const unsigned int desc_index,const void * priv)383 static void iter_axes_desc_prepare_message(void *message,
384 const unsigned int desc_index,
385 const void *priv)
386 {
387 struct scmi_msg_sensor_axis_description_get *msg = message;
388 const struct scmi_apriv *apriv = priv;
389
390 /* Set the number of sensors to be skipped/already read */
391 msg->id = cpu_to_le32(apriv->s->id);
392 msg->axis_desc_index = cpu_to_le32(desc_index);
393 }
394
395 static int
iter_axes_desc_update_state(struct scmi_iterator_state * st,const void * response,void * priv)396 iter_axes_desc_update_state(struct scmi_iterator_state *st,
397 const void *response, void *priv)
398 {
399 u32 flags;
400 const struct scmi_msg_resp_sensor_axis_description *r = response;
401
402 flags = le32_to_cpu(r->num_axis_flags);
403 st->num_returned = NUM_AXIS_RETURNED(flags);
404 st->num_remaining = NUM_AXIS_REMAINING(flags);
405 st->priv = (void *)&r->desc[0];
406
407 return 0;
408 }
409
410 static int
iter_axes_desc_process_response(const struct scmi_protocol_handle * ph,const void * response,struct scmi_iterator_state * st,void * priv)411 iter_axes_desc_process_response(const struct scmi_protocol_handle *ph,
412 const void *response,
413 struct scmi_iterator_state *st, void *priv)
414 {
415 u32 attrh, attrl;
416 struct scmi_sensor_axis_info *a;
417 size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ;
418 struct scmi_apriv *apriv = priv;
419 const struct scmi_axis_descriptor *adesc = st->priv;
420
421 attrl = le32_to_cpu(adesc->attributes_low);
422 if (SUPPORTS_EXTENDED_AXIS_NAMES(attrl))
423 apriv->any_axes_support_extended_names = true;
424
425 a = &apriv->s->axis[st->desc_index + st->loop_idx];
426 a->id = le32_to_cpu(adesc->id);
427 a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
428
429 attrh = le32_to_cpu(adesc->attributes_high);
430 a->scale = S32_EXT(SENSOR_SCALE(attrh));
431 a->type = SENSOR_TYPE(attrh);
432 strscpy(a->name, adesc->name, SCMI_SHORT_NAME_MAX_SIZE);
433
434 if (a->extended_attrs) {
435 unsigned int ares = le32_to_cpu(adesc->resolution);
436
437 a->resolution = SENSOR_RES(ares);
438 a->exponent = S32_EXT(SENSOR_RES_EXP(ares));
439 dsize += sizeof(adesc->resolution);
440
441 scmi_parse_range_attrs(&a->attrs, &adesc->attrs);
442 dsize += sizeof(adesc->attrs);
443 }
444 st->priv = ((u8 *)adesc + dsize);
445
446 return 0;
447 }
448
449 static int
iter_axes_extended_name_update_state(struct scmi_iterator_state * st,const void * response,void * priv)450 iter_axes_extended_name_update_state(struct scmi_iterator_state *st,
451 const void *response, void *priv)
452 {
453 u32 flags;
454 const struct scmi_msg_resp_sensor_axis_names_description *r = response;
455
456 flags = le32_to_cpu(r->num_axis_flags);
457 st->num_returned = NUM_AXIS_RETURNED(flags);
458 st->num_remaining = NUM_AXIS_REMAINING(flags);
459 st->priv = (void *)&r->desc[0];
460
461 return 0;
462 }
463
464 static int
iter_axes_extended_name_process_response(const struct scmi_protocol_handle * ph,const void * response,struct scmi_iterator_state * st,void * priv)465 iter_axes_extended_name_process_response(const struct scmi_protocol_handle *ph,
466 const void *response,
467 struct scmi_iterator_state *st,
468 void *priv)
469 {
470 struct scmi_sensor_axis_info *a;
471 const struct scmi_apriv *apriv = priv;
472 struct scmi_sensor_axis_name_descriptor *adesc = st->priv;
473 u32 axis_id = le32_to_cpu(adesc->axis_id);
474
475 if (axis_id >= st->max_resources)
476 return -EPROTO;
477
478 /*
479 * Pick the corresponding descriptor based on the axis_id embedded
480 * in the reply since the list of axes supporting extended names
481 * can be a subset of all the axes.
