xref: /linux/drivers/firmware/arm_scmi/driver.c (revision 24a0ffefe3f097aa8fe6997a731a71487dd0721f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Message Protocol driver
4  *
5  * SCMI Message Protocol is used between the System Control Processor(SCP)
6  * and the Application Processors(AP). The Message Handling Unit(MHU)
7  * provides a mechanism for inter-processor communication between SCP's
8  * Cortex M3 and AP.
9  *
10  * SCP offers control and management of the core/cluster power states,
11  * various power domain DVFS including the core/cluster, certain system
12  * clocks configuration, thermal sensors and many others.
13  *
14  * Copyright (C) 2018-2025 ARM Ltd.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/idr.h>
24 #include <linux/io.h>
25 #include <linux/io-64-nonatomic-hi-lo.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/ktime.h>
29 #include <linux/hashtable.h>
30 #include <linux/list.h>
31 #include <linux/module.h>
32 #include <linux/of.h>
33 #include <linux/platform_device.h>
34 #include <linux/processor.h>
35 #include <linux/refcount.h>
36 #include <linux/slab.h>
37 #include <linux/xarray.h>
38 
39 #include "common.h"
40 #include "notify.h"
41 #include "quirks.h"
42 
43 #include "raw_mode.h"
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/scmi.h>
47 
48 #define SCMI_VENDOR_MODULE_ALIAS_FMT	"scmi-protocol-0x%02x-%s"
49 
50 static DEFINE_IDA(scmi_id);
51 
52 static DEFINE_XARRAY(scmi_protocols);
53 
54 /* List of all SCMI devices active in system */
55 static LIST_HEAD(scmi_list);
56 /* Protection for the entire list */
57 static DEFINE_MUTEX(scmi_list_mutex);
58 /* Track the unique id for the transfers for debug & profiling purpose */
59 static atomic_t transfer_last_id;
60 
61 static struct dentry *scmi_top_dentry;
62 
63 /**
64  * struct scmi_xfers_info - Structure to manage transfer information
65  *
66  * @xfer_alloc_table: Bitmap table for allocated messages.
67  *	Index of this bitmap table is also used for message
68  *	sequence identifier.
69  * @xfer_lock: Protection for message allocation
70  * @max_msg: Maximum number of messages that can be pending
71  * @free_xfers: A free list for available to use xfers. It is initialized with
72  *		a number of xfers equal to the maximum allowed in-flight
73  *		messages.
74  * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
75  *		   currently in-flight messages.
76  */
77 struct scmi_xfers_info {
78 	unsigned long *xfer_alloc_table;
79 	spinlock_t xfer_lock;
80 	int max_msg;
81 	struct hlist_head free_xfers;
82 	DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
83 };
84 
85 /**
86  * struct scmi_protocol_instance  - Describe an initialized protocol instance.
87  * @handle: Reference to the SCMI handle associated to this protocol instance.
88  * @proto: A reference to the protocol descriptor.
89  * @gid: A reference for per-protocol devres management.
90  * @users: A refcount to track effective users of this protocol.
91  * @priv: Reference for optional protocol private data.
92  * @version: Protocol version supported by the platform as detected at runtime.
93  * @negotiated_version: When the platform supports a newer protocol version,
94  *			the agent will try to negotiate with the platform the
95  *			usage of the newest version known to it, since
96  *			backward compatibility is NOT automatically assured.
97  *			This field is NON-zero when a successful negotiation
98  *			has completed.
99  * @ph: An embedded protocol handle that will be passed down to protocol
100  *	initialization code to identify this instance.
101  *
102  * Each protocol is initialized independently once for each SCMI platform in
103  * which is defined by DT and implemented by the SCMI server fw.
104  */
105 struct scmi_protocol_instance {
106 	const struct scmi_handle	*handle;
107 	const struct scmi_protocol	*proto;
108 	void				*gid;
109 	refcount_t			users;
110 	void				*priv;
111 	unsigned int			version;
112 	unsigned int			negotiated_version;
113 	struct scmi_protocol_handle	ph;
114 };
115 
116 #define ph_to_pi(h)	container_of(h, struct scmi_protocol_instance, ph)
117 
118 /**
119  * struct scmi_info - Structure representing a SCMI instance
120  *
121  * @id: A sequence number starting from zero identifying this instance
122  * @dev: Device pointer
123  * @desc: SoC description for this instance
124  * @version: SCMI revision information containing protocol version,
125  *	implementation version and (sub-)vendor identification.
126  * @handle: Instance of SCMI handle to send to clients
127  * @tx_minfo: Universal Transmit Message management info
128  * @rx_minfo: Universal Receive Message management info
129  * @tx_idr: IDR object to map protocol id to Tx channel info pointer
130  * @rx_idr: IDR object to map protocol id to Rx channel info pointer
131  * @protocols: IDR for protocols' instance descriptors initialized for
132  *	       this SCMI instance: populated on protocol's first attempted
133  *	       usage.
134  * @protocols_mtx: A mutex to protect protocols instances initialization.
135  * @protocols_imp: List of protocols implemented, currently maximum of
136  *		   scmi_revision_info.num_protocols elements allocated by the
137  *		   base protocol
138  * @active_protocols: IDR storing device_nodes for protocols actually defined
139  *		      in the DT and confirmed as implemented by fw.
140  * @notify_priv: Pointer to private data structure specific to notifications.
141  * @node: List head
142  * @users: Number of users of this instance
143  * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus
144  * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi
145  *		bus
146  * @devreq_mtx: A mutex to serialize device creation for this SCMI instance
147  * @dbg: A pointer to debugfs related data (if any)
148  * @raw: An opaque reference handle used by SCMI Raw mode.
149  */
150 struct scmi_info {
151 	int id;
152 	struct device *dev;
153 	const struct scmi_desc *desc;
154 	struct scmi_revision_info version;
155 	struct scmi_handle handle;
156 	struct scmi_xfers_info tx_minfo;
157 	struct scmi_xfers_info rx_minfo;
158 	struct idr tx_idr;
159 	struct idr rx_idr;
160 	struct idr protocols;
161 	/* Ensure mutual exclusive access to protocols instance array */
162 	struct mutex protocols_mtx;
163 	u8 *protocols_imp;
164 	struct idr active_protocols;
165 	void *notify_priv;
166 	struct list_head node;
167 	int users;
168 	struct notifier_block bus_nb;
169 	struct notifier_block dev_req_nb;
170 	/* Serialize device creation process for this instance */
171 	struct mutex devreq_mtx;
172 	struct scmi_debug_info *dbg;
173 	void *raw;
174 };
175 
176 #define handle_to_scmi_info(h)	container_of(h, struct scmi_info, handle)
177 #define tx_minfo_to_scmi_info(h) container_of(h, struct scmi_info, tx_minfo)
178 #define bus_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, bus_nb)
179 #define req_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, dev_req_nb)
180 
181 static void scmi_rx_callback(struct scmi_chan_info *cinfo,
182 			     u32 msg_hdr, void *priv);
183 static void scmi_bad_message_trace(struct scmi_chan_info *cinfo,
184 				   u32 msg_hdr, enum scmi_bad_msg err);
185 
186 static struct scmi_transport_core_operations scmi_trans_core_ops = {
187 	.bad_message_trace = scmi_bad_message_trace,
188 	.rx_callback = scmi_rx_callback,
189 };
190 
191 static unsigned long
192 scmi_vendor_protocol_signature(unsigned int protocol_id, char *vendor_id,
193 			       char *sub_vendor_id, u32 impl_ver)
194 {
195 	char *signature, *p;
196 	unsigned long hash = 0;
197 
198 	/* vendor_id/sub_vendor_id guaranteed <= SCMI_SHORT_NAME_MAX_SIZE */
199 	signature = kasprintf(GFP_KERNEL, "%02X|%s|%s|0x%08X", protocol_id,
200 			      vendor_id ?: "", sub_vendor_id ?: "", impl_ver);
201 	if (!signature)
202 		return 0;
203 
204 	p = signature;
205 	while (*p)
206 		hash = partial_name_hash(tolower(*p++), hash);
207 	hash = end_name_hash(hash);
208 
209 	kfree(signature);
210 
211 	return hash;
212 }
213 
214 static unsigned long
215 scmi_protocol_key_calculate(int protocol_id, char *vendor_id,
216 			    char *sub_vendor_id, u32 impl_ver)
217 {
218 	if (protocol_id < SCMI_PROTOCOL_VENDOR_BASE)
219 		return protocol_id;
220 	else
221 		return scmi_vendor_protocol_signature(protocol_id, vendor_id,
222 						      sub_vendor_id, impl_ver);
223 }
224 
225 static const struct scmi_protocol *
226 __scmi_vendor_protocol_lookup(int protocol_id, char *vendor_id,
227 			      char *sub_vendor_id, u32 impl_ver)
228 {
229 	unsigned long key;
230 	struct scmi_protocol *proto = NULL;
231 
232 	key = scmi_protocol_key_calculate(protocol_id, vendor_id,
233 					  sub_vendor_id, impl_ver);
234 	if (key)
235 		proto = xa_load(&scmi_protocols, key);
236 
237 	return proto;
238 }
239 
240 static const struct scmi_protocol *
241 scmi_vendor_protocol_lookup(int protocol_id, char *vendor_id,
242 			    char *sub_vendor_id, u32 impl_ver)
243 {
244 	const struct scmi_protocol *proto = NULL;
245 
246 	/* Searching for closest match ...*/
247 	proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id,
248 					      sub_vendor_id, impl_ver);
249 	if (proto)
250 		return proto;
251 
252 	/* Any match just on vendor/sub_vendor ? */
253 	if (impl_ver) {
254 		proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id,
255 						      sub_vendor_id, 0);
256 		if (proto)
257 			return proto;
258 	}
259 
260 	/* Any match just on the vendor ? */
261 	if (sub_vendor_id)
262 		proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id,
263 						      NULL, 0);
264 	return proto;
265 }
266 
267 static const struct scmi_protocol *
268 scmi_vendor_protocol_get(int protocol_id, struct scmi_revision_info *version)
269 {
270 	const struct scmi_protocol *proto;
271 
272 	proto = scmi_vendor_protocol_lookup(protocol_id, version->vendor_id,
273 					    version->sub_vendor_id,
274 					    version->impl_ver);
275 	if (!proto) {
276 		int ret;
277 
278 		pr_debug("Looking for '" SCMI_VENDOR_MODULE_ALIAS_FMT "'\n",
279 			 protocol_id, version->vendor_id);
280 
281 		/* Note that vendor_id is mandatory for vendor protocols */
282 		ret = request_module(SCMI_VENDOR_MODULE_ALIAS_FMT,
283 				     protocol_id, version->vendor_id);
284 		if (ret) {
285 			pr_warn("Problem loading module for protocol 0x%x\n",
286 				protocol_id);
287 			return NULL;
288 		}
289 
290 		/* Lookup again, once modules loaded */
291 		proto = scmi_vendor_protocol_lookup(protocol_id,
292 						    version->vendor_id,
293 						    version->sub_vendor_id,
294 						    version->impl_ver);
295 	}
296 
297 	if (proto)
298 		pr_info("Loaded SCMI Vendor Protocol 0x%x - %s %s %X\n",
299 			protocol_id, proto->vendor_id ?: "",
300 			proto->sub_vendor_id ?: "", proto->impl_ver);
301 
302 	return proto;
303 }
304 
305 static const struct scmi_protocol *
306 scmi_protocol_get(int protocol_id, struct scmi_revision_info *version)
307 {
308 	const struct scmi_protocol *proto = NULL;
309 
310 	if (protocol_id < SCMI_PROTOCOL_VENDOR_BASE)
311 		proto = xa_load(&scmi_protocols, protocol_id);
312 	else
313 		proto = scmi_vendor_protocol_get(protocol_id, version);
314 
315 	if (!proto || !try_module_get(proto->owner)) {
316 		pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id);
317 		return NULL;
318 	}
319 
320 	pr_debug("Found SCMI Protocol 0x%x\n", protocol_id);
321 
322 	return proto;
323 }
324 
325 static void scmi_protocol_put(const struct scmi_protocol *proto)
326 {
327 	if (proto)
328 		module_put(proto->owner);
329 }
330 
331 static int scmi_vendor_protocol_check(const struct scmi_protocol *proto)
332 {
333 	if (!proto->vendor_id) {
334 		pr_err("missing vendor_id for protocol 0x%x\n", proto->id);
335 		return -EINVAL;
336 	}
337 
338 	if (strlen(proto->vendor_id) >= SCMI_SHORT_NAME_MAX_SIZE) {
339 		pr_err("malformed vendor_id for protocol 0x%x\n", proto->id);
340 		return -EINVAL;
341 	}
342 
343 	if (proto->sub_vendor_id &&
344 	    strlen(proto->sub_vendor_id) >= SCMI_SHORT_NAME_MAX_SIZE) {
345 		pr_err("malformed sub_vendor_id for protocol 0x%x\n",
346 		       proto->id);
347 		return -EINVAL;
348 	}
349 
350 	return 0;
351 }
352 
353 int scmi_protocol_register(const struct scmi_protocol *proto)
354 {
355 	int ret;
356 	unsigned long key;
357 
358 	if (!proto) {
359 		pr_err("invalid protocol\n");
360 		return -EINVAL;
361 	}
362 
363 	if (!proto->instance_init) {
364 		pr_err("missing init for protocol 0x%x\n", proto->id);
365 		return -EINVAL;
366 	}
367 
368 	if (proto->id >= SCMI_PROTOCOL_VENDOR_BASE &&
369 	    scmi_vendor_protocol_check(proto))
370 		return -EINVAL;
371 
372 	/*
373 	 * Calculate a protocol key to register this protocol with the core;
374 	 * key value 0 is considered invalid.
375 	 */
376 	key = scmi_protocol_key_calculate(proto->id, proto->vendor_id,
377 					  proto->sub_vendor_id,
378 					  proto->impl_ver);
379 	if (!key)
380 		return -EINVAL;
381 
382 	ret = xa_insert(&scmi_protocols, key, (void *)proto, GFP_KERNEL);
383 	if (ret) {
384 		pr_err("unable to allocate SCMI protocol slot for 0x%x - err %d\n",
385 		       proto->id, ret);
386 		return ret;
387 	}
388 
389 	pr_debug("Registered SCMI Protocol 0x%x - %s  %s  0x%08X\n",
390 		 proto->id, proto->vendor_id, proto->sub_vendor_id,
391 		 proto->impl_ver);
392 
393 	return 0;
394 }
395 EXPORT_SYMBOL_GPL(scmi_protocol_register);
396 
397 void scmi_protocol_unregister(const struct scmi_protocol *proto)
398 {
399 	unsigned long key;
400 
401 	key = scmi_protocol_key_calculate(proto->id, proto->vendor_id,
402 					  proto->sub_vendor_id,
403 					  proto->impl_ver);
404 	if (!key)
405 		return;
406 
407 	xa_erase(&scmi_protocols, key);
408 
409 	pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id);
410 }
411 EXPORT_SYMBOL_GPL(scmi_protocol_unregister);
412 
413 /**
414  * scmi_create_protocol_devices  - Create devices for all pending requests for
415  * this SCMI instance.
416  *
417  * @np: The device node describing the protocol
418  * @info: The SCMI instance descriptor
419  * @prot_id: The protocol ID
420  * @name: The optional name of the device to be created: if not provided this
421  *	  call will lead to the creation of all the devices currently requested
422  *	  for the specified protocol.
