1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 19 #include <linux/cpuset.h> 20 #include <linux/sched/clock.h> 21 #include <uapi/linux/sched/types.h> 22 #include "sched.h" 23 #include "pelt.h" 24 25 /* 26 * Default limits for DL period; on the top end we guard against small util 27 * tasks still getting ridiculously long effective runtimes, on the bottom end we 28 * guard against timer DoS. 29 */ 30 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ 31 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */ 32 #ifdef CONFIG_SYSCTL 33 static const struct ctl_table sched_dl_sysctls[] = { 34 { 35 .procname = "sched_deadline_period_max_us", 36 .data = &sysctl_sched_dl_period_max, 37 .maxlen = sizeof(unsigned int), 38 .mode = 0644, 39 .proc_handler = proc_douintvec_minmax, 40 .extra1 = (void *)&sysctl_sched_dl_period_min, 41 }, 42 { 43 .procname = "sched_deadline_period_min_us", 44 .data = &sysctl_sched_dl_period_min, 45 .maxlen = sizeof(unsigned int), 46 .mode = 0644, 47 .proc_handler = proc_douintvec_minmax, 48 .extra2 = (void *)&sysctl_sched_dl_period_max, 49 }, 50 }; 51 52 static int __init sched_dl_sysctl_init(void) 53 { 54 register_sysctl_init("kernel", sched_dl_sysctls); 55 return 0; 56 } 57 late_initcall(sched_dl_sysctl_init); 58 #endif /* CONFIG_SYSCTL */ 59 60 static bool dl_server(struct sched_dl_entity *dl_se) 61 { 62 return dl_se->dl_server; 63 } 64 65 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 66 { 67 BUG_ON(dl_server(dl_se)); 68 return container_of(dl_se, struct task_struct, dl); 69 } 70 71 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 72 { 73 return container_of(dl_rq, struct rq, dl); 74 } 75 76 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se) 77 { 78 struct rq *rq = dl_se->rq; 79 80 if (!dl_server(dl_se)) 81 rq = task_rq(dl_task_of(dl_se)); 82 83 return rq; 84 } 85 86 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 87 { 88 return &rq_of_dl_se(dl_se)->dl; 89 } 90 91 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 92 { 93 return !RB_EMPTY_NODE(&dl_se->rb_node); 94 } 95 96 #ifdef CONFIG_RT_MUTEXES 97 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 98 { 99 return dl_se->pi_se; 100 } 101 102 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 103 { 104 return pi_of(dl_se) != dl_se; 105 } 106 #else /* !CONFIG_RT_MUTEXES: */ 107 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 108 { 109 return dl_se; 110 } 111 112 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 113 { 114 return false; 115 } 116 #endif /* !CONFIG_RT_MUTEXES */ 117 118 static inline struct dl_bw *dl_bw_of(int i) 119 { 120 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 121 "sched RCU must be held"); 122 return &cpu_rq(i)->rd->dl_bw; 123 } 124 125 static inline int dl_bw_cpus(int i) 126 { 127 struct root_domain *rd = cpu_rq(i)->rd; 128 129 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 130 "sched RCU must be held"); 131 132 return cpumask_weight_and(rd->span, cpu_active_mask); 133 } 134 135 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask) 136 { 137 unsigned long cap = 0; 138 int i; 139 140 for_each_cpu_and(i, mask, cpu_active_mask) 141 cap += arch_scale_cpu_capacity(i); 142 143 return cap; 144 } 145 146 /* 147 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity 148 * of the CPU the task is running on rather rd's \Sum CPU capacity. 149 */ 150 static inline unsigned long dl_bw_capacity(int i) 151 { 152 if (!sched_asym_cpucap_active() && 153 arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) { 154 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; 155 } else { 156 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 157 "sched RCU must be held"); 158 159 return __dl_bw_capacity(cpu_rq(i)->rd->span); 160 } 161 } 162 163 bool dl_bw_visited(int cpu, u64 cookie) 164 { 165 struct root_domain *rd = cpu_rq(cpu)->rd; 166 167 if (rd->visit_cookie == cookie) 168 return true; 169 170 rd->visit_cookie = cookie; 171 return false; 172 } 173 174 static inline 175 void __dl_update(struct dl_bw *dl_b, s64 bw) 176 { 177 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 178 int i; 179 180 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 181 "sched RCU must be held"); 182 for_each_cpu_and(i, rd->span, cpu_active_mask) { 183 struct rq *rq = cpu_rq(i); 184 185 rq->dl.extra_bw += bw; 186 } 187 } 188 189 static inline 190 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 191 { 192 dl_b->total_bw -= tsk_bw; 193 __dl_update(dl_b, (s32)tsk_bw / cpus); 194 } 195 196 static inline 197 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 198 { 199 dl_b->total_bw += tsk_bw; 200 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 201 } 202 203 static inline bool 204 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw) 205 { 206 return dl_b->bw != -1 && 207 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 208 } 209 210 static inline 211 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 212 { 213 u64 old = dl_rq->running_bw; 214 215 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 216 dl_rq->running_bw += dl_bw; 217 WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */ 218 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw); 219 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 220 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 221 } 222 223 static inline 224 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 225 { 226 u64 old = dl_rq->running_bw; 227 228 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 229 dl_rq->running_bw -= dl_bw; 230 WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */ 231 if (dl_rq->running_bw > old) 232 dl_rq->running_bw = 0; 233 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 234 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 235 } 236 237 static inline 238 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 239 { 240 u64 old = dl_rq->this_bw; 241 242 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 243 dl_rq->this_bw += dl_bw; 244 WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */ 245 } 246 247 static inline 248 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 249 { 250 u64 old = dl_rq->this_bw; 251 252 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 253 dl_rq->this_bw -= dl_bw; 254 WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */ 255 if (dl_rq->this_bw > old) 256 dl_rq->this_bw = 0; 257 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw); 258 } 259 260 static inline 261 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 262 { 263 if (!dl_entity_is_special(dl_se)) 264 __add_rq_bw(dl_se->dl_bw, dl_rq); 265 } 266 267 static inline 268 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 269 { 270 if (!dl_entity_is_special(dl_se)) 271 __sub_rq_bw(dl_se->dl_bw, dl_rq); 272 } 273 274 static inline 275 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 276 { 277 if (!dl_entity_is_special(dl_se)) 278 __add_running_bw(dl_se->dl_bw, dl_rq); 279 } 280 281 static inline 282 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 283 { 284 if (!dl_entity_is_special(dl_se)) 285 __sub_running_bw(dl_se->dl_bw, dl_rq); 286 } 287 288 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw) 289 { 290 if (dl_se->dl_non_contending) { 291 sub_running_bw(dl_se, &rq->dl); 292 dl_se->dl_non_contending = 0; 293 294 /* 295 * If the timer handler is currently running and the 296 * timer cannot be canceled, inactive_task_timer() 297 * will see that dl_not_contending is not set, and 298 * will not touch the rq's active utilization, 299 * so we are still safe. 300 */ 301 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) { 302 if (!dl_server(dl_se)) 303 put_task_struct(dl_task_of(dl_se)); 304 } 305 } 306 __sub_rq_bw(dl_se->dl_bw, &rq->dl); 307 __add_rq_bw(new_bw, &rq->dl); 308 } 309 310 static __always_inline 311 void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer) 312 { 313 /* 314 * If the timer callback was running (hrtimer_try_to_cancel == -1), 315 * it will eventually call put_task_struct(). 316 */ 317 if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se)) 318 put_task_struct(dl_task_of(dl_se)); 319 } 320 321 static __always_inline 322 void cancel_replenish_timer(struct sched_dl_entity *dl_se) 323 { 324 cancel_dl_timer(dl_se, &dl_se->dl_timer); 325 } 326 327 static __always_inline 328 void cancel_inactive_timer(struct sched_dl_entity *dl_se) 329 { 330 cancel_dl_timer(dl_se, &dl_se->inactive_timer); 331 } 332 333 static void dl_change_utilization(struct task_struct *p, u64 new_bw) 334 { 335 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV); 336 337 if (task_on_rq_queued(p)) 338 return; 339 340 dl_rq_change_utilization(task_rq(p), &p->dl, new_bw); 341 } 342 343 static void __dl_clear_params(struct sched_dl_entity *dl_se); 344 345 /* 346 * The utilization of a task cannot be immediately removed from 347 * the rq active utilization (running_bw) when the task blocks. 348 * Instead, we have to wait for the so called "0-lag time". 349 * 350 * If a task blocks before the "0-lag time", a timer (the inactive 351 * timer) is armed, and running_bw is decreased when the timer 352 * fires. 353 * 354 * If the task wakes up again before the inactive timer fires, 355 * the timer is canceled, whereas if the task wakes up after the 356 * inactive timer fired (and running_bw has been decreased) the 357 * task's utilization has to be added to running_bw again. 358 * A flag in the deadline scheduling entity (dl_non_contending) 359 * is used to avoid race conditions between the inactive timer handler 360 * and task wakeups. 361 * 362 * The following diagram shows how running_bw is updated. A task is 363 * "ACTIVE" when its utilization contributes to running_bw; an 364 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 365 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 366 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 367 * time already passed, which does not contribute to running_bw anymore. 368 * +------------------+ 369 * wakeup | ACTIVE | 370 * +------------------>+ contending | 371 * | add_running_bw | | 372 * | +----+------+------+ 373 * | | ^ 374 * | dequeue | | 375 * +--------+-------+ | | 376 * | | t >= 0-lag | | wakeup 377 * | INACTIVE |<---------------+ | 378 * | | sub_running_bw | | 379 * +--------+-------+ | | 380 * ^ | | 381 * | t < 0-lag | | 382 * | | | 383 * | V | 384 * | +----+------+------+ 385 * | sub_running_bw | ACTIVE | 386 * +-------------------+ | 387 * inactive timer | non contending | 388 * fired +------------------+ 389 * 390 * The task_non_contending() function is invoked when a task 391 * blocks, and checks if the 0-lag time already passed or 392 * not (in the first case, it directly updates running_bw; 393 * in the second case, it arms the inactive timer). 394 * 395 * The task_contending() function is invoked when a task wakes 396 * up, and checks if the task is still in the "ACTIVE non contending" 397 * state or not (in the second case, it updates running_bw). 398 */ 399 static void task_non_contending(struct sched_dl_entity *dl_se, bool dl_task) 400 { 401 struct hrtimer *timer = &dl_se->inactive_timer; 402 struct rq *rq = rq_of_dl_se(dl_se); 403 struct dl_rq *dl_rq = &rq->dl; 404 s64 zerolag_time; 405 406 /* 407 * If this is a non-deadline task that has been boosted, 408 * do nothing 409 */ 410 if (dl_se->dl_runtime == 0) 411 return; 412 413 if (dl_entity_is_special(dl_se)) 414 return; 415 416 WARN_ON(dl_se->dl_non_contending); 417 418 zerolag_time = dl_se->deadline - 419 div64_long((dl_se->runtime * dl_se->dl_period), 420 dl_se->dl_runtime); 421 422 /* 423 * Using relative times instead of the absolute "0-lag time" 424 * allows to simplify the code 425 */ 426 zerolag_time -= rq_clock(rq); 427 428 /* 429 * If the "0-lag time" already passed, decrease the active 430 * utilization now, instead of starting a timer 431 */ 432 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 433 if (dl_server(dl_se)) { 434 sub_running_bw(dl_se, dl_rq); 435 } else { 436 struct task_struct *p = dl_task_of(dl_se); 437 438 if (dl_task) 439 sub_running_bw(dl_se, dl_rq); 440 441 if (!dl_task || READ_ONCE(p->__state) == TASK_DEAD) { 442 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 443 444 if (READ_ONCE(p->__state) == TASK_DEAD) 445 sub_rq_bw(dl_se, &rq->dl); 446 raw_spin_lock(&dl_b->lock); 447 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p))); 448 raw_spin_unlock(&dl_b->lock); 449 __dl_clear_params(dl_se); 450 } 451 } 452 453 return; 454 } 455 456 dl_se->dl_non_contending = 1; 457 if (!dl_server(dl_se)) 458 get_task_struct(dl_task_of(dl_se)); 459 460 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); 461 } 462 463 static void task_contending(struct sched_dl_entity *dl_se, int flags) 464 { 465 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 466 467 /* 468 * If this is a non-deadline task that has been boosted, 469 * do nothing 470 */ 471 if (dl_se->dl_runtime == 0) 472 return; 473 474 if (flags & ENQUEUE_MIGRATED) 475 add_rq_bw(dl_se, dl_rq); 476 477 if (dl_se->dl_non_contending) { 478 dl_se->dl_non_contending = 0; 479 /* 480 * If the timer handler is currently running and the 481 * timer cannot be canceled, inactive_task_timer() 482 * will see that dl_not_contending is not set, and 483 * will not touch the rq's active utilization, 484 * so we are still safe. 485 */ 486 cancel_inactive_timer(dl_se); 487 } else { 488 /* 489 * Since "dl_non_contending" is not set, the 490 * task's utilization has already been removed from 491 * active utilization (either when the task blocked, 492 * when the "inactive timer" fired). 