482 */
483 a = &apriv->s->axis[axis_id];
484 strscpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);
485 st->priv = ++adesc;
486
487 return 0;
488 }
489
490 static int
scmi_sensor_axis_extended_names_get(const struct scmi_protocol_handle * ph,struct scmi_sensor_info * s)491 scmi_sensor_axis_extended_names_get(const struct scmi_protocol_handle *ph,
492 struct scmi_sensor_info *s)
493 {
494 int ret;
495 void *iter;
496 struct scmi_iterator_ops ops = {
497 .prepare_message = iter_axes_desc_prepare_message,
498 .update_state = iter_axes_extended_name_update_state,
499 .process_response = iter_axes_extended_name_process_response,
500 };
501 struct scmi_apriv apriv = {
502 .any_axes_support_extended_names = false,
503 .s = s,
504 };
505
506 iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
507 SENSOR_AXIS_NAME_GET,
508 sizeof(struct scmi_msg_sensor_axis_description_get),
509 &apriv);
510 if (IS_ERR(iter))
511 return PTR_ERR(iter);
512
513 /*
514 * Do not cause whole protocol initialization failure when failing to
515 * get extended names for axes.
516 */
517 ret = ph->hops->iter_response_run(iter);
518 if (ret)
519 dev_warn(ph->dev,
520 "Failed to get axes extended names for %s (ret:%d).\n",
521 s->name, ret);
522
523 return 0;
524 }
525
scmi_sensor_axis_description(const struct scmi_protocol_handle * ph,struct scmi_sensor_info * s,u32 version)526 static int scmi_sensor_axis_description(const struct scmi_protocol_handle *ph,
527 struct scmi_sensor_info *s,
528 u32 version)
529 {
530 int ret;
531 void *iter;
532 struct scmi_iterator_ops ops = {
533 .prepare_message = iter_axes_desc_prepare_message,
534 .update_state = iter_axes_desc_update_state,
535 .process_response = iter_axes_desc_process_response,
536 };
537 struct scmi_apriv apriv = {
538 .any_axes_support_extended_names = false,
539 .s = s,
540 };
541
542 s->axis = devm_kcalloc(ph->dev, s->num_axis,
543 sizeof(*s->axis), GFP_KERNEL);
544 if (!s->axis)
545 return -ENOMEM;
546
547 iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
548 SENSOR_AXIS_DESCRIPTION_GET,
549 sizeof(struct scmi_msg_sensor_axis_description_get),
550 &apriv);
551 if (IS_ERR(iter))
552 return PTR_ERR(iter);
553
554 ret = ph->hops->iter_response_run(iter);
555 if (ret)
556 return ret;
557
558 if (PROTOCOL_REV_MAJOR(version) >= 0x3 &&
559 apriv.any_axes_support_extended_names)
560 ret = scmi_sensor_axis_extended_names_get(ph, s);
561
562 return ret;
563 }
564
iter_sens_descr_prepare_message(void * message,unsigned int desc_index,const void * priv)565 static void iter_sens_descr_prepare_message(void *message,
566 unsigned int desc_index,
567 const void *priv)
568 {
569 struct scmi_msg_sensor_description *msg = message;
570
571 msg->desc_index = cpu_to_le32(desc_index);
572 }
573
iter_sens_descr_update_state(struct scmi_iterator_state * st,const void * response,void * priv)574 static int iter_sens_descr_update_state(struct scmi_iterator_state *st,
575 const void *response, void *priv)
576 {
577 const struct scmi_msg_resp_sensor_description *r = response;
578
579 st->num_returned = le16_to_cpu(r->num_returned);
580 st->num_remaining = le16_to_cpu(r->num_remaining);
581 st->priv = (void *)&r->desc[0];
582
583 return 0;
584 }
585
586 static int
iter_sens_descr_process_response(const struct scmi_protocol_handle * ph,const void * response,struct scmi_iterator_state * st,void * priv)587 iter_sens_descr_process_response(const struct scmi_protocol_handle *ph,
588 const void *response,
589 struct scmi_iterator_state *st, void *priv)
590
591 {
592 int ret = 0;
593 u32 attrh, attrl;
594 size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ;
595 struct scmi_sensor_info *s;
596 struct sensors_info *si = priv;
597 const struct scmi_sensor_descriptor *sdesc = st->priv;
598
599 s = &si->sensors[st->desc_index + st->loop_idx];
600 s->id = le32_to_cpu(sdesc->id);
601
602 attrl = le32_to_cpu(sdesc->attributes_low);
603 /* common bitfields parsing */
604 s->async = SUPPORTS_ASYNC_READ(attrl);
605 s->num_trip_points = NUM_TRIP_POINTS(attrl);
606 /**
607 * only SCMIv3.0 specific bitfield below.
