xref: /linux/kernel/sched/deadline.c (revision c924c5e9b8c65b3a479a90e5e37d74cc8cd9fe0a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 #include <linux/cpuset.h>
20 
21 /*
22  * Default limits for DL period; on the top end we guard against small util
23  * tasks still getting ridiculously long effective runtimes, on the bottom end we
24  * guard against timer DoS.
25  */
26 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
27 static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
28 #ifdef CONFIG_SYSCTL
29 static const struct ctl_table sched_dl_sysctls[] = {
30 	{
31 		.procname       = "sched_deadline_period_max_us",
32 		.data           = &sysctl_sched_dl_period_max,
33 		.maxlen         = sizeof(unsigned int),
34 		.mode           = 0644,
35 		.proc_handler   = proc_douintvec_minmax,
36 		.extra1         = (void *)&sysctl_sched_dl_period_min,
37 	},
38 	{
39 		.procname       = "sched_deadline_period_min_us",
40 		.data           = &sysctl_sched_dl_period_min,
41 		.maxlen         = sizeof(unsigned int),
42 		.mode           = 0644,
43 		.proc_handler   = proc_douintvec_minmax,
44 		.extra2         = (void *)&sysctl_sched_dl_period_max,
45 	},
46 };
47 
sched_dl_sysctl_init(void)48 static int __init sched_dl_sysctl_init(void)
49 {
50 	register_sysctl_init("kernel", sched_dl_sysctls);
51 	return 0;
52 }
53 late_initcall(sched_dl_sysctl_init);
54 #endif
55 
dl_server(struct sched_dl_entity * dl_se)56 static bool dl_server(struct sched_dl_entity *dl_se)
57 {
58 	return dl_se->dl_server;
59 }
60 
dl_task_of(struct sched_dl_entity * dl_se)61 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
62 {
63 	BUG_ON(dl_server(dl_se));
64 	return container_of(dl_se, struct task_struct, dl);
65 }
66 
rq_of_dl_rq(struct dl_rq * dl_rq)67 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
68 {
69 	return container_of(dl_rq, struct rq, dl);
70 }
71 
rq_of_dl_se(struct sched_dl_entity * dl_se)72 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
73 {
74 	struct rq *rq = dl_se->rq;
75 
76 	if (!dl_server(dl_se))
77 		rq = task_rq(dl_task_of(dl_se));
78 
79 	return rq;
80 }
81 
dl_rq_of_se(struct sched_dl_entity * dl_se)82 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
83 {
84 	return &rq_of_dl_se(dl_se)->dl;
85 }
86 
on_dl_rq(struct sched_dl_entity * dl_se)87 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
88 {
89 	return !RB_EMPTY_NODE(&dl_se->rb_node);
90 }
91 
92 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)93 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
94 {
95 	return dl_se->pi_se;
96 }
97 
is_dl_boosted(struct sched_dl_entity * dl_se)98 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
99 {
100 	return pi_of(dl_se) != dl_se;
101 }
102 #else
pi_of(struct sched_dl_entity * dl_se)103 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
104 {
105 	return dl_se;
106 }
107 
is_dl_boosted(struct sched_dl_entity * dl_se)108 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
109 {
110 	return false;
111 }
112 #endif
113 
114 #ifdef CONFIG_SMP
dl_bw_of(int i)115 static inline struct dl_bw *dl_bw_of(int i)
116 {
117 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
118 			 "sched RCU must be held");
119 	return &cpu_rq(i)->rd->dl_bw;
120 }
121 
dl_bw_cpus(int i)122 static inline int dl_bw_cpus(int i)
123 {
124 	struct root_domain *rd = cpu_rq(i)->rd;
125 	int cpus;
126 
127 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
128 			 "sched RCU must be held");
129 
130 	if (cpumask_subset(rd->span, cpu_active_mask))
131 		return cpumask_weight(rd->span);
132 
133 	cpus = 0;
134 
135 	for_each_cpu_and(i, rd->span, cpu_active_mask)
136 		cpus++;
137 
138 	return cpus;
139 }
140 
__dl_bw_capacity(const struct cpumask * mask)141 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
142 {
143 	unsigned long cap = 0;
144 	int i;
145 
146 	for_each_cpu_and(i, mask, cpu_active_mask)
147 		cap += arch_scale_cpu_capacity(i);
148 
149 	return cap;
150 }
151 
152 /*
153  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
154  * of the CPU the task is running on rather rd's \Sum CPU capacity.
155  */
dl_bw_capacity(int i)156 static inline unsigned long dl_bw_capacity(int i)
157 {
158 	if (!sched_asym_cpucap_active() &&
159 	    arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
160 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
161 	} else {
162 		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
163 				 "sched RCU must be held");
164 
165 		return __dl_bw_capacity(cpu_rq(i)->rd->span);
166 	}
167 }
168 
dl_bw_visited(int cpu,u64 cookie)169 bool dl_bw_visited(int cpu, u64 cookie)
170 {
171 	struct root_domain *rd = cpu_rq(cpu)->rd;
172 
173 	if (rd->visit_cookie == cookie)
174 		return true;
175 
176 	rd->visit_cookie = cookie;
177 	return false;
178 }
179 
180 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)181 void __dl_update(struct dl_bw *dl_b, s64 bw)
182 {
183 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
184 	int i;
185 
186 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
187 			 "sched RCU must be held");
188 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
189 		struct rq *rq = cpu_rq(i);
190 
191 		rq->dl.extra_bw += bw;
192 	}
193 }
194 #else
dl_bw_of(int i)195 static inline struct dl_bw *dl_bw_of(int i)
196 {
197 	return &cpu_rq(i)->dl.dl_bw;
198 }
199 
dl_bw_cpus(int i)200 static inline int dl_bw_cpus(int i)
201 {
202 	return 1;
203 }
204 
dl_bw_capacity(int i)205 static inline unsigned long dl_bw_capacity(int i)
206 {
207 	return SCHED_CAPACITY_SCALE;
208 }
209 
dl_bw_visited(int cpu,u64 cookie)210 bool dl_bw_visited(int cpu, u64 cookie)
211 {
212 	return false;
213 }
214 
215 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)216 void __dl_update(struct dl_bw *dl_b, s64 bw)
217 {
218 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
219 
220 	dl->extra_bw += bw;
221 }
222 #endif
223 
224 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)225 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
226 {
227 	dl_b->total_bw -= tsk_bw;
228 	__dl_update(dl_b, (s32)tsk_bw / cpus);
229 }
230 
231 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)232 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
233 {
234 	dl_b->total_bw += tsk_bw;
235 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
236 }
237 
238 static inline bool
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)239 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
240 {
241 	return dl_b->bw != -1 &&
242 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
243 }
244 
245 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)246 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
247 {
248 	u64 old = dl_rq->running_bw;
249 
250 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
251 	dl_rq->running_bw += dl_bw;
252 	WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */
253 	WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
254 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
255 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
256 }
257 
258 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)259 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
260 {
261 	u64 old = dl_rq->running_bw;
262 
263 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
264 	dl_rq->running_bw -= dl_bw;
265 	WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */
266 	if (dl_rq->running_bw > old)
267 		dl_rq->running_bw = 0;
268 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
269 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
270 }
271 
272 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)273 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
274 {
275 	u64 old = dl_rq->this_bw;
276 
277 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
278 	dl_rq->this_bw += dl_bw;
279 	WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */
280 }
281 
282 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)283 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
284 {
285 	u64 old = dl_rq->this_bw;
286 
287 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
288 	dl_rq->this_bw -= dl_bw;
289 	WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */
290 	if (dl_rq->this_bw > old)
291 		dl_rq->this_bw = 0;
292 	WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
293 }
294 
295 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)296 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
297 {
298 	if (!dl_entity_is_special(dl_se))
299 		__add_rq_bw(dl_se->dl_bw, dl_rq);
300 }
301 
302 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)303 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
304 {
305 	if (!dl_entity_is_special(dl_se))
306 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
307 }
308 
309 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)310 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311 {
312 	if (!dl_entity_is_special(dl_se))
313 		__add_running_bw(dl_se->dl_bw, dl_rq);
314 }
315 
316 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)317 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
318 {
319 	if (!dl_entity_is_special(dl_se))
320 		__sub_running_bw(dl_se->dl_bw, dl_rq);
321 }
322 
dl_rq_change_utilization(struct rq * rq,struct sched_dl_entity * dl_se,u64 new_bw)323 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
324 {
325 	if (dl_se->dl_non_contending) {
326 		sub_running_bw(dl_se, &rq->dl);
327 		dl_se->dl_non_contending = 0;
328 
329 		/*
330 		 * If the timer handler is currently running and the
331 		 * timer cannot be canceled, inactive_task_timer()
332 		 * will see that dl_not_contending is not set, and
333 		 * will not touch the rq's active utilization,
334 		 * so we are still safe.
335 		 */
336 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
337 			if (!dl_server(dl_se))
338 				put_task_struct(dl_task_of(dl_se));
339 		}
340 	}
341 	__sub_rq_bw(dl_se->dl_bw, &rq->dl);
342 	__add_rq_bw(new_bw, &rq->dl);
343 }
344 
345 static __always_inline
cancel_dl_timer(struct sched_dl_entity * dl_se,struct hrtimer * timer)346 void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer)
347 {
348 	/*
349 	 * If the timer callback was running (hrtimer_try_to_cancel == -1),
350 	 * it will eventually call put_task_struct().
351 	 */
352 	if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se))
353 		put_task_struct(dl_task_of(dl_se));
354 }
355 
356 static __always_inline
cancel_replenish_timer(struct sched_dl_entity * dl_se)357 void cancel_replenish_timer(struct sched_dl_entity *dl_se)
358 {
359 	cancel_dl_timer(dl_se, &dl_se->dl_timer);
360 }
361 
362 static __always_inline
cancel_inactive_timer(struct sched_dl_entity * dl_se)363 void cancel_inactive_timer(struct sched_dl_entity *dl_se)
364 {
365 	cancel_dl_timer(dl_se, &dl_se->inactive_timer);
366 }
367 
dl_change_utilization(struct task_struct * p,u64 new_bw)368 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
369 {
370 	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
371 
372 	if (task_on_rq_queued(p))
373 		return;
374 
375 	dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
376 }
377 
378 static void __dl_clear_params(struct sched_dl_entity *dl_se);
379 
380 /*
381  * The utilization of a task cannot be immediately removed from
382  * the rq active utilization (running_bw) when the task blocks.
383  * Instead, we have to wait for the so called "0-lag time".
384  *
385  * If a task blocks before the "0-lag time", a timer (the inactive
386  * timer) is armed, and running_bw is decreased when the timer
387  * fires.
388  *
389  * If the task wakes up again before the inactive timer fires,
390  * the timer is canceled, whereas if the task wakes up after the
391  * inactive timer fired (and running_bw has been decreased) the
392  * task's utilization has to be added to running_bw again.
393  * A flag in the deadline scheduling entity (dl_non_contending)
394  * is used to avoid race conditions between the inactive timer handler
395  * and task wakeups.
396  *
397  * The following diagram shows how running_bw is updated. A task is
398  * "ACTIVE" when its utilization contributes to running_bw; an
399  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
400  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
401  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
402  * time already passed, which does not contribute to running_bw anymore.
403  *                              +------------------+
404  *             wakeup           |    ACTIVE        |
405  *          +------------------>+   contending     |
406  *          | add_running_bw    |                  |
407  *          |                   +----+------+------+
408  *          |                        |      ^
409  *          |                dequeue |      |
410  * +--------+-------+                |      |
411  * |                |   t >= 0-lag   |      | wakeup
412  * |    INACTIVE    |<---------------+      |
413  * |                | sub_running_bw |      |
414  * +--------+-------+                |      |
415  *          ^                        |      |
416  *          |              t < 0-lag |      |
417  *          |                        |      |
418  *          |                        V      |
419  *          |                   +----+------+------+
420  *          | sub_running_bw    |    ACTIVE        |
421  *          +-------------------+                  |
422  *            inactive timer    |  non contending  |
423  *            fired             +------------------+
424  *
425  * The task_non_contending() function is invoked when a task
426  * blocks, and checks if the 0-lag time already passed or
427  * not (in the first case, it directly updates running_bw;
428  * in the second case, it arms the inactive timer).
429  *
430  * The task_contending() function is invoked when a task wakes
431  * up, and checks if the task is still in the "ACTIVE non contending"
432  * state or not (in the second case, it updates running_bw).
433  */
task_non_contending(struct sched_dl_entity * dl_se)434 static void task_non_contending(struct sched_dl_entity *dl_se)
435 {
436 	struct hrtimer *timer = &dl_se->inactive_timer;
437 	struct rq *rq = rq_of_dl_se(dl_se);
438 	struct dl_rq *dl_rq = &rq->dl;
439 	s64 zerolag_time;
440 
441 	/*
442 	 * If this is a non-deadline task that has been boosted,
443 	 * do nothing
444 	 */
445 	if (dl_se->dl_runtime == 0)
446 		return;
447 
448 	if (dl_entity_is_special(dl_se))
449 		return;
450 
451 	WARN_ON(dl_se->dl_non_contending);
452 
453 	zerolag_time = dl_se->deadline -
454 		 div64_long((dl_se->runtime * dl_se->dl_period),
455 			dl_se->dl_runtime);
456 
457 	/*
458 	 * Using relative times instead of the absolute "0-lag time"
459 	 * allows to simplify the code
460 	 */
461 	zerolag_time -= rq_clock(rq);
462 
463 	/*
464 	 * If the "0-lag time" already passed, decrease the active
465 	 * utilization now, instead of starting a timer
466 	 */
467 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
468 		if (dl_server(dl_se)) {
469 			sub_running_bw(dl_se, dl_rq);
470 		} else {
471 			struct task_struct *p = dl_task_of(dl_se);
472 
473 			if (dl_task(p))
474 				sub_running_bw(dl_se, dl_rq);
475 
476 			if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
477 				struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
478 
479 				if (READ_ONCE(p->__state) == TASK_DEAD)
480 					sub_rq_bw(dl_se, &rq->dl);
481 				raw_spin_lock(&dl_b->lock);
482 				__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
483 				raw_spin_unlock(&dl_b->lock);
484 				__dl_clear_params(dl_se);
485 			}
486 		}
487 
488 		return;
489 	}
490 
491 	dl_se->dl_non_contending = 1;
492 	if (!dl_server(dl_se))
493 		get_task_struct(dl_task_of(dl_se));
494 
495 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
496 }
497 
task_contending(struct sched_dl_entity * dl_se,int flags)498 static void task_contending(struct sched_dl_entity *dl_se, int flags)
499 {
500 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
501 
502 	/*
503 	 * If this is a non-deadline task that has been boosted,
504 	 * do nothing
505 	 */
506 	if (dl_se->dl_runtime == 0)
507 		return;
508 
509 	if (flags & ENQUEUE_MIGRATED)
510 		add_rq_bw(dl_se, dl_rq);
511 
512 	if (dl_se->dl_non_contending) {
513 		dl_se->dl_non_contending = 0;
514 		/*
515 		 * If the timer handler is currently running and the
516 		 * timer cannot be canceled, inactive_task_timer()
517 		 * will see that dl_not_contending is not set, and
518 		 * will not touch the rq's active utilization,
519 		 * so we are still safe.