493 * So, add it back. 494 */ 495 add_running_bw(dl_se, dl_rq); 496 } 497 } 498 499 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 500 { 501 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node; 502 } 503 504 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 505 506 void init_dl_bw(struct dl_bw *dl_b) 507 { 508 raw_spin_lock_init(&dl_b->lock); 509 if (global_rt_runtime() == RUNTIME_INF) 510 dl_b->bw = -1; 511 else 512 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 513 dl_b->total_bw = 0; 514 } 515 516 void init_dl_rq(struct dl_rq *dl_rq) 517 { 518 dl_rq->root = RB_ROOT_CACHED; 519 520 /* zero means no -deadline tasks */ 521 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 522 523 dl_rq->overloaded = 0; 524 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 525 526 dl_rq->running_bw = 0; 527 dl_rq->this_bw = 0; 528 init_dl_rq_bw_ratio(dl_rq); 529 } 530 531 static inline int dl_overloaded(struct rq *rq) 532 { 533 return atomic_read(&rq->rd->dlo_count); 534 } 535 536 static inline void dl_set_overload(struct rq *rq) 537 { 538 if (!rq->online) 539 return; 540 541 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 542 /* 543 * Must be visible before the overload count is 544 * set (as in sched_rt.c). 545 * 546 * Matched by the barrier in pull_dl_task(). 547 */ 548 smp_wmb(); 549 atomic_inc(&rq->rd->dlo_count); 550 } 551 552 static inline void dl_clear_overload(struct rq *rq) 553 { 554 if (!rq->online) 555 return; 556 557 atomic_dec(&rq->rd->dlo_count); 558 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 559 } 560 561 #define __node_2_pdl(node) \ 562 rb_entry((node), struct task_struct, pushable_dl_tasks) 563 564 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b) 565 { 566 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl); 567 } 568 569 static inline int has_pushable_dl_tasks(struct rq *rq) 570 { 571 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 572 } 573 574 /* 575 * The list of pushable -deadline task is not a plist, like in 576 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 577 */ 578 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 579 { 580 struct rb_node *leftmost; 581 582 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 583 584 leftmost = rb_add_cached(&p->pushable_dl_tasks, 585 &rq->dl.pushable_dl_tasks_root, 586 __pushable_less); 587 if (leftmost) 588 rq->dl.earliest_dl.next = p->dl.deadline; 589 590 if (!rq->dl.overloaded) { 591 dl_set_overload(rq); 592 rq->dl.overloaded = 1; 593 } 594 } 595 596 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 597 { 598 struct dl_rq *dl_rq = &rq->dl; 599 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root; 600 struct rb_node *leftmost; 601 602 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 603 return; 604 605 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root); 606 if (leftmost) 607 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline; 608 609 RB_CLEAR_NODE(&p->pushable_dl_tasks); 610 611 if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) { 612 dl_clear_overload(rq); 613 rq->dl.overloaded = 0; 614 } 615 } 616 617 static int push_dl_task(struct rq *rq); 618 619 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 620 { 621 return rq->online && dl_task(prev); 622 } 623 624 static DEFINE_PER_CPU(struct balance_callback, dl_push_head); 625 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head); 626 627 static void push_dl_tasks(struct rq *); 628 static void pull_dl_task(struct rq *); 629 630 static inline void deadline_queue_push_tasks(struct rq *rq) 631 { 632 if (!has_pushable_dl_tasks(rq)) 633 return; 634 635 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 636 } 637 638 static inline void deadline_queue_pull_task(struct rq *rq) 639 { 640 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 641 } 642 643 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 644 645 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 646 { 647 struct rq *later_rq = NULL; 648 struct dl_bw *dl_b; 649 650 later_rq = find_lock_later_rq(p, rq); 651 if (!later_rq) { 652 int cpu; 653 654 /* 655 * If we cannot preempt any rq, fall back to pick any 656 * online CPU: 657 */ 658 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); 659 if (cpu >= nr_cpu_ids) { 660 /* 661 * Failed to find any suitable CPU. 662 * The task will never come back! 663 */ 664 WARN_ON_ONCE(dl_bandwidth_enabled()); 665 666 /* 667 * If admission control is disabled we 668 * try a little harder to let the task 669 * run. 670 */ 671 cpu = cpumask_any(cpu_active_mask); 672 } 673 later_rq = cpu_rq(cpu); 674 double_lock_balance(rq, later_rq); 675 } 676 677 if (p->dl.dl_non_contending || p->dl.dl_throttled) { 678 /* 679 * Inactive timer is armed (or callback is running, but 680 * waiting for us to release rq locks). In any case, when it 681 * will fire (or continue), it will see running_bw of this 682 * task migrated to later_rq (and correctly handle it). 683 */ 684 sub_running_bw(&p->dl, &rq->dl); 685 sub_rq_bw(&p->dl, &rq->dl); 686 687 add_rq_bw(&p->dl, &later_rq->dl); 688 add_running_bw(&p->dl, &later_rq->dl); 689 } else { 690 sub_rq_bw(&p->dl, &rq->dl); 691 add_rq_bw(&p->dl, &later_rq->dl); 692 } 693 694 /* 695 * And we finally need to fix up root_domain(s) bandwidth accounting, 696 * since p is still hanging out in the old (now moved to default) root 697 * domain. 698 */ 699 dl_b = &rq->rd->dl_bw; 700 raw_spin_lock(&dl_b->lock); 701 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 702 raw_spin_unlock(&dl_b->lock); 703 704 dl_b = &later_rq->rd->dl_bw; 705 raw_spin_lock(&dl_b->lock); 706 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); 707 raw_spin_unlock(&dl_b->lock); 708 709 set_task_cpu(p, later_rq->cpu); 710 double_unlock_balance(later_rq, rq); 711 712 return later_rq; 713 } 714 715 static void 716 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags); 717 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 718 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags); 719 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags); 720 721 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se, 722 struct rq *rq) 723 { 724 /* for non-boosted task, pi_of(dl_se) == dl_se */ 725 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 726 dl_se->runtime = pi_of(dl_se)->dl_runtime; 727 728 /* 729 * If it is a deferred reservation, and the server 730 * is not handling an starvation case, defer it. 731 */ 732 if (dl_se->dl_defer && !dl_se->dl_defer_running) { 733 dl_se->dl_throttled = 1; 734 dl_se->dl_defer_armed = 1; 735 } 736 } 737 738 /* 739 * We are being explicitly informed that a new instance is starting, 740 * and this means that: 741 * - the absolute deadline of the entity has to be placed at 742 * current time + relative deadline; 743 * - the runtime of the entity has to be set to the maximum value. 744 * 745 * The capability of specifying such event is useful whenever a -deadline 746 * entity wants to (try to!) synchronize its behaviour with the scheduler's 747 * one, and to (try to!) reconcile itself with its own scheduling 748 * parameters. 749 */ 750 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 751 { 752 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 753 struct rq *rq = rq_of_dl_rq(dl_rq); 754 755 WARN_ON(is_dl_boosted(dl_se)); 756 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 757 758 /* 759 * We are racing with the deadline timer. So, do nothing because 760 * the deadline timer handler will take care of properly recharging 761 * the runtime and postponing the deadline 762 */ 763 if (dl_se->dl_throttled) 764 return; 765 766 /* 767 * We use the regular wall clock time to set deadlines in the 768 * future; in fact, we must consider execution overheads (time 769 * spent on hardirq context, etc.). 770 */ 771 replenish_dl_new_period(dl_se, rq); 772 } 773 774 static int start_dl_timer(struct sched_dl_entity *dl_se); 775 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t); 776 777 /* 778 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 779 * possibility of a entity lasting more than what it declared, and thus 780 * exhausting its runtime. 781 * 782 * Here we are interested in making runtime overrun possible, but we do 783 * not want a entity which is misbehaving to affect the scheduling of all 784 * other entities. 785 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 786 * is used, in order to confine each entity within its own bandwidth. 787 * 788 * This function deals exactly with that, and ensures that when the runtime 789 * of a entity is replenished, its deadline is also postponed. That ensures 790 * the overrunning entity can't interfere with other entity in the system and 791 * can't make them miss their deadlines. Reasons why this kind of overruns 792 * could happen are, typically, a entity voluntarily trying to overcome its 793 * runtime, or it just underestimated it during sched_setattr(). 794 */ 795 static void replenish_dl_entity(struct sched_dl_entity *dl_se) 796 { 797 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 798 struct rq *rq = rq_of_dl_rq(dl_rq); 799 800 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0); 801 802 /* 803 * This could be the case for a !-dl task that is boosted. 804 * Just go with full inherited parameters. 805 * 806 * Or, it could be the case of a deferred reservation that 807 * was not able to consume its runtime in background and 808 * reached this point with current u > U. 809 * 810 * In both cases, set a new period. 811 */ 812 if (dl_se->dl_deadline == 0 || 813 (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) { 814 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 815 dl_se->runtime = pi_of(dl_se)->dl_runtime; 816 } 817 818 if (dl_se->dl_yielded && dl_se->runtime > 0) 819 dl_se->runtime = 0; 820 821 /* 822 * We keep moving the deadline away until we get some 823 * available runtime for the entity. This ensures correct 824 * handling of situations where the runtime overrun is 825 * arbitrary large. 826 */ 827 while (dl_se->runtime <= 0) { 828 dl_se->deadline += pi_of(dl_se)->dl_period; 829 dl_se->runtime += pi_of(dl_se)->dl_runtime; 830 } 831 832 /* 833 * At this point, the deadline really should be "in 834 * the future" with respect to rq->clock. If it's 835 * not, we are, for some reason, lagging too much! 836 * Anyway, after having warn userspace abut that, 837 * we still try to keep the things running by 838 * resetting the deadline and the budget of the 839 * entity. 840 */ 841 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 842 printk_deferred_once("sched: DL replenish lagged too much\n"); 843 replenish_dl_new_period(dl_se, rq); 844 } 845 846 if (dl_se->dl_yielded) 847 dl_se->dl_yielded = 0; 848 if (dl_se->dl_throttled) 849 dl_se->dl_throttled = 0; 850 851 /* 852 * If this is the replenishment of a deferred reservation, 853 * clear the flag and return. 854 */ 855 if (dl_se->dl_defer_armed) { 856 dl_se->dl_defer_armed = 0; 857 return; 858 } 859 860 /* 861 * A this point, if the deferred server is not armed, and the deadline 862 * is in the future, if it is not running already, throttle the server 863 * and arm the defer timer. 864 */ 865 if (dl_se->dl_defer && !dl_se->dl_defer_running && 866 dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) { 867 if (!is_dl_boosted(dl_se)) { 868 869 /* 870 * Set dl_se->dl_defer_armed and dl_throttled variables to 871 * inform the start_dl_timer() that this is a deferred 872 * activation. 873 */ 874 dl_se->dl_defer_armed = 1; 875 dl_se->dl_throttled = 1; 876 if (!start_dl_timer(dl_se)) { 877 /* 878 * If for whatever reason (delays), a previous timer was 879 * queued but not serviced, cancel it and clean the 880 * deferrable server variables intended for start_dl_timer(). 881 */ 882 hrtimer_try_to_cancel(&dl_se->dl_timer); 883 dl_se->dl_defer_armed = 0; 884 dl_se->dl_throttled = 0; 885 } 886 } 887 } 888 } 889 890 /* 891 * Here we check if --at time t-- an entity (which is probably being 892 * [re]activated or, in general, enqueued) can use its remaining runtime 893 * and its current deadline _without_ exceeding the bandwidth it is 894 * assigned (function returns true if it can't). We are in fact applying 895 * one of the CBS rules: when a task wakes up, if the residual runtime 896 * over residual deadline fits within the allocated bandwidth, then we 897 * can keep the current (absolute) deadline and residual budget without 898 * disrupting the schedulability of the system. Otherwise, we should 899 * refill the runtime and set the deadline a period in the future, 900 * because keeping the current (absolute) deadline of the task would 901 * result in breaking guarantees promised to other tasks (refer to 902 * Documentation/scheduler/sched-deadline.rst for more information). 