608 * Such bitfields are assumed to be zeroed on non
609 * relevant fw versions...assuming fw not buggy !
610 */
611 if (si->notify_continuos_update_cmd)
612 s->update = SUPPORTS_UPDATE_NOTIFY(attrl);
613 s->timestamped = SUPPORTS_TIMESTAMP(attrl);
614 if (s->timestamped)
615 s->tstamp_scale = S32_EXT(SENSOR_TSTAMP_EXP(attrl));
616 s->extended_scalar_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
617
618 attrh = le32_to_cpu(sdesc->attributes_high);
619 /* common bitfields parsing */
620 s->scale = S32_EXT(SENSOR_SCALE(attrh));
621 s->type = SENSOR_TYPE(attrh);
622 /* Use pre-allocated pool wherever possible */
623 s->intervals.desc = s->intervals.prealloc_pool;
624 if (si->version == SCMIv2_SENSOR_PROTOCOL) {
625 s->intervals.segmented = false;
626 s->intervals.count = 1;
627 /*
628 * Convert SCMIv2.0 update interval format to
629 * SCMIv3.0 to be used as the common exposed
630 * descriptor, accessible via common macros.
631 */
632 s->intervals.desc[0] = (SENSOR_UPDATE_BASE(attrh) << 5) |
633 SENSOR_UPDATE_SCALE(attrh);
634 } else {
635 /*
636 * From SCMIv3.0 update intervals are retrieved
637 * via a dedicated (optional) command.
638 * Since the command is optional, on error carry
639 * on without any update interval.
640 */
641 if (scmi_sensor_update_intervals(ph, s))
642 dev_dbg(ph->dev,
643 "Update Intervals not available for sensor ID:%d\n",
644 s->id);
645 }
646 /**
647 * only > SCMIv2.0 specific bitfield below.
648 * Such bitfields are assumed to be zeroed on non
649 * relevant fw versions...assuming fw not buggy !
650 */
651 s->num_axis = min_t(unsigned int,
652 SUPPORTS_AXIS(attrh) ?
653 SENSOR_AXIS_NUMBER(attrh) : 0,
654 SCMI_MAX_NUM_SENSOR_AXIS);
655 strscpy(s->name, sdesc->name, SCMI_SHORT_NAME_MAX_SIZE);
656
657 /*
658 * If supported overwrite short name with the extended
659 * one; on error just carry on and use already provided
660 * short name.