423  */
424 static void scmi_create_protocol_devices(struct device_node *np,
425 					 struct scmi_info *info,
426 					 int prot_id, const char *name)
427 {
428 	mutex_lock(&info->devreq_mtx);
429 	scmi_device_create(np, info->dev, prot_id, name);
430 	mutex_unlock(&info->devreq_mtx);
431 }
432 
433 static void scmi_destroy_protocol_devices(struct scmi_info *info,
434 					  int prot_id, const char *name)
435 {
436 	mutex_lock(&info->devreq_mtx);
437 	scmi_device_destroy(info->dev, prot_id, name);
438 	mutex_unlock(&info->devreq_mtx);
439 }
440 
441 void scmi_notification_instance_data_set(const struct scmi_handle *handle,
442 					 void *priv)
443 {
444 	struct scmi_info *info = handle_to_scmi_info(handle);
445 
446 	info->notify_priv = priv;
447 	/* Ensure updated protocol private date are visible */
448 	smp_wmb();
449 }
450 
451 void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
452 {
453 	struct scmi_info *info = handle_to_scmi_info(handle);
454 
455 	/* Ensure protocols_private_data has been updated */
456 	smp_rmb();
457 	return info->notify_priv;
458 }
459 
460 /**
461  * scmi_xfer_token_set  - Reserve and set new token for the xfer at hand
462  *
463  * @minfo: Pointer to Tx/Rx Message management info based on channel type
464  * @xfer: The xfer to act upon
465  *
466  * Pick the next unused monotonically increasing token and set it into
467  * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
468  * reuse of freshly completed or timed-out xfers, thus mitigating the risk
469  * of incorrect association of a late and expired xfer with a live in-flight
470  * transaction, both happening to re-use the same token identifier.
471  *
472  * Since platform is NOT required to answer our request in-order we should
473  * account for a few rare but possible scenarios:
474  *
475  *  - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
476  *    using find_next_zero_bit() starting from candidate next_token bit
477  *
478  *  - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
479  *    are plenty of free tokens at start, so try a second pass using
480  *    find_next_zero_bit() and starting from 0.
481  *
482  *  X = used in-flight
483  *
484  * Normal
485  * ------
486  *
487  *		|- xfer_id picked
488  *   -----------+----------------------------------------------------------
489  *   | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
490  *   ----------------------------------------------------------------------
491  *		^
492  *		|- next_token
493  *
494  * Out-of-order pending at start
495  * -----------------------------
496  *
497  *	  |- xfer_id picked, last_token fixed
498  *   -----+----------------------------------------------------------------
499  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
500  *   ----------------------------------------------------------------------
501  *    ^
502  *    |- next_token
503  *
504  *
505  * Out-of-order pending at end
506  * ---------------------------
507  *
508  *	  |- xfer_id picked, last_token fixed
509  *   -----+----------------------------------------------------------------
510  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
511  *   ----------------------------------------------------------------------
512  *								^
513  *								|- next_token
514  *
515  * Context: Assumes to be called with @xfer_lock already acquired.
516  *
517  * Return: 0 on Success or error
518  */
519 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
520 			       struct scmi_xfer *xfer)
521 {
522 	unsigned long xfer_id, next_token;
523 
524 	/*
525 	 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
526 	 * using the pre-allocated transfer_id as a base.
527 	 * Note that the global transfer_id is shared across all message types
528 	 * so there could be holes in the allocated set of monotonic sequence
529 	 * numbers, but that is going to limit the effectiveness of the
530 	 * mitigation only in very rare limit conditions.
531 	 */
532 	next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
533 
534 	/* Pick the next available xfer_id >= next_token */
535 	xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
536 				     MSG_TOKEN_MAX, next_token);
537 	if (xfer_id == MSG_TOKEN_MAX) {
538 		/*
539 		 * After heavily out-of-order responses, there are no free
540 		 * tokens ahead, but only at start of xfer_alloc_table so
541 		 * try again from the beginning.
542 		 */
543 		xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
544 					     MSG_TOKEN_MAX, 0);
545 		/*
546 		 * Something is wrong if we got here since there can be a
547 		 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
548 		 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
549 		 */
550 		if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
551 			return -ENOMEM;
552 	}
553 
554 	/* Update +/- last_token accordingly if we skipped some hole */
555 	if (xfer_id != next_token)
556 		atomic_add((int)(xfer_id - next_token), &transfer_last_id);
557 
558 	xfer->hdr.seq = (u16)xfer_id;
559 
560 	return 0;
561 }
562 
563 /**
564  * scmi_xfer_token_clear  - Release the token
565  *
566  * @minfo: Pointer to Tx/Rx Message management info based on channel type
567  * @xfer: The xfer to act upon
568  */
569 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
570 					 struct scmi_xfer *xfer)
571 {
572 	clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
573 }
574 
575 /**
576  * scmi_xfer_inflight_register_unlocked  - Register the xfer as in-flight
577  *
578  * @xfer: The xfer to register
579  * @minfo: Pointer to Tx/Rx Message management info based on channel type
580  *
581  * Note that this helper assumes that the xfer to be registered as in-flight
582  * had been built using an xfer sequence number which still corresponds to a
583  * free slot in the xfer_alloc_table.
584  *
585  * Context: Assumes to be called with @xfer_lock already acquired.
586  */
587 static inline void
588 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer,
589 				     struct scmi_xfers_info *minfo)
590 {
591 	/* In this context minfo will be tx_minfo due to the xfer pending */
592 	struct scmi_info *info = tx_minfo_to_scmi_info(minfo);
593 
594 	/* Set in-flight */
595 	set_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
596 	hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq);
597 	scmi_inc_count(info->dbg, XFERS_INFLIGHT);
598 
599 	xfer->pending = true;
600 }
601 
602 /**
603  * scmi_xfer_inflight_register  - Try to register an xfer as in-flight
604  *
605  * @xfer: The xfer to register
606  * @minfo: Pointer to Tx/Rx Message management info based on channel type
607  *
608  * Note that this helper does NOT assume anything about the sequence number
609  * that was baked into the provided xfer, so it checks at first if it can
610  * be mapped to a free slot and fails with an error if another xfer with the
611  * same sequence number is currently still registered as in-flight.
612  *
613  * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer
614  *	   could not rbe mapped to a free slot in the xfer_alloc_table.
615  */
616 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer,
617 				       struct scmi_xfers_info *minfo)
618 {
619 	int ret = 0;
620 	unsigned long flags;
621 
622 	spin_lock_irqsave(&minfo->xfer_lock, flags);
623 	if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table))
624 		scmi_xfer_inflight_register_unlocked(xfer, minfo);
625 	else
626 		ret = -EBUSY;
627 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
628 
629 	return ret;
630 }
631 
632 /**
633  * scmi_xfer_raw_inflight_register  - An helper to register the given xfer as in
634  * flight on the TX channel, if possible.
635  *
636  * @handle: Pointer to SCMI entity handle
637  * @xfer: The xfer to register
638  *
639  * Return: 0 on Success, error otherwise
640  */
641 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle,
642 				    struct scmi_xfer *xfer)
643 {
644 	struct scmi_info *info = handle_to_scmi_info(handle);
645 
646 	return scmi_xfer_inflight_register(xfer, &info->tx_minfo);
647 }
648 
649 /**
650  * scmi_xfer_pending_set  - Pick a proper sequence number and mark the xfer
651  * as pending in-flight
652  *
653  * @xfer: The xfer to act upon
654  * @minfo: Pointer to Tx/Rx Message management info based on channel type
655  *
656  * Return: 0 on Success or error otherwise
657  */
658 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer,
659 					struct scmi_xfers_info *minfo)
660 {
661 	int ret;
662 	unsigned long flags;
663 
664 	spin_lock_irqsave(&minfo->xfer_lock, flags);
665 	/* Set a new monotonic token as the xfer sequence number */
666 	ret = scmi_xfer_token_set(minfo, xfer);
667 	if (!ret)
668 		scmi_xfer_inflight_register_unlocked(xfer, minfo);
669 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
670 
671 	return ret;
672 }
673 
674 /**
675  * scmi_xfer_get() - Allocate one message
676  *
677  * @handle: Pointer to SCMI entity handle
678  * @minfo: Pointer to Tx/Rx Message management info based on channel type
679  *
680  * Helper function which is used by various message functions that are
681  * exposed to clients of this driver for allocating a message traffic event.
682  *
683  * Picks an xfer from the free list @free_xfers (if any available) and perform
684  * a basic initialization.
685  *
686  * Note that, at this point, still no sequence number is assigned to the
687  * allocated xfer, nor it is registered as a pending transaction.
688  *
689  * The successfully initialized xfer is refcounted.
690  *
691  * Context: Holds @xfer_lock while manipulating @free_xfers.
692  *
693  * Return: An initialized xfer if all went fine, else pointer error.
694  */
695 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
696 				       struct scmi_xfers_info *minfo)
697 {
698 	unsigned long flags;
699 	struct scmi_xfer *xfer;
700 
701 	spin_lock_irqsave(&minfo->xfer_lock, flags);
702 	if (hlist_empty(&minfo->free_xfers)) {
703 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
704 		return ERR_PTR(-ENOMEM);
705 	}
706 
707 	/* grab an xfer from the free_list */
708 	xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
709 	hlist_del_init(&xfer->node);
710 
711 	/*
712 	 * Allocate transfer_id early so that can be used also as base for
713 	 * monotonic sequence number generation if needed.
714 	 */
715 	xfer->transfer_id = atomic_inc_return(&transfer_last_id);
716 
717 	refcount_set(&xfer->users, 1);
718 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
719 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
720 
721 	return xfer;
722 }
723 
724 /**
725  * scmi_xfer_raw_get  - Helper to get a bare free xfer from the TX channel
726  *
727  * @handle: Pointer to SCMI entity handle
728  *
729  * Note that xfer is taken from the TX channel structures.
730  *
731  * Return: A valid xfer on Success, or an error-pointer otherwise
732  */
733 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle)
734 {
735 	struct scmi_xfer *xfer;
736 	struct scmi_info *info = handle_to_scmi_info(handle);
737 
738 	xfer = scmi_xfer_get(handle, &info->tx_minfo);
739 	if (!IS_ERR(xfer))
740 		xfer->flags |= SCMI_XFER_FLAG_IS_RAW;
741 
742 	return xfer;
743 }
744 
745 /**
746  * scmi_xfer_raw_channel_get  - Helper to get a reference to the proper channel
747  * to use for a specific protocol_id Raw transaction.
748  *
749  * @handle: Pointer to SCMI entity handle
750  * @protocol_id: Identifier of the protocol
751  *
752  * Note that in a regular SCMI stack, usually, a protocol has to be defined in
753  * the DT to have an associated channel and be usable; but in Raw mode any
754  * protocol in range is allowed, re-using the Base channel, so as to enable
755  * fuzzing on any protocol without the need of a fully compiled DT.
756  *
757  * Return: A reference to the channel to use, or an ERR_PTR
758  */
759 struct scmi_chan_info *
760 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id)
761 {
762 	struct scmi_chan_info *cinfo;
763 	struct scmi_info *info = handle_to_scmi_info(handle);
764 
765 	cinfo = idr_find(&info->tx_idr, protocol_id);
766 	if (!cinfo) {
767 		if (protocol_id == SCMI_PROTOCOL_BASE)
768 			return ERR_PTR(-EINVAL);
769 		/* Use Base channel for protocols not defined for DT */
770 		cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE);
771 		if (!cinfo)
772 			return ERR_PTR(-EINVAL);
773 		dev_warn_once(handle->dev,
774 			      "Using Base channel for protocol 0x%X\n",
775 			      protocol_id);
776 	}
777 
778 	return cinfo;
779 }
780 
781 /**
782  * __scmi_xfer_put() - Release a message
783  *
784  * @minfo: Pointer to Tx/Rx Message management info based on channel type
785  * @xfer: message that was reserved by scmi_xfer_get
786  *
787  * After refcount check, possibly release an xfer, clearing the token slot,
788  * removing xfer from @pending_xfers and putting it back into free_xfers.
789  *
790  * This holds a spinlock to maintain integrity of internal data structures.
791  */
792 static void
793 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
794 {
795 	unsigned long flags;
796 
797 	spin_lock_irqsave(&minfo->xfer_lock, flags);
798 	if (refcount_dec_and_test(&xfer->users)) {
799 		if (xfer->pending) {
800 			struct scmi_info *info = tx_minfo_to_scmi_info(minfo);
801 
802 			scmi_xfer_token_clear(minfo, xfer);
803 			hash_del(&xfer->node);
804 			xfer->pending = false;
805 
806 			scmi_dec_count(info->dbg, XFERS_INFLIGHT);
807 		}
808 		xfer->flags = 0;
809 		hlist_add_head(&xfer->node, &minfo->free_xfers);
810 	}
811 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
812 }
813 
814 /**
815  * scmi_xfer_raw_put  - Release an xfer that was taken by @scmi_xfer_raw_get
816  *
817  * @handle: Pointer to SCMI entity handle
818  * @xfer: A reference to the xfer to put
819  *
820  * Note that as with other xfer_put() handlers the xfer is really effectively
821  * released only if there are no more users on the system.
822  */
823 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer)
824 {
825 	struct scmi_info *info = handle_to_scmi_info(handle);
826 
827 	return __scmi_xfer_put(&info->tx_minfo, xfer);
828 }
829 
830 /**
831  * scmi_xfer_lookup_unlocked  -  Helper to lookup an xfer_id
832  *
833  * @minfo: Pointer to Tx/Rx Message management info based on channel type
834  * @xfer_id: Token ID to lookup in @pending_xfers
835  *
836  * Refcounting is untouched.
837  *
838  * Context: Assumes to be called with @xfer_lock already acquired.
839  *
840  * Return: A valid xfer on Success or error otherwise
841  */
842 static struct scmi_xfer *
843 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
844 {
845 	struct scmi_xfer *xfer = NULL;
846 
847 	if (test_bit(xfer_id, minfo->xfer_alloc_table))
848 		xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
849 
850 	return xfer ?: ERR_PTR(-EINVAL);
851 }
852 
853 /**
854  * scmi_bad_message_trace  - A helper to trace weird messages
855  *
856  * @cinfo: A reference to the channel descriptor on which the message was
857  *	   received
858  * @msg_hdr: Message header to track
859  * @err: A specific error code used as a status value in traces.
860  *
861  * This helper can be used to trace any kind of weird, incomplete, unexpected,
862  * timed-out message that arrives and as such, can be traced only referring to
863  * the header content, since the payload is missing/unreliable.
864  */
865 static void scmi_bad_message_trace(struct scmi_chan_info *cinfo, u32 msg_hdr,
866 				   enum scmi_bad_msg err)
867 {
868 	char *tag;
869 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
870 
871 	switch (MSG_XTRACT_TYPE(msg_hdr)) {
872 	case MSG_TYPE_COMMAND:
873 		tag = "!RESP";
874 		break;
875 	case MSG_TYPE_DELAYED_RESP:
876 		tag = "!DLYD";
877 		break;
878 	case MSG_TYPE_NOTIFICATION:
879 		tag = "!NOTI";
880 		break;
881 	default:
882 		tag = "!UNKN";
883 		break;
884 	}
885 
886 	trace_scmi_msg_dump(info->id, cinfo->id,
887 			    MSG_XTRACT_PROT_ID(msg_hdr),
888 			    MSG_XTRACT_ID(msg_hdr), tag,
889 			    MSG_XTRACT_TOKEN(msg_hdr), err, NULL, 0);
890 }
891 
892 /**
893  * scmi_msg_response_validate  - Validate message type against state of related
894  * xfer
895  *
896  * @cinfo: A reference to the channel descriptor.
897  * @msg_type: Message type to check
898  * @xfer: A reference to the xfer to validate against @msg_type
899  *
900  * This function checks if @msg_type is congruent with the current state of
901  * a pending @xfer; if an asynchronous delayed response is received before the
902  * related synchronous response (Out-of-Order Delayed Response) the missing
903  * synchronous response is assumed to be OK and completed, carrying on with the
904  * Delayed Response: this is done to address the case in which the underlying
905  * SCMI transport can deliver such out-of-order responses.
