xref: /linux/drivers/firmware/arm_scmi/driver.c (revision 297d9111e9fcf47dd1dcc6f79bba915f35378d01)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Message Protocol driver
4  *
5  * SCMI Message Protocol is used between the System Control Processor(SCP)
6  * and the Application Processors(AP). The Message Handling Unit(MHU)
7  * provides a mechanism for inter-processor communication between SCP's
8  * Cortex M3 and AP.
9  *
10  * SCP offers control and management of the core/cluster power states,
11  * various power domain DVFS including the core/cluster, certain system
12  * clocks configuration, thermal sensors and many others.
13  *
14  * Copyright (C) 2018-2025 ARM Ltd.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/idr.h>
24 #include <linux/io.h>
25 #include <linux/io-64-nonatomic-hi-lo.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/ktime.h>
29 #include <linux/hashtable.h>
30 #include <linux/list.h>
31 #include <linux/module.h>
32 #include <linux/of.h>
33 #include <linux/platform_device.h>
34 #include <linux/processor.h>
35 #include <linux/refcount.h>
36 #include <linux/slab.h>
37 #include <linux/xarray.h>
38 
39 #include "common.h"
40 #include "notify.h"
41 #include "quirks.h"
42 
43 #include "raw_mode.h"
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/scmi.h>
47 
48 #define SCMI_VENDOR_MODULE_ALIAS_FMT	"scmi-protocol-0x%02x-%s"
49 
50 static DEFINE_IDA(scmi_id);
51 
52 static DEFINE_XARRAY(scmi_protocols);
53 
54 /* List of all SCMI devices active in system */
55 static LIST_HEAD(scmi_list);
56 /* Protection for the entire list */
57 static DEFINE_MUTEX(scmi_list_mutex);
58 /* Track the unique id for the transfers for debug & profiling purpose */
59 static atomic_t transfer_last_id;
60 
61 static struct dentry *scmi_top_dentry;
62 
63 /**
64  * struct scmi_xfers_info - Structure to manage transfer information
65  *
66  * @xfer_alloc_table: Bitmap table for allocated messages.
67  *	Index of this bitmap table is also used for message
68  *	sequence identifier.
69  * @xfer_lock: Protection for message allocation
70  * @max_msg: Maximum number of messages that can be pending
71  * @free_xfers: A free list for available to use xfers. It is initialized with
72  *		a number of xfers equal to the maximum allowed in-flight
73  *		messages.
74  * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
75  *		   currently in-flight messages.
76  */
77 struct scmi_xfers_info {
78 	unsigned long *xfer_alloc_table;
79 	spinlock_t xfer_lock;
80 	int max_msg;
81 	struct hlist_head free_xfers;
82 	DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
83 };
84 
85 /**
86  * struct scmi_protocol_instance  - Describe an initialized protocol instance.
87  * @handle: Reference to the SCMI handle associated to this protocol instance.
88  * @proto: A reference to the protocol descriptor.
89  * @gid: A reference for per-protocol devres management.
90  * @users: A refcount to track effective users of this protocol.
91  * @priv: Reference for optional protocol private data.
92  * @version: Protocol version supported by the platform as detected at runtime.
93  * @negotiated_version: When the platform supports a newer protocol version,
94  *			the agent will try to negotiate with the platform the
95  *			usage of the newest version known to it, since
96  *			backward compatibility is NOT automatically assured.
97  *			This field is NON-zero when a successful negotiation
98  *			has completed.
99  * @ph: An embedded protocol handle that will be passed down to protocol
100  *	initialization code to identify this instance.
101  *
102  * Each protocol is initialized independently once for each SCMI platform in
103  * which is defined by DT and implemented by the SCMI server fw.
104  */
105 struct scmi_protocol_instance {
106 	const struct scmi_handle	*handle;
107 	const struct scmi_protocol	*proto;
108 	void				*gid;
109 	refcount_t			users;
110 	void				*priv;
111 	unsigned int			version;
112 	unsigned int			negotiated_version;
113 	struct scmi_protocol_handle	ph;
114 };
115 
116 #define ph_to_pi(h)	container_of(h, struct scmi_protocol_instance, ph)
117 
118 /**
119  * struct scmi_debug_info  - Debug common info
120  * @top_dentry: A reference to the top debugfs dentry
121  * @name: Name of this SCMI instance
122  * @type: Type of this SCMI instance
123  * @is_atomic: Flag to state if the transport of this instance is atomic
124  * @counters: An array of atomic_c's used for tracking statistics (if enabled)
125  */
126 struct scmi_debug_info {
127 	struct dentry *top_dentry;
128 	const char *name;
129 	const char *type;
130 	bool is_atomic;
131 	atomic_t counters[SCMI_DEBUG_COUNTERS_LAST];
132 };
133 
134 /**
135  * struct scmi_info - Structure representing a SCMI instance
136  *
137  * @id: A sequence number starting from zero identifying this instance
138  * @dev: Device pointer
139  * @desc: SoC description for this instance
140  * @version: SCMI revision information containing protocol version,
141  *	implementation version and (sub-)vendor identification.
142  * @handle: Instance of SCMI handle to send to clients
143  * @tx_minfo: Universal Transmit Message management info
144  * @rx_minfo: Universal Receive Message management info
145  * @tx_idr: IDR object to map protocol id to Tx channel info pointer
146  * @rx_idr: IDR object to map protocol id to Rx channel info pointer
147  * @protocols: IDR for protocols' instance descriptors initialized for
148  *	       this SCMI instance: populated on protocol's first attempted
149  *	       usage.
150  * @protocols_mtx: A mutex to protect protocols instances initialization.
151  * @protocols_imp: List of protocols implemented, currently maximum of
152  *		   scmi_revision_info.num_protocols elements allocated by the
153  *		   base protocol
154  * @active_protocols: IDR storing device_nodes for protocols actually defined
155  *		      in the DT and confirmed as implemented by fw.
156  * @notify_priv: Pointer to private data structure specific to notifications.
157  * @node: List head
158  * @users: Number of users of this instance
159  * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus
160  * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi
161  *		bus
162  * @devreq_mtx: A mutex to serialize device creation for this SCMI instance
163  * @dbg: A pointer to debugfs related data (if any)
164  * @raw: An opaque reference handle used by SCMI Raw mode.
165  */
166 struct scmi_info {
167 	int id;
168 	struct device *dev;
169 	const struct scmi_desc *desc;
170 	struct scmi_revision_info version;
171 	struct scmi_handle handle;
172 	struct scmi_xfers_info tx_minfo;
173 	struct scmi_xfers_info rx_minfo;
174 	struct idr tx_idr;
175 	struct idr rx_idr;
176 	struct idr protocols;
177 	/* Ensure mutual exclusive access to protocols instance array */
178 	struct mutex protocols_mtx;
179 	u8 *protocols_imp;
180 	struct idr active_protocols;
181 	void *notify_priv;
182 	struct list_head node;
183 	int users;
184 	struct notifier_block bus_nb;
185 	struct notifier_block dev_req_nb;
186 	/* Serialize device creation process for this instance */
187 	struct mutex devreq_mtx;
188 	struct scmi_debug_info *dbg;
189 	void *raw;
190 };
191 
192 #define handle_to_scmi_info(h)	container_of(h, struct scmi_info, handle)
193 #define bus_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, bus_nb)
194 #define req_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, dev_req_nb)
195 
196 static void scmi_rx_callback(struct scmi_chan_info *cinfo,
197 			     u32 msg_hdr, void *priv);
198 static void scmi_bad_message_trace(struct scmi_chan_info *cinfo,
199 				   u32 msg_hdr, enum scmi_bad_msg err);
200 
201 static struct scmi_transport_core_operations scmi_trans_core_ops = {
202 	.bad_message_trace = scmi_bad_message_trace,
203 	.rx_callback = scmi_rx_callback,
204 };
205 
206 static unsigned long
scmi_vendor_protocol_signature(unsigned int protocol_id,char * vendor_id,char * sub_vendor_id,u32 impl_ver)207 scmi_vendor_protocol_signature(unsigned int protocol_id, char *vendor_id,
208 			       char *sub_vendor_id, u32 impl_ver)
209 {
210 	char *signature, *p;
211 	unsigned long hash = 0;
212 
213 	/* vendor_id/sub_vendor_id guaranteed <= SCMI_SHORT_NAME_MAX_SIZE */
214 	signature = kasprintf(GFP_KERNEL, "%02X|%s|%s|0x%08X", protocol_id,
215 			      vendor_id ?: "", sub_vendor_id ?: "", impl_ver);
216 	if (!signature)
217 		return 0;
218 
219 	p = signature;
220 	while (*p)
221 		hash = partial_name_hash(tolower(*p++), hash);
222 	hash = end_name_hash(hash);
223 
224 	kfree(signature);
225 
226 	return hash;
227 }
228 
229 static unsigned long
scmi_protocol_key_calculate(int protocol_id,char * vendor_id,char * sub_vendor_id,u32 impl_ver)230 scmi_protocol_key_calculate(int protocol_id, char *vendor_id,
231 			    char *sub_vendor_id, u32 impl_ver)
232 {
233 	if (protocol_id < SCMI_PROTOCOL_VENDOR_BASE)
234 		return protocol_id;
235 	else
236 		return scmi_vendor_protocol_signature(protocol_id, vendor_id,
237 						      sub_vendor_id, impl_ver);
238 }
239 
240 static const struct scmi_protocol *
__scmi_vendor_protocol_lookup(int protocol_id,char * vendor_id,char * sub_vendor_id,u32 impl_ver)241 __scmi_vendor_protocol_lookup(int protocol_id, char *vendor_id,
242 			      char *sub_vendor_id, u32 impl_ver)
243 {
244 	unsigned long key;
245 	struct scmi_protocol *proto = NULL;
246 
247 	key = scmi_protocol_key_calculate(protocol_id, vendor_id,
248 					  sub_vendor_id, impl_ver);
249 	if (key)
250 		proto = xa_load(&scmi_protocols, key);
251 
252 	return proto;
253 }
254 
255 static const struct scmi_protocol *
scmi_vendor_protocol_lookup(int protocol_id,char * vendor_id,char * sub_vendor_id,u32 impl_ver)256 scmi_vendor_protocol_lookup(int protocol_id, char *vendor_id,
257 			    char *sub_vendor_id, u32 impl_ver)
258 {
259 	const struct scmi_protocol *proto = NULL;
260 
261 	/* Searching for closest match ...*/
262 	proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id,
263 					      sub_vendor_id, impl_ver);
264 	if (proto)
265 		return proto;
266 
267 	/* Any match just on vendor/sub_vendor ? */
268 	if (impl_ver) {
269 		proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id,
270 						      sub_vendor_id, 0);
271 		if (proto)
272 			return proto;
273 	}
274 
275 	/* Any match just on the vendor ? */
276 	if (sub_vendor_id)
277 		proto = __scmi_vendor_protocol_lookup(protocol_id, vendor_id,
278 						      NULL, 0);
279 	return proto;
280 }
281 
282 static const struct scmi_protocol *
scmi_vendor_protocol_get(int protocol_id,struct scmi_revision_info * version)283 scmi_vendor_protocol_get(int protocol_id, struct scmi_revision_info *version)
284 {
285 	const struct scmi_protocol *proto;
286 
287 	proto = scmi_vendor_protocol_lookup(protocol_id, version->vendor_id,
288 					    version->sub_vendor_id,
289 					    version->impl_ver);
290 	if (!proto) {
291 		int ret;
292 
293 		pr_debug("Looking for '" SCMI_VENDOR_MODULE_ALIAS_FMT "'\n",
294 			 protocol_id, version->vendor_id);
295 
296 		/* Note that vendor_id is mandatory for vendor protocols */
297 		ret = request_module(SCMI_VENDOR_MODULE_ALIAS_FMT,
298 				     protocol_id, version->vendor_id);
299 		if (ret) {
300 			pr_warn("Problem loading module for protocol 0x%x\n",
301 				protocol_id);
302 			return NULL;
303 		}
304 
305 		/* Lookup again, once modules loaded */
306 		proto = scmi_vendor_protocol_lookup(protocol_id,
307 						    version->vendor_id,
308 						    version->sub_vendor_id,
309 						    version->impl_ver);
310 	}
311 
312 	if (proto)
313 		pr_info("Loaded SCMI Vendor Protocol 0x%x - %s %s %X\n",
314 			protocol_id, proto->vendor_id ?: "",
315 			proto->sub_vendor_id ?: "", proto->impl_ver);
316 
317 	return proto;
318 }
319 
320 static const struct scmi_protocol *
scmi_protocol_get(int protocol_id,struct scmi_revision_info * version)321 scmi_protocol_get(int protocol_id, struct scmi_revision_info *version)
322 {
323 	const struct scmi_protocol *proto = NULL;
324 
325 	if (protocol_id < SCMI_PROTOCOL_VENDOR_BASE)
326 		proto = xa_load(&scmi_protocols, protocol_id);
327 	else
328 		proto = scmi_vendor_protocol_get(protocol_id, version);
329 
330 	if (!proto || !try_module_get(proto->owner)) {
331 		pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id);
332 		return NULL;
333 	}
334 
335 	pr_debug("Found SCMI Protocol 0x%x\n", protocol_id);
336 
337 	return proto;
338 }
339 
scmi_protocol_put(const struct scmi_protocol * proto)340 static void scmi_protocol_put(const struct scmi_protocol *proto)
341 {
342 	if (proto)
343 		module_put(proto->owner);
344 }
345 
scmi_vendor_protocol_check(const struct scmi_protocol * proto)346 static int scmi_vendor_protocol_check(const struct scmi_protocol *proto)
347 {
348 	if (!proto->vendor_id) {
349 		pr_err("missing vendor_id for protocol 0x%x\n", proto->id);
350 		return -EINVAL;
351 	}
352 
353 	if (strlen(proto->vendor_id) >= SCMI_SHORT_NAME_MAX_SIZE) {
354 		pr_err("malformed vendor_id for protocol 0x%x\n", proto->id);
355 		return -EINVAL;
356 	}
357 
358 	if (proto->sub_vendor_id &&
359 	    strlen(proto->sub_vendor_id) >= SCMI_SHORT_NAME_MAX_SIZE) {
360 		pr_err("malformed sub_vendor_id for protocol 0x%x\n",
361 		       proto->id);
362 		return -EINVAL;
363 	}
364 
365 	return 0;
366 }
367 
scmi_protocol_register(const struct scmi_protocol * proto)368 int scmi_protocol_register(const struct scmi_protocol *proto)
369 {
370 	int ret;
371 	unsigned long key;
372 
373 	if (!proto) {
374 		pr_err("invalid protocol\n");
375 		return -EINVAL;
376 	}
377 
378 	if (!proto->instance_init) {
379 		pr_err("missing init for protocol 0x%x\n", proto->id);
380 		return -EINVAL;
381 	}
382 
383 	if (proto->id >= SCMI_PROTOCOL_VENDOR_BASE &&
384 	    scmi_vendor_protocol_check(proto))
385 		return -EINVAL;
386 
387 	/*
388 	 * Calculate a protocol key to register this protocol with the core;
389 	 * key value 0 is considered invalid.
390 	 */
391 	key = scmi_protocol_key_calculate(proto->id, proto->vendor_id,
392 					  proto->sub_vendor_id,
393 					  proto->impl_ver);
394 	if (!key)
395 		return -EINVAL;
396 
397 	ret = xa_insert(&scmi_protocols, key, (void *)proto, GFP_KERNEL);
398 	if (ret) {
399 		pr_err("unable to allocate SCMI protocol slot for 0x%x - err %d\n",
400 		       proto->id, ret);
401 		return ret;
402 	}
403 
404 	pr_debug("Registered SCMI Protocol 0x%x - %s  %s  0x%08X\n",
405 		 proto->id, proto->vendor_id, proto->sub_vendor_id,
406 		 proto->impl_ver);
407 
408 	return 0;
409 }
410 EXPORT_SYMBOL_GPL(scmi_protocol_register);
411 
scmi_protocol_unregister(const struct scmi_protocol * proto)412 void scmi_protocol_unregister(const struct scmi_protocol *proto)
413 {
414 	unsigned long key;
415 
416 	key = scmi_protocol_key_calculate(proto->id, proto->vendor_id,
417 					  proto->sub_vendor_id,
418 					  proto->impl_ver);
419 	if (!key)
420 		return;
421 
422 	xa_erase(&scmi_protocols, key);
423 
424 	pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id);
425 }
426 EXPORT_SYMBOL_GPL(scmi_protocol_unregister);
427 
428 /**
429  * scmi_create_protocol_devices  - Create devices for all pending requests for
430  * this SCMI instance.
