1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * System Control and Management Interface (SCMI) Message Protocol driver
4 *
5 * SCMI Message Protocol is used between the System Control Processor(SCP)
6 * and the Application Processors(AP). The Message Handling Unit(MHU)
7 * provides a mechanism for inter-processor communication between SCP's
8 * Cortex M3 and AP.
9 *
10 * SCP offers control and management of the core/cluster power states,
11 * various power domain DVFS including the core/cluster, certain system
12 * clocks configuration, thermal sensors and many others.
13 *
14 * Copyright (C) 2018-2025 ARM Ltd.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/bitmap.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/idr.h>
24 #include <linux/io.h>
25 #include <linux/io-64-nonatomic-hi-lo.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/ktime.h>
29 #include <linux/hashtable.h>
30 #include <linux/list.h>
31 #include <linux/module.h>
32 #include <linux/of.h>
33 #include <linux/platform_device.h>
34 #include <linux/processor.h>
35 #include <linux/refcount.h>
36 #include <linux/slab.h>
37 #include <linux/xarray.h>
38
39 #include "common.h"
40 #include "notify.h"
41 #include "quirks.h"
42
43 #include "raw_mode.h"
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/scmi.h>
47
48 #define SCMI_VENDOR_MODULE_ALIAS_FMT "scmi-protocol-0x%02x-%s"
49
50 static DEFINE_IDA(scmi_id);
51
52 static DEFINE_XARRAY(scmi_protocols);
53
54 /* List of all SCMI devices active in system */
55 static LIST_HEAD(scmi_list);
56 /* Protection for the entire list */
57 static DEFINE_MUTEX(scmi_list_mutex);
58 /* Track the unique id for the transfers for debug & profiling purpose */
59 static atomic_t transfer_last_id;
60
61 static struct dentry *scmi_top_dentry;
62
63 /**
64 * struct scmi_xfers_info - Structure to manage transfer information
65 *
66 * @xfer_alloc_table: Bitmap table for allocated messages.
67 * Index of this bitmap table is also used for message
68 * sequence identifier.
69 * @xfer_lock: Protection for message allocation
70 * @max_msg: Maximum number of messages that can be pending
71 * @free_xfers: A free list for available to use xfers. It is initialized with
72 * a number of xfers equal to the maximum allowed in-flight
73 * messages.
74 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
75 * currently in-flight messages.
76 */
77 struct scmi_xfers_info {
78 unsigned long *xfer_alloc_table;
79 spinlock_t xfer_lock;
80 int max_msg;
81 struct hlist_head free_xfers;
82 DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
83 };
84
85 /**
86 * struct scmi_protocol_instance - Describe an initialized protocol instance.
87 * @handle: Reference to the SCMI handle associated to this protocol instance.
88 * @proto: A reference to the protocol descriptor.
89 * @gid: A reference for per-protocol devres management.
90 * @users: A refcount to track effective users of this protocol.
91 * @priv: Reference for optional protocol private data.
92 * @version: Protocol version supported by the platform as detected at runtime.
93 * @negotiated_version: When the platform supports a newer protocol version,
94 * the agent will try to negotiate with the platform the
95 * usage of the newest version known to it, since
96 * backward compatibility is NOT automatically assured.
97 * This field is NON-zero when a successful negotiation
98 * has completed.
99 * @ph: An embedded protocol handle that will be passed down to protocol
100 * initialization code to identify this instance.
101 *
102 * Each protocol is initialized independently once for each SCMI platform in
103 * which is defined by DT and implemented by the SCMI server fw.
104 */
105 struct scmi_protocol_instance {
106 const struct scmi_handle *handle;
107 const struct scmi_protocol *proto;
108 void *gid;
109 refcount_t users;
110 void *priv;
111 unsigned int version;
112 unsigned int negotiated_version;
113 struct scmi_protocol_handle ph;
114 };
115
116 #define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph)
117
118 /**
119 * struct scmi_info - Structure representing a SCMI instance
120 *
121 * @id: A sequence number starting from zero identifying this instance
122 * @dev: Device pointer
123 * @desc: SoC description for this instance
124 * @version: SCMI revision information containing protocol version,
125 * implementation version and (sub-)vendor identification.
126 * @handle: Instance of SCMI handle to send to clients
127 * @tx_minfo: Universal Transmit Message management info
128 * @rx_minfo: Universal Receive Message management info
129 * @tx_idr: IDR object to map protocol id to Tx channel info pointer
130 * @rx_idr: IDR object to map protocol id to Rx channel info pointer
131 * @protocols: IDR for protocols' instance descriptors initialized for
132 * this SCMI instance: populated on protocol's first attempted
133 * usage.
134 * @protocols_mtx: A mutex to protect protocols instances initialization.
135 * @protocols_imp: List of protocols implemented, currently maximum of
136 * scmi_revision_info.num_protocols elements allocated by the
137 * base protocol
138 * @active_protocols: IDR storing device_nodes for protocols actually defined
139 * in the DT and confirmed as implemented by fw.
140 * @notify_priv: Pointer to private data structure specific to notifications.
141 * @node: List head
142 * @users: Number of users of this instance
143 * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus
144 * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi
145 * bus
146 * @devreq_mtx: A mutex to serialize device creation for this SCMI instance
147 * @dbg: A pointer to debugfs related data (if any)
148 * @raw: An opaque reference handle used by SCMI Raw mode.
149 */
150 struct scmi_info {
151 int id;
152 struct device *dev;
153 const struct scmi_desc *desc;
154 struct scmi_revision_info version;
155 struct scmi_handle handle;
156 struct scmi_xfers_info tx_minfo;
157 struct scmi_xfers_info rx_minfo;
158 struct idr tx_idr;
159 struct idr rx_idr;
160 struct idr protocols;
161 /* Ensure mutual exclusive access to protocols instance array */
162 struct mutex protocols_mtx;
163 u8 *protocols_imp;
164 struct idr active_protocols;
165 void *notify_priv;
166 struct list_head node;
167 int users;
168 struct notifier_block bus_nb;
169 struct notifier_block dev_req_nb;
170 /* Serialize device creation process for this instance */
171 struct mutex devreq_mtx;
172 struct scmi_debug_info *dbg;
173 void *raw;
174 };
175
176 #define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle)
177 #define tx_minfo_to_scmi_info(h) container_of(h, struct scmi_info, tx_minfo)
178 #define bus_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, bus_nb)
179 #define req_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, dev_req_nb)
180
181 static void scmi_rx_callback(struct scmi_chan_info *cinfo,
182 u32 msg_hdr, void *priv);
183 static void scmi_bad_message_trace(struct scmi_chan_info *cinfo,
184 u32 msg_hdr, enum scmi_bad_msg err);
185
186 static struct scmi_transport_core_operations scmi_trans_core_ops = {
187 .bad_message_trace = scmi_bad_message_trace,
188 .rx_callback = scmi_rx_callback,
189 };
190
191 static unsigned long
scmi_vendor_protocol_signature(unsigned int protocol_id,char * vendor_id,char * sub_vendor_id,u32 impl_ver)192 scmi_vendor_protocol_signature(unsigned int protocol_id, char *vendor_id,
193 char *sub_vendor_id, u32 impl_ver)
194 {
195 char *signature, *p;
196 unsigned long hash = 0;
197
198 /* vendor_id/sub_vendor_id guaranteed <= SCMI_SHORT_NAME_MAX_SIZE */
199 signature = kasprintf(GFP_KERNEL, "%02X|%s|%s|0x%08X", protocol_id,
200 vendor_id ?: "", sub_vendor_id ?: "", impl_ver);
201 if (!signature)
202 return 0;
203
204 p = signature;
205 while (*p)
206 hash = partial_name_hash(tolower(*p++), hash);
207 hash = end_name_hash(hash);
208
209 kfree(signature);
210
211 return hash;
212 }
213
214 static unsigned long
scmi_protocol_key_calculate(int protocol_id,char * vendor_id,char * sub_vendor_id,u32 impl_ver)215 scmi_protocol_key_calculate(int protocol_id, char *vendor_id,
216 char *sub_vendor_id, u32 impl_ver)
217 {
218 if (protocol_id < SCMI_PROTOCOL_VENDOR_BASE)
219 return protocol_id;
220 else
221 return scmi_vendor_protocol_signature(protocol_id, vendor_id,
222 sub_vendor_id, impl_ver);
223 }
224
225 static const struct scmi_protocol *
__scmi_vendor_protocol_lookup(int protocol_id,char * vendor_id,char * sub_vendor_id,u32 impl_ver)226 __scmi_vendor_protocol_lookup(int protocol_id, char *vendor_id,
227 char *sub_vendor_id, u32 impl_ver)
228 {
229 unsigned long key;
230 struct scmi_protocol *proto = NULL;
231
232 key = scmi_protocol_key_calculate(protocol_id, vendor_id,
233 sub_vendor_id, impl_ver);
234 if (key)
235 proto = xa_load(&scmi_protocols, key);
236
237 return proto;
238 }
239
240 static const struct scmi_protocol *
scmi_vendor_protocol_lookup(int protocol_id,char * vendor_id,char * sub_vendor_id,u32 impl_ver)241 scmi_vendor_protocol_lookup(int protocol_id, char *vendor_id,
242 char *sub_vendor_id, u32 impl_ver)
243 {
244 const struct scmi_protocol *proto = NULL;
245
246 /* Searching for closest match ...*/
247 proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id,
248 sub_vendor_id, impl_ver);
249 if (proto)
250 return proto;
251
252 /* Any match just on vendor/sub_vendor ? */
253 if (impl_ver) {
254 proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id,
255 sub_vendor_id, 0);
256 if (proto)
257 return proto;
258 }
259
260 /* Any match just on the vendor ? */
261 if (sub_vendor_id)
262 proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id,
263 NULL, 0);
264 return proto;
265 }
266
267 static const struct scmi_protocol *
scmi_vendor_protocol_get(int protocol_id,struct scmi_revision_info * version)268 scmi_vendor_protocol_get(int protocol_id, struct scmi_revision_info *version)
269 {
270 const struct scmi_protocol *proto;
271
272 proto = scmi_vendor_protocol_lookup(protocol_id, version->vendor_id,
273 version->sub_vendor_id,
274 version->impl_ver);
275 if (!proto) {
276 int ret;
277
278 pr_debug("Looking for '" SCMI_VENDOR_MODULE_ALIAS_FMT "'\n",
279 protocol_id, version->vendor_id);
280
281 /* Note that vendor_id is mandatory for vendor protocols */
282 ret = request_module(SCMI_VENDOR_MODULE_ALIAS_FMT,
283 protocol_id, version->vendor_id);
284 if (ret) {
285 pr_warn("Problem loading module for protocol 0x%x\n",
286 protocol_id);
287 return NULL;
288 }
289
290 /* Lookup again, once modules loaded */
291 proto = scmi_vendor_protocol_lookup(protocol_id,
292 version->vendor_id,
293 version->sub_vendor_id,
294 version->impl_ver);
295 }
296
297 if (proto)
298 pr_info("Loaded SCMI Vendor Protocol 0x%x - %s %s %X\n",
299 protocol_id, proto->vendor_id ?: "",
300 proto->sub_vendor_id ?: "", proto->impl_ver);
301
302 return proto;
303 }
304
305 static const struct scmi_protocol *
scmi_protocol_get(int protocol_id,struct scmi_revision_info * version)306 scmi_protocol_get(int protocol_id, struct scmi_revision_info *version)
307 {
308 const struct scmi_protocol *proto = NULL;
309
310 if (protocol_id < SCMI_PROTOCOL_VENDOR_BASE)
311 proto = xa_load(&scmi_protocols, protocol_id);
312 else
313 proto = scmi_vendor_protocol_get(protocol_id, version);
314
315 if (!proto || !try_module_get(proto->owner)) {
316 pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id);
317 return NULL;
318 }
319
320 pr_debug("Found SCMI Protocol 0x%x\n", protocol_id);
321
322 return proto;
323 }
324
scmi_protocol_put(const struct scmi_protocol * proto)325 static void scmi_protocol_put(const struct scmi_protocol *proto)
326 {
327 if (proto)
328 module_put(proto->owner);
329 }
330
scmi_vendor_protocol_check(const struct scmi_protocol * proto)331 static int scmi_vendor_protocol_check(const struct scmi_protocol *proto)
332 {
333 if (!proto->vendor_id) {
334 pr_err("missing vendor_id for protocol 0x%x\n", proto->id);
335 return -EINVAL;
336 }
337
338 if (strlen(proto->vendor_id) >= SCMI_SHORT_NAME_MAX_SIZE) {
339 pr_err("malformed vendor_id for protocol 0x%x\n", proto->id);
340 return -EINVAL;
341 }
342
343 if (proto->sub_vendor_id &&
344 strlen(proto->sub_vendor_id) >= SCMI_SHORT_NAME_MAX_SIZE) {
345 pr_err("malformed sub_vendor_id for protocol 0x%x\n",
346 proto->id);
347 return -EINVAL;
348 }
349
350 return 0;
351 }
352
scmi_protocol_register(const struct scmi_protocol * proto)353 int scmi_protocol_register(const struct scmi_protocol *proto)
354 {
355 int ret;
356 unsigned long key;
357
358 if (!proto) {
359 pr_err("invalid protocol\n");
360 return -EINVAL;
361 }
362
363 if (!proto->instance_init) {
364 pr_err("missing init for protocol 0x%x\n", proto->id);
365 return -EINVAL;
366 }
367
368 if (proto->id >= SCMI_PROTOCOL_VENDOR_BASE &&
369 scmi_vendor_protocol_check(proto))
370 return -EINVAL;
371
372 /*
373 * Calculate a protocol key to register this protocol with the core;
374 * key value 0 is considered invalid.
375 */
376 key = scmi_protocol_key_calculate(proto->id, proto->vendor_id,
377 proto->sub_vendor_id,
378 proto->impl_ver);
379 if (!key)
380 return -EINVAL;
381
382 ret = xa_insert(&scmi_protocols, key, (void *)proto, GFP_KERNEL);
383 if (ret) {
384 pr_err("unable to allocate SCMI protocol slot for 0x%x - err %d\n",
385 proto->id, ret);
386 return ret;
387 }
388
389 pr_debug("Registered SCMI Protocol 0x%x - %s %s 0x%08X\n",
390 proto->id, proto->vendor_id, proto->sub_vendor_id,
391 proto->impl_ver);
392
393 return 0;
394 }
395 EXPORT_SYMBOL_GPL(scmi_protocol_register);
396
scmi_protocol_unregister(const struct scmi_protocol * proto)397 void scmi_protocol_unregister(const struct scmi_protocol *proto)
398 {
399 unsigned long key;
400
401 key = scmi_protocol_key_calculate(proto->id, proto->vendor_id,
402 proto->sub_vendor_id,
403 proto->impl_ver);
404 if (!key)
405 return;
406
407 xa_erase(&scmi_protocols, key);
408
409 pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id);
410 }
411 EXPORT_SYMBOL_GPL(scmi_protocol_unregister);
412
413 /**
414 * scmi_create_protocol_devices - Create devices for all pending requests for
415 * this SCMI instance.
416 *
417 * @np: The device node describing the protocol
418 * @info: The SCMI instance descriptor
419 * @prot_id: The protocol ID
420 * @name: The optional name of the device to be created: if not provided this
421 * call will lead to the creation of all the devices currently requested
422 * for the specified protocol.