903 * 904 * This function returns true if: 905 * 906 * runtime / (deadline - t) > dl_runtime / dl_deadline , 907 * 908 * IOW we can't recycle current parameters. 909 * 910 * Notice that the bandwidth check is done against the deadline. For 911 * task with deadline equal to period this is the same of using 912 * dl_period instead of dl_deadline in the equation above. 913 */ 914 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) 915 { 916 u64 left, right; 917 918 /* 919 * left and right are the two sides of the equation above, 920 * after a bit of shuffling to use multiplications instead 921 * of divisions. 922 * 923 * Note that none of the time values involved in the two 924 * multiplications are absolute: dl_deadline and dl_runtime 925 * are the relative deadline and the maximum runtime of each 926 * instance, runtime is the runtime left for the last instance 927 * and (deadline - t), since t is rq->clock, is the time left 928 * to the (absolute) deadline. Even if overflowing the u64 type 929 * is very unlikely to occur in both cases, here we scale down 930 * as we want to avoid that risk at all. Scaling down by 10 931 * means that we reduce granularity to 1us. We are fine with it, 932 * since this is only a true/false check and, anyway, thinking 933 * of anything below microseconds resolution is actually fiction 934 * (but still we want to give the user that illusion >;). 935 */ 936 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 937 right = ((dl_se->deadline - t) >> DL_SCALE) * 938 (pi_of(dl_se)->dl_runtime >> DL_SCALE); 939 940 return dl_time_before(right, left); 941 } 942 943 /* 944 * Revised wakeup rule [1]: For self-suspending tasks, rather then 945 * re-initializing task's runtime and deadline, the revised wakeup 946 * rule adjusts the task's runtime to avoid the task to overrun its 947 * density. 948 * 949 * Reasoning: a task may overrun the density if: 950 * runtime / (deadline - t) > dl_runtime / dl_deadline 951 * 952 * Therefore, runtime can be adjusted to: 953 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 954 * 955 * In such way that runtime will be equal to the maximum density 956 * the task can use without breaking any rule. 957 * 958 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 959 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 960 */ 961 static void 962 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 963 { 964 u64 laxity = dl_se->deadline - rq_clock(rq); 965 966 /* 967 * If the task has deadline < period, and the deadline is in the past, 968 * it should already be throttled before this check. 969 * 970 * See update_dl_entity() comments for further details. 971 */ 972 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 973 974 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 975 } 976 977 /* 978 * Regarding the deadline, a task with implicit deadline has a relative 979 * deadline == relative period. A task with constrained deadline has a 980 * relative deadline <= relative period. 981 * 982 * We support constrained deadline tasks. However, there are some restrictions 983 * applied only for tasks which do not have an implicit deadline. See 984 * update_dl_entity() to know more about such restrictions. 985 * 986 * The dl_is_implicit() returns true if the task has an implicit deadline. 987 */ 988 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 989 { 990 return dl_se->dl_deadline == dl_se->dl_period; 991 } 992 993 /* 994 * When a deadline entity is placed in the runqueue, its runtime and deadline 995 * might need to be updated. This is done by a CBS wake up rule. There are two 996 * different rules: 1) the original CBS; and 2) the Revisited CBS. 997 * 998 * When the task is starting a new period, the Original CBS is used. In this 999 * case, the runtime is replenished and a new absolute deadline is set. 1000 * 1001 * When a task is queued before the begin of the next period, using the 1002 * remaining runtime and deadline could make the entity to overflow, see 1003 * dl_entity_overflow() to find more about runtime overflow. When such case 1004 * is detected, the runtime and deadline need to be updated. 1005 * 1006 * If the task has an implicit deadline, i.e., deadline == period, the Original 1007 * CBS is applied. The runtime is replenished and a new absolute deadline is 1008 * set, as in the previous cases. 1009 * 1010 * However, the Original CBS does not work properly for tasks with 1011 * deadline < period, which are said to have a constrained deadline. By 1012 * applying the Original CBS, a constrained deadline task would be able to run 1013 * runtime/deadline in a period. With deadline < period, the task would 1014 * overrun the runtime/period allowed bandwidth, breaking the admission test. 1015 * 1016 * In order to prevent this misbehave, the Revisited CBS is used for 1017 * constrained deadline tasks when a runtime overflow is detected. In the 1018 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 1019 * the remaining runtime of the task is reduced to avoid runtime overflow. 1020 * Please refer to the comments update_dl_revised_wakeup() function to find 1021 * more about the Revised CBS rule. 1022 */ 1023 static void update_dl_entity(struct sched_dl_entity *dl_se) 1024 { 1025 struct rq *rq = rq_of_dl_se(dl_se); 1026 1027 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 1028 dl_entity_overflow(dl_se, rq_clock(rq))) { 1029 1030 if (unlikely(!dl_is_implicit(dl_se) && 1031 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 1032 !is_dl_boosted(dl_se))) { 1033 update_dl_revised_wakeup(dl_se, rq); 1034 return; 1035 } 1036 1037 /* 1038 * When [4] D->A is followed by [1] A->B, dl_defer_running 1039 * needs to be cleared, otherwise it will fail to properly 1040 * start the zero-laxity timer. 1041 */ 1042 dl_se->dl_defer_running = 0; 1043 replenish_dl_new_period(dl_se, rq); 1044 } else if (dl_server(dl_se) && dl_se->dl_defer) { 1045 /* 1046 * The server can still use its previous deadline, so check if 1047 * it left the dl_defer_running state. 1048 */ 1049 if (!dl_se->dl_defer_running) { 1050 dl_se->dl_defer_armed = 1; 1051 dl_se->dl_throttled = 1; 1052 } 1053 } 1054 } 1055 1056 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 1057 { 1058 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 1059 } 1060 1061 /* 1062 * If the entity depleted all its runtime, and if we want it to sleep 1063 * while waiting for some new execution time to become available, we 1064 * set the bandwidth replenishment timer to the replenishment instant 1065 * and try to activate it. 1066 * 1067 * Notice that it is important for the caller to know if the timer 1068 * actually started or not (i.e., the replenishment instant is in 1069 * the future or in the past). 1070 */ 1071 static int start_dl_timer(struct sched_dl_entity *dl_se) 1072 { 1073 struct hrtimer *timer = &dl_se->dl_timer; 1074 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1075 struct rq *rq = rq_of_dl_rq(dl_rq); 1076 ktime_t now, act; 1077 s64 delta; 1078 1079 lockdep_assert_rq_held(rq); 1080 1081 /* 1082 * We want the timer to fire at the deadline, but considering 1083 * that it is actually coming from rq->clock and not from 1084 * hrtimer's time base reading. 1085 * 1086 * The deferred reservation will have its timer set to 1087 * (deadline - runtime). At that point, the CBS rule will decide 1088 * if the current deadline can be used, or if a replenishment is 1089 * required to avoid add too much pressure on the system 1090 * (current u > U). 1091 */ 1092 if (dl_se->dl_defer_armed) { 1093 WARN_ON_ONCE(!dl_se->dl_throttled); 1094 act = ns_to_ktime(dl_se->deadline - dl_se->runtime); 1095 } else { 1096 /* act = deadline - rel-deadline + period */ 1097 act = ns_to_ktime(dl_next_period(dl_se)); 1098 } 1099 1100 now = hrtimer_cb_get_time(timer); 1101 delta = ktime_to_ns(now) - rq_clock(rq); 1102 act = ktime_add_ns(act, delta); 1103 1104 /* 1105 * If the expiry time already passed, e.g., because the value 1106 * chosen as the deadline is too small, don't even try to 1107 * start the timer in the past! 1108 */ 1109 if (ktime_us_delta(act, now) < 0) 1110 return 0; 1111 1112 /* 1113 * !enqueued will guarantee another callback; even if one is already in 1114 * progress. This ensures a balanced {get,put}_task_struct(). 1115 * 1116 * The race against __run_timer() clearing the enqueued state is 1117 * harmless because we're holding task_rq()->lock, therefore the timer 1118 * expiring after we've done the check will wait on its task_rq_lock() 1119 * and observe our state. 1120 */ 1121 if (!hrtimer_is_queued(timer)) { 1122 if (!dl_server(dl_se)) 1123 get_task_struct(dl_task_of(dl_se)); 1124 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); 1125 } 1126 1127 return 1; 1128 } 1129 1130 static void __push_dl_task(struct rq *rq, struct rq_flags *rf) 1131 { 1132 /* 1133 * Queueing this task back might have overloaded rq, check if we need 1134 * to kick someone away. 1135 */ 1136 if (has_pushable_dl_tasks(rq)) { 1137 /* 1138 * Nothing relies on rq->lock after this, so its safe to drop 1139 * rq->lock. 1140 */ 1141 rq_unpin_lock(rq, rf); 1142 push_dl_task(rq); 1143 rq_repin_lock(rq, rf); 1144 } 1145 } 1146 1147 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */ 1148 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC; 1149 1150 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se) 1151 { 1152 struct rq *rq = rq_of_dl_se(dl_se); 1153 u64 fw; 1154 1155 scoped_guard (rq_lock, rq) { 1156 struct rq_flags *rf = &scope.rf; 1157 1158 if (!dl_se->dl_throttled || !dl_se->dl_runtime) 1159 return HRTIMER_NORESTART; 1160 1161 sched_clock_tick(); 1162 update_rq_clock(rq); 1163 1164 /* 1165 * Make sure current has propagated its pending runtime into 1166 * any relevant server through calling dl_server_update() and 1167 * friends. 1168 */ 1169 rq->donor->sched_class->update_curr(rq); 1170 1171 if (dl_se->dl_defer_idle) { 1172 dl_server_stop(dl_se); 1173 return HRTIMER_NORESTART; 1174 } 1175 1176 if (dl_se->dl_defer_armed) { 1177 /* 1178 * First check if the server could consume runtime in background. 1179 * If so, it is possible to push the defer timer for this amount 1180 * of time. The dl_server_min_res serves as a limit to avoid 1181 * forwarding the timer for a too small amount of time. 1182 */ 1183 if (dl_time_before(rq_clock(dl_se->rq), 1184 (dl_se->deadline - dl_se->runtime - dl_server_min_res))) { 1185 1186 /* reset the defer timer */ 1187 fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime; 1188 1189 hrtimer_forward_now(timer, ns_to_ktime(fw)); 1190 return HRTIMER_RESTART; 1191 } 1192 1193 dl_se->dl_defer_running = 1; 1194 } 1195 1196 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH); 1197 1198 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl)) 1199 resched_curr(rq); 1200 1201 __push_dl_task(rq, rf); 1202 } 1203 1204 return HRTIMER_NORESTART; 1205 } 1206 1207 /* 1208 * This is the bandwidth enforcement timer callback. If here, we know 1209 * a task is not on its dl_rq, since the fact that the timer was running 1210 * means the task is throttled and needs a runtime replenishment. 1211 * 1212 * However, what we actually do depends on the fact the task is active, 1213 * (it is on its rq) or has been removed from there by a call to 1214 * dequeue_task_dl(). In the former case we must issue the runtime 1215 * replenishment and add the task back to the dl_rq; in the latter, we just 1216 * do nothing but clearing dl_throttled, so that runtime and deadline 1217 * updating (and the queueing back to dl_rq) will be done by the 1218 * next call to enqueue_task_dl(). 1219 */ 1220 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 1221 { 1222 struct sched_dl_entity *dl_se = container_of(timer, 1223 struct sched_dl_entity, 1224 dl_timer); 1225 struct task_struct *p; 1226 struct rq_flags rf; 1227 struct rq *rq; 1228 1229 if (dl_server(dl_se)) 1230 return dl_server_timer(timer, dl_se); 1231 1232 p = dl_task_of(dl_se); 1233 rq = task_rq_lock(p, &rf); 1234 1235 /* 1236 * The task might have changed its scheduling policy to something 1237 * different than SCHED_DEADLINE (through switched_from_dl()). 1238 */ 1239 if (!dl_task(p)) 1240 goto unlock; 1241 1242 /* 1243 * The task might have been boosted by someone else and might be in the 1244 * boosting/deboosting path, its not throttled. 1245 */ 1246 if (is_dl_boosted(dl_se)) 1247 goto unlock; 1248 1249 /* 1250 * Spurious timer due to start_dl_timer() race; or we already received 1251 * a replenishment from rt_mutex_setprio(). 1252 */ 1253 if (!dl_se->dl_throttled) 1254 goto unlock; 1255 1256 sched_clock_tick(); 1257 update_rq_clock(rq); 1258 1259 /* 1260 * If the throttle happened during sched-out; like: 1261 * 1262 * schedule() 1263 * deactivate_task() 1264 * dequeue_task_dl() 1265 * update_curr_dl() 1266 * start_dl_timer() 1267 * __dequeue_task_dl() 1268 * prev->on_rq = 0; 1269 * 1270 * We can be both throttled and !queued. Replenish the counter 1271 * but do not enqueue -- wait for our wakeup to do that. 1272 */ 1273 if (!task_on_rq_queued(p)) { 1274 replenish_dl_entity(dl_se); 1275 goto unlock; 1276 } 1277 1278 if (unlikely(!rq->online)) { 1279 /* 1280 * If the runqueue is no longer available, migrate the 1281 * task elsewhere. This necessarily changes rq. 1282 */ 1283 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie); 1284 rq = dl_task_offline_migration(rq, p); 1285 rf.cookie = lockdep_pin_lock(__rq_lockp(rq)); 1286 update_rq_clock(rq); 1287 1288 /* 1289 * Now that the task has been migrated to the new RQ and we 1290 * have that locked, proceed as normal and enqueue the task 1291 * there. 