906  *
907  * Context: Assumes to be called with xfer->lock already acquired.
908  *
909  * Return: 0 on Success, error otherwise
910  */
911 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
912 					     u8 msg_type,
913 					     struct scmi_xfer *xfer)
914 {
915 	/*
916 	 * Even if a response was indeed expected on this slot at this point,
917 	 * a buggy platform could wrongly reply feeding us an unexpected
918 	 * delayed response we're not prepared to handle: bail-out safely
919 	 * blaming firmware.
920 	 */
921 	if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
922 		dev_err(cinfo->dev,
923 			"Delayed Response for %d not expected! Buggy F/W ?\n",
924 			xfer->hdr.seq);
925 		return -EINVAL;
926 	}
927 
928 	switch (xfer->state) {
929 	case SCMI_XFER_SENT_OK:
930 		if (msg_type == MSG_TYPE_DELAYED_RESP) {
931 			/*
932 			 * Delayed Response expected but delivered earlier.
933 			 * Assume message RESPONSE was OK and skip state.
934 			 */
935 			xfer->hdr.status = SCMI_SUCCESS;
936 			xfer->state = SCMI_XFER_RESP_OK;
937 			complete(&xfer->done);
938 			dev_warn(cinfo->dev,
939 				 "Received valid OoO Delayed Response for %d\n",
940 				 xfer->hdr.seq);
941 		}
942 		break;
943 	case SCMI_XFER_RESP_OK:
944 		if (msg_type != MSG_TYPE_DELAYED_RESP)
945 			return -EINVAL;
946 		break;
947 	case SCMI_XFER_DRESP_OK:
948 		/* No further message expected once in SCMI_XFER_DRESP_OK */
949 		return -EINVAL;
950 	}
951 
952 	return 0;
953 }
954 
955 /**
956  * scmi_xfer_state_update  - Update xfer state
957  *
958  * @xfer: A reference to the xfer to update
959  * @msg_type: Type of message being processed.
960  *
961  * Note that this message is assumed to have been already successfully validated
962  * by @scmi_msg_response_validate(), so here we just update the state.
963  *
964  * Context: Assumes to be called on an xfer exclusively acquired using the
965  *	    busy flag.
966  */
967 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
968 {
969 	xfer->hdr.type = msg_type;
970 
971 	/* Unknown command types were already discarded earlier */
972 	if (xfer->hdr.type == MSG_TYPE_COMMAND)
973 		xfer->state = SCMI_XFER_RESP_OK;
974 	else
975 		xfer->state = SCMI_XFER_DRESP_OK;
976 }
977 
978 static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
979 {
980 	int ret;
981 
982 	ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
983 
984 	return ret == SCMI_XFER_FREE;
985 }
986 
987 /**
988  * scmi_xfer_command_acquire  -  Helper to lookup and acquire a command xfer
989  *
990  * @cinfo: A reference to the channel descriptor.
991  * @msg_hdr: A message header to use as lookup key
992  *
993  * When a valid xfer is found for the sequence number embedded in the provided
994  * msg_hdr, reference counting is properly updated and exclusive access to this
995  * xfer is granted till released with @scmi_xfer_command_release.
996  *
997  * Return: A valid @xfer on Success or error otherwise.
998  */
999 static inline struct scmi_xfer *
1000 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
1001 {
1002 	int ret;
1003 	unsigned long flags;
1004 	struct scmi_xfer *xfer;
1005 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1006 	struct scmi_xfers_info *minfo = &info->tx_minfo;
1007 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
1008 	u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
1009 
1010 	/* Are we even expecting this? */
1011 	spin_lock_irqsave(&minfo->xfer_lock, flags);
1012 	xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
1013 	if (IS_ERR(xfer)) {
1014 		dev_err(cinfo->dev,
1015 			"Message for %d type %d is not expected!\n",
1016 			xfer_id, msg_type);
1017 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
1018 
1019 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNEXPECTED);
1020 		scmi_inc_count(info->dbg, ERR_MSG_UNEXPECTED);
1021 
1022 		return xfer;
1023 	}
1024 	refcount_inc(&xfer->users);
1025 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
1026 
1027 	spin_lock_irqsave(&xfer->lock, flags);
1028 	ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
1029 	/*
1030 	 * If a pending xfer was found which was also in a congruent state with
1031 	 * the received message, acquire exclusive access to it setting the busy
1032 	 * flag.
1033 	 * Spins only on the rare limit condition of concurrent reception of
1034 	 * RESP and DRESP for the same xfer.
1035 	 */
1036 	if (!ret) {
1037 		spin_until_cond(scmi_xfer_acquired(xfer));
1038 		scmi_xfer_state_update(xfer, msg_type);
1039 	}
1040 	spin_unlock_irqrestore(&xfer->lock, flags);
1041 
1042 	if (ret) {
1043 		dev_err(cinfo->dev,
1044 			"Invalid message type:%d for %d - HDR:0x%X  state:%d\n",
1045 			msg_type, xfer_id, msg_hdr, xfer->state);
1046 
1047 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_INVALID);
1048 		scmi_inc_count(info->dbg, ERR_MSG_INVALID);
1049 
1050 		/* On error the refcount incremented above has to be dropped */
1051 		__scmi_xfer_put(minfo, xfer);
1052 		xfer = ERR_PTR(-EINVAL);
1053 	}
1054 
1055 	return xfer;
1056 }
1057 
1058 static inline void scmi_xfer_command_release(struct scmi_info *info,
1059 					     struct scmi_xfer *xfer)
1060 {
1061 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
1062 	__scmi_xfer_put(&info->tx_minfo, xfer);
1063 }
1064 
1065 static inline void scmi_clear_channel(struct scmi_info *info,
1066 				      struct scmi_chan_info *cinfo)
1067 {
1068 	if (!cinfo->is_p2a) {
1069 		dev_warn(cinfo->dev, "Invalid clear on A2P channel !\n");
1070 		return;
1071 	}
1072 
1073 	if (info->desc->ops->clear_channel)
1074 		info->desc->ops->clear_channel(cinfo);
1075 }
1076 
1077 static void scmi_handle_notification(struct scmi_chan_info *cinfo,
1078 				     u32 msg_hdr, void *priv)
1079 {
1080 	struct scmi_xfer *xfer;
1081 	struct device *dev = cinfo->dev;
1082 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1083 	struct scmi_xfers_info *minfo = &info->rx_minfo;
1084 	ktime_t ts;
1085 
1086 	ts = ktime_get_boottime();
1087 	xfer = scmi_xfer_get(cinfo->handle, minfo);
1088 	if (IS_ERR(xfer)) {
1089 		dev_err(dev, "failed to get free message slot (%ld)\n",
1090 			PTR_ERR(xfer));
1091 
1092 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_NOMEM);
1093 		scmi_inc_count(info->dbg, ERR_MSG_NOMEM);
1094 
1095 		scmi_clear_channel(info, cinfo);
1096 		return;
1097 	}
1098 
1099 	unpack_scmi_header(msg_hdr, &xfer->hdr);
1100 	if (priv)
1101 		/* Ensure order between xfer->priv store and following ops */
1102 		smp_store_mb(xfer->priv, priv);
1103 	info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
1104 					    xfer);
1105 
1106 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1107 			    xfer->hdr.id, "NOTI", xfer->hdr.seq,
1108 			    xfer->hdr.status, xfer->rx.buf, xfer->rx.len);
1109 	scmi_inc_count(info->dbg, NOTIFICATION_OK);
1110 
1111 	scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
1112 		    xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
1113 
1114 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
1115 			   xfer->hdr.protocol_id, xfer->hdr.seq,
1116 			   MSG_TYPE_NOTIFICATION);
1117 
1118 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1119 		xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr);
1120 		scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE,
1121 					cinfo->id);
1122 	}
1123 
1124 	__scmi_xfer_put(minfo, xfer);
1125 
1126 	scmi_clear_channel(info, cinfo);
1127 }
1128 
1129 static void scmi_handle_response(struct scmi_chan_info *cinfo,
1130 				 u32 msg_hdr, void *priv)
1131 {
1132 	struct scmi_xfer *xfer;
1133 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1134 
1135 	xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
1136 	if (IS_ERR(xfer)) {
1137 		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
1138 			scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv);
1139 
1140 		if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
1141 			scmi_clear_channel(info, cinfo);
1142 		return;
1143 	}
1144 
1145 	/* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
1146 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
1147 		xfer->rx.len = info->desc->max_msg_size;
1148 
1149 	if (priv)
1150 		/* Ensure order between xfer->priv store and following ops */
1151 		smp_store_mb(xfer->priv, priv);
1152 	info->desc->ops->fetch_response(cinfo, xfer);
1153 
1154 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1155 			    xfer->hdr.id,
1156 			    xfer->hdr.type == MSG_TYPE_DELAYED_RESP ?
1157 			    (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") :
1158 			    (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"),
1159 			    xfer->hdr.seq, xfer->hdr.status,
1160 			    xfer->rx.buf, xfer->rx.len);
1161 
1162 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
1163 			   xfer->hdr.protocol_id, xfer->hdr.seq,
1164 			   xfer->hdr.type);
1165 
1166 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
1167 		scmi_clear_channel(info, cinfo);
1168 		complete(xfer->async_done);
1169 		scmi_inc_count(info->dbg, DELAYED_RESPONSE_OK);
1170 	} else {
1171 		complete(&xfer->done);
1172 		scmi_inc_count(info->dbg, RESPONSE_OK);
1173 	}
1174 
1175 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1176 		/*
1177 		 * When in polling mode avoid to queue the Raw xfer on the IRQ
1178 		 * RX path since it will be already queued at the end of the TX
1179 		 * poll loop.
1180 		 */
1181 		if (!xfer->hdr.poll_completion ||
1182 		    xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
1183 			scmi_raw_message_report(info->raw, xfer,
1184 						SCMI_RAW_REPLY_QUEUE,
1185 						cinfo->id);
1186 	}
1187 
1188 	scmi_xfer_command_release(info, xfer);
1189 }
1190 
1191 /**
1192  * scmi_rx_callback() - callback for receiving messages
1193  *
1194  * @cinfo: SCMI channel info
1195  * @msg_hdr: Message header
1196  * @priv: Transport specific private data.
1197  *
1198  * Processes one received message to appropriate transfer information and
1199  * signals completion of the transfer.
1200  *
1201  * NOTE: This function will be invoked in IRQ context, hence should be
1202  * as optimal as possible.
1203  */
1204 static void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr,
1205 			     void *priv)
1206 {
1207 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
1208 
1209 	switch (msg_type) {
1210 	case MSG_TYPE_NOTIFICATION:
1211 		scmi_handle_notification(cinfo, msg_hdr, priv);
1212 		break;
1213 	case MSG_TYPE_COMMAND:
1214 	case MSG_TYPE_DELAYED_RESP:
1215 		scmi_handle_response(cinfo, msg_hdr, priv);
1216 		break;
1217 	default:
1218 		WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
1219 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNKNOWN);
1220 		break;
1221 	}
1222 }
1223 
1224 /**
1225  * xfer_put() - Release a transmit message
1226  *
1227  * @ph: Pointer to SCMI protocol handle
1228  * @xfer: message that was reserved by xfer_get_init
1229  */
1230 static void xfer_put(const struct scmi_protocol_handle *ph,
1231 		     struct scmi_xfer *xfer)
1232 {
1233 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1234 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1235 
1236 	__scmi_xfer_put(&info->tx_minfo, xfer);
1237 }
1238 
1239 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
1240 				      struct scmi_xfer *xfer, ktime_t stop,
1241 				      bool *ooo)
1242 {
1243 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1244 
1245 	/*
1246 	 * Poll also on xfer->done so that polling can be forcibly terminated
1247 	 * in case of out-of-order receptions of delayed responses
1248 	 */
1249 	return info->desc->ops->poll_done(cinfo, xfer) ||
1250 	       (*ooo = try_wait_for_completion(&xfer->done)) ||
1251 	       ktime_after(ktime_get(), stop);
1252 }
1253 
1254 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc,
1255 			       struct scmi_chan_info *cinfo,
1256 			       struct scmi_xfer *xfer, unsigned int timeout_ms)
1257 {
1258 	int ret = 0;
1259 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1260 
1261 	if (xfer->hdr.poll_completion) {
1262 		/*
1263 		 * Real polling is needed only if transport has NOT declared
1264 		 * itself to support synchronous commands replies.
1265 		 */
1266 		if (!desc->sync_cmds_completed_on_ret) {
1267 			bool ooo = false;
1268 
1269 			/*
1270 			 * Poll on xfer using transport provided .poll_done();
1271 			 * assumes no completion interrupt was available.
1272 			 */
1273 			ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms);
1274 
1275 			spin_until_cond(scmi_xfer_done_no_timeout(cinfo, xfer,
1276 								  stop, &ooo));
1277 			if (!ooo && !info->desc->ops->poll_done(cinfo, xfer)) {
1278 				dev_err(dev,
1279 					"timed out in resp(caller: %pS) - polling\n",
1280 					(void *)_RET_IP_);
1281 				ret = -ETIMEDOUT;
1282 				scmi_inc_count(info->dbg, XFERS_RESPONSE_POLLED_TIMEOUT);
1283 			}
1284 		}
1285 
1286 		if (!ret) {
1287 			unsigned long flags;
1288 
1289 			/*
1290 			 * Do not fetch_response if an out-of-order delayed
1291 			 * response is being processed.
1292 			 */
1293 			spin_lock_irqsave(&xfer->lock, flags);
1294 			if (xfer->state == SCMI_XFER_SENT_OK) {
1295 				desc->ops->fetch_response(cinfo, xfer);
1296 				xfer->state = SCMI_XFER_RESP_OK;
1297 			}
1298 			spin_unlock_irqrestore(&xfer->lock, flags);
1299 
1300 			/* Trace polled replies. */
1301 			trace_scmi_msg_dump(info->id, cinfo->id,
1302 					    xfer->hdr.protocol_id, xfer->hdr.id,
1303 					    !SCMI_XFER_IS_RAW(xfer) ?
1304 					    "RESP" : "resp",
1305 					    xfer->hdr.seq, xfer->hdr.status,
1306 					    xfer->rx.buf, xfer->rx.len);
1307 			scmi_inc_count(info->dbg, RESPONSE_POLLED_OK);
1308 
1309 			if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1310 				scmi_raw_message_report(info->raw, xfer,
1311 							SCMI_RAW_REPLY_QUEUE,
1312 							cinfo->id);
1313 			}
1314 		}
1315 	} else {
1316 		/* And we wait for the response. */
1317 		if (!wait_for_completion_timeout(&xfer->done,
1318 						 msecs_to_jiffies(timeout_ms))) {
1319 			dev_err(dev, "timed out in resp(caller: %pS)\n",
1320 				(void *)_RET_IP_);
1321 			ret = -ETIMEDOUT;
1322 			scmi_inc_count(info->dbg, XFERS_RESPONSE_TIMEOUT);
1323 		}
1324 	}
1325 
1326 	return ret;
1327 }
1328 
1329 /**
1330  * scmi_wait_for_message_response  - An helper to group all the possible ways of
1331  * waiting for a synchronous message response.
1332  *
1333  * @cinfo: SCMI channel info
1334  * @xfer: Reference to the transfer being waited for.
1335  *
1336  * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
1337  * configuration flags like xfer->hdr.poll_completion.
1338  *
1339  * Return: 0 on Success, error otherwise.
1340  */
1341 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
1342 					  struct scmi_xfer *xfer)
1343 {
1344 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1345 	struct device *dev = info->dev;
1346 
1347 	trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id,
1348 				      xfer->hdr.protocol_id, xfer->hdr.seq,
1349 				      info->desc->max_rx_timeout_ms,
1350 				      xfer->hdr.poll_completion);
1351 
1352 	return scmi_wait_for_reply(dev, info->desc, cinfo, xfer,
1353 				   info->desc->max_rx_timeout_ms);
1354 }
1355 
1356 /**
1357  * scmi_xfer_raw_wait_for_message_response  - An helper to wait for a message
1358  * reply to an xfer raw request on a specific channel for the required timeout.