520 		 */
521 		cancel_inactive_timer(dl_se);
522 	} else {
523 		/*
524 		 * Since "dl_non_contending" is not set, the
525 		 * task's utilization has already been removed from
526 		 * active utilization (either when the task blocked,
527 		 * when the "inactive timer" fired).
528 		 * So, add it back.
529 		 */
530 		add_running_bw(dl_se, dl_rq);
531 	}
532 }
533 
is_leftmost(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)534 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
535 {
536 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
537 }
538 
539 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
540 
init_dl_bw(struct dl_bw * dl_b)541 void init_dl_bw(struct dl_bw *dl_b)
542 {
543 	raw_spin_lock_init(&dl_b->lock);
544 	if (global_rt_runtime() == RUNTIME_INF)
545 		dl_b->bw = -1;
546 	else
547 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
548 	dl_b->total_bw = 0;
549 }
550 
init_dl_rq(struct dl_rq * dl_rq)551 void init_dl_rq(struct dl_rq *dl_rq)
552 {
553 	dl_rq->root = RB_ROOT_CACHED;
554 
555 #ifdef CONFIG_SMP
556 	/* zero means no -deadline tasks */
557 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
558 
559 	dl_rq->overloaded = 0;
560 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
561 #else
562 	init_dl_bw(&dl_rq->dl_bw);
563 #endif
564 
565 	dl_rq->running_bw = 0;
566 	dl_rq->this_bw = 0;
567 	init_dl_rq_bw_ratio(dl_rq);
568 }
569 
570 #ifdef CONFIG_SMP
571 
dl_overloaded(struct rq * rq)572 static inline int dl_overloaded(struct rq *rq)
573 {
574 	return atomic_read(&rq->rd->dlo_count);
575 }
576 
dl_set_overload(struct rq * rq)577 static inline void dl_set_overload(struct rq *rq)
578 {
579 	if (!rq->online)
580 		return;
581 
582 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
583 	/*
584 	 * Must be visible before the overload count is
585 	 * set (as in sched_rt.c).
586 	 *
587 	 * Matched by the barrier in pull_dl_task().
588 	 */
589 	smp_wmb();
590 	atomic_inc(&rq->rd->dlo_count);
591 }
592 
dl_clear_overload(struct rq * rq)593 static inline void dl_clear_overload(struct rq *rq)
594 {
595 	if (!rq->online)
596 		return;
597 
598 	atomic_dec(&rq->rd->dlo_count);
599 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
600 }
601 
602 #define __node_2_pdl(node) \
603 	rb_entry((node), struct task_struct, pushable_dl_tasks)
604 
__pushable_less(struct rb_node * a,const struct rb_node * b)605 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
606 {
607 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
608 }
609 
has_pushable_dl_tasks(struct rq * rq)610 static inline int has_pushable_dl_tasks(struct rq *rq)
611 {
612 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
613 }
614 
615 /*
616  * The list of pushable -deadline task is not a plist, like in
617  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
618  */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)619 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
620 {
621 	struct rb_node *leftmost;
622 
623 	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
624 
625 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
626 				 &rq->dl.pushable_dl_tasks_root,
627 				 __pushable_less);
628 	if (leftmost)
629 		rq->dl.earliest_dl.next = p->dl.deadline;
630 
631 	if (!rq->dl.overloaded) {
632 		dl_set_overload(rq);
633 		rq->dl.overloaded = 1;
634 	}
635 }
636 
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)637 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
638 {
639 	struct dl_rq *dl_rq = &rq->dl;
640 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
641 	struct rb_node *leftmost;
642 
643 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
644 		return;
645 
646 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
647 	if (leftmost)
648 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
649 
650 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
651 
652 	if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
653 		dl_clear_overload(rq);
654 		rq->dl.overloaded = 0;
655 	}
656 }
657 
658 static int push_dl_task(struct rq *rq);
659 
need_pull_dl_task(struct rq * rq,struct task_struct * prev)660 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
661 {
662 	return rq->online && dl_task(prev);
663 }
664 
665 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
666 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
667 
668 static void push_dl_tasks(struct rq *);
669 static void pull_dl_task(struct rq *);
670 
deadline_queue_push_tasks(struct rq * rq)671 static inline void deadline_queue_push_tasks(struct rq *rq)
672 {
673 	if (!has_pushable_dl_tasks(rq))
674 		return;
675 
676 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
677 }
678 
deadline_queue_pull_task(struct rq * rq)679 static inline void deadline_queue_pull_task(struct rq *rq)
680 {
681 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
682 }
683 
684 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
685 
dl_task_offline_migration(struct rq * rq,struct task_struct * p)686 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
687 {
688 	struct rq *later_rq = NULL;
689 	struct dl_bw *dl_b;
690 
691 	later_rq = find_lock_later_rq(p, rq);
692 	if (!later_rq) {
693 		int cpu;
694 
695 		/*
696 		 * If we cannot preempt any rq, fall back to pick any
697 		 * online CPU:
698 		 */
699 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
700 		if (cpu >= nr_cpu_ids) {
701 			/*
702 			 * Failed to find any suitable CPU.
703 			 * The task will never come back!
704 			 */
705 			WARN_ON_ONCE(dl_bandwidth_enabled());
706 
707 			/*
708 			 * If admission control is disabled we
709 			 * try a little harder to let the task
710 			 * run.
711 			 */
712 			cpu = cpumask_any(cpu_active_mask);
713 		}
714 		later_rq = cpu_rq(cpu);
715 		double_lock_balance(rq, later_rq);
716 	}
717 
718 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
719 		/*
720 		 * Inactive timer is armed (or callback is running, but
721 		 * waiting for us to release rq locks). In any case, when it
722 		 * will fire (or continue), it will see running_bw of this
723 		 * task migrated to later_rq (and correctly handle it).
724 		 */
725 		sub_running_bw(&p->dl, &rq->dl);
726 		sub_rq_bw(&p->dl, &rq->dl);
727 
728 		add_rq_bw(&p->dl, &later_rq->dl);
729 		add_running_bw(&p->dl, &later_rq->dl);
730 	} else {
731 		sub_rq_bw(&p->dl, &rq->dl);
732 		add_rq_bw(&p->dl, &later_rq->dl);
733 	}
734 
735 	/*
736 	 * And we finally need to fix up root_domain(s) bandwidth accounting,
737 	 * since p is still hanging out in the old (now moved to default) root
738 	 * domain.
739 	 */
740 	dl_b = &rq->rd->dl_bw;
741 	raw_spin_lock(&dl_b->lock);
742 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
743 	raw_spin_unlock(&dl_b->lock);
744 
745 	dl_b = &later_rq->rd->dl_bw;
746 	raw_spin_lock(&dl_b->lock);
747 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
748 	raw_spin_unlock(&dl_b->lock);
749 
750 	set_task_cpu(p, later_rq->cpu);
751 	double_unlock_balance(later_rq, rq);
752 
753 	return later_rq;
754 }
755 
756 #else
757 
758 static inline
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)759 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
760 {
761 }
762 
763 static inline
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)764 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
765 {
766 }
767 
768 static inline
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)769 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
770 {
771 }
772 
773 static inline
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)774 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
775 {
776 }
777 
deadline_queue_push_tasks(struct rq * rq)778 static inline void deadline_queue_push_tasks(struct rq *rq)
779 {
780 }
781 
deadline_queue_pull_task(struct rq * rq)782 static inline void deadline_queue_pull_task(struct rq *rq)
783 {
784 }
785 #endif /* CONFIG_SMP */
786 
787 static void
788 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
789 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
790 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
791 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
792 
replenish_dl_new_period(struct sched_dl_entity * dl_se,struct rq * rq)793 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
794 					    struct rq *rq)
795 {
796 	/* for non-boosted task, pi_of(dl_se) == dl_se */
797 	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
798 	dl_se->runtime = pi_of(dl_se)->dl_runtime;
799 
800 	/*
801 	 * If it is a deferred reservation, and the server
802 	 * is not handling an starvation case, defer it.
803 	 */
804 	if (dl_se->dl_defer && !dl_se->dl_defer_running) {
805 		dl_se->dl_throttled = 1;
806 		dl_se->dl_defer_armed = 1;
807 	}
808 }
809 
810 /*
811  * We are being explicitly informed that a new instance is starting,
812  * and this means that:
813  *  - the absolute deadline of the entity has to be placed at
814  *    current time + relative deadline;
815  *  - the runtime of the entity has to be set to the maximum value.
816  *
817  * The capability of specifying such event is useful whenever a -deadline
818  * entity wants to (try to!) synchronize its behaviour with the scheduler's
819  * one, and to (try to!) reconcile itself with its own scheduling
820  * parameters.
821  */
setup_new_dl_entity(struct sched_dl_entity * dl_se)822 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
823 {
824 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
825 	struct rq *rq = rq_of_dl_rq(dl_rq);
826 
827 	WARN_ON(is_dl_boosted(dl_se));
828 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
829 
830 	/*
831 	 * We are racing with the deadline timer. So, do nothing because
832 	 * the deadline timer handler will take care of properly recharging
833 	 * the runtime and postponing the deadline
834 	 */
835 	if (dl_se->dl_throttled)
836 		return;
837 
838 	/*
839 	 * We use the regular wall clock time to set deadlines in the
840 	 * future; in fact, we must consider execution overheads (time
841 	 * spent on hardirq context, etc.).
842 	 */
843 	replenish_dl_new_period(dl_se, rq);
844 }
845 
846 static int start_dl_timer(struct sched_dl_entity *dl_se);
847 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
848 
849 /*
850  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
851  * possibility of a entity lasting more than what it declared, and thus
852  * exhausting its runtime.
853  *
854  * Here we are interested in making runtime overrun possible, but we do
855  * not want a entity which is misbehaving to affect the scheduling of all
856  * other entities.
857  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
858  * is used, in order to confine each entity within its own bandwidth.
859  *
860  * This function deals exactly with that, and ensures that when the runtime
861  * of a entity is replenished, its deadline is also postponed. That ensures
862  * the overrunning entity can't interfere with other entity in the system and
863  * can't make them miss their deadlines. Reasons why this kind of overruns
864  * could happen are, typically, a entity voluntarily trying to overcome its
865  * runtime, or it just underestimated it during sched_setattr().
866  */
replenish_dl_entity(struct sched_dl_entity * dl_se)867 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
868 {
869 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
870 	struct rq *rq = rq_of_dl_rq(dl_rq);
871 
872 	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
873 
874 	/*
875 	 * This could be the case for a !-dl task that is boosted.
876 	 * Just go with full inherited parameters.
877 	 *
878 	 * Or, it could be the case of a deferred reservation that
879 	 * was not able to consume its runtime in background and
880 	 * reached this point with current u > U.
881 	 *
882 	 * In both cases, set a new period.
883 	 */
884 	if (dl_se->dl_deadline == 0 ||
885 	    (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
886 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
887 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
888 	}
889 
890 	if (dl_se->dl_yielded && dl_se->runtime > 0)
891 		dl_se->runtime = 0;
892 
893 	/*
894 	 * We keep moving the deadline away until we get some
895 	 * available runtime for the entity. This ensures correct
896 	 * handling of situations where the runtime overrun is
897 	 * arbitrary large.
898 	 */
899 	while (dl_se->runtime <= 0) {
900 		dl_se->deadline += pi_of(dl_se)->dl_period;
901 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
902 	}
903 
904 	/*
905 	 * At this point, the deadline really should be "in
906 	 * the future" with respect to rq->clock. If it's
907 	 * not, we are, for some reason, lagging too much!
908 	 * Anyway, after having warn userspace abut that,
909 	 * we still try to keep the things running by
910 	 * resetting the deadline and the budget of the
911 	 * entity.
912 	 */
913 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
914 		printk_deferred_once("sched: DL replenish lagged too much\n");
915 		replenish_dl_new_period(dl_se, rq);
916 	}
917 
918 	if (dl_se->dl_yielded)
919 		dl_se->dl_yielded = 0;
920 	if (dl_se->dl_throttled)
921 		dl_se->dl_throttled = 0;
922 
923 	/*
924 	 * If this is the replenishment of a deferred reservation,
925 	 * clear the flag and return.
926 	 */
927 	if (dl_se->dl_defer_armed) {
928 		dl_se->dl_defer_armed = 0;
929 		return;
930 	}
931 
932 	/*
933 	 * A this point, if the deferred server is not armed, and the deadline
934 	 * is in the future, if it is not running already, throttle the server
935 	 * and arm the defer timer.
936 	 */
937 	if (dl_se->dl_defer && !dl_se->dl_defer_running &&
938 	    dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
939 		if (!is_dl_boosted(dl_se) && dl_se->server_has_tasks(dl_se)) {
940 
941 			/*
942 			 * Set dl_se->dl_defer_armed and dl_throttled variables to
943 			 * inform the start_dl_timer() that this is a deferred
944 			 * activation.
945 			 */
946 			dl_se->dl_defer_armed = 1;
947 			dl_se->dl_throttled = 1;
948 			if (!start_dl_timer(dl_se)) {
949 				/*
950 				 * If for whatever reason (delays), a previous timer was
951 				 * queued but not serviced, cancel it and clean the
952 				 * deferrable server variables intended for start_dl_timer().