1292 */ 1293 } 1294 1295 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1296 if (dl_task(rq->donor)) 1297 wakeup_preempt_dl(rq, p, 0); 1298 else 1299 resched_curr(rq); 1300 1301 __push_dl_task(rq, &rf); 1302 1303 unlock: 1304 task_rq_unlock(rq, p, &rf); 1305 1306 /* 1307 * This can free the task_struct, including this hrtimer, do not touch 1308 * anything related to that after this. 1309 */ 1310 put_task_struct(p); 1311 1312 return HRTIMER_NORESTART; 1313 } 1314 1315 static void init_dl_task_timer(struct sched_dl_entity *dl_se) 1316 { 1317 struct hrtimer *timer = &dl_se->dl_timer; 1318 1319 hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1320 } 1321 1322 /* 1323 * During the activation, CBS checks if it can reuse the current task's 1324 * runtime and period. If the deadline of the task is in the past, CBS 1325 * cannot use the runtime, and so it replenishes the task. This rule 1326 * works fine for implicit deadline tasks (deadline == period), and the 1327 * CBS was designed for implicit deadline tasks. However, a task with 1328 * constrained deadline (deadline < period) might be awakened after the 1329 * deadline, but before the next period. In this case, replenishing the 1330 * task would allow it to run for runtime / deadline. As in this case 1331 * deadline < period, CBS enables a task to run for more than the 1332 * runtime / period. In a very loaded system, this can cause a domino 1333 * effect, making other tasks miss their deadlines. 1334 * 1335 * To avoid this problem, in the activation of a constrained deadline 1336 * task after the deadline but before the next period, throttle the 1337 * task and set the replenishing timer to the begin of the next period, 1338 * unless it is boosted. 1339 */ 1340 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1341 { 1342 struct rq *rq = rq_of_dl_se(dl_se); 1343 1344 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1345 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1346 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) 1347 return; 1348 dl_se->dl_throttled = 1; 1349 if (dl_se->runtime > 0) 1350 dl_se->runtime = 0; 1351 } 1352 } 1353 1354 static 1355 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1356 { 1357 return (dl_se->runtime <= 0); 1358 } 1359 1360 /* 1361 * This function implements the GRUB accounting rule. According to the 1362 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt", 1363 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt", 1364 * where u is the utilization of the task, Umax is the maximum reclaimable 1365 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1366 * as the difference between the "total runqueue utilization" and the 1367 * "runqueue active utilization", and Uextra is the (per runqueue) extra 1368 * reclaimable utilization. 1369 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied 1370 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT. 1371 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw 1372 * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1373 * Since delta is a 64 bit variable, to have an overflow its value should be 1374 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is 1375 * not an issue here. 1376 */ 1377 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1378 { 1379 u64 u_act; 1380 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1381 1382 /* 1383 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we 1384 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra 1385 * can be larger than u_max. So, u_max - u_inact - u_extra would be 1386 * negative leading to wrong results. 1387 */ 1388 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw) 1389 u_act = dl_se->dl_bw; 1390 else 1391 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw; 1392 1393 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT; 1394 return (delta * u_act) >> BW_SHIFT; 1395 } 1396 1397 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec) 1398 { 1399 s64 scaled_delta_exec; 1400 1401 /* 1402 * For tasks that participate in GRUB, we implement GRUB-PA: the 1403 * spare reclaimed bandwidth is used to clock down frequency. 1404 * 1405 * For the others, we still need to scale reservation parameters 1406 * according to current frequency and CPU maximum capacity. 1407 */ 1408 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1409 scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se); 1410 } else { 1411 int cpu = cpu_of(rq); 1412 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1413 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); 1414 1415 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1416 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1417 } 1418 1419 return scaled_delta_exec; 1420 } 1421 1422 static inline void 1423 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, int flags); 1424 1425 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec) 1426 { 1427 bool idle = idle_rq(rq); 1428 s64 scaled_delta_exec; 1429 1430 if (unlikely(delta_exec <= 0)) { 1431 if (unlikely(dl_se->dl_yielded)) 1432 goto throttle; 1433 return; 1434 } 1435 1436 if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer) 1437 return; 1438 1439 if (dl_entity_is_special(dl_se)) 1440 return; 1441 1442 scaled_delta_exec = delta_exec; 1443 if (!dl_server(dl_se)) 1444 scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec); 1445 1446 dl_se->runtime -= scaled_delta_exec; 1447 1448 if (dl_se->dl_defer_idle && !idle) 1449 dl_se->dl_defer_idle = 0; 1450 1451 /* 1452 * The DL server can consume its runtime while throttled (not 1453 * queued / running as regular CFS). 1454 * 1455 * If the server consumes its entire runtime in this state. The server 1456 * is not required for the current period. Thus, reset the server by 1457 * starting a new period, pushing the activation. 1458 */ 1459 if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) { 1460 /* 1461 * Non-servers would never get time accounted while throttled. 1462 */ 1463 WARN_ON_ONCE(!dl_server(dl_se)); 1464 1465 /* 1466 * While the server is marked idle, do not push out the 1467 * activation further, instead wait for the period timer 1468 * to lapse and stop the server. 1469 */ 1470 if (dl_se->dl_defer_idle && idle) { 1471 /* 1472 * The timer is at the zero-laxity point, this means 1473 * dl_server_stop() / dl_server_start() can happen 1474 * while now < deadline. This means update_dl_entity() 1475 * will not replenish. Additionally start_dl_timer() 1476 * will be set for 'deadline - runtime'. Negative 1477 * runtime will not do. 1478 */ 1479 dl_se->runtime = 0; 1480 return; 1481 } 1482 1483 /* 1484 * If the server was previously activated - the starving condition 1485 * took place, it this point it went away because the fair scheduler 1486 * was able to get runtime in background. So return to the initial 1487 * state. 1488 */ 1489 dl_se->dl_defer_running = 0; 1490 1491 hrtimer_try_to_cancel(&dl_se->dl_timer); 1492 1493 replenish_dl_new_period(dl_se, dl_se->rq); 1494 1495 if (idle) 1496 dl_se->dl_defer_idle = 1; 1497 1498 /* 1499 * Not being able to start the timer seems problematic. If it could not 1500 * be started for whatever reason, we need to "unthrottle" the DL server 1501 * and queue right away. Otherwise nothing might queue it. That's similar 1502 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn. 1503 */ 1504 WARN_ON_ONCE(!start_dl_timer(dl_se)); 1505 1506 return; 1507 } 1508 1509 throttle: 1510 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1511 dl_se->dl_throttled = 1; 1512 1513 /* If requested, inform the user about runtime overruns. */ 1514 if (dl_runtime_exceeded(dl_se) && 1515 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1516 dl_se->dl_overrun = 1; 1517 1518 dequeue_dl_entity(dl_se, 0); 1519 if (!dl_server(dl_se)) { 1520 update_stats_dequeue_dl(&rq->dl, dl_se, 0); 1521 dequeue_pushable_dl_task(rq, dl_task_of(dl_se)); 1522 } 1523 1524 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) { 1525 if (dl_server(dl_se)) { 1526 replenish_dl_new_period(dl_se, rq); 1527 start_dl_timer(dl_se); 1528 } else { 1529 enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH); 1530 } 1531 } 1532 1533 if (!is_leftmost(dl_se, &rq->dl)) 1534 resched_curr(rq); 1535 } 1536 1537 /* 1538 * The dl_server does not account for real-time workload because it 1539 * is running fair work. 1540 */ 1541 if (dl_se->dl_server) 1542 return; 1543 1544 #ifdef CONFIG_RT_GROUP_SCHED 1545 /* 1546 * Because -- for now -- we share the rt bandwidth, we need to 1547 * account our runtime there too, otherwise actual rt tasks 1548 * would be able to exceed the shared quota. 1549 * 1550 * Account to the root rt group for now. 1551 * 1552 * The solution we're working towards is having the RT groups scheduled 1553 * using deadline servers -- however there's a few nasties to figure 1554 * out before that can happen. 1555 */ 1556 if (rt_bandwidth_enabled()) { 1557 struct rt_rq *rt_rq = &rq->rt; 1558 1559 raw_spin_lock(&rt_rq->rt_runtime_lock); 1560 /* 1561 * We'll let actual RT tasks worry about the overflow here, we 1562 * have our own CBS to keep us inline; only account when RT 1563 * bandwidth is relevant. 1564 */ 1565 if (sched_rt_bandwidth_account(rt_rq)) 1566 rt_rq->rt_time += delta_exec; 1567 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1568 } 1569 #endif /* CONFIG_RT_GROUP_SCHED */ 1570 } 1571 1572 /* 1573 * In the non-defer mode, the idle time is not accounted, as the 1574 * server provides a guarantee. 1575 * 1576 * If the dl_server is in defer mode, the idle time is also considered as 1577 * time available for the dl_server, avoiding a penalty for the rt 1578 * scheduler that did not consumed that time. 1579 */ 1580 void dl_server_update_idle(struct sched_dl_entity *dl_se, s64 delta_exec) 1581 { 1582 if (dl_se->dl_server_active && dl_se->dl_runtime && dl_se->dl_defer) 1583 update_curr_dl_se(dl_se->rq, dl_se, delta_exec); 1584 } 1585 1586 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec) 1587 { 1588 /* 0 runtime = fair server disabled */ 1589 if (dl_se->dl_server_active && dl_se->dl_runtime) 1590 update_curr_dl_se(dl_se->rq, dl_se, delta_exec); 1591 } 1592 1593 /* 1594 * dl_server && dl_defer: 1595 * 1596 * 6 1597 * +--------------------+ 1598 * v | 1599 * +-------------+ 4 +-----------+ 5 +------------------+ 1600 * +-> | A:init | <--- | D:running | -----> | E:replenish-wait | 1601 * | +-------------+ +-----------+ +------------------+ 1602 * | | | 1 ^ ^ | 1603 * | | 1 +----------+ | 3 | 1604 * | v | | 1605 * | +--------------------------------+ 2 | 1606 * | | | ----+ | 1607 * | 8 | B:zero_laxity-wait | | | 1608 * | | | <---+ | 1609 * | +--------------------------------+ | 1610 * | | ^ ^ 2 | 1611 * | | 7 | 2, 1 +----------------+ 1612 * | v | 1613 * | +-------------+ | 1614 * +-- | C:idle-wait | -+ 1615 * +-------------+ 1616 * ^ 7 | 1617 * +---------+ 1618 * 1619 * 1620 * [A] - init 1621 * dl_server_active = 0 1622 * dl_throttled = 0 1623 * dl_defer_armed = 0 1624 * dl_defer_running = 0/1 1625 * dl_defer_idle = 0 1626 * 1627 * [B] - zero_laxity-wait 1628 * dl_server_active = 1 1629 * dl_throttled = 1 1630 * dl_defer_armed = 1 1631 * dl_defer_running = 0 1632 * dl_defer_idle = 0 1633 * 1634 * [C] - idle-wait 1635 * dl_server_active = 1 1636 * dl_throttled = 1 1637 * dl_defer_armed = 1 1638 * dl_defer_running = 0 1639 * dl_defer_idle = 1 1640 * 1641 * [D] - running 1642 * dl_server_active = 1 1643 * dl_throttled = 0 1644 * dl_defer_armed = 0 1645 * dl_defer_running = 1 1646 * dl_defer_idle = 0 1647 * 1648 * [E] - replenish-wait 1649 * dl_server_active = 1 1650 * dl_throttled = 1 1651 * dl_defer_armed = 0 1652 * dl_defer_running = 1 1653 * dl_defer_idle = 0 1654 * 1655 * 1656 * [1] A->B, A->D, C->B 1657 * dl_server_start() 1658 * dl_defer_idle = 0; 1659 * if (dl_server_active) 1660 * return; // [B] 1661 * dl_server_active = 1; 1662 * enqueue_dl_entity() 1663 * update_dl_entity(WAKEUP) 1664 * if (dl_time_before() || dl_entity_overflow()) 1665 * dl_defer_running = 0; 1666 * replenish_dl_new_period(); 1667 * // fwd period 1668 * dl_throttled = 1; 1669 * dl_defer_armed = 1; 1670 * if (!dl_defer_running) 1671 * dl_defer_armed = 1; 1672 * dl_throttled = 1; 1673 * if (dl_throttled && start_dl_timer()) 1674 * return; // [B] 1675 * __enqueue_dl_entity(); 1676 * // [D] 1677 * 1678 * // deplete server runtime from client-class 1679 * [2] B->B, C->B, E->B 1680 * dl_server_update() 1681 * update_curr_dl_se() // idle = false 1682 * if (dl_defer_idle) 1683 * dl_defer_idle = 0; 1684 * if (dl_defer && dl_throttled && dl_runtime_exceeded()) 1685 * dl_defer_running = 0; 1686 * hrtimer_try_to_cancel(); // stop timer 1687 * replenish_dl_new_period() 1688 * // fwd period 1689 * dl_throttled = 1; 1690 * dl_defer_armed = 1; 1691 * start_dl_timer(); // restart timer 1692 * // [B] 1693 * 1694 * // timer actually fires means we have runtime 1695 * [3] B->D 1696 * dl_server_timer() 1697 * if (dl_defer_armed) 1698 * dl_defer_running = 1; 1699 * enqueue_dl_entity(REPLENISH) 1700 * replenish_dl_entity() 1701 * // fwd period 1702 * if (dl_throttled) 1703 * dl_throttled = 0; 1704 * if (dl_defer_armed) 1705 * dl_defer_armed = 0; 1706 * __enqueue_dl_entity(); 1707 * // [D] 1708 * 1709 * // schedule server 1710 * [4] D->A 1711 * pick_task_dl() 1712 * p = server_pick_task(); 1713 * if (!p) 1714 * dl_server_stop() 1715 * dequeue_dl_entity(); 1716 * hrtimer_try_to_cancel(); 1717 * dl_defer_armed = 0; 1718 * dl_throttled = 0; 1719 * dl_server_active = 0; 1720 * // [A] 1721 * return p; 1722 * 1723 * // server running 1724 * [5] D->E 1725 * update_curr_dl_se() 1726 * if (dl_runtime_exceeded()) 1727 * dl_throttled = 1; 1728 * dequeue_dl_entity(); 1729 * start_dl_timer(); 1730 * // [E] 1731 * 1732 * // server replenished 1733 * [6] E->D 1734 * dl_server_timer() 1735 * enqueue_dl_entity(REPLENISH) 1736 * replenish_dl_entity() 1737 * fwd-period 1738 * if (dl_throttled) 1739 * dl_throttled = 0; 1740 * __enqueue_dl_entity(); 1741 * // [D] 1742 * 1743 * // deplete server runtime from idle 1744 * [7] B->C, C->C 1745 * dl_server_update_idle() 1746 * update_curr_dl_se() // idle = true 1747 * if (dl_defer && dl_throttled && dl_runtime_exceeded()) 1748 * if (dl_defer_idle) 1749 * return; 1750 * dl_defer_running = 0; 1751 * hrtimer_try_to_cancel(); 1752 * replenish_dl_new_period() 1753 * // fwd period 1754 * dl_throttled = 1; 1755 * dl_defer_armed = 1; 1756 * dl_defer_idle = 1; 1757 * start_dl_timer(); // restart timer 1758 * // [C] 1759 * 1760 * // stop idle server 1761 * [8] C->A 1762 * dl_server_timer() 1763 * if (dl_defer_idle) 1764 * dl_server_stop(); 1765 * // [A] 1766 * 1767 * 1768 * digraph dl_server { 1769 * "A:init" -> "B:zero_laxity-wait" [label="1:dl_server_start"] 1770 * "A:init" -> "D:running" [label="1:dl_server_start"] 1771 * "B:zero_laxity-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"] 1772 * "B:zero_laxity-wait" -> "C:idle-wait" [label="7:dl_server_update_idle"] 1773 * "B:zero_laxity-wait" -> "D:running" [label="3:dl_server_timer"] 1774 * "C:idle-wait" -> "A:init" [label="8:dl_server_timer"] 1775 * "C:idle-wait" -> "B:zero_laxity-wait" [label="1:dl_server_start"] 1776 * "C:idle-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"] 1777 * "C:idle-wait" -> "C:idle-wait" [label="7:dl_server_update_idle"] 1778 * "D:running" -> "A:init" [label="4:pick_task_dl"] 1779 * "D:running" -> "E:replenish-wait" [label="5:update_curr_dl_se"] 1780 * "E:replenish-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"] 1781 * "E:replenish-wait" -> "D:running" [label="6:dl_server_timer"] 1782 * } 1783 * 1784 * 1785 * Notes: 1786 * 1787 * - When there are fair tasks running the most likely loop is [2]->[2]. 1788 * the dl_server never actually runs, the timer never fires. 1789 * 1790 * - When there is actual fair starvation; the timer fires and starts the 1791 * dl_server. This will then throttle and replenish like a normal DL 1792 * task. Notably it will not 'defer' again. 1793 * 1794 * - When idle it will push the actication forward once, and then wait 1795 * for the timer to hit or a non-idle update to restart things. 1796 */ 1797 void dl_server_start(struct sched_dl_entity *dl_se) 1798 { 1799 struct rq *rq = dl_se->rq; 1800 1801 dl_se->dl_defer_idle = 0; 1802 if (!dl_server(dl_se) || dl_se->dl_server_active || !dl_se->dl_runtime) 1803 return; 1804 1805 /* 1806 * Update the current task to 'now'. 1807 */ 1808 rq->donor->sched_class->update_curr(rq); 1809 1810 if (WARN_ON_ONCE(!cpu_online(cpu_of(rq)))) 1811 return; 1812 1813 dl_se->dl_server_active = 1; 1814 enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP); 1815 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl)) 1816 resched_curr(dl_se->rq); 1817 } 1818 1819 void dl_server_stop(struct sched_dl_entity *dl_se) 1820 { 1821 if (!dl_server(dl_se) || !dl_server_active(dl_se)) 1822 return; 1823 1824 dequeue_dl_entity(dl_se, DEQUEUE_SLEEP); 1825 hrtimer_try_to_cancel(&dl_se->dl_timer); 1826 dl_se->dl_defer_armed = 0; 1827 dl_se->dl_throttled = 0; 1828 dl_se->dl_defer_idle = 0; 1829 dl_se->dl_server_active = 0; 1830 } 1831 1832 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 1833 dl_server_pick_f pick_task) 1834 { 1835 dl_se->rq = rq; 1836 dl_se->server_pick_task = pick_task; 1837 } 1838 1839 void sched_init_dl_servers(void) 1840 { 1841 int cpu; 1842 struct rq *rq; 1843 struct sched_dl_entity *dl_se; 1844 1845 for_each_online_cpu(cpu) { 1846 u64 runtime = 50 * NSEC_PER_MSEC; 1847 u64 period = 1000 * NSEC_PER_MSEC; 1848 1849 rq = cpu_rq(cpu); 1850 1851 guard(rq_lock_irq)(rq); 1852 update_rq_clock(rq); 1853 1854 dl_se = &rq->fair_server; 1855 1856 WARN_ON(dl_server(dl_se)); 1857 1858 dl_server_apply_params(dl_se, runtime, period, 1); 1859 1860 dl_se->dl_server = 1; 1861 dl_se->dl_defer = 1; 1862 setup_new_dl_entity(dl_se); 1863 1864 #ifdef CONFIG_SCHED_CLASS_EXT 1865 dl_se = &rq->ext_server; 1866 1867 WARN_ON(dl_server(dl_se)); 1868 1869 dl_server_apply_params(dl_se, runtime, period, 1); 1870 1871 dl_se->dl_server = 1; 1872 dl_se->dl_defer = 1; 1873 setup_new_dl_entity(dl_se); 1874 #endif 1875 } 1876 } 1877 1878 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq) 1879 { 1880 u64 new_bw = dl_se->dl_bw; 1881 int cpu = cpu_of(rq); 1882 struct dl_bw *dl_b; 1883 1884 dl_b = dl_bw_of(cpu_of(rq)); 1885 guard(raw_spinlock)(&dl_b->lock); 1886 1887 if (!dl_bw_cpus(cpu)) 1888 return; 1889 1890 __dl_add(dl_b, new_bw, dl_bw_cpus(cpu)); 1891 } 1892 1893 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init) 1894 { 1895 u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime); 1896 u64 new_bw = to_ratio(period, runtime); 1897 struct rq *rq = dl_se->rq; 1898 int cpu = cpu_of(rq); 1899 struct dl_bw *dl_b; 1900 unsigned long cap; 1901 int cpus; 1902 1903 dl_b = dl_bw_of(cpu); 1904 guard(raw_spinlock)(&dl_b->lock); 1905 1906 cpus = dl_bw_cpus(cpu); 1907 cap = dl_bw_capacity(cpu); 1908 1909 if (__dl_overflow(dl_b, cap, old_bw, new_bw)) 1910 return -EBUSY; 1911 1912 if (init) { 1913 __add_rq_bw(new_bw, &rq->dl); 1914 __dl_add(dl_b, new_bw, cpus); 1915 } else { 1916 __dl_sub(dl_b, dl_se->dl_bw, cpus); 1917 __dl_add(dl_b, new_bw, cpus); 1918 1919 dl_rq_change_utilization(rq, dl_se, new_bw); 1920 } 1921 1922 dl_se->dl_runtime = runtime; 1923 dl_se->dl_deadline = period; 1924 dl_se->dl_period = period; 1925 1926 dl_se->runtime = 0; 1927 dl_se->deadline = 0; 1928 1929 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 1930 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 1931 1932 return 0; 1933 } 1934 1935 /* 1936 * Update the current task's runtime statistics (provided it is still 1937 * a -deadline task and has not been removed from the dl_rq). 1938 */ 1939 static void update_curr_dl(struct rq *rq) 1940 { 1941 struct task_struct *donor = rq->donor; 1942 struct sched_dl_entity *dl_se = &donor->dl; 1943 s64 delta_exec; 1944 1945 if (!dl_task(donor) || !on_dl_rq(dl_se)) 1946 return; 1947 1948 /* 1949 * Consumed budget is computed considering the time as 1950 * observed by schedulable tasks (excluding time spent 1951 * in hardirq context, etc.). Deadlines are instead 1952 * computed using hard walltime. This seems to be the more 1953 * natural solution, but the full ramifications of this 1954 * approach need further study. 1955 */ 1956 delta_exec = update_curr_common(rq); 1957 update_curr_dl_se(rq, dl_se, delta_exec); 1958 } 1959 1960 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1961 { 1962 struct sched_dl_entity *dl_se = container_of(timer, 1963 struct sched_dl_entity, 1964 inactive_timer); 1965 struct task_struct *p = NULL; 1966 struct rq_flags rf; 1967 struct rq *rq; 1968 1969 if (!dl_server(dl_se)) { 1970 p = dl_task_of(dl_se); 1971 rq = task_rq_lock(p, &rf); 1972 } else { 1973 rq = dl_se->rq; 1974 rq_lock(rq, &rf); 1975 } 1976 1977 sched_clock_tick(); 1978 update_rq_clock(rq); 1979 1980 if (dl_server(dl_se)) 1981 goto no_task; 1982 1983 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 1984 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1985 1986 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) { 1987 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1988 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1989 dl_se->dl_non_contending = 0; 1990 } 1991 1992 raw_spin_lock(&dl_b->lock); 1993 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1994 raw_spin_unlock(&dl_b->lock); 1995 __dl_clear_params(dl_se); 1996 1997 goto unlock; 1998 } 1999 2000 no_task: 2001 if (dl_se->dl_non_contending == 0) 2002 goto unlock; 2003 2004 sub_running_bw(dl_se, &rq->dl); 2005 dl_se->dl_non_contending = 0; 2006 unlock: 2007 2008 if (!dl_server(dl_se)) { 2009 task_rq_unlock(rq, p, &rf); 2010 put_task_struct(p); 2011 } else { 2012 rq_unlock(rq, &rf); 2013 } 2014 2015 return HRTIMER_NORESTART; 2016 } 2017 2018 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 2019 { 2020 struct hrtimer *timer = &dl_se->inactive_timer; 2021 2022 hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 2023 } 2024 2025 #define __node_2_dle(node) \ 2026 rb_entry((node), struct sched_dl_entity, rb_node) 2027 2028 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 2029 { 2030 struct rq *rq = rq_of_dl_rq(dl_rq); 2031 2032 if (dl_rq->earliest_dl.curr == 0 || 2033 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 2034 if (dl_rq->earliest_dl.curr == 0) 2035 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER); 2036 dl_rq->earliest_dl.curr = deadline; 2037 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 2038 } 2039 } 2040 2041 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 2042 { 2043 struct rq *rq = rq_of_dl_rq(dl_rq); 2044 2045 /* 2046 * Since we may have removed our earliest (and/or next earliest) 2047 * task we must recompute them. 2048 */ 2049 if (!dl_rq->dl_nr_running) { 2050 dl_rq->earliest_dl.curr = 0; 2051 dl_rq->earliest_dl.next = 0; 2052 cpudl_clear(&rq->rd->cpudl, rq->cpu, rq->online); 2053 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2054 } else { 2055 struct rb_node *leftmost = rb_first_cached(&dl_rq->root); 2056 struct sched_dl_entity *entry = __node_2_dle(leftmost); 2057 2058 dl_rq->earliest_dl.curr = entry->deadline; 2059 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 2060 } 2061 } 2062 2063 static inline 2064 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 2065 { 2066 u64 deadline = dl_se->deadline; 2067 2068 dl_rq->dl_nr_running++; 2069 2070 if (!dl_server(dl_se)) 2071 add_nr_running(rq_of_dl_rq(dl_rq), 1); 2072 2073 inc_dl_deadline(dl_rq, deadline); 2074 } 2075 2076 static inline 2077 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 2078 { 2079 WARN_ON(!dl_rq->dl_nr_running); 2080 dl_rq->dl_nr_running--; 2081 2082 if (!dl_server(dl_se)) 2083 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 2084 2085 dec_dl_deadline(dl_rq, dl_se->deadline); 2086 } 2087 2088 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b) 2089 { 2090 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline); 2091 } 2092 2093 static __always_inline struct sched_statistics * 2094 __schedstats_from_dl_se(struct sched_dl_entity *dl_se) 2095 { 2096 if (!schedstat_enabled()) 2097 return NULL; 2098 2099 if (dl_server(dl_se)) 2100 return NULL; 2101 2102 return &dl_task_of(dl_se)->stats; 2103 } 2104 2105 static inline void 2106 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 2107 { 2108 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 2109 if (stats) 2110 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 2111 } 2112 2113 static inline void 2114 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 2115 { 2116 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 2117 if (stats) 2118 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 2119 } 2120 2121 static inline void 2122 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 2123 { 2124 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 2125 if (stats) 2126 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 2127 } 2128 2129 static inline void 2130 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 2131 int flags) 2132 { 2133 if (!schedstat_enabled()) 2134 return; 2135 2136 if (flags & ENQUEUE_WAKEUP) 2137 update_stats_enqueue_sleeper_dl(dl_rq, dl_se); 2138 } 2139 2140 static inline void 2141 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 2142 int flags) 2143 { 2144 struct task_struct *p = dl_task_of(dl_se); 2145 2146 if (!schedstat_enabled()) 2147 return; 2148 2149 if ((flags & DEQUEUE_SLEEP)) { 2150 unsigned int state; 2151 2152 state = READ_ONCE(p->__state); 2153 if (state & TASK_INTERRUPTIBLE) 2154 __schedstat_set(p->stats.sleep_start, 2155 rq_clock(rq_of_dl_rq(dl_rq))); 2156 2157 if (state & TASK_UNINTERRUPTIBLE) 2158 __schedstat_set(p->stats.block_start, 2159 rq_clock(rq_of_dl_rq(dl_rq))); 2160 } 2161 } 2162 2163 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 2164 { 2165 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 2166 2167 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node)); 2168 2169 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less); 2170 2171 inc_dl_tasks(dl_se, dl_rq); 2172 } 2173 2174 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 2175 { 2176 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 2177 2178 if (RB_EMPTY_NODE(&dl_se->rb_node)) 2179 return; 2180 2181 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 2182 2183 RB_CLEAR_NODE(&dl_se->rb_node); 2184 2185 dec_dl_tasks(dl_se, dl_rq); 2186 } 2187 2188 static void 2189 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) 2190 { 2191 WARN_ON_ONCE(on_dl_rq(dl_se)); 2192 2193 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags); 2194 2195 /* 2196 * Check if a constrained deadline task was activated 2197 * after the deadline but before the next period. 