661 */
662 if (PROTOCOL_REV_MAJOR(si->version) >= 0x3 &&
663 SUPPORTS_EXTENDED_NAMES(attrl))
664 ph->hops->extended_name_get(ph, SENSOR_NAME_GET, s->id,
665 NULL, s->name, SCMI_MAX_STR_SIZE);
666
667 if (s->extended_scalar_attrs) {
668 s->sensor_power = le32_to_cpu(sdesc->power);
669 dsize += sizeof(sdesc->power);
670
671 /* Only for sensors reporting scalar values */
672 if (s->num_axis == 0) {
673 unsigned int sres = le32_to_cpu(sdesc->resolution);
674
675 s->resolution = SENSOR_RES(sres);
676 s->exponent = S32_EXT(SENSOR_RES_EXP(sres));
677 dsize += sizeof(sdesc->resolution);
678
679 scmi_parse_range_attrs(&s->scalar_attrs,
680 &sdesc->scalar_attrs);
681 dsize += sizeof(sdesc->scalar_attrs);
682 }
683 }
684
685 if (s->num_axis > 0)
686 ret = scmi_sensor_axis_description(ph, s, si->version);
687
688 st->priv = ((u8 *)sdesc + dsize);
689
690 return ret;
691 }
692
scmi_sensor_description_get(const struct scmi_protocol_handle * ph,struct sensors_info * si)693 static int scmi_sensor_description_get(const struct scmi_protocol_handle *ph,
694 struct sensors_info *si)
695 {
696 void *iter;
697 struct scmi_iterator_ops ops = {
698 .prepare_message = iter_sens_descr_prepare_message,
699 .update_state = iter_sens_descr_update_state,
700 .process_response = iter_sens_descr_process_response,
701 };
702
703 iter = ph->hops->iter_response_init(ph, &ops, si->num_sensors,
704 SENSOR_DESCRIPTION_GET,
705 sizeof(__le32), si);
706 if (IS_ERR(iter))
707 return PTR_ERR(iter);
708
709 return ph->hops->iter_response_run(iter);
710 }
711
712 static inline int
scmi_sensor_request_notify(const struct scmi_protocol_handle * ph,u32 sensor_id,u8 message_id,bool enable)713 scmi_sensor_request_notify(const struct scmi_protocol_handle *ph, u32 sensor_id,
714 u8 message_id, bool enable)
715 {
716 int ret;
717 u32 evt_cntl = enable ? SENSOR_NOTIFY_ALL : 0;
718 struct scmi_xfer *t;
719 struct scmi_msg_sensor_request_notify *cfg;
720
721 ret = ph->xops->xfer_get_init(ph, message_id, sizeof(*cfg), 0, &t);
722 if (ret)
723 return ret;
724
725 cfg = t->tx.buf;
726 cfg->id = cpu_to_le32(sensor_id);
727 cfg->event_control = cpu_to_le32(evt_cntl);
728
729 ret = ph->xops->do_xfer(ph, t);
730
731 ph->xops->xfer_put(ph, t);
732 return ret;
733 }
734
scmi_sensor_trip_point_notify(const struct scmi_protocol_handle * ph,u32 sensor_id,bool enable)735 static int scmi_sensor_trip_point_notify(const struct scmi_protocol_handle *ph,
736 u32 sensor_id, bool enable)
737 {
738 return scmi_sensor_request_notify(ph, sensor_id,
739 SENSOR_TRIP_POINT_NOTIFY,
740 enable);
741 }
742
743 static int
scmi_sensor_continuous_update_notify(const struct scmi_protocol_handle * ph,u32 sensor_id,bool enable)744 scmi_sensor_continuous_update_notify(const struct scmi_protocol_handle *ph,
745 u32 sensor_id, bool enable)
746 {
747 return scmi_sensor_request_notify(ph, sensor_id,
748 SENSOR_CONTINUOUS_UPDATE_NOTIFY,
749 enable);
750 }
751
752 static int
scmi_sensor_trip_point_config(const struct scmi_protocol_handle * ph,u32 sensor_id,u8 trip_id,u64 trip_value)753 scmi_sensor_trip_point_config(const struct scmi_protocol_handle *ph,
754 u32 sensor_id, u8 trip_id, u64 trip_value)
755 {
756 int ret;
757 u32 evt_cntl = SENSOR_TP_BOTH;
758 struct scmi_xfer *t;
759 struct scmi_msg_set_sensor_trip_point *trip;
760
761 ret = ph->xops->xfer_get_init(ph, SENSOR_TRIP_POINT_CONFIG,
762 sizeof(*trip), 0, &t);
763 if (ret)
764 return ret;
765
766 trip = t->tx.buf;
767 trip->id = cpu_to_le32(sensor_id);
768 trip->event_control = cpu_to_le32(evt_cntl | SENSOR_TP_ID(trip_id));
769 trip->value_low = cpu_to_le32(trip_value & 0xffffffff);
770 trip->value_high = cpu_to_le32(trip_value >> 32);
771
772 ret = ph->xops->do_xfer(ph, t);
773
774 ph->xops->xfer_put(ph, t);
775 return ret;
776 }
777
scmi_sensor_config_get(const struct scmi_protocol_handle * ph,u32 sensor_id,u32 * sensor_config)778 static int scmi_sensor_config_get(const struct scmi_protocol_handle *ph,
779 u32 sensor_id, u32 *sensor_config)
780 {
781 int ret;