423 */
scmi_create_protocol_devices(struct device_node * np,struct scmi_info * info,int prot_id,const char * name)424 static void scmi_create_protocol_devices(struct device_node *np,
425 struct scmi_info *info,
426 int prot_id, const char *name)
427 {
428 mutex_lock(&info->devreq_mtx);
429 scmi_device_create(np, info->dev, prot_id, name);
430 mutex_unlock(&info->devreq_mtx);
431 }
432
scmi_destroy_protocol_devices(struct scmi_info * info,int prot_id,const char * name)433 static void scmi_destroy_protocol_devices(struct scmi_info *info,
434 int prot_id, const char *name)
435 {
436 mutex_lock(&info->devreq_mtx);
437 scmi_device_destroy(info->dev, prot_id, name);
438 mutex_unlock(&info->devreq_mtx);
439 }
440
scmi_notification_instance_data_set(const struct scmi_handle * handle,void * priv)441 void scmi_notification_instance_data_set(const struct scmi_handle *handle,
442 void *priv)
443 {
444 struct scmi_info *info = handle_to_scmi_info(handle);
445
446 info->notify_priv = priv;
447 /* Ensure updated protocol private date are visible */
448 smp_wmb();
449 }
450
scmi_notification_instance_data_get(const struct scmi_handle * handle)451 void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
452 {
453 struct scmi_info *info = handle_to_scmi_info(handle);
454
455 /* Ensure protocols_private_data has been updated */
456 smp_rmb();
457 return info->notify_priv;
458 }
459
460 /**
461 * scmi_xfer_token_set - Reserve and set new token for the xfer at hand
462 *
463 * @minfo: Pointer to Tx/Rx Message management info based on channel type
464 * @xfer: The xfer to act upon
465 *
466 * Pick the next unused monotonically increasing token and set it into
467 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
468 * reuse of freshly completed or timed-out xfers, thus mitigating the risk
469 * of incorrect association of a late and expired xfer with a live in-flight
470 * transaction, both happening to re-use the same token identifier.
471 *
472 * Since platform is NOT required to answer our request in-order we should
473 * account for a few rare but possible scenarios:
474 *
475 * - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
476 * using find_next_zero_bit() starting from candidate next_token bit
477 *
478 * - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
479 * are plenty of free tokens at start, so try a second pass using
480 * find_next_zero_bit() and starting from 0.
481 *
482 * X = used in-flight
483 *
484 * Normal
485 * ------
486 *
487 * |- xfer_id picked
488 * -----------+----------------------------------------------------------
489 * | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
490 * ----------------------------------------------------------------------
491 * ^
492 * |- next_token
493 *
494 * Out-of-order pending at start
495 * -----------------------------
496 *
497 * |- xfer_id picked, last_token fixed
498 * -----+----------------------------------------------------------------
499 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
500 * ----------------------------------------------------------------------
501 * ^
502 * |- next_token
503 *
504 *
505 * Out-of-order pending at end
506 * ---------------------------
507 *
508 * |- xfer_id picked, last_token fixed
509 * -----+----------------------------------------------------------------
510 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
511 * ----------------------------------------------------------------------
512 * ^
513 * |- next_token
514 *
515 * Context: Assumes to be called with @xfer_lock already acquired.
516 *
517 * Return: 0 on Success or error
518 */
scmi_xfer_token_set(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)519 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
520 struct scmi_xfer *xfer)
521 {
522 unsigned long xfer_id, next_token;
523
524 /*
525 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
526 * using the pre-allocated transfer_id as a base.
527 * Note that the global transfer_id is shared across all message types
528 * so there could be holes in the allocated set of monotonic sequence
529 * numbers, but that is going to limit the effectiveness of the
530 * mitigation only in very rare limit conditions.
531 */
532 next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
533
534 /* Pick the next available xfer_id >= next_token */
535 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
536 MSG_TOKEN_MAX, next_token);
537 if (xfer_id == MSG_TOKEN_MAX) {
538 /*
539 * After heavily out-of-order responses, there are no free
540 * tokens ahead, but only at start of xfer_alloc_table so
541 * try again from the beginning.
542 */
543 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
544 MSG_TOKEN_MAX, 0);
545 /*
546 * Something is wrong if we got here since there can be a
547 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
548 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
549 */
550 if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
551 return -ENOMEM;
552 }
553
554 /* Update +/- last_token accordingly if we skipped some hole */
555 if (xfer_id != next_token)
556 atomic_add((int)(xfer_id - next_token), &transfer_last_id);
557
558 xfer->hdr.seq = (u16)xfer_id;
559
560 return 0;
561 }
562
563 /**
564 * scmi_xfer_token_clear - Release the token
565 *
566 * @minfo: Pointer to Tx/Rx Message management info based on channel type
567 * @xfer: The xfer to act upon
568 */
scmi_xfer_token_clear(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)569 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
570 struct scmi_xfer *xfer)
571 {
572 clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
573 }
574
575 /**
576 * scmi_xfer_inflight_register_unlocked - Register the xfer as in-flight
577 *
578 * @xfer: The xfer to register
579 * @minfo: Pointer to Tx/Rx Message management info based on channel type
580 *
581 * Note that this helper assumes that the xfer to be registered as in-flight
582 * had been built using an xfer sequence number which still corresponds to a
583 * free slot in the xfer_alloc_table.
584 *
585 * Context: Assumes to be called with @xfer_lock already acquired.
586 */
587 static inline void
scmi_xfer_inflight_register_unlocked(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)588 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer,
589 struct scmi_xfers_info *minfo)
590 {
591 /* In this context minfo will be tx_minfo due to the xfer pending */
592 struct scmi_info *info = tx_minfo_to_scmi_info(minfo);
593
594 /* Set in-flight */
595 set_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
596 hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq);
597 scmi_inc_count(info->dbg, XFERS_INFLIGHT);
598
599 xfer->pending = true;
600 }
601
602 /**
603 * scmi_xfer_inflight_register - Try to register an xfer as in-flight
604 *
605 * @xfer: The xfer to register
606 * @minfo: Pointer to Tx/Rx Message management info based on channel type
607 *
608 * Note that this helper does NOT assume anything about the sequence number
609 * that was baked into the provided xfer, so it checks at first if it can
610 * be mapped to a free slot and fails with an error if another xfer with the
611 * same sequence number is currently still registered as in-flight.
612 *
613 * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer
614 * could not rbe mapped to a free slot in the xfer_alloc_table.
615 */
scmi_xfer_inflight_register(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)616 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer,
617 struct scmi_xfers_info *minfo)
618 {
619 int ret = 0;
620 unsigned long flags;
621
622 spin_lock_irqsave(&minfo->xfer_lock, flags);
623 if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table))
624 scmi_xfer_inflight_register_unlocked(xfer, minfo);
625 else
626 ret = -EBUSY;
627 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
628
629 return ret;
630 }
631
632 /**
633 * scmi_xfer_raw_inflight_register - An helper to register the given xfer as in
634 * flight on the TX channel, if possible.
635 *
636 * @handle: Pointer to SCMI entity handle
637 * @xfer: The xfer to register
638 *
639 * Return: 0 on Success, error otherwise
640 */
scmi_xfer_raw_inflight_register(const struct scmi_handle * handle,struct scmi_xfer * xfer)641 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle,
642 struct scmi_xfer *xfer)
643 {
644 struct scmi_info *info = handle_to_scmi_info(handle);
645
646 return scmi_xfer_inflight_register(xfer, &info->tx_minfo);
647 }
648
649 /**
650 * scmi_xfer_pending_set - Pick a proper sequence number and mark the xfer
651 * as pending in-flight
652 *
653 * @xfer: The xfer to act upon
654 * @minfo: Pointer to Tx/Rx Message management info based on channel type
655 *
656 * Return: 0 on Success or error otherwise
657 */
scmi_xfer_pending_set(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)658 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer,
659 struct scmi_xfers_info *minfo)
660 {
661 int ret;
662 unsigned long flags;
663
664 spin_lock_irqsave(&minfo->xfer_lock, flags);
665 /* Set a new monotonic token as the xfer sequence number */
666 ret = scmi_xfer_token_set(minfo, xfer);
667 if (!ret)
668 scmi_xfer_inflight_register_unlocked(xfer, minfo);
669 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
670
671 return ret;
672 }
673
674 /**
675 * scmi_xfer_get() - Allocate one message
676 *
677 * @handle: Pointer to SCMI entity handle
678 * @minfo: Pointer to Tx/Rx Message management info based on channel type
679 *
680 * Helper function which is used by various message functions that are
681 * exposed to clients of this driver for allocating a message traffic event.
682 *
683 * Picks an xfer from the free list @free_xfers (if any available) and perform
684 * a basic initialization.
685 *
686 * Note that, at this point, still no sequence number is assigned to the
687 * allocated xfer, nor it is registered as a pending transaction.
688 *
689 * The successfully initialized xfer is refcounted.
690 *
691 * Context: Holds @xfer_lock while manipulating @free_xfers.
692 *
693 * Return: An initialized xfer if all went fine, else pointer error.
694 */
scmi_xfer_get(const struct scmi_handle * handle,struct scmi_xfers_info * minfo)695 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
696 struct scmi_xfers_info *minfo)
697 {
698 unsigned long flags;
699 struct scmi_xfer *xfer;
700
701 spin_lock_irqsave(&minfo->xfer_lock, flags);
702 if (hlist_empty(&minfo->free_xfers)) {
703 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
704 return ERR_PTR(-ENOMEM);
705 }
706
707 /* grab an xfer from the free_list */
708 xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
709 hlist_del_init(&xfer->node);
710
711 /*
712 * Allocate transfer_id early so that can be used also as base for
713 * monotonic sequence number generation if needed.
714 */
715 xfer->transfer_id = atomic_inc_return(&transfer_last_id);
716
717 refcount_set(&xfer->users, 1);
718 atomic_set(&xfer->busy, SCMI_XFER_FREE);
719 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
720
721 return xfer;
722 }
723
724 /**
725 * scmi_xfer_raw_get - Helper to get a bare free xfer from the TX channel
726 *
727 * @handle: Pointer to SCMI entity handle
728 *
729 * Note that xfer is taken from the TX channel structures.
730 *
731 * Return: A valid xfer on Success, or an error-pointer otherwise
732 */
scmi_xfer_raw_get(const struct scmi_handle * handle)733 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle)
734 {
735 struct scmi_xfer *xfer;
736 struct scmi_info *info = handle_to_scmi_info(handle);
737
738 xfer = scmi_xfer_get(handle, &info->tx_minfo);
739 if (!IS_ERR(xfer))
740 xfer->flags |= SCMI_XFER_FLAG_IS_RAW;
741
742 return xfer;
743 }
744
745 /**
746 * scmi_xfer_raw_channel_get - Helper to get a reference to the proper channel
747 * to use for a specific protocol_id Raw transaction.
748 *
749 * @handle: Pointer to SCMI entity handle
750 * @protocol_id: Identifier of the protocol
751 *
752 * Note that in a regular SCMI stack, usually, a protocol has to be defined in
753 * the DT to have an associated channel and be usable; but in Raw mode any
754 * protocol in range is allowed, re-using the Base channel, so as to enable
755 * fuzzing on any protocol without the need of a fully compiled DT.
756 *
757 * Return: A reference to the channel to use, or an ERR_PTR
758 */
759 struct scmi_chan_info *
scmi_xfer_raw_channel_get(const struct scmi_handle * handle,u8 protocol_id)760 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id)
761 {
762 struct scmi_chan_info *cinfo;
763 struct scmi_info *info = handle_to_scmi_info(handle);
764
765 cinfo = idr_find(&info->tx_idr, protocol_id);
766 if (!cinfo) {
767 if (protocol_id == SCMI_PROTOCOL_BASE)
768 return ERR_PTR(-EINVAL);
769 /* Use Base channel for protocols not defined for DT */
770 cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE);
771 if (!cinfo)
772 return ERR_PTR(-EINVAL);
773 dev_warn_once(handle->dev,
774 "Using Base channel for protocol 0x%X\n",
775 protocol_id);
776 }
777
778 return cinfo;
779 }
780
781 /**
782 * __scmi_xfer_put() - Release a message
783 *
784 * @minfo: Pointer to Tx/Rx Message management info based on channel type
785 * @xfer: message that was reserved by scmi_xfer_get
786 *
787 * After refcount check, possibly release an xfer, clearing the token slot,
788 * removing xfer from @pending_xfers and putting it back into free_xfers.
789 *
790 * This holds a spinlock to maintain integrity of internal data structures.
791 */
792 static void
__scmi_xfer_put(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)793 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
794 {
795 unsigned long flags;
796
797 spin_lock_irqsave(&minfo->xfer_lock, flags);
798 if (refcount_dec_and_test(&xfer->users)) {
799 if (xfer->pending) {
800 struct scmi_info *info = tx_minfo_to_scmi_info(minfo);
801
802 scmi_xfer_token_clear(minfo, xfer);
803 hash_del(&xfer->node);
804 xfer->pending = false;
805
806 scmi_dec_count(info->dbg, XFERS_INFLIGHT);
807 }
808 xfer->flags = 0;
809 hlist_add_head(&xfer->node, &minfo->free_xfers);
810 }
811 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
812 }
813
814 /**
815 * scmi_xfer_raw_put - Release an xfer that was taken by @scmi_xfer_raw_get
816 *
817 * @handle: Pointer to SCMI entity handle
818 * @xfer: A reference to the xfer to put
819 *
820 * Note that as with other xfer_put() handlers the xfer is really effectively
821 * released only if there are no more users on the system.
822 */
scmi_xfer_raw_put(const struct scmi_handle * handle,struct scmi_xfer * xfer)823 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer)
824 {
825 struct scmi_info *info = handle_to_scmi_info(handle);
826
827 return __scmi_xfer_put(&info->tx_minfo, xfer);
828 }
829
830 /**
831 * scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id
832 *
833 * @minfo: Pointer to Tx/Rx Message management info based on channel type
834 * @xfer_id: Token ID to lookup in @pending_xfers
835 *
836 * Refcounting is untouched.
837 *
838 * Context: Assumes to be called with @xfer_lock already acquired.
839 *
840 * Return: A valid xfer on Success or error otherwise
841 */
842 static struct scmi_xfer *
scmi_xfer_lookup_unlocked(struct scmi_xfers_info * minfo,u16 xfer_id)843 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
844 {
845 struct scmi_xfer *xfer = NULL;
846
847 if (test_bit(xfer_id, minfo->xfer_alloc_table))
848 xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
849
850 return xfer ?: ERR_PTR(-EINVAL);
851 }
852
853 /**
854 * scmi_bad_message_trace - A helper to trace weird messages
855 *
856 * @cinfo: A reference to the channel descriptor on which the message was
857 * received
858 * @msg_hdr: Message header to track
859 * @err: A specific error code used as a status value in traces.
860 *
861 * This helper can be used to trace any kind of weird, incomplete, unexpected,
862 * timed-out message that arrives and as such, can be traced only referring to
863 * the header content, since the payload is missing/unreliable.
864 */
scmi_bad_message_trace(struct scmi_chan_info * cinfo,u32 msg_hdr,enum scmi_bad_msg err)865 static void scmi_bad_message_trace(struct scmi_chan_info *cinfo, u32 msg_hdr,
866 enum scmi_bad_msg err)
867 {
868 char *tag;
869 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
870
871 switch (MSG_XTRACT_TYPE(msg_hdr)) {
872 case MSG_TYPE_COMMAND:
873 tag = "!RESP";
874 break;
875 case MSG_TYPE_DELAYED_RESP:
876 tag = "!DLYD";
877 break;
878 case MSG_TYPE_NOTIFICATION:
879 tag = "!NOTI";
880 break;
881 default:
882 tag = "!UNKN";
883 break;
884 }
885
886 trace_scmi_msg_dump(info->id, cinfo->id,
887 MSG_XTRACT_PROT_ID(msg_hdr),
888 MSG_XTRACT_ID(msg_hdr), tag,
889 MSG_XTRACT_TOKEN(msg_hdr), err, NULL, 0);
890 }
891
892 /**
893 * scmi_msg_response_validate - Validate message type against state of related
894 * xfer
895 *
896 * @cinfo: A reference to the channel descriptor.