431  *
432  * @np: The device node describing the protocol
433  * @info: The SCMI instance descriptor
434  * @prot_id: The protocol ID
435  * @name: The optional name of the device to be created: if not provided this
436  *	  call will lead to the creation of all the devices currently requested
437  *	  for the specified protocol.
438  */
scmi_create_protocol_devices(struct device_node * np,struct scmi_info * info,int prot_id,const char * name)439 static void scmi_create_protocol_devices(struct device_node *np,
440 					 struct scmi_info *info,
441 					 int prot_id, const char *name)
442 {
443 	mutex_lock(&info->devreq_mtx);
444 	scmi_device_create(np, info->dev, prot_id, name);
445 	mutex_unlock(&info->devreq_mtx);
446 }
447 
scmi_destroy_protocol_devices(struct scmi_info * info,int prot_id,const char * name)448 static void scmi_destroy_protocol_devices(struct scmi_info *info,
449 					  int prot_id, const char *name)
450 {
451 	mutex_lock(&info->devreq_mtx);
452 	scmi_device_destroy(info->dev, prot_id, name);
453 	mutex_unlock(&info->devreq_mtx);
454 }
455 
scmi_notification_instance_data_set(const struct scmi_handle * handle,void * priv)456 void scmi_notification_instance_data_set(const struct scmi_handle *handle,
457 					 void *priv)
458 {
459 	struct scmi_info *info = handle_to_scmi_info(handle);
460 
461 	info->notify_priv = priv;
462 	/* Ensure updated protocol private date are visible */
463 	smp_wmb();
464 }
465 
scmi_notification_instance_data_get(const struct scmi_handle * handle)466 void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
467 {
468 	struct scmi_info *info = handle_to_scmi_info(handle);
469 
470 	/* Ensure protocols_private_data has been updated */
471 	smp_rmb();
472 	return info->notify_priv;
473 }
474 
475 /**
476  * scmi_xfer_token_set  - Reserve and set new token for the xfer at hand
477  *
478  * @minfo: Pointer to Tx/Rx Message management info based on channel type
479  * @xfer: The xfer to act upon
480  *
481  * Pick the next unused monotonically increasing token and set it into
482  * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
483  * reuse of freshly completed or timed-out xfers, thus mitigating the risk
484  * of incorrect association of a late and expired xfer with a live in-flight
485  * transaction, both happening to re-use the same token identifier.
486  *
487  * Since platform is NOT required to answer our request in-order we should
488  * account for a few rare but possible scenarios:
489  *
490  *  - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
491  *    using find_next_zero_bit() starting from candidate next_token bit
492  *
493  *  - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
494  *    are plenty of free tokens at start, so try a second pass using
495  *    find_next_zero_bit() and starting from 0.
496  *
497  *  X = used in-flight
498  *
499  * Normal
500  * ------
501  *
502  *		|- xfer_id picked
503  *   -----------+----------------------------------------------------------
504  *   | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
505  *   ----------------------------------------------------------------------
506  *		^
507  *		|- next_token
508  *
509  * Out-of-order pending at start
510  * -----------------------------
511  *
512  *	  |- xfer_id picked, last_token fixed
513  *   -----+----------------------------------------------------------------
514  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
515  *   ----------------------------------------------------------------------
516  *    ^
517  *    |- next_token
518  *
519  *
520  * Out-of-order pending at end
521  * ---------------------------
522  *
523  *	  |- xfer_id picked, last_token fixed
524  *   -----+----------------------------------------------------------------
525  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
526  *   ----------------------------------------------------------------------
527  *								^
528  *								|- next_token
529  *
530  * Context: Assumes to be called with @xfer_lock already acquired.
531  *
532  * Return: 0 on Success or error
533  */
scmi_xfer_token_set(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)534 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
535 			       struct scmi_xfer *xfer)
536 {
537 	unsigned long xfer_id, next_token;
538 
539 	/*
540 	 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
541 	 * using the pre-allocated transfer_id as a base.
542 	 * Note that the global transfer_id is shared across all message types
543 	 * so there could be holes in the allocated set of monotonic sequence
544 	 * numbers, but that is going to limit the effectiveness of the
545 	 * mitigation only in very rare limit conditions.
546 	 */
547 	next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
548 
549 	/* Pick the next available xfer_id >= next_token */
550 	xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
551 				     MSG_TOKEN_MAX, next_token);
552 	if (xfer_id == MSG_TOKEN_MAX) {
553 		/*
554 		 * After heavily out-of-order responses, there are no free
555 		 * tokens ahead, but only at start of xfer_alloc_table so
556 		 * try again from the beginning.
557 		 */
558 		xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
559 					     MSG_TOKEN_MAX, 0);
560 		/*
561 		 * Something is wrong if we got here since there can be a
562 		 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
563 		 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
564 		 */
565 		if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
566 			return -ENOMEM;
567 	}
568 
569 	/* Update +/- last_token accordingly if we skipped some hole */
570 	if (xfer_id != next_token)
571 		atomic_add((int)(xfer_id - next_token), &transfer_last_id);
572 
573 	xfer->hdr.seq = (u16)xfer_id;
574 
575 	return 0;
576 }
577 
578 /**
579  * scmi_xfer_token_clear  - Release the token
580  *
581  * @minfo: Pointer to Tx/Rx Message management info based on channel type
582  * @xfer: The xfer to act upon
583  */
scmi_xfer_token_clear(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)584 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
585 					 struct scmi_xfer *xfer)
586 {
587 	clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
588 }
589 
590 /**
591  * scmi_xfer_inflight_register_unlocked  - Register the xfer as in-flight
592  *
593  * @xfer: The xfer to register
594  * @minfo: Pointer to Tx/Rx Message management info based on channel type
595  *
596  * Note that this helper assumes that the xfer to be registered as in-flight
597  * had been built using an xfer sequence number which still corresponds to a
598  * free slot in the xfer_alloc_table.
599  *
600  * Context: Assumes to be called with @xfer_lock already acquired.
601  */
602 static inline void
scmi_xfer_inflight_register_unlocked(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)603 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer,
604 				     struct scmi_xfers_info *minfo)
605 {
606 	/* Set in-flight */
607 	set_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
608 	hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq);
609 	xfer->pending = true;
610 }
611 
612 /**
613  * scmi_xfer_inflight_register  - Try to register an xfer as in-flight
614  *
615  * @xfer: The xfer to register
616  * @minfo: Pointer to Tx/Rx Message management info based on channel type
617  *
618  * Note that this helper does NOT assume anything about the sequence number
619  * that was baked into the provided xfer, so it checks at first if it can
620  * be mapped to a free slot and fails with an error if another xfer with the
621  * same sequence number is currently still registered as in-flight.
622  *
623  * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer
624  *	   could not rbe mapped to a free slot in the xfer_alloc_table.
625  */
scmi_xfer_inflight_register(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)626 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer,
627 				       struct scmi_xfers_info *minfo)
628 {
629 	int ret = 0;
630 	unsigned long flags;
631 
632 	spin_lock_irqsave(&minfo->xfer_lock, flags);
633 	if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table))
634 		scmi_xfer_inflight_register_unlocked(xfer, minfo);
635 	else
636 		ret = -EBUSY;
637 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
638 
639 	return ret;
640 }
641 
642 /**
643  * scmi_xfer_raw_inflight_register  - An helper to register the given xfer as in
644  * flight on the TX channel, if possible.
645  *
646  * @handle: Pointer to SCMI entity handle
647  * @xfer: The xfer to register
648  *
649  * Return: 0 on Success, error otherwise
650  */
scmi_xfer_raw_inflight_register(const struct scmi_handle * handle,struct scmi_xfer * xfer)651 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle,
652 				    struct scmi_xfer *xfer)
653 {
654 	struct scmi_info *info = handle_to_scmi_info(handle);
655 
656 	return scmi_xfer_inflight_register(xfer, &info->tx_minfo);
657 }
658 
659 /**
660  * scmi_xfer_pending_set  - Pick a proper sequence number and mark the xfer
661  * as pending in-flight
662  *
663  * @xfer: The xfer to act upon
664  * @minfo: Pointer to Tx/Rx Message management info based on channel type
665  *
666  * Return: 0 on Success or error otherwise
667  */
scmi_xfer_pending_set(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)668 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer,
669 					struct scmi_xfers_info *minfo)
670 {
671 	int ret;
672 	unsigned long flags;
673 
674 	spin_lock_irqsave(&minfo->xfer_lock, flags);
675 	/* Set a new monotonic token as the xfer sequence number */
676 	ret = scmi_xfer_token_set(minfo, xfer);
677 	if (!ret)
678 		scmi_xfer_inflight_register_unlocked(xfer, minfo);
679 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
680 
681 	return ret;
682 }
683 
684 /**
685  * scmi_xfer_get() - Allocate one message
686  *
687  * @handle: Pointer to SCMI entity handle
688  * @minfo: Pointer to Tx/Rx Message management info based on channel type
689  *
690  * Helper function which is used by various message functions that are
691  * exposed to clients of this driver for allocating a message traffic event.
692  *
693  * Picks an xfer from the free list @free_xfers (if any available) and perform
694  * a basic initialization.
695  *
696  * Note that, at this point, still no sequence number is assigned to the
697  * allocated xfer, nor it is registered as a pending transaction.
698  *
699  * The successfully initialized xfer is refcounted.
700  *
701  * Context: Holds @xfer_lock while manipulating @free_xfers.
702  *
703  * Return: An initialized xfer if all went fine, else pointer error.
704  */
scmi_xfer_get(const struct scmi_handle * handle,struct scmi_xfers_info * minfo)705 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
706 				       struct scmi_xfers_info *minfo)
707 {
708 	unsigned long flags;
709 	struct scmi_xfer *xfer;
710 
711 	spin_lock_irqsave(&minfo->xfer_lock, flags);
712 	if (hlist_empty(&minfo->free_xfers)) {
713 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
714 		return ERR_PTR(-ENOMEM);
715 	}
716 
717 	/* grab an xfer from the free_list */
718 	xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
719 	hlist_del_init(&xfer->node);
720 
721 	/*
722 	 * Allocate transfer_id early so that can be used also as base for
723 	 * monotonic sequence number generation if needed.
724 	 */
725 	xfer->transfer_id = atomic_inc_return(&transfer_last_id);
726 
727 	refcount_set(&xfer->users, 1);
728 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
729 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
730 
731 	return xfer;
732 }
733 
734 /**
735  * scmi_xfer_raw_get  - Helper to get a bare free xfer from the TX channel
736  *
737  * @handle: Pointer to SCMI entity handle
738  *
739  * Note that xfer is taken from the TX channel structures.
740  *
741  * Return: A valid xfer on Success, or an error-pointer otherwise
742  */
scmi_xfer_raw_get(const struct scmi_handle * handle)743 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle)
744 {
745 	struct scmi_xfer *xfer;
746 	struct scmi_info *info = handle_to_scmi_info(handle);
747 
748 	xfer = scmi_xfer_get(handle, &info->tx_minfo);
749 	if (!IS_ERR(xfer))
750 		xfer->flags |= SCMI_XFER_FLAG_IS_RAW;
751 
752 	return xfer;
753 }
754 
755 /**
756  * scmi_xfer_raw_channel_get  - Helper to get a reference to the proper channel
757  * to use for a specific protocol_id Raw transaction.
758  *
759  * @handle: Pointer to SCMI entity handle
760  * @protocol_id: Identifier of the protocol
761  *
762  * Note that in a regular SCMI stack, usually, a protocol has to be defined in
763  * the DT to have an associated channel and be usable; but in Raw mode any
764  * protocol in range is allowed, re-using the Base channel, so as to enable
765  * fuzzing on any protocol without the need of a fully compiled DT.
766  *
767  * Return: A reference to the channel to use, or an ERR_PTR
768  */
769 struct scmi_chan_info *
scmi_xfer_raw_channel_get(const struct scmi_handle * handle,u8 protocol_id)770 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id)
771 {
772 	struct scmi_chan_info *cinfo;
773 	struct scmi_info *info = handle_to_scmi_info(handle);
774 
775 	cinfo = idr_find(&info->tx_idr, protocol_id);
776 	if (!cinfo) {
777 		if (protocol_id == SCMI_PROTOCOL_BASE)
778 			return ERR_PTR(-EINVAL);
779 		/* Use Base channel for protocols not defined for DT */
780 		cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE);
781 		if (!cinfo)
782 			return ERR_PTR(-EINVAL);
783 		dev_warn_once(handle->dev,
784 			      "Using Base channel for protocol 0x%X\n",
785 			      protocol_id);
786 	}
787 
788 	return cinfo;
789 }
790 
791 /**
792  * __scmi_xfer_put() - Release a message
793  *
794  * @minfo: Pointer to Tx/Rx Message management info based on channel type
795  * @xfer: message that was reserved by scmi_xfer_get
796  *
797  * After refcount check, possibly release an xfer, clearing the token slot,
798  * removing xfer from @pending_xfers and putting it back into free_xfers.
799  *
800  * This holds a spinlock to maintain integrity of internal data structures.
801  */
802 static void
__scmi_xfer_put(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)803 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
804 {
805 	unsigned long flags;
806 
807 	spin_lock_irqsave(&minfo->xfer_lock, flags);
808 	if (refcount_dec_and_test(&xfer->users)) {
809 		if (xfer->pending) {
810 			scmi_xfer_token_clear(minfo, xfer);
811 			hash_del(&xfer->node);
812 			xfer->pending = false;
813 		}
814 		hlist_add_head(&xfer->node, &minfo->free_xfers);
815 	}
816 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
817 }
818 
819 /**
820  * scmi_xfer_raw_put  - Release an xfer that was taken by @scmi_xfer_raw_get
821  *
822  * @handle: Pointer to SCMI entity handle
823  * @xfer: A reference to the xfer to put
824  *
825  * Note that as with other xfer_put() handlers the xfer is really effectively
826  * released only if there are no more users on the system.
827  */
scmi_xfer_raw_put(const struct scmi_handle * handle,struct scmi_xfer * xfer)828 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer)
829 {
830 	struct scmi_info *info = handle_to_scmi_info(handle);
831 
832 	xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW;
833 	xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET;
834 	return __scmi_xfer_put(&info->tx_minfo, xfer);
835 }
836 
837 /**
838  * scmi_xfer_lookup_unlocked  -  Helper to lookup an xfer_id
839  *
840  * @minfo: Pointer to Tx/Rx Message management info based on channel type
841  * @xfer_id: Token ID to lookup in @pending_xfers
842  *
843  * Refcounting is untouched.
844  *
845  * Context: Assumes to be called with @xfer_lock already acquired.
846  *
847  * Return: A valid xfer on Success or error otherwise
848  */
849 static struct scmi_xfer *
scmi_xfer_lookup_unlocked(struct scmi_xfers_info * minfo,u16 xfer_id)850 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
851 {
852 	struct scmi_xfer *xfer = NULL;
853 
854 	if (test_bit(xfer_id, minfo->xfer_alloc_table))
855 		xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
856 
857 	return xfer ?: ERR_PTR(-EINVAL);
858 }
859 
860 /**
861  * scmi_bad_message_trace  - A helper to trace weird messages
862  *
863  * @cinfo: A reference to the channel descriptor on which the message was
864  *	   received
865  * @msg_hdr: Message header to track
866  * @err: A specific error code used as a status value in traces.
867  *
868  * This helper can be used to trace any kind of weird, incomplete, unexpected,
869  * timed-out message that arrives and as such, can be traced only referring to
870  * the header content, since the payload is missing/unreliable.
871  */
scmi_bad_message_trace(struct scmi_chan_info * cinfo,u32 msg_hdr,enum scmi_bad_msg err)872 static void scmi_bad_message_trace(struct scmi_chan_info *cinfo, u32 msg_hdr,
873 				   enum scmi_bad_msg err)
874 {
875 	char *tag;
876 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
877 
878 	switch (MSG_XTRACT_TYPE(msg_hdr)) {
879 	case MSG_TYPE_COMMAND:
880 		tag = "!RESP";
881 		break;
882 	case MSG_TYPE_DELAYED_RESP:
883 		tag = "!DLYD";
884 		break;
885 	case MSG_TYPE_NOTIFICATION:
886 		tag = "!NOTI";
887 		break;
888 	default:
889 		tag = "!UNKN";
890 		break;
891 	}
892 
893 	trace_scmi_msg_dump(info->id, cinfo->id,
894 			    MSG_XTRACT_PROT_ID(msg_hdr),
895 			    MSG_XTRACT_ID(msg_hdr), tag,
896 			    MSG_XTRACT_TOKEN(msg_hdr), err, NULL, 0);
897 }
898 
899 /**
900  * scmi_msg_response_validate  - Validate message type against state of related
901  * xfer
902  *
903  * @cinfo: A reference to the channel descriptor.