1359  *
1360  * @cinfo: SCMI channel info
1361  * @xfer: Reference to the transfer being waited for.
1362  * @timeout_ms: The maximum timeout in milliseconds
1363  *
1364  * Return: 0 on Success, error otherwise.
1365  */
1366 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo,
1367 					    struct scmi_xfer *xfer,
1368 					    unsigned int timeout_ms)
1369 {
1370 	int ret;
1371 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1372 	struct device *dev = info->dev;
1373 
1374 	ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms);
1375 	if (ret)
1376 		dev_dbg(dev, "timed out in RAW response - HDR:%08X\n",
1377 			pack_scmi_header(&xfer->hdr));
1378 
1379 	return ret;
1380 }
1381 
1382 /**
1383  * do_xfer() - Do one transfer
1384  *
1385  * @ph: Pointer to SCMI protocol handle
1386  * @xfer: Transfer to initiate and wait for response
1387  *
1388  * Return: -ETIMEDOUT in case of no response, if transmit error,
1389  *	return corresponding error, else if all goes well,
1390  *	return 0.
1391  */
1392 static int do_xfer(const struct scmi_protocol_handle *ph,
1393 		   struct scmi_xfer *xfer)
1394 {
1395 	int ret;
1396 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1397 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1398 	struct device *dev = info->dev;
1399 	struct scmi_chan_info *cinfo;
1400 
1401 	/* Check for polling request on custom command xfers at first */
1402 	if (xfer->hdr.poll_completion &&
1403 	    !is_transport_polling_capable(info->desc)) {
1404 		dev_warn_once(dev,
1405 			      "Polling mode is not supported by transport.\n");
1406 		scmi_inc_count(info->dbg, SENT_FAIL_POLLING_UNSUPPORTED);
1407 		return -EINVAL;
1408 	}
1409 
1410 	cinfo = idr_find(&info->tx_idr, pi->proto->id);
1411 	if (unlikely(!cinfo)) {
1412 		scmi_inc_count(info->dbg, SENT_FAIL_CHANNEL_NOT_FOUND);
1413 		return -EINVAL;
1414 	}
1415 	/* True ONLY if also supported by transport. */
1416 	if (is_polling_enabled(cinfo, info->desc))
1417 		xfer->hdr.poll_completion = true;
1418 
1419 	/*
1420 	 * Initialise protocol id now from protocol handle to avoid it being
1421 	 * overridden by mistake (or malice) by the protocol code mangling with
1422 	 * the scmi_xfer structure prior to this.
1423 	 */
1424 	xfer->hdr.protocol_id = pi->proto->id;
1425 	reinit_completion(&xfer->done);
1426 
1427 	trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
1428 			      xfer->hdr.protocol_id, xfer->hdr.seq,
1429 			      xfer->hdr.poll_completion,
1430 			      scmi_inflight_count(&info->handle));
1431 
1432 	/* Clear any stale status */
1433 	xfer->hdr.status = SCMI_SUCCESS;
1434 	xfer->state = SCMI_XFER_SENT_OK;
1435 	/*
1436 	 * Even though spinlocking is not needed here since no race is possible
1437 	 * on xfer->state due to the monotonically increasing tokens allocation,
1438 	 * we must anyway ensure xfer->state initialization is not re-ordered
1439 	 * after the .send_message() to be sure that on the RX path an early
1440 	 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
1441 	 */
1442 	smp_mb();
1443 
1444 	ret = info->desc->ops->send_message(cinfo, xfer);
1445 	if (ret < 0) {
1446 		dev_dbg(dev, "Failed to send message %d\n", ret);
1447 		scmi_inc_count(info->dbg, SENT_FAIL);
1448 		return ret;
1449 	}
1450 
1451 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1452 			    xfer->hdr.id, "CMND", xfer->hdr.seq,
1453 			    xfer->hdr.status, xfer->tx.buf, xfer->tx.len);
1454 	scmi_inc_count(info->dbg, SENT_OK);
1455 
1456 	ret = scmi_wait_for_message_response(cinfo, xfer);
1457 	if (!ret && xfer->hdr.status) {
1458 		ret = scmi_to_linux_errno(xfer->hdr.status);
1459 		scmi_inc_count(info->dbg, ERR_PROTOCOL);
1460 	}
1461 
1462 	if (info->desc->ops->mark_txdone)
1463 		info->desc->ops->mark_txdone(cinfo, ret, xfer);
1464 
1465 	trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
1466 			    xfer->hdr.protocol_id, xfer->hdr.seq, ret,
1467 			    scmi_inflight_count(&info->handle));
1468 
1469 	return ret;
1470 }
1471 
1472 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
1473 			      struct scmi_xfer *xfer)
1474 {
1475 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1476 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1477 
1478 	xfer->rx.len = info->desc->max_msg_size;
1479 }
1480 
1481 /**
1482  * do_xfer_with_response() - Do one transfer and wait until the delayed
1483  *	response is received
1484  *
1485  * @ph: Pointer to SCMI protocol handle
1486  * @xfer: Transfer to initiate and wait for response
1487  *
1488  * Using asynchronous commands in atomic/polling mode should be avoided since
1489  * it could cause long busy-waiting here, so ignore polling for the delayed
1490  * response and WARN if it was requested for this command transaction since
1491  * upper layers should refrain from issuing such kind of requests.
1492  *
1493  * The only other option would have been to refrain from using any asynchronous
1494  * command even if made available, when an atomic transport is detected, and
1495  * instead forcibly use the synchronous version (thing that can be easily
1496  * attained at the protocol layer), but this would also have led to longer
1497  * stalls of the channel for synchronous commands and possibly timeouts.
1498  * (in other words there is usually a good reason if a platform provides an
1499  *  asynchronous version of a command and we should prefer to use it...just not
1500  *  when using atomic/polling mode)
1501  *
1502  * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
1503  *	return corresponding error, else if all goes well, return 0.
1504  */
1505 static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
1506 				 struct scmi_xfer *xfer)
1507 {
1508 	int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
1509 	DECLARE_COMPLETION_ONSTACK(async_response);
1510 
1511 	xfer->async_done = &async_response;
1512 
1513 	/*
1514 	 * Delayed responses should not be polled, so an async command should
1515 	 * not have been used when requiring an atomic/poll context; WARN and
1516 	 * perform instead a sleeping wait.
1517 	 * (Note Async + IgnoreDelayedResponses are sent via do_xfer)
1518 	 */
1519 	WARN_ON_ONCE(xfer->hdr.poll_completion);
1520 
1521 	ret = do_xfer(ph, xfer);
1522 	if (!ret) {
1523 		if (!wait_for_completion_timeout(xfer->async_done, timeout)) {
1524 			dev_err(ph->dev,
1525 				"timed out in delayed resp(caller: %pS)\n",
1526 				(void *)_RET_IP_);
1527 			ret = -ETIMEDOUT;
1528 		} else if (xfer->hdr.status) {
1529 			ret = scmi_to_linux_errno(xfer->hdr.status);
1530 		}
1531 	}
1532 
1533 	xfer->async_done = NULL;
1534 	return ret;
1535 }
1536 
1537 /**
1538  * xfer_get_init() - Allocate and initialise one message for transmit
1539  *
1540  * @ph: Pointer to SCMI protocol handle
1541  * @msg_id: Message identifier
1542  * @tx_size: transmit message size
1543  * @rx_size: receive message size
1544  * @p: pointer to the allocated and initialised message
1545  *
1546  * This function allocates the message using @scmi_xfer_get and
1547  * initialise the header.
1548  *
1549  * Return: 0 if all went fine with @p pointing to message, else
1550  *	corresponding error.
1551  */
1552 static int xfer_get_init(const struct scmi_protocol_handle *ph,
1553 			 u8 msg_id, size_t tx_size, size_t rx_size,
1554 			 struct scmi_xfer **p)
1555 {
1556 	int ret;
1557 	struct scmi_xfer *xfer;
1558 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1559 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1560 	struct scmi_xfers_info *minfo = &info->tx_minfo;
1561 	struct device *dev = info->dev;
1562 
1563 	/* Ensure we have sane transfer sizes */
1564 	if (rx_size > info->desc->max_msg_size ||
1565 	    tx_size > info->desc->max_msg_size)
1566 		return -ERANGE;
1567 
1568 	xfer = scmi_xfer_get(pi->handle, minfo);
1569 	if (IS_ERR(xfer)) {
1570 		ret = PTR_ERR(xfer);
1571 		dev_err(dev, "failed to get free message slot(%d)\n", ret);
1572 		return ret;
1573 	}
1574 
1575 	/* Pick a sequence number and register this xfer as in-flight */
1576 	ret = scmi_xfer_pending_set(xfer, minfo);
1577 	if (ret) {
1578 		dev_err(pi->handle->dev,
1579 			"Failed to get monotonic token %d\n", ret);
1580 		__scmi_xfer_put(minfo, xfer);
1581 		return ret;
1582 	}
1583 
1584 	xfer->tx.len = tx_size;
1585 	xfer->rx.len = rx_size ? : info->desc->max_msg_size;
1586 	xfer->hdr.type = MSG_TYPE_COMMAND;
1587 	xfer->hdr.id = msg_id;
1588 	xfer->hdr.poll_completion = false;
1589 
1590 	*p = xfer;
1591 
1592 	return 0;
1593 }
1594 
1595 /**
1596  * version_get() - command to get the revision of the SCMI entity
1597  *
1598  * @ph: Pointer to SCMI protocol handle
1599  * @version: Holds returned version of protocol.
1600  *
1601  * Updates the SCMI information in the internal data structure.
1602  *
1603  * Return: 0 if all went fine, else return appropriate error.
1604  */
1605 static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
1606 {
1607 	int ret;
1608 	__le32 *rev_info;
1609 	struct scmi_xfer *t;
1610 
1611 	ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
1612 	if (ret)
1613 		return ret;
1614 
1615 	ret = do_xfer(ph, t);
1616 	if (!ret) {
1617 		rev_info = t->rx.buf;
1618 		*version = le32_to_cpu(*rev_info);
1619 	}
1620 
1621 	xfer_put(ph, t);
1622 	return ret;
1623 }
1624 
1625 /**
1626  * scmi_set_protocol_priv  - Set protocol specific data at init time
1627  *
1628  * @ph: A reference to the protocol handle.
1629  * @priv: The private data to set.
1630  *
1631  * Return: 0 on Success
1632  */
1633 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
1634 				  void *priv)
1635 {
1636 	struct scmi_protocol_instance *pi = ph_to_pi(ph);
1637 
1638 	pi->priv = priv;
1639 
1640 	return 0;
1641 }
1642 
1643 /**
1644  * scmi_get_protocol_priv  - Set protocol specific data at init time
1645  *
1646  * @ph: A reference to the protocol handle.
1647  *
1648  * Return: Protocol private data if any was set.
1649  */
1650 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
1651 {
1652 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1653 
1654 	return pi->priv;
1655 }
1656 
1657 static const struct scmi_xfer_ops xfer_ops = {
1658 	.xfer_get_init = xfer_get_init,
1659 	.reset_rx_to_maxsz = reset_rx_to_maxsz,
1660 	.do_xfer = do_xfer,
1661 	.do_xfer_with_response = do_xfer_with_response,
1662 	.xfer_put = xfer_put,
1663 };
1664 
1665 struct scmi_msg_resp_domain_name_get {
1666 	__le32 flags;
1667 	u8 name[SCMI_MAX_STR_SIZE];
1668 };
1669 
1670 /**
1671  * scmi_common_extended_name_get  - Common helper to get extended resources name
1672  * @ph: A protocol handle reference.
1673  * @cmd_id: The specific command ID to use.
1674  * @res_id: The specific resource ID to use.
1675  * @flags: A pointer to specific flags to use, if any.
1676  * @name: A pointer to the preallocated area where the retrieved name will be
1677  *	  stored as a NULL terminated string.
1678  * @len: The len in bytes of the @name char array.
1679  *
1680  * Return: 0 on Succcess
1681  */
1682 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph,
1683 					 u8 cmd_id, u32 res_id, u32 *flags,
1684 					 char *name, size_t len)
1685 {
1686 	int ret;
1687 	size_t txlen;
1688 	struct scmi_xfer *t;
1689 	struct scmi_msg_resp_domain_name_get *resp;
1690 
1691 	txlen = !flags ? sizeof(res_id) : sizeof(res_id) + sizeof(*flags);
1692 	ret = ph->xops->xfer_get_init(ph, cmd_id, txlen, sizeof(*resp), &t);
1693 	if (ret)
1694 		goto out;
1695 
1696 	put_unaligned_le32(res_id, t->tx.buf);
1697 	if (flags)
1698 		put_unaligned_le32(*flags, t->tx.buf + sizeof(res_id));
1699 	resp = t->rx.buf;
1700 
1701 	ret = ph->xops->do_xfer(ph, t);
1702 	if (!ret)
1703 		strscpy(name, resp->name, len);
1704 
1705 	ph->xops->xfer_put(ph, t);
1706 out:
1707 	if (ret)
1708 		dev_warn(ph->dev,
1709 			 "Failed to get extended name - id:%u (ret:%d). Using %s\n",
1710 			 res_id, ret, name);
1711 	return ret;
1712 }
1713 
1714 /**
1715  * scmi_common_get_max_msg_size  - Get maximum message size
1716  * @ph: A protocol handle reference.
1717  *
1718  * Return: Maximum message size for the current protocol.
1719  */
1720 static int scmi_common_get_max_msg_size(const struct scmi_protocol_handle *ph)
1721 {
1722 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1723 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1724 
1725 	return info->desc->max_msg_size;
1726 }
1727 
1728 /**
1729  * scmi_protocol_msg_check  - Check protocol message attributes
1730  *
1731  * @ph: A reference to the protocol handle.
1732  * @message_id: The ID of the message to check.
1733  * @attributes: A parameter to optionally return the retrieved message
1734  *		attributes, in case of Success.
1735  *
1736  * An helper to check protocol message attributes for a specific protocol
1737  * and message pair.
1738  *
1739  * Return: 0 on SUCCESS
1740  */
1741 static int scmi_protocol_msg_check(const struct scmi_protocol_handle *ph,
1742 				   u32 message_id, u32 *attributes)
1743 {
1744 	int ret;
1745 	struct scmi_xfer *t;
1746 
1747 	ret = xfer_get_init(ph, PROTOCOL_MESSAGE_ATTRIBUTES,
1748 			    sizeof(__le32), 0, &t);
1749 	if (ret)
1750 		return ret;
1751 
1752 	put_unaligned_le32(message_id, t->tx.buf);
1753 	ret = do_xfer(ph, t);
1754 	if (!ret && attributes)
1755 		*attributes = get_unaligned_le32(t->rx.buf);
1756 	xfer_put(ph, t);
1757 
1758 	return ret;
1759 }
1760 
1761 /**
1762  * struct scmi_iterator  - Iterator descriptor
1763  * @msg: A reference to the message TX buffer; filled by @prepare_message with
1764  *	 a proper custom command payload for each multi-part command request.
1765  * @resp: A reference to the response RX buffer; used by @update_state and
1766  *	  @process_response to parse the multi-part replies.
1767  * @t: A reference to the underlying xfer initialized and used transparently by
1768  *     the iterator internal routines.
1769  * @ph: A reference to the associated protocol handle to be used.
1770  * @ops: A reference to the custom provided iterator operations.
1771  * @state: The current iterator state; used and updated in turn by the iterators
1772  *	   internal routines and by the caller-provided @scmi_iterator_ops.