782 struct scmi_xfer *t;
783 struct sensors_info *si = ph->get_priv(ph);
784
785 if (sensor_id >= si->num_sensors)
786 return -EINVAL;
787
788 ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_GET,
789 sizeof(__le32), sizeof(__le32), &t);
790 if (ret)
791 return ret;
792
793 put_unaligned_le32(sensor_id, t->tx.buf);
794 ret = ph->xops->do_xfer(ph, t);
795 if (!ret) {
796 struct scmi_sensor_info *s = si->sensors + sensor_id;
797
798 *sensor_config = get_unaligned_le64(t->rx.buf);
799 s->sensor_config = *sensor_config;
800 }
801
802 ph->xops->xfer_put(ph, t);
803 return ret;
804 }
805
scmi_sensor_config_set(const struct scmi_protocol_handle * ph,u32 sensor_id,u32 sensor_config)806 static int scmi_sensor_config_set(const struct scmi_protocol_handle *ph,
807 u32 sensor_id, u32 sensor_config)
808 {
809 int ret;
810 struct scmi_xfer *t;
811 struct scmi_msg_sensor_config_set *msg;
812 struct sensors_info *si = ph->get_priv(ph);
813
814 if (sensor_id >= si->num_sensors)
815 return -EINVAL;
816
817 ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_SET,
818 sizeof(*msg), 0, &t);
819 if (ret)
820 return ret;
821
822 msg = t->tx.buf;
823 msg->id = cpu_to_le32(sensor_id);
824 msg->sensor_config = cpu_to_le32(sensor_config);
825
826 ret = ph->xops->do_xfer(ph, t);
827 if (!ret) {
828 struct scmi_sensor_info *s = si->sensors + sensor_id;
829
830 s->sensor_config = sensor_config;
831 }
832
833 ph->xops->xfer_put(ph, t);
834 return ret;
835 }
836
837 /**
838 * scmi_sensor_reading_get - Read scalar sensor value
839 * @ph: Protocol handle
840 * @sensor_id: Sensor ID
841 * @value: The 64bit value sensor reading
842 *
843 * This function returns a single 64 bit reading value representing the sensor
844 * value; if the platform SCMI Protocol implementation and the sensor support
845 * multiple axis and timestamped-reads, this just returns the first axis while
846 * dropping the timestamp value.
847 * Use instead the @scmi_sensor_reading_get_timestamped to retrieve the array of
848 * timestamped multi-axis values.
849 *
850 * Return: 0 on Success
851 */
scmi_sensor_reading_get(const struct scmi_protocol_handle * ph,u32 sensor_id,u64 * value)852 static int scmi_sensor_reading_get(const struct scmi_protocol_handle *ph,
853 u32 sensor_id, u64 *value)
854 {
855 int ret;
856 struct scmi_xfer *t;
857 struct scmi_msg_sensor_reading_get *sensor;
858 struct scmi_sensor_info *s;
859 struct sensors_info *si = ph->get_priv(ph);
860
861 if (sensor_id >= si->num_sensors)
862 return -EINVAL;
863
864 ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET,
865 sizeof(*sensor), 0, &t);
866 if (ret)
867 return ret;
868
869 sensor = t->tx.buf;
870 sensor->id = cpu_to_le32(sensor_id);
871 s = si->sensors + sensor_id;
872 if (s->async) {
873 sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
874 ret = ph->xops->do_xfer_with_response(ph, t);
875 if (!ret) {
876 struct scmi_resp_sensor_reading_complete *resp;
877
878 resp = t->rx.buf;
879 if (le32_to_cpu(resp->id) == sensor_id)
880 *value =
881 get_unaligned_le64(&resp->readings_low);
882 else
883 ret = -EPROTO;
884 }
885 } else {
886 sensor->flags = cpu_to_le32(0);
887 ret = ph->xops->do_xfer(ph, t);
888 if (!ret)
889 *value = get_unaligned_le64(t->rx.buf);
890 }
891
892 ph->xops->xfer_put(ph, t);
893 return ret;
894 }
895
896 static inline void
scmi_parse_sensor_readings(struct scmi_sensor_reading * out,const struct scmi_sensor_reading_resp * in)897 scmi_parse_sensor_readings(struct scmi_sensor_reading *out,
898 const struct scmi_sensor_reading_resp *in)
899 {
900 out->value = get_unaligned_le64((void *)&in->sensor_value_low);
901 out->timestamp = get_unaligned_le64((void *)&in->timestamp_low);
902 }
903
904 /**
905 * scmi_sensor_reading_get_timestamped - Read multiple-axis timestamped values
906 * @ph: Protocol handle
907 * @sensor_id: Sensor ID
908 * @count: The length of the provided @readings array
909 * @readings: An array of elements each representing a timestamped per-axis
910 * reading of type @struct scmi_sensor_reading.