897 * @msg_type: Message type to check
898 * @xfer: A reference to the xfer to validate against @msg_type
899 *
900 * This function checks if @msg_type is congruent with the current state of
901 * a pending @xfer; if an asynchronous delayed response is received before the
902 * related synchronous response (Out-of-Order Delayed Response) the missing
903 * synchronous response is assumed to be OK and completed, carrying on with the
904 * Delayed Response: this is done to address the case in which the underlying
905 * SCMI transport can deliver such out-of-order responses.
906 *
907 * Context: Assumes to be called with xfer->lock already acquired.
908 *
909 * Return: 0 on Success, error otherwise
910 */
scmi_msg_response_validate(struct scmi_chan_info * cinfo,u8 msg_type,struct scmi_xfer * xfer)911 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
912 u8 msg_type,
913 struct scmi_xfer *xfer)
914 {
915 /*
916 * Even if a response was indeed expected on this slot at this point,
917 * a buggy platform could wrongly reply feeding us an unexpected
918 * delayed response we're not prepared to handle: bail-out safely
919 * blaming firmware.
920 */
921 if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
922 dev_err(cinfo->dev,
923 "Delayed Response for %d not expected! Buggy F/W ?\n",
924 xfer->hdr.seq);
925 return -EINVAL;
926 }
927
928 switch (xfer->state) {
929 case SCMI_XFER_SENT_OK:
930 if (msg_type == MSG_TYPE_DELAYED_RESP) {
931 /*
932 * Delayed Response expected but delivered earlier.
933 * Assume message RESPONSE was OK and skip state.
934 */
935 xfer->hdr.status = SCMI_SUCCESS;
936 xfer->state = SCMI_XFER_RESP_OK;
937 complete(&xfer->done);
938 dev_warn(cinfo->dev,
939 "Received valid OoO Delayed Response for %d\n",
940 xfer->hdr.seq);
941 }
942 break;
943 case SCMI_XFER_RESP_OK:
944 if (msg_type != MSG_TYPE_DELAYED_RESP)
945 return -EINVAL;
946 break;
947 case SCMI_XFER_DRESP_OK:
948 /* No further message expected once in SCMI_XFER_DRESP_OK */
949 return -EINVAL;
950 }
951
952 return 0;
953 }
954
955 /**
956 * scmi_xfer_state_update - Update xfer state
957 *
958 * @xfer: A reference to the xfer to update
959 * @msg_type: Type of message being processed.
960 *
961 * Note that this message is assumed to have been already successfully validated
962 * by @scmi_msg_response_validate(), so here we just update the state.
963 *
964 * Context: Assumes to be called on an xfer exclusively acquired using the
965 * busy flag.
966 */
scmi_xfer_state_update(struct scmi_xfer * xfer,u8 msg_type)967 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
968 {
969 xfer->hdr.type = msg_type;
970
971 /* Unknown command types were already discarded earlier */
972 if (xfer->hdr.type == MSG_TYPE_COMMAND)
973 xfer->state = SCMI_XFER_RESP_OK;
974 else
975 xfer->state = SCMI_XFER_DRESP_OK;
976 }
977
scmi_xfer_acquired(struct scmi_xfer * xfer)978 static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
979 {
980 int ret;
981
982 ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
983
984 return ret == SCMI_XFER_FREE;
985 }
986
987 /**
988 * scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer
989 *
990 * @cinfo: A reference to the channel descriptor.
991 * @msg_hdr: A message header to use as lookup key
992 *
993 * When a valid xfer is found for the sequence number embedded in the provided
994 * msg_hdr, reference counting is properly updated and exclusive access to this
995 * xfer is granted till released with @scmi_xfer_command_release.
996 *
997 * Return: A valid @xfer on Success or error otherwise.
998 */
999 static inline struct scmi_xfer *
scmi_xfer_command_acquire(struct scmi_chan_info * cinfo,u32 msg_hdr)1000 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
1001 {
1002 int ret;
1003 unsigned long flags;
1004 struct scmi_xfer *xfer;
1005 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1006 struct scmi_xfers_info *minfo = &info->tx_minfo;
1007 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
1008 u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
1009
1010 /* Are we even expecting this? */
1011 spin_lock_irqsave(&minfo->xfer_lock, flags);
1012 xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
1013 if (IS_ERR(xfer)) {
1014 dev_err(cinfo->dev,
1015 "Message for %d type %d is not expected!\n",
1016 xfer_id, msg_type);
1017 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
1018
1019 scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNEXPECTED);
1020 scmi_inc_count(info->dbg, ERR_MSG_UNEXPECTED);
1021
1022 return xfer;
1023 }
1024 refcount_inc(&xfer->users);
1025 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
1026
1027 spin_lock_irqsave(&xfer->lock, flags);
1028 ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
1029 /*
1030 * If a pending xfer was found which was also in a congruent state with
1031 * the received message, acquire exclusive access to it setting the busy
1032 * flag.
1033 * Spins only on the rare limit condition of concurrent reception of
1034 * RESP and DRESP for the same xfer.
1035 */
1036 if (!ret) {
1037 spin_until_cond(scmi_xfer_acquired(xfer));
1038 scmi_xfer_state_update(xfer, msg_type);
1039 }
1040 spin_unlock_irqrestore(&xfer->lock, flags);
1041
1042 if (ret) {
1043 dev_err(cinfo->dev,
1044 "Invalid message type:%d for %d - HDR:0x%X state:%d\n",
1045 msg_type, xfer_id, msg_hdr, xfer->state);
1046
1047 scmi_bad_message_trace(cinfo, msg_hdr, MSG_INVALID);
1048 scmi_inc_count(info->dbg, ERR_MSG_INVALID);
1049
1050 /* On error the refcount incremented above has to be dropped */
1051 __scmi_xfer_put(minfo, xfer);
1052 xfer = ERR_PTR(-EINVAL);
1053 }
1054
1055 return xfer;
1056 }
1057
scmi_xfer_command_release(struct scmi_info * info,struct scmi_xfer * xfer)1058 static inline void scmi_xfer_command_release(struct scmi_info *info,
1059 struct scmi_xfer *xfer)
1060 {
1061 atomic_set(&xfer->busy, SCMI_XFER_FREE);
1062 __scmi_xfer_put(&info->tx_minfo, xfer);
1063 }
1064
scmi_clear_channel(struct scmi_info * info,struct scmi_chan_info * cinfo)1065 static inline void scmi_clear_channel(struct scmi_info *info,
1066 struct scmi_chan_info *cinfo)
1067 {
1068 if (!cinfo->is_p2a) {
1069 dev_warn(cinfo->dev, "Invalid clear on A2P channel !\n");
1070 return;
1071 }
1072
1073 if (info->desc->ops->clear_channel)
1074 info->desc->ops->clear_channel(cinfo);
1075 }
1076
scmi_handle_notification(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)1077 static void scmi_handle_notification(struct scmi_chan_info *cinfo,
1078 u32 msg_hdr, void *priv)
1079 {
1080 struct scmi_xfer *xfer;
1081 struct device *dev = cinfo->dev;
1082 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1083 struct scmi_xfers_info *minfo = &info->rx_minfo;
1084 ktime_t ts;
1085
1086 ts = ktime_get_boottime();
1087 xfer = scmi_xfer_get(cinfo->handle, minfo);
1088 if (IS_ERR(xfer)) {
1089 dev_err(dev, "failed to get free message slot (%ld)\n",
1090 PTR_ERR(xfer));
1091
1092 scmi_bad_message_trace(cinfo, msg_hdr, MSG_NOMEM);
1093 scmi_inc_count(info->dbg, ERR_MSG_NOMEM);
1094
1095 scmi_clear_channel(info, cinfo);
1096 return;
1097 }
1098
1099 unpack_scmi_header(msg_hdr, &xfer->hdr);
1100 if (priv)
1101 /* Ensure order between xfer->priv store and following ops */
1102 smp_store_mb(xfer->priv, priv);
1103 info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
1104 xfer);
1105
1106 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1107 xfer->hdr.id, "NOTI", xfer->hdr.seq,
1108 xfer->hdr.status, xfer->rx.buf, xfer->rx.len);
1109 scmi_inc_count(info->dbg, NOTIFICATION_OK);
1110
1111 scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
1112 xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
1113
1114 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
1115 xfer->hdr.protocol_id, xfer->hdr.seq,
1116 MSG_TYPE_NOTIFICATION);
1117
1118 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1119 xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr);
1120 scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE,
1121 cinfo->id);
1122 }
1123
1124 __scmi_xfer_put(minfo, xfer);
1125
1126 scmi_clear_channel(info, cinfo);
1127 }
1128
scmi_handle_response(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)1129 static void scmi_handle_response(struct scmi_chan_info *cinfo,
1130 u32 msg_hdr, void *priv)
1131 {
1132 struct scmi_xfer *xfer;
1133 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1134
1135 xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
1136 if (IS_ERR(xfer)) {
1137 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
1138 scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv);
1139
1140 if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
1141 scmi_clear_channel(info, cinfo);
1142 return;
1143 }
1144
1145 /* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
1146 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
1147 xfer->rx.len = info->desc->max_msg_size;
1148
1149 if (priv)
1150 /* Ensure order between xfer->priv store and following ops */
1151 smp_store_mb(xfer->priv, priv);
1152 info->desc->ops->fetch_response(cinfo, xfer);
1153
1154 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1155 xfer->hdr.id,
1156 xfer->hdr.type == MSG_TYPE_DELAYED_RESP ?
1157 (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") :
1158 (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"),
1159 xfer->hdr.seq, xfer->hdr.status,
1160 xfer->rx.buf, xfer->rx.len);
1161
1162 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
1163 xfer->hdr.protocol_id, xfer->hdr.seq,
1164 xfer->hdr.type);
1165
1166 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
1167 scmi_clear_channel(info, cinfo);
1168 complete(xfer->async_done);
1169 scmi_inc_count(info->dbg, DELAYED_RESPONSE_OK);
1170 } else {
1171 complete(&xfer->done);
1172 scmi_inc_count(info->dbg, RESPONSE_OK);
1173 }
1174
1175 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1176 /*
1177 * When in polling mode avoid to queue the Raw xfer on the IRQ
1178 * RX path since it will be already queued at the end of the TX
1179 * poll loop.
1180 */
1181 if (!xfer->hdr.poll_completion ||
1182 xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
1183 scmi_raw_message_report(info->raw, xfer,
1184 SCMI_RAW_REPLY_QUEUE,
1185 cinfo->id);
1186 }
1187
1188 scmi_xfer_command_release(info, xfer);
1189 }
1190
1191 /**
1192 * scmi_rx_callback() - callback for receiving messages
1193 *
1194 * @cinfo: SCMI channel info
1195 * @msg_hdr: Message header
1196 * @priv: Transport specific private data.
1197 *
1198 * Processes one received message to appropriate transfer information and
1199 * signals completion of the transfer.
1200 *
1201 * NOTE: This function will be invoked in IRQ context, hence should be
1202 * as optimal as possible.
1203 */
scmi_rx_callback(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)1204 static void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr,
1205 void *priv)
1206 {
1207 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
1208
1209 switch (msg_type) {
1210 case MSG_TYPE_NOTIFICATION:
1211 scmi_handle_notification(cinfo, msg_hdr, priv);
1212 break;
1213 case MSG_TYPE_COMMAND:
1214 case MSG_TYPE_DELAYED_RESP:
1215 scmi_handle_response(cinfo, msg_hdr, priv);
1216 break;
1217 default:
1218 WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
1219 scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNKNOWN);
1220 break;
1221 }
1222 }
1223
1224 /**
1225 * xfer_put() - Release a transmit message
1226 *
1227 * @ph: Pointer to SCMI protocol handle
1228 * @xfer: message that was reserved by xfer_get_init
1229 */
xfer_put(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1230 static void xfer_put(const struct scmi_protocol_handle *ph,
1231 struct scmi_xfer *xfer)
1232 {
1233 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1234 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1235
1236 __scmi_xfer_put(&info->tx_minfo, xfer);
1237 }
1238
scmi_xfer_done_no_timeout(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,ktime_t stop,bool * ooo)1239 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
1240 struct scmi_xfer *xfer, ktime_t stop,
1241 bool *ooo)
1242 {
1243 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1244
1245 /*
1246 * Poll also on xfer->done so that polling can be forcibly terminated
1247 * in case of out-of-order receptions of delayed responses
1248 */
1249 return info->desc->ops->poll_done(cinfo, xfer) ||
1250 (*ooo = try_wait_for_completion(&xfer->done)) ||
1251 ktime_after(ktime_get(), stop);
1252 }
1253
scmi_wait_for_reply(struct device * dev,const struct scmi_desc * desc,struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,unsigned int timeout_ms)1254 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc,
1255 struct scmi_chan_info *cinfo,
1256 struct scmi_xfer *xfer, unsigned int timeout_ms)
1257 {
1258 int ret = 0;
1259 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1260
1261 if (xfer->hdr.poll_completion) {
1262 /*
1263 * Real polling is needed only if transport has NOT declared
1264 * itself to support synchronous commands replies.
1265 */
1266 if (!desc->sync_cmds_completed_on_ret) {
1267 bool ooo = false;
1268
1269 /*
1270 * Poll on xfer using transport provided .poll_done();
1271 * assumes no completion interrupt was available.
1272 */
1273 ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms);
1274
1275 spin_until_cond(scmi_xfer_done_no_timeout(cinfo, xfer,
1276 stop, &ooo));
1277 if (!ooo && !info->desc->ops->poll_done(cinfo, xfer)) {
1278 dev_err(dev,
1279 "timed out in resp(caller: %pS) - polling\n",
1280 (void *)_RET_IP_);
1281 ret = -ETIMEDOUT;
1282 scmi_inc_count(info->dbg, XFERS_RESPONSE_POLLED_TIMEOUT);
1283 }
1284 }
1285
1286 if (!ret) {
1287 unsigned long flags;
1288
1289 /*
1290 * Do not fetch_response if an out-of-order delayed
1291 * response is being processed.
1292 */
1293 spin_lock_irqsave(&xfer->lock, flags);
1294 if (xfer->state == SCMI_XFER_SENT_OK) {
1295 desc->ops->fetch_response(cinfo, xfer);
1296 xfer->state = SCMI_XFER_RESP_OK;
1297 }
1298 spin_unlock_irqrestore(&xfer->lock, flags);
1299
1300 /* Trace polled replies. */
1301 trace_scmi_msg_dump(info->id, cinfo->id,
1302 xfer->hdr.protocol_id, xfer->hdr.id,
1303 !SCMI_XFER_IS_RAW(xfer) ?
1304 "RESP" : "resp",
1305 xfer->hdr.seq, xfer->hdr.status,
1306 xfer->rx.buf, xfer->rx.len);
1307 scmi_inc_count(info->dbg, RESPONSE_POLLED_OK);
1308
1309 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1310 scmi_raw_message_report(info->raw, xfer,
1311 SCMI_RAW_REPLY_QUEUE,
1312 cinfo->id);
1313 }
1314 }
1315 } else {
1316 /* And we wait for the response. */
1317 if (!wait_for_completion_timeout(&xfer->done,
1318 msecs_to_jiffies(timeout_ms))) {
1319 dev_err(dev, "timed out in resp(caller: %pS)\n",
1320 (void *)_RET_IP_);
1321 ret = -ETIMEDOUT;
1322 scmi_inc_count(info->dbg, XFERS_RESPONSE_TIMEOUT);
1323 }
1324 }
1325
1326 return ret;
1327 }
1328
1329 /**
1330 * scmi_wait_for_message_response - An helper to group all the possible ways of
1331 * waiting for a synchronous message response.