953 				 */
954 				hrtimer_try_to_cancel(&dl_se->dl_timer);
955 				dl_se->dl_defer_armed = 0;
956 				dl_se->dl_throttled = 0;
957 			}
958 		}
959 	}
960 }
961 
962 /*
963  * Here we check if --at time t-- an entity (which is probably being
964  * [re]activated or, in general, enqueued) can use its remaining runtime
965  * and its current deadline _without_ exceeding the bandwidth it is
966  * assigned (function returns true if it can't). We are in fact applying
967  * one of the CBS rules: when a task wakes up, if the residual runtime
968  * over residual deadline fits within the allocated bandwidth, then we
969  * can keep the current (absolute) deadline and residual budget without
970  * disrupting the schedulability of the system. Otherwise, we should
971  * refill the runtime and set the deadline a period in the future,
972  * because keeping the current (absolute) deadline of the task would
973  * result in breaking guarantees promised to other tasks (refer to
974  * Documentation/scheduler/sched-deadline.rst for more information).
975  *
976  * This function returns true if:
977  *
978  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
979  *
980  * IOW we can't recycle current parameters.
981  *
982  * Notice that the bandwidth check is done against the deadline. For
983  * task with deadline equal to period this is the same of using
984  * dl_period instead of dl_deadline in the equation above.
985  */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)986 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
987 {
988 	u64 left, right;
989 
990 	/*
991 	 * left and right are the two sides of the equation above,
992 	 * after a bit of shuffling to use multiplications instead
993 	 * of divisions.
994 	 *
995 	 * Note that none of the time values involved in the two
996 	 * multiplications are absolute: dl_deadline and dl_runtime
997 	 * are the relative deadline and the maximum runtime of each
998 	 * instance, runtime is the runtime left for the last instance
999 	 * and (deadline - t), since t is rq->clock, is the time left
1000 	 * to the (absolute) deadline. Even if overflowing the u64 type
1001 	 * is very unlikely to occur in both cases, here we scale down
1002 	 * as we want to avoid that risk at all. Scaling down by 10
1003 	 * means that we reduce granularity to 1us. We are fine with it,
1004 	 * since this is only a true/false check and, anyway, thinking
1005 	 * of anything below microseconds resolution is actually fiction
1006 	 * (but still we want to give the user that illusion >;).
1007 	 */
1008 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
1009 	right = ((dl_se->deadline - t) >> DL_SCALE) *
1010 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
1011 
1012 	return dl_time_before(right, left);
1013 }
1014 
1015 /*
1016  * Revised wakeup rule [1]: For self-suspending tasks, rather then
1017  * re-initializing task's runtime and deadline, the revised wakeup
1018  * rule adjusts the task's runtime to avoid the task to overrun its
1019  * density.
1020  *
1021  * Reasoning: a task may overrun the density if:
1022  *    runtime / (deadline - t) > dl_runtime / dl_deadline
1023  *
1024  * Therefore, runtime can be adjusted to:
1025  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
1026  *
1027  * In such way that runtime will be equal to the maximum density
1028  * the task can use without breaking any rule.
1029  *
1030  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
1031  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
1032  */
1033 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)1034 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
1035 {
1036 	u64 laxity = dl_se->deadline - rq_clock(rq);
1037 
1038 	/*
1039 	 * If the task has deadline < period, and the deadline is in the past,
1040 	 * it should already be throttled before this check.
1041 	 *
1042 	 * See update_dl_entity() comments for further details.
1043 	 */
1044 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
1045 
1046 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
1047 }
1048 
1049 /*
1050  * Regarding the deadline, a task with implicit deadline has a relative
1051  * deadline == relative period. A task with constrained deadline has a
1052  * relative deadline <= relative period.
1053  *
1054  * We support constrained deadline tasks. However, there are some restrictions
1055  * applied only for tasks which do not have an implicit deadline. See
1056  * update_dl_entity() to know more about such restrictions.
1057  *
1058  * The dl_is_implicit() returns true if the task has an implicit deadline.
1059  */
dl_is_implicit(struct sched_dl_entity * dl_se)1060 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
1061 {
1062 	return dl_se->dl_deadline == dl_se->dl_period;
1063 }
1064 
1065 /*
1066  * When a deadline entity is placed in the runqueue, its runtime and deadline
1067  * might need to be updated. This is done by a CBS wake up rule. There are two
1068  * different rules: 1) the original CBS; and 2) the Revisited CBS.
1069  *
1070  * When the task is starting a new period, the Original CBS is used. In this
1071  * case, the runtime is replenished and a new absolute deadline is set.
1072  *
1073  * When a task is queued before the begin of the next period, using the
1074  * remaining runtime and deadline could make the entity to overflow, see
1075  * dl_entity_overflow() to find more about runtime overflow. When such case
1076  * is detected, the runtime and deadline need to be updated.
1077  *
1078  * If the task has an implicit deadline, i.e., deadline == period, the Original
1079  * CBS is applied. The runtime is replenished and a new absolute deadline is
1080  * set, as in the previous cases.
1081  *
1082  * However, the Original CBS does not work properly for tasks with
1083  * deadline < period, which are said to have a constrained deadline. By
1084  * applying the Original CBS, a constrained deadline task would be able to run
1085  * runtime/deadline in a period. With deadline < period, the task would
1086  * overrun the runtime/period allowed bandwidth, breaking the admission test.
1087  *
1088  * In order to prevent this misbehave, the Revisited CBS is used for
1089  * constrained deadline tasks when a runtime overflow is detected. In the
1090  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1091  * the remaining runtime of the task is reduced to avoid runtime overflow.
1092  * Please refer to the comments update_dl_revised_wakeup() function to find
1093  * more about the Revised CBS rule.
1094  */
update_dl_entity(struct sched_dl_entity * dl_se)1095 static void update_dl_entity(struct sched_dl_entity *dl_se)
1096 {
1097 	struct rq *rq = rq_of_dl_se(dl_se);
1098 
1099 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1100 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1101 
1102 		if (unlikely(!dl_is_implicit(dl_se) &&
1103 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1104 			     !is_dl_boosted(dl_se))) {
1105 			update_dl_revised_wakeup(dl_se, rq);
1106 			return;
1107 		}
1108 
1109 		replenish_dl_new_period(dl_se, rq);
1110 	} else if (dl_server(dl_se) && dl_se->dl_defer) {
1111 		/*
1112 		 * The server can still use its previous deadline, so check if
1113 		 * it left the dl_defer_running state.
1114 		 */
1115 		if (!dl_se->dl_defer_running) {
1116 			dl_se->dl_defer_armed = 1;
1117 			dl_se->dl_throttled = 1;
1118 		}
1119 	}
1120 }
1121 
dl_next_period(struct sched_dl_entity * dl_se)1122 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1123 {
1124 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1125 }
1126 
1127 /*
1128  * If the entity depleted all its runtime, and if we want it to sleep
1129  * while waiting for some new execution time to become available, we
1130  * set the bandwidth replenishment timer to the replenishment instant
1131  * and try to activate it.
1132  *
1133  * Notice that it is important for the caller to know if the timer
1134  * actually started or not (i.e., the replenishment instant is in
1135  * the future or in the past).
1136  */
start_dl_timer(struct sched_dl_entity * dl_se)1137 static int start_dl_timer(struct sched_dl_entity *dl_se)
1138 {
1139 	struct hrtimer *timer = &dl_se->dl_timer;
1140 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1141 	struct rq *rq = rq_of_dl_rq(dl_rq);
1142 	ktime_t now, act;
1143 	s64 delta;
1144 
1145 	lockdep_assert_rq_held(rq);
1146 
1147 	/*
1148 	 * We want the timer to fire at the deadline, but considering
1149 	 * that it is actually coming from rq->clock and not from
1150 	 * hrtimer's time base reading.
1151 	 *
1152 	 * The deferred reservation will have its timer set to
1153 	 * (deadline - runtime). At that point, the CBS rule will decide
1154 	 * if the current deadline can be used, or if a replenishment is
1155 	 * required to avoid add too much pressure on the system
1156 	 * (current u > U).
1157 	 */
1158 	if (dl_se->dl_defer_armed) {
1159 		WARN_ON_ONCE(!dl_se->dl_throttled);
1160 		act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1161 	} else {
1162 		/* act = deadline - rel-deadline + period */
1163 		act = ns_to_ktime(dl_next_period(dl_se));
1164 	}
1165 
1166 	now = hrtimer_cb_get_time(timer);
1167 	delta = ktime_to_ns(now) - rq_clock(rq);
1168 	act = ktime_add_ns(act, delta);
1169 
1170 	/*
1171 	 * If the expiry time already passed, e.g., because the value
1172 	 * chosen as the deadline is too small, don't even try to
1173 	 * start the timer in the past!
1174 	 */
1175 	if (ktime_us_delta(act, now) < 0)
1176 		return 0;
1177 
1178 	/*
1179 	 * !enqueued will guarantee another callback; even if one is already in
1180 	 * progress. This ensures a balanced {get,put}_task_struct().
1181 	 *
1182 	 * The race against __run_timer() clearing the enqueued state is
1183 	 * harmless because we're holding task_rq()->lock, therefore the timer
1184 	 * expiring after we've done the check will wait on its task_rq_lock()
1185 	 * and observe our state.
1186 	 */
1187 	if (!hrtimer_is_queued(timer)) {
1188 		if (!dl_server(dl_se))
1189 			get_task_struct(dl_task_of(dl_se));
1190 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1191 	}
1192 
1193 	return 1;
1194 }
1195 
__push_dl_task(struct rq * rq,struct rq_flags * rf)1196 static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1197 {
1198 #ifdef CONFIG_SMP
1199 	/*
1200 	 * Queueing this task back might have overloaded rq, check if we need
1201 	 * to kick someone away.
1202 	 */
1203 	if (has_pushable_dl_tasks(rq)) {
1204 		/*
1205 		 * Nothing relies on rq->lock after this, so its safe to drop
1206 		 * rq->lock.
1207 		 */
1208 		rq_unpin_lock(rq, rf);
1209 		push_dl_task(rq);
1210 		rq_repin_lock(rq, rf);
1211 	}
1212 #endif
1213 }
1214 
1215 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1216 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1217 
dl_server_timer(struct hrtimer * timer,struct sched_dl_entity * dl_se)1218 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1219 {
1220 	struct rq *rq = rq_of_dl_se(dl_se);
1221 	u64 fw;
1222 
1223 	scoped_guard (rq_lock, rq) {
1224 		struct rq_flags *rf = &scope.rf;
1225 
1226 		if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1227 			return HRTIMER_NORESTART;
1228 
1229 		sched_clock_tick();
1230 		update_rq_clock(rq);
1231 
1232 		if (!dl_se->dl_runtime)
1233 			return HRTIMER_NORESTART;
1234 
1235 		if (!dl_se->server_has_tasks(dl_se)) {
1236 			replenish_dl_entity(dl_se);
1237 			return HRTIMER_NORESTART;
1238 		}
1239 
1240 		if (dl_se->dl_defer_armed) {
1241 			/*
1242 			 * First check if the server could consume runtime in background.
1243 			 * If so, it is possible to push the defer timer for this amount
1244 			 * of time. The dl_server_min_res serves as a limit to avoid
1245 			 * forwarding the timer for a too small amount of time.
1246 			 */
1247 			if (dl_time_before(rq_clock(dl_se->rq),
1248 					   (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1249 
1250 				/* reset the defer timer */
1251 				fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1252 
1253 				hrtimer_forward_now(timer, ns_to_ktime(fw));
1254 				return HRTIMER_RESTART;
1255 			}
1256 
1257 			dl_se->dl_defer_running = 1;
1258 		}
1259 
1260 		enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1261 
1262 		if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1263 			resched_curr(rq);
1264 
1265 		__push_dl_task(rq, rf);
1266 	}
1267 
1268 	return HRTIMER_NORESTART;
1269 }
1270 
1271 /*
1272  * This is the bandwidth enforcement timer callback. If here, we know
1273  * a task is not on its dl_rq, since the fact that the timer was running
1274  * means the task is throttled and needs a runtime replenishment.
1275  *
1276  * However, what we actually do depends on the fact the task is active,
1277  * (it is on its rq) or has been removed from there by a call to
1278  * dequeue_task_dl(). In the former case we must issue the runtime
1279  * replenishment and add the task back to the dl_rq; in the latter, we just
1280  * do nothing but clearing dl_throttled, so that runtime and deadline
1281  * updating (and the queueing back to dl_rq) will be done by the
1282  * next call to enqueue_task_dl().
1283  */
dl_task_timer(struct hrtimer * timer)1284 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1285 {
1286 	struct sched_dl_entity *dl_se = container_of(timer,
1287 						     struct sched_dl_entity,
1288 						     dl_timer);
1289 	struct task_struct *p;
1290 	struct rq_flags rf;
1291 	struct rq *rq;
1292 
1293 	if (dl_server(dl_se))
1294 		return dl_server_timer(timer, dl_se);
1295 
1296 	p = dl_task_of(dl_se);
1297 	rq = task_rq_lock(p, &rf);
1298 
1299 	/*
1300 	 * The task might have changed its scheduling policy to something
1301 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1302 	 */
1303 	if (!dl_task(p))
1304 		goto unlock;
1305 
1306 	/*
1307 	 * The task might have been boosted by someone else and might be in the
1308 	 * boosting/deboosting path, its not throttled.
1309 	 */
1310 	if (is_dl_boosted(dl_se))
1311 		goto unlock;
1312 
1313 	/*
1314 	 * Spurious timer due to start_dl_timer() race; or we already received
1315 	 * a replenishment from rt_mutex_setprio().
1316 	 */
1317 	if (!dl_se->dl_throttled)
1318 		goto unlock;
1319 
1320 	sched_clock_tick();
1321 	update_rq_clock(rq);
1322 
1323 	/*
1324 	 * If the throttle happened during sched-out; like:
1325 	 *
1326 	 *   schedule()
1327 	 *     deactivate_task()
1328 	 *       dequeue_task_dl()
1329 	 *         update_curr_dl()
1330 	 *           start_dl_timer()
1331 	 *         __dequeue_task_dl()
1332 	 *     prev->on_rq = 0;
1333 	 *
1334 	 * We can be both throttled and !queued. Replenish the counter
1335 	 * but do not enqueue -- wait for our wakeup to do that.
1336 	 */
1337 	if (!task_on_rq_queued(p)) {
1338 		replenish_dl_entity(dl_se);
1339 		goto unlock;
1340 	}
1341 
1342 #ifdef CONFIG_SMP
1343 	if (unlikely(!rq->online)) {
1344 		/*
1345 		 * If the runqueue is no longer available, migrate the
1346 		 * task elsewhere. This necessarily changes rq.
1347 		 */
1348 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1349 		rq = dl_task_offline_migration(rq, p);
1350 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1351 		update_rq_clock(rq);
1352 
1353 		/*
1354 		 * Now that the task has been migrated to the new RQ and we
1355 		 * have that locked, proceed as normal and enqueue the task
1356 		 * there.