911 * Returned readings are ordered as the @axis descriptors array
912 * included in @struct scmi_sensor_info and the max number of
913 * returned elements is min(@count, @num_axis); ideally the provided
914 * array should be of length @count equal to @num_axis.
915 *
916 * Return: 0 on Success
917 */
918 static int
scmi_sensor_reading_get_timestamped(const struct scmi_protocol_handle * ph,u32 sensor_id,u8 count,struct scmi_sensor_reading * readings)919 scmi_sensor_reading_get_timestamped(const struct scmi_protocol_handle *ph,
920 u32 sensor_id, u8 count,
921 struct scmi_sensor_reading *readings)
922 {
923 int ret;
924 struct scmi_xfer *t;
925 struct scmi_msg_sensor_reading_get *sensor;
926 struct scmi_sensor_info *s;
927 struct sensors_info *si = ph->get_priv(ph);
928
929 if (sensor_id >= si->num_sensors)
930 return -EINVAL;
931
932 s = si->sensors + sensor_id;
933 if (!count || !readings ||
934 (!s->num_axis && count > 1) || (s->num_axis && count > s->num_axis))
935 return -EINVAL;
936
937 ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET,
938 sizeof(*sensor), 0, &t);
939 if (ret)
940 return ret;
941
942 sensor = t->tx.buf;
943 sensor->id = cpu_to_le32(sensor_id);
944 if (s->async) {
945 sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
946 ret = ph->xops->do_xfer_with_response(ph, t);
947 if (!ret) {
948 int i;
949 struct scmi_resp_sensor_reading_complete_v3 *resp;
950
951 resp = t->rx.buf;
952 /* Retrieve only the number of requested axis anyway */
953 if (le32_to_cpu(resp->id) == sensor_id)
954 for (i = 0; i < count; i++)
955 scmi_parse_sensor_readings(&readings[i],
956 &resp->readings[i]);
957 else
958 ret = -EPROTO;
959 }
960 } else {
961 sensor->flags = cpu_to_le32(0);
962 ret = ph->xops->do_xfer(ph, t);
963 if (!ret) {
964 int i;
965 struct scmi_sensor_reading_resp *resp_readings;
966
967 resp_readings = t->rx.buf;
968 for (i = 0; i < count; i++)
969 scmi_parse_sensor_readings(&readings[i],
970 &resp_readings[i]);
971 }
972 }
973
974 ph->xops->xfer_put(ph, t);
975 return ret;
976 }
977
978 static const struct scmi_sensor_info *
scmi_sensor_info_get(const struct scmi_protocol_handle * ph,u32 sensor_id)979 scmi_sensor_info_get(const struct scmi_protocol_handle *ph, u32 sensor_id)
980 {
981 struct sensors_info *si = ph->get_priv(ph);
982
983 if (sensor_id >= si->num_sensors)
984 return NULL;
985
986 return si->sensors + sensor_id;
987 }
988
scmi_sensor_count_get(const struct scmi_protocol_handle * ph)989 static int scmi_sensor_count_get(const struct scmi_protocol_handle *ph)
990 {
991 struct sensors_info *si = ph->get_priv(ph);
992
993 return si->num_sensors;
994 }
995
996 static const struct scmi_sensor_proto_ops sensor_proto_ops = {
997 .count_get = scmi_sensor_count_get,
998 .info_get = scmi_sensor_info_get,
999 .trip_point_config = scmi_sensor_trip_point_config,
1000 .reading_get = scmi_sensor_reading_get,
1001 .reading_get_timestamped = scmi_sensor_reading_get_timestamped,
1002 .config_get = scmi_sensor_config_get,
1003 .config_set = scmi_sensor_config_set,
1004 };
1005