904  * @msg_type: Message type to check
905  * @xfer: A reference to the xfer to validate against @msg_type
906  *
907  * This function checks if @msg_type is congruent with the current state of
908  * a pending @xfer; if an asynchronous delayed response is received before the
909  * related synchronous response (Out-of-Order Delayed Response) the missing
910  * synchronous response is assumed to be OK and completed, carrying on with the
911  * Delayed Response: this is done to address the case in which the underlying
912  * SCMI transport can deliver such out-of-order responses.
913  *
914  * Context: Assumes to be called with xfer->lock already acquired.
915  *
916  * Return: 0 on Success, error otherwise
917  */
scmi_msg_response_validate(struct scmi_chan_info * cinfo,u8 msg_type,struct scmi_xfer * xfer)918 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
919 					     u8 msg_type,
920 					     struct scmi_xfer *xfer)
921 {
922 	/*
923 	 * Even if a response was indeed expected on this slot at this point,
924 	 * a buggy platform could wrongly reply feeding us an unexpected
925 	 * delayed response we're not prepared to handle: bail-out safely
926 	 * blaming firmware.
927 	 */
928 	if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
929 		dev_err(cinfo->dev,
930 			"Delayed Response for %d not expected! Buggy F/W ?\n",
931 			xfer->hdr.seq);
932 		return -EINVAL;
933 	}
934 
935 	switch (xfer->state) {
936 	case SCMI_XFER_SENT_OK:
937 		if (msg_type == MSG_TYPE_DELAYED_RESP) {
938 			/*
939 			 * Delayed Response expected but delivered earlier.
940 			 * Assume message RESPONSE was OK and skip state.
941 			 */
942 			xfer->hdr.status = SCMI_SUCCESS;
943 			xfer->state = SCMI_XFER_RESP_OK;
944 			complete(&xfer->done);
945 			dev_warn(cinfo->dev,
946 				 "Received valid OoO Delayed Response for %d\n",
947 				 xfer->hdr.seq);
948 		}
949 		break;
950 	case SCMI_XFER_RESP_OK:
951 		if (msg_type != MSG_TYPE_DELAYED_RESP)
952 			return -EINVAL;
953 		break;
954 	case SCMI_XFER_DRESP_OK:
955 		/* No further message expected once in SCMI_XFER_DRESP_OK */
956 		return -EINVAL;
957 	}
958 
959 	return 0;
960 }
961 
962 /**
963  * scmi_xfer_state_update  - Update xfer state
964  *
965  * @xfer: A reference to the xfer to update
966  * @msg_type: Type of message being processed.
967  *
968  * Note that this message is assumed to have been already successfully validated
969  * by @scmi_msg_response_validate(), so here we just update the state.
970  *
971  * Context: Assumes to be called on an xfer exclusively acquired using the
972  *	    busy flag.
973  */
scmi_xfer_state_update(struct scmi_xfer * xfer,u8 msg_type)974 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
975 {
976 	xfer->hdr.type = msg_type;
977 
978 	/* Unknown command types were already discarded earlier */
979 	if (xfer->hdr.type == MSG_TYPE_COMMAND)
980 		xfer->state = SCMI_XFER_RESP_OK;
981 	else
982 		xfer->state = SCMI_XFER_DRESP_OK;
983 }
984 
scmi_xfer_acquired(struct scmi_xfer * xfer)985 static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
986 {
987 	int ret;
988 
989 	ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
990 
991 	return ret == SCMI_XFER_FREE;
992 }
993 
994 /**
995  * scmi_xfer_command_acquire  -  Helper to lookup and acquire a command xfer
996  *
997  * @cinfo: A reference to the channel descriptor.
998  * @msg_hdr: A message header to use as lookup key
999  *
1000  * When a valid xfer is found for the sequence number embedded in the provided
1001  * msg_hdr, reference counting is properly updated and exclusive access to this
1002  * xfer is granted till released with @scmi_xfer_command_release.
1003  *
1004  * Return: A valid @xfer on Success or error otherwise.
1005  */
1006 static inline struct scmi_xfer *
scmi_xfer_command_acquire(struct scmi_chan_info * cinfo,u32 msg_hdr)1007 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
1008 {
1009 	int ret;
1010 	unsigned long flags;
1011 	struct scmi_xfer *xfer;
1012 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1013 	struct scmi_xfers_info *minfo = &info->tx_minfo;
1014 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
1015 	u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
1016 
1017 	/* Are we even expecting this? */
1018 	spin_lock_irqsave(&minfo->xfer_lock, flags);
1019 	xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
1020 	if (IS_ERR(xfer)) {
1021 		dev_err(cinfo->dev,
1022 			"Message for %d type %d is not expected!\n",
1023 			xfer_id, msg_type);
1024 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
1025 
1026 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNEXPECTED);
1027 		scmi_inc_count(info->dbg->counters, ERR_MSG_UNEXPECTED);
1028 
1029 		return xfer;
1030 	}
1031 	refcount_inc(&xfer->users);
1032 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
1033 
1034 	spin_lock_irqsave(&xfer->lock, flags);
1035 	ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
1036 	/*
1037 	 * If a pending xfer was found which was also in a congruent state with
1038 	 * the received message, acquire exclusive access to it setting the busy
1039 	 * flag.
1040 	 * Spins only on the rare limit condition of concurrent reception of
1041 	 * RESP and DRESP for the same xfer.
1042 	 */
1043 	if (!ret) {
1044 		spin_until_cond(scmi_xfer_acquired(xfer));
1045 		scmi_xfer_state_update(xfer, msg_type);
1046 	}
1047 	spin_unlock_irqrestore(&xfer->lock, flags);
1048 
1049 	if (ret) {
1050 		dev_err(cinfo->dev,
1051 			"Invalid message type:%d for %d - HDR:0x%X  state:%d\n",
1052 			msg_type, xfer_id, msg_hdr, xfer->state);
1053 
1054 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_INVALID);
1055 		scmi_inc_count(info->dbg->counters, ERR_MSG_INVALID);
1056 
1057 		/* On error the refcount incremented above has to be dropped */
1058 		__scmi_xfer_put(minfo, xfer);
1059 		xfer = ERR_PTR(-EINVAL);
1060 	}
1061 
1062 	return xfer;
1063 }
1064 
scmi_xfer_command_release(struct scmi_info * info,struct scmi_xfer * xfer)1065 static inline void scmi_xfer_command_release(struct scmi_info *info,
1066 					     struct scmi_xfer *xfer)
1067 {
1068 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
1069 	__scmi_xfer_put(&info->tx_minfo, xfer);
1070 }
1071 
scmi_clear_channel(struct scmi_info * info,struct scmi_chan_info * cinfo)1072 static inline void scmi_clear_channel(struct scmi_info *info,
1073 				      struct scmi_chan_info *cinfo)
1074 {
1075 	if (!cinfo->is_p2a) {
1076 		dev_warn(cinfo->dev, "Invalid clear on A2P channel !\n");
1077 		return;
1078 	}
1079 
1080 	if (info->desc->ops->clear_channel)
1081 		info->desc->ops->clear_channel(cinfo);
1082 }
1083 
scmi_handle_notification(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)1084 static void scmi_handle_notification(struct scmi_chan_info *cinfo,
1085 				     u32 msg_hdr, void *priv)
1086 {
1087 	struct scmi_xfer *xfer;
1088 	struct device *dev = cinfo->dev;
1089 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1090 	struct scmi_xfers_info *minfo = &info->rx_minfo;
1091 	ktime_t ts;
1092 
1093 	ts = ktime_get_boottime();
1094 	xfer = scmi_xfer_get(cinfo->handle, minfo);
1095 	if (IS_ERR(xfer)) {
1096 		dev_err(dev, "failed to get free message slot (%ld)\n",
1097 			PTR_ERR(xfer));
1098 
1099 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_NOMEM);
1100 		scmi_inc_count(info->dbg->counters, ERR_MSG_NOMEM);
1101 
1102 		scmi_clear_channel(info, cinfo);
1103 		return;
1104 	}
1105 
1106 	unpack_scmi_header(msg_hdr, &xfer->hdr);
1107 	if (priv)
1108 		/* Ensure order between xfer->priv store and following ops */
1109 		smp_store_mb(xfer->priv, priv);
1110 	info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
1111 					    xfer);
1112 
1113 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1114 			    xfer->hdr.id, "NOTI", xfer->hdr.seq,
1115 			    xfer->hdr.status, xfer->rx.buf, xfer->rx.len);
1116 	scmi_inc_count(info->dbg->counters, NOTIFICATION_OK);
1117 
1118 	scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
1119 		    xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
1120 
1121 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
1122 			   xfer->hdr.protocol_id, xfer->hdr.seq,
1123 			   MSG_TYPE_NOTIFICATION);
1124 
1125 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1126 		xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr);
1127 		scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE,
1128 					cinfo->id);
1129 	}
1130 
1131 	__scmi_xfer_put(minfo, xfer);
1132 
1133 	scmi_clear_channel(info, cinfo);
1134 }
1135 
scmi_handle_response(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)1136 static void scmi_handle_response(struct scmi_chan_info *cinfo,
1137 				 u32 msg_hdr, void *priv)
1138 {
1139 	struct scmi_xfer *xfer;
1140 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1141 
1142 	xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
1143 	if (IS_ERR(xfer)) {
1144 		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
1145 			scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv);
1146 
1147 		if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
1148 			scmi_clear_channel(info, cinfo);
1149 		return;
1150 	}
1151 
1152 	/* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
1153 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
1154 		xfer->rx.len = info->desc->max_msg_size;
1155 
1156 	if (priv)
1157 		/* Ensure order between xfer->priv store and following ops */
1158 		smp_store_mb(xfer->priv, priv);
1159 	info->desc->ops->fetch_response(cinfo, xfer);
1160 
1161 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1162 			    xfer->hdr.id,
1163 			    xfer->hdr.type == MSG_TYPE_DELAYED_RESP ?
1164 			    (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") :
1165 			    (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"),
1166 			    xfer->hdr.seq, xfer->hdr.status,
1167 			    xfer->rx.buf, xfer->rx.len);
1168 
1169 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
1170 			   xfer->hdr.protocol_id, xfer->hdr.seq,
1171 			   xfer->hdr.type);
1172 
1173 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
1174 		scmi_clear_channel(info, cinfo);
1175 		complete(xfer->async_done);
1176 		scmi_inc_count(info->dbg->counters, DELAYED_RESPONSE_OK);
1177 	} else {
1178 		complete(&xfer->done);
1179 		scmi_inc_count(info->dbg->counters, RESPONSE_OK);
1180 	}
1181 
1182 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1183 		/*
1184 		 * When in polling mode avoid to queue the Raw xfer on the IRQ
1185 		 * RX path since it will be already queued at the end of the TX
1186 		 * poll loop.
1187 		 */
1188 		if (!xfer->hdr.poll_completion ||
1189 		    xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
1190 			scmi_raw_message_report(info->raw, xfer,
1191 						SCMI_RAW_REPLY_QUEUE,
1192 						cinfo->id);
1193 	}
1194 
1195 	scmi_xfer_command_release(info, xfer);
1196 }
1197 
1198 /**
1199  * scmi_rx_callback() - callback for receiving messages
1200  *
1201  * @cinfo: SCMI channel info
1202  * @msg_hdr: Message header
1203  * @priv: Transport specific private data.
1204  *
1205  * Processes one received message to appropriate transfer information and
1206  * signals completion of the transfer.
1207  *
1208  * NOTE: This function will be invoked in IRQ context, hence should be
1209  * as optimal as possible.
1210  */
scmi_rx_callback(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)1211 static void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr,
1212 			     void *priv)
1213 {
1214 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
1215 
1216 	switch (msg_type) {
1217 	case MSG_TYPE_NOTIFICATION:
1218 		scmi_handle_notification(cinfo, msg_hdr, priv);
1219 		break;
1220 	case MSG_TYPE_COMMAND:
1221 	case MSG_TYPE_DELAYED_RESP:
1222 		scmi_handle_response(cinfo, msg_hdr, priv);
1223 		break;
1224 	default:
1225 		WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
1226 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNKNOWN);
1227 		break;
1228 	}
1229 }
1230 
1231 /**
1232  * xfer_put() - Release a transmit message
1233  *
1234  * @ph: Pointer to SCMI protocol handle
1235  * @xfer: message that was reserved by xfer_get_init
1236  */
xfer_put(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1237 static void xfer_put(const struct scmi_protocol_handle *ph,
1238 		     struct scmi_xfer *xfer)
1239 {
1240 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1241 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1242 
1243 	__scmi_xfer_put(&info->tx_minfo, xfer);
1244 }
1245 
scmi_xfer_done_no_timeout(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,ktime_t stop,bool * ooo)1246 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
1247 				      struct scmi_xfer *xfer, ktime_t stop,
1248 				      bool *ooo)
1249 {
1250 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1251 
1252 	/*
1253 	 * Poll also on xfer->done so that polling can be forcibly terminated
1254 	 * in case of out-of-order receptions of delayed responses
1255 	 */
1256 	return info->desc->ops->poll_done(cinfo, xfer) ||
1257 	       (*ooo = try_wait_for_completion(&xfer->done)) ||
1258 	       ktime_after(ktime_get(), stop);
1259 }
1260 
scmi_wait_for_reply(struct device * dev,const struct scmi_desc * desc,struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,unsigned int timeout_ms)1261 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc,
1262 			       struct scmi_chan_info *cinfo,
1263 			       struct scmi_xfer *xfer, unsigned int timeout_ms)
1264 {
1265 	int ret = 0;
1266 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1267 
1268 	if (xfer->hdr.poll_completion) {
1269 		/*
1270 		 * Real polling is needed only if transport has NOT declared
1271 		 * itself to support synchronous commands replies.
1272 		 */
1273 		if (!desc->sync_cmds_completed_on_ret) {
1274 			bool ooo = false;
1275 
1276 			/*
1277 			 * Poll on xfer using transport provided .poll_done();
1278 			 * assumes no completion interrupt was available.
1279 			 */
1280 			ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms);
1281 
1282 			spin_until_cond(scmi_xfer_done_no_timeout(cinfo, xfer,
1283 								  stop, &ooo));
1284 			if (!ooo && !info->desc->ops->poll_done(cinfo, xfer)) {
1285 				dev_err(dev,
1286 					"timed out in resp(caller: %pS) - polling\n",
1287 					(void *)_RET_IP_);
1288 				ret = -ETIMEDOUT;
1289 				scmi_inc_count(info->dbg->counters, XFERS_RESPONSE_POLLED_TIMEOUT);
1290 			}
1291 		}
1292 
1293 		if (!ret) {
1294 			unsigned long flags;
1295 
1296 			/*
1297 			 * Do not fetch_response if an out-of-order delayed
1298 			 * response is being processed.
1299 			 */
1300 			spin_lock_irqsave(&xfer->lock, flags);
1301 			if (xfer->state == SCMI_XFER_SENT_OK) {
1302 				desc->ops->fetch_response(cinfo, xfer);
1303 				xfer->state = SCMI_XFER_RESP_OK;
1304 			}
1305 			spin_unlock_irqrestore(&xfer->lock, flags);
1306 
1307 			/* Trace polled replies. */
1308 			trace_scmi_msg_dump(info->id, cinfo->id,
1309 					    xfer->hdr.protocol_id, xfer->hdr.id,
1310 					    !SCMI_XFER_IS_RAW(xfer) ?