1357 		 */
1358 	}
1359 #endif
1360 
1361 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1362 	if (dl_task(rq->donor))
1363 		wakeup_preempt_dl(rq, p, 0);
1364 	else
1365 		resched_curr(rq);
1366 
1367 	__push_dl_task(rq, &rf);
1368 
1369 unlock:
1370 	task_rq_unlock(rq, p, &rf);
1371 
1372 	/*
1373 	 * This can free the task_struct, including this hrtimer, do not touch
1374 	 * anything related to that after this.
1375 	 */
1376 	put_task_struct(p);
1377 
1378 	return HRTIMER_NORESTART;
1379 }
1380 
init_dl_task_timer(struct sched_dl_entity * dl_se)1381 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1382 {
1383 	struct hrtimer *timer = &dl_se->dl_timer;
1384 
1385 	hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1386 }
1387 
1388 /*
1389  * During the activation, CBS checks if it can reuse the current task's
1390  * runtime and period. If the deadline of the task is in the past, CBS
1391  * cannot use the runtime, and so it replenishes the task. This rule
1392  * works fine for implicit deadline tasks (deadline == period), and the
1393  * CBS was designed for implicit deadline tasks. However, a task with
1394  * constrained deadline (deadline < period) might be awakened after the
1395  * deadline, but before the next period. In this case, replenishing the
1396  * task would allow it to run for runtime / deadline. As in this case
1397  * deadline < period, CBS enables a task to run for more than the
1398  * runtime / period. In a very loaded system, this can cause a domino
1399  * effect, making other tasks miss their deadlines.
1400  *
1401  * To avoid this problem, in the activation of a constrained deadline
1402  * task after the deadline but before the next period, throttle the
1403  * task and set the replenishing timer to the begin of the next period,
1404  * unless it is boosted.
1405  */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1406 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1407 {
1408 	struct rq *rq = rq_of_dl_se(dl_se);
1409 
1410 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1411 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1412 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1413 			return;
1414 		dl_se->dl_throttled = 1;
1415 		if (dl_se->runtime > 0)
1416 			dl_se->runtime = 0;
1417 	}
1418 }
1419 
1420 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1421 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1422 {
1423 	return (dl_se->runtime <= 0);
1424 }
1425 
1426 /*
1427  * This function implements the GRUB accounting rule. According to the
1428  * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1429  * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1430  * where u is the utilization of the task, Umax is the maximum reclaimable
1431  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1432  * as the difference between the "total runqueue utilization" and the
1433  * "runqueue active utilization", and Uextra is the (per runqueue) extra
1434  * reclaimable utilization.
1435  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1436  * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1437  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1438  * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1439  * Since delta is a 64 bit variable, to have an overflow its value should be
1440  * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1441  * not an issue here.
1442  */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1443 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1444 {
1445 	u64 u_act;
1446 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1447 
1448 	/*
1449 	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1450 	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1451 	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1452 	 * negative leading to wrong results.
1453 	 */
1454 	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1455 		u_act = dl_se->dl_bw;
1456 	else
1457 		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1458 
1459 	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1460 	return (delta * u_act) >> BW_SHIFT;
1461 }
1462 
dl_scaled_delta_exec(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1463 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1464 {
1465 	s64 scaled_delta_exec;
1466 
1467 	/*
1468 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1469 	 * spare reclaimed bandwidth is used to clock down frequency.
1470 	 *
1471 	 * For the others, we still need to scale reservation parameters
1472 	 * according to current frequency and CPU maximum capacity.
1473 	 */
1474 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1475 		scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1476 	} else {
1477 		int cpu = cpu_of(rq);
1478 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1479 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1480 
1481 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1482 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1483 	}
1484 
1485 	return scaled_delta_exec;
1486 }
1487 
1488 static inline void
1489 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1490 			int flags);
update_curr_dl_se(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1491 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1492 {
1493 	s64 scaled_delta_exec;
1494 
1495 	if (unlikely(delta_exec <= 0)) {
1496 		if (unlikely(dl_se->dl_yielded))
1497 			goto throttle;
1498 		return;
1499 	}
1500 
1501 	if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1502 		return;
1503 
1504 	if (dl_entity_is_special(dl_se))
1505 		return;
1506 
1507 	scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1508 
1509 	dl_se->runtime -= scaled_delta_exec;
1510 
1511 	/*
1512 	 * The fair server can consume its runtime while throttled (not queued/
1513 	 * running as regular CFS).
1514 	 *
1515 	 * If the server consumes its entire runtime in this state. The server
1516 	 * is not required for the current period. Thus, reset the server by
1517 	 * starting a new period, pushing the activation.
1518 	 */
1519 	if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1520 		/*
1521 		 * If the server was previously activated - the starving condition
1522 		 * took place, it this point it went away because the fair scheduler
1523 		 * was able to get runtime in background. So return to the initial
1524 		 * state.
1525 		 */
1526 		dl_se->dl_defer_running = 0;
1527 
1528 		hrtimer_try_to_cancel(&dl_se->dl_timer);
1529 
1530 		replenish_dl_new_period(dl_se, dl_se->rq);
1531 
1532 		/*
1533 		 * Not being able to start the timer seems problematic. If it could not
1534 		 * be started for whatever reason, we need to "unthrottle" the DL server
1535 		 * and queue right away. Otherwise nothing might queue it. That's similar
1536 		 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1537 		 */
1538 		WARN_ON_ONCE(!start_dl_timer(dl_se));
1539 
1540 		return;
1541 	}
1542 
1543 throttle:
1544 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1545 		dl_se->dl_throttled = 1;
1546 
1547 		/* If requested, inform the user about runtime overruns. */
1548 		if (dl_runtime_exceeded(dl_se) &&
1549 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1550 			dl_se->dl_overrun = 1;
1551 
1552 		dequeue_dl_entity(dl_se, 0);
1553 		if (!dl_server(dl_se)) {
1554 			update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1555 			dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1556 		}
1557 
1558 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1559 			if (dl_server(dl_se))
1560 				enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1561 			else
1562 				enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1563 		}
1564 
1565 		if (!is_leftmost(dl_se, &rq->dl))
1566 			resched_curr(rq);
1567 	}
1568 
1569 	/*
1570 	 * The fair server (sole dl_server) does not account for real-time
1571 	 * workload because it is running fair work.
1572 	 */
1573 	if (dl_se == &rq->fair_server)
1574 		return;
1575 
1576 #ifdef CONFIG_RT_GROUP_SCHED
1577 	/*
1578 	 * Because -- for now -- we share the rt bandwidth, we need to
1579 	 * account our runtime there too, otherwise actual rt tasks
1580 	 * would be able to exceed the shared quota.
1581 	 *
1582 	 * Account to the root rt group for now.
1583 	 *
1584 	 * The solution we're working towards is having the RT groups scheduled
1585 	 * using deadline servers -- however there's a few nasties to figure
1586 	 * out before that can happen.
1587 	 */
1588 	if (rt_bandwidth_enabled()) {
1589 		struct rt_rq *rt_rq = &rq->rt;
1590 
1591 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1592 		/*
1593 		 * We'll let actual RT tasks worry about the overflow here, we
1594 		 * have our own CBS to keep us inline; only account when RT
1595 		 * bandwidth is relevant.
1596 		 */
1597 		if (sched_rt_bandwidth_account(rt_rq))
1598 			rt_rq->rt_time += delta_exec;
1599 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1600 	}
1601 #endif
1602 }
1603 
1604 /*
1605  * In the non-defer mode, the idle time is not accounted, as the
1606  * server provides a guarantee.
1607  *
1608  * If the dl_server is in defer mode, the idle time is also considered
1609  * as time available for the fair server, avoiding a penalty for the
1610  * rt scheduler that did not consumed that time.
1611  */
dl_server_update_idle_time(struct rq * rq,struct task_struct * p)1612 void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
1613 {
1614 	s64 delta_exec, scaled_delta_exec;
1615 
1616 	if (!rq->fair_server.dl_defer)
1617 		return;
1618 
1619 	/* no need to discount more */
1620 	if (rq->fair_server.runtime < 0)
1621 		return;
1622 
1623 	delta_exec = rq_clock_task(rq) - p->se.exec_start;
1624 	if (delta_exec < 0)
1625 		return;
1626 
1627 	scaled_delta_exec = dl_scaled_delta_exec(rq, &rq->fair_server, delta_exec);
1628 
1629 	rq->fair_server.runtime -= scaled_delta_exec;
1630 
1631 	if (rq->fair_server.runtime < 0) {
1632 		rq->fair_server.dl_defer_running = 0;
1633 		rq->fair_server.runtime = 0;
1634 	}
1635 
1636 	p->se.exec_start = rq_clock_task(rq);
1637 }
1638 
dl_server_update(struct sched_dl_entity * dl_se,s64 delta_exec)1639 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1640 {
1641 	/* 0 runtime = fair server disabled */
1642 	if (dl_se->dl_runtime)
1643 		update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1644 }
1645 
dl_server_start(struct sched_dl_entity * dl_se)1646 void dl_server_start(struct sched_dl_entity *dl_se)
1647 {
1648 	struct rq *rq = dl_se->rq;
1649 
1650 	/*
1651 	 * XXX: the apply do not work fine at the init phase for the
1652 	 * fair server because things are not yet set. We need to improve
1653 	 * this before getting generic.
1654 	 */
1655 	if (!dl_server(dl_se)) {
1656 		u64 runtime =  50 * NSEC_PER_MSEC;
1657 		u64 period = 1000 * NSEC_PER_MSEC;
1658 
1659 		dl_server_apply_params(dl_se, runtime, period, 1);
1660 
1661 		dl_se->dl_server = 1;
1662 		dl_se->dl_defer = 1;
1663 		setup_new_dl_entity(dl_se);
1664 	}
1665 
1666 	if (!dl_se->dl_runtime)
1667 		return;
1668 
1669 	dl_se->dl_server_active = 1;
1670 	enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1671 	if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1672 		resched_curr(dl_se->rq);
1673 }
1674 
dl_server_stop(struct sched_dl_entity * dl_se)1675 void dl_server_stop(struct sched_dl_entity *dl_se)
1676 {
1677 	if (!dl_se->dl_runtime)
1678 		return;
1679 
1680 	dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1681 	hrtimer_try_to_cancel(&dl_se->dl_timer);
1682 	dl_se->dl_defer_armed = 0;
1683 	dl_se->dl_throttled = 0;
1684 	dl_se->dl_server_active = 0;
1685 }
1686 
dl_server_init(struct sched_dl_entity * dl_se,struct rq * rq,dl_server_has_tasks_f has_tasks,dl_server_pick_f pick_task)1687 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1688 		    dl_server_has_tasks_f has_tasks,
1689 		    dl_server_pick_f pick_task)
1690 {
1691 	dl_se->rq = rq;
1692 	dl_se->server_has_tasks = has_tasks;
1693 	dl_se->server_pick_task = pick_task;
1694 }
1695 
__dl_server_attach_root(struct sched_dl_entity * dl_se,struct rq * rq)1696 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1697 {
1698 	u64 new_bw = dl_se->dl_bw;
1699 	int cpu = cpu_of(rq);
1700 	struct dl_bw *dl_b;
1701 
1702 	dl_b = dl_bw_of(cpu_of(rq));
1703 	guard(raw_spinlock)(&dl_b->lock);
1704 
1705 	if (!dl_bw_cpus(cpu))
1706 		return;
1707 
1708 	__dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1709 }
1710 
dl_server_apply_params(struct sched_dl_entity * dl_se,u64 runtime,u64 period,bool init)1711 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1712 {
1713 	u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1714 	u64 new_bw = to_ratio(period, runtime);
1715 	struct rq *rq = dl_se->rq;
1716 	int cpu = cpu_of(rq);
1717 	struct dl_bw *dl_b;
1718 	unsigned long cap;
1719 	int retval = 0;
1720 	int cpus;
1721 
1722 	dl_b = dl_bw_of(cpu);
1723 	guard(raw_spinlock)(&dl_b->lock);
1724 
1725 	cpus = dl_bw_cpus(cpu);
1726 	cap = dl_bw_capacity(cpu);
1727 
1728 	if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1729 		return -EBUSY;
1730 
1731 	if (init) {
1732 		__add_rq_bw(new_bw, &rq->dl);
1733 		__dl_add(dl_b, new_bw, cpus);
1734 	} else {
1735 		__dl_sub(dl_b, dl_se->dl_bw, cpus);
1736 		__dl_add(dl_b, new_bw, cpus);
1737 
1738 		dl_rq_change_utilization(rq, dl_se, new_bw);
1739 	}
1740 
1741 	dl_se->dl_runtime = runtime;
1742 	dl_se->dl_deadline = period;
1743 	dl_se->dl_period = period;
1744 
1745 	dl_se->runtime = 0;
1746 	dl_se->deadline = 0;
1747 
1748 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1749 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1750 
1751 	return retval;
1752 }
1753 
1754 /*
1755  * Update the current task's runtime statistics (provided it is still
1756  * a -deadline task and has not been removed from the dl_rq).
1757  */
update_curr_dl(struct rq * rq)1758 static void update_curr_dl(struct rq *rq)
1759 {
1760 	struct task_struct *donor = rq->donor;
1761 	struct sched_dl_entity *dl_se = &donor->dl;
1762 	s64 delta_exec;
1763 
1764 	if (!dl_task(donor) || !on_dl_rq(dl_se))
1765 		return;
1766 
1767 	/*
1768 	 * Consumed budget is computed considering the time as
1769 	 * observed by schedulable tasks (excluding time spent
1770 	 * in hardirq context, etc.). Deadlines are instead
1771 	 * computed using hard walltime. This seems to be the more
1772 	 * natural solution, but the full ramifications of this
1773 	 * approach need further study.