1773  * @priv: A reference to optional private data as provided by the caller and
1774  *	  passed back to the @@scmi_iterator_ops.
1775  */
1776 struct scmi_iterator {
1777 	void *msg;
1778 	void *resp;
1779 	struct scmi_xfer *t;
1780 	const struct scmi_protocol_handle *ph;
1781 	struct scmi_iterator_ops *ops;
1782 	struct scmi_iterator_state state;
1783 	void *priv;
1784 };
1785 
1786 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph,
1787 				struct scmi_iterator_ops *ops,
1788 				unsigned int max_resources, u8 msg_id,
1789 				size_t tx_size, void *priv)
1790 {
1791 	int ret;
1792 	struct scmi_iterator *i;
1793 
1794 	i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL);
1795 	if (!i)
1796 		return ERR_PTR(-ENOMEM);
1797 
1798 	i->ph = ph;
1799 	i->ops = ops;
1800 	i->priv = priv;
1801 
1802 	ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t);
1803 	if (ret) {
1804 		devm_kfree(ph->dev, i);
1805 		return ERR_PTR(ret);
1806 	}
1807 
1808 	i->state.max_resources = max_resources;
1809 	i->msg = i->t->tx.buf;
1810 	i->resp = i->t->rx.buf;
1811 
1812 	return i;
1813 }
1814 
1815 static int scmi_iterator_run(void *iter)
1816 {
1817 	int ret = -EINVAL;
1818 	struct scmi_iterator_ops *iops;
1819 	const struct scmi_protocol_handle *ph;
1820 	struct scmi_iterator_state *st;
1821 	struct scmi_iterator *i = iter;
1822 
1823 	if (!i || !i->ops || !i->ph)
1824 		return ret;
1825 
1826 	iops = i->ops;
1827 	ph = i->ph;
1828 	st = &i->state;
1829 
1830 	do {
1831 		iops->prepare_message(i->msg, st->desc_index, i->priv);
1832 		ret = ph->xops->do_xfer(ph, i->t);
1833 		if (ret)
1834 			break;
1835 
1836 		st->rx_len = i->t->rx.len;
1837 		ret = iops->update_state(st, i->resp, i->priv);
1838 		if (ret)
1839 			break;
1840 
1841 		if (st->num_returned > st->max_resources - st->desc_index) {
1842 			dev_err(ph->dev,
1843 				"No. of resources can't exceed %d\n",
1844 				st->max_resources);
1845 			ret = -EINVAL;
1846 			break;
1847 		}
1848 
1849 		for (st->loop_idx = 0; st->loop_idx < st->num_returned;
1850 		     st->loop_idx++) {
1851 			ret = iops->process_response(ph, i->resp, st, i->priv);
1852 			if (ret)
1853 				goto out;
1854 		}
1855 
1856 		st->desc_index += st->num_returned;
1857 		ph->xops->reset_rx_to_maxsz(ph, i->t);
1858 		/*
1859 		 * check for both returned and remaining to avoid infinite
1860 		 * loop due to buggy firmware
1861 		 */
1862 	} while (st->num_returned && st->num_remaining);
1863 
1864 out:
1865 	/* Finalize and destroy iterator */
1866 	ph->xops->xfer_put(ph, i->t);
1867 	devm_kfree(ph->dev, i);
1868 
1869 	return ret;
1870 }
1871 
1872 struct scmi_msg_get_fc_info {
1873 	__le32 domain;
1874 	__le32 message_id;
1875 };
1876 
1877 struct scmi_msg_resp_desc_fc {
1878 	__le32 attr;
1879 #define SUPPORTS_DOORBELL(x)		((x) & BIT(0))
1880 #define DOORBELL_REG_WIDTH(x)		FIELD_GET(GENMASK(2, 1), (x))
1881 	__le32 rate_limit;
1882 	__le32 chan_addr_low;
1883 	__le32 chan_addr_high;
1884 	__le32 chan_size;
1885 	__le32 db_addr_low;
1886 	__le32 db_addr_high;
1887 	__le32 db_set_lmask;
1888 	__le32 db_set_hmask;
1889 	__le32 db_preserve_lmask;
1890 	__le32 db_preserve_hmask;
1891 };
1892 
1893 #define QUIRK_PERF_FC_FORCE						\
1894 	({								\
1895 		if (pi->proto->id == SCMI_PROTOCOL_PERF &&		\
1896 		    message_id == 0x8 /* PERF_LEVEL_GET */)		\
1897 			attributes |= BIT(0);				\
1898 	})
1899 
1900 static void
1901 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph,
1902 			     u8 describe_id, u32 message_id, u32 valid_size,
1903 			     u32 domain, void __iomem **p_addr,
1904 			     struct scmi_fc_db_info **p_db, u32 *rate_limit)
1905 {
1906 	int ret;
1907 	u32 flags;
1908 	u64 phys_addr;
1909 	u32 attributes;
1910 	u8 size;
1911 	void __iomem *addr;
1912 	struct scmi_xfer *t;
1913 	struct scmi_fc_db_info *db = NULL;
1914 	struct scmi_msg_get_fc_info *info;
1915 	struct scmi_msg_resp_desc_fc *resp;
1916 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1917 
1918 	/* Check if the MSG_ID supports fastchannel */
1919 	ret = scmi_protocol_msg_check(ph, message_id, &attributes);
1920 	SCMI_QUIRK(perf_level_get_fc_force, QUIRK_PERF_FC_FORCE);
1921 	if (ret || !MSG_SUPPORTS_FASTCHANNEL(attributes)) {
1922 		dev_dbg(ph->dev,
1923 			"Skip FC init for 0x%02X/%d  domain:%d - ret:%d\n",
1924 			pi->proto->id, message_id, domain, ret);
1925 		return;
1926 	}
1927 
1928 	if (!p_addr) {
1929 		ret = -EINVAL;
1930 		goto err_out;
1931 	}
1932 
1933 	ret = ph->xops->xfer_get_init(ph, describe_id,
1934 				      sizeof(*info), sizeof(*resp), &t);
1935 	if (ret)
1936 		goto err_out;
1937 
1938 	info = t->tx.buf;
1939 	info->domain = cpu_to_le32(domain);
1940 	info->message_id = cpu_to_le32(message_id);
1941 
1942 	/*
1943 	 * Bail out on error leaving fc_info addresses zeroed; this includes
1944 	 * the case in which the requested domain/message_id does NOT support
1945 	 * fastchannels at all.
1946 	 */
1947 	ret = ph->xops->do_xfer(ph, t);
1948 	if (ret)
1949 		goto err_xfer;
1950 
1951 	resp = t->rx.buf;
1952 	flags = le32_to_cpu(resp->attr);
1953 	size = le32_to_cpu(resp->chan_size);
1954 	if (size != valid_size) {
1955 		ret = -EINVAL;
1956 		goto err_xfer;
1957 	}
1958 
1959 	if (rate_limit)
1960 		*rate_limit = le32_to_cpu(resp->rate_limit) & GENMASK(19, 0);
1961 
1962 	phys_addr = le32_to_cpu(resp->chan_addr_low);
1963 	phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
1964 	addr = devm_ioremap(ph->dev, phys_addr, size);
1965 	if (!addr) {
1966 		ret = -EADDRNOTAVAIL;
1967 		goto err_xfer;
1968 	}
1969 
1970 	*p_addr = addr;
1971 
1972 	if (p_db && SUPPORTS_DOORBELL(flags)) {
1973 		db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL);
1974 		if (!db) {
1975 			ret = -ENOMEM;
1976 			goto err_db;
1977 		}
1978 
1979 		size = 1 << DOORBELL_REG_WIDTH(flags);
1980 		phys_addr = le32_to_cpu(resp->db_addr_low);
1981 		phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
1982 		addr = devm_ioremap(ph->dev, phys_addr, size);
1983 		if (!addr) {
1984 			ret = -EADDRNOTAVAIL;
1985 			goto err_db_mem;
1986 		}
1987 
1988 		db->addr = addr;
1989 		db->width = size;
1990 		db->set = le32_to_cpu(resp->db_set_lmask);
1991 		db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
1992 		db->mask = le32_to_cpu(resp->db_preserve_lmask);
1993 		db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
1994 
1995 		*p_db = db;
1996 	}
1997 
1998 	ph->xops->xfer_put(ph, t);
1999 
2000 	dev_dbg(ph->dev,
2001 		"Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n",
2002 		pi->proto->id, message_id, domain);
2003 
2004 	return;
2005 
2006 err_db_mem:
2007 	devm_kfree(ph->dev, db);
2008 
2009 err_db:
2010 	*p_addr = NULL;
2011 
2012 err_xfer:
2013 	ph->xops->xfer_put(ph, t);
2014 
2015 err_out:
2016 	dev_warn(ph->dev,
2017 		 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n",
2018 		 pi->proto->id, message_id, domain, ret);
2019 }
2020 
2021 #define SCMI_PROTO_FC_RING_DB(w)			\
2022 do {							\
2023 	u##w val = 0;					\
2024 							\
2025 	if (db->mask)					\
2026 		val = ioread##w(db->addr) & db->mask;	\
2027 	iowrite##w((u##w)db->set | val, db->addr);	\
2028 } while (0)
2029 
2030 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db)
2031 {
2032 	if (!db || !db->addr)
2033 		return;
2034 
2035 	if (db->width == 1)
2036 		SCMI_PROTO_FC_RING_DB(8);
2037 	else if (db->width == 2)
2038 		SCMI_PROTO_FC_RING_DB(16);
2039 	else if (db->width == 4)
2040 		SCMI_PROTO_FC_RING_DB(32);
2041 	else /* db->width == 8 */
2042 		SCMI_PROTO_FC_RING_DB(64);
2043 }
2044 
2045 static const struct scmi_proto_helpers_ops helpers_ops = {
2046 	.extended_name_get = scmi_common_extended_name_get,
2047 	.get_max_msg_size = scmi_common_get_max_msg_size,
2048 	.iter_response_init = scmi_iterator_init,
2049 	.iter_response_run = scmi_iterator_run,
2050 	.protocol_msg_check = scmi_protocol_msg_check,
2051 	.fastchannel_init = scmi_common_fastchannel_init,
2052 	.fastchannel_db_ring = scmi_common_fastchannel_db_ring,
2053 };
2054 
2055 /**
2056  * scmi_revision_area_get  - Retrieve version memory area.
2057  *
2058  * @ph: A reference to the protocol handle.
2059  *
2060  * A helper to grab the version memory area reference during SCMI Base protocol
2061  * initialization.
2062  *
2063  * Return: A reference to the version memory area associated to the SCMI
2064  *	   instance underlying this protocol handle.
2065  */
2066 struct scmi_revision_info *
2067 scmi_revision_area_get(const struct scmi_protocol_handle *ph)
2068 {
2069 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
2070 
2071 	return pi->handle->version;
2072 }
2073 
2074 /**
2075  * scmi_protocol_version_negotiate  - Negotiate protocol version
2076  *
2077  * @ph: A reference to the protocol handle.
2078  *
2079  * An helper to negotiate a protocol version different from the latest
2080  * advertised as supported from the platform: on Success backward
2081  * compatibility is assured by the platform.
2082  *
2083  * Return: 0 on Success
2084  */
2085 static int scmi_protocol_version_negotiate(struct scmi_protocol_handle *ph)
2086 {
2087 	int ret;
2088 	struct scmi_xfer *t;
2089 	struct scmi_protocol_instance *pi = ph_to_pi(ph);
2090 
2091 	/* At first check if NEGOTIATE_PROTOCOL_VERSION is supported ... */
2092 	ret = scmi_protocol_msg_check(ph, NEGOTIATE_PROTOCOL_VERSION, NULL);
2093 	if (ret)
2094 		return ret;
2095 
2096 	/* ... then attempt protocol version negotiation */
2097 	ret = xfer_get_init(ph, NEGOTIATE_PROTOCOL_VERSION,
2098 			    sizeof(__le32), 0, &t);
2099 	if (ret)
2100 		return ret;
2101 
2102 	put_unaligned_le32(pi->proto->supported_version, t->tx.buf);
2103 	ret = do_xfer(ph, t);
2104 	if (!ret)
2105 		pi->negotiated_version = pi->proto->supported_version;
2106 
2107 	xfer_put(ph, t);
2108 
2109 	return ret;
2110 }
2111 
2112 /**
2113  * scmi_protocol_version_initialize  - Initialize protocol version
2114  * @dev: A device reference.
2115  * @pi: A reference to the protocol instance being initialized
2116  *
2117  * At first retrieve the newest protocol version supported by the platform for
2118  * this specific protoocol.
2119  *
2120  * Negotiation is attempted only when the platform advertised a protocol
2121  * version newer than the most recent version known to this agent, since
2122  * backward compatibility is NOT assured in general between versions.
2123  *
2124  * Failing to negotiate a fallback version or to query supported version at
2125  * all will result in an attempt to use the newest version known to this agent
2126  * even though compatibility is NOT assured.
2127  *
2128  * Versions are defined as:
2129  *
2130  * pi->version: the version supported by the platform as returned by the query.
2131  * pi->proto->supported_version: the newest version supported by this agent
2132  *				 for this protocol.
2133  * pi->negotiated_version: The version successfully negotiated with the platform.
2134  * ph->version: The final version effectively chosen for this session.
2135  */
2136 static void scmi_protocol_version_initialize(struct device *dev,
2137 					     struct scmi_protocol_instance *pi)
2138 {
2139 	struct scmi_protocol_handle *ph = &pi->ph;
2140 	int ret;
2141 
2142 	/*
2143 	 * Query and store platform supported protocol version: this is usually
2144 	 * the newest version the platfom can support.
2145 	 */
2146 	ret = version_get(ph, &pi->version);
2147 	if (ret) {
2148 		dev_warn(dev,
2149 			 "Failed to query supported version for protocol 0x%X.\n",
2150 			 pi->proto->id);
2151 		goto best_effort;
2152 	}
2153 
2154 	/* Need to negotiate at all ? */
2155 	if (pi->version <= pi->proto->supported_version) {
2156 		ph->version = pi->version;
2157 		return;
2158 	}
2159 
2160 	/* Attempt negotiation */
2161 	ret = scmi_protocol_version_negotiate(ph);
2162 	if (!ret) {
2163 		ph->version = pi->negotiated_version;
2164 		dev_info(dev,
2165 			 "Protocol 0x%X successfully negotiated version 0x%X\n",
2166 			 pi->proto->id, ph->version);
2167 		return;
2168 	}
2169 
2170 	dev_warn(dev,
2171 		 "Detected UNSUPPORTED higher version 0x%X for protocol 0x%X.\n",
2172 		 pi->version, pi->proto->id);
2173 
2174 best_effort:
2175 	/* Fallback to use newest version known to this agent */
2176 	ph->version = pi->proto->supported_version;
2177 	dev_warn(dev,
2178 		 "Trying version 0x%X. Backward compatibility is NOT assured.\n",
2179 		 ph->version);
2180 }
2181 
2182 /**
2183  * scmi_alloc_init_protocol_instance  - Allocate and initialize a protocol
2184  * instance descriptor.
2185  * @info: The reference to the related SCMI instance.
2186  * @proto: The protocol descriptor.
2187  *
2188  * Allocate a new protocol instance descriptor, using the provided @proto
2189  * description, against the specified SCMI instance @info, and initialize it;
2190  * all resources management is handled via a dedicated per-protocol devres
2191  * group.
2192  *
2193  * Context: Assumes to be called with @protocols_mtx already acquired.
2194  * Return: A reference to a freshly allocated and initialized protocol instance
2195  *	   or ERR_PTR on failure. On failure the @proto reference is at first
2196  *	   put using @scmi_protocol_put() before releasing all the devres group.