2198 * If that is the case, the task will be throttled and 2199 * the replenishment timer will be set to the next period. 2200 */ 2201 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se)) 2202 dl_check_constrained_dl(dl_se); 2203 2204 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) { 2205 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 2206 2207 add_rq_bw(dl_se, dl_rq); 2208 add_running_bw(dl_se, dl_rq); 2209 } 2210 2211 /* 2212 * If p is throttled, we do not enqueue it. In fact, if it exhausted 2213 * its budget it needs a replenishment and, since it now is on 2214 * its rq, the bandwidth timer callback (which clearly has not 2215 * run yet) will take care of this. 2216 * However, the active utilization does not depend on the fact 2217 * that the task is on the runqueue or not (but depends on the 2218 * task's state - in GRUB parlance, "inactive" vs "active contending"). 2219 * In other words, even if a task is throttled its utilization must 2220 * be counted in the active utilization; hence, we need to call 2221 * add_running_bw(). 2222 */ 2223 if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 2224 if (flags & ENQUEUE_WAKEUP) 2225 task_contending(dl_se, flags); 2226 2227 return; 2228 } 2229 2230 /* 2231 * If this is a wakeup or a new instance, the scheduling 2232 * parameters of the task might need updating. Otherwise, 2233 * we want a replenishment of its runtime. 2234 */ 2235 if (flags & ENQUEUE_WAKEUP) { 2236 task_contending(dl_se, flags); 2237 update_dl_entity(dl_se); 2238 } else if (flags & ENQUEUE_REPLENISH) { 2239 replenish_dl_entity(dl_se); 2240 } else if ((flags & ENQUEUE_MOVE) && 2241 !is_dl_boosted(dl_se) && 2242 dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) { 2243 setup_new_dl_entity(dl_se); 2244 } 2245 2246 /* 2247 * If the reservation is still throttled, e.g., it got replenished but is a 2248 * deferred task and still got to wait, don't enqueue. 2249 */ 2250 if (dl_se->dl_throttled && start_dl_timer(dl_se)) 2251 return; 2252 2253 /* 2254 * We're about to enqueue, make sure we're not ->dl_throttled! 2255 * In case the timer was not started, say because the defer time 2256 * has passed, mark as not throttled and mark unarmed. 2257 * Also cancel earlier timers, since letting those run is pointless. 2258 */ 2259 if (dl_se->dl_throttled) { 2260 hrtimer_try_to_cancel(&dl_se->dl_timer); 2261 dl_se->dl_defer_armed = 0; 2262 dl_se->dl_throttled = 0; 2263 } 2264 2265 __enqueue_dl_entity(dl_se); 2266 } 2267 2268 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags) 2269 { 2270 __dequeue_dl_entity(dl_se); 2271 2272 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) { 2273 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 2274 2275 sub_running_bw(dl_se, dl_rq); 2276 sub_rq_bw(dl_se, dl_rq); 2277 } 2278 2279 /* 2280 * This check allows to start the inactive timer (or to immediately 2281 * decrease the active utilization, if needed) in two cases: 2282 * when the task blocks and when it is terminating 2283 * (p->state == TASK_DEAD). We can handle the two cases in the same 2284 * way, because from GRUB's point of view the same thing is happening 2285 * (the task moves from "active contending" to "active non contending" 2286 * or "inactive") 2287 */ 2288 if (flags & DEQUEUE_SLEEP) 2289 task_non_contending(dl_se, true); 2290 } 2291 2292 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2293 { 2294 if (is_dl_boosted(&p->dl)) { 2295 /* 2296 * Because of delays in the detection of the overrun of a 2297 * thread's runtime, it might be the case that a thread 2298 * goes to sleep in a rt mutex with negative runtime. As 2299 * a consequence, the thread will be throttled. 2300 * 2301 * While waiting for the mutex, this thread can also be 2302 * boosted via PI, resulting in a thread that is throttled 2303 * and boosted at the same time. 2304 * 2305 * In this case, the boost overrides the throttle. 2306 */ 2307 if (p->dl.dl_throttled) { 2308 /* 2309 * The replenish timer needs to be canceled. No 2310 * problem if it fires concurrently: boosted threads 2311 * are ignored in dl_task_timer(). 2312 */ 2313 cancel_replenish_timer(&p->dl); 2314 p->dl.dl_throttled = 0; 2315 } 2316 } else if (!dl_prio(p->normal_prio)) { 2317 /* 2318 * Special case in which we have a !SCHED_DEADLINE task that is going 2319 * to be deboosted, but exceeds its runtime while doing so. No point in 2320 * replenishing it, as it's going to return back to its original 2321 * scheduling class after this. If it has been throttled, we need to 2322 * clear the flag, otherwise the task may wake up as throttled after 2323 * being boosted again with no means to replenish the runtime and clear 2324 * the throttle. 2325 */ 2326 p->dl.dl_throttled = 0; 2327 if (!(flags & ENQUEUE_REPLENISH)) 2328 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n", 2329 task_pid_nr(p)); 2330 2331 return; 2332 } 2333 2334 check_schedstat_required(); 2335 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl); 2336 2337 if (p->on_rq == TASK_ON_RQ_MIGRATING) 2338 flags |= ENQUEUE_MIGRATING; 2339 2340 enqueue_dl_entity(&p->dl, flags); 2341 2342 if (dl_server(&p->dl)) 2343 return; 2344 2345 if (task_is_blocked(p)) 2346 return; 2347 2348 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1) 2349 enqueue_pushable_dl_task(rq, p); 2350 } 2351 2352 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2353 { 2354 update_curr_dl(rq); 2355 2356 if (p->on_rq == TASK_ON_RQ_MIGRATING) 2357 flags |= DEQUEUE_MIGRATING; 2358 2359 dequeue_dl_entity(&p->dl, flags); 2360 if (!p->dl.dl_throttled && !dl_server(&p->dl)) 2361 dequeue_pushable_dl_task(rq, p); 2362 2363 return true; 2364 } 2365 2366 /* 2367 * Yield task semantic for -deadline tasks is: 2368 * 2369 * get off from the CPU until our next instance, with 2370 * a new runtime. This is of little use now, since we 2371 * don't have a bandwidth reclaiming mechanism. Anyway, 2372 * bandwidth reclaiming is planned for the future, and 2373 * yield_task_dl will indicate that some spare budget 2374 * is available for other task instances to use it. 2375 */ 2376 static void yield_task_dl(struct rq *rq) 2377 { 2378 /* 2379 * We make the task go to sleep until its current deadline by 2380 * forcing its runtime to zero. This way, update_curr_dl() stops 2381 * it and the bandwidth timer will wake it up and will give it 2382 * new scheduling parameters (thanks to dl_yielded=1). 2383 */ 2384 rq->donor->dl.dl_yielded = 1; 2385 2386 update_rq_clock(rq); 2387 update_curr_dl(rq); 2388 /* 2389 * Tell update_rq_clock() that we've just updated, 2390 * so we don't do microscopic update in schedule() 2391 * and double the fastpath cost. 2392 */ 2393 rq_clock_skip_update(rq); 2394 } 2395 2396 static inline bool dl_task_is_earliest_deadline(struct task_struct *p, 2397 struct rq *rq) 2398 { 2399 return (!rq->dl.dl_nr_running || 2400 dl_time_before(p->dl.deadline, 2401 rq->dl.earliest_dl.curr)); 2402 } 2403 2404 static int find_later_rq(struct task_struct *task); 2405 2406 static int 2407 select_task_rq_dl(struct task_struct *p, int cpu, int flags) 2408 { 2409 struct task_struct *curr, *donor; 2410 bool select_rq; 2411 struct rq *rq; 2412 2413 if (!(flags & WF_TTWU)) 2414 return cpu; 2415 2416 rq = cpu_rq(cpu); 2417 2418 rcu_read_lock(); 2419 curr = READ_ONCE(rq->curr); /* unlocked access */ 2420 donor = READ_ONCE(rq->donor); 2421 2422 /* 2423 * If we are dealing with a -deadline task, we must 2424 * decide where to wake it up. 2425 * If it has a later deadline and the current task 2426 * on this rq can't move (provided the waking task 2427 * can!) we prefer to send it somewhere else. On the 2428 * other hand, if it has a shorter deadline, we 2429 * try to make it stay here, it might be important. 2430 */ 2431 select_rq = unlikely(dl_task(donor)) && 2432 (curr->nr_cpus_allowed < 2 || 2433 !dl_entity_preempt(&p->dl, &donor->dl)) && 2434 p->nr_cpus_allowed > 1; 2435 2436 /* 2437 * Take the capacity of the CPU into account to 2438 * ensure it fits the requirement of the task. 2439 */ 2440 if (sched_asym_cpucap_active()) 2441 select_rq |= !dl_task_fits_capacity(p, cpu); 2442 2443 if (select_rq) { 2444 int target = find_later_rq(p); 2445 2446 if (target != -1 && 2447 dl_task_is_earliest_deadline(p, cpu_rq(target))) 2448 cpu = target; 2449 } 2450 rcu_read_unlock(); 2451 2452 return cpu; 2453 } 2454 2455 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 2456 { 2457 struct rq_flags rf; 2458 struct rq *rq; 2459 2460 if (READ_ONCE(p->__state) != TASK_WAKING) 2461 return; 2462 2463 rq = task_rq(p); 2464 /* 2465 * Since p->state == TASK_WAKING, set_task_cpu() has been called 2466 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 2467 * rq->lock is not... So, lock it 2468 */ 2469 rq_lock(rq, &rf); 2470 if (p->dl.dl_non_contending) { 2471 update_rq_clock(rq); 2472 sub_running_bw(&p->dl, &rq->dl); 2473 p->dl.dl_non_contending = 0; 2474 /* 2475 * If the timer handler is currently running and the 2476 * timer cannot be canceled, inactive_task_timer() 2477 * will see that dl_not_contending is not set, and 2478 * will not touch the rq's active utilization, 2479 * so we are still safe. 2480 */ 2481 cancel_inactive_timer(&p->dl); 2482 } 2483 sub_rq_bw(&p->dl, &rq->dl); 2484 rq_unlock(rq, &rf); 2485 } 2486 2487 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 2488 { 2489 /* 2490 * Current can't be migrated, useless to reschedule, 2491 * let's hope p can move out. 2492 */ 2493 if (rq->curr->nr_cpus_allowed == 1 || 2494 !cpudl_find(&rq->rd->cpudl, rq->donor, NULL)) 2495 return; 2496 2497 /* 2498 * p is migratable, so let's not schedule it and 2499 * see if it is pushed or pulled somewhere else. 2500 */ 2501 if (p->nr_cpus_allowed != 1 && 2502 cpudl_find(&rq->rd->cpudl, p, NULL)) 2503 return; 2504 2505 resched_curr(rq); 2506 } 2507 2508 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 2509 { 2510 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { 2511 /* 2512 * This is OK, because current is on_cpu, which avoids it being 2513 * picked for load-balance and preemption/IRQs are still 2514 * disabled avoiding further scheduler activity on it and we've 2515 * not yet started the picking loop. 2516 */ 2517 rq_unpin_lock(rq, rf); 2518 pull_dl_task(rq); 2519 rq_repin_lock(rq, rf); 2520 } 2521 2522 return sched_stop_runnable(rq) || sched_dl_runnable(rq); 2523 } 2524 2525 /* 2526 * Only called when both the current and waking task are -deadline 2527 * tasks. 2528 */ 2529 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags) 2530 { 2531 /* 2532 * Can only get preempted by stop-class, and those should be 2533 * few and short lived, doesn't really make sense to push 2534 * anything away for that. 2535 */ 2536 if (p->sched_class != &dl_sched_class) 2537 return; 2538 2539 if (dl_entity_preempt(&p->dl, &rq->donor->dl)) { 2540 resched_curr(rq); 2541 return; 2542 } 2543 2544 /* 2545 * In the unlikely case current and p have the same deadline 2546 * let us try to decide what's the best thing to do... 2547 */ 2548 if ((p->dl.deadline == rq->donor->dl.deadline) && 2549 !test_tsk_need_resched(rq->curr)) 2550 check_preempt_equal_dl(rq, p); 2551 } 2552 2553 #ifdef CONFIG_SCHED_HRTICK 2554 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se) 2555 { 2556 hrtick_start(rq, dl_se->runtime); 2557 } 2558 #else /* !CONFIG_SCHED_HRTICK: */ 2559 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se) 2560 { 2561 } 2562 #endif /* !CONFIG_SCHED_HRTICK */ 2563 2564 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) 2565 { 2566 struct sched_dl_entity *dl_se = &p->dl; 2567 struct dl_rq *dl_rq = &rq->dl; 2568 2569 p->se.exec_start = rq_clock_task(rq); 2570 if (on_dl_rq(&p->dl)) 2571 update_stats_wait_end_dl(dl_rq, dl_se); 2572 2573 /* You can't push away the running task */ 2574 dequeue_pushable_dl_task(rq, p); 2575 2576 if (!first) 2577 return; 2578 2579 if (rq->donor->sched_class != &dl_sched_class) 2580 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2581 2582 deadline_queue_push_tasks(rq); 2583 2584 if (hrtick_enabled_dl(rq)) 2585 start_hrtick_dl(rq, &p->dl); 2586 } 2587 2588 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq) 2589 { 2590 struct rb_node *left = rb_first_cached(&dl_rq->root); 2591 2592 if (!left) 2593 return NULL; 2594 2595 return __node_2_dle(left); 2596 } 2597 2598 /* 2599 * __pick_next_task_dl - Helper to pick the next -deadline task to run. 2600 * @rq: The runqueue to pick the next task from. 2601 */ 2602 static struct task_struct *__pick_task_dl(struct rq *rq, struct rq_flags *rf) 2603 { 2604 struct sched_dl_entity *dl_se; 2605 struct dl_rq *dl_rq = &rq->dl; 2606 struct task_struct *p; 2607 2608 again: 2609 if (!sched_dl_runnable(rq)) 2610 return NULL; 2611 2612 dl_se = pick_next_dl_entity(dl_rq); 2613 WARN_ON_ONCE(!dl_se); 2614 2615 if (dl_server(dl_se)) { 2616 p = dl_se->server_pick_task(dl_se, rf); 2617 if (!p) { 2618 dl_server_stop(dl_se); 2619 goto again; 2620 } 2621 rq->dl_server = dl_se; 2622 } else { 2623 p = dl_task_of(dl_se); 2624 } 2625 2626 return p; 2627 } 2628 2629 static struct task_struct *pick_task_dl(struct rq *rq, struct rq_flags *rf) 2630 { 2631 return __pick_task_dl(rq, rf); 2632 } 2633 2634 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next) 2635 { 2636 struct sched_dl_entity *dl_se = &p->dl; 2637 struct dl_rq *dl_rq = &rq->dl; 2638 2639 if (on_dl_rq(&p->dl)) 2640 update_stats_wait_start_dl(dl_rq, dl_se); 2641 2642 update_curr_dl(rq); 2643 2644 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2645 2646 if (task_is_blocked(p)) 2647 return; 2648 2649 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 2650 enqueue_pushable_dl_task(rq, p); 2651 } 2652 2653 /* 2654 * scheduler tick hitting a task of our scheduling class. 