1311 					    "RESP" : "resp",
1312 					    xfer->hdr.seq, xfer->hdr.status,
1313 					    xfer->rx.buf, xfer->rx.len);
1314 			scmi_inc_count(info->dbg->counters, RESPONSE_POLLED_OK);
1315 
1316 			if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1317 				scmi_raw_message_report(info->raw, xfer,
1318 							SCMI_RAW_REPLY_QUEUE,
1319 							cinfo->id);
1320 			}
1321 		}
1322 	} else {
1323 		/* And we wait for the response. */
1324 		if (!wait_for_completion_timeout(&xfer->done,
1325 						 msecs_to_jiffies(timeout_ms))) {
1326 			dev_err(dev, "timed out in resp(caller: %pS)\n",
1327 				(void *)_RET_IP_);
1328 			ret = -ETIMEDOUT;
1329 			scmi_inc_count(info->dbg->counters, XFERS_RESPONSE_TIMEOUT);
1330 		}
1331 	}
1332 
1333 	return ret;
1334 }
1335 
1336 /**
1337  * scmi_wait_for_message_response  - An helper to group all the possible ways of
1338  * waiting for a synchronous message response.
1339  *
1340  * @cinfo: SCMI channel info
1341  * @xfer: Reference to the transfer being waited for.
1342  *
1343  * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
1344  * configuration flags like xfer->hdr.poll_completion.
1345  *
1346  * Return: 0 on Success, error otherwise.
1347  */
scmi_wait_for_message_response(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer)1348 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
1349 					  struct scmi_xfer *xfer)
1350 {
1351 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1352 	struct device *dev = info->dev;
1353 
1354 	trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id,
1355 				      xfer->hdr.protocol_id, xfer->hdr.seq,
1356 				      info->desc->max_rx_timeout_ms,
1357 				      xfer->hdr.poll_completion);
1358 
1359 	return scmi_wait_for_reply(dev, info->desc, cinfo, xfer,
1360 				   info->desc->max_rx_timeout_ms);
1361 }
1362 
1363 /**
1364  * scmi_xfer_raw_wait_for_message_response  - An helper to wait for a message
1365  * reply to an xfer raw request on a specific channel for the required timeout.
1366  *
1367  * @cinfo: SCMI channel info
1368  * @xfer: Reference to the transfer being waited for.
1369  * @timeout_ms: The maximum timeout in milliseconds
1370  *
1371  * Return: 0 on Success, error otherwise.
1372  */
scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,unsigned int timeout_ms)1373 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo,
1374 					    struct scmi_xfer *xfer,
1375 					    unsigned int timeout_ms)
1376 {
1377 	int ret;
1378 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1379 	struct device *dev = info->dev;
1380 
1381 	ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms);
1382 	if (ret)
1383 		dev_dbg(dev, "timed out in RAW response - HDR:%08X\n",
1384 			pack_scmi_header(&xfer->hdr));
1385 
1386 	return ret;
1387 }
1388 
1389 /**
1390  * do_xfer() - Do one transfer
1391  *
1392  * @ph: Pointer to SCMI protocol handle
1393  * @xfer: Transfer to initiate and wait for response
1394  *
1395  * Return: -ETIMEDOUT in case of no response, if transmit error,
1396  *	return corresponding error, else if all goes well,
1397  *	return 0.
1398  */
do_xfer(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1399 static int do_xfer(const struct scmi_protocol_handle *ph,
1400 		   struct scmi_xfer *xfer)
1401 {
1402 	int ret;
1403 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1404 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1405 	struct device *dev = info->dev;
1406 	struct scmi_chan_info *cinfo;
1407 
1408 	/* Check for polling request on custom command xfers at first */
1409 	if (xfer->hdr.poll_completion &&
1410 	    !is_transport_polling_capable(info->desc)) {
1411 		dev_warn_once(dev,
1412 			      "Polling mode is not supported by transport.\n");
1413 		scmi_inc_count(info->dbg->counters, SENT_FAIL_POLLING_UNSUPPORTED);
1414 		return -EINVAL;
1415 	}
1416 
1417 	cinfo = idr_find(&info->tx_idr, pi->proto->id);
1418 	if (unlikely(!cinfo)) {
1419 		scmi_inc_count(info->dbg->counters, SENT_FAIL_CHANNEL_NOT_FOUND);
1420 		return -EINVAL;
1421 	}
1422 	/* True ONLY if also supported by transport. */
1423 	if (is_polling_enabled(cinfo, info->desc))
1424 		xfer->hdr.poll_completion = true;
1425 
1426 	/*
1427 	 * Initialise protocol id now from protocol handle to avoid it being
1428 	 * overridden by mistake (or malice) by the protocol code mangling with
1429 	 * the scmi_xfer structure prior to this.
1430 	 */
1431 	xfer->hdr.protocol_id = pi->proto->id;
1432 	reinit_completion(&xfer->done);
1433 
1434 	trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
1435 			      xfer->hdr.protocol_id, xfer->hdr.seq,
1436 			      xfer->hdr.poll_completion);
1437 
1438 	/* Clear any stale status */
1439 	xfer->hdr.status = SCMI_SUCCESS;
1440 	xfer->state = SCMI_XFER_SENT_OK;
1441 	/*
1442 	 * Even though spinlocking is not needed here since no race is possible
1443 	 * on xfer->state due to the monotonically increasing tokens allocation,
1444 	 * we must anyway ensure xfer->state initialization is not re-ordered
1445 	 * after the .send_message() to be sure that on the RX path an early
1446 	 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
1447 	 */
1448 	smp_mb();
1449 
1450 	ret = info->desc->ops->send_message(cinfo, xfer);
1451 	if (ret < 0) {
1452 		dev_dbg(dev, "Failed to send message %d\n", ret);
1453 		scmi_inc_count(info->dbg->counters, SENT_FAIL);
1454 		return ret;
1455 	}
1456 
1457 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1458 			    xfer->hdr.id, "CMND", xfer->hdr.seq,
1459 			    xfer->hdr.status, xfer->tx.buf, xfer->tx.len);
1460 	scmi_inc_count(info->dbg->counters, SENT_OK);
1461 
1462 	ret = scmi_wait_for_message_response(cinfo, xfer);
1463 	if (!ret && xfer->hdr.status) {
1464 		ret = scmi_to_linux_errno(xfer->hdr.status);
1465 		scmi_inc_count(info->dbg->counters, ERR_PROTOCOL);
1466 	}
1467 
1468 	if (info->desc->ops->mark_txdone)
1469 		info->desc->ops->mark_txdone(cinfo, ret, xfer);
1470 
1471 	trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
1472 			    xfer->hdr.protocol_id, xfer->hdr.seq, ret);
1473 
1474 	return ret;
1475 }
1476 
reset_rx_to_maxsz(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1477 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
1478 			      struct scmi_xfer *xfer)
1479 {
1480 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1481 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1482 
1483 	xfer->rx.len = info->desc->max_msg_size;
1484 }
1485 
1486 /**
1487  * do_xfer_with_response() - Do one transfer and wait until the delayed
1488  *	response is received
1489  *
1490  * @ph: Pointer to SCMI protocol handle
1491  * @xfer: Transfer to initiate and wait for response
1492  *
1493  * Using asynchronous commands in atomic/polling mode should be avoided since
1494  * it could cause long busy-waiting here, so ignore polling for the delayed
1495  * response and WARN if it was requested for this command transaction since
1496  * upper layers should refrain from issuing such kind of requests.
1497  *
1498  * The only other option would have been to refrain from using any asynchronous
1499  * command even if made available, when an atomic transport is detected, and
1500  * instead forcibly use the synchronous version (thing that can be easily
1501  * attained at the protocol layer), but this would also have led to longer
1502  * stalls of the channel for synchronous commands and possibly timeouts.
1503  * (in other words there is usually a good reason if a platform provides an
1504  *  asynchronous version of a command and we should prefer to use it...just not
1505  *  when using atomic/polling mode)
1506  *
1507  * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
1508  *	return corresponding error, else if all goes well, return 0.
1509  */
do_xfer_with_response(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1510 static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
1511 				 struct scmi_xfer *xfer)
1512 {
1513 	int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
1514 	DECLARE_COMPLETION_ONSTACK(async_response);
1515 
1516 	xfer->async_done = &async_response;
1517 
1518 	/*
1519 	 * Delayed responses should not be polled, so an async command should
1520 	 * not have been used when requiring an atomic/poll context; WARN and
1521 	 * perform instead a sleeping wait.
1522 	 * (Note Async + IgnoreDelayedResponses are sent via do_xfer)
1523 	 */
1524 	WARN_ON_ONCE(xfer->hdr.poll_completion);
1525 
1526 	ret = do_xfer(ph, xfer);
1527 	if (!ret) {
1528 		if (!wait_for_completion_timeout(xfer->async_done, timeout)) {
1529 			dev_err(ph->dev,
1530 				"timed out in delayed resp(caller: %pS)\n",
1531 				(void *)_RET_IP_);
1532 			ret = -ETIMEDOUT;
1533 		} else if (xfer->hdr.status) {
1534 			ret = scmi_to_linux_errno(xfer->hdr.status);
1535 		}
1536 	}
1537 
1538 	xfer->async_done = NULL;
1539 	return ret;
1540 }
1541 
1542 /**
1543  * xfer_get_init() - Allocate and initialise one message for transmit
1544  *
1545  * @ph: Pointer to SCMI protocol handle
1546  * @msg_id: Message identifier
1547  * @tx_size: transmit message size
1548  * @rx_size: receive message size
1549  * @p: pointer to the allocated and initialised message
1550  *
1551  * This function allocates the message using @scmi_xfer_get and
1552  * initialise the header.
1553  *
1554  * Return: 0 if all went fine with @p pointing to message, else
1555  *	corresponding error.
1556  */
xfer_get_init(const struct scmi_protocol_handle * ph,u8 msg_id,size_t tx_size,size_t rx_size,struct scmi_xfer ** p)1557 static int xfer_get_init(const struct scmi_protocol_handle *ph,
1558 			 u8 msg_id, size_t tx_size, size_t rx_size,
1559 			 struct scmi_xfer **p)
1560 {
1561 	int ret;
1562 	struct scmi_xfer *xfer;
1563 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1564 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1565 	struct scmi_xfers_info *minfo = &info->tx_minfo;
1566 	struct device *dev = info->dev;
1567 
1568 	/* Ensure we have sane transfer sizes */
1569 	if (rx_size > info->desc->max_msg_size ||
1570 	    tx_size > info->desc->max_msg_size)
1571 		return -ERANGE;
1572 
1573 	xfer = scmi_xfer_get(pi->handle, minfo);
1574 	if (IS_ERR(xfer)) {
1575 		ret = PTR_ERR(xfer);
1576 		dev_err(dev, "failed to get free message slot(%d)\n", ret);
1577 		return ret;
1578 	}
1579 
1580 	/* Pick a sequence number and register this xfer as in-flight */
1581 	ret = scmi_xfer_pending_set(xfer, minfo);
1582 	if (ret) {
1583 		dev_err(pi->handle->dev,
1584 			"Failed to get monotonic token %d\n", ret);
1585 		__scmi_xfer_put(minfo, xfer);
1586 		return ret;
1587 	}
1588 
1589 	xfer->tx.len = tx_size;
1590 	xfer->rx.len = rx_size ? : info->desc->max_msg_size;
1591 	xfer->hdr.type = MSG_TYPE_COMMAND;
1592 	xfer->hdr.id = msg_id;
1593 	xfer->hdr.poll_completion = false;
1594 
1595 	*p = xfer;
1596 
1597 	return 0;
1598 }
1599 
1600 /**
1601  * version_get() - command to get the revision of the SCMI entity
1602  *
1603  * @ph: Pointer to SCMI protocol handle
1604  * @version: Holds returned version of protocol.
1605  *
1606  * Updates the SCMI information in the internal data structure.
1607  *
1608  * Return: 0 if all went fine, else return appropriate error.
1609  */
version_get(const struct scmi_protocol_handle * ph,u32 * version)1610 static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
1611 {
1612 	int ret;
1613 	__le32 *rev_info;
1614 	struct scmi_xfer *t;
1615 
1616 	ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
1617 	if (ret)
1618 		return ret;
1619 
1620 	ret = do_xfer(ph, t);
1621 	if (!ret) {
1622 		rev_info = t->rx.buf;
1623 		*version = le32_to_cpu(*rev_info);
1624 	}
1625 
1626 	xfer_put(ph, t);
1627 	return ret;
1628 }
1629 
1630 /**
1631  * scmi_set_protocol_priv  - Set protocol specific data at init time
1632  *
1633  * @ph: A reference to the protocol handle.
1634  * @priv: The private data to set.
1635  * @version: The detected protocol version for the core to register.
1636  *
1637  * Return: 0 on Success
1638  */
scmi_set_protocol_priv(const struct scmi_protocol_handle * ph,void * priv,u32 version)1639 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
1640 				  void *priv, u32 version)
1641 {
1642 	struct scmi_protocol_instance *pi = ph_to_pi(ph);
1643 
1644 	pi->priv = priv;
1645 	pi->version = version;
1646 
1647 	return 0;
1648 }
1649 
1650 /**
1651  * scmi_get_protocol_priv  - Set protocol specific data at init time
1652  *
1653  * @ph: A reference to the protocol handle.
1654  *
1655  * Return: Protocol private data if any was set.
1656  */
scmi_get_protocol_priv(const struct scmi_protocol_handle * ph)1657 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
1658 {
1659 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1660 
1661 	return pi->priv;
1662 }
1663 
1664 static const struct scmi_xfer_ops xfer_ops = {
1665 	.version_get = version_get,
1666 	.xfer_get_init = xfer_get_init,
1667 	.reset_rx_to_maxsz = reset_rx_to_maxsz,
1668 	.do_xfer = do_xfer,
1669 	.do_xfer_with_response = do_xfer_with_response,
1670 	.xfer_put = xfer_put,
1671 };
1672 
1673 struct scmi_msg_resp_domain_name_get {
1674 	__le32 flags;
1675 	u8 name[SCMI_MAX_STR_SIZE];
1676 };
1677 
1678 /**
1679  * scmi_common_extended_name_get  - Common helper to get extended resources name
1680  * @ph: A protocol handle reference.
1681  * @cmd_id: The specific command ID to use.
1682  * @res_id: The specific resource ID to use.
1683  * @flags: A pointer to specific flags to use, if any.
1684  * @name: A pointer to the preallocated area where the retrieved name will be
1685  *	  stored as a NULL terminated string.
1686  * @len: The len in bytes of the @name char array.
1687  *
1688  * Return: 0 on Succcess
1689  */
scmi_common_extended_name_get(const struct scmi_protocol_handle * ph,u8 cmd_id,u32 res_id,u32 * flags,char * name,size_t len)1690 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph,
1691 					 u8 cmd_id, u32 res_id, u32 *flags,
1692 					 char *name, size_t len)
1693 {
1694 	int ret;
1695 	size_t txlen;
1696 	struct scmi_xfer *t;
1697 	struct scmi_msg_resp_domain_name_get *resp;
1698 
1699 	txlen = !flags ? sizeof(res_id) : sizeof(res_id) + sizeof(*flags);
1700 	ret = ph->xops->xfer_get_init(ph, cmd_id, txlen, sizeof(*resp), &t);
1701 	if (ret)
1702 		goto out;
1703 
1704 	put_unaligned_le32(res_id, t->tx.buf);
1705 	if (flags)
1706 		put_unaligned_le32(*flags, t->tx.buf + sizeof(res_id));
1707 	resp = t->rx.buf;
1708 
1709 	ret = ph->xops->do_xfer(ph, t);
1710 	if (!ret)
1711 		strscpy(name, resp->name, len);
1712 
1713 	ph->xops->xfer_put(ph, t);
1714 out:
1715 	if (ret)
1716 		dev_warn(ph->dev,
1717 			 "Failed to get extended name - id:%u (ret:%d). Using %s\n",
1718 			 res_id, ret, name);
1719 	return ret;
1720 }
1721 
1722 /**
1723  * scmi_common_get_max_msg_size  - Get maximum message size
1724  * @ph: A protocol handle reference.
1725  *
1726  * Return: Maximum message size for the current protocol.
1727  */
scmi_common_get_max_msg_size(const struct scmi_protocol_handle * ph)1728 static int scmi_common_get_max_msg_size(const struct scmi_protocol_handle *ph)
1729 {
1730 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1731 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1732 
1733 	return info->desc->max_msg_size;
1734 }
1735 
1736 /**
1737  * scmi_protocol_msg_check  - Check protocol message attributes
1738  *
1739  * @ph: A reference to the protocol handle.
1740  * @message_id: The ID of the message to check.
1741  * @attributes: A parameter to optionally return the retrieved message
1742  *		attributes, in case of Success.