2197  */
2198 static struct scmi_protocol_instance *
2199 scmi_alloc_init_protocol_instance(struct scmi_info *info,
2200 				  const struct scmi_protocol *proto)
2201 {
2202 	int ret = -ENOMEM;
2203 	void *gid;
2204 	struct scmi_protocol_instance *pi;
2205 	const struct scmi_handle *handle = &info->handle;
2206 
2207 	/* Protocol specific devres group */
2208 	gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
2209 	if (!gid) {
2210 		scmi_protocol_put(proto);
2211 		goto out;
2212 	}
2213 
2214 	pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
2215 	if (!pi)
2216 		goto clean;
2217 
2218 	pi->gid = gid;
2219 	pi->proto = proto;
2220 	pi->handle = handle;
2221 	pi->ph.dev = handle->dev;
2222 	pi->ph.xops = &xfer_ops;
2223 	pi->ph.hops = &helpers_ops;
2224 	pi->ph.set_priv = scmi_set_protocol_priv;
2225 	pi->ph.get_priv = scmi_get_protocol_priv;
2226 	refcount_set(&pi->users, 1);
2227 
2228 	/*
2229 	 * Initialize effectively used protocol version performing any
2230 	 * possibly needed negotiations.
2231 	 */
2232 	scmi_protocol_version_initialize(handle->dev, pi);
2233 
2234 	/* proto->init is assured NON NULL by scmi_protocol_register */
2235 	ret = pi->proto->instance_init(&pi->ph);
2236 	if (ret)
2237 		goto clean;
2238 
2239 	ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
2240 			GFP_KERNEL);
2241 	if (ret != proto->id)
2242 		goto clean;
2243 
2244 	/*
2245 	 * Warn but ignore events registration errors since we do not want
2246 	 * to skip whole protocols if their notifications are messed up.
2247 	 */
2248 	if (pi->proto->events) {
2249 		ret = scmi_register_protocol_events(handle, pi->proto->id,
2250 						    &pi->ph,
2251 						    pi->proto->events);
2252 		if (ret)
2253 			dev_warn(handle->dev,
2254 				 "Protocol:%X - Events Registration Failed - err:%d\n",
2255 				 pi->proto->id, ret);
2256 	}
2257 
2258 	devres_close_group(handle->dev, pi->gid);
2259 	dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
2260 
2261 	return pi;
2262 
2263 clean:
2264 	/* Take care to put the protocol module's owner before releasing all */
2265 	scmi_protocol_put(proto);
2266 	devres_release_group(handle->dev, gid);
2267 out:
2268 	return ERR_PTR(ret);
2269 }
2270 
2271 /**
2272  * scmi_get_protocol_instance  - Protocol initialization helper.
2273  * @handle: A reference to the SCMI platform instance.
2274  * @protocol_id: The protocol being requested.
2275  *
2276  * In case the required protocol has never been requested before for this
2277  * instance, allocate and initialize all the needed structures while handling
2278  * resource allocation with a dedicated per-protocol devres subgroup.
2279  *
2280  * Return: A reference to an initialized protocol instance or error on failure:
2281  *	   in particular returns -EPROBE_DEFER when the desired protocol could
2282  *	   NOT be found.
2283  */
2284 static struct scmi_protocol_instance * __must_check
2285 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
2286 {
2287 	struct scmi_protocol_instance *pi;
2288 	struct scmi_info *info = handle_to_scmi_info(handle);
2289 
2290 	mutex_lock(&info->protocols_mtx);
2291 	pi = idr_find(&info->protocols, protocol_id);
2292 
2293 	if (pi) {
2294 		refcount_inc(&pi->users);
2295 	} else {
2296 		const struct scmi_protocol *proto;
2297 
2298 		/* Fails if protocol not registered on bus */
2299 		proto = scmi_protocol_get(protocol_id, &info->version);
2300 		if (proto)
2301 			pi = scmi_alloc_init_protocol_instance(info, proto);
2302 		else
2303 			pi = ERR_PTR(-EPROBE_DEFER);
2304 	}
2305 	mutex_unlock(&info->protocols_mtx);
2306 
2307 	return pi;
2308 }
2309 
2310 /**
2311  * scmi_protocol_acquire  - Protocol acquire
2312  * @handle: A reference to the SCMI platform instance.
2313  * @protocol_id: The protocol being requested.
2314  *
2315  * Register a new user for the requested protocol on the specified SCMI
2316  * platform instance, possibly triggering its initialization on first user.
2317  *
2318  * Return: 0 if protocol was acquired successfully.
2319  */
2320 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
2321 {
2322 	return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
2323 }
2324 
2325 /**
2326  * scmi_protocol_release  - Protocol de-initialization helper.
2327  * @handle: A reference to the SCMI platform instance.
2328  * @protocol_id: The protocol being requested.
2329  *
2330  * Remove one user for the specified protocol and triggers de-initialization
2331  * and resources de-allocation once the last user has gone.
2332  */
2333 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
2334 {
2335 	struct scmi_info *info = handle_to_scmi_info(handle);
2336 	struct scmi_protocol_instance *pi;
2337 
2338 	mutex_lock(&info->protocols_mtx);
2339 	pi = idr_find(&info->protocols, protocol_id);
2340 	if (WARN_ON(!pi))
2341 		goto out;
2342 
2343 	if (refcount_dec_and_test(&pi->users)) {
2344 		void *gid = pi->gid;
2345 
2346 		if (pi->proto->events)
2347 			scmi_deregister_protocol_events(handle, protocol_id);
2348 
2349 		if (pi->proto->instance_deinit)
2350 			pi->proto->instance_deinit(&pi->ph);
2351 
2352 		idr_remove(&info->protocols, protocol_id);
2353 
2354 		scmi_protocol_put(pi->proto);
2355 
2356 		devres_release_group(handle->dev, gid);
2357 		dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
2358 			protocol_id);
2359 	}
2360 
2361 out:
2362 	mutex_unlock(&info->protocols_mtx);
2363 }
2364 
2365 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
2366 				     u8 *prot_imp)
2367 {
2368 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
2369 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
2370 
2371 	info->protocols_imp = prot_imp;
2372 }
2373 
2374 static bool
2375 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
2376 {
2377 	int i;
2378 	struct scmi_info *info = handle_to_scmi_info(handle);
2379 	struct scmi_revision_info *rev = handle->version;
2380 
2381 	if (!info->protocols_imp)
2382 		return false;
2383 
2384 	for (i = 0; i < rev->num_protocols; i++)
2385 		if (info->protocols_imp[i] == prot_id)
2386 			return true;
2387 	return false;
2388 }
2389 
2390 struct scmi_protocol_devres {
2391 	const struct scmi_handle *handle;
2392 	u8 protocol_id;
2393 };
2394 
2395 static void scmi_devm_release_protocol(struct device *dev, void *res)
2396 {
2397 	struct scmi_protocol_devres *dres = res;
2398 
2399 	scmi_protocol_release(dres->handle, dres->protocol_id);
2400 }
2401 
2402 static struct scmi_protocol_instance __must_check *
2403 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id)
2404 {
2405 	struct scmi_protocol_instance *pi;
2406 	struct scmi_protocol_devres *dres;
2407 
2408 	dres = devres_alloc(scmi_devm_release_protocol,
2409 			    sizeof(*dres), GFP_KERNEL);
2410 	if (!dres)
2411 		return ERR_PTR(-ENOMEM);
2412 
2413 	pi = scmi_get_protocol_instance(sdev->handle, protocol_id);
2414 	if (IS_ERR(pi)) {
2415 		devres_free(dres);
2416 		return pi;
2417 	}
2418 
2419 	dres->handle = sdev->handle;
2420 	dres->protocol_id = protocol_id;
2421 	devres_add(&sdev->dev, dres);
2422 
2423 	return pi;
2424 }
2425 
2426 /**
2427  * scmi_devm_protocol_get  - Devres managed get protocol operations and handle
2428  * @sdev: A reference to an scmi_device whose embedded struct device is to
2429  *	  be used for devres accounting.
2430  * @protocol_id: The protocol being requested.
2431  * @ph: A pointer reference used to pass back the associated protocol handle.
2432  *
2433  * Get hold of a protocol accounting for its usage, eventually triggering its
2434  * initialization, and returning the protocol specific operations and related
2435  * protocol handle which will be used as first argument in most of the
2436  * protocols operations methods.
2437  * Being a devres based managed method, protocol hold will be automatically
2438  * released, and possibly de-initialized on last user, once the SCMI driver
2439  * owning the scmi_device is unbound from it.
2440  *
2441  * Return: A reference to the requested protocol operations or error.
2442  *	   Must be checked for errors by caller.
2443  */
2444 static const void __must_check *
2445 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
2446 		       struct scmi_protocol_handle **ph)
2447 {
2448 	struct scmi_protocol_instance *pi;
2449 
2450 	if (!ph)
2451 		return ERR_PTR(-EINVAL);
2452 
2453 	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2454 	if (IS_ERR(pi))
2455 		return pi;
2456 
2457 	*ph = &pi->ph;
2458 
2459 	return pi->proto->ops;
2460 }
2461 
2462 /**
2463  * scmi_devm_protocol_acquire  - Devres managed helper to get hold of a protocol
2464  * @sdev: A reference to an scmi_device whose embedded struct device is to
2465  *	  be used for devres accounting.
2466  * @protocol_id: The protocol being requested.
2467  *
2468  * Get hold of a protocol accounting for its usage, possibly triggering its
2469  * initialization but without getting access to its protocol specific operations
2470  * and handle.
2471  *
2472  * Being a devres based managed method, protocol hold will be automatically
2473  * released, and possibly de-initialized on last user, once the SCMI driver
2474  * owning the scmi_device is unbound from it.
2475  *
2476  * Return: 0 on SUCCESS
2477  */
2478 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev,
2479 						   u8 protocol_id)
2480 {
2481 	struct scmi_protocol_instance *pi;
2482 
2483 	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2484 	if (IS_ERR(pi))
2485 		return PTR_ERR(pi);
2486 
2487 	return 0;
2488 }
2489 
2490 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
2491 {
2492 	struct scmi_protocol_devres *dres = res;
2493 
2494 	if (WARN_ON(!dres || !data))
2495 		return 0;
2496 
2497 	return dres->protocol_id == *((u8 *)data);
2498 }
2499 
2500 /**
2501  * scmi_devm_protocol_put  - Devres managed put protocol operations and handle
2502  * @sdev: A reference to an scmi_device whose embedded struct device is to
2503  *	  be used for devres accounting.
2504  * @protocol_id: The protocol being requested.
2505  *
2506  * Explicitly release a protocol hold previously obtained calling the above
2507  * @scmi_devm_protocol_get.
2508  */
2509 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
2510 {
2511 	int ret;
2512 
2513 	ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
2514 			     scmi_devm_protocol_match, &protocol_id);
2515 	WARN_ON(ret);
2516 }
2517 
2518 /**
2519  * scmi_is_transport_atomic  - Method to check if underlying transport for an
2520  * SCMI instance is configured as atomic.
2521  *
2522  * @handle: A reference to the SCMI platform instance.
2523  * @atomic_threshold: An optional return value for the system wide currently
2524  *		      configured threshold for atomic operations.
2525  *
2526  * Return: True if transport is configured as atomic
2527  */
2528 static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
2529 				     unsigned int *atomic_threshold)
2530 {
2531 	bool ret;
2532 	struct scmi_info *info = handle_to_scmi_info(handle);
2533 
2534 	ret = info->desc->atomic_enabled &&
2535 		is_transport_polling_capable(info->desc);
2536 	if (ret && atomic_threshold)
2537 		*atomic_threshold = info->desc->atomic_threshold;
2538 
2539 	return ret;
2540 }
2541 
2542 /**
2543  * scmi_handle_get() - Get the SCMI handle for a device
2544  *
2545  * @dev: pointer to device for which we want SCMI handle
2546  *
2547  * NOTE: The function does not track individual clients of the framework
2548  * and is expected to be maintained by caller of SCMI protocol library.
2549  * scmi_handle_put must be balanced with successful scmi_handle_get
2550  *
2551  * Return: pointer to handle if successful, NULL on error
2552  */
2553 static struct scmi_handle *scmi_handle_get(struct device *dev)
2554 {
2555 	struct list_head *p;
2556 	struct scmi_info *info;
2557 	struct scmi_handle *handle = NULL;
2558 
2559 	mutex_lock(&scmi_list_mutex);
2560 	list_for_each(p, &scmi_list) {
2561 		info = list_entry(p, struct scmi_info, node);
2562 		if (dev->parent == info->dev) {
2563 			info->users++;
2564 			handle = &info->handle;
2565 			break;
2566 		}
2567 	}
2568 	mutex_unlock(&scmi_list_mutex);
2569 
2570 	return handle;
2571 }
2572 
2573 /**
2574  * scmi_handle_put() - Release the handle acquired by scmi_handle_get
2575  *
2576  * @handle: handle acquired by scmi_handle_get
2577  *
2578  * NOTE: The function does not track individual clients of the framework
2579  * and is expected to be maintained by caller of SCMI protocol library.