1774 	 */
1775 	delta_exec = update_curr_common(rq);
1776 	update_curr_dl_se(rq, dl_se, delta_exec);
1777 }
1778 
inactive_task_timer(struct hrtimer * timer)1779 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1780 {
1781 	struct sched_dl_entity *dl_se = container_of(timer,
1782 						     struct sched_dl_entity,
1783 						     inactive_timer);
1784 	struct task_struct *p = NULL;
1785 	struct rq_flags rf;
1786 	struct rq *rq;
1787 
1788 	if (!dl_server(dl_se)) {
1789 		p = dl_task_of(dl_se);
1790 		rq = task_rq_lock(p, &rf);
1791 	} else {
1792 		rq = dl_se->rq;
1793 		rq_lock(rq, &rf);
1794 	}
1795 
1796 	sched_clock_tick();
1797 	update_rq_clock(rq);
1798 
1799 	if (dl_server(dl_se))
1800 		goto no_task;
1801 
1802 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1803 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1804 
1805 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1806 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1807 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1808 			dl_se->dl_non_contending = 0;
1809 		}
1810 
1811 		raw_spin_lock(&dl_b->lock);
1812 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1813 		raw_spin_unlock(&dl_b->lock);
1814 		__dl_clear_params(dl_se);
1815 
1816 		goto unlock;
1817 	}
1818 
1819 no_task:
1820 	if (dl_se->dl_non_contending == 0)
1821 		goto unlock;
1822 
1823 	sub_running_bw(dl_se, &rq->dl);
1824 	dl_se->dl_non_contending = 0;
1825 unlock:
1826 
1827 	if (!dl_server(dl_se)) {
1828 		task_rq_unlock(rq, p, &rf);
1829 		put_task_struct(p);
1830 	} else {
1831 		rq_unlock(rq, &rf);
1832 	}
1833 
1834 	return HRTIMER_NORESTART;
1835 }
1836 
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1837 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1838 {
1839 	struct hrtimer *timer = &dl_se->inactive_timer;
1840 
1841 	hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1842 }
1843 
1844 #define __node_2_dle(node) \
1845 	rb_entry((node), struct sched_dl_entity, rb_node)
1846 
1847 #ifdef CONFIG_SMP
1848 
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1849 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1850 {
1851 	struct rq *rq = rq_of_dl_rq(dl_rq);
1852 
1853 	if (dl_rq->earliest_dl.curr == 0 ||
1854 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1855 		if (dl_rq->earliest_dl.curr == 0)
1856 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1857 		dl_rq->earliest_dl.curr = deadline;
1858 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1859 	}
1860 }
1861 
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1862 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1863 {
1864 	struct rq *rq = rq_of_dl_rq(dl_rq);
1865 
1866 	/*
1867 	 * Since we may have removed our earliest (and/or next earliest)
1868 	 * task we must recompute them.
1869 	 */
1870 	if (!dl_rq->dl_nr_running) {
1871 		dl_rq->earliest_dl.curr = 0;
1872 		dl_rq->earliest_dl.next = 0;
1873 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1874 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1875 	} else {
1876 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1877 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1878 
1879 		dl_rq->earliest_dl.curr = entry->deadline;
1880 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1881 	}
1882 }
1883 
1884 #else
1885 
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1886 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1887 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1888 
1889 #endif /* CONFIG_SMP */
1890 
1891 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1892 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1893 {
1894 	u64 deadline = dl_se->deadline;
1895 
1896 	dl_rq->dl_nr_running++;
1897 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1898 
1899 	inc_dl_deadline(dl_rq, deadline);
1900 }
1901 
1902 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1903 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1904 {
1905 	WARN_ON(!dl_rq->dl_nr_running);
1906 	dl_rq->dl_nr_running--;
1907 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1908 
1909 	dec_dl_deadline(dl_rq, dl_se->deadline);
1910 }
1911 
__dl_less(struct rb_node * a,const struct rb_node * b)1912 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1913 {
1914 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1915 }
1916 
1917 static __always_inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity * dl_se)1918 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1919 {
1920 	if (!schedstat_enabled())
1921 		return NULL;
1922 
1923 	if (dl_server(dl_se))
1924 		return NULL;
1925 
1926 	return &dl_task_of(dl_se)->stats;
1927 }
1928 
1929 static inline void
update_stats_wait_start_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1930 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1931 {
1932 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1933 	if (stats)
1934 		__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1935 }
1936 
1937 static inline void
update_stats_wait_end_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1938 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1939 {
1940 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1941 	if (stats)
1942 		__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1943 }
1944 
1945 static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1946 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1947 {
1948 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1949 	if (stats)
1950 		__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1951 }
1952 
1953 static inline void
update_stats_enqueue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1954 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1955 			int flags)
1956 {
1957 	if (!schedstat_enabled())
1958 		return;
1959 
1960 	if (flags & ENQUEUE_WAKEUP)
1961 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1962 }
1963 
1964 static inline void
update_stats_dequeue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1965 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1966 			int flags)
1967 {
1968 	struct task_struct *p = dl_task_of(dl_se);
1969 
1970 	if (!schedstat_enabled())
1971 		return;
1972 
1973 	if ((flags & DEQUEUE_SLEEP)) {
1974 		unsigned int state;
1975 
1976 		state = READ_ONCE(p->__state);
1977 		if (state & TASK_INTERRUPTIBLE)
1978 			__schedstat_set(p->stats.sleep_start,
1979 					rq_clock(rq_of_dl_rq(dl_rq)));
1980 
1981 		if (state & TASK_UNINTERRUPTIBLE)
1982 			__schedstat_set(p->stats.block_start,
1983 					rq_clock(rq_of_dl_rq(dl_rq)));
1984 	}
1985 }
1986 
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1987 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1988 {
1989 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1990 
1991 	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1992 
1993 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1994 
1995 	inc_dl_tasks(dl_se, dl_rq);
1996 }
1997 
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1998 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1999 {
2000 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2001 
2002 	if (RB_EMPTY_NODE(&dl_se->rb_node))
2003 		return;
2004 
2005 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
2006 
2007 	RB_CLEAR_NODE(&dl_se->rb_node);
2008 
2009 	dec_dl_tasks(dl_se, dl_rq);
2010 }
2011 
2012 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)2013 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2014 {
2015 	WARN_ON_ONCE(on_dl_rq(dl_se));
2016 
2017 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
2018 
2019 	/*
2020 	 * Check if a constrained deadline task was activated
2021 	 * after the deadline but before the next period.
2022 	 * If that is the case, the task will be throttled and
2023 	 * the replenishment timer will be set to the next period.
2024 	 */
2025 	if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
2026 		dl_check_constrained_dl(dl_se);
2027 
2028 	if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
2029 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2030 
2031 		add_rq_bw(dl_se, dl_rq);
2032 		add_running_bw(dl_se, dl_rq);
2033 	}
2034 
2035 	/*
2036 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
2037 	 * its budget it needs a replenishment and, since it now is on
2038 	 * its rq, the bandwidth timer callback (which clearly has not
2039 	 * run yet) will take care of this.
2040 	 * However, the active utilization does not depend on the fact
2041 	 * that the task is on the runqueue or not (but depends on the
2042 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
2043 	 * In other words, even if a task is throttled its utilization must
2044 	 * be counted in the active utilization; hence, we need to call
2045 	 * add_running_bw().
2046 	 */
2047 	if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
2048 		if (flags & ENQUEUE_WAKEUP)
2049 			task_contending(dl_se, flags);
2050 
2051 		return;
2052 	}
2053 
2054 	/*
2055 	 * If this is a wakeup or a new instance, the scheduling
2056 	 * parameters of the task might need updating. Otherwise,
2057 	 * we want a replenishment of its runtime.
2058 	 */
2059 	if (flags & ENQUEUE_WAKEUP) {
2060 		task_contending(dl_se, flags);
2061 		update_dl_entity(dl_se);
2062 	} else if (flags & ENQUEUE_REPLENISH) {
2063 		replenish_dl_entity(dl_se);
2064 	} else if ((flags & ENQUEUE_RESTORE) &&
2065 		   !is_dl_boosted(dl_se) &&
2066 		   dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2067 		setup_new_dl_entity(dl_se);
2068 	}
2069 
2070 	/*
2071 	 * If the reservation is still throttled, e.g., it got replenished but is a
2072 	 * deferred task and still got to wait, don't enqueue.
2073 	 */
2074 	if (dl_se->dl_throttled && start_dl_timer(dl_se))
2075 		return;
2076 
2077 	/*
2078 	 * We're about to enqueue, make sure we're not ->dl_throttled!
2079 	 * In case the timer was not started, say because the defer time
2080 	 * has passed, mark as not throttled and mark unarmed.
2081 	 * Also cancel earlier timers, since letting those run is pointless.
2082 	 */
2083 	if (dl_se->dl_throttled) {
2084 		hrtimer_try_to_cancel(&dl_se->dl_timer);
2085 		dl_se->dl_defer_armed = 0;
2086 		dl_se->dl_throttled = 0;
2087 	}
2088 
2089 	__enqueue_dl_entity(dl_se);
2090 }
2091 
dequeue_dl_entity(struct sched_dl_entity * dl_se,int flags)2092 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2093 {
2094 	__dequeue_dl_entity(dl_se);
2095 
2096 	if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2097 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2098 
2099 		sub_running_bw(dl_se, dl_rq);
2100 		sub_rq_bw(dl_se, dl_rq);
2101 	}
2102 
2103 	/*
2104 	 * This check allows to start the inactive timer (or to immediately
2105 	 * decrease the active utilization, if needed) in two cases:
2106 	 * when the task blocks and when it is terminating
2107 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
2108 	 * way, because from GRUB's point of view the same thing is happening
2109 	 * (the task moves from "active contending" to "active non contending"
2110 	 * or "inactive")
2111 	 */
2112 	if (flags & DEQUEUE_SLEEP)
2113 		task_non_contending(dl_se);
2114 }
2115 
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)2116 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2117 {
2118 	if (is_dl_boosted(&p->dl)) {
2119 		/*
2120 		 * Because of delays in the detection of the overrun of a
2121 		 * thread's runtime, it might be the case that a thread
2122 		 * goes to sleep in a rt mutex with negative runtime. As
2123 		 * a consequence, the thread will be throttled.
2124 		 *
2125 		 * While waiting for the mutex, this thread can also be
2126 		 * boosted via PI, resulting in a thread that is throttled
2127 		 * and boosted at the same time.
2128 		 *
2129 		 * In this case, the boost overrides the throttle.
2130 		 */
2131 		if (p->dl.dl_throttled) {
2132 			/*
2133 			 * The replenish timer needs to be canceled. No
2134 			 * problem if it fires concurrently: boosted threads
2135 			 * are ignored in dl_task_timer().
2136 			 */
2137 			cancel_replenish_timer(&p->dl);
2138 			p->dl.dl_throttled = 0;
2139 		}
2140 	} else if (!dl_prio(p->normal_prio)) {
2141 		/*
2142 		 * Special case in which we have a !SCHED_DEADLINE task that is going
2143 		 * to be deboosted, but exceeds its runtime while doing so. No point in
2144 		 * replenishing it, as it's going to return back to its original
2145 		 * scheduling class after this. If it has been throttled, we need to
2146 		 * clear the flag, otherwise the task may wake up as throttled after
2147 		 * being boosted again with no means to replenish the runtime and clear
2148 		 * the throttle.
2149 		 */
2150 		p->dl.dl_throttled = 0;
2151 		if (!(flags & ENQUEUE_REPLENISH))
2152 			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2153 					     task_pid_nr(p));
2154 
2155 		return;
2156 	}
2157 
2158 	check_schedstat_required();
2159 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2160 
2161 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2162 		flags |= ENQUEUE_MIGRATING;
2163 
2164 	enqueue_dl_entity(&p->dl, flags);
2165 
2166 	if (dl_server(&p->dl))
2167 		return;
2168 
2169 	if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2170 		enqueue_pushable_dl_task(rq, p);
2171 }
2172 
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)2173 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2174 {
2175 	update_curr_dl(rq);
2176 
2177 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2178 		flags |= DEQUEUE_MIGRATING;
2179 
2180 	dequeue_dl_entity(&p->dl, flags);
2181 	if (!p->dl.dl_throttled && !dl_server(&p->dl))
2182 		dequeue_pushable_dl_task(rq, p);
2183 
2184 	return true;
2185 }
2186 
2187 /*
2188  * Yield task semantic for -deadline tasks is:
2189  *
2190  *   get off from the CPU until our next instance, with
2191  *   a new runtime. This is of little use now, since we
2192  *   don't have a bandwidth reclaiming mechanism. Anyway,
2193  *   bandwidth reclaiming is planned for the future, and
2194  *   yield_task_dl will indicate that some spare budget
2195  *   is available for other task instances to use it.
2196  */
yield_task_dl(struct rq * rq)2197 static void yield_task_dl(struct rq *rq)
2198 {
2199 	/*
2200 	 * We make the task go to sleep until its current deadline by
2201 	 * forcing its runtime to zero. This way, update_curr_dl() stops
2202 	 * it and the bandwidth timer will wake it up and will give it
2203 	 * new scheduling parameters (thanks to dl_yielded=1).
2204 	 */
2205 	rq->curr->dl.dl_yielded = 1;
2206 
2207 	update_rq_clock(rq);
2208 	update_curr_dl(rq);
2209 	/*
2210 	 * Tell update_rq_clock() that we've just updated,
2211 	 * so we don't do microscopic update in schedule()
2212 	 * and double the fastpath cost.
2213 	 */
2214 	rq_clock_skip_update(rq);
2215 }
2216 
2217 #ifdef CONFIG_SMP
2218 
dl_task_is_earliest_deadline(struct task_struct * p,struct rq * rq)2219 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2220 						 struct rq *rq)
2221 {
2222 	return (!rq->dl.dl_nr_running ||
2223 		dl_time_before(p->dl.deadline,
2224 			       rq->dl.earliest_dl.curr));
2225 }
2226 
2227 static int find_later_rq(struct task_struct *task);
2228 
2229 static int
select_task_rq_dl(struct task_struct * p,int cpu,int flags)2230 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2231 {
2232 	struct task_struct *curr, *donor;
2233 	bool select_rq;
2234 	struct rq *rq;
2235 
2236 	if (!(flags & WF_TTWU))
2237 		goto out;
2238 
2239 	rq = cpu_rq(cpu);
2240 
2241 	rcu_read_lock();
2242 	curr = READ_ONCE(rq->curr); /* unlocked access */
2243 	donor = READ_ONCE(rq->donor);
2244 
2245 	/*
2246 	 * If we are dealing with a -deadline task, we must
2247 	 * decide where to wake it up.
2248 	 * If it has a later deadline and the current task
2249 	 * on this rq can't move (provided the waking task
2250 	 * can!) we prefer to send it somewhere else. On the
2251 	 * other hand, if it has a shorter deadline, we
2252 	 * try to make it stay here, it might be important.
2253 	 */
2254 	select_rq = unlikely(dl_task(donor)) &&
2255 		    (curr->nr_cpus_allowed < 2 ||
2256 		     !dl_entity_preempt(&p->dl, &donor->dl)) &&
2257 		    p->nr_cpus_allowed > 1;
2258 
2259 	/*
2260 	 * Take the capacity of the CPU into account to
2261 	 * ensure it fits the requirement of the task.