1743  *
1744  * An helper to check protocol message attributes for a specific protocol
1745  * and message pair.
1746  *
1747  * Return: 0 on SUCCESS
1748  */
scmi_protocol_msg_check(const struct scmi_protocol_handle * ph,u32 message_id,u32 * attributes)1749 static int scmi_protocol_msg_check(const struct scmi_protocol_handle *ph,
1750 				   u32 message_id, u32 *attributes)
1751 {
1752 	int ret;
1753 	struct scmi_xfer *t;
1754 
1755 	ret = xfer_get_init(ph, PROTOCOL_MESSAGE_ATTRIBUTES,
1756 			    sizeof(__le32), 0, &t);
1757 	if (ret)
1758 		return ret;
1759 
1760 	put_unaligned_le32(message_id, t->tx.buf);
1761 	ret = do_xfer(ph, t);
1762 	if (!ret && attributes)
1763 		*attributes = get_unaligned_le32(t->rx.buf);
1764 	xfer_put(ph, t);
1765 
1766 	return ret;
1767 }
1768 
1769 /**
1770  * struct scmi_iterator  - Iterator descriptor
1771  * @msg: A reference to the message TX buffer; filled by @prepare_message with
1772  *	 a proper custom command payload for each multi-part command request.
1773  * @resp: A reference to the response RX buffer; used by @update_state and
1774  *	  @process_response to parse the multi-part replies.
1775  * @t: A reference to the underlying xfer initialized and used transparently by
1776  *     the iterator internal routines.
1777  * @ph: A reference to the associated protocol handle to be used.
1778  * @ops: A reference to the custom provided iterator operations.
1779  * @state: The current iterator state; used and updated in turn by the iterators
1780  *	   internal routines and by the caller-provided @scmi_iterator_ops.
1781  * @priv: A reference to optional private data as provided by the caller and
1782  *	  passed back to the @@scmi_iterator_ops.
1783  */
1784 struct scmi_iterator {
1785 	void *msg;
1786 	void *resp;
1787 	struct scmi_xfer *t;
1788 	const struct scmi_protocol_handle *ph;
1789 	struct scmi_iterator_ops *ops;
1790 	struct scmi_iterator_state state;
1791 	void *priv;
1792 };
1793 
scmi_iterator_init(const struct scmi_protocol_handle * ph,struct scmi_iterator_ops * ops,unsigned int max_resources,u8 msg_id,size_t tx_size,void * priv)1794 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph,
1795 				struct scmi_iterator_ops *ops,
1796 				unsigned int max_resources, u8 msg_id,
1797 				size_t tx_size, void *priv)
1798 {
1799 	int ret;
1800 	struct scmi_iterator *i;
1801 
1802 	i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL);
1803 	if (!i)
1804 		return ERR_PTR(-ENOMEM);
1805 
1806 	i->ph = ph;
1807 	i->ops = ops;
1808 	i->priv = priv;
1809 
1810 	ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t);
1811 	if (ret) {
1812 		devm_kfree(ph->dev, i);
1813 		return ERR_PTR(ret);
1814 	}
1815 
1816 	i->state.max_resources = max_resources;
1817 	i->msg = i->t->tx.buf;
1818 	i->resp = i->t->rx.buf;
1819 
1820 	return i;
1821 }
1822 
scmi_iterator_run(void * iter)1823 static int scmi_iterator_run(void *iter)
1824 {
1825 	int ret = -EINVAL;
1826 	struct scmi_iterator_ops *iops;
1827 	const struct scmi_protocol_handle *ph;
1828 	struct scmi_iterator_state *st;
1829 	struct scmi_iterator *i = iter;
1830 
1831 	if (!i || !i->ops || !i->ph)
1832 		return ret;
1833 
1834 	iops = i->ops;
1835 	ph = i->ph;
1836 	st = &i->state;
1837 
1838 	do {
1839 		iops->prepare_message(i->msg, st->desc_index, i->priv);
1840 		ret = ph->xops->do_xfer(ph, i->t);
1841 		if (ret)
1842 			break;
1843 
1844 		st->rx_len = i->t->rx.len;
1845 		ret = iops->update_state(st, i->resp, i->priv);
1846 		if (ret)
1847 			break;
1848 
1849 		if (st->num_returned > st->max_resources - st->desc_index) {
1850 			dev_err(ph->dev,
1851 				"No. of resources can't exceed %d\n",
1852 				st->max_resources);
1853 			ret = -EINVAL;
1854 			break;
1855 		}
1856 
1857 		for (st->loop_idx = 0; st->loop_idx < st->num_returned;
1858 		     st->loop_idx++) {
1859 			ret = iops->process_response(ph, i->resp, st, i->priv);
1860 			if (ret)
1861 				goto out;
1862 		}
1863 
1864 		st->desc_index += st->num_returned;
1865 		ph->xops->reset_rx_to_maxsz(ph, i->t);
1866 		/*
1867 		 * check for both returned and remaining to avoid infinite
1868 		 * loop due to buggy firmware
1869 		 */
1870 	} while (st->num_returned && st->num_remaining);
1871 
1872 out:
1873 	/* Finalize and destroy iterator */
1874 	ph->xops->xfer_put(ph, i->t);
1875 	devm_kfree(ph->dev, i);
1876 
1877 	return ret;
1878 }
1879 
1880 struct scmi_msg_get_fc_info {
1881 	__le32 domain;
1882 	__le32 message_id;
1883 };
1884 
1885 struct scmi_msg_resp_desc_fc {
1886 	__le32 attr;
1887 #define SUPPORTS_DOORBELL(x)		((x) & BIT(0))
1888 #define DOORBELL_REG_WIDTH(x)		FIELD_GET(GENMASK(2, 1), (x))
1889 	__le32 rate_limit;
1890 	__le32 chan_addr_low;
1891 	__le32 chan_addr_high;
1892 	__le32 chan_size;
1893 	__le32 db_addr_low;
1894 	__le32 db_addr_high;
1895 	__le32 db_set_lmask;
1896 	__le32 db_set_hmask;
1897 	__le32 db_preserve_lmask;
1898 	__le32 db_preserve_hmask;
1899 };
1900 
1901 #define QUIRK_PERF_FC_FORCE						\
1902 	({								\
1903 		if (pi->proto->id == SCMI_PROTOCOL_PERF &&		\
1904 		    message_id == 0x8 /* PERF_LEVEL_GET */)		\
1905 			attributes |= BIT(0);				\
1906 	})
1907 
1908 static void
scmi_common_fastchannel_init(const struct scmi_protocol_handle * ph,u8 describe_id,u32 message_id,u32 valid_size,u32 domain,void __iomem ** p_addr,struct scmi_fc_db_info ** p_db,u32 * rate_limit)1909 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph,
1910 			     u8 describe_id, u32 message_id, u32 valid_size,
1911 			     u32 domain, void __iomem **p_addr,
1912 			     struct scmi_fc_db_info **p_db, u32 *rate_limit)
1913 {
1914 	int ret;
1915 	u32 flags;
1916 	u64 phys_addr;
1917 	u32 attributes;
1918 	u8 size;
1919 	void __iomem *addr;
1920 	struct scmi_xfer *t;
1921 	struct scmi_fc_db_info *db = NULL;
1922 	struct scmi_msg_get_fc_info *info;
1923 	struct scmi_msg_resp_desc_fc *resp;
1924 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1925 
1926 	/* Check if the MSG_ID supports fastchannel */
1927 	ret = scmi_protocol_msg_check(ph, message_id, &attributes);
1928 	SCMI_QUIRK(perf_level_get_fc_force, QUIRK_PERF_FC_FORCE);
1929 	if (ret || !MSG_SUPPORTS_FASTCHANNEL(attributes)) {
1930 		dev_dbg(ph->dev,
1931 			"Skip FC init for 0x%02X/%d  domain:%d - ret:%d\n",
1932 			pi->proto->id, message_id, domain, ret);
1933 		return;
1934 	}
1935 
1936 	if (!p_addr) {
1937 		ret = -EINVAL;
1938 		goto err_out;
1939 	}
1940 
1941 	ret = ph->xops->xfer_get_init(ph, describe_id,
1942 				      sizeof(*info), sizeof(*resp), &t);
1943 	if (ret)
1944 		goto err_out;
1945 
1946 	info = t->tx.buf;
1947 	info->domain = cpu_to_le32(domain);
1948 	info->message_id = cpu_to_le32(message_id);
1949 
1950 	/*
1951 	 * Bail out on error leaving fc_info addresses zeroed; this includes
1952 	 * the case in which the requested domain/message_id does NOT support
1953 	 * fastchannels at all.
1954 	 */
1955 	ret = ph->xops->do_xfer(ph, t);
1956 	if (ret)
1957 		goto err_xfer;
1958 
1959 	resp = t->rx.buf;
1960 	flags = le32_to_cpu(resp->attr);
1961 	size = le32_to_cpu(resp->chan_size);
1962 	if (size != valid_size) {
1963 		ret = -EINVAL;
1964 		goto err_xfer;
1965 	}
1966 
1967 	if (rate_limit)
1968 		*rate_limit = le32_to_cpu(resp->rate_limit) & GENMASK(19, 0);
1969 
1970 	phys_addr = le32_to_cpu(resp->chan_addr_low);
1971 	phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
1972 	addr = devm_ioremap(ph->dev, phys_addr, size);
1973 	if (!addr) {
1974 		ret = -EADDRNOTAVAIL;
1975 		goto err_xfer;
1976 	}
1977 
1978 	*p_addr = addr;
1979 
1980 	if (p_db && SUPPORTS_DOORBELL(flags)) {
1981 		db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL);
1982 		if (!db) {
1983 			ret = -ENOMEM;
1984 			goto err_db;
1985 		}
1986 
1987 		size = 1 << DOORBELL_REG_WIDTH(flags);
1988 		phys_addr = le32_to_cpu(resp->db_addr_low);
1989 		phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
1990 		addr = devm_ioremap(ph->dev, phys_addr, size);
1991 		if (!addr) {
1992 			ret = -EADDRNOTAVAIL;
1993 			goto err_db_mem;
1994 		}
1995 
1996 		db->addr = addr;
1997 		db->width = size;
1998 		db->set = le32_to_cpu(resp->db_set_lmask);
1999 		db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
2000 		db->mask = le32_to_cpu(resp->db_preserve_lmask);
2001 		db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
2002 
2003 		*p_db = db;
2004 	}
2005 
2006 	ph->xops->xfer_put(ph, t);
2007 
2008 	dev_dbg(ph->dev,
2009 		"Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n",
2010 		pi->proto->id, message_id, domain);
2011 
2012 	return;
2013 
2014 err_db_mem:
2015 	devm_kfree(ph->dev, db);
2016 
2017 err_db:
2018 	*p_addr = NULL;
2019 
2020 err_xfer:
2021 	ph->xops->xfer_put(ph, t);
2022 
2023 err_out:
2024 	dev_warn(ph->dev,
2025 		 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n",
2026 		 pi->proto->id, message_id, domain, ret);
2027 }
2028 
2029 #define SCMI_PROTO_FC_RING_DB(w)			\
2030 do {							\
2031 	u##w val = 0;					\
2032 							\
2033 	if (db->mask)					\
2034 		val = ioread##w(db->addr) & db->mask;	\
2035 	iowrite##w((u##w)db->set | val, db->addr);	\
2036 } while (0)
2037 
scmi_common_fastchannel_db_ring(struct scmi_fc_db_info * db)2038 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db)
2039 {
2040 	if (!db || !db->addr)
2041 		return;
2042 
2043 	if (db->width == 1)
2044 		SCMI_PROTO_FC_RING_DB(8);
2045 	else if (db->width == 2)
2046 		SCMI_PROTO_FC_RING_DB(16);
2047 	else if (db->width == 4)
2048 		SCMI_PROTO_FC_RING_DB(32);
2049 	else /* db->width == 8 */
2050 		SCMI_PROTO_FC_RING_DB(64);
2051 }
2052 
2053 static const struct scmi_proto_helpers_ops helpers_ops = {
2054 	.extended_name_get = scmi_common_extended_name_get,
2055 	.get_max_msg_size = scmi_common_get_max_msg_size,
2056 	.iter_response_init = scmi_iterator_init,
2057 	.iter_response_run = scmi_iterator_run,
2058 	.protocol_msg_check = scmi_protocol_msg_check,
2059 	.fastchannel_init = scmi_common_fastchannel_init,
2060 	.fastchannel_db_ring = scmi_common_fastchannel_db_ring,
2061 };
2062 
2063 /**
2064  * scmi_revision_area_get  - Retrieve version memory area.
2065  *
2066  * @ph: A reference to the protocol handle.
2067  *
2068  * A helper to grab the version memory area reference during SCMI Base protocol
2069  * initialization.
2070  *
2071  * Return: A reference to the version memory area associated to the SCMI
2072  *	   instance underlying this protocol handle.
2073  */
2074 struct scmi_revision_info *
scmi_revision_area_get(const struct scmi_protocol_handle * ph)2075 scmi_revision_area_get(const struct scmi_protocol_handle *ph)
2076 {
2077 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
2078 
2079 	return pi->handle->version;
2080 }
2081 
2082 /**
2083  * scmi_protocol_version_negotiate  - Negotiate protocol version
2084  *
2085  * @ph: A reference to the protocol handle.
2086  *
2087  * An helper to negotiate a protocol version different from the latest
2088  * advertised as supported from the platform: on Success backward
2089  * compatibility is assured by the platform.
2090  *
2091  * Return: 0 on Success
2092  */
scmi_protocol_version_negotiate(struct scmi_protocol_handle * ph)2093 static int scmi_protocol_version_negotiate(struct scmi_protocol_handle *ph)
2094 {
2095 	int ret;
2096 	struct scmi_xfer *t;
2097 	struct scmi_protocol_instance *pi = ph_to_pi(ph);
2098 
2099 	/* At first check if NEGOTIATE_PROTOCOL_VERSION is supported ... */
2100 	ret = scmi_protocol_msg_check(ph, NEGOTIATE_PROTOCOL_VERSION, NULL);
2101 	if (ret)
2102 		return ret;
2103 
2104 	/* ... then attempt protocol version negotiation */
2105 	ret = xfer_get_init(ph, NEGOTIATE_PROTOCOL_VERSION,
2106 			    sizeof(__le32), 0, &t);
2107 	if (ret)
2108 		return ret;
2109 
2110 	put_unaligned_le32(pi->proto->supported_version, t->tx.buf);
2111 	ret = do_xfer(ph, t);
2112 	if (!ret)
2113 		pi->negotiated_version = pi->proto->supported_version;
2114 
2115 	xfer_put(ph, t);
2116 
2117 	return ret;
2118 }
2119 
2120 /**
2121  * scmi_alloc_init_protocol_instance  - Allocate and initialize a protocol
2122  * instance descriptor.
2123  * @info: The reference to the related SCMI instance.
2124  * @proto: The protocol descriptor.
2125  *
2126  * Allocate a new protocol instance descriptor, using the provided @proto
2127  * description, against the specified SCMI instance @info, and initialize it;
2128  * all resources management is handled via a dedicated per-protocol devres
2129  * group.
2130  *
2131  * Context: Assumes to be called with @protocols_mtx already acquired.
2132  * Return: A reference to a freshly allocated and initialized protocol instance
2133  *	   or ERR_PTR on failure. On failure the @proto reference is at first
2134  *	   put using @scmi_protocol_put() before releasing all the devres group.
2135  */
2136 static struct scmi_protocol_instance *
scmi_alloc_init_protocol_instance(struct scmi_info * info,const struct scmi_protocol * proto)2137 scmi_alloc_init_protocol_instance(struct scmi_info *info,
2138 				  const struct scmi_protocol *proto)
2139 {
2140 	int ret = -ENOMEM;
2141 	void *gid;
2142 	struct scmi_protocol_instance *pi;
2143 	const struct scmi_handle *handle = &info->handle;
2144 
2145 	/* Protocol specific devres group */
2146 	gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
2147 	if (!gid) {
2148 		scmi_protocol_put(proto);
2149 		goto out;
2150 	}
2151 
2152 	pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
2153 	if (!pi)
2154 		goto clean;
2155 
2156 	pi->gid = gid;
2157 	pi->proto = proto;
2158 	pi->handle = handle;
2159 	pi->ph.dev = handle->dev;
2160 	pi->ph.xops = &xfer_ops;
2161 	pi->ph.hops = &helpers_ops;
2162 	pi->ph.set_priv = scmi_set_protocol_priv;
2163 	pi->ph.get_priv = scmi_get_protocol_priv;
2164 	refcount_set(&pi->users, 1);
2165 	/* proto->init is assured NON NULL by scmi_protocol_register */
2166 	ret = pi->proto->instance_init(&pi->ph);
2167 	if (ret)
2168 		goto clean;
2169 
2170 	ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
2171 			GFP_KERNEL);
2172 	if (ret != proto->id)
2173 		goto clean;
2174 
2175 	/*
2176 	 * Warn but ignore events registration errors since we do not want
2177 	 * to skip whole protocols if their notifications are messed up.