2580  * scmi_handle_put must be balanced with successful scmi_handle_get
2581  *
2582  * Return: 0 is successfully released
2583  *	if null was passed, it returns -EINVAL;
2584  */
2585 static int scmi_handle_put(const struct scmi_handle *handle)
2586 {
2587 	struct scmi_info *info;
2588 
2589 	if (!handle)
2590 		return -EINVAL;
2591 
2592 	info = handle_to_scmi_info(handle);
2593 	mutex_lock(&scmi_list_mutex);
2594 	if (!WARN_ON(!info->users))
2595 		info->users--;
2596 	mutex_unlock(&scmi_list_mutex);
2597 
2598 	return 0;
2599 }
2600 
2601 static void scmi_device_link_add(struct device *consumer,
2602 				 struct device *supplier)
2603 {
2604 	struct device_link *link;
2605 
2606 	link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER);
2607 
2608 	WARN_ON(!link);
2609 }
2610 
2611 static void scmi_set_handle(struct scmi_device *scmi_dev)
2612 {
2613 	scmi_dev->handle = scmi_handle_get(&scmi_dev->dev);
2614 	if (scmi_dev->handle)
2615 		scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev);
2616 }
2617 
2618 static int __scmi_xfer_info_init(struct scmi_info *sinfo,
2619 				 struct scmi_xfers_info *info)
2620 {
2621 	int i;
2622 	struct scmi_xfer *xfer;
2623 	struct device *dev = sinfo->dev;
2624 	const struct scmi_desc *desc = sinfo->desc;
2625 
2626 	/* Pre-allocated messages, no more than what hdr.seq can support */
2627 	if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
2628 		dev_err(dev,
2629 			"Invalid maximum messages %d, not in range [1 - %lu]\n",
2630 			info->max_msg, MSG_TOKEN_MAX);
2631 		return -EINVAL;
2632 	}
2633 
2634 	hash_init(info->pending_xfers);
2635 
2636 	/* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
2637 	info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX,
2638 						    GFP_KERNEL);
2639 	if (!info->xfer_alloc_table)
2640 		return -ENOMEM;
2641 
2642 	/*
2643 	 * Preallocate a number of xfers equal to max inflight messages,
2644 	 * pre-initialize the buffer pointer to pre-allocated buffers and
2645 	 * attach all of them to the free list
2646 	 */
2647 	INIT_HLIST_HEAD(&info->free_xfers);
2648 	for (i = 0; i < info->max_msg; i++) {
2649 		xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
2650 		if (!xfer)
2651 			return -ENOMEM;
2652 
2653 		xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
2654 					    GFP_KERNEL);
2655 		if (!xfer->rx.buf)
2656 			return -ENOMEM;
2657 
2658 		xfer->tx.buf = xfer->rx.buf;
2659 		init_completion(&xfer->done);
2660 		spin_lock_init(&xfer->lock);
2661 
2662 		/* Add initialized xfer to the free list */
2663 		hlist_add_head(&xfer->node, &info->free_xfers);
2664 	}
2665 
2666 	spin_lock_init(&info->xfer_lock);
2667 
2668 	return 0;
2669 }
2670 
2671 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
2672 {
2673 	const struct scmi_desc *desc = sinfo->desc;
2674 
2675 	if (!desc->ops->get_max_msg) {
2676 		sinfo->tx_minfo.max_msg = desc->max_msg;
2677 		sinfo->rx_minfo.max_msg = desc->max_msg;
2678 	} else {
2679 		struct scmi_chan_info *base_cinfo;
2680 
2681 		base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
2682 		if (!base_cinfo)
2683 			return -EINVAL;
2684 		sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
2685 
2686 		/* RX channel is optional so can be skipped */
2687 		base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
2688 		if (base_cinfo)
2689 			sinfo->rx_minfo.max_msg =
2690 				desc->ops->get_max_msg(base_cinfo);
2691 	}
2692 
2693 	return 0;
2694 }
2695 
2696 static int scmi_xfer_info_init(struct scmi_info *sinfo)
2697 {
2698 	int ret;
2699 
2700 	ret = scmi_channels_max_msg_configure(sinfo);
2701 	if (ret)
2702 		return ret;
2703 
2704 	ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
2705 	if (!ret && !idr_is_empty(&sinfo->rx_idr))
2706 		ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
2707 
2708 	return ret;
2709 }
2710 
2711 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node,
2712 			   int prot_id, bool tx)
2713 {
2714 	int ret, idx;
2715 	char name[32];
2716 	struct scmi_chan_info *cinfo;
2717 	struct idr *idr;
2718 	struct scmi_device *tdev = NULL;
2719 
2720 	/* Transmit channel is first entry i.e. index 0 */
2721 	idx = tx ? 0 : 1;
2722 	idr = tx ? &info->tx_idr : &info->rx_idr;
2723 
2724 	if (!info->desc->ops->chan_available(of_node, idx)) {
2725 		cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
2726 		if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
2727 			return -EINVAL;
2728 		goto idr_alloc;
2729 	}
2730 
2731 	cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
2732 	if (!cinfo)
2733 		return -ENOMEM;
2734 
2735 	cinfo->is_p2a = !tx;
2736 	cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms;
2737 	cinfo->max_msg_size = info->desc->max_msg_size;
2738 
2739 	/* Create a unique name for this transport device */
2740 	snprintf(name, 32, "__scmi_transport_device_%s_%02X",
2741 		 idx ? "rx" : "tx", prot_id);
2742 	/* Create a uniquely named, dedicated transport device for this chan */
2743 	tdev = scmi_device_create(of_node, info->dev, prot_id, name);
2744 	if (!tdev) {
2745 		dev_err(info->dev,
2746 			"failed to create transport device (%s)\n", name);
2747 		devm_kfree(info->dev, cinfo);
2748 		return -EINVAL;
2749 	}
2750 	of_node_get(of_node);
2751 
2752 	cinfo->id = prot_id;
2753 	cinfo->dev = &tdev->dev;
2754 	ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
2755 	if (ret) {
2756 		of_node_put(of_node);
2757 		scmi_device_destroy(info->dev, prot_id, name);
2758 		devm_kfree(info->dev, cinfo);
2759 		return ret;
2760 	}
2761 
2762 	if (tx && is_polling_required(cinfo, info->desc)) {
2763 		if (is_transport_polling_capable(info->desc))
2764 			dev_info(&tdev->dev,
2765 				 "Enabled polling mode TX channel - prot_id:%d\n",
2766 				 prot_id);
2767 		else
2768 			dev_warn(&tdev->dev,
2769 				 "Polling mode NOT supported by transport.\n");
2770 	}
2771 
2772 idr_alloc:
2773 	ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
2774 	if (ret != prot_id) {
2775 		dev_err(info->dev,
2776 			"unable to allocate SCMI idr slot err %d\n", ret);
2777 		/* Destroy channel and device only if created by this call. */
2778 		if (tdev) {
2779 			of_node_put(of_node);
2780 			scmi_device_destroy(info->dev, prot_id, name);
2781 			devm_kfree(info->dev, cinfo);
2782 		}
2783 		return ret;
2784 	}
2785 
2786 	cinfo->handle = &info->handle;
2787 	return 0;
2788 }
2789 
2790 static inline int
2791 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node,
2792 		int prot_id)
2793 {
2794 	int ret = scmi_chan_setup(info, of_node, prot_id, true);
2795 
2796 	if (!ret) {
2797 		/* Rx is optional, report only memory errors */
2798 		ret = scmi_chan_setup(info, of_node, prot_id, false);
2799 		if (ret && ret != -ENOMEM)
2800 			ret = 0;
2801 	}
2802 
2803 	if (ret)
2804 		dev_err(info->dev,
2805 			"failed to setup channel for protocol:0x%X\n", prot_id);
2806 
2807 	return ret;
2808 }
2809 
2810 /**
2811  * scmi_channels_setup  - Helper to initialize all required channels
2812  *
2813  * @info: The SCMI instance descriptor.
2814  *
2815  * Initialize all the channels found described in the DT against the underlying
2816  * configured transport using custom defined dedicated devices instead of
2817  * borrowing devices from the SCMI drivers; this way channels are initialized
2818  * upfront during core SCMI stack probing and are no more coupled with SCMI
2819  * devices used by SCMI drivers.
2820  *
2821  * Note that, even though a pair of TX/RX channels is associated to each
2822  * protocol defined in the DT, a distinct freshly initialized channel is
2823  * created only if the DT node for the protocol at hand describes a dedicated
2824  * channel: in all the other cases the common BASE protocol channel is reused.
2825  *
2826  * Return: 0 on Success
2827  */
2828 static int scmi_channels_setup(struct scmi_info *info)
2829 {
2830 	int ret;
2831 	struct device_node *top_np = info->dev->of_node;
2832 
2833 	/* Initialize a common generic channel at first */
2834 	ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE);
2835 	if (ret)
2836 		return ret;
2837 
2838 	for_each_available_child_of_node_scoped(top_np, child) {
2839 		u32 prot_id;
2840 
2841 		if (of_property_read_u32(child, "reg", &prot_id))
2842 			continue;
2843 
2844 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2845 			dev_err(info->dev,
2846 				"Out of range protocol %d\n", prot_id);
2847 
2848 		ret = scmi_txrx_setup(info, child, prot_id);
2849 		if (ret)
2850 			return ret;
2851 	}
2852 
2853 	return 0;
2854 }
2855 
2856 static int scmi_chan_destroy(int id, void *p, void *idr)
2857 {
2858 	struct scmi_chan_info *cinfo = p;
2859 
2860 	if (cinfo->dev) {
2861 		struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
2862 		struct scmi_device *sdev = to_scmi_dev(cinfo->dev);
2863 
2864 		of_node_put(cinfo->dev->of_node);
2865 		scmi_device_destroy(info->dev, id, sdev->name);
2866 		cinfo->dev = NULL;
2867 	}
2868 
2869 	idr_remove(idr, id);
2870 
2871 	return 0;
2872 }
2873 
2874 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr)
2875 {
2876 	/* At first free all channels at the transport layer ... */
2877 	idr_for_each(idr, info->desc->ops->chan_free, idr);
2878 
2879 	/* ...then destroy all underlying devices */
2880 	idr_for_each(idr, scmi_chan_destroy, idr);
2881 
2882 	idr_destroy(idr);
2883 }
2884 
2885 static void scmi_cleanup_txrx_channels(struct scmi_info *info)
2886 {
2887 	scmi_cleanup_channels(info, &info->tx_idr);
2888 
2889 	scmi_cleanup_channels(info, &info->rx_idr);
2890 }
2891 
2892 static int scmi_bus_notifier(struct notifier_block *nb,
2893 			     unsigned long action, void *data)
2894 {
2895 	struct scmi_info *info = bus_nb_to_scmi_info(nb);
2896 	struct scmi_device *sdev = to_scmi_dev(data);
2897 
2898 	/* Skip devices of different SCMI instances */
2899 	if (sdev->dev.parent != info->dev)
2900 		return NOTIFY_DONE;
2901 
2902 	switch (action) {
2903 	case BUS_NOTIFY_BIND_DRIVER:
2904 		/* setup handle now as the transport is ready */
2905 		scmi_set_handle(sdev);
2906 		break;
2907 	case BUS_NOTIFY_UNBOUND_DRIVER:
2908 		scmi_handle_put(sdev->handle);
2909 		sdev->handle = NULL;
2910 		break;
2911 	default:
2912 		return NOTIFY_DONE;
2913 	}
2914 
2915 	dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev),
2916 		sdev->name, action == BUS_NOTIFY_BIND_DRIVER ?
2917 		"about to be BOUND." : "UNBOUND.");
2918 
2919 	return NOTIFY_OK;
2920 }
2921 
2922 static int scmi_device_request_notifier(struct notifier_block *nb,
2923 					unsigned long action, void *data)
2924 {
2925 	struct device_node *np;
2926 	struct scmi_device_id *id_table = data;
2927 	struct scmi_info *info = req_nb_to_scmi_info(nb);
2928 
2929 	np = idr_find(&info->active_protocols, id_table->protocol_id);
2930 	if (!np)
2931 		return NOTIFY_DONE;
2932 
2933 	dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n",
2934 		action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-",
2935 		id_table->name, id_table->protocol_id);
2936 
2937 	switch (action) {
2938 	case SCMI_BUS_NOTIFY_DEVICE_REQUEST:
2939 		scmi_create_protocol_devices(np, info, id_table->protocol_id,
2940 					     id_table->name);
2941 		break;
2942 	case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST:
2943 		scmi_destroy_protocol_devices(info, id_table->protocol_id,
2944 					      id_table->name);
2945 		break;
2946 	default:
2947 		return NOTIFY_DONE;
2948 	}
2949 
2950 	return NOTIFY_OK;
2951 }
2952 
2953 static const char * const dbg_counter_strs[] = {
2954 	"sent_ok",
2955 	"sent_fail",
2956 	"sent_fail_polling_unsupported",
2957 	"sent_fail_channel_not_found",
2958 	"response_ok",
2959 	"notification_ok",
2960 	"delayed_response_ok",
2961 	"xfers_response_timeout",
2962 	"xfers_response_polled_timeout",
2963 	"response_polled_ok",
2964 	"err_msg_unexpected",
2965 	"err_msg_invalid",
2966 	"err_msg_nomem",
2967 	"err_protocol",
2968 	"xfers_inflight",
2969 };
2970 
2971 static ssize_t reset_all_on_write(struct file *filp, const char __user *buf,
2972 				  size_t count, loff_t *ppos)
2973 {
2974 	struct scmi_debug_info *dbg = filp->private_data;
2975 
2976 	for (int i = 0; i < SCMI_DEBUG_COUNTERS_LAST; i++)
2977 		atomic_set(&dbg->counters[i], 0);
2978 
2979 	return count;
2980 }
2981 
2982 static const struct file_operations fops_reset_counts = {
2983 	.owner = THIS_MODULE,
2984 	.open = simple_open,
2985 	.write = reset_all_on_write,
2986 };
2987 
2988 static void scmi_debugfs_counters_setup(struct scmi_debug_info *dbg,
2989 					struct dentry *trans)
2990 {
2991 	struct dentry *counters;
2992 	int idx;
2993 
2994 	counters = debugfs_create_dir("counters", trans);
2995 
2996 	for (idx = 0; idx < SCMI_DEBUG_COUNTERS_LAST; idx++)
2997 		debugfs_create_atomic_t(dbg_counter_strs[idx], 0600, counters,
2998 					&dbg->counters[idx]);
2999 
3000 	debugfs_create_file("reset", 0200, counters, dbg, &fops_reset_counts);
3001 }
3002 
3003 static void scmi_debugfs_common_cleanup(void *d)
3004 {
3005 	struct scmi_debug_info *dbg = d;
3006 
3007 	if (!dbg)
3008 		return;
3009 
3010 	debugfs_remove_recursive(dbg->top_dentry);
3011 	kfree(dbg->name);
3012 	kfree(dbg->type);
3013 }
3014 
3015 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info)
3016 {
3017 	char top_dir[16];
3018 	struct dentry *trans, *top_dentry;
3019 	struct scmi_debug_info *dbg;
3020 	const char *c_ptr = NULL;
3021 
3022 	dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL);
3023 	if (!dbg)
3024 		return NULL;
3025 
3026 	dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL);
3027 	if (!dbg->name) {
3028 		devm_kfree(info->dev, dbg);
3029 		return NULL;
3030 	}
3031 
3032 	of_property_read_string(info->dev->of_node, "compatible", &c_ptr);
3033 	dbg->type = kstrdup(c_ptr, GFP_KERNEL);
3034 	if (!dbg->type) {
3035 		kfree(dbg->name);
3036 		devm_kfree(info->dev, dbg);
3037 		return NULL;
3038 	}
3039 
3040 	snprintf(top_dir, 16, "%d", info->id);
3041 	top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry);
3042 	trans = debugfs_create_dir("transport", top_dentry);
3043 
3044 	dbg->is_atomic = info->desc->atomic_enabled &&
3045 				is_transport_polling_capable(info->desc);
3046 
3047 	debugfs_create_str("instance_name", 0400, top_dentry,
3048 			   (char **)&dbg->name);
3049 
3050 	debugfs_create_u32("atomic_threshold_us", 0400, top_dentry,
3051 			   (u32 *)&info->desc->atomic_threshold);
3052 
3053 	debugfs_create_str("type", 0400, trans, (char **)&dbg->type);
3054 
3055 	debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic);
3056 
3057 	debugfs_create_u32("max_rx_timeout_ms", 0400, trans,
3058 			   (u32 *)&info->desc->max_rx_timeout_ms);
3059 
3060 	debugfs_create_u32("max_msg_size", 0400, trans,
3061 			   (u32 *)&info->desc->max_msg_size);
3062 
3063 	debugfs_create_u32("tx_max_msg", 0400, trans,
3064 			   (u32 *)&info->tx_minfo.max_msg);
3065 
3066 	debugfs_create_u32("rx_max_msg", 0400, trans,
3067 			   (u32 *)&info->rx_minfo.max_msg);
3068 
3069 	if (IS_ENABLED(CONFIG_ARM_SCMI_DEBUG_COUNTERS))
3070 		scmi_debugfs_counters_setup(dbg, trans);
3071 
3072 	dbg->top_dentry = top_dentry;
3073 
3074 	if (devm_add_action_or_reset(info->dev,
3075 				     scmi_debugfs_common_cleanup, dbg))
3076 		return NULL;
3077 
3078 	return dbg;
3079 }
3080 
3081 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info)
3082 {
3083 	int id, num_chans = 0, ret = 0;
3084 	struct scmi_chan_info *cinfo;
3085 	u8 channels[SCMI_MAX_CHANNELS] = {};
3086 	DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {};
3087 
3088 	/* Enumerate all channels to collect their ids */
3089 	idr_for_each_entry(&info->tx_idr, cinfo, id) {
3090 		/*
3091 		 * Cannot happen, but be defensive.
3092 		 * Zero as num_chans is ok, warn and carry on.