2262 	 */
2263 	if (sched_asym_cpucap_active())
2264 		select_rq |= !dl_task_fits_capacity(p, cpu);
2265 
2266 	if (select_rq) {
2267 		int target = find_later_rq(p);
2268 
2269 		if (target != -1 &&
2270 		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
2271 			cpu = target;
2272 	}
2273 	rcu_read_unlock();
2274 
2275 out:
2276 	return cpu;
2277 }
2278 
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)2279 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2280 {
2281 	struct rq_flags rf;
2282 	struct rq *rq;
2283 
2284 	if (READ_ONCE(p->__state) != TASK_WAKING)
2285 		return;
2286 
2287 	rq = task_rq(p);
2288 	/*
2289 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2290 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2291 	 * rq->lock is not... So, lock it
2292 	 */
2293 	rq_lock(rq, &rf);
2294 	if (p->dl.dl_non_contending) {
2295 		update_rq_clock(rq);
2296 		sub_running_bw(&p->dl, &rq->dl);
2297 		p->dl.dl_non_contending = 0;
2298 		/*
2299 		 * If the timer handler is currently running and the
2300 		 * timer cannot be canceled, inactive_task_timer()
2301 		 * will see that dl_not_contending is not set, and
2302 		 * will not touch the rq's active utilization,
2303 		 * so we are still safe.
2304 		 */
2305 		cancel_inactive_timer(&p->dl);
2306 	}
2307 	sub_rq_bw(&p->dl, &rq->dl);
2308 	rq_unlock(rq, &rf);
2309 }
2310 
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)2311 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2312 {
2313 	/*
2314 	 * Current can't be migrated, useless to reschedule,
2315 	 * let's hope p can move out.
2316 	 */
2317 	if (rq->curr->nr_cpus_allowed == 1 ||
2318 	    !cpudl_find(&rq->rd->cpudl, rq->donor, NULL))
2319 		return;
2320 
2321 	/*
2322 	 * p is migratable, so let's not schedule it and
2323 	 * see if it is pushed or pulled somewhere else.
2324 	 */
2325 	if (p->nr_cpus_allowed != 1 &&
2326 	    cpudl_find(&rq->rd->cpudl, p, NULL))
2327 		return;
2328 
2329 	resched_curr(rq);
2330 }
2331 
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)2332 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2333 {
2334 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2335 		/*
2336 		 * This is OK, because current is on_cpu, which avoids it being
2337 		 * picked for load-balance and preemption/IRQs are still
2338 		 * disabled avoiding further scheduler activity on it and we've
2339 		 * not yet started the picking loop.
2340 		 */
2341 		rq_unpin_lock(rq, rf);
2342 		pull_dl_task(rq);
2343 		rq_repin_lock(rq, rf);
2344 	}
2345 
2346 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2347 }
2348 #endif /* CONFIG_SMP */
2349 
2350 /*
2351  * Only called when both the current and waking task are -deadline
2352  * tasks.
2353  */
wakeup_preempt_dl(struct rq * rq,struct task_struct * p,int flags)2354 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2355 				  int flags)
2356 {
2357 	if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
2358 		resched_curr(rq);
2359 		return;
2360 	}
2361 
2362 #ifdef CONFIG_SMP
2363 	/*
2364 	 * In the unlikely case current and p have the same deadline
2365 	 * let us try to decide what's the best thing to do...
2366 	 */
2367 	if ((p->dl.deadline == rq->donor->dl.deadline) &&
2368 	    !test_tsk_need_resched(rq->curr))
2369 		check_preempt_equal_dl(rq, p);
2370 #endif /* CONFIG_SMP */
2371 }
2372 
2373 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2374 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2375 {
2376 	hrtick_start(rq, dl_se->runtime);
2377 }
2378 #else /* !CONFIG_SCHED_HRTICK */
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2379 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2380 {
2381 }
2382 #endif
2383 
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)2384 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2385 {
2386 	struct sched_dl_entity *dl_se = &p->dl;
2387 	struct dl_rq *dl_rq = &rq->dl;
2388 
2389 	p->se.exec_start = rq_clock_task(rq);
2390 	if (on_dl_rq(&p->dl))
2391 		update_stats_wait_end_dl(dl_rq, dl_se);
2392 
2393 	/* You can't push away the running task */
2394 	dequeue_pushable_dl_task(rq, p);
2395 
2396 	if (!first)
2397 		return;
2398 
2399 	if (rq->donor->sched_class != &dl_sched_class)
2400 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2401 
2402 	deadline_queue_push_tasks(rq);
2403 
2404 	if (hrtick_enabled_dl(rq))
2405 		start_hrtick_dl(rq, &p->dl);
2406 }
2407 
pick_next_dl_entity(struct dl_rq * dl_rq)2408 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2409 {
2410 	struct rb_node *left = rb_first_cached(&dl_rq->root);
2411 
2412 	if (!left)
2413 		return NULL;
2414 
2415 	return __node_2_dle(left);
2416 }
2417 
2418 /*
2419  * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2420  * @rq: The runqueue to pick the next task from.
2421  */
__pick_task_dl(struct rq * rq)2422 static struct task_struct *__pick_task_dl(struct rq *rq)
2423 {
2424 	struct sched_dl_entity *dl_se;
2425 	struct dl_rq *dl_rq = &rq->dl;
2426 	struct task_struct *p;
2427 
2428 again:
2429 	if (!sched_dl_runnable(rq))
2430 		return NULL;
2431 
2432 	dl_se = pick_next_dl_entity(dl_rq);
2433 	WARN_ON_ONCE(!dl_se);
2434 
2435 	if (dl_server(dl_se)) {
2436 		p = dl_se->server_pick_task(dl_se);
2437 		if (!p) {
2438 			if (dl_server_active(dl_se)) {
2439 				dl_se->dl_yielded = 1;
2440 				update_curr_dl_se(rq, dl_se, 0);
2441 			}
2442 			goto again;
2443 		}
2444 		rq->dl_server = dl_se;
2445 	} else {
2446 		p = dl_task_of(dl_se);
2447 	}
2448 
2449 	return p;
2450 }
2451 
pick_task_dl(struct rq * rq)2452 static struct task_struct *pick_task_dl(struct rq *rq)
2453 {
2454 	return __pick_task_dl(rq);
2455 }
2456 
put_prev_task_dl(struct rq * rq,struct task_struct * p,struct task_struct * next)2457 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2458 {
2459 	struct sched_dl_entity *dl_se = &p->dl;
2460 	struct dl_rq *dl_rq = &rq->dl;
2461 
2462 	if (on_dl_rq(&p->dl))
2463 		update_stats_wait_start_dl(dl_rq, dl_se);
2464 
2465 	update_curr_dl(rq);
2466 
2467 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2468 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2469 		enqueue_pushable_dl_task(rq, p);
2470 }
2471 
2472 /*
2473  * scheduler tick hitting a task of our scheduling class.
2474  *
2475  * NOTE: This function can be called remotely by the tick offload that
2476  * goes along full dynticks. Therefore no local assumption can be made
2477  * and everything must be accessed through the @rq and @curr passed in
2478  * parameters.
2479  */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)2480 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2481 {
2482 	update_curr_dl(rq);
2483 
2484 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2485 	/*
2486 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2487 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2488 	 * be set and schedule() will start a new hrtick for the next task.
2489 	 */
2490 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2491 	    is_leftmost(&p->dl, &rq->dl))
2492 		start_hrtick_dl(rq, &p->dl);
2493 }
2494 
task_fork_dl(struct task_struct * p)2495 static void task_fork_dl(struct task_struct *p)
2496 {
2497 	/*
2498 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2499 	 * sched_fork()
2500 	 */
2501 }
2502 
2503 #ifdef CONFIG_SMP
2504 
2505 /* Only try algorithms three times */
2506 #define DL_MAX_TRIES 3
2507 
2508 /*
2509  * Return the earliest pushable rq's task, which is suitable to be executed
2510  * on the CPU, NULL otherwise:
2511  */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)2512 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2513 {
2514 	struct task_struct *p = NULL;
2515 	struct rb_node *next_node;
2516 
2517 	if (!has_pushable_dl_tasks(rq))
2518 		return NULL;
2519 
2520 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2521 	while (next_node) {
2522 		p = __node_2_pdl(next_node);
2523 
2524 		if (task_is_pushable(rq, p, cpu))
2525 			return p;
2526 
2527 		next_node = rb_next(next_node);
2528 	}
2529 
2530 	return NULL;
2531 }
2532 
2533 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2534 
find_later_rq(struct task_struct * task)2535 static int find_later_rq(struct task_struct *task)
2536 {
2537 	struct sched_domain *sd;
2538 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2539 	int this_cpu = smp_processor_id();
2540 	int cpu = task_cpu(task);
2541 
2542 	/* Make sure the mask is initialized first */
2543 	if (unlikely(!later_mask))
2544 		return -1;
2545 
2546 	if (task->nr_cpus_allowed == 1)
2547 		return -1;
2548 
2549 	/*
2550 	 * We have to consider system topology and task affinity
2551 	 * first, then we can look for a suitable CPU.
2552 	 */
2553 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2554 		return -1;
2555 
2556 	/*
2557 	 * If we are here, some targets have been found, including
2558 	 * the most suitable which is, among the runqueues where the
2559 	 * current tasks have later deadlines than the task's one, the
2560 	 * rq with the latest possible one.
2561 	 *
2562 	 * Now we check how well this matches with task's
2563 	 * affinity and system topology.
2564 	 *
2565 	 * The last CPU where the task run is our first
2566 	 * guess, since it is most likely cache-hot there.
2567 	 */
2568 	if (cpumask_test_cpu(cpu, later_mask))
2569 		return cpu;
2570 	/*
2571 	 * Check if this_cpu is to be skipped (i.e., it is
2572 	 * not in the mask) or not.
2573 	 */
2574 	if (!cpumask_test_cpu(this_cpu, later_mask))
2575 		this_cpu = -1;
2576 
2577 	rcu_read_lock();
2578 	for_each_domain(cpu, sd) {
2579 		if (sd->flags & SD_WAKE_AFFINE) {
2580 			int best_cpu;
2581 
2582 			/*
2583 			 * If possible, preempting this_cpu is
2584 			 * cheaper than migrating.
2585 			 */
2586 			if (this_cpu != -1 &&
2587 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2588 				rcu_read_unlock();
2589 				return this_cpu;
2590 			}
2591 
2592 			best_cpu = cpumask_any_and_distribute(later_mask,
2593 							      sched_domain_span(sd));
2594 			/*
2595 			 * Last chance: if a CPU being in both later_mask
2596 			 * and current sd span is valid, that becomes our
2597 			 * choice. Of course, the latest possible CPU is
2598 			 * already under consideration through later_mask.
2599 			 */
2600 			if (best_cpu < nr_cpu_ids) {
2601 				rcu_read_unlock();
2602 				return best_cpu;
2603 			}
2604 		}
2605 	}
2606 	rcu_read_unlock();
2607 
2608 	/*
2609 	 * At this point, all our guesses failed, we just return
2610 	 * 'something', and let the caller sort the things out.
2611 	 */
2612 	if (this_cpu != -1)
2613 		return this_cpu;
2614 
2615 	cpu = cpumask_any_distribute(later_mask);
2616 	if (cpu < nr_cpu_ids)
2617 		return cpu;
2618 
2619 	return -1;
2620 }
2621 
2622 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2623 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2624 {
2625 	struct rq *later_rq = NULL;
2626 	int tries;
2627 	int cpu;
2628 
2629 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2630 		cpu = find_later_rq(task);
2631 
2632 		if ((cpu == -1) || (cpu == rq->cpu))
2633 			break;
2634 
2635 		later_rq = cpu_rq(cpu);
2636 
2637 		if (!dl_task_is_earliest_deadline(task, later_rq)) {
2638 			/*
2639 			 * Target rq has tasks of equal or earlier deadline,
2640 			 * retrying does not release any lock and is unlikely
2641 			 * to yield a different result.
2642 			 */
2643 			later_rq = NULL;
2644 			break;
2645 		}
2646 
2647 		/* Retry if something changed. */
2648 		if (double_lock_balance(rq, later_rq)) {
2649 			if (unlikely(task_rq(task) != rq ||
2650 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2651 				     task_on_cpu(rq, task) ||
2652 				     !dl_task(task) ||
2653 				     is_migration_disabled(task) ||
2654 				     !task_on_rq_queued(task))) {
2655 				double_unlock_balance(rq, later_rq);
2656 				later_rq = NULL;
2657 				break;
2658 			}
2659 		}
2660 
2661 		/*
2662 		 * If the rq we found has no -deadline task, or
2663 		 * its earliest one has a later deadline than our
2664 		 * task, the rq is a good one.
2665 		 */
2666 		if (dl_task_is_earliest_deadline(task, later_rq))
2667 			break;
2668 
2669 		/* Otherwise we try again. */
2670 		double_unlock_balance(rq, later_rq);
2671 		later_rq = NULL;
2672 	}
2673 
2674 	return later_rq;
2675 }
2676 
pick_next_pushable_dl_task(struct rq * rq)2677 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2678 {
2679 	struct task_struct *p;
2680 
2681 	if (!has_pushable_dl_tasks(rq))
2682 		return NULL;
2683 
2684 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2685 
2686 	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2687 	WARN_ON_ONCE(task_current(rq, p));
2688 	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2689 
2690 	WARN_ON_ONCE(!task_on_rq_queued(p));
2691 	WARN_ON_ONCE(!dl_task(p));
2692 
2693 	return p;
2694 }
2695 
2696 /*
2697  * See if the non running -deadline tasks on this rq
2698  * can be sent to some other CPU where they can preempt
2699  * and start executing.
2700  */
push_dl_task(struct rq * rq)2701 static int push_dl_task(struct rq *rq)
2702 {
2703 	struct task_struct *next_task;
2704 	struct rq *later_rq;
2705 	int ret = 0;
2706 
2707 	next_task = pick_next_pushable_dl_task(rq);
2708 	if (!next_task)
2709 		return 0;
2710 
2711 retry:
2712 	/*
2713 	 * If next_task preempts rq->curr, and rq->curr
2714 	 * can move away, it makes sense to just reschedule
2715 	 * without going further in pushing next_task.