1332 *
1333 * @cinfo: SCMI channel info
1334 * @xfer: Reference to the transfer being waited for.
1335 *
1336 * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
1337 * configuration flags like xfer->hdr.poll_completion.
1338 *
1339 * Return: 0 on Success, error otherwise.
1340 */
scmi_wait_for_message_response(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer)1341 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
1342 struct scmi_xfer *xfer)
1343 {
1344 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1345 struct device *dev = info->dev;
1346
1347 trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id,
1348 xfer->hdr.protocol_id, xfer->hdr.seq,
1349 info->desc->max_rx_timeout_ms,
1350 xfer->hdr.poll_completion);
1351
1352 return scmi_wait_for_reply(dev, info->desc, cinfo, xfer,
1353 info->desc->max_rx_timeout_ms);
1354 }
1355
1356 /**
1357 * scmi_xfer_raw_wait_for_message_response - An helper to wait for a message
1358 * reply to an xfer raw request on a specific channel for the required timeout.
1359 *
1360 * @cinfo: SCMI channel info
1361 * @xfer: Reference to the transfer being waited for.
1362 * @timeout_ms: The maximum timeout in milliseconds
1363 *
1364 * Return: 0 on Success, error otherwise.
1365 */
scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,unsigned int timeout_ms)1366 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo,
1367 struct scmi_xfer *xfer,
1368 unsigned int timeout_ms)
1369 {
1370 int ret;
1371 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1372 struct device *dev = info->dev;
1373
1374 ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms);
1375 if (ret)
1376 dev_dbg(dev, "timed out in RAW response - HDR:%08X\n",
1377 pack_scmi_header(&xfer->hdr));
1378
1379 return ret;
1380 }
1381
1382 /**
1383 * do_xfer() - Do one transfer
1384 *
1385 * @ph: Pointer to SCMI protocol handle
1386 * @xfer: Transfer to initiate and wait for response
1387 *
1388 * Return: -ETIMEDOUT in case of no response, if transmit error,
1389 * return corresponding error, else if all goes well,
1390 * return 0.
1391 */
do_xfer(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1392 static int do_xfer(const struct scmi_protocol_handle *ph,
1393 struct scmi_xfer *xfer)
1394 {
1395 int ret;
1396 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1397 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1398 struct device *dev = info->dev;
1399 struct scmi_chan_info *cinfo;
1400
1401 /* Check for polling request on custom command xfers at first */
1402 if (xfer->hdr.poll_completion &&
1403 !is_transport_polling_capable(info->desc)) {
1404 dev_warn_once(dev,
1405 "Polling mode is not supported by transport.\n");
1406 scmi_inc_count(info->dbg, SENT_FAIL_POLLING_UNSUPPORTED);
1407 return -EINVAL;
1408 }
1409
1410 cinfo = idr_find(&info->tx_idr, pi->proto->id);
1411 if (unlikely(!cinfo)) {
1412 scmi_inc_count(info->dbg, SENT_FAIL_CHANNEL_NOT_FOUND);
1413 return -EINVAL;
1414 }
1415 /* True ONLY if also supported by transport. */
1416 if (is_polling_enabled(cinfo, info->desc))
1417 xfer->hdr.poll_completion = true;
1418
1419 /*
1420 * Initialise protocol id now from protocol handle to avoid it being
1421 * overridden by mistake (or malice) by the protocol code mangling with
1422 * the scmi_xfer structure prior to this.
1423 */
1424 xfer->hdr.protocol_id = pi->proto->id;
1425 reinit_completion(&xfer->done);
1426
1427 trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
1428 xfer->hdr.protocol_id, xfer->hdr.seq,
1429 xfer->hdr.poll_completion,
1430 scmi_inflight_count(&info->handle));
1431
1432 /* Clear any stale status */
1433 xfer->hdr.status = SCMI_SUCCESS;
1434 xfer->state = SCMI_XFER_SENT_OK;
1435 /*
1436 * Even though spinlocking is not needed here since no race is possible
1437 * on xfer->state due to the monotonically increasing tokens allocation,
1438 * we must anyway ensure xfer->state initialization is not re-ordered
1439 * after the .send_message() to be sure that on the RX path an early
1440 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
1441 */
1442 smp_mb();
1443
1444 ret = info->desc->ops->send_message(cinfo, xfer);
1445 if (ret < 0) {
1446 dev_dbg(dev, "Failed to send message %d\n", ret);
1447 scmi_inc_count(info->dbg, SENT_FAIL);
1448 return ret;
1449 }
1450
1451 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1452 xfer->hdr.id, "CMND", xfer->hdr.seq,
1453 xfer->hdr.status, xfer->tx.buf, xfer->tx.len);
1454 scmi_inc_count(info->dbg, SENT_OK);
1455
1456 ret = scmi_wait_for_message_response(cinfo, xfer);
1457 if (!ret && xfer->hdr.status) {
1458 ret = scmi_to_linux_errno(xfer->hdr.status);
1459 scmi_inc_count(info->dbg, ERR_PROTOCOL);
1460 }
1461
1462 if (info->desc->ops->mark_txdone)
1463 info->desc->ops->mark_txdone(cinfo, ret, xfer);
1464
1465 trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
1466 xfer->hdr.protocol_id, xfer->hdr.seq, ret,
1467 scmi_inflight_count(&info->handle));
1468
1469 return ret;
1470 }
1471
reset_rx_to_maxsz(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1472 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
1473 struct scmi_xfer *xfer)
1474 {
1475 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1476 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1477
1478 xfer->rx.len = info->desc->max_msg_size;
1479 }
1480
1481 /**
1482 * do_xfer_with_response() - Do one transfer and wait until the delayed
1483 * response is received
1484 *
1485 * @ph: Pointer to SCMI protocol handle
1486 * @xfer: Transfer to initiate and wait for response
1487 *
1488 * Using asynchronous commands in atomic/polling mode should be avoided since
1489 * it could cause long busy-waiting here, so ignore polling for the delayed
1490 * response and WARN if it was requested for this command transaction since
1491 * upper layers should refrain from issuing such kind of requests.
1492 *
1493 * The only other option would have been to refrain from using any asynchronous
1494 * command even if made available, when an atomic transport is detected, and
1495 * instead forcibly use the synchronous version (thing that can be easily
1496 * attained at the protocol layer), but this would also have led to longer
1497 * stalls of the channel for synchronous commands and possibly timeouts.
1498 * (in other words there is usually a good reason if a platform provides an
1499 * asynchronous version of a command and we should prefer to use it...just not
1500 * when using atomic/polling mode)
1501 *
1502 * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
1503 * return corresponding error, else if all goes well, return 0.
1504 */
do_xfer_with_response(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1505 static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
1506 struct scmi_xfer *xfer)
1507 {
1508 int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
1509 DECLARE_COMPLETION_ONSTACK(async_response);
1510
1511 xfer->async_done = &async_response;
1512
1513 /*
1514 * Delayed responses should not be polled, so an async command should
1515 * not have been used when requiring an atomic/poll context; WARN and
1516 * perform instead a sleeping wait.
1517 * (Note Async + IgnoreDelayedResponses are sent via do_xfer)
1518 */
1519 WARN_ON_ONCE(xfer->hdr.poll_completion);
1520
1521 ret = do_xfer(ph, xfer);
1522 if (!ret) {
1523 if (!wait_for_completion_timeout(xfer->async_done, timeout)) {
1524 dev_err(ph->dev,
1525 "timed out in delayed resp(caller: %pS)\n",
1526 (void *)_RET_IP_);
1527 ret = -ETIMEDOUT;
1528 } else if (xfer->hdr.status) {
1529 ret = scmi_to_linux_errno(xfer->hdr.status);
1530 }
1531 }
1532
1533 xfer->async_done = NULL;
1534 return ret;
1535 }
1536
1537 /**
1538 * xfer_get_init() - Allocate and initialise one message for transmit
1539 *
1540 * @ph: Pointer to SCMI protocol handle
1541 * @msg_id: Message identifier
1542 * @tx_size: transmit message size
1543 * @rx_size: receive message size
1544 * @p: pointer to the allocated and initialised message
1545 *
1546 * This function allocates the message using @scmi_xfer_get and
1547 * initialise the header.
1548 *
1549 * Return: 0 if all went fine with @p pointing to message, else
1550 * corresponding error.
1551 */
xfer_get_init(const struct scmi_protocol_handle * ph,u8 msg_id,size_t tx_size,size_t rx_size,struct scmi_xfer ** p)1552 static int xfer_get_init(const struct scmi_protocol_handle *ph,
1553 u8 msg_id, size_t tx_size, size_t rx_size,
1554 struct scmi_xfer **p)
1555 {
1556 int ret;
1557 struct scmi_xfer *xfer;
1558 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1559 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1560 struct scmi_xfers_info *minfo = &info->tx_minfo;
1561 struct device *dev = info->dev;
1562
1563 /* Ensure we have sane transfer sizes */
1564 if (rx_size > info->desc->max_msg_size ||
1565 tx_size > info->desc->max_msg_size)
1566 return -ERANGE;
1567
1568 xfer = scmi_xfer_get(pi->handle, minfo);
1569 if (IS_ERR(xfer)) {
1570 ret = PTR_ERR(xfer);
1571 dev_err(dev, "failed to get free message slot(%d)\n", ret);
1572 return ret;
1573 }
1574
1575 /* Pick a sequence number and register this xfer as in-flight */
1576 ret = scmi_xfer_pending_set(xfer, minfo);
1577 if (ret) {
1578 dev_err(pi->handle->dev,
1579 "Failed to get monotonic token %d\n", ret);
1580 __scmi_xfer_put(minfo, xfer);
1581 return ret;
1582 }
1583
1584 xfer->tx.len = tx_size;
1585 xfer->rx.len = rx_size ? : info->desc->max_msg_size;
1586 xfer->hdr.type = MSG_TYPE_COMMAND;
1587 xfer->hdr.id = msg_id;
1588 xfer->hdr.poll_completion = false;
1589
1590 *p = xfer;
1591
1592 return 0;
1593 }
1594
1595 /**
1596 * version_get() - command to get the revision of the SCMI entity
1597 *
1598 * @ph: Pointer to SCMI protocol handle
1599 * @version: Holds returned version of protocol.
1600 *
1601 * Updates the SCMI information in the internal data structure.
1602 *
1603 * Return: 0 if all went fine, else return appropriate error.
1604 */
version_get(const struct scmi_protocol_handle * ph,u32 * version)1605 static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
1606 {
1607 int ret;
1608 __le32 *rev_info;
1609 struct scmi_xfer *t;
1610
1611 ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
1612 if (ret)
1613 return ret;
1614
1615 ret = do_xfer(ph, t);
1616 if (!ret) {
1617 rev_info = t->rx.buf;
1618 *version = le32_to_cpu(*rev_info);
1619 }
1620
1621 xfer_put(ph, t);
1622 return ret;
1623 }
1624
1625 /**
1626 * scmi_set_protocol_priv - Set protocol specific data at init time
1627 *
1628 * @ph: A reference to the protocol handle.
1629 * @priv: The private data to set.
1630 * @version: The detected protocol version for the core to register.
1631 *
1632 * Return: 0 on Success
1633 */
scmi_set_protocol_priv(const struct scmi_protocol_handle * ph,void * priv,u32 version)1634 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
1635 void *priv, u32 version)
1636 {
1637 struct scmi_protocol_instance *pi = ph_to_pi(ph);
1638
1639 pi->priv = priv;
1640 pi->version = version;
1641
1642 return 0;
1643 }
1644
1645 /**
1646 * scmi_get_protocol_priv - Set protocol specific data at init time
1647 *
1648 * @ph: A reference to the protocol handle.
1649 *
1650 * Return: Protocol private data if any was set.
1651 */
scmi_get_protocol_priv(const struct scmi_protocol_handle * ph)1652 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
1653 {
1654 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1655
1656 return pi->priv;
1657 }
1658
1659 static const struct scmi_xfer_ops xfer_ops = {
1660 .version_get = version_get,
1661 .xfer_get_init = xfer_get_init,
1662 .reset_rx_to_maxsz = reset_rx_to_maxsz,
1663 .do_xfer = do_xfer,
1664 .do_xfer_with_response = do_xfer_with_response,
1665 .xfer_put = xfer_put,
1666 };
1667
1668 struct scmi_msg_resp_domain_name_get {
1669 __le32 flags;
1670 u8 name[SCMI_MAX_STR_SIZE];
1671 };
1672
1673 /**
1674 * scmi_common_extended_name_get - Common helper to get extended resources name
1675 * @ph: A protocol handle reference.
1676 * @cmd_id: The specific command ID to use.
1677 * @res_id: The specific resource ID to use.
1678 * @flags: A pointer to specific flags to use, if any.
1679 * @name: A pointer to the preallocated area where the retrieved name will be
1680 * stored as a NULL terminated string.
1681 * @len: The len in bytes of the @name char array.
1682 *
1683 * Return: 0 on Succcess
1684 */
scmi_common_extended_name_get(const struct scmi_protocol_handle * ph,u8 cmd_id,u32 res_id,u32 * flags,char * name,size_t len)1685 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph,
1686 u8 cmd_id, u32 res_id, u32 *flags,
1687 char *name, size_t len)
1688 {
1689 int ret;
1690 size_t txlen;
1691 struct scmi_xfer *t;
1692 struct scmi_msg_resp_domain_name_get *resp;
1693
1694 txlen = !flags ? sizeof(res_id) : sizeof(res_id) + sizeof(*flags);
1695 ret = ph->xops->xfer_get_init(ph, cmd_id, txlen, sizeof(*resp), &t);
1696 if (ret)
1697 goto out;
1698
1699 put_unaligned_le32(res_id, t->tx.buf);
1700 if (flags)
1701 put_unaligned_le32(*flags, t->tx.buf + sizeof(res_id));
1702 resp = t->rx.buf;
1703
1704 ret = ph->xops->do_xfer(ph, t);
1705 if (!ret)
1706 strscpy(name, resp->name, len);
1707
1708 ph->xops->xfer_put(ph, t);
1709 out:
1710 if (ret)
1711 dev_warn(ph->dev,
1712 "Failed to get extended name - id:%u (ret:%d). Using %s\n",
1713 res_id, ret, name);
1714 return ret;
1715 }
1716
1717 /**
1718 * scmi_common_get_max_msg_size - Get maximum message size
1719 * @ph: A protocol handle reference.
1720 *
1721 * Return: Maximum message size for the current protocol.
1722 */
scmi_common_get_max_msg_size(const struct scmi_protocol_handle * ph)1723 static int scmi_common_get_max_msg_size(const struct scmi_protocol_handle *ph)
1724 {
1725 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1726 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1727
1728 return info->desc->max_msg_size;
1729 }
1730
1731 /**
1732 * scmi_protocol_msg_check - Check protocol message attributes
1733 *
1734 * @ph: A reference to the protocol handle.
1735 * @message_id: The ID of the message to check.
1736 * @attributes: A parameter to optionally return the retrieved message
1737 * attributes, in case of Success.
1738 *
1739 * An helper to check protocol message attributes for a specific protocol
1740 * and message pair.