2178 	 */
2179 	if (pi->proto->events) {
2180 		ret = scmi_register_protocol_events(handle, pi->proto->id,
2181 						    &pi->ph,
2182 						    pi->proto->events);
2183 		if (ret)
2184 			dev_warn(handle->dev,
2185 				 "Protocol:%X - Events Registration Failed - err:%d\n",
2186 				 pi->proto->id, ret);
2187 	}
2188 
2189 	devres_close_group(handle->dev, pi->gid);
2190 	dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
2191 
2192 	if (pi->version > proto->supported_version) {
2193 		ret = scmi_protocol_version_negotiate(&pi->ph);
2194 		if (!ret) {
2195 			dev_info(handle->dev,
2196 				 "Protocol 0x%X successfully negotiated version 0x%X\n",
2197 				 proto->id, pi->negotiated_version);
2198 		} else {
2199 			dev_warn(handle->dev,
2200 				 "Detected UNSUPPORTED higher version 0x%X for protocol 0x%X.\n",
2201 				 pi->version, pi->proto->id);
2202 			dev_warn(handle->dev,
2203 				 "Trying version 0x%X. Backward compatibility is NOT assured.\n",
2204 				 pi->proto->supported_version);
2205 		}
2206 	}
2207 
2208 	return pi;
2209 
2210 clean:
2211 	/* Take care to put the protocol module's owner before releasing all */
2212 	scmi_protocol_put(proto);
2213 	devres_release_group(handle->dev, gid);
2214 out:
2215 	return ERR_PTR(ret);
2216 }
2217 
2218 /**
2219  * scmi_get_protocol_instance  - Protocol initialization helper.
2220  * @handle: A reference to the SCMI platform instance.
2221  * @protocol_id: The protocol being requested.
2222  *
2223  * In case the required protocol has never been requested before for this
2224  * instance, allocate and initialize all the needed structures while handling
2225  * resource allocation with a dedicated per-protocol devres subgroup.
2226  *
2227  * Return: A reference to an initialized protocol instance or error on failure:
2228  *	   in particular returns -EPROBE_DEFER when the desired protocol could
2229  *	   NOT be found.
2230  */
2231 static struct scmi_protocol_instance * __must_check
scmi_get_protocol_instance(const struct scmi_handle * handle,u8 protocol_id)2232 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
2233 {
2234 	struct scmi_protocol_instance *pi;
2235 	struct scmi_info *info = handle_to_scmi_info(handle);
2236 
2237 	mutex_lock(&info->protocols_mtx);
2238 	pi = idr_find(&info->protocols, protocol_id);
2239 
2240 	if (pi) {
2241 		refcount_inc(&pi->users);
2242 	} else {
2243 		const struct scmi_protocol *proto;
2244 
2245 		/* Fails if protocol not registered on bus */
2246 		proto = scmi_protocol_get(protocol_id, &info->version);
2247 		if (proto)
2248 			pi = scmi_alloc_init_protocol_instance(info, proto);
2249 		else
2250 			pi = ERR_PTR(-EPROBE_DEFER);
2251 	}
2252 	mutex_unlock(&info->protocols_mtx);
2253 
2254 	return pi;
2255 }
2256 
2257 /**
2258  * scmi_protocol_acquire  - Protocol acquire
2259  * @handle: A reference to the SCMI platform instance.
2260  * @protocol_id: The protocol being requested.
2261  *
2262  * Register a new user for the requested protocol on the specified SCMI
2263  * platform instance, possibly triggering its initialization on first user.
2264  *
2265  * Return: 0 if protocol was acquired successfully.
2266  */
scmi_protocol_acquire(const struct scmi_handle * handle,u8 protocol_id)2267 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
2268 {
2269 	return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
2270 }
2271 
2272 /**
2273  * scmi_protocol_release  - Protocol de-initialization helper.
2274  * @handle: A reference to the SCMI platform instance.
2275  * @protocol_id: The protocol being requested.
2276  *
2277  * Remove one user for the specified protocol and triggers de-initialization
2278  * and resources de-allocation once the last user has gone.
2279  */
scmi_protocol_release(const struct scmi_handle * handle,u8 protocol_id)2280 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
2281 {
2282 	struct scmi_info *info = handle_to_scmi_info(handle);
2283 	struct scmi_protocol_instance *pi;
2284 
2285 	mutex_lock(&info->protocols_mtx);
2286 	pi = idr_find(&info->protocols, protocol_id);
2287 	if (WARN_ON(!pi))
2288 		goto out;
2289 
2290 	if (refcount_dec_and_test(&pi->users)) {
2291 		void *gid = pi->gid;
2292 
2293 		if (pi->proto->events)
2294 			scmi_deregister_protocol_events(handle, protocol_id);
2295 
2296 		if (pi->proto->instance_deinit)
2297 			pi->proto->instance_deinit(&pi->ph);
2298 
2299 		idr_remove(&info->protocols, protocol_id);
2300 
2301 		scmi_protocol_put(pi->proto);
2302 
2303 		devres_release_group(handle->dev, gid);
2304 		dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
2305 			protocol_id);
2306 	}
2307 
2308 out:
2309 	mutex_unlock(&info->protocols_mtx);
2310 }
2311 
scmi_setup_protocol_implemented(const struct scmi_protocol_handle * ph,u8 * prot_imp)2312 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
2313 				     u8 *prot_imp)
2314 {
2315 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
2316 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
2317 
2318 	info->protocols_imp = prot_imp;
2319 }
2320 
2321 static bool
scmi_is_protocol_implemented(const struct scmi_handle * handle,u8 prot_id)2322 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
2323 {
2324 	int i;
2325 	struct scmi_info *info = handle_to_scmi_info(handle);
2326 	struct scmi_revision_info *rev = handle->version;
2327 
2328 	if (!info->protocols_imp)
2329 		return false;
2330 
2331 	for (i = 0; i < rev->num_protocols; i++)
2332 		if (info->protocols_imp[i] == prot_id)
2333 			return true;
2334 	return false;
2335 }
2336 
2337 struct scmi_protocol_devres {
2338 	const struct scmi_handle *handle;
2339 	u8 protocol_id;
2340 };
2341 
scmi_devm_release_protocol(struct device * dev,void * res)2342 static void scmi_devm_release_protocol(struct device *dev, void *res)
2343 {
2344 	struct scmi_protocol_devres *dres = res;
2345 
2346 	scmi_protocol_release(dres->handle, dres->protocol_id);
2347 }
2348 
2349 static struct scmi_protocol_instance __must_check *
scmi_devres_protocol_instance_get(struct scmi_device * sdev,u8 protocol_id)2350 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id)
2351 {
2352 	struct scmi_protocol_instance *pi;
2353 	struct scmi_protocol_devres *dres;
2354 
2355 	dres = devres_alloc(scmi_devm_release_protocol,
2356 			    sizeof(*dres), GFP_KERNEL);
2357 	if (!dres)
2358 		return ERR_PTR(-ENOMEM);
2359 
2360 	pi = scmi_get_protocol_instance(sdev->handle, protocol_id);
2361 	if (IS_ERR(pi)) {
2362 		devres_free(dres);
2363 		return pi;
2364 	}
2365 
2366 	dres->handle = sdev->handle;
2367 	dres->protocol_id = protocol_id;
2368 	devres_add(&sdev->dev, dres);
2369 
2370 	return pi;
2371 }
2372 
2373 /**
2374  * scmi_devm_protocol_get  - Devres managed get protocol operations and handle
2375  * @sdev: A reference to an scmi_device whose embedded struct device is to
2376  *	  be used for devres accounting.
2377  * @protocol_id: The protocol being requested.
2378  * @ph: A pointer reference used to pass back the associated protocol handle.
2379  *
2380  * Get hold of a protocol accounting for its usage, eventually triggering its
2381  * initialization, and returning the protocol specific operations and related
2382  * protocol handle which will be used as first argument in most of the
2383  * protocols operations methods.
2384  * Being a devres based managed method, protocol hold will be automatically
2385  * released, and possibly de-initialized on last user, once the SCMI driver
2386  * owning the scmi_device is unbound from it.
2387  *
2388  * Return: A reference to the requested protocol operations or error.
2389  *	   Must be checked for errors by caller.
2390  */
2391 static const void __must_check *
scmi_devm_protocol_get(struct scmi_device * sdev,u8 protocol_id,struct scmi_protocol_handle ** ph)2392 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
2393 		       struct scmi_protocol_handle **ph)
2394 {
2395 	struct scmi_protocol_instance *pi;
2396 
2397 	if (!ph)
2398 		return ERR_PTR(-EINVAL);
2399 
2400 	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2401 	if (IS_ERR(pi))
2402 		return pi;
2403 
2404 	*ph = &pi->ph;
2405 
2406 	return pi->proto->ops;
2407 }
2408 
2409 /**
2410  * scmi_devm_protocol_acquire  - Devres managed helper to get hold of a protocol
2411  * @sdev: A reference to an scmi_device whose embedded struct device is to
2412  *	  be used for devres accounting.
2413  * @protocol_id: The protocol being requested.
2414  *
2415  * Get hold of a protocol accounting for its usage, possibly triggering its
2416  * initialization but without getting access to its protocol specific operations
2417  * and handle.
2418  *
2419  * Being a devres based managed method, protocol hold will be automatically
2420  * released, and possibly de-initialized on last user, once the SCMI driver
2421  * owning the scmi_device is unbound from it.
2422  *
2423  * Return: 0 on SUCCESS
2424  */
scmi_devm_protocol_acquire(struct scmi_device * sdev,u8 protocol_id)2425 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev,
2426 						   u8 protocol_id)
2427 {
2428 	struct scmi_protocol_instance *pi;
2429 
2430 	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2431 	if (IS_ERR(pi))
2432 		return PTR_ERR(pi);
2433 
2434 	return 0;
2435 }
2436 
scmi_devm_protocol_match(struct device * dev,void * res,void * data)2437 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
2438 {
2439 	struct scmi_protocol_devres *dres = res;
2440 
2441 	if (WARN_ON(!dres || !data))
2442 		return 0;
2443 
2444 	return dres->protocol_id == *((u8 *)data);
2445 }
2446 
2447 /**
2448  * scmi_devm_protocol_put  - Devres managed put protocol operations and handle
2449  * @sdev: A reference to an scmi_device whose embedded struct device is to
2450  *	  be used for devres accounting.
2451  * @protocol_id: The protocol being requested.
2452  *
2453  * Explicitly release a protocol hold previously obtained calling the above
2454  * @scmi_devm_protocol_get.
2455  */
scmi_devm_protocol_put(struct scmi_device * sdev,u8 protocol_id)2456 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
2457 {
2458 	int ret;
2459 
2460 	ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
2461 			     scmi_devm_protocol_match, &protocol_id);
2462 	WARN_ON(ret);
2463 }
2464 
2465 /**
2466  * scmi_is_transport_atomic  - Method to check if underlying transport for an
2467  * SCMI instance is configured as atomic.
2468  *
2469  * @handle: A reference to the SCMI platform instance.
2470  * @atomic_threshold: An optional return value for the system wide currently
2471  *		      configured threshold for atomic operations.
2472  *
2473  * Return: True if transport is configured as atomic
2474  */
scmi_is_transport_atomic(const struct scmi_handle * handle,unsigned int * atomic_threshold)2475 static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
2476 				     unsigned int *atomic_threshold)
2477 {
2478 	bool ret;
2479 	struct scmi_info *info = handle_to_scmi_info(handle);
2480 
2481 	ret = info->desc->atomic_enabled &&
2482 		is_transport_polling_capable(info->desc);
2483 	if (ret && atomic_threshold)
2484 		*atomic_threshold = info->desc->atomic_threshold;
2485 
2486 	return ret;
2487 }
2488 
2489 /**
2490  * scmi_handle_get() - Get the SCMI handle for a device
2491  *
2492  * @dev: pointer to device for which we want SCMI handle
2493  *
2494  * NOTE: The function does not track individual clients of the framework
2495  * and is expected to be maintained by caller of SCMI protocol library.
2496  * scmi_handle_put must be balanced with successful scmi_handle_get
2497  *
2498  * Return: pointer to handle if successful, NULL on error
2499  */
scmi_handle_get(struct device * dev)2500 static struct scmi_handle *scmi_handle_get(struct device *dev)
2501 {
2502 	struct list_head *p;
2503 	struct scmi_info *info;
2504 	struct scmi_handle *handle = NULL;
2505 
2506 	mutex_lock(&scmi_list_mutex);
2507 	list_for_each(p, &scmi_list) {
2508 		info = list_entry(p, struct scmi_info, node);
2509 		if (dev->parent == info->dev) {
2510 			info->users++;
2511 			handle = &info->handle;
2512 			break;
2513 		}
2514 	}
2515 	mutex_unlock(&scmi_list_mutex);
2516 
2517 	return handle;
2518 }
2519 
2520 /**
2521  * scmi_handle_put() - Release the handle acquired by scmi_handle_get
2522  *
2523  * @handle: handle acquired by scmi_handle_get
2524  *
2525  * NOTE: The function does not track individual clients of the framework
2526  * and is expected to be maintained by caller of SCMI protocol library.