2716 	 */
2717 	if (dl_task(rq->donor) &&
2718 	    dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
2719 	    rq->curr->nr_cpus_allowed > 1) {
2720 		resched_curr(rq);
2721 		return 0;
2722 	}
2723 
2724 	if (is_migration_disabled(next_task))
2725 		return 0;
2726 
2727 	if (WARN_ON(next_task == rq->curr))
2728 		return 0;
2729 
2730 	/* We might release rq lock */
2731 	get_task_struct(next_task);
2732 
2733 	/* Will lock the rq it'll find */
2734 	later_rq = find_lock_later_rq(next_task, rq);
2735 	if (!later_rq) {
2736 		struct task_struct *task;
2737 
2738 		/*
2739 		 * We must check all this again, since
2740 		 * find_lock_later_rq releases rq->lock and it is
2741 		 * then possible that next_task has migrated.
2742 		 */
2743 		task = pick_next_pushable_dl_task(rq);
2744 		if (task == next_task) {
2745 			/*
2746 			 * The task is still there. We don't try
2747 			 * again, some other CPU will pull it when ready.
2748 			 */
2749 			goto out;
2750 		}
2751 
2752 		if (!task)
2753 			/* No more tasks */
2754 			goto out;
2755 
2756 		put_task_struct(next_task);
2757 		next_task = task;
2758 		goto retry;
2759 	}
2760 
2761 	move_queued_task_locked(rq, later_rq, next_task);
2762 	ret = 1;
2763 
2764 	resched_curr(later_rq);
2765 
2766 	double_unlock_balance(rq, later_rq);
2767 
2768 out:
2769 	put_task_struct(next_task);
2770 
2771 	return ret;
2772 }
2773 
push_dl_tasks(struct rq * rq)2774 static void push_dl_tasks(struct rq *rq)
2775 {
2776 	/* push_dl_task() will return true if it moved a -deadline task */
2777 	while (push_dl_task(rq))
2778 		;
2779 }
2780 
pull_dl_task(struct rq * this_rq)2781 static void pull_dl_task(struct rq *this_rq)
2782 {
2783 	int this_cpu = this_rq->cpu, cpu;
2784 	struct task_struct *p, *push_task;
2785 	bool resched = false;
2786 	struct rq *src_rq;
2787 	u64 dmin = LONG_MAX;
2788 
2789 	if (likely(!dl_overloaded(this_rq)))
2790 		return;
2791 
2792 	/*
2793 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2794 	 * see overloaded we must also see the dlo_mask bit.
2795 	 */
2796 	smp_rmb();
2797 
2798 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2799 		if (this_cpu == cpu)
2800 			continue;
2801 
2802 		src_rq = cpu_rq(cpu);
2803 
2804 		/*
2805 		 * It looks racy, and it is! However, as in sched_rt.c,
2806 		 * we are fine with this.
2807 		 */
2808 		if (this_rq->dl.dl_nr_running &&
2809 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2810 				   src_rq->dl.earliest_dl.next))
2811 			continue;
2812 
2813 		/* Might drop this_rq->lock */
2814 		push_task = NULL;
2815 		double_lock_balance(this_rq, src_rq);
2816 
2817 		/*
2818 		 * If there are no more pullable tasks on the
2819 		 * rq, we're done with it.
2820 		 */
2821 		if (src_rq->dl.dl_nr_running <= 1)
2822 			goto skip;
2823 
2824 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2825 
2826 		/*
2827 		 * We found a task to be pulled if:
2828 		 *  - it preempts our current (if there's one),
2829 		 *  - it will preempt the last one we pulled (if any).
2830 		 */
2831 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2832 		    dl_task_is_earliest_deadline(p, this_rq)) {
2833 			WARN_ON(p == src_rq->curr);
2834 			WARN_ON(!task_on_rq_queued(p));
2835 
2836 			/*
2837 			 * Then we pull iff p has actually an earlier
2838 			 * deadline than the current task of its runqueue.
2839 			 */
2840 			if (dl_time_before(p->dl.deadline,
2841 					   src_rq->donor->dl.deadline))
2842 				goto skip;
2843 
2844 			if (is_migration_disabled(p)) {
2845 				push_task = get_push_task(src_rq);
2846 			} else {
2847 				move_queued_task_locked(src_rq, this_rq, p);
2848 				dmin = p->dl.deadline;
2849 				resched = true;
2850 			}
2851 
2852 			/* Is there any other task even earlier? */
2853 		}
2854 skip:
2855 		double_unlock_balance(this_rq, src_rq);
2856 
2857 		if (push_task) {
2858 			preempt_disable();
2859 			raw_spin_rq_unlock(this_rq);
2860 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2861 					    push_task, &src_rq->push_work);
2862 			preempt_enable();
2863 			raw_spin_rq_lock(this_rq);
2864 		}
2865 	}
2866 
2867 	if (resched)
2868 		resched_curr(this_rq);
2869 }
2870 
2871 /*
2872  * Since the task is not running and a reschedule is not going to happen
2873  * anytime soon on its runqueue, we try pushing it away now.
2874  */
task_woken_dl(struct rq * rq,struct task_struct * p)2875 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2876 {
2877 	if (!task_on_cpu(rq, p) &&
2878 	    !test_tsk_need_resched(rq->curr) &&
2879 	    p->nr_cpus_allowed > 1 &&
2880 	    dl_task(rq->donor) &&
2881 	    (rq->curr->nr_cpus_allowed < 2 ||
2882 	     !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
2883 		push_dl_tasks(rq);
2884 	}
2885 }
2886 
set_cpus_allowed_dl(struct task_struct * p,struct affinity_context * ctx)2887 static void set_cpus_allowed_dl(struct task_struct *p,
2888 				struct affinity_context *ctx)
2889 {
2890 	struct root_domain *src_rd;
2891 	struct rq *rq;
2892 
2893 	WARN_ON_ONCE(!dl_task(p));
2894 
2895 	rq = task_rq(p);
2896 	src_rd = rq->rd;
2897 	/*
2898 	 * Migrating a SCHED_DEADLINE task between exclusive
2899 	 * cpusets (different root_domains) entails a bandwidth
2900 	 * update. We already made space for us in the destination
2901 	 * domain (see cpuset_can_attach()).
2902 	 */
2903 	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2904 		struct dl_bw *src_dl_b;
2905 
2906 		src_dl_b = dl_bw_of(cpu_of(rq));
2907 		/*
2908 		 * We now free resources of the root_domain we are migrating
2909 		 * off. In the worst case, sched_setattr() may temporary fail
2910 		 * until we complete the update.
2911 		 */
2912 		raw_spin_lock(&src_dl_b->lock);
2913 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2914 		raw_spin_unlock(&src_dl_b->lock);
2915 	}
2916 
2917 	set_cpus_allowed_common(p, ctx);
2918 }
2919 
2920 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2921 static void rq_online_dl(struct rq *rq)
2922 {
2923 	if (rq->dl.overloaded)
2924 		dl_set_overload(rq);
2925 
2926 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2927 	if (rq->dl.dl_nr_running > 0)
2928 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2929 }
2930 
2931 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2932 static void rq_offline_dl(struct rq *rq)
2933 {
2934 	if (rq->dl.overloaded)
2935 		dl_clear_overload(rq);
2936 
2937 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2938 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2939 }
2940 
init_sched_dl_class(void)2941 void __init init_sched_dl_class(void)
2942 {
2943 	unsigned int i;
2944 
2945 	for_each_possible_cpu(i)
2946 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2947 					GFP_KERNEL, cpu_to_node(i));
2948 }
2949 
dl_add_task_root_domain(struct task_struct * p)2950 void dl_add_task_root_domain(struct task_struct *p)
2951 {
2952 	struct rq_flags rf;
2953 	struct rq *rq;
2954 	struct dl_bw *dl_b;
2955 
2956 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2957 	if (!dl_task(p) || dl_entity_is_special(&p->dl)) {
2958 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2959 		return;
2960 	}
2961 
2962 	rq = __task_rq_lock(p, &rf);
2963 
2964 	dl_b = &rq->rd->dl_bw;
2965 	raw_spin_lock(&dl_b->lock);
2966 
2967 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2968 
2969 	raw_spin_unlock(&dl_b->lock);
2970 
2971 	task_rq_unlock(rq, p, &rf);
2972 }
2973 
dl_clear_root_domain(struct root_domain * rd)2974 void dl_clear_root_domain(struct root_domain *rd)
2975 {
2976 	int i;
2977 
2978 	guard(raw_spinlock_irqsave)(&rd->dl_bw.lock);
2979 	rd->dl_bw.total_bw = 0;
2980 
2981 	/*
2982 	 * dl_servers are not tasks. Since dl_add_task_root_domain ignores
2983 	 * them, we need to account for them here explicitly.
2984 	 */
2985 	for_each_cpu(i, rd->span) {
2986 		struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server;
2987 
2988 		if (dl_server(dl_se) && cpu_active(i))
2989 			__dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i));
2990 	}
2991 }
2992 
dl_clear_root_domain_cpu(int cpu)2993 void dl_clear_root_domain_cpu(int cpu)
2994 {
2995 	dl_clear_root_domain(cpu_rq(cpu)->rd);
2996 }
2997 
2998 #endif /* CONFIG_SMP */
2999 
switched_from_dl(struct rq * rq,struct task_struct * p)3000 static void switched_from_dl(struct rq *rq, struct task_struct *p)
3001 {
3002 	/*
3003 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
3004 	 * time is in the future). If the task switches back to dl before
3005 	 * the "inactive timer" fires, it can continue to consume its current
3006 	 * runtime using its current deadline. If it stays outside of
3007 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
3008 	 * will reset the task parameters.
3009 	 */
3010 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
3011 		task_non_contending(&p->dl);
3012 
3013 	/*
3014 	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
3015 	 * keep track of that on its cpuset (for correct bandwidth tracking).
3016 	 */
3017 	dec_dl_tasks_cs(p);
3018 
3019 	if (!task_on_rq_queued(p)) {
3020 		/*
3021 		 * Inactive timer is armed. However, p is leaving DEADLINE and
3022 		 * might migrate away from this rq while continuing to run on
3023 		 * some other class. We need to remove its contribution from
3024 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
3025 		 */
3026 		if (p->dl.dl_non_contending)
3027 			sub_running_bw(&p->dl, &rq->dl);
3028 		sub_rq_bw(&p->dl, &rq->dl);
3029 	}
3030 
3031 	/*
3032 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
3033 	 * at the 0-lag time, because the task could have been migrated
3034 	 * while SCHED_OTHER in the meanwhile.
3035 	 */
3036 	if (p->dl.dl_non_contending)
3037 		p->dl.dl_non_contending = 0;
3038 
3039 	/*
3040 	 * Since this might be the only -deadline task on the rq,
3041 	 * this is the right place to try to pull some other one
3042 	 * from an overloaded CPU, if any.
3043 	 */
3044 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
3045 		return;
3046 
3047 	deadline_queue_pull_task(rq);
3048 }
3049 
3050 /*
3051  * When switching to -deadline, we may overload the rq, then
3052  * we try to push someone off, if possible.
3053  */
switched_to_dl(struct rq * rq,struct task_struct * p)3054 static void switched_to_dl(struct rq *rq, struct task_struct *p)
3055 {
3056 	cancel_inactive_timer(&p->dl);
3057 
3058 	/*
3059 	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3060 	 * track of that on its cpuset (for correct bandwidth tracking).
3061 	 */
3062 	inc_dl_tasks_cs(p);
3063 
3064 	/* If p is not queued we will update its parameters at next wakeup. */
3065 	if (!task_on_rq_queued(p)) {
3066 		add_rq_bw(&p->dl, &rq->dl);
3067 
3068 		return;
3069 	}
3070 
3071 	if (rq->donor != p) {
3072 #ifdef CONFIG_SMP
3073 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3074 			deadline_queue_push_tasks(rq);
3075 #endif
3076 		if (dl_task(rq->donor))
3077 			wakeup_preempt_dl(rq, p, 0);
3078 		else
3079 			resched_curr(rq);
3080 	} else {
3081 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3082 	}
3083 }
3084 
3085 /*
3086  * If the scheduling parameters of a -deadline task changed,
3087  * a push or pull operation might be needed.
3088  */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)3089 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
3090 			    int oldprio)
3091 {
3092 	if (!task_on_rq_queued(p))
3093 		return;
3094 
3095 #ifdef CONFIG_SMP
3096 	/*
3097 	 * This might be too much, but unfortunately
3098 	 * we don't have the old deadline value, and
3099 	 * we can't argue if the task is increasing
3100 	 * or lowering its prio, so...
3101 	 */
3102 	if (!rq->dl.overloaded)
3103 		deadline_queue_pull_task(rq);
3104 
3105 	if (task_current_donor(rq, p)) {
3106 		/*
3107 		 * If we now have a earlier deadline task than p,
3108 		 * then reschedule, provided p is still on this
3109 		 * runqueue.
3110 		 */
3111 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3112 			resched_curr(rq);
3113 	} else {
3114 		/*
3115 		 * Current may not be deadline in case p was throttled but we
3116 		 * have just replenished it (e.g. rt_mutex_setprio()).
3117 		 *
3118 		 * Otherwise, if p was given an earlier deadline, reschedule.
3119 		 */
3120 		if (!dl_task(rq->curr) ||
3121 		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3122 			resched_curr(rq);
3123 	}
3124 #else
3125 	/*
3126 	 * We don't know if p has a earlier or later deadline, so let's blindly
3127 	 * set a (maybe not needed) rescheduling point.
3128 	 */
3129 	resched_curr(rq);
3130 #endif
3131 }
3132 
3133 #ifdef CONFIG_SCHED_CORE
task_is_throttled_dl(struct task_struct * p,int cpu)3134 static int task_is_throttled_dl(struct task_struct *p, int cpu)
3135 {
3136 	return p->dl.dl_throttled;
3137 }
3138 #endif
3139 
3140 DEFINE_SCHED_CLASS(dl) = {
3141 
3142 	.enqueue_task		= enqueue_task_dl,
3143 	.dequeue_task		= dequeue_task_dl,
3144 	.yield_task		= yield_task_dl,
3145 
3146 	.wakeup_preempt		= wakeup_preempt_dl,
3147 
3148 	.pick_task		= pick_task_dl,
3149 	.put_prev_task		= put_prev_task_dl,
3150 	.set_next_task		= set_next_task_dl,
3151 
3152 #ifdef CONFIG_SMP
3153 	.balance		= balance_dl,
3154 	.select_task_rq		= select_task_rq_dl,
3155 	.migrate_task_rq	= migrate_task_rq_dl,
3156 	.set_cpus_allowed       = set_cpus_allowed_dl,
3157 	.rq_online              = rq_online_dl,
3158 	.rq_offline             = rq_offline_dl,
3159 	.task_woken		= task_woken_dl,
3160 	.find_lock_rq		= find_lock_later_rq,
3161 #endif
3162 
3163 	.task_tick		= task_tick_dl,
3164 	.task_fork              = task_fork_dl,
3165 
3166 	.prio_changed           = prio_changed_dl,
3167 	.switched_from		= switched_from_dl,
3168 	.switched_to		= switched_to_dl,
3169 
3170 	.update_curr		= update_curr_dl,
3171 #ifdef CONFIG_SCHED_CORE
3172 	.task_is_throttled	= task_is_throttled_dl,
3173 #endif
3174 };
3175 
3176 /*
3177  * Used for dl_bw check and update, used under sched_rt_handler()::mutex and
3178  * sched_domains_mutex.