1741 *
1742 * Return: 0 on SUCCESS
1743 */
scmi_protocol_msg_check(const struct scmi_protocol_handle * ph,u32 message_id,u32 * attributes)1744 static int scmi_protocol_msg_check(const struct scmi_protocol_handle *ph,
1745 u32 message_id, u32 *attributes)
1746 {
1747 int ret;
1748 struct scmi_xfer *t;
1749
1750 ret = xfer_get_init(ph, PROTOCOL_MESSAGE_ATTRIBUTES,
1751 sizeof(__le32), 0, &t);
1752 if (ret)
1753 return ret;
1754
1755 put_unaligned_le32(message_id, t->tx.buf);
1756 ret = do_xfer(ph, t);
1757 if (!ret && attributes)
1758 *attributes = get_unaligned_le32(t->rx.buf);
1759 xfer_put(ph, t);
1760
1761 return ret;
1762 }
1763
1764 /**
1765 * struct scmi_iterator - Iterator descriptor
1766 * @msg: A reference to the message TX buffer; filled by @prepare_message with
1767 * a proper custom command payload for each multi-part command request.
1768 * @resp: A reference to the response RX buffer; used by @update_state and
1769 * @process_response to parse the multi-part replies.
1770 * @t: A reference to the underlying xfer initialized and used transparently by
1771 * the iterator internal routines.
1772 * @ph: A reference to the associated protocol handle to be used.
1773 * @ops: A reference to the custom provided iterator operations.
1774 * @state: The current iterator state; used and updated in turn by the iterators
1775 * internal routines and by the caller-provided @scmi_iterator_ops.
1776 * @priv: A reference to optional private data as provided by the caller and
1777 * passed back to the @@scmi_iterator_ops.
1778 */
1779 struct scmi_iterator {
1780 void *msg;
1781 void *resp;
1782 struct scmi_xfer *t;
1783 const struct scmi_protocol_handle *ph;
1784 struct scmi_iterator_ops *ops;
1785 struct scmi_iterator_state state;
1786 void *priv;
1787 };
1788
scmi_iterator_init(const struct scmi_protocol_handle * ph,struct scmi_iterator_ops * ops,unsigned int max_resources,u8 msg_id,size_t tx_size,void * priv)1789 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph,
1790 struct scmi_iterator_ops *ops,
1791 unsigned int max_resources, u8 msg_id,
1792 size_t tx_size, void *priv)
1793 {
1794 int ret;
1795 struct scmi_iterator *i;
1796
1797 i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL);
1798 if (!i)
1799 return ERR_PTR(-ENOMEM);
1800
1801 i->ph = ph;
1802 i->ops = ops;
1803 i->priv = priv;
1804
1805 ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t);
1806 if (ret) {
1807 devm_kfree(ph->dev, i);
1808 return ERR_PTR(ret);
1809 }
1810
1811 i->state.max_resources = max_resources;
1812 i->msg = i->t->tx.buf;
1813 i->resp = i->t->rx.buf;
1814
1815 return i;
1816 }
1817
scmi_iterator_run(void * iter)1818 static int scmi_iterator_run(void *iter)
1819 {
1820 int ret = -EINVAL;
1821 struct scmi_iterator_ops *iops;
1822 const struct scmi_protocol_handle *ph;
1823 struct scmi_iterator_state *st;
1824 struct scmi_iterator *i = iter;
1825
1826 if (!i || !i->ops || !i->ph)
1827 return ret;
1828
1829 iops = i->ops;
1830 ph = i->ph;
1831 st = &i->state;
1832
1833 do {
1834 iops->prepare_message(i->msg, st->desc_index, i->priv);
1835 ret = ph->xops->do_xfer(ph, i->t);
1836 if (ret)
1837 break;
1838
1839 st->rx_len = i->t->rx.len;
1840 ret = iops->update_state(st, i->resp, i->priv);
1841 if (ret)
1842 break;
1843
1844 if (st->num_returned > st->max_resources - st->desc_index) {
1845 dev_err(ph->dev,
1846 "No. of resources can't exceed %d\n",
1847 st->max_resources);
1848 ret = -EINVAL;
1849 break;
1850 }
1851
1852 for (st->loop_idx = 0; st->loop_idx < st->num_returned;
1853 st->loop_idx++) {
1854 ret = iops->process_response(ph, i->resp, st, i->priv);
1855 if (ret)
1856 goto out;
1857 }
1858
1859 st->desc_index += st->num_returned;
1860 ph->xops->reset_rx_to_maxsz(ph, i->t);
1861 /*
1862 * check for both returned and remaining to avoid infinite
1863 * loop due to buggy firmware
1864 */
1865 } while (st->num_returned && st->num_remaining);
1866
1867 out:
1868 /* Finalize and destroy iterator */
1869 ph->xops->xfer_put(ph, i->t);
1870 devm_kfree(ph->dev, i);
1871
1872 return ret;
1873 }
1874
1875 struct scmi_msg_get_fc_info {
1876 __le32 domain;
1877 __le32 message_id;
1878 };
1879
1880 struct scmi_msg_resp_desc_fc {
1881 __le32 attr;
1882 #define SUPPORTS_DOORBELL(x) ((x) & BIT(0))
1883 #define DOORBELL_REG_WIDTH(x) FIELD_GET(GENMASK(2, 1), (x))
1884 __le32 rate_limit;
1885 __le32 chan_addr_low;
1886 __le32 chan_addr_high;
1887 __le32 chan_size;
1888 __le32 db_addr_low;
1889 __le32 db_addr_high;
1890 __le32 db_set_lmask;
1891 __le32 db_set_hmask;
1892 __le32 db_preserve_lmask;
1893 __le32 db_preserve_hmask;
1894 };
1895
1896 #define QUIRK_PERF_FC_FORCE \
1897 ({ \
1898 if (pi->proto->id == SCMI_PROTOCOL_PERF && \
1899 message_id == 0x8 /* PERF_LEVEL_GET */) \
1900 attributes |= BIT(0); \
1901 })
1902
1903 static void
scmi_common_fastchannel_init(const struct scmi_protocol_handle * ph,u8 describe_id,u32 message_id,u32 valid_size,u32 domain,void __iomem ** p_addr,struct scmi_fc_db_info ** p_db,u32 * rate_limit)1904 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph,
1905 u8 describe_id, u32 message_id, u32 valid_size,
1906 u32 domain, void __iomem **p_addr,
1907 struct scmi_fc_db_info **p_db, u32 *rate_limit)
1908 {
1909 int ret;
1910 u32 flags;
1911 u64 phys_addr;
1912 u32 attributes;
1913 u8 size;
1914 void __iomem *addr;
1915 struct scmi_xfer *t;
1916 struct scmi_fc_db_info *db = NULL;
1917 struct scmi_msg_get_fc_info *info;
1918 struct scmi_msg_resp_desc_fc *resp;
1919 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1920
1921 /* Check if the MSG_ID supports fastchannel */
1922 ret = scmi_protocol_msg_check(ph, message_id, &attributes);
1923 SCMI_QUIRK(perf_level_get_fc_force, QUIRK_PERF_FC_FORCE);
1924 if (ret || !MSG_SUPPORTS_FASTCHANNEL(attributes)) {
1925 dev_dbg(ph->dev,
1926 "Skip FC init for 0x%02X/%d domain:%d - ret:%d\n",
1927 pi->proto->id, message_id, domain, ret);
1928 return;
1929 }
1930
1931 if (!p_addr) {
1932 ret = -EINVAL;
1933 goto err_out;
1934 }
1935
1936 ret = ph->xops->xfer_get_init(ph, describe_id,
1937 sizeof(*info), sizeof(*resp), &t);
1938 if (ret)
1939 goto err_out;
1940
1941 info = t->tx.buf;
1942 info->domain = cpu_to_le32(domain);
1943 info->message_id = cpu_to_le32(message_id);
1944
1945 /*
1946 * Bail out on error leaving fc_info addresses zeroed; this includes
1947 * the case in which the requested domain/message_id does NOT support
1948 * fastchannels at all.
1949 */
1950 ret = ph->xops->do_xfer(ph, t);
1951 if (ret)
1952 goto err_xfer;
1953
1954 resp = t->rx.buf;
1955 flags = le32_to_cpu(resp->attr);
1956 size = le32_to_cpu(resp->chan_size);
1957 if (size != valid_size) {
1958 ret = -EINVAL;
1959 goto err_xfer;
1960 }
1961
1962 if (rate_limit)
1963 *rate_limit = le32_to_cpu(resp->rate_limit) & GENMASK(19, 0);
1964
1965 phys_addr = le32_to_cpu(resp->chan_addr_low);
1966 phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
1967 addr = devm_ioremap(ph->dev, phys_addr, size);
1968 if (!addr) {
1969 ret = -EADDRNOTAVAIL;
1970 goto err_xfer;
1971 }
1972
1973 *p_addr = addr;
1974
1975 if (p_db && SUPPORTS_DOORBELL(flags)) {
1976 db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL);
1977 if (!db) {
1978 ret = -ENOMEM;
1979 goto err_db;
1980 }
1981
1982 size = 1 << DOORBELL_REG_WIDTH(flags);
1983 phys_addr = le32_to_cpu(resp->db_addr_low);
1984 phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
1985 addr = devm_ioremap(ph->dev, phys_addr, size);
1986 if (!addr) {
1987 ret = -EADDRNOTAVAIL;
1988 goto err_db_mem;
1989 }
1990
1991 db->addr = addr;
1992 db->width = size;
1993 db->set = le32_to_cpu(resp->db_set_lmask);
1994 db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
1995 db->mask = le32_to_cpu(resp->db_preserve_lmask);
1996 db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
1997
1998 *p_db = db;
1999 }
2000
2001 ph->xops->xfer_put(ph, t);
2002
2003 dev_dbg(ph->dev,
2004 "Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n",
2005 pi->proto->id, message_id, domain);
2006
2007 return;
2008
2009 err_db_mem:
2010 devm_kfree(ph->dev, db);
2011
2012 err_db:
2013 *p_addr = NULL;
2014
2015 err_xfer:
2016 ph->xops->xfer_put(ph, t);
2017
2018 err_out:
2019 dev_warn(ph->dev,
2020 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n",
2021 pi->proto->id, message_id, domain, ret);
2022 }
2023
2024 #define SCMI_PROTO_FC_RING_DB(w) \
2025 do { \
2026 u##w val = 0; \
2027 \
2028 if (db->mask) \
2029 val = ioread##w(db->addr) & db->mask; \
2030 iowrite##w((u##w)db->set | val, db->addr); \
2031 } while (0)
2032
scmi_common_fastchannel_db_ring(struct scmi_fc_db_info * db)2033 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db)
2034 {
2035 if (!db || !db->addr)
2036 return;
2037
2038 if (db->width == 1)
2039 SCMI_PROTO_FC_RING_DB(8);
2040 else if (db->width == 2)
2041 SCMI_PROTO_FC_RING_DB(16);
2042 else if (db->width == 4)
2043 SCMI_PROTO_FC_RING_DB(32);
2044 else /* db->width == 8 */
2045 SCMI_PROTO_FC_RING_DB(64);
2046 }
2047
2048 static const struct scmi_proto_helpers_ops helpers_ops = {
2049 .extended_name_get = scmi_common_extended_name_get,
2050 .get_max_msg_size = scmi_common_get_max_msg_size,
2051 .iter_response_init = scmi_iterator_init,
2052 .iter_response_run = scmi_iterator_run,
2053 .protocol_msg_check = scmi_protocol_msg_check,
2054 .fastchannel_init = scmi_common_fastchannel_init,
2055 .fastchannel_db_ring = scmi_common_fastchannel_db_ring,
2056 };
2057
2058 /**
2059 * scmi_revision_area_get - Retrieve version memory area.
2060 *
2061 * @ph: A reference to the protocol handle.
2062 *
2063 * A helper to grab the version memory area reference during SCMI Base protocol
2064 * initialization.
2065 *
2066 * Return: A reference to the version memory area associated to the SCMI
2067 * instance underlying this protocol handle.
2068 */
2069 struct scmi_revision_info *
scmi_revision_area_get(const struct scmi_protocol_handle * ph)2070 scmi_revision_area_get(const struct scmi_protocol_handle *ph)
2071 {
2072 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
2073
2074 return pi->handle->version;
2075 }
2076
2077 /**
2078 * scmi_protocol_version_negotiate - Negotiate protocol version
2079 *
2080 * @ph: A reference to the protocol handle.
2081 *
2082 * An helper to negotiate a protocol version different from the latest
2083 * advertised as supported from the platform: on Success backward
2084 * compatibility is assured by the platform.
2085 *
2086 * Return: 0 on Success
2087 */
scmi_protocol_version_negotiate(struct scmi_protocol_handle * ph)2088 static int scmi_protocol_version_negotiate(struct scmi_protocol_handle *ph)
2089 {
2090 int ret;
2091 struct scmi_xfer *t;
2092 struct scmi_protocol_instance *pi = ph_to_pi(ph);
2093
2094 /* At first check if NEGOTIATE_PROTOCOL_VERSION is supported ... */
2095 ret = scmi_protocol_msg_check(ph, NEGOTIATE_PROTOCOL_VERSION, NULL);
2096 if (ret)
2097 return ret;
2098
2099 /* ... then attempt protocol version negotiation */
2100 ret = xfer_get_init(ph, NEGOTIATE_PROTOCOL_VERSION,
2101 sizeof(__le32), 0, &t);
2102 if (ret)
2103 return ret;
2104
2105 put_unaligned_le32(pi->proto->supported_version, t->tx.buf);
2106 ret = do_xfer(ph, t);
2107 if (!ret)
2108 pi->negotiated_version = pi->proto->supported_version;
2109
2110 xfer_put(ph, t);
2111
2112 return ret;
2113 }
2114
2115 /**
2116 * scmi_alloc_init_protocol_instance - Allocate and initialize a protocol
2117 * instance descriptor.
2118 * @info: The reference to the related SCMI instance.
2119 * @proto: The protocol descriptor.
2120 *
2121 * Allocate a new protocol instance descriptor, using the provided @proto
2122 * description, against the specified SCMI instance @info, and initialize it;
2123 * all resources management is handled via a dedicated per-protocol devres
2124 * group.
2125 *
2126 * Context: Assumes to be called with @protocols_mtx already acquired.
2127 * Return: A reference to a freshly allocated and initialized protocol instance
2128 * or ERR_PTR on failure. On failure the @proto reference is at first
2129 * put using @scmi_protocol_put() before releasing all the devres group.
2130 */
2131 static struct scmi_protocol_instance *
scmi_alloc_init_protocol_instance(struct scmi_info * info,const struct scmi_protocol * proto)2132 scmi_alloc_init_protocol_instance(struct scmi_info *info,
2133 const struct scmi_protocol *proto)
2134 {
2135 int ret = -ENOMEM;
2136 void *gid;
2137 struct scmi_protocol_instance *pi;
2138 const struct scmi_handle *handle = &info->handle;
2139
2140 /* Protocol specific devres group */
2141 gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
2142 if (!gid) {
2143 scmi_protocol_put(proto);
2144 goto out;
2145 }
2146
2147 pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
2148 if (!pi)
2149 goto clean;
2150
2151 pi->gid = gid;
2152 pi->proto = proto;
2153 pi->handle = handle;
2154 pi->ph.dev = handle->dev;
2155 pi->ph.xops = &xfer_ops;
2156 pi->ph.hops = &helpers_ops;
2157 pi->ph.set_priv = scmi_set_protocol_priv;
2158 pi->ph.get_priv = scmi_get_protocol_priv;
2159 refcount_set(&pi->users, 1);
2160 /* proto->init is assured NON NULL by scmi_protocol_register */
2161 ret = pi->proto->instance_init(&pi->ph);
2162 if (ret)
2163 goto clean;
2164
2165 ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
2166 GFP_KERNEL);
2167 if (ret != proto->id)
2168 goto clean;
2169
2170 /*
2171 * Warn but ignore events registration errors since we do not want
2172 * to skip whole protocols if their notifications are messed up.