2527  * scmi_handle_put must be balanced with successful scmi_handle_get
2528  *
2529  * Return: 0 is successfully released
2530  *	if null was passed, it returns -EINVAL;
2531  */
scmi_handle_put(const struct scmi_handle * handle)2532 static int scmi_handle_put(const struct scmi_handle *handle)
2533 {
2534 	struct scmi_info *info;
2535 
2536 	if (!handle)
2537 		return -EINVAL;
2538 
2539 	info = handle_to_scmi_info(handle);
2540 	mutex_lock(&scmi_list_mutex);
2541 	if (!WARN_ON(!info->users))
2542 		info->users--;
2543 	mutex_unlock(&scmi_list_mutex);
2544 
2545 	return 0;
2546 }
2547 
scmi_device_link_add(struct device * consumer,struct device * supplier)2548 static void scmi_device_link_add(struct device *consumer,
2549 				 struct device *supplier)
2550 {
2551 	struct device_link *link;
2552 
2553 	link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER);
2554 
2555 	WARN_ON(!link);
2556 }
2557 
scmi_set_handle(struct scmi_device * scmi_dev)2558 static void scmi_set_handle(struct scmi_device *scmi_dev)
2559 {
2560 	scmi_dev->handle = scmi_handle_get(&scmi_dev->dev);
2561 	if (scmi_dev->handle)
2562 		scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev);
2563 }
2564 
__scmi_xfer_info_init(struct scmi_info * sinfo,struct scmi_xfers_info * info)2565 static int __scmi_xfer_info_init(struct scmi_info *sinfo,
2566 				 struct scmi_xfers_info *info)
2567 {
2568 	int i;
2569 	struct scmi_xfer *xfer;
2570 	struct device *dev = sinfo->dev;
2571 	const struct scmi_desc *desc = sinfo->desc;
2572 
2573 	/* Pre-allocated messages, no more than what hdr.seq can support */
2574 	if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
2575 		dev_err(dev,
2576 			"Invalid maximum messages %d, not in range [1 - %lu]\n",
2577 			info->max_msg, MSG_TOKEN_MAX);
2578 		return -EINVAL;
2579 	}
2580 
2581 	hash_init(info->pending_xfers);
2582 
2583 	/* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
2584 	info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX,
2585 						    GFP_KERNEL);
2586 	if (!info->xfer_alloc_table)
2587 		return -ENOMEM;
2588 
2589 	/*
2590 	 * Preallocate a number of xfers equal to max inflight messages,
2591 	 * pre-initialize the buffer pointer to pre-allocated buffers and
2592 	 * attach all of them to the free list
2593 	 */
2594 	INIT_HLIST_HEAD(&info->free_xfers);
2595 	for (i = 0; i < info->max_msg; i++) {
2596 		xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
2597 		if (!xfer)
2598 			return -ENOMEM;
2599 
2600 		xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
2601 					    GFP_KERNEL);
2602 		if (!xfer->rx.buf)
2603 			return -ENOMEM;
2604 
2605 		xfer->tx.buf = xfer->rx.buf;
2606 		init_completion(&xfer->done);
2607 		spin_lock_init(&xfer->lock);
2608 
2609 		/* Add initialized xfer to the free list */
2610 		hlist_add_head(&xfer->node, &info->free_xfers);
2611 	}
2612 
2613 	spin_lock_init(&info->xfer_lock);
2614 
2615 	return 0;
2616 }
2617 
scmi_channels_max_msg_configure(struct scmi_info * sinfo)2618 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
2619 {
2620 	const struct scmi_desc *desc = sinfo->desc;
2621 
2622 	if (!desc->ops->get_max_msg) {
2623 		sinfo->tx_minfo.max_msg = desc->max_msg;
2624 		sinfo->rx_minfo.max_msg = desc->max_msg;
2625 	} else {
2626 		struct scmi_chan_info *base_cinfo;
2627 
2628 		base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
2629 		if (!base_cinfo)
2630 			return -EINVAL;
2631 		sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
2632 
2633 		/* RX channel is optional so can be skipped */
2634 		base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
2635 		if (base_cinfo)
2636 			sinfo->rx_minfo.max_msg =
2637 				desc->ops->get_max_msg(base_cinfo);
2638 	}
2639 
2640 	return 0;
2641 }
2642 
scmi_xfer_info_init(struct scmi_info * sinfo)2643 static int scmi_xfer_info_init(struct scmi_info *sinfo)
2644 {
2645 	int ret;
2646 
2647 	ret = scmi_channels_max_msg_configure(sinfo);
2648 	if (ret)
2649 		return ret;
2650 
2651 	ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
2652 	if (!ret && !idr_is_empty(&sinfo->rx_idr))
2653 		ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
2654 
2655 	return ret;
2656 }
2657 
scmi_chan_setup(struct scmi_info * info,struct device_node * of_node,int prot_id,bool tx)2658 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node,
2659 			   int prot_id, bool tx)
2660 {
2661 	int ret, idx;
2662 	char name[32];
2663 	struct scmi_chan_info *cinfo;
2664 	struct idr *idr;
2665 	struct scmi_device *tdev = NULL;
2666 
2667 	/* Transmit channel is first entry i.e. index 0 */
2668 	idx = tx ? 0 : 1;
2669 	idr = tx ? &info->tx_idr : &info->rx_idr;
2670 
2671 	if (!info->desc->ops->chan_available(of_node, idx)) {
2672 		cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
2673 		if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
2674 			return -EINVAL;
2675 		goto idr_alloc;
2676 	}
2677 
2678 	cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
2679 	if (!cinfo)
2680 		return -ENOMEM;
2681 
2682 	cinfo->is_p2a = !tx;
2683 	cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms;
2684 	cinfo->max_msg_size = info->desc->max_msg_size;
2685 
2686 	/* Create a unique name for this transport device */
2687 	snprintf(name, 32, "__scmi_transport_device_%s_%02X",
2688 		 idx ? "rx" : "tx", prot_id);
2689 	/* Create a uniquely named, dedicated transport device for this chan */
2690 	tdev = scmi_device_create(of_node, info->dev, prot_id, name);
2691 	if (!tdev) {
2692 		dev_err(info->dev,
2693 			"failed to create transport device (%s)\n", name);
2694 		devm_kfree(info->dev, cinfo);
2695 		return -EINVAL;
2696 	}
2697 	of_node_get(of_node);
2698 
2699 	cinfo->id = prot_id;
2700 	cinfo->dev = &tdev->dev;
2701 	ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
2702 	if (ret) {
2703 		of_node_put(of_node);
2704 		scmi_device_destroy(info->dev, prot_id, name);
2705 		devm_kfree(info->dev, cinfo);
2706 		return ret;
2707 	}
2708 
2709 	if (tx && is_polling_required(cinfo, info->desc)) {
2710 		if (is_transport_polling_capable(info->desc))
2711 			dev_info(&tdev->dev,
2712 				 "Enabled polling mode TX channel - prot_id:%d\n",
2713 				 prot_id);
2714 		else
2715 			dev_warn(&tdev->dev,
2716 				 "Polling mode NOT supported by transport.\n");
2717 	}
2718 
2719 idr_alloc:
2720 	ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
2721 	if (ret != prot_id) {
2722 		dev_err(info->dev,
2723 			"unable to allocate SCMI idr slot err %d\n", ret);
2724 		/* Destroy channel and device only if created by this call. */
2725 		if (tdev) {
2726 			of_node_put(of_node);
2727 			scmi_device_destroy(info->dev, prot_id, name);
2728 			devm_kfree(info->dev, cinfo);
2729 		}
2730 		return ret;
2731 	}
2732 
2733 	cinfo->handle = &info->handle;
2734 	return 0;
2735 }
2736 
2737 static inline int
scmi_txrx_setup(struct scmi_info * info,struct device_node * of_node,int prot_id)2738 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node,
2739 		int prot_id)
2740 {
2741 	int ret = scmi_chan_setup(info, of_node, prot_id, true);
2742 
2743 	if (!ret) {
2744 		/* Rx is optional, report only memory errors */
2745 		ret = scmi_chan_setup(info, of_node, prot_id, false);
2746 		if (ret && ret != -ENOMEM)
2747 			ret = 0;
2748 	}
2749 
2750 	if (ret)
2751 		dev_err(info->dev,
2752 			"failed to setup channel for protocol:0x%X\n", prot_id);
2753 
2754 	return ret;
2755 }
2756 
2757 /**
2758  * scmi_channels_setup  - Helper to initialize all required channels
2759  *
2760  * @info: The SCMI instance descriptor.
2761  *
2762  * Initialize all the channels found described in the DT against the underlying
2763  * configured transport using custom defined dedicated devices instead of
2764  * borrowing devices from the SCMI drivers; this way channels are initialized
2765  * upfront during core SCMI stack probing and are no more coupled with SCMI
2766  * devices used by SCMI drivers.
2767  *
2768  * Note that, even though a pair of TX/RX channels is associated to each
2769  * protocol defined in the DT, a distinct freshly initialized channel is
2770  * created only if the DT node for the protocol at hand describes a dedicated
2771  * channel: in all the other cases the common BASE protocol channel is reused.
2772  *
2773  * Return: 0 on Success
2774  */
scmi_channels_setup(struct scmi_info * info)2775 static int scmi_channels_setup(struct scmi_info *info)
2776 {
2777 	int ret;
2778 	struct device_node *top_np = info->dev->of_node;
2779 
2780 	/* Initialize a common generic channel at first */
2781 	ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE);
2782 	if (ret)
2783 		return ret;
2784 
2785 	for_each_available_child_of_node_scoped(top_np, child) {
2786 		u32 prot_id;
2787 
2788 		if (of_property_read_u32(child, "reg", &prot_id))
2789 			continue;
2790 
2791 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2792 			dev_err(info->dev,
2793 				"Out of range protocol %d\n", prot_id);
2794 
2795 		ret = scmi_txrx_setup(info, child, prot_id);
2796 		if (ret)
2797 			return ret;
2798 	}
2799 
2800 	return 0;
2801 }
2802 
scmi_chan_destroy(int id,void * p,void * idr)2803 static int scmi_chan_destroy(int id, void *p, void *idr)
2804 {
2805 	struct scmi_chan_info *cinfo = p;
2806 
2807 	if (cinfo->dev) {
2808 		struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
2809 		struct scmi_device *sdev = to_scmi_dev(cinfo->dev);
2810 
2811 		of_node_put(cinfo->dev->of_node);
2812 		scmi_device_destroy(info->dev, id, sdev->name);
2813 		cinfo->dev = NULL;
2814 	}
2815 
2816 	idr_remove(idr, id);
2817 
2818 	return 0;
2819 }
2820 
scmi_cleanup_channels(struct scmi_info * info,struct idr * idr)2821 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr)
2822 {
2823 	/* At first free all channels at the transport layer ... */
2824 	idr_for_each(idr, info->desc->ops->chan_free, idr);
2825 
2826 	/* ...then destroy all underlying devices */
2827 	idr_for_each(idr, scmi_chan_destroy, idr);
2828 
2829 	idr_destroy(idr);
2830 }
2831 
scmi_cleanup_txrx_channels(struct scmi_info * info)2832 static void scmi_cleanup_txrx_channels(struct scmi_info *info)
2833 {
2834 	scmi_cleanup_channels(info, &info->tx_idr);
2835 
2836 	scmi_cleanup_channels(info, &info->rx_idr);
2837 }
2838 
scmi_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)2839 static int scmi_bus_notifier(struct notifier_block *nb,
2840 			     unsigned long action, void *data)
2841 {
2842 	struct scmi_info *info = bus_nb_to_scmi_info(nb);
2843 	struct scmi_device *sdev = to_scmi_dev(data);
2844 
2845 	/* Skip devices of different SCMI instances */
2846 	if (sdev->dev.parent != info->dev)
2847 		return NOTIFY_DONE;
2848 
2849 	switch (action) {
2850 	case BUS_NOTIFY_BIND_DRIVER:
2851 		/* setup handle now as the transport is ready */
2852 		scmi_set_handle(sdev);
2853 		break;
2854 	case BUS_NOTIFY_UNBOUND_DRIVER:
2855 		scmi_handle_put(sdev->handle);
2856 		sdev->handle = NULL;
2857 		break;
2858 	default:
2859 		return NOTIFY_DONE;
2860 	}
2861 
2862 	dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev),
2863 		sdev->name, action == BUS_NOTIFY_BIND_DRIVER ?
2864 		"about to be BOUND." : "UNBOUND.");
2865 
2866 	return NOTIFY_OK;
2867 }
2868 
scmi_device_request_notifier(struct notifier_block * nb,unsigned long action,void * data)2869 static int scmi_device_request_notifier(struct notifier_block *nb,
2870 					unsigned long action, void *data)
2871 {
2872 	struct device_node *np;
2873 	struct scmi_device_id *id_table = data;
2874 	struct scmi_info *info = req_nb_to_scmi_info(nb);
2875 
2876 	np = idr_find(&info->active_protocols, id_table->protocol_id);
2877 	if (!np)
2878 		return NOTIFY_DONE;
2879 
2880 	dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n",
2881 		action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-",
2882 		id_table->name, id_table->protocol_id);
2883 
2884 	switch (action) {
2885 	case SCMI_BUS_NOTIFY_DEVICE_REQUEST:
2886 		scmi_create_protocol_devices(np, info, id_table->protocol_id,
2887 					     id_table->name);
2888 		break;
2889 	case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST:
2890 		scmi_destroy_protocol_devices(info, id_table->protocol_id,
2891 					      id_table->name);
2892 		break;
2893 	default:
2894 		return NOTIFY_DONE;
2895 	}
2896 
2897 	return NOTIFY_OK;
2898 }
2899 
2900 static const char * const dbg_counter_strs[] = {
2901 	"sent_ok",
2902 	"sent_fail",
2903 	"sent_fail_polling_unsupported",
2904 	"sent_fail_channel_not_found",
2905 	"response_ok",
2906 	"notification_ok",
2907 	"delayed_response_ok",
2908 	"xfers_response_timeout",
2909 	"xfers_response_polled_timeout",
2910 	"response_polled_ok",
2911 	"err_msg_unexpected",
2912 	"err_msg_invalid",
2913 	"err_msg_nomem",
2914 	"err_protocol",
2915 };
2916 
reset_all_on_write(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)2917 static ssize_t reset_all_on_write(struct file *filp, const char __user *buf,
2918 				  size_t count, loff_t *ppos)
2919 {
2920 	struct scmi_debug_info *dbg = filp->private_data;
2921 
2922 	for (int i = 0; i < SCMI_DEBUG_COUNTERS_LAST; i++)
2923 		atomic_set(&dbg->counters[i], 0);
2924 
2925 	return count;
2926 }
2927 
2928 static const struct file_operations fops_reset_counts = {
2929 	.owner = THIS_MODULE,
2930 	.open = simple_open,
2931 	.write = reset_all_on_write,
2932 };
2933 
scmi_debugfs_counters_setup(struct scmi_debug_info * dbg,struct dentry * trans)2934 static void scmi_debugfs_counters_setup(struct scmi_debug_info *dbg,
2935 					struct dentry *trans)
2936 {
2937 	struct dentry *counters;
2938 	int idx;
2939 
2940 	counters = debugfs_create_dir("counters", trans);
2941 
2942 	for (idx = 0; idx < SCMI_DEBUG_COUNTERS_LAST; idx++)
2943 		debugfs_create_atomic_t(dbg_counter_strs[idx], 0600, counters,
2944 					&dbg->counters[idx]);
2945 
2946 	debugfs_create_file("reset", 0200, counters, dbg, &fops_reset_counts);
2947 }
2948 
scmi_debugfs_common_cleanup(void * d)2949 static void scmi_debugfs_common_cleanup(void *d)
2950 {
2951 	struct scmi_debug_info *dbg = d;
2952 
2953 	if (!dbg)
2954 		return;
2955 
2956 	debugfs_remove_recursive(dbg->top_dentry);
2957 	kfree(dbg->name);
2958 	kfree(dbg->type);
2959 }
2960 
scmi_debugfs_common_setup(struct scmi_info * info)2961 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info)
2962 {
2963 	char top_dir[16];
2964 	struct dentry *trans, *top_dentry;
2965 	struct scmi_debug_info *dbg;
2966 	const char *c_ptr = NULL;
2967 
2968 	dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL);
2969 	if (!dbg)
2970 		return NULL;
2971 
2972 	dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL);
2973 	if (!dbg->name) {
2974 		devm_kfree(info->dev, dbg);
2975 		return NULL;
2976 	}
2977 
2978 	of_property_read_string(info->dev->of_node, "compatible", &c_ptr);
2979 	dbg->type = kstrdup(c_ptr, GFP_KERNEL);
2980 	if (!dbg->type) {
2981 		kfree(dbg->name);
2982 		devm_kfree(info->dev, dbg);
2983 		return NULL;
2984 	}
2985 
2986 	snprintf(top_dir, 16, "%d", info->id);
2987 	top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry);
2988 	trans = debugfs_create_dir("transport", top_dentry);
2989 
2990 	dbg->is_atomic = info->desc->atomic_enabled &&
2991 				is_transport_polling_capable(info->desc);
2992 
2993 	debugfs_create_str("instance_name", 0400, top_dentry,
2994 			   (char **)&dbg->name);
2995 
2996 	debugfs_create_u32("atomic_threshold_us", 0400, top_dentry,
2997 			   (u32 *)&info->desc->atomic_threshold);
2998 
2999 	debugfs_create_str("type", 0400, trans, (char **)&dbg->type);
3000 
3001 	debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic);
3002 
3003 	debugfs_create_u32("max_rx_timeout_ms", 0400, trans,
3004 			   (u32 *)&info->desc->max_rx_timeout_ms);
3005 
3006 	debugfs_create_u32("max_msg_size", 0400, trans,
3007 			   (u32 *)&info->desc->max_msg_size);
3008 
3009 	debugfs_create_u32("tx_max_msg", 0400, trans,
3010 			   (u32 *)&info->tx_minfo.max_msg);
3011 
3012 	debugfs_create_u32("rx_max_msg", 0400, trans,
3013 			   (u32 *)&info->rx_minfo.max_msg);
3014 
3015 	if (IS_ENABLED(CONFIG_ARM_SCMI_DEBUG_COUNTERS))
3016 		scmi_debugfs_counters_setup(dbg, trans);
3017 
3018 	dbg->top_dentry = top_dentry;
3019 
3020 	if (devm_add_action_or_reset(info->dev,
3021 				     scmi_debugfs_common_cleanup, dbg))
3022 		return NULL;
3023 
3024 	return dbg;
3025 }
3026 
scmi_debugfs_raw_mode_setup(struct scmi_info * info)3027 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info)
3028 {
3029 	int id, num_chans = 0, ret = 0;
3030 	struct scmi_chan_info *cinfo;
3031 	u8 channels[SCMI_MAX_CHANNELS] = {};
3032 	DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {};
3033 
3034 	if (!info->dbg)
3035 		return -EINVAL;
3036 
3037 	/* Enumerate all channels to collect their ids */
3038 	idr_for_each_entry(&info->tx_idr, cinfo, id) {
3039 		/*
3040 		 * Cannot happen, but be defensive.