scmi_sensor_notify_supported(const struct scmi_protocol_handle * ph,u8 evt_id,u32 src_id)1006 static bool scmi_sensor_notify_supported(const struct scmi_protocol_handle *ph,
1007 u8 evt_id, u32 src_id)
1008 {
1009 bool supported = false;
1010 const struct scmi_sensor_info *s;
1011 struct sensors_info *sinfo = ph->get_priv(ph);
1012
1013 s = scmi_sensor_info_get(ph, src_id);
1014 if (!s)
1015 return false;
1016
1017 if (evt_id == SCMI_EVENT_SENSOR_TRIP_POINT_EVENT)
1018 supported = sinfo->notify_trip_point_cmd;
1019 else if (evt_id == SCMI_EVENT_SENSOR_UPDATE)
1020 supported = s->update;
1021
1022 return supported;
1023 }
1024
scmi_sensor_set_notify_enabled(const struct scmi_protocol_handle * ph,u8 evt_id,u32 src_id,bool enable)1025 static int scmi_sensor_set_notify_enabled(const struct scmi_protocol_handle *ph,
1026 u8 evt_id, u32 src_id, bool enable)
1027 {
1028 int ret;
1029
1030 switch (evt_id) {
1031 case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
1032 ret = scmi_sensor_trip_point_notify(ph, src_id, enable);
1033 break;
1034 case SCMI_EVENT_SENSOR_UPDATE:
1035 ret = scmi_sensor_continuous_update_notify(ph, src_id, enable);
1036 break;
1037 default:
1038 ret = -EINVAL;
1039 break;
1040 }
1041
1042 if (ret)
1043 pr_debug("FAIL_ENABLED - evt[%X] dom[%d] - ret:%d\n",
1044 evt_id, src_id, ret);
1045
1046 return ret;
1047 }
1048
1049 static void *
scmi_sensor_fill_custom_report(const struct scmi_protocol_handle * ph,u8 evt_id,ktime_t timestamp,const void * payld,size_t payld_sz,void * report,u32 * src_id)1050 scmi_sensor_fill_custom_report(const struct scmi_protocol_handle *ph,
1051 u8 evt_id, ktime_t timestamp,
1052 const void *payld, size_t payld_sz,
1053 void *report, u32 *src_id)
1054 {
1055 void *rep = NULL;
1056
1057 switch (evt_id) {
1058 case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
1059 {
1060 const struct scmi_sensor_trip_notify_payld *p = payld;
1061 struct scmi_sensor_trip_point_report *r = report;
1062
1063 if (sizeof(*p) != payld_sz)
1064 break;
1065
1066 r->timestamp = timestamp;
1067 r->agent_id = le32_to_cpu(p->agent_id);
1068 r->sensor_id = le32_to_cpu(p->sensor_id);
1069 r->trip_point_desc = le32_to_cpu(p->trip_point_desc);
1070 *src_id = r->sensor_id;
1071 rep = r;
1072 break;
1073 }
1074 case SCMI_EVENT_SENSOR_UPDATE:
1075 {
1076 int i;
1077 struct scmi_sensor_info *s;
1078 const struct scmi_sensor_update_notify_payld *p = payld;
1079 struct scmi_sensor_update_report *r = report;
1080 struct sensors_info *sinfo = ph->get_priv(ph);
1081
1082 /* payld_sz is variable for this event */
1083 r->sensor_id = le32_to_cpu(p->sensor_id);
1084 if (r->sensor_id >= sinfo->num_sensors)
1085 break;
1086 r->timestamp = timestamp;
1087 r->agent_id = le32_to_cpu(p->agent_id);
1088 s = &sinfo->sensors[r->sensor_id];
1089 /*
1090 * The generated report r (@struct scmi_sensor_update_report)
1091 * was pre-allocated to contain up to SCMI_MAX_NUM_SENSOR_AXIS
1092 * readings: here it is filled with the effective @num_axis
1093 * readings defined for this sensor or 1 for scalar sensors.