2173 */
2174 if (pi->proto->events) {
2175 ret = scmi_register_protocol_events(handle, pi->proto->id,
2176 &pi->ph,
2177 pi->proto->events);
2178 if (ret)
2179 dev_warn(handle->dev,
2180 "Protocol:%X - Events Registration Failed - err:%d\n",
2181 pi->proto->id, ret);
2182 }
2183
2184 devres_close_group(handle->dev, pi->gid);
2185 dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
2186
2187 if (pi->version > proto->supported_version) {
2188 ret = scmi_protocol_version_negotiate(&pi->ph);
2189 if (!ret) {
2190 dev_info(handle->dev,
2191 "Protocol 0x%X successfully negotiated version 0x%X\n",
2192 proto->id, pi->negotiated_version);
2193 } else {
2194 dev_warn(handle->dev,
2195 "Detected UNSUPPORTED higher version 0x%X for protocol 0x%X.\n",
2196 pi->version, pi->proto->id);
2197 dev_warn(handle->dev,
2198 "Trying version 0x%X. Backward compatibility is NOT assured.\n",
2199 pi->proto->supported_version);
2200 }
2201 }
2202
2203 return pi;
2204
2205 clean:
2206 /* Take care to put the protocol module's owner before releasing all */
2207 scmi_protocol_put(proto);
2208 devres_release_group(handle->dev, gid);
2209 out:
2210 return ERR_PTR(ret);
2211 }
2212
2213 /**
2214 * scmi_get_protocol_instance - Protocol initialization helper.
2215 * @handle: A reference to the SCMI platform instance.
2216 * @protocol_id: The protocol being requested.
2217 *
2218 * In case the required protocol has never been requested before for this
2219 * instance, allocate and initialize all the needed structures while handling
2220 * resource allocation with a dedicated per-protocol devres subgroup.
2221 *
2222 * Return: A reference to an initialized protocol instance or error on failure:
2223 * in particular returns -EPROBE_DEFER when the desired protocol could
2224 * NOT be found.
2225 */
2226 static struct scmi_protocol_instance * __must_check
scmi_get_protocol_instance(const struct scmi_handle * handle,u8 protocol_id)2227 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
2228 {
2229 struct scmi_protocol_instance *pi;
2230 struct scmi_info *info = handle_to_scmi_info(handle);
2231
2232 mutex_lock(&info->protocols_mtx);
2233 pi = idr_find(&info->protocols, protocol_id);
2234
2235 if (pi) {
2236 refcount_inc(&pi->users);
2237 } else {
2238 const struct scmi_protocol *proto;
2239
2240 /* Fails if protocol not registered on bus */
2241 proto = scmi_protocol_get(protocol_id, &info->version);
2242 if (proto)
2243 pi = scmi_alloc_init_protocol_instance(info, proto);
2244 else
2245 pi = ERR_PTR(-EPROBE_DEFER);
2246 }
2247 mutex_unlock(&info->protocols_mtx);
2248
2249 return pi;
2250 }
2251
2252 /**
2253 * scmi_protocol_acquire - Protocol acquire
2254 * @handle: A reference to the SCMI platform instance.
2255 * @protocol_id: The protocol being requested.
2256 *
2257 * Register a new user for the requested protocol on the specified SCMI
2258 * platform instance, possibly triggering its initialization on first user.
2259 *
2260 * Return: 0 if protocol was acquired successfully.
2261 */
scmi_protocol_acquire(const struct scmi_handle * handle,u8 protocol_id)2262 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
2263 {
2264 return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
2265 }
2266
2267 /**
2268 * scmi_protocol_release - Protocol de-initialization helper.
2269 * @handle: A reference to the SCMI platform instance.
2270 * @protocol_id: The protocol being requested.
2271 *
2272 * Remove one user for the specified protocol and triggers de-initialization
2273 * and resources de-allocation once the last user has gone.
2274 */
scmi_protocol_release(const struct scmi_handle * handle,u8 protocol_id)2275 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
2276 {
2277 struct scmi_info *info = handle_to_scmi_info(handle);
2278 struct scmi_protocol_instance *pi;
2279
2280 mutex_lock(&info->protocols_mtx);
2281 pi = idr_find(&info->protocols, protocol_id);
2282 if (WARN_ON(!pi))
2283 goto out;
2284
2285 if (refcount_dec_and_test(&pi->users)) {
2286 void *gid = pi->gid;
2287
2288 if (pi->proto->events)
2289 scmi_deregister_protocol_events(handle, protocol_id);
2290
2291 if (pi->proto->instance_deinit)
2292 pi->proto->instance_deinit(&pi->ph);
2293
2294 idr_remove(&info->protocols, protocol_id);
2295
2296 scmi_protocol_put(pi->proto);
2297
2298 devres_release_group(handle->dev, gid);
2299 dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
2300 protocol_id);
2301 }
2302
2303 out:
2304 mutex_unlock(&info->protocols_mtx);
2305 }
2306
scmi_setup_protocol_implemented(const struct scmi_protocol_handle * ph,u8 * prot_imp)2307 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
2308 u8 *prot_imp)
2309 {
2310 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
2311 struct scmi_info *info = handle_to_scmi_info(pi->handle);
2312
2313 info->protocols_imp = prot_imp;
2314 }
2315
2316 static bool
scmi_is_protocol_implemented(const struct scmi_handle * handle,u8 prot_id)2317 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
2318 {
2319 int i;
2320 struct scmi_info *info = handle_to_scmi_info(handle);
2321 struct scmi_revision_info *rev = handle->version;
2322
2323 if (!info->protocols_imp)
2324 return false;
2325
2326 for (i = 0; i < rev->num_protocols; i++)
2327 if (info->protocols_imp[i] == prot_id)
2328 return true;
2329 return false;
2330 }
2331
2332 struct scmi_protocol_devres {
2333 const struct scmi_handle *handle;
2334 u8 protocol_id;
2335 };
2336
scmi_devm_release_protocol(struct device * dev,void * res)2337 static void scmi_devm_release_protocol(struct device *dev, void *res)
2338 {
2339 struct scmi_protocol_devres *dres = res;
2340
2341 scmi_protocol_release(dres->handle, dres->protocol_id);
2342 }
2343
2344 static struct scmi_protocol_instance __must_check *
scmi_devres_protocol_instance_get(struct scmi_device * sdev,u8 protocol_id)2345 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id)
2346 {
2347 struct scmi_protocol_instance *pi;
2348 struct scmi_protocol_devres *dres;
2349
2350 dres = devres_alloc(scmi_devm_release_protocol,
2351 sizeof(*dres), GFP_KERNEL);
2352 if (!dres)
2353 return ERR_PTR(-ENOMEM);
2354
2355 pi = scmi_get_protocol_instance(sdev->handle, protocol_id);
2356 if (IS_ERR(pi)) {
2357 devres_free(dres);
2358 return pi;
2359 }
2360
2361 dres->handle = sdev->handle;
2362 dres->protocol_id = protocol_id;
2363 devres_add(&sdev->dev, dres);
2364
2365 return pi;
2366 }
2367
2368 /**
2369 * scmi_devm_protocol_get - Devres managed get protocol operations and handle
2370 * @sdev: A reference to an scmi_device whose embedded struct device is to
2371 * be used for devres accounting.
2372 * @protocol_id: The protocol being requested.
2373 * @ph: A pointer reference used to pass back the associated protocol handle.
2374 *
2375 * Get hold of a protocol accounting for its usage, eventually triggering its
2376 * initialization, and returning the protocol specific operations and related
2377 * protocol handle which will be used as first argument in most of the
2378 * protocols operations methods.
2379 * Being a devres based managed method, protocol hold will be automatically
2380 * released, and possibly de-initialized on last user, once the SCMI driver
2381 * owning the scmi_device is unbound from it.
2382 *
2383 * Return: A reference to the requested protocol operations or error.
2384 * Must be checked for errors by caller.
2385 */
2386 static const void __must_check *
scmi_devm_protocol_get(struct scmi_device * sdev,u8 protocol_id,struct scmi_protocol_handle ** ph)2387 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
2388 struct scmi_protocol_handle **ph)
2389 {
2390 struct scmi_protocol_instance *pi;
2391
2392 if (!ph)
2393 return ERR_PTR(-EINVAL);
2394
2395 pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2396 if (IS_ERR(pi))
2397 return pi;
2398
2399 *ph = &pi->ph;
2400
2401 return pi->proto->ops;
2402 }
2403
2404 /**
2405 * scmi_devm_protocol_acquire - Devres managed helper to get hold of a protocol
2406 * @sdev: A reference to an scmi_device whose embedded struct device is to
2407 * be used for devres accounting.
2408 * @protocol_id: The protocol being requested.
2409 *
2410 * Get hold of a protocol accounting for its usage, possibly triggering its
2411 * initialization but without getting access to its protocol specific operations
2412 * and handle.
2413 *
2414 * Being a devres based managed method, protocol hold will be automatically
2415 * released, and possibly de-initialized on last user, once the SCMI driver
2416 * owning the scmi_device is unbound from it.
2417 *
2418 * Return: 0 on SUCCESS
2419 */
scmi_devm_protocol_acquire(struct scmi_device * sdev,u8 protocol_id)2420 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev,
2421 u8 protocol_id)
2422 {
2423 struct scmi_protocol_instance *pi;
2424
2425 pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2426 if (IS_ERR(pi))
2427 return PTR_ERR(pi);
2428
2429 return 0;
2430 }
2431
scmi_devm_protocol_match(struct device * dev,void * res,void * data)2432 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
2433 {
2434 struct scmi_protocol_devres *dres = res;
2435
2436 if (WARN_ON(!dres || !data))
2437 return 0;
2438
2439 return dres->protocol_id == *((u8 *)data);
2440 }
2441
2442 /**
2443 * scmi_devm_protocol_put - Devres managed put protocol operations and handle
2444 * @sdev: A reference to an scmi_device whose embedded struct device is to
2445 * be used for devres accounting.
2446 * @protocol_id: The protocol being requested.
2447 *
2448 * Explicitly release a protocol hold previously obtained calling the above
2449 * @scmi_devm_protocol_get.
2450 */
scmi_devm_protocol_put(struct scmi_device * sdev,u8 protocol_id)2451 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
2452 {
2453 int ret;
2454
2455 ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
2456 scmi_devm_protocol_match, &protocol_id);
2457 WARN_ON(ret);
2458 }
2459
2460 /**
2461 * scmi_is_transport_atomic - Method to check if underlying transport for an
2462 * SCMI instance is configured as atomic.
2463 *
2464 * @handle: A reference to the SCMI platform instance.
2465 * @atomic_threshold: An optional return value for the system wide currently
2466 * configured threshold for atomic operations.
2467 *
2468 * Return: True if transport is configured as atomic
2469 */
scmi_is_transport_atomic(const struct scmi_handle * handle,unsigned int * atomic_threshold)2470 static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
2471 unsigned int *atomic_threshold)
2472 {
2473 bool ret;
2474 struct scmi_info *info = handle_to_scmi_info(handle);
2475
2476 ret = info->desc->atomic_enabled &&
2477 is_transport_polling_capable(info->desc);
2478 if (ret && atomic_threshold)
2479 *atomic_threshold = info->desc->atomic_threshold;
2480
2481 return ret;
2482 }
2483
2484 /**
2485 * scmi_handle_get() - Get the SCMI handle for a device
2486 *
2487 * @dev: pointer to device for which we want SCMI handle
2488 *
2489 * NOTE: The function does not track individual clients of the framework
2490 * and is expected to be maintained by caller of SCMI protocol library.
2491 * scmi_handle_put must be balanced with successful scmi_handle_get
2492 *
2493 * Return: pointer to handle if successful, NULL on error
2494 */
scmi_handle_get(struct device * dev)2495 static struct scmi_handle *scmi_handle_get(struct device *dev)
2496 {
2497 struct list_head *p;
2498 struct scmi_info *info;
2499 struct scmi_handle *handle = NULL;
2500
2501 mutex_lock(&scmi_list_mutex);
2502 list_for_each(p, &scmi_list) {
2503 info = list_entry(p, struct scmi_info, node);
2504 if (dev->parent == info->dev) {
2505 info->users++;
2506 handle = &info->handle;
2507 break;
2508 }
2509 }
2510 mutex_unlock(&scmi_list_mutex);
2511
2512 return handle;
2513 }
2514
2515 /**
2516 * scmi_handle_put() - Release the handle acquired by scmi_handle_get
2517 *
2518 * @handle: handle acquired by scmi_handle_get
2519 *
2520 * NOTE: The function does not track individual clients of the framework
2521 * and is expected to be maintained by caller of SCMI protocol library.