3093 		 */
3094 		if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) {
3095 			dev_warn(info->dev,
3096 				 "SCMI RAW - Error enumerating channels\n");
3097 			break;
3098 		}
3099 
3100 		if (!test_bit(cinfo->id, protos)) {
3101 			channels[num_chans++] = cinfo->id;
3102 			set_bit(cinfo->id, protos);
3103 		}
3104 	}
3105 
3106 	info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry,
3107 				       info->id, channels, num_chans,
3108 				       info->desc, info->tx_minfo.max_msg);
3109 	if (IS_ERR(info->raw)) {
3110 		dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n");
3111 		ret = PTR_ERR(info->raw);
3112 		info->raw = NULL;
3113 	}
3114 
3115 	return ret;
3116 }
3117 
3118 static const struct scmi_desc *scmi_transport_setup(struct device *dev)
3119 {
3120 	struct scmi_transport *trans;
3121 	int ret;
3122 
3123 	trans = dev_get_platdata(dev);
3124 	if (!trans || !trans->supplier || !trans->core_ops)
3125 		return NULL;
3126 
3127 	if (!device_link_add(dev, trans->supplier, DL_FLAG_AUTOREMOVE_CONSUMER)) {
3128 		dev_err(dev,
3129 			"Adding link to supplier transport device failed\n");
3130 		return NULL;
3131 	}
3132 
3133 	/* Provide core transport ops */
3134 	*trans->core_ops = &scmi_trans_core_ops;
3135 
3136 	dev_info(dev, "Using %s\n", dev_driver_string(trans->supplier));
3137 
3138 	ret = of_property_read_u32(dev->of_node, "arm,max-rx-timeout-ms",
3139 				   &trans->desc.max_rx_timeout_ms);
3140 	if (ret && ret != -EINVAL)
3141 		dev_err(dev, "Malformed arm,max-rx-timeout-ms DT property.\n");
3142 
3143 	ret = of_property_read_u32(dev->of_node, "arm,max-msg-size",
3144 				   &trans->desc.max_msg_size);
3145 	if (ret && ret != -EINVAL)
3146 		dev_err(dev, "Malformed arm,max-msg-size DT property.\n");
3147 
3148 	ret = of_property_read_u32(dev->of_node, "arm,max-msg",
3149 				   &trans->desc.max_msg);
3150 	if (ret && ret != -EINVAL)
3151 		dev_err(dev, "Malformed arm,max-msg DT property.\n");
3152 
3153 	dev_info(dev,
3154 		 "SCMI max-rx-timeout: %dms / max-msg-size: %dbytes / max-msg: %d\n",
3155 		 trans->desc.max_rx_timeout_ms, trans->desc.max_msg_size,
3156 		 trans->desc.max_msg);
3157 
3158 	/* System wide atomic threshold for atomic ops .. if any */
3159 	if (!of_property_read_u32(dev->of_node, "atomic-threshold-us",
3160 				  &trans->desc.atomic_threshold))
3161 		dev_info(dev,
3162 			 "SCMI System wide atomic threshold set to %u us\n",
3163 			 trans->desc.atomic_threshold);
3164 
3165 	return &trans->desc;
3166 }
3167 
3168 static void scmi_enable_matching_quirks(struct scmi_info *info)
3169 {
3170 	struct scmi_revision_info *rev = &info->version;
3171 
3172 	dev_dbg(info->dev, "Looking for quirks matching: %s/%s/0x%08X\n",
3173 		rev->vendor_id, rev->sub_vendor_id, rev->impl_ver);
3174 
3175 	/* Enable applicable quirks */
3176 	scmi_quirks_enable(info->dev, rev->vendor_id,
3177 			   rev->sub_vendor_id, rev->impl_ver);
3178 }
3179 
3180 static int scmi_probe(struct platform_device *pdev)
3181 {
3182 	int ret;
3183 	char *err_str = "probe failure\n";
3184 	struct scmi_handle *handle;
3185 	const struct scmi_desc *desc;
3186 	struct scmi_info *info;
3187 	bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX);
3188 	struct device *dev = &pdev->dev;
3189 	struct device_node *child, *np = dev->of_node;
3190 
3191 	desc = scmi_transport_setup(dev);
3192 	if (!desc) {
3193 		err_str = "transport invalid\n";
3194 		ret = -EINVAL;
3195 		goto out_err;
3196 	}
3197 
3198 	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
3199 	if (!info)
3200 		return -ENOMEM;
3201 
3202 	info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL);
3203 	if (info->id < 0)
3204 		return info->id;
3205 
3206 	info->dev = dev;
3207 	info->desc = desc;
3208 	info->bus_nb.notifier_call = scmi_bus_notifier;
3209 	info->dev_req_nb.notifier_call = scmi_device_request_notifier;
3210 	INIT_LIST_HEAD(&info->node);
3211 	idr_init(&info->protocols);
3212 	mutex_init(&info->protocols_mtx);
3213 	idr_init(&info->active_protocols);
3214 	mutex_init(&info->devreq_mtx);
3215 
3216 	platform_set_drvdata(pdev, info);
3217 	idr_init(&info->tx_idr);
3218 	idr_init(&info->rx_idr);
3219 
3220 	handle = &info->handle;
3221 	handle->dev = info->dev;
3222 	handle->version = &info->version;
3223 	handle->devm_protocol_acquire = scmi_devm_protocol_acquire;
3224 	handle->devm_protocol_get = scmi_devm_protocol_get;
3225 	handle->devm_protocol_put = scmi_devm_protocol_put;
3226 	handle->is_transport_atomic = scmi_is_transport_atomic;
3227 
3228 	/* Setup all channels described in the DT at first */
3229 	ret = scmi_channels_setup(info);
3230 	if (ret) {
3231 		err_str = "failed to setup channels\n";
3232 		goto clear_ida;
3233 	}
3234 
3235 	ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb);
3236 	if (ret) {
3237 		err_str = "failed to register bus notifier\n";
3238 		goto clear_txrx_setup;
3239 	}
3240 
3241 	ret = blocking_notifier_chain_register(&scmi_requested_devices_nh,
3242 					       &info->dev_req_nb);
3243 	if (ret) {
3244 		err_str = "failed to register device notifier\n";
3245 		goto clear_bus_notifier;
3246 	}
3247 
3248 	ret = scmi_xfer_info_init(info);
3249 	if (ret) {
3250 		err_str = "failed to init xfers pool\n";
3251 		goto clear_dev_req_notifier;
3252 	}
3253 
3254 	if (scmi_top_dentry) {
3255 		info->dbg = scmi_debugfs_common_setup(info);
3256 		if (!info->dbg)
3257 			dev_warn(dev, "Failed to setup SCMI debugfs.\n");
3258 
3259 		if (info->dbg && IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
3260 			ret = scmi_debugfs_raw_mode_setup(info);
3261 			if (!coex) {
3262 				if (ret)
3263 					goto clear_dev_req_notifier;
3264 
3265 				/* Bail out anyway when coex disabled. */
3266 				return 0;
3267 			}
3268 
3269 			/* Coex enabled, carry on in any case. */
3270 			dev_info(dev, "SCMI RAW Mode COEX enabled !\n");
3271 		}
3272 	}
3273 
3274 	if (scmi_notification_init(handle))
3275 		dev_err(dev, "SCMI Notifications NOT available.\n");
3276 
3277 	if (info->desc->atomic_enabled &&
3278 	    !is_transport_polling_capable(info->desc))
3279 		dev_err(dev,
3280 			"Transport is not polling capable. Atomic mode not supported.\n");
3281 
3282 	/*
3283 	 * Trigger SCMI Base protocol initialization.
3284 	 * It's mandatory and won't be ever released/deinit until the
3285 	 * SCMI stack is shutdown/unloaded as a whole.
3286 	 */
3287 	ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
3288 	if (ret) {
3289 		err_str = "unable to communicate with SCMI\n";
3290 		if (coex) {
3291 			dev_err(dev, "%s", err_str);
3292 			return 0;
3293 		}
3294 		goto notification_exit;
3295 	}
3296 
3297 	mutex_lock(&scmi_list_mutex);
3298 	list_add_tail(&info->node, &scmi_list);
3299 	mutex_unlock(&scmi_list_mutex);
3300 
3301 	scmi_enable_matching_quirks(info);
3302 
3303 	for_each_available_child_of_node(np, child) {
3304 		u32 prot_id;
3305 
3306 		if (of_property_read_u32(child, "reg", &prot_id))
3307 			continue;
3308 
3309 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
3310 			dev_err(dev, "Out of range protocol %d\n", prot_id);
3311 
3312 		if (!scmi_is_protocol_implemented(handle, prot_id)) {
3313 			dev_err(dev, "SCMI protocol %d not implemented\n",
3314 				prot_id);
3315 			continue;
3316 		}
3317 
3318 		/*
3319 		 * Save this valid DT protocol descriptor amongst
3320 		 * @active_protocols for this SCMI instance/
3321 		 */
3322 		ret = idr_alloc(&info->active_protocols, child,
3323 				prot_id, prot_id + 1, GFP_KERNEL);
3324 		if (ret != prot_id) {
3325 			dev_err(dev, "SCMI protocol %d already activated. Skip\n",
3326 				prot_id);
3327 			continue;
3328 		}
3329 
3330 		of_node_get(child);
3331 		scmi_create_protocol_devices(child, info, prot_id, NULL);
3332 	}
3333 
3334 	return 0;
3335 
3336 notification_exit:
3337 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
3338 		scmi_raw_mode_cleanup(info->raw);
3339 	scmi_notification_exit(&info->handle);
3340 clear_dev_req_notifier:
3341 	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
3342 					   &info->dev_req_nb);
3343 clear_bus_notifier:
3344 	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
3345 clear_txrx_setup:
3346 	scmi_cleanup_txrx_channels(info);
3347 clear_ida:
3348 	ida_free(&scmi_id, info->id);
3349 
3350 out_err:
3351 	return dev_err_probe(dev, ret, "%s", err_str);
3352 }
3353 
3354 static void scmi_remove(struct platform_device *pdev)
3355 {
3356 	int id;
3357 	struct scmi_info *info = platform_get_drvdata(pdev);
3358 	struct device_node *child;
3359 
3360 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
3361 		scmi_raw_mode_cleanup(info->raw);
3362 
3363 	mutex_lock(&scmi_list_mutex);
3364 	if (info->users)
3365 		dev_warn(&pdev->dev,
3366 			 "Still active SCMI users will be forcibly unbound.\n");
3367 	list_del(&info->node);
3368 	mutex_unlock(&scmi_list_mutex);
3369 
3370 	scmi_notification_exit(&info->handle);
3371 
3372 	mutex_lock(&info->protocols_mtx);
3373 	idr_destroy(&info->protocols);
3374 	mutex_unlock(&info->protocols_mtx);
3375 
3376 	idr_for_each_entry(&info->active_protocols, child, id)
3377 		of_node_put(child);
3378 	idr_destroy(&info->active_protocols);
3379 
3380 	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
3381 					   &info->dev_req_nb);
3382 	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
3383 
3384 	/* Safe to free channels since no more users */
3385 	scmi_cleanup_txrx_channels(info);
3386 
3387 	ida_free(&scmi_id, info->id);
3388 }
3389 
3390 static ssize_t protocol_version_show(struct device *dev,
3391 				     struct device_attribute *attr, char *buf)
3392 {
3393 	struct scmi_info *info = dev_get_drvdata(dev);
3394 
3395 	return sprintf(buf, "%u.%u\n", info->version.major_ver,
3396 		       info->version.minor_ver);
3397 }
3398 static DEVICE_ATTR_RO(protocol_version);
3399 
3400 static ssize_t firmware_version_show(struct device *dev,
3401 				     struct device_attribute *attr, char *buf)
3402 {
3403 	struct scmi_info *info = dev_get_drvdata(dev);
3404 
3405 	return sprintf(buf, "0x%x\n", info->version.impl_ver);
3406 }
3407 static DEVICE_ATTR_RO(firmware_version);
3408 
3409 static ssize_t vendor_id_show(struct device *dev,
3410 			      struct device_attribute *attr, char *buf)
3411 {
3412 	struct scmi_info *info = dev_get_drvdata(dev);
3413 
3414 	return sprintf(buf, "%s\n", info->version.vendor_id);
3415 }
3416 static DEVICE_ATTR_RO(vendor_id);
3417 
3418 static ssize_t sub_vendor_id_show(struct device *dev,
3419 				  struct device_attribute *attr, char *buf)
3420 {
3421 	struct scmi_info *info = dev_get_drvdata(dev);
3422 
3423 	return sprintf(buf, "%s\n", info->version.sub_vendor_id);
3424 }
3425 static DEVICE_ATTR_RO(sub_vendor_id);
3426 
3427 static struct attribute *versions_attrs[] = {
3428 	&dev_attr_firmware_version.attr,
3429 	&dev_attr_protocol_version.attr,
3430 	&dev_attr_vendor_id.attr,
3431 	&dev_attr_sub_vendor_id.attr,
3432 	NULL,
3433 };
3434 ATTRIBUTE_GROUPS(versions);
3435 
3436 static struct platform_driver scmi_driver = {
3437 	.driver = {
3438 		   .name = "arm-scmi",
3439 		   .suppress_bind_attrs = true,
3440 		   .dev_groups = versions_groups,
3441 		   },
3442 	.probe = scmi_probe,
3443 	.remove = scmi_remove,
3444 };
3445 
3446 static struct dentry *scmi_debugfs_init(void)
3447 {
3448 	struct dentry *d;
3449 
3450 	d = debugfs_create_dir("scmi", NULL);
3451 	if (IS_ERR(d)) {
3452 		pr_err("Could NOT create SCMI top dentry.\n");
3453 		return NULL;
3454 	}
3455 
3456 	return d;
3457 }
3458 
3459 int scmi_inflight_count(const struct scmi_handle *handle)
3460 {
3461 	if (IS_ENABLED(CONFIG_ARM_SCMI_DEBUG_COUNTERS)) {
3462 		struct scmi_info *info = handle_to_scmi_info(handle);
3463 
3464 		if (!info->dbg)
3465 			return 0;
3466 
3467 		return atomic_read(&info->dbg->counters[XFERS_INFLIGHT]);
3468 	} else {
3469 		return 0;
3470 	}
3471 }
3472 
3473 static int __init scmi_driver_init(void)
3474 {
3475 	scmi_quirks_initialize();
3476 
3477 	/* Bail out if no SCMI transport was configured */
3478 	if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
3479 		return -EINVAL;
3480 
3481 	if (IS_ENABLED(CONFIG_ARM_SCMI_HAVE_SHMEM))
3482 		scmi_trans_core_ops.shmem = scmi_shared_mem_operations_get();
3483 
3484 	if (IS_ENABLED(CONFIG_ARM_SCMI_HAVE_MSG))
3485 		scmi_trans_core_ops.msg = scmi_message_operations_get();
3486 
3487 	if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS))
3488 		scmi_top_dentry = scmi_debugfs_init();
3489 
3490 	scmi_base_register();
3491 
3492 	scmi_clock_register();
3493 	scmi_perf_register();
3494 	scmi_power_register();
3495 	scmi_reset_register();
3496 	scmi_sensors_register();
3497 	scmi_voltage_register();
3498 	scmi_system_register();
3499 	scmi_powercap_register();
3500 	scmi_pinctrl_register();
3501 
3502 	return platform_driver_register(&scmi_driver);
3503 }
3504 module_init(scmi_driver_init);
3505 
3506 static void __exit scmi_driver_exit(void)
3507 {
3508 	scmi_base_unregister();
3509 
3510 	scmi_clock_unregister();
3511 	scmi_perf_unregister();
3512 	scmi_power_unregister();
3513 	scmi_reset_unregister();
3514 	scmi_sensors_unregister();
3515 	scmi_voltage_unregister();
3516 	scmi_system_unregister();
3517 	scmi_powercap_unregister();
3518 	scmi_pinctrl_unregister();
3519 
3520 	platform_driver_unregister(&scmi_driver);
3521 
3522 	debugfs_remove_recursive(scmi_top_dentry);
3523 }
3524 module_exit(scmi_driver_exit);
3525 
3526 MODULE_ALIAS("platform:arm-scmi");
3527 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
3528 MODULE_DESCRIPTION("ARM SCMI protocol driver");
3529 MODULE_LICENSE("GPL v2");
3530