1094 */
1095 r->readings_count = s->num_axis ?: 1;
1096 for (i = 0; i < r->readings_count; i++)
1097 scmi_parse_sensor_readings(&r->readings[i],
1098 &p->readings[i]);
1099 *src_id = r->sensor_id;
1100 rep = r;
1101 break;
1102 }
1103 default:
1104 break;
1105 }
1106
1107 return rep;
1108 }
1109
scmi_sensor_get_num_sources(const struct scmi_protocol_handle * ph)1110 static int scmi_sensor_get_num_sources(const struct scmi_protocol_handle *ph)
1111 {
1112 struct sensors_info *si = ph->get_priv(ph);
1113
1114 return si->num_sensors;
1115 }
1116
1117 static const struct scmi_event sensor_events[] = {
1118 {
1119 .id = SCMI_EVENT_SENSOR_TRIP_POINT_EVENT,
1120 .max_payld_sz = sizeof(struct scmi_sensor_trip_notify_payld),
1121 .max_report_sz = sizeof(struct scmi_sensor_trip_point_report),
1122 },
1123 {
1124 .id = SCMI_EVENT_SENSOR_UPDATE,
1125 .max_payld_sz =
1126 sizeof(struct scmi_sensor_update_notify_payld) +
1127 SCMI_MAX_NUM_SENSOR_AXIS *
1128 sizeof(struct scmi_sensor_reading_resp),
1129 .max_report_sz = sizeof(struct scmi_sensor_update_report) +
1130 SCMI_MAX_NUM_SENSOR_AXIS *
1131 sizeof(struct scmi_sensor_reading),
1132 },
1133 };
1134
1135 static const struct scmi_event_ops sensor_event_ops = {
1136 .is_notify_supported = scmi_sensor_notify_supported,
1137 .get_num_sources = scmi_sensor_get_num_sources,
1138 .set_notify_enabled = scmi_sensor_set_notify_enabled,
1139 .fill_custom_report = scmi_sensor_fill_custom_report,
1140 };
1141
1142 static const struct scmi_protocol_events sensor_protocol_events = {
1143 .queue_sz = SCMI_PROTO_QUEUE_SZ,
1144 .ops = &sensor_event_ops,
1145 .evts = sensor_events,
1146 .num_events = ARRAY_SIZE(sensor_events),
1147 };
1148
scmi_sensors_protocol_init(const struct scmi_protocol_handle * ph)1149 static int scmi_sensors_protocol_init(const struct scmi_protocol_handle *ph)
1150 {
1151 u32 version;
1152 int ret;
1153 struct sensors_info *sinfo;
1154
1155 ret = ph->xops->version_get(ph, &version);
1156 if (ret)
1157 return ret;
1158
1159 dev_dbg(ph->dev, "Sensor Version %d.%d\n",
1160 PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
1161
1162 sinfo = devm_kzalloc(ph->dev, sizeof(*sinfo), GFP_KERNEL);
1163 if (!sinfo)
1164 return -ENOMEM;
1165 sinfo->version = version;
1166
1167 ret = scmi_sensor_attributes_get(ph, sinfo);
1168 if (ret)
1169 return ret;
1170 sinfo->sensors = devm_kcalloc(ph->dev, sinfo->num_sensors,
1171 sizeof(*sinfo->sensors), GFP_KERNEL);
1172 if (!sinfo->sensors)
1173 return -ENOMEM;
1174
1175 ret = scmi_sensor_description_get(ph, sinfo);
1176 if (ret)
1177 return ret;
1178
1179 return ph->set_priv(ph, sinfo, version);
1180 }
1181
1182 static const struct scmi_protocol scmi_sensors = {
1183 .id = SCMI_PROTOCOL_SENSOR,
1184 .owner = THIS_MODULE,
1185 .instance_init = &scmi_sensors_protocol_init,
1186 .ops = &sensor_proto_ops,
1187 .events = &sensor_protocol_events,
1188 .supported_version = SCMI_PROTOCOL_SUPPORTED_VERSION,
1189 };
1190
1191 DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(sensors, scmi_sensors)
1192