2522 * scmi_handle_put must be balanced with successful scmi_handle_get
2523 *
2524 * Return: 0 is successfully released
2525 * if null was passed, it returns -EINVAL;
2526 */
scmi_handle_put(const struct scmi_handle * handle)2527 static int scmi_handle_put(const struct scmi_handle *handle)
2528 {
2529 struct scmi_info *info;
2530
2531 if (!handle)
2532 return -EINVAL;
2533
2534 info = handle_to_scmi_info(handle);
2535 mutex_lock(&scmi_list_mutex);
2536 if (!WARN_ON(!info->users))
2537 info->users--;
2538 mutex_unlock(&scmi_list_mutex);
2539
2540 return 0;
2541 }
2542
scmi_device_link_add(struct device * consumer,struct device * supplier)2543 static void scmi_device_link_add(struct device *consumer,
2544 struct device *supplier)
2545 {
2546 struct device_link *link;
2547
2548 link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER);
2549
2550 WARN_ON(!link);
2551 }
2552
scmi_set_handle(struct scmi_device * scmi_dev)2553 static void scmi_set_handle(struct scmi_device *scmi_dev)
2554 {
2555 scmi_dev->handle = scmi_handle_get(&scmi_dev->dev);
2556 if (scmi_dev->handle)
2557 scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev);
2558 }
2559
__scmi_xfer_info_init(struct scmi_info * sinfo,struct scmi_xfers_info * info)2560 static int __scmi_xfer_info_init(struct scmi_info *sinfo,
2561 struct scmi_xfers_info *info)
2562 {
2563 int i;
2564 struct scmi_xfer *xfer;
2565 struct device *dev = sinfo->dev;
2566 const struct scmi_desc *desc = sinfo->desc;
2567
2568 /* Pre-allocated messages, no more than what hdr.seq can support */
2569 if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
2570 dev_err(dev,
2571 "Invalid maximum messages %d, not in range [1 - %lu]\n",
2572 info->max_msg, MSG_TOKEN_MAX);
2573 return -EINVAL;
2574 }
2575
2576 hash_init(info->pending_xfers);
2577
2578 /* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
2579 info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX,
2580 GFP_KERNEL);
2581 if (!info->xfer_alloc_table)
2582 return -ENOMEM;
2583
2584 /*
2585 * Preallocate a number of xfers equal to max inflight messages,
2586 * pre-initialize the buffer pointer to pre-allocated buffers and
2587 * attach all of them to the free list
2588 */
2589 INIT_HLIST_HEAD(&info->free_xfers);
2590 for (i = 0; i < info->max_msg; i++) {
2591 xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
2592 if (!xfer)
2593 return -ENOMEM;
2594
2595 xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
2596 GFP_KERNEL);
2597 if (!xfer->rx.buf)
2598 return -ENOMEM;
2599
2600 xfer->tx.buf = xfer->rx.buf;
2601 init_completion(&xfer->done);
2602 spin_lock_init(&xfer->lock);
2603
2604 /* Add initialized xfer to the free list */
2605 hlist_add_head(&xfer->node, &info->free_xfers);
2606 }
2607
2608 spin_lock_init(&info->xfer_lock);
2609
2610 return 0;
2611 }
2612
scmi_channels_max_msg_configure(struct scmi_info * sinfo)2613 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
2614 {
2615 const struct scmi_desc *desc = sinfo->desc;
2616
2617 if (!desc->ops->get_max_msg) {
2618 sinfo->tx_minfo.max_msg = desc->max_msg;
2619 sinfo->rx_minfo.max_msg = desc->max_msg;
2620 } else {
2621 struct scmi_chan_info *base_cinfo;
2622
2623 base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
2624 if (!base_cinfo)
2625 return -EINVAL;
2626 sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
2627
2628 /* RX channel is optional so can be skipped */
2629 base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
2630 if (base_cinfo)
2631 sinfo->rx_minfo.max_msg =
2632 desc->ops->get_max_msg(base_cinfo);
2633 }
2634
2635 return 0;
2636 }
2637
scmi_xfer_info_init(struct scmi_info * sinfo)2638 static int scmi_xfer_info_init(struct scmi_info *sinfo)
2639 {
2640 int ret;
2641
2642 ret = scmi_channels_max_msg_configure(sinfo);
2643 if (ret)
2644 return ret;
2645
2646 ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
2647 if (!ret && !idr_is_empty(&sinfo->rx_idr))
2648 ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
2649
2650 return ret;
2651 }
2652
scmi_chan_setup(struct scmi_info * info,struct device_node * of_node,int prot_id,bool tx)2653 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node,
2654 int prot_id, bool tx)
2655 {
2656 int ret, idx;
2657 char name[32];
2658 struct scmi_chan_info *cinfo;
2659 struct idr *idr;
2660 struct scmi_device *tdev = NULL;
2661
2662 /* Transmit channel is first entry i.e. index 0 */
2663 idx = tx ? 0 : 1;
2664 idr = tx ? &info->tx_idr : &info->rx_idr;
2665
2666 if (!info->desc->ops->chan_available(of_node, idx)) {
2667 cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
2668 if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
2669 return -EINVAL;
2670 goto idr_alloc;
2671 }
2672
2673 cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
2674 if (!cinfo)
2675 return -ENOMEM;
2676
2677 cinfo->is_p2a = !tx;
2678 cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms;
2679 cinfo->max_msg_size = info->desc->max_msg_size;
2680
2681 /* Create a unique name for this transport device */
2682 snprintf(name, 32, "__scmi_transport_device_%s_%02X",
2683 idx ? "rx" : "tx", prot_id);
2684 /* Create a uniquely named, dedicated transport device for this chan */
2685 tdev = scmi_device_create(of_node, info->dev, prot_id, name);
2686 if (!tdev) {
2687 dev_err(info->dev,
2688 "failed to create transport device (%s)\n", name);
2689 devm_kfree(info->dev, cinfo);
2690 return -EINVAL;
2691 }
2692 of_node_get(of_node);
2693
2694 cinfo->id = prot_id;
2695 cinfo->dev = &tdev->dev;
2696 ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
2697 if (ret) {
2698 of_node_put(of_node);
2699 scmi_device_destroy(info->dev, prot_id, name);
2700 devm_kfree(info->dev, cinfo);
2701 return ret;
2702 }
2703
2704 if (tx && is_polling_required(cinfo, info->desc)) {
2705 if (is_transport_polling_capable(info->desc))
2706 dev_info(&tdev->dev,
2707 "Enabled polling mode TX channel - prot_id:%d\n",
2708 prot_id);
2709 else
2710 dev_warn(&tdev->dev,
2711 "Polling mode NOT supported by transport.\n");
2712 }
2713
2714 idr_alloc:
2715 ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
2716 if (ret != prot_id) {
2717 dev_err(info->dev,
2718 "unable to allocate SCMI idr slot err %d\n", ret);
2719 /* Destroy channel and device only if created by this call. */
2720 if (tdev) {
2721 of_node_put(of_node);
2722 scmi_device_destroy(info->dev, prot_id, name);
2723 devm_kfree(info->dev, cinfo);
2724 }
2725 return ret;
2726 }
2727
2728 cinfo->handle = &info->handle;
2729 return 0;
2730 }
2731
2732 static inline int
scmi_txrx_setup(struct scmi_info * info,struct device_node * of_node,int prot_id)2733 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node,
2734 int prot_id)
2735 {
2736 int ret = scmi_chan_setup(info, of_node, prot_id, true);
2737
2738 if (!ret) {
2739 /* Rx is optional, report only memory errors */
2740 ret = scmi_chan_setup(info, of_node, prot_id, false);
2741 if (ret && ret != -ENOMEM)
2742 ret = 0;
2743 }
2744
2745 if (ret)
2746 dev_err(info->dev,
2747 "failed to setup channel for protocol:0x%X\n", prot_id);
2748
2749 return ret;
2750 }
2751
2752 /**
2753 * scmi_channels_setup - Helper to initialize all required channels
2754 *
2755 * @info: The SCMI instance descriptor.
2756 *
2757 * Initialize all the channels found described in the DT against the underlying
2758 * configured transport using custom defined dedicated devices instead of
2759 * borrowing devices from the SCMI drivers; this way channels are initialized
2760 * upfront during core SCMI stack probing and are no more coupled with SCMI
2761 * devices used by SCMI drivers.
2762 *
2763 * Note that, even though a pair of TX/RX channels is associated to each
2764 * protocol defined in the DT, a distinct freshly initialized channel is
2765 * created only if the DT node for the protocol at hand describes a dedicated
2766 * channel: in all the other cases the common BASE protocol channel is reused.
2767 *
2768 * Return: 0 on Success
2769 */
scmi_channels_setup(struct scmi_info * info)2770 static int scmi_channels_setup(struct scmi_info *info)
2771 {
2772 int ret;
2773 struct device_node *top_np = info->dev->of_node;
2774
2775 /* Initialize a common generic channel at first */
2776 ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE);
2777 if (ret)
2778 return ret;
2779
2780 for_each_available_child_of_node_scoped(top_np, child) {
2781 u32 prot_id;
2782
2783 if (of_property_read_u32(child, "reg", &prot_id))
2784 continue;
2785
2786 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2787 dev_err(info->dev,
2788 "Out of range protocol %d\n", prot_id);
2789
2790 ret = scmi_txrx_setup(info, child, prot_id);
2791 if (ret)
2792 return ret;
2793 }
2794
2795 return 0;
2796 }
2797
scmi_chan_destroy(int id,void * p,void * idr)2798 static int scmi_chan_destroy(int id, void *p, void *idr)
2799 {
2800 struct scmi_chan_info *cinfo = p;
2801
2802 if (cinfo->dev) {
2803 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
2804 struct scmi_device *sdev = to_scmi_dev(cinfo->dev);
2805
2806 of_node_put(cinfo->dev->of_node);
2807 scmi_device_destroy(info->dev, id, sdev->name);
2808 cinfo->dev = NULL;
2809 }
2810
2811 idr_remove(idr, id);
2812
2813 return 0;
2814 }
2815
scmi_cleanup_channels(struct scmi_info * info,struct idr * idr)2816 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr)
2817 {
2818 /* At first free all channels at the transport layer ... */
2819 idr_for_each(idr, info->desc->ops->chan_free, idr);
2820
2821 /* ...then destroy all underlying devices */
2822 idr_for_each(idr, scmi_chan_destroy, idr);
2823
2824 idr_destroy(idr);
2825 }
2826
scmi_cleanup_txrx_channels(struct scmi_info * info)2827 static void scmi_cleanup_txrx_channels(struct scmi_info *info)
2828 {
2829 scmi_cleanup_channels(info, &info->tx_idr);
2830
2831 scmi_cleanup_channels(info, &info->rx_idr);
2832 }
2833
scmi_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)2834 static int scmi_bus_notifier(struct notifier_block *nb,
2835 unsigned long action, void *data)
2836 {
2837 struct scmi_info *info = bus_nb_to_scmi_info(nb);
2838 struct scmi_device *sdev = to_scmi_dev(data);
2839
2840 /* Skip devices of different SCMI instances */
2841 if (sdev->dev.parent != info->dev)
2842 return NOTIFY_DONE;
2843
2844 switch (action) {
2845 case BUS_NOTIFY_BIND_DRIVER:
2846 /* setup handle now as the transport is ready */
2847 scmi_set_handle(sdev);
2848 break;
2849 case BUS_NOTIFY_UNBOUND_DRIVER:
2850 scmi_handle_put(sdev->handle);
2851 sdev->handle = NULL;
2852 break;
2853 default:
2854 return NOTIFY_DONE;
2855 }
2856
2857 dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev),
2858 sdev->name, action == BUS_NOTIFY_BIND_DRIVER ?
2859 "about to be BOUND." : "UNBOUND.");
2860
2861 return NOTIFY_OK;
2862 }
2863
scmi_device_request_notifier(struct notifier_block * nb,unsigned long action,void * data)2864 static int scmi_device_request_notifier(struct notifier_block *nb,
2865 unsigned long action, void *data)
2866 {
2867 struct device_node *np;
2868 struct scmi_device_id *id_table = data;
2869 struct scmi_info *info = req_nb_to_scmi_info(nb);
2870
2871 np = idr_find(&info->active_protocols, id_table->protocol_id);
2872 if (!np)
2873 return NOTIFY_DONE;
2874
2875 dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n",
2876 action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-",
2877 id_table->name, id_table->protocol_id);
2878
2879 switch (action) {
2880 case SCMI_BUS_NOTIFY_DEVICE_REQUEST:
2881 scmi_create_protocol_devices(np, info, id_table->protocol_id,
2882 id_table->name);
2883 break;
2884 case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST:
2885 scmi_destroy_protocol_devices(info, id_table->protocol_id,
2886 id_table->name);
2887 break;
2888 default:
2889 return NOTIFY_DONE;
2890 }
2891
2892 return NOTIFY_OK;
2893 }
2894
2895 static const char * const dbg_counter_strs[] = {
2896 "sent_ok",
2897 "sent_fail",
2898 "sent_fail_polling_unsupported",
2899 "sent_fail_channel_not_found",
2900 "response_ok",
2901 "notification_ok",
2902 "delayed_response_ok",
2903 "xfers_response_timeout",
2904 "xfers_response_polled_timeout",
2905 "response_polled_ok",
2906 "err_msg_unexpected",
2907 "err_msg_invalid",
2908 "err_msg_nomem",
2909 "err_protocol",
2910 "xfers_inflight",
2911 };
2912
reset_all_on_write(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)2913 static ssize_t reset_all_on_write(struct file *filp, const char __user *buf,
2914 size_t count, loff_t *ppos)
2915 {
2916 struct scmi_debug_info *dbg = filp->private_data;
2917
2918 for (int i = 0; i < SCMI_DEBUG_COUNTERS_LAST; i++)
2919 atomic_set(&dbg->counters[i], 0);
2920
2921 return count;
2922 }
2923
2924 static const struct file_operations fops_reset_counts = {
2925 .owner = THIS_MODULE,
2926 .open = simple_open,
2927 .write = reset_all_on_write,
2928 };
2929
scmi_debugfs_counters_setup(struct scmi_debug_info * dbg,struct dentry * trans)2930 static void scmi_debugfs_counters_setup(struct scmi_debug_info *dbg,
2931 struct dentry *trans)
2932 {
2933 struct dentry *counters;
2934 int idx;
2935
2936 counters = debugfs_create_dir("counters", trans);
2937
2938 for (idx = 0; idx < SCMI_DEBUG_COUNTERS_LAST; idx++)
2939 debugfs_create_atomic_t(dbg_counter_strs[idx], 0600, counters,
2940 &dbg->counters[idx]);
2941
2942 debugfs_create_file("reset", 0200, counters, dbg, &fops_reset_counts);
2943 }
2944
scmi_debugfs_common_cleanup(void * d)2945 static void scmi_debugfs_common_cleanup(void *d)
2946 {
2947 struct scmi_debug_info *dbg = d;
2948
2949 if (!dbg)
2950 return;
2951
2952 debugfs_remove_recursive(dbg->top_dentry);
2953 kfree(dbg->name);
2954 kfree(dbg->type);
2955 }
2956
scmi_debugfs_common_setup(struct scmi_info * info)2957 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info)
2958 {
2959 char top_dir[16];
2960 struct dentry *trans, *top_dentry;
2961 struct scmi_debug_info *dbg;
2962 const char *c_ptr = NULL;
2963
2964 dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL);
2965 if (!dbg)
2966 return NULL;
2967
2968 dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL);
2969 if (!dbg->name) {
2970 devm_kfree(info->dev, dbg);
2971 return NULL;
2972 }
2973
2974 of_property_read_string(info->dev->of_node, "compatible", &c_ptr);
2975 dbg->type = kstrdup(c_ptr, GFP_KERNEL);
2976 if (!dbg->type) {
2977 kfree(dbg->name);
2978 devm_kfree(info->dev, dbg);
2979 return NULL;
2980 }
2981
2982 snprintf(top_dir, 16, "%d", info->id);
2983 top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry);
2984 trans = debugfs_create_dir("transport", top_dentry);
2985
2986 dbg->is_atomic = info->desc->atomic_enabled &&
2987 is_transport_polling_capable(info->desc);
2988
2989 debugfs_create_str("instance_name", 0400, top_dentry,
2990 (char **)&dbg->name);
2991
2992 debugfs_create_u32("atomic_threshold_us", 0400, top_dentry,
2993 (u32 *)&info->desc->atomic_threshold);
2994
2995 debugfs_create_str("type", 0400, trans, (char **)&dbg->type);
2996
2997 debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic);
2998
2999 debugfs_create_u32("max_rx_timeout_ms", 0400, trans,
3000 (u32 *)&info->desc->max_rx_timeout_ms);
3001
3002 debugfs_create_u32("max_msg_size", 0400, trans,
3003 (u32 *)&info->desc->max_msg_size);
3004
3005 debugfs_create_u32("tx_max_msg", 0400, trans,
3006 (u32 *)&info->tx_minfo.max_msg);
3007
3008 debugfs_create_u32("rx_max_msg", 0400, trans,
3009 (u32 *)&info->rx_minfo.max_msg);
3010
3011 if (IS_ENABLED(CONFIG_ARM_SCMI_DEBUG_COUNTERS))
3012 scmi_debugfs_counters_setup(dbg, trans);
3013
3014 dbg->top_dentry = top_dentry;
3015
3016 if (devm_add_action_or_reset(info->dev,
3017 scmi_debugfs_common_cleanup, dbg))
3018 return NULL;
3019
3020 return dbg;
3021 }
3022
scmi_debugfs_raw_mode_setup(struct scmi_info * info)3023 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info)
3024 {
3025 int id, num_chans = 0, ret = 0;
3026 struct scmi_chan_info *cinfo;
3027 u8 channels[SCMI_MAX_CHANNELS] = {};
3028 DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {};
3029
3030 /* Enumerate all channels to collect their ids */
3031 idr_for_each_entry(&info->tx_idr, cinfo, id) {
3032 /*
3033 * Cannot happen, but be defensive.
3034 * Zero as num_chans is ok, warn and carry on.