2655 * 2656 * NOTE: This function can be called remotely by the tick offload that 2657 * goes along full dynticks. Therefore no local assumption can be made 2658 * and everything must be accessed through the @rq and @curr passed in 2659 * parameters. 2660 */ 2661 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 2662 { 2663 update_curr_dl(rq); 2664 2665 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2666 /* 2667 * Even when we have runtime, update_curr_dl() might have resulted in us 2668 * not being the leftmost task anymore. In that case NEED_RESCHED will 2669 * be set and schedule() will start a new hrtick for the next task. 2670 */ 2671 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 && 2672 is_leftmost(&p->dl, &rq->dl)) 2673 start_hrtick_dl(rq, &p->dl); 2674 } 2675 2676 static void task_fork_dl(struct task_struct *p) 2677 { 2678 /* 2679 * SCHED_DEADLINE tasks cannot fork and this is achieved through 2680 * sched_fork() 2681 */ 2682 } 2683 2684 /* Only try algorithms three times */ 2685 #define DL_MAX_TRIES 3 2686 2687 /* 2688 * Return the earliest pushable rq's task, which is suitable to be executed 2689 * on the CPU, NULL otherwise: 2690 */ 2691 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 2692 { 2693 struct task_struct *p = NULL; 2694 struct rb_node *next_node; 2695 2696 if (!has_pushable_dl_tasks(rq)) 2697 return NULL; 2698 2699 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root); 2700 while (next_node) { 2701 p = __node_2_pdl(next_node); 2702 2703 if (task_is_pushable(rq, p, cpu)) 2704 return p; 2705 2706 next_node = rb_next(next_node); 2707 } 2708 2709 return NULL; 2710 } 2711 2712 /* Access rule: must be called on local CPU with preemption disabled */ 2713 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 2714 2715 static int find_later_rq(struct task_struct *task) 2716 { 2717 struct sched_domain *sd; 2718 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 2719 int this_cpu = smp_processor_id(); 2720 int cpu = task_cpu(task); 2721 2722 /* Make sure the mask is initialized first */ 2723 if (unlikely(!later_mask)) 2724 return -1; 2725 2726 if (task->nr_cpus_allowed == 1) 2727 return -1; 2728 2729 /* 2730 * We have to consider system topology and task affinity 2731 * first, then we can look for a suitable CPU. 2732 */ 2733 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 2734 return -1; 2735 2736 /* 2737 * If we are here, some targets have been found, including 2738 * the most suitable which is, among the runqueues where the 2739 * current tasks have later deadlines than the task's one, the 2740 * rq with the latest possible one. 2741 * 2742 * Now we check how well this matches with task's 2743 * affinity and system topology. 2744 * 2745 * The last CPU where the task run is our first 2746 * guess, since it is most likely cache-hot there. 2747 */ 2748 if (cpumask_test_cpu(cpu, later_mask)) 2749 return cpu; 2750 /* 2751 * Check if this_cpu is to be skipped (i.e., it is 2752 * not in the mask) or not. 2753 */ 2754 if (!cpumask_test_cpu(this_cpu, later_mask)) 2755 this_cpu = -1; 2756 2757 rcu_read_lock(); 2758 for_each_domain(cpu, sd) { 2759 if (sd->flags & SD_WAKE_AFFINE) { 2760 int best_cpu; 2761 2762 /* 2763 * If possible, preempting this_cpu is 2764 * cheaper than migrating. 2765 */ 2766 if (this_cpu != -1 && 2767 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 2768 rcu_read_unlock(); 2769 return this_cpu; 2770 } 2771 2772 best_cpu = cpumask_any_and_distribute(later_mask, 2773 sched_domain_span(sd)); 2774 /* 2775 * Last chance: if a CPU being in both later_mask 2776 * and current sd span is valid, that becomes our 2777 * choice. Of course, the latest possible CPU is 2778 * already under consideration through later_mask. 2779 */ 2780 if (best_cpu < nr_cpu_ids) { 2781 rcu_read_unlock(); 2782 return best_cpu; 2783 } 2784 } 2785 } 2786 rcu_read_unlock(); 2787 2788 /* 2789 * At this point, all our guesses failed, we just return 2790 * 'something', and let the caller sort the things out. 2791 */ 2792 if (this_cpu != -1) 2793 return this_cpu; 2794 2795 cpu = cpumask_any_distribute(later_mask); 2796 if (cpu < nr_cpu_ids) 2797 return cpu; 2798 2799 return -1; 2800 } 2801 2802 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2803 { 2804 struct task_struct *p; 2805 2806 if (!has_pushable_dl_tasks(rq)) 2807 return NULL; 2808 2809 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root)); 2810 2811 WARN_ON_ONCE(rq->cpu != task_cpu(p)); 2812 WARN_ON_ONCE(task_current(rq, p)); 2813 WARN_ON_ONCE(p->nr_cpus_allowed <= 1); 2814 2815 WARN_ON_ONCE(!task_on_rq_queued(p)); 2816 WARN_ON_ONCE(!dl_task(p)); 2817 2818 return p; 2819 } 2820 2821 /* Locks the rq it finds */ 2822 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 2823 { 2824 struct rq *later_rq = NULL; 2825 int tries; 2826 int cpu; 2827 2828 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 2829 cpu = find_later_rq(task); 2830 2831 if ((cpu == -1) || (cpu == rq->cpu)) 2832 break; 2833 2834 later_rq = cpu_rq(cpu); 2835 2836 if (!dl_task_is_earliest_deadline(task, later_rq)) { 2837 /* 2838 * Target rq has tasks of equal or earlier deadline, 2839 * retrying does not release any lock and is unlikely 2840 * to yield a different result. 2841 */ 2842 later_rq = NULL; 2843 break; 2844 } 2845 2846 /* Retry if something changed. */ 2847 if (double_lock_balance(rq, later_rq)) { 2848 /* 2849 * double_lock_balance had to release rq->lock, in the 2850 * meantime, task may no longer be fit to be migrated. 2851 * Check the following to ensure that the task is 2852 * still suitable for migration: 2853 * 1. It is possible the task was scheduled, 2854 * migrate_disabled was set and then got preempted, 2855 * so we must check the task migration disable 2856 * flag. 2857 * 2. The CPU picked is in the task's affinity. 2858 * 3. For throttled task (dl_task_offline_migration), 2859 * check the following: 2860 * - the task is not on the rq anymore (it was 2861 * migrated) 2862 * - the task is not on CPU anymore 2863 * - the task is still a dl task 2864 * - the task is not queued on the rq anymore 2865 * 4. For the non-throttled task (push_dl_task), the 2866 * check to ensure that this task is still at the 2867 * head of the pushable tasks list is enough. 2868 */ 2869 if (unlikely(is_migration_disabled(task) || 2870 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) || 2871 (task->dl.dl_throttled && 2872 (task_rq(task) != rq || 2873 task_on_cpu(rq, task) || 2874 !dl_task(task) || 2875 !task_on_rq_queued(task))) || 2876 (!task->dl.dl_throttled && 2877 task != pick_next_pushable_dl_task(rq)))) { 2878 2879 double_unlock_balance(rq, later_rq); 2880 later_rq = NULL; 2881 break; 2882 } 2883 } 2884 2885 /* 2886 * If the rq we found has no -deadline task, or 2887 * its earliest one has a later deadline than our 2888 * task, the rq is a good one. 2889 */ 2890 if (dl_task_is_earliest_deadline(task, later_rq)) 2891 break; 2892 2893 /* Otherwise we try again. */ 2894 double_unlock_balance(rq, later_rq); 2895 later_rq = NULL; 2896 } 2897 2898 return later_rq; 2899 } 2900 2901 /* 2902 * See if the non running -deadline tasks on this rq 2903 * can be sent to some other CPU where they can preempt 2904 * and start executing. 2905 */ 2906 static int push_dl_task(struct rq *rq) 2907 { 2908 struct task_struct *next_task; 2909 struct rq *later_rq; 2910 int ret = 0; 2911 2912 next_task = pick_next_pushable_dl_task(rq); 2913 if (!next_task) 2914 return 0; 2915 2916 retry: 2917 /* 2918 * If next_task preempts rq->curr, and rq->curr 2919 * can move away, it makes sense to just reschedule 2920 * without going further in pushing next_task. 2921 */ 2922 if (dl_task(rq->donor) && 2923 dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) && 2924 rq->curr->nr_cpus_allowed > 1) { 2925 resched_curr(rq); 2926 return 0; 2927 } 2928 2929 if (is_migration_disabled(next_task)) 2930 return 0; 2931 2932 if (WARN_ON(next_task == rq->curr)) 2933 return 0; 2934 2935 /* We might release rq lock */ 2936 get_task_struct(next_task); 2937 2938 /* Will lock the rq it'll find */ 2939 later_rq = find_lock_later_rq(next_task, rq); 2940 if (!later_rq) { 2941 struct task_struct *task; 2942 2943 /* 2944 * We must check all this again, since 2945 * find_lock_later_rq releases rq->lock and it is 2946 * then possible that next_task has migrated. 2947 */ 2948 task = pick_next_pushable_dl_task(rq); 2949 if (task == next_task) { 2950 /* 2951 * The task is still there. We don't try 2952 * again, some other CPU will pull it when ready. 2953 */ 2954 goto out; 2955 } 2956 2957 if (!task) 2958 /* No more tasks */ 2959 goto out; 2960 2961 put_task_struct(next_task); 2962 next_task = task; 2963 goto retry; 2964 } 2965 2966 move_queued_task_locked(rq, later_rq, next_task); 2967 ret = 1; 2968 2969 resched_curr(later_rq); 2970 2971 double_unlock_balance(rq, later_rq); 2972 2973 out: 2974 put_task_struct(next_task); 2975 2976 return ret; 2977 } 2978 2979 static void push_dl_tasks(struct rq *rq) 2980 { 2981 /* push_dl_task() will return true if it moved a -deadline task */ 2982 while (push_dl_task(rq)) 2983 ; 2984 } 2985 2986 static void pull_dl_task(struct rq *this_rq) 2987 { 2988 int this_cpu = this_rq->cpu, cpu; 2989 struct task_struct *p, *push_task; 2990 bool resched = false; 2991 struct rq *src_rq; 2992 u64 dmin = LONG_MAX; 2993 2994 if (likely(!dl_overloaded(this_rq))) 2995 return; 2996 2997 /* 2998 * Match the barrier from dl_set_overloaded; this guarantees that if we 2999 * see overloaded we must also see the dlo_mask bit. 3000 */ 3001 smp_rmb(); 3002 3003 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 3004 if (this_cpu == cpu) 3005 continue; 3006 3007 src_rq = cpu_rq(cpu); 3008 3009 /* 3010 * It looks racy, and it is! However, as in sched_rt.c, 3011 * we are fine with this. 3012 */ 3013 if (this_rq->dl.dl_nr_running && 3014 dl_time_before(this_rq->dl.earliest_dl.curr, 3015 src_rq->dl.earliest_dl.next)) 3016 continue; 3017 3018 /* Might drop this_rq->lock */ 3019 push_task = NULL; 3020 double_lock_balance(this_rq, src_rq); 3021 3022 /* 3023 * If there are no more pullable tasks on the 3024 * rq, we're done with it. 3025 */ 3026 if (src_rq->dl.dl_nr_running <= 1) 3027 goto skip; 3028 3029 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 3030 3031 /* 3032 * We found a task to be pulled if: 3033 * - it preempts our current (if there's one), 3034 * - it will preempt the last one we pulled (if any). 3035 */ 3036 if (p && dl_time_before(p->dl.deadline, dmin) && 3037 dl_task_is_earliest_deadline(p, this_rq)) { 3038 WARN_ON(p == src_rq->curr); 3039 WARN_ON(!task_on_rq_queued(p)); 3040 3041 /* 3042 * Then we pull iff p has actually an earlier 3043 * deadline than the current task of its runqueue. 3044 */ 3045 if (dl_time_before(p->dl.deadline, 3046 src_rq->donor->dl.deadline)) 3047 goto skip; 3048 3049 if (is_migration_disabled(p)) { 3050 push_task = get_push_task(src_rq); 3051 } else { 3052 move_queued_task_locked(src_rq, this_rq, p); 3053 dmin = p->dl.deadline; 3054 resched = true; 3055 } 3056 3057 /* Is there any other task even earlier? */ 3058 } 3059 skip: 3060 double_unlock_balance(this_rq, src_rq); 3061 3062 if (push_task) { 3063 preempt_disable(); 3064 raw_spin_rq_unlock(this_rq); 3065 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 3066 push_task, &src_rq->push_work); 3067 preempt_enable(); 3068 raw_spin_rq_lock(this_rq); 3069 } 3070 } 3071 3072 if (resched) 3073 resched_curr(this_rq); 3074 } 3075 3076 /* 3077 * Since the task is not running and a reschedule is not going to happen 3078 * anytime soon on its runqueue, we try pushing it away now. 3079 */ 3080 static void task_woken_dl(struct rq *rq, struct task_struct *p) 3081 { 3082 if (!task_on_cpu(rq, p) && 3083 !test_tsk_need_resched(rq->curr) && 3084 p->nr_cpus_allowed > 1 && 3085 dl_task(rq->donor) && 3086 (rq->curr->nr_cpus_allowed < 2 || 3087 !dl_entity_preempt(&p->dl, &rq->donor->dl))) { 3088 push_dl_tasks(rq); 3089 } 3090 } 3091 3092 static void set_cpus_allowed_dl(struct task_struct *p, 3093 struct affinity_context *ctx) 3094 { 3095 struct root_domain *src_rd; 3096 struct rq *rq; 3097 3098 WARN_ON_ONCE(!dl_task(p)); 3099 3100 rq = task_rq(p); 3101 src_rd = rq->rd; 3102 /* 3103 * Migrating a SCHED_DEADLINE task between exclusive 3104 * cpusets (different root_domains) entails a bandwidth 3105 * update. We already made space for us in the destination 3106 * domain (see cpuset_can_attach()). 