3041 		 * Zero as num_chans is ok, warn and carry on.
3042 		 */
3043 		if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) {
3044 			dev_warn(info->dev,
3045 				 "SCMI RAW - Error enumerating channels\n");
3046 			break;
3047 		}
3048 
3049 		if (!test_bit(cinfo->id, protos)) {
3050 			channels[num_chans++] = cinfo->id;
3051 			set_bit(cinfo->id, protos);
3052 		}
3053 	}
3054 
3055 	info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry,
3056 				       info->id, channels, num_chans,
3057 				       info->desc, info->tx_minfo.max_msg);
3058 	if (IS_ERR(info->raw)) {
3059 		dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n");
3060 		ret = PTR_ERR(info->raw);
3061 		info->raw = NULL;
3062 	}
3063 
3064 	return ret;
3065 }
3066 
scmi_transport_setup(struct device * dev)3067 static const struct scmi_desc *scmi_transport_setup(struct device *dev)
3068 {
3069 	struct scmi_transport *trans;
3070 	int ret;
3071 
3072 	trans = dev_get_platdata(dev);
3073 	if (!trans || !trans->supplier || !trans->core_ops)
3074 		return NULL;
3075 
3076 	if (!device_link_add(dev, trans->supplier, DL_FLAG_AUTOREMOVE_CONSUMER)) {
3077 		dev_err(dev,
3078 			"Adding link to supplier transport device failed\n");
3079 		return NULL;
3080 	}
3081 
3082 	/* Provide core transport ops */
3083 	*trans->core_ops = &scmi_trans_core_ops;
3084 
3085 	dev_info(dev, "Using %s\n", dev_driver_string(trans->supplier));
3086 
3087 	ret = of_property_read_u32(dev->of_node, "arm,max-rx-timeout-ms",
3088 				   &trans->desc.max_rx_timeout_ms);
3089 	if (ret && ret != -EINVAL)
3090 		dev_err(dev, "Malformed arm,max-rx-timeout-ms DT property.\n");
3091 
3092 	ret = of_property_read_u32(dev->of_node, "arm,max-msg-size",
3093 				   &trans->desc.max_msg_size);
3094 	if (ret && ret != -EINVAL)
3095 		dev_err(dev, "Malformed arm,max-msg-size DT property.\n");
3096 
3097 	ret = of_property_read_u32(dev->of_node, "arm,max-msg",
3098 				   &trans->desc.max_msg);
3099 	if (ret && ret != -EINVAL)
3100 		dev_err(dev, "Malformed arm,max-msg DT property.\n");
3101 
3102 	dev_info(dev,
3103 		 "SCMI max-rx-timeout: %dms / max-msg-size: %dbytes / max-msg: %d\n",
3104 		 trans->desc.max_rx_timeout_ms, trans->desc.max_msg_size,
3105 		 trans->desc.max_msg);
3106 
3107 	/* System wide atomic threshold for atomic ops .. if any */
3108 	if (!of_property_read_u32(dev->of_node, "atomic-threshold-us",
3109 				  &trans->desc.atomic_threshold))
3110 		dev_info(dev,
3111 			 "SCMI System wide atomic threshold set to %u us\n",
3112 			 trans->desc.atomic_threshold);
3113 
3114 	return &trans->desc;
3115 }
3116 
scmi_enable_matching_quirks(struct scmi_info * info)3117 static void scmi_enable_matching_quirks(struct scmi_info *info)
3118 {
3119 	struct scmi_revision_info *rev = &info->version;
3120 
3121 	dev_dbg(info->dev, "Looking for quirks matching: %s/%s/0x%08X\n",
3122 		rev->vendor_id, rev->sub_vendor_id, rev->impl_ver);
3123 
3124 	/* Enable applicable quirks */
3125 	scmi_quirks_enable(info->dev, rev->vendor_id,
3126 			   rev->sub_vendor_id, rev->impl_ver);
3127 }
3128 
scmi_probe(struct platform_device * pdev)3129 static int scmi_probe(struct platform_device *pdev)
3130 {
3131 	int ret;
3132 	char *err_str = "probe failure\n";
3133 	struct scmi_handle *handle;
3134 	const struct scmi_desc *desc;
3135 	struct scmi_info *info;
3136 	bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX);
3137 	struct device *dev = &pdev->dev;
3138 	struct device_node *child, *np = dev->of_node;
3139 
3140 	desc = scmi_transport_setup(dev);
3141 	if (!desc) {
3142 		err_str = "transport invalid\n";
3143 		ret = -EINVAL;
3144 		goto out_err;
3145 	}
3146 
3147 	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
3148 	if (!info)
3149 		return -ENOMEM;
3150 
3151 	info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL);
3152 	if (info->id < 0)
3153 		return info->id;
3154 
3155 	info->dev = dev;
3156 	info->desc = desc;
3157 	info->bus_nb.notifier_call = scmi_bus_notifier;
3158 	info->dev_req_nb.notifier_call = scmi_device_request_notifier;
3159 	INIT_LIST_HEAD(&info->node);
3160 	idr_init(&info->protocols);
3161 	mutex_init(&info->protocols_mtx);
3162 	idr_init(&info->active_protocols);
3163 	mutex_init(&info->devreq_mtx);
3164 
3165 	platform_set_drvdata(pdev, info);
3166 	idr_init(&info->tx_idr);
3167 	idr_init(&info->rx_idr);
3168 
3169 	handle = &info->handle;
3170 	handle->dev = info->dev;
3171 	handle->version = &info->version;
3172 	handle->devm_protocol_acquire = scmi_devm_protocol_acquire;
3173 	handle->devm_protocol_get = scmi_devm_protocol_get;
3174 	handle->devm_protocol_put = scmi_devm_protocol_put;
3175 	handle->is_transport_atomic = scmi_is_transport_atomic;
3176 
3177 	/* Setup all channels described in the DT at first */
3178 	ret = scmi_channels_setup(info);
3179 	if (ret) {
3180 		err_str = "failed to setup channels\n";
3181 		goto clear_ida;
3182 	}
3183 
3184 	ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb);
3185 	if (ret) {
3186 		err_str = "failed to register bus notifier\n";
3187 		goto clear_txrx_setup;
3188 	}
3189 
3190 	ret = blocking_notifier_chain_register(&scmi_requested_devices_nh,
3191 					       &info->dev_req_nb);
3192 	if (ret) {
3193 		err_str = "failed to register device notifier\n";
3194 		goto clear_bus_notifier;
3195 	}
3196 
3197 	ret = scmi_xfer_info_init(info);
3198 	if (ret) {
3199 		err_str = "failed to init xfers pool\n";
3200 		goto clear_dev_req_notifier;
3201 	}
3202 
3203 	if (scmi_top_dentry) {
3204 		info->dbg = scmi_debugfs_common_setup(info);
3205 		if (!info->dbg)
3206 			dev_warn(dev, "Failed to setup SCMI debugfs.\n");
3207 
3208 		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
3209 			ret = scmi_debugfs_raw_mode_setup(info);
3210 			if (!coex) {
3211 				if (ret)
3212 					goto clear_dev_req_notifier;
3213 
3214 				/* Bail out anyway when coex disabled. */
3215 				return 0;
3216 			}
3217 
3218 			/* Coex enabled, carry on in any case. */
3219 			dev_info(dev, "SCMI RAW Mode COEX enabled !\n");
3220 		}
3221 	}
3222 
3223 	if (scmi_notification_init(handle))
3224 		dev_err(dev, "SCMI Notifications NOT available.\n");
3225 
3226 	if (info->desc->atomic_enabled &&
3227 	    !is_transport_polling_capable(info->desc))
3228 		dev_err(dev,
3229 			"Transport is not polling capable. Atomic mode not supported.\n");
3230 
3231 	/*
3232 	 * Trigger SCMI Base protocol initialization.
3233 	 * It's mandatory and won't be ever released/deinit until the
3234 	 * SCMI stack is shutdown/unloaded as a whole.
3235 	 */
3236 	ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
3237 	if (ret) {
3238 		err_str = "unable to communicate with SCMI\n";
3239 		if (coex) {
3240 			dev_err(dev, "%s", err_str);
3241 			return 0;
3242 		}
3243 		goto notification_exit;
3244 	}
3245 
3246 	mutex_lock(&scmi_list_mutex);
3247 	list_add_tail(&info->node, &scmi_list);
3248 	mutex_unlock(&scmi_list_mutex);
3249 
3250 	scmi_enable_matching_quirks(info);
3251 
3252 	for_each_available_child_of_node(np, child) {
3253 		u32 prot_id;
3254 
3255 		if (of_property_read_u32(child, "reg", &prot_id))
3256 			continue;
3257 
3258 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
3259 			dev_err(dev, "Out of range protocol %d\n", prot_id);
3260 
3261 		if (!scmi_is_protocol_implemented(handle, prot_id)) {
3262 			dev_err(dev, "SCMI protocol %d not implemented\n",
3263 				prot_id);
3264 			continue;
3265 		}
3266 
3267 		/*
3268 		 * Save this valid DT protocol descriptor amongst
3269 		 * @active_protocols for this SCMI instance/
3270 		 */
3271 		ret = idr_alloc(&info->active_protocols, child,
3272 				prot_id, prot_id + 1, GFP_KERNEL);
3273 		if (ret != prot_id) {
3274 			dev_err(dev, "SCMI protocol %d already activated. Skip\n",
3275 				prot_id);
3276 			continue;
3277 		}
3278 
3279 		of_node_get(child);
3280 		scmi_create_protocol_devices(child, info, prot_id, NULL);
3281 	}
3282 
3283 	return 0;
3284 
3285 notification_exit:
3286 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
3287 		scmi_raw_mode_cleanup(info->raw);
3288 	scmi_notification_exit(&info->handle);
3289 clear_dev_req_notifier:
3290 	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
3291 					   &info->dev_req_nb);
3292 clear_bus_notifier:
3293 	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
3294 clear_txrx_setup:
3295 	scmi_cleanup_txrx_channels(info);
3296 clear_ida:
3297 	ida_free(&scmi_id, info->id);
3298 
3299 out_err:
3300 	return dev_err_probe(dev, ret, "%s", err_str);
3301 }
3302 
scmi_remove(struct platform_device * pdev)3303 static void scmi_remove(struct platform_device *pdev)
3304 {
3305 	int id;
3306 	struct scmi_info *info = platform_get_drvdata(pdev);
3307 	struct device_node *child;
3308 
3309 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
3310 		scmi_raw_mode_cleanup(info->raw);
3311 
3312 	mutex_lock(&scmi_list_mutex);
3313 	if (info->users)
3314 		dev_warn(&pdev->dev,
3315 			 "Still active SCMI users will be forcibly unbound.\n");
3316 	list_del(&info->node);
3317 	mutex_unlock(&scmi_list_mutex);
3318 
3319 	scmi_notification_exit(&info->handle);
3320 
3321 	mutex_lock(&info->protocols_mtx);
3322 	idr_destroy(&info->protocols);
3323 	mutex_unlock(&info->protocols_mtx);
3324 
3325 	idr_for_each_entry(&info->active_protocols, child, id)
3326 		of_node_put(child);
3327 	idr_destroy(&info->active_protocols);
3328 
3329 	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
3330 					   &info->dev_req_nb);
3331 	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
3332 
3333 	/* Safe to free channels since no more users */
3334 	scmi_cleanup_txrx_channels(info);
3335 
3336 	ida_free(&scmi_id, info->id);
3337 }
3338 
protocol_version_show(struct device * dev,struct device_attribute * attr,char * buf)3339 static ssize_t protocol_version_show(struct device *dev,
3340 				     struct device_attribute *attr, char *buf)
3341 {
3342 	struct scmi_info *info = dev_get_drvdata(dev);
3343 
3344 	return sprintf(buf, "%u.%u\n", info->version.major_ver,
3345 		       info->version.minor_ver);
3346 }
3347 static DEVICE_ATTR_RO(protocol_version);
3348 
firmware_version_show(struct device * dev,struct device_attribute * attr,char * buf)3349 static ssize_t firmware_version_show(struct device *dev,
3350 				     struct device_attribute *attr, char *buf)
3351 {
3352 	struct scmi_info *info = dev_get_drvdata(dev);
3353 
3354 	return sprintf(buf, "0x%x\n", info->version.impl_ver);
3355 }
3356 static DEVICE_ATTR_RO(firmware_version);
3357 
vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)3358 static ssize_t vendor_id_show(struct device *dev,
3359 			      struct device_attribute *attr, char *buf)
3360 {
3361 	struct scmi_info *info = dev_get_drvdata(dev);
3362 
3363 	return sprintf(buf, "%s\n", info->version.vendor_id);
3364 }
3365 static DEVICE_ATTR_RO(vendor_id);
3366 
sub_vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)3367 static ssize_t sub_vendor_id_show(struct device *dev,
3368 				  struct device_attribute *attr, char *buf)
3369 {
3370 	struct scmi_info *info = dev_get_drvdata(dev);
3371 
3372 	return sprintf(buf, "%s\n", info->version.sub_vendor_id);
3373 }
3374 static DEVICE_ATTR_RO(sub_vendor_id);
3375 
3376 static struct attribute *versions_attrs[] = {
3377 	&dev_attr_firmware_version.attr,
3378 	&dev_attr_protocol_version.attr,
3379 	&dev_attr_vendor_id.attr,
3380 	&dev_attr_sub_vendor_id.attr,
3381 	NULL,
3382 };
3383 ATTRIBUTE_GROUPS(versions);
3384 
3385 static struct platform_driver scmi_driver = {
3386 	.driver = {
3387 		   .name = "arm-scmi",
3388 		   .suppress_bind_attrs = true,
3389 		   .dev_groups = versions_groups,
3390 		   },
3391 	.probe = scmi_probe,
3392 	.remove = scmi_remove,
3393 };
3394 
scmi_debugfs_init(void)3395 static struct dentry *scmi_debugfs_init(void)
3396 {
3397 	struct dentry *d;
3398 
3399 	d = debugfs_create_dir("scmi", NULL);
3400 	if (IS_ERR(d)) {
3401 		pr_err("Could NOT create SCMI top dentry.\n");
3402 		return NULL;
3403 	}
3404 
3405 	return d;
3406 }
3407 
scmi_driver_init(void)3408 static int __init scmi_driver_init(void)
3409 {
3410 	scmi_quirks_initialize();
3411 
3412 	/* Bail out if no SCMI transport was configured */
3413 	if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
3414 		return -EINVAL;
3415 
3416 	if (IS_ENABLED(CONFIG_ARM_SCMI_HAVE_SHMEM))
3417 		scmi_trans_core_ops.shmem = scmi_shared_mem_operations_get();
3418 
3419 	if (IS_ENABLED(CONFIG_ARM_SCMI_HAVE_MSG))
3420 		scmi_trans_core_ops.msg = scmi_message_operations_get();
3421 
3422 	if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS))
3423 		scmi_top_dentry = scmi_debugfs_init();
3424 
3425 	scmi_base_register();
3426 
3427 	scmi_clock_register();
3428 	scmi_perf_register();
3429 	scmi_power_register();
3430 	scmi_reset_register();
3431 	scmi_sensors_register();
3432 	scmi_voltage_register();
3433 	scmi_system_register();
3434 	scmi_powercap_register();
3435 	scmi_pinctrl_register();
3436 
3437 	return platform_driver_register(&scmi_driver);
3438 }
3439 module_init(scmi_driver_init);
3440 
scmi_driver_exit(void)3441 static void __exit scmi_driver_exit(void)
3442 {
3443 	scmi_base_unregister();
3444 
3445 	scmi_clock_unregister();
3446 	scmi_perf_unregister();
3447 	scmi_power_unregister();
3448 	scmi_reset_unregister();
3449 	scmi_sensors_unregister();
3450 	scmi_voltage_unregister();
3451 	scmi_system_unregister();
3452 	scmi_powercap_unregister();
3453 	scmi_pinctrl_unregister();
3454 
3455 	platform_driver_unregister(&scmi_driver);
3456 
3457 	debugfs_remove_recursive(scmi_top_dentry);
3458 }
3459 module_exit(scmi_driver_exit);
3460 
3461 MODULE_ALIAS("platform:arm-scmi");
3462 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
3463 MODULE_DESCRIPTION("ARM SCMI protocol driver");
3464 MODULE_LICENSE("GPL v2");
3465