3035 */
3036 if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) {
3037 dev_warn(info->dev,
3038 "SCMI RAW - Error enumerating channels\n");
3039 break;
3040 }
3041
3042 if (!test_bit(cinfo->id, protos)) {
3043 channels[num_chans++] = cinfo->id;
3044 set_bit(cinfo->id, protos);
3045 }
3046 }
3047
3048 info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry,
3049 info->id, channels, num_chans,
3050 info->desc, info->tx_minfo.max_msg);
3051 if (IS_ERR(info->raw)) {
3052 dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n");
3053 ret = PTR_ERR(info->raw);
3054 info->raw = NULL;
3055 }
3056
3057 return ret;
3058 }
3059
scmi_transport_setup(struct device * dev)3060 static const struct scmi_desc *scmi_transport_setup(struct device *dev)
3061 {
3062 struct scmi_transport *trans;
3063 int ret;
3064
3065 trans = dev_get_platdata(dev);
3066 if (!trans || !trans->supplier || !trans->core_ops)
3067 return NULL;
3068
3069 if (!device_link_add(dev, trans->supplier, DL_FLAG_AUTOREMOVE_CONSUMER)) {
3070 dev_err(dev,
3071 "Adding link to supplier transport device failed\n");
3072 return NULL;
3073 }
3074
3075 /* Provide core transport ops */
3076 *trans->core_ops = &scmi_trans_core_ops;
3077
3078 dev_info(dev, "Using %s\n", dev_driver_string(trans->supplier));
3079
3080 ret = of_property_read_u32(dev->of_node, "arm,max-rx-timeout-ms",
3081 &trans->desc.max_rx_timeout_ms);
3082 if (ret && ret != -EINVAL)
3083 dev_err(dev, "Malformed arm,max-rx-timeout-ms DT property.\n");
3084
3085 ret = of_property_read_u32(dev->of_node, "arm,max-msg-size",
3086 &trans->desc.max_msg_size);
3087 if (ret && ret != -EINVAL)
3088 dev_err(dev, "Malformed arm,max-msg-size DT property.\n");
3089
3090 ret = of_property_read_u32(dev->of_node, "arm,max-msg",
3091 &trans->desc.max_msg);
3092 if (ret && ret != -EINVAL)
3093 dev_err(dev, "Malformed arm,max-msg DT property.\n");
3094
3095 dev_info(dev,
3096 "SCMI max-rx-timeout: %dms / max-msg-size: %dbytes / max-msg: %d\n",
3097 trans->desc.max_rx_timeout_ms, trans->desc.max_msg_size,
3098 trans->desc.max_msg);
3099
3100 /* System wide atomic threshold for atomic ops .. if any */
3101 if (!of_property_read_u32(dev->of_node, "atomic-threshold-us",
3102 &trans->desc.atomic_threshold))
3103 dev_info(dev,
3104 "SCMI System wide atomic threshold set to %u us\n",
3105 trans->desc.atomic_threshold);
3106
3107 return &trans->desc;
3108 }
3109
scmi_enable_matching_quirks(struct scmi_info * info)3110 static void scmi_enable_matching_quirks(struct scmi_info *info)
3111 {
3112 struct scmi_revision_info *rev = &info->version;
3113
3114 dev_dbg(info->dev, "Looking for quirks matching: %s/%s/0x%08X\n",
3115 rev->vendor_id, rev->sub_vendor_id, rev->impl_ver);
3116
3117 /* Enable applicable quirks */
3118 scmi_quirks_enable(info->dev, rev->vendor_id,
3119 rev->sub_vendor_id, rev->impl_ver);
3120 }
3121
scmi_probe(struct platform_device * pdev)3122 static int scmi_probe(struct platform_device *pdev)
3123 {
3124 int ret;
3125 char *err_str = "probe failure\n";
3126 struct scmi_handle *handle;
3127 const struct scmi_desc *desc;
3128 struct scmi_info *info;
3129 bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX);
3130 struct device *dev = &pdev->dev;
3131 struct device_node *child, *np = dev->of_node;
3132
3133 desc = scmi_transport_setup(dev);
3134 if (!desc) {
3135 err_str = "transport invalid\n";
3136 ret = -EINVAL;
3137 goto out_err;
3138 }
3139
3140 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
3141 if (!info)
3142 return -ENOMEM;
3143
3144 info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL);
3145 if (info->id < 0)
3146 return info->id;
3147
3148 info->dev = dev;
3149 info->desc = desc;
3150 info->bus_nb.notifier_call = scmi_bus_notifier;
3151 info->dev_req_nb.notifier_call = scmi_device_request_notifier;
3152 INIT_LIST_HEAD(&info->node);
3153 idr_init(&info->protocols);
3154 mutex_init(&info->protocols_mtx);
3155 idr_init(&info->active_protocols);
3156 mutex_init(&info->devreq_mtx);
3157
3158 platform_set_drvdata(pdev, info);
3159 idr_init(&info->tx_idr);
3160 idr_init(&info->rx_idr);
3161
3162 handle = &info->handle;
3163 handle->dev = info->dev;
3164 handle->version = &info->version;
3165 handle->devm_protocol_acquire = scmi_devm_protocol_acquire;
3166 handle->devm_protocol_get = scmi_devm_protocol_get;
3167 handle->devm_protocol_put = scmi_devm_protocol_put;
3168 handle->is_transport_atomic = scmi_is_transport_atomic;
3169
3170 /* Setup all channels described in the DT at first */
3171 ret = scmi_channels_setup(info);
3172 if (ret) {
3173 err_str = "failed to setup channels\n";
3174 goto clear_ida;
3175 }
3176
3177 ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb);
3178 if (ret) {
3179 err_str = "failed to register bus notifier\n";
3180 goto clear_txrx_setup;
3181 }
3182
3183 ret = blocking_notifier_chain_register(&scmi_requested_devices_nh,
3184 &info->dev_req_nb);
3185 if (ret) {
3186 err_str = "failed to register device notifier\n";
3187 goto clear_bus_notifier;
3188 }
3189
3190 ret = scmi_xfer_info_init(info);
3191 if (ret) {
3192 err_str = "failed to init xfers pool\n";
3193 goto clear_dev_req_notifier;
3194 }
3195
3196 if (scmi_top_dentry) {
3197 info->dbg = scmi_debugfs_common_setup(info);
3198 if (!info->dbg)
3199 dev_warn(dev, "Failed to setup SCMI debugfs.\n");
3200
3201 if (info->dbg && IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
3202 ret = scmi_debugfs_raw_mode_setup(info);
3203 if (!coex) {
3204 if (ret)
3205 goto clear_dev_req_notifier;
3206
3207 /* Bail out anyway when coex disabled. */
3208 return 0;
3209 }
3210
3211 /* Coex enabled, carry on in any case. */
3212 dev_info(dev, "SCMI RAW Mode COEX enabled !\n");
3213 }
3214 }
3215
3216 if (scmi_notification_init(handle))
3217 dev_err(dev, "SCMI Notifications NOT available.\n");
3218
3219 if (info->desc->atomic_enabled &&
3220 !is_transport_polling_capable(info->desc))
3221 dev_err(dev,
3222 "Transport is not polling capable. Atomic mode not supported.\n");
3223
3224 /*
3225 * Trigger SCMI Base protocol initialization.
3226 * It's mandatory and won't be ever released/deinit until the
3227 * SCMI stack is shutdown/unloaded as a whole.
3228 */
3229 ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
3230 if (ret) {
3231 err_str = "unable to communicate with SCMI\n";
3232 if (coex) {
3233 dev_err(dev, "%s", err_str);
3234 return 0;
3235 }
3236 goto notification_exit;
3237 }
3238
3239 mutex_lock(&scmi_list_mutex);
3240 list_add_tail(&info->node, &scmi_list);
3241 mutex_unlock(&scmi_list_mutex);
3242
3243 scmi_enable_matching_quirks(info);
3244
3245 for_each_available_child_of_node(np, child) {
3246 u32 prot_id;
3247
3248 if (of_property_read_u32(child, "reg", &prot_id))
3249 continue;
3250
3251 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
3252 dev_err(dev, "Out of range protocol %d\n", prot_id);
3253
3254 if (!scmi_is_protocol_implemented(handle, prot_id)) {
3255 dev_err(dev, "SCMI protocol %d not implemented\n",
3256 prot_id);
3257 continue;
3258 }
3259
3260 /*
3261 * Save this valid DT protocol descriptor amongst
3262 * @active_protocols for this SCMI instance/
3263 */
3264 ret = idr_alloc(&info->active_protocols, child,
3265 prot_id, prot_id + 1, GFP_KERNEL);
3266 if (ret != prot_id) {
3267 dev_err(dev, "SCMI protocol %d already activated. Skip\n",
3268 prot_id);
3269 continue;
3270 }
3271
3272 of_node_get(child);
3273 scmi_create_protocol_devices(child, info, prot_id, NULL);
3274 }
3275
3276 return 0;
3277
3278 notification_exit:
3279 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
3280 scmi_raw_mode_cleanup(info->raw);
3281 scmi_notification_exit(&info->handle);
3282 clear_dev_req_notifier:
3283 blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
3284 &info->dev_req_nb);
3285 clear_bus_notifier:
3286 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
3287 clear_txrx_setup:
3288 scmi_cleanup_txrx_channels(info);
3289 clear_ida:
3290 ida_free(&scmi_id, info->id);
3291
3292 out_err:
3293 return dev_err_probe(dev, ret, "%s", err_str);
3294 }
3295
scmi_remove(struct platform_device * pdev)3296 static void scmi_remove(struct platform_device *pdev)
3297 {
3298 int id;
3299 struct scmi_info *info = platform_get_drvdata(pdev);
3300 struct device_node *child;
3301
3302 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
3303 scmi_raw_mode_cleanup(info->raw);
3304
3305 mutex_lock(&scmi_list_mutex);
3306 if (info->users)
3307 dev_warn(&pdev->dev,
3308 "Still active SCMI users will be forcibly unbound.\n");
3309 list_del(&info->node);
3310 mutex_unlock(&scmi_list_mutex);
3311
3312 scmi_notification_exit(&info->handle);
3313
3314 mutex_lock(&info->protocols_mtx);
3315 idr_destroy(&info->protocols);
3316 mutex_unlock(&info->protocols_mtx);
3317
3318 idr_for_each_entry(&info->active_protocols, child, id)
3319 of_node_put(child);
3320 idr_destroy(&info->active_protocols);
3321
3322 blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
3323 &info->dev_req_nb);
3324 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
3325
3326 /* Safe to free channels since no more users */
3327 scmi_cleanup_txrx_channels(info);
3328
3329 ida_free(&scmi_id, info->id);
3330 }
3331
protocol_version_show(struct device * dev,struct device_attribute * attr,char * buf)3332 static ssize_t protocol_version_show(struct device *dev,
3333 struct device_attribute *attr, char *buf)
3334 {
3335 struct scmi_info *info = dev_get_drvdata(dev);
3336
3337 return sprintf(buf, "%u.%u\n", info->version.major_ver,
3338 info->version.minor_ver);
3339 }
3340 static DEVICE_ATTR_RO(protocol_version);
3341
firmware_version_show(struct device * dev,struct device_attribute * attr,char * buf)3342 static ssize_t firmware_version_show(struct device *dev,
3343 struct device_attribute *attr, char *buf)
3344 {
3345 struct scmi_info *info = dev_get_drvdata(dev);
3346
3347 return sprintf(buf, "0x%x\n", info->version.impl_ver);
3348 }
3349 static DEVICE_ATTR_RO(firmware_version);
3350
vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)3351 static ssize_t vendor_id_show(struct device *dev,
3352 struct device_attribute *attr, char *buf)
3353 {
3354 struct scmi_info *info = dev_get_drvdata(dev);
3355
3356 return sprintf(buf, "%s\n", info->version.vendor_id);
3357 }
3358 static DEVICE_ATTR_RO(vendor_id);
3359
sub_vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)3360 static ssize_t sub_vendor_id_show(struct device *dev,
3361 struct device_attribute *attr, char *buf)
3362 {
3363 struct scmi_info *info = dev_get_drvdata(dev);
3364
3365 return sprintf(buf, "%s\n", info->version.sub_vendor_id);
3366 }
3367 static DEVICE_ATTR_RO(sub_vendor_id);
3368
3369 static struct attribute *versions_attrs[] = {
3370 &dev_attr_firmware_version.attr,
3371 &dev_attr_protocol_version.attr,
3372 &dev_attr_vendor_id.attr,
3373 &dev_attr_sub_vendor_id.attr,
3374 NULL,
3375 };
3376 ATTRIBUTE_GROUPS(versions);
3377
3378 static struct platform_driver scmi_driver = {
3379 .driver = {
3380 .name = "arm-scmi",
3381 .suppress_bind_attrs = true,
3382 .dev_groups = versions_groups,
3383 },
3384 .probe = scmi_probe,
3385 .remove = scmi_remove,
3386 };
3387
scmi_debugfs_init(void)3388 static struct dentry *scmi_debugfs_init(void)
3389 {
3390 struct dentry *d;
3391
3392 d = debugfs_create_dir("scmi", NULL);
3393 if (IS_ERR(d)) {
3394 pr_err("Could NOT create SCMI top dentry.\n");
3395 return NULL;
3396 }
3397
3398 return d;
3399 }
3400
scmi_inflight_count(const struct scmi_handle * handle)3401 int scmi_inflight_count(const struct scmi_handle *handle)
3402 {
3403 if (IS_ENABLED(CONFIG_ARM_SCMI_DEBUG_COUNTERS)) {
3404 struct scmi_info *info = handle_to_scmi_info(handle);
3405
3406 if (!info->dbg)
3407 return 0;
3408
3409 return atomic_read(&info->dbg->counters[XFERS_INFLIGHT]);
3410 } else {
3411 return 0;
3412 }
3413 }
3414
scmi_driver_init(void)3415 static int __init scmi_driver_init(void)
3416 {
3417 scmi_quirks_initialize();
3418
3419 /* Bail out if no SCMI transport was configured */
3420 if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
3421 return -EINVAL;
3422
3423 if (IS_ENABLED(CONFIG_ARM_SCMI_HAVE_SHMEM))
3424 scmi_trans_core_ops.shmem = scmi_shared_mem_operations_get();
3425
3426 if (IS_ENABLED(CONFIG_ARM_SCMI_HAVE_MSG))
3427 scmi_trans_core_ops.msg = scmi_message_operations_get();
3428
3429 if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS))
3430 scmi_top_dentry = scmi_debugfs_init();
3431
3432 scmi_base_register();
3433
3434 scmi_clock_register();
3435 scmi_perf_register();
3436 scmi_power_register();
3437 scmi_reset_register();
3438 scmi_sensors_register();
3439 scmi_voltage_register();
3440 scmi_system_register();
3441 scmi_powercap_register();
3442 scmi_pinctrl_register();
3443
3444 return platform_driver_register(&scmi_driver);
3445 }
3446 module_init(scmi_driver_init);
3447
scmi_driver_exit(void)3448 static void __exit scmi_driver_exit(void)
3449 {
3450 scmi_base_unregister();
3451
3452 scmi_clock_unregister();
3453 scmi_perf_unregister();
3454 scmi_power_unregister();
3455 scmi_reset_unregister();
3456 scmi_sensors_unregister();
3457 scmi_voltage_unregister();
3458 scmi_system_unregister();
3459 scmi_powercap_unregister();
3460 scmi_pinctrl_unregister();
3461
3462 platform_driver_unregister(&scmi_driver);
3463
3464 debugfs_remove_recursive(scmi_top_dentry);
3465 }
3466 module_exit(scmi_driver_exit);
3467
3468 MODULE_ALIAS("platform:arm-scmi");
3469 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
3470 MODULE_DESCRIPTION("ARM SCMI protocol driver");
3471 MODULE_LICENSE("GPL v2");
3472