3179  */
3180 u64 dl_cookie;
3181 
sched_dl_global_validate(void)3182 int sched_dl_global_validate(void)
3183 {
3184 	u64 runtime = global_rt_runtime();
3185 	u64 period = global_rt_period();
3186 	u64 new_bw = to_ratio(period, runtime);
3187 	u64 cookie = ++dl_cookie;
3188 	struct dl_bw *dl_b;
3189 	int cpu, cpus, ret = 0;
3190 	unsigned long flags;
3191 
3192 	/*
3193 	 * Here we want to check the bandwidth not being set to some
3194 	 * value smaller than the currently allocated bandwidth in
3195 	 * any of the root_domains.
3196 	 */
3197 	for_each_online_cpu(cpu) {
3198 		rcu_read_lock_sched();
3199 
3200 		if (dl_bw_visited(cpu, cookie))
3201 			goto next;
3202 
3203 		dl_b = dl_bw_of(cpu);
3204 		cpus = dl_bw_cpus(cpu);
3205 
3206 		raw_spin_lock_irqsave(&dl_b->lock, flags);
3207 		if (new_bw * cpus < dl_b->total_bw)
3208 			ret = -EBUSY;
3209 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3210 
3211 next:
3212 		rcu_read_unlock_sched();
3213 
3214 		if (ret)
3215 			break;
3216 	}
3217 
3218 	return ret;
3219 }
3220 
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)3221 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3222 {
3223 	if (global_rt_runtime() == RUNTIME_INF) {
3224 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3225 		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3226 	} else {
3227 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3228 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3229 		dl_rq->max_bw = dl_rq->extra_bw =
3230 			to_ratio(global_rt_period(), global_rt_runtime());
3231 	}
3232 }
3233 
sched_dl_do_global(void)3234 void sched_dl_do_global(void)
3235 {
3236 	u64 new_bw = -1;
3237 	u64 cookie = ++dl_cookie;
3238 	struct dl_bw *dl_b;
3239 	int cpu;
3240 	unsigned long flags;
3241 
3242 	if (global_rt_runtime() != RUNTIME_INF)
3243 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3244 
3245 	for_each_possible_cpu(cpu) {
3246 		rcu_read_lock_sched();
3247 
3248 		if (dl_bw_visited(cpu, cookie)) {
3249 			rcu_read_unlock_sched();
3250 			continue;
3251 		}
3252 
3253 		dl_b = dl_bw_of(cpu);
3254 
3255 		raw_spin_lock_irqsave(&dl_b->lock, flags);
3256 		dl_b->bw = new_bw;
3257 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3258 
3259 		rcu_read_unlock_sched();
3260 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3261 	}
3262 }
3263 
3264 /*
3265  * We must be sure that accepting a new task (or allowing changing the
3266  * parameters of an existing one) is consistent with the bandwidth
3267  * constraints. If yes, this function also accordingly updates the currently
3268  * allocated bandwidth to reflect the new situation.
3269  *
3270  * This function is called while holding p's rq->lock.
3271  */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)3272 int sched_dl_overflow(struct task_struct *p, int policy,
3273 		      const struct sched_attr *attr)
3274 {
3275 	u64 period = attr->sched_period ?: attr->sched_deadline;
3276 	u64 runtime = attr->sched_runtime;
3277 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3278 	int cpus, err = -1, cpu = task_cpu(p);
3279 	struct dl_bw *dl_b = dl_bw_of(cpu);
3280 	unsigned long cap;
3281 
3282 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3283 		return 0;
3284 
3285 	/* !deadline task may carry old deadline bandwidth */
3286 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3287 		return 0;
3288 
3289 	/*
3290 	 * Either if a task, enters, leave, or stays -deadline but changes
3291 	 * its parameters, we may need to update accordingly the total
3292 	 * allocated bandwidth of the container.
3293 	 */
3294 	raw_spin_lock(&dl_b->lock);
3295 	cpus = dl_bw_cpus(cpu);
3296 	cap = dl_bw_capacity(cpu);
3297 
3298 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
3299 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
3300 		if (hrtimer_active(&p->dl.inactive_timer))
3301 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
3302 		__dl_add(dl_b, new_bw, cpus);
3303 		err = 0;
3304 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
3305 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3306 		/*
3307 		 * XXX this is slightly incorrect: when the task
3308 		 * utilization decreases, we should delay the total
3309 		 * utilization change until the task's 0-lag point.
3310 		 * But this would require to set the task's "inactive
3311 		 * timer" when the task is not inactive.
3312 		 */
3313 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
3314 		__dl_add(dl_b, new_bw, cpus);
3315 		dl_change_utilization(p, new_bw);
3316 		err = 0;
3317 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3318 		/*
3319 		 * Do not decrease the total deadline utilization here,
3320 		 * switched_from_dl() will take care to do it at the correct
3321 		 * (0-lag) time.
3322 		 */
3323 		err = 0;
3324 	}
3325 	raw_spin_unlock(&dl_b->lock);
3326 
3327 	return err;
3328 }
3329 
3330 /*
3331  * This function initializes the sched_dl_entity of a newly becoming
3332  * SCHED_DEADLINE task.
3333  *
3334  * Only the static values are considered here, the actual runtime and the
3335  * absolute deadline will be properly calculated when the task is enqueued
3336  * for the first time with its new policy.
3337  */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)3338 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3339 {
3340 	struct sched_dl_entity *dl_se = &p->dl;
3341 
3342 	dl_se->dl_runtime = attr->sched_runtime;
3343 	dl_se->dl_deadline = attr->sched_deadline;
3344 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3345 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3346 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3347 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3348 }
3349 
__getparam_dl(struct task_struct * p,struct sched_attr * attr)3350 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3351 {
3352 	struct sched_dl_entity *dl_se = &p->dl;
3353 
3354 	attr->sched_priority = p->rt_priority;
3355 	attr->sched_runtime = dl_se->dl_runtime;
3356 	attr->sched_deadline = dl_se->dl_deadline;
3357 	attr->sched_period = dl_se->dl_period;
3358 	attr->sched_flags &= ~SCHED_DL_FLAGS;
3359 	attr->sched_flags |= dl_se->flags;
3360 }
3361 
3362 /*
3363  * This function validates the new parameters of a -deadline task.
3364  * We ask for the deadline not being zero, and greater or equal
3365  * than the runtime, as well as the period of being zero or
3366  * greater than deadline. Furthermore, we have to be sure that
3367  * user parameters are above the internal resolution of 1us (we
3368  * check sched_runtime only since it is always the smaller one) and
3369  * below 2^63 ns (we have to check both sched_deadline and
3370  * sched_period, as the latter can be zero).
3371  */
__checkparam_dl(const struct sched_attr * attr)3372 bool __checkparam_dl(const struct sched_attr *attr)
3373 {
3374 	u64 period, max, min;
3375 
3376 	/* special dl tasks don't actually use any parameter */
3377 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3378 		return true;
3379 
3380 	/* deadline != 0 */
3381 	if (attr->sched_deadline == 0)
3382 		return false;
3383 
3384 	/*
3385 	 * Since we truncate DL_SCALE bits, make sure we're at least
3386 	 * that big.
3387 	 */
3388 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3389 		return false;
3390 
3391 	/*
3392 	 * Since we use the MSB for wrap-around and sign issues, make
3393 	 * sure it's not set (mind that period can be equal to zero).
3394 	 */
3395 	if (attr->sched_deadline & (1ULL << 63) ||
3396 	    attr->sched_period & (1ULL << 63))
3397 		return false;
3398 
3399 	period = attr->sched_period;
3400 	if (!period)
3401 		period = attr->sched_deadline;
3402 
3403 	/* runtime <= deadline <= period (if period != 0) */
3404 	if (period < attr->sched_deadline ||
3405 	    attr->sched_deadline < attr->sched_runtime)
3406 		return false;
3407 
3408 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3409 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3410 
3411 	if (period < min || period > max)
3412 		return false;
3413 
3414 	return true;
3415 }
3416 
3417 /*
3418  * This function clears the sched_dl_entity static params.
3419  */
__dl_clear_params(struct sched_dl_entity * dl_se)3420 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3421 {
3422 	dl_se->dl_runtime		= 0;
3423 	dl_se->dl_deadline		= 0;
3424 	dl_se->dl_period		= 0;
3425 	dl_se->flags			= 0;
3426 	dl_se->dl_bw			= 0;
3427 	dl_se->dl_density		= 0;
3428 
3429 	dl_se->dl_throttled		= 0;
3430 	dl_se->dl_yielded		= 0;
3431 	dl_se->dl_non_contending	= 0;
3432 	dl_se->dl_overrun		= 0;
3433 	dl_se->dl_server		= 0;
3434 
3435 #ifdef CONFIG_RT_MUTEXES
3436 	dl_se->pi_se			= dl_se;
3437 #endif
3438 }
3439 
init_dl_entity(struct sched_dl_entity * dl_se)3440 void init_dl_entity(struct sched_dl_entity *dl_se)
3441 {
3442 	RB_CLEAR_NODE(&dl_se->rb_node);
3443 	init_dl_task_timer(dl_se);
3444 	init_dl_inactive_task_timer(dl_se);
3445 	__dl_clear_params(dl_se);
3446 }
3447 
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3448 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3449 {
3450 	struct sched_dl_entity *dl_se = &p->dl;
3451 
3452 	if (dl_se->dl_runtime != attr->sched_runtime ||
3453 	    dl_se->dl_deadline != attr->sched_deadline ||
3454 	    dl_se->dl_period != attr->sched_period ||
3455 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3456 		return true;
3457 
3458 	return false;
3459 }
3460 
3461 #ifdef CONFIG_SMP
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)3462 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3463 				 const struct cpumask *trial)
3464 {
3465 	unsigned long flags, cap;
3466 	struct dl_bw *cur_dl_b;
3467 	int ret = 1;
3468 
3469 	rcu_read_lock_sched();
3470 	cur_dl_b = dl_bw_of(cpumask_any(cur));
3471 	cap = __dl_bw_capacity(trial);
3472 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3473 	if (__dl_overflow(cur_dl_b, cap, 0, 0))
3474 		ret = 0;
3475 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3476 	rcu_read_unlock_sched();
3477 
3478 	return ret;
3479 }
3480 
3481 enum dl_bw_request {
3482 	dl_bw_req_deactivate = 0,
3483 	dl_bw_req_alloc,
3484 	dl_bw_req_free
3485 };
3486 
dl_bw_manage(enum dl_bw_request req,int cpu,u64 dl_bw)3487 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3488 {
3489 	unsigned long flags, cap;
3490 	struct dl_bw *dl_b;
3491 	bool overflow = 0;
3492 	u64 fair_server_bw = 0;
3493 
3494 	rcu_read_lock_sched();
3495 	dl_b = dl_bw_of(cpu);
3496 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3497 
3498 	cap = dl_bw_capacity(cpu);
3499 	switch (req) {
3500 	case dl_bw_req_free:
3501 		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3502 		break;
3503 	case dl_bw_req_alloc:
3504 		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3505 
3506 		if (!overflow) {
3507 			/*
3508 			 * We reserve space in the destination
3509 			 * root_domain, as we can't fail after this point.
3510 			 * We will free resources in the source root_domain
3511 			 * later on (see set_cpus_allowed_dl()).
3512 			 */
3513 			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3514 		}
3515 		break;
3516 	case dl_bw_req_deactivate:
3517 		/*
3518 		 * cpu is not off yet, but we need to do the math by
3519 		 * considering it off already (i.e., what would happen if we
3520 		 * turn cpu off?).
3521 		 */
3522 		cap -= arch_scale_cpu_capacity(cpu);
3523 
3524 		/*
3525 		 * cpu is going offline and NORMAL tasks will be moved away
3526 		 * from it. We can thus discount dl_server bandwidth
3527 		 * contribution as it won't need to be servicing tasks after
3528 		 * the cpu is off.
3529 		 */
3530 		if (cpu_rq(cpu)->fair_server.dl_server)
3531 			fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw;
3532 
3533 		/*
3534 		 * Not much to check if no DEADLINE bandwidth is present.
3535 		 * dl_servers we can discount, as tasks will be moved out the
3536 		 * offlined CPUs anyway.
3537 		 */
3538 		if (dl_b->total_bw - fair_server_bw > 0) {
3539 			/*
3540 			 * Leaving at least one CPU for DEADLINE tasks seems a
3541 			 * wise thing to do. As said above, cpu is not offline
3542 			 * yet, so account for that.
3543 			 */
3544 			if (dl_bw_cpus(cpu) - 1)
3545 				overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0);
3546 			else
3547 				overflow = 1;
3548 		}
3549 
3550 		break;
3551 	}
3552 
3553 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3554 	rcu_read_unlock_sched();
3555 
3556 	return overflow ? -EBUSY : 0;
3557 }
3558 
dl_bw_deactivate(int cpu)3559 int dl_bw_deactivate(int cpu)
3560 {
3561 	return dl_bw_manage(dl_bw_req_deactivate, cpu, 0);
3562 }
3563 
dl_bw_alloc(int cpu,u64 dl_bw)3564 int dl_bw_alloc(int cpu, u64 dl_bw)
3565 {
3566 	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3567 }
3568 
dl_bw_free(int cpu,u64 dl_bw)3569 void dl_bw_free(int cpu, u64 dl_bw)
3570 {
3571 	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3572 }
3573 #endif
3574 
print_dl_stats(struct seq_file * m,int cpu)3575 void print_dl_stats(struct seq_file *m, int cpu)
3576 {
3577 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3578 }
3579