3107 */ 3108 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) { 3109 struct dl_bw *src_dl_b; 3110 3111 src_dl_b = dl_bw_of(cpu_of(rq)); 3112 /* 3113 * We now free resources of the root_domain we are migrating 3114 * off. In the worst case, sched_setattr() may temporary fail 3115 * until we complete the update. 3116 */ 3117 raw_spin_lock(&src_dl_b->lock); 3118 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 3119 raw_spin_unlock(&src_dl_b->lock); 3120 } 3121 3122 set_cpus_allowed_common(p, ctx); 3123 } 3124 3125 /* Assumes rq->lock is held */ 3126 static void rq_online_dl(struct rq *rq) 3127 { 3128 if (rq->dl.overloaded) 3129 dl_set_overload(rq); 3130 3131 if (rq->dl.dl_nr_running > 0) 3132 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 3133 else 3134 cpudl_clear(&rq->rd->cpudl, rq->cpu, true); 3135 } 3136 3137 /* Assumes rq->lock is held */ 3138 static void rq_offline_dl(struct rq *rq) 3139 { 3140 if (rq->dl.overloaded) 3141 dl_clear_overload(rq); 3142 3143 cpudl_clear(&rq->rd->cpudl, rq->cpu, false); 3144 } 3145 3146 void __init init_sched_dl_class(void) 3147 { 3148 unsigned int i; 3149 3150 for_each_possible_cpu(i) 3151 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 3152 GFP_KERNEL, cpu_to_node(i)); 3153 } 3154 3155 /* 3156 * This function always returns a non-empty bitmap in @cpus. This is because 3157 * if a root domain has reserved bandwidth for DL tasks, the DL bandwidth 3158 * check will prevent CPU hotplug from deactivating all CPUs in that domain. 3159 */ 3160 static void dl_get_task_effective_cpus(struct task_struct *p, struct cpumask *cpus) 3161 { 3162 const struct cpumask *hk_msk; 3163 3164 hk_msk = housekeeping_cpumask(HK_TYPE_DOMAIN); 3165 if (housekeeping_enabled(HK_TYPE_DOMAIN)) { 3166 if (!cpumask_intersects(p->cpus_ptr, hk_msk)) { 3167 /* 3168 * CPUs isolated by isolcpu="domain" always belong to 3169 * def_root_domain. 3170 */ 3171 cpumask_andnot(cpus, cpu_active_mask, hk_msk); 3172 return; 3173 } 3174 } 3175 3176 /* 3177 * If a root domain holds a DL task, it must have active CPUs. So 3178 * active CPUs can always be found by walking up the task's cpuset 3179 * hierarchy up to the partition root. 3180 */ 3181 cpuset_cpus_allowed_locked(p, cpus); 3182 } 3183 3184 /* The caller should hold cpuset_mutex */ 3185 void dl_add_task_root_domain(struct task_struct *p) 3186 { 3187 struct rq_flags rf; 3188 struct rq *rq; 3189 struct dl_bw *dl_b; 3190 unsigned int cpu; 3191 struct cpumask *msk; 3192 3193 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3194 if (!dl_task(p) || dl_entity_is_special(&p->dl)) { 3195 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 3196 return; 3197 } 3198 3199 msk = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 3200 dl_get_task_effective_cpus(p, msk); 3201 cpu = cpumask_first_and(cpu_active_mask, msk); 3202 BUG_ON(cpu >= nr_cpu_ids); 3203 rq = cpu_rq(cpu); 3204 dl_b = &rq->rd->dl_bw; 3205 3206 raw_spin_lock(&dl_b->lock); 3207 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 3208 raw_spin_unlock(&dl_b->lock); 3209 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 3210 } 3211 3212 static void dl_server_add_bw(struct root_domain *rd, int cpu) 3213 { 3214 struct sched_dl_entity *dl_se; 3215 3216 dl_se = &cpu_rq(cpu)->fair_server; 3217 if (dl_server(dl_se) && cpu_active(cpu)) 3218 __dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(cpu)); 3219 3220 #ifdef CONFIG_SCHED_CLASS_EXT 3221 dl_se = &cpu_rq(cpu)->ext_server; 3222 if (dl_server(dl_se) && cpu_active(cpu)) 3223 __dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(cpu)); 3224 #endif 3225 } 3226 3227 static u64 dl_server_read_bw(int cpu) 3228 { 3229 u64 dl_bw = 0; 3230 3231 if (cpu_rq(cpu)->fair_server.dl_server) 3232 dl_bw += cpu_rq(cpu)->fair_server.dl_bw; 3233 3234 #ifdef CONFIG_SCHED_CLASS_EXT 3235 if (cpu_rq(cpu)->ext_server.dl_server) 3236 dl_bw += cpu_rq(cpu)->ext_server.dl_bw; 3237 #endif 3238 3239 return dl_bw; 3240 } 3241 3242 void dl_clear_root_domain(struct root_domain *rd) 3243 { 3244 int i; 3245 3246 guard(raw_spinlock_irqsave)(&rd->dl_bw.lock); 3247 3248 /* 3249 * Reset total_bw to zero and extra_bw to max_bw so that next 3250 * loop will add dl-servers contributions back properly, 3251 */ 3252 rd->dl_bw.total_bw = 0; 3253 for_each_cpu(i, rd->span) 3254 cpu_rq(i)->dl.extra_bw = cpu_rq(i)->dl.max_bw; 3255 3256 /* 3257 * dl_servers are not tasks. Since dl_add_task_root_domain ignores 3258 * them, we need to account for them here explicitly. 3259 */ 3260 for_each_cpu(i, rd->span) 3261 dl_server_add_bw(rd, i); 3262 } 3263 3264 void dl_clear_root_domain_cpu(int cpu) 3265 { 3266 dl_clear_root_domain(cpu_rq(cpu)->rd); 3267 } 3268 3269 static void switched_from_dl(struct rq *rq, struct task_struct *p) 3270 { 3271 /* 3272 * task_non_contending() can start the "inactive timer" (if the 0-lag 3273 * time is in the future). If the task switches back to dl before 3274 * the "inactive timer" fires, it can continue to consume its current 3275 * runtime using its current deadline. If it stays outside of 3276 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 3277 * will reset the task parameters. 3278 */ 3279 if (task_on_rq_queued(p) && p->dl.dl_runtime) 3280 task_non_contending(&p->dl, false); 3281 3282 /* 3283 * In case a task is setscheduled out from SCHED_DEADLINE we need to 3284 * keep track of that on its cpuset (for correct bandwidth tracking). 3285 */ 3286 dec_dl_tasks_cs(p); 3287 3288 if (!task_on_rq_queued(p)) { 3289 /* 3290 * Inactive timer is armed. However, p is leaving DEADLINE and 3291 * might migrate away from this rq while continuing to run on 3292 * some other class. We need to remove its contribution from 3293 * this rq running_bw now, or sub_rq_bw (below) will complain. 3294 */ 3295 if (p->dl.dl_non_contending) 3296 sub_running_bw(&p->dl, &rq->dl); 3297 sub_rq_bw(&p->dl, &rq->dl); 3298 } 3299 3300 /* 3301 * We cannot use inactive_task_timer() to invoke sub_running_bw() 3302 * at the 0-lag time, because the task could have been migrated 3303 * while SCHED_OTHER in the meanwhile. 3304 */ 3305 if (p->dl.dl_non_contending) 3306 p->dl.dl_non_contending = 0; 3307 3308 /* 3309 * Since this might be the only -deadline task on the rq, 3310 * this is the right place to try to pull some other one 3311 * from an overloaded CPU, if any. 3312 */ 3313 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 3314 return; 3315 3316 deadline_queue_pull_task(rq); 3317 } 3318 3319 /* 3320 * When switching to -deadline, we may overload the rq, then 3321 * we try to push someone off, if possible. 3322 */ 3323 static void switched_to_dl(struct rq *rq, struct task_struct *p) 3324 { 3325 cancel_inactive_timer(&p->dl); 3326 3327 /* 3328 * In case a task is setscheduled to SCHED_DEADLINE we need to keep 3329 * track of that on its cpuset (for correct bandwidth tracking). 3330 */ 3331 inc_dl_tasks_cs(p); 3332 3333 /* If p is not queued we will update its parameters at next wakeup. */ 3334 if (!task_on_rq_queued(p)) { 3335 add_rq_bw(&p->dl, &rq->dl); 3336 3337 return; 3338 } 3339 3340 if (rq->donor != p) { 3341 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 3342 deadline_queue_push_tasks(rq); 3343 if (dl_task(rq->donor)) 3344 wakeup_preempt_dl(rq, p, 0); 3345 else 3346 resched_curr(rq); 3347 } else { 3348 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 3349 } 3350 } 3351 3352 static u64 get_prio_dl(struct rq *rq, struct task_struct *p) 3353 { 3354 /* 3355 * Make sure to update current so we don't return a stale value. 3356 */ 3357 if (task_current_donor(rq, p)) 3358 update_curr_dl(rq); 3359 3360 return p->dl.deadline; 3361 } 3362 3363 /* 3364 * If the scheduling parameters of a -deadline task changed, 3365 * a push or pull operation might be needed. 3366 */ 3367 static void prio_changed_dl(struct rq *rq, struct task_struct *p, u64 old_deadline) 3368 { 3369 if (!task_on_rq_queued(p)) 3370 return; 3371 3372 if (p->dl.deadline == old_deadline) 3373 return; 3374 3375 if (dl_time_before(old_deadline, p->dl.deadline)) 3376 deadline_queue_pull_task(rq); 3377 3378 if (task_current_donor(rq, p)) { 3379 /* 3380 * If we now have a earlier deadline task than p, 3381 * then reschedule, provided p is still on this 3382 * runqueue. 3383 */ 3384 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 3385 resched_curr(rq); 3386 } else { 3387 /* 3388 * Current may not be deadline in case p was throttled but we 3389 * have just replenished it (e.g. rt_mutex_setprio()). 3390 * 3391 * Otherwise, if p was given an earlier deadline, reschedule. 3392 */ 3393 if (!dl_task(rq->curr) || 3394 dl_time_before(p->dl.deadline, rq->curr->dl.deadline)) 3395 resched_curr(rq); 3396 } 3397 } 3398 3399 #ifdef CONFIG_SCHED_CORE 3400 static int task_is_throttled_dl(struct task_struct *p, int cpu) 3401 { 3402 return p->dl.dl_throttled; 3403 } 3404 #endif 3405 3406 DEFINE_SCHED_CLASS(dl) = { 3407 .enqueue_task = enqueue_task_dl, 3408 .dequeue_task = dequeue_task_dl, 3409 .yield_task = yield_task_dl, 3410 3411 .wakeup_preempt = wakeup_preempt_dl, 3412 3413 .pick_task = pick_task_dl, 3414 .put_prev_task = put_prev_task_dl, 3415 .set_next_task = set_next_task_dl, 3416 3417 .balance = balance_dl, 3418 .select_task_rq = select_task_rq_dl, 3419 .migrate_task_rq = migrate_task_rq_dl, 3420 .set_cpus_allowed = set_cpus_allowed_dl, 3421 .rq_online = rq_online_dl, 3422 .rq_offline = rq_offline_dl, 3423 .task_woken = task_woken_dl, 3424 .find_lock_rq = find_lock_later_rq, 3425 3426 .task_tick = task_tick_dl, 3427 .task_fork = task_fork_dl, 3428 3429 .get_prio = get_prio_dl, 3430 .prio_changed = prio_changed_dl, 3431 .switched_from = switched_from_dl, 3432 .switched_to = switched_to_dl, 3433 3434 .update_curr = update_curr_dl, 3435 #ifdef CONFIG_SCHED_CORE 3436 .task_is_throttled = task_is_throttled_dl, 3437 #endif 3438 }; 3439 3440 /* 3441 * Used for dl_bw check and update, used under sched_rt_handler()::mutex and 3442 * sched_domains_mutex. 3443 */ 3444 u64 dl_cookie; 3445 3446 int sched_dl_global_validate(void) 3447 { 3448 u64 runtime = global_rt_runtime(); 3449 u64 period = global_rt_period(); 3450 u64 new_bw = to_ratio(period, runtime); 3451 u64 cookie = ++dl_cookie; 3452 struct dl_bw *dl_b; 3453 int cpu, cpus, ret = 0; 3454 unsigned long flags; 3455 3456 /* 3457 * Here we want to check the bandwidth not being set to some 3458 * value smaller than the currently allocated bandwidth in 3459 * any of the root_domains. 3460 */ 3461 for_each_online_cpu(cpu) { 3462 rcu_read_lock_sched(); 3463 3464 if (dl_bw_visited(cpu, cookie)) 3465 goto next; 3466 3467 dl_b = dl_bw_of(cpu); 3468 cpus = dl_bw_cpus(cpu); 3469 3470 raw_spin_lock_irqsave(&dl_b->lock, flags); 3471 if (new_bw * cpus < dl_b->total_bw) 3472 ret = -EBUSY; 3473 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3474 3475 next: 3476 rcu_read_unlock_sched(); 3477 3478 if (ret) 3479 break; 3480 } 3481 3482 return ret; 3483 } 3484 3485 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 3486 { 3487 if (global_rt_runtime() == RUNTIME_INF) { 3488 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 3489 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT; 3490 } else { 3491 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 3492 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 3493 dl_rq->max_bw = dl_rq->extra_bw = 3494 to_ratio(global_rt_period(), global_rt_runtime()); 3495 } 3496 } 3497 3498 void sched_dl_do_global(void) 3499 { 3500 u64 new_bw = -1; 3501 u64 cookie = ++dl_cookie; 3502 struct dl_bw *dl_b; 3503 int cpu; 3504 unsigned long flags; 3505 3506 if (global_rt_runtime() != RUNTIME_INF) 3507 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 3508 3509 for_each_possible_cpu(cpu) 3510 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 3511 3512 for_each_possible_cpu(cpu) { 3513 rcu_read_lock_sched(); 3514 3515 if (dl_bw_visited(cpu, cookie)) { 3516 rcu_read_unlock_sched(); 3517 continue; 3518 } 3519 3520 dl_b = dl_bw_of(cpu); 3521 3522 raw_spin_lock_irqsave(&dl_b->lock, flags); 3523 dl_b->bw = new_bw; 3524 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3525 3526 rcu_read_unlock_sched(); 3527 } 3528 } 3529 3530 /* 3531 * We must be sure that accepting a new task (or allowing changing the 3532 * parameters of an existing one) is consistent with the bandwidth 3533 * constraints. If yes, this function also accordingly updates the currently 3534 * allocated bandwidth to reflect the new situation. 3535 * 3536 * This function is called while holding p's rq->lock. 3537 */ 3538 int sched_dl_overflow(struct task_struct *p, int policy, 3539 const struct sched_attr *attr) 3540 { 3541 u64 period = attr->sched_period ?: attr->sched_deadline; 3542 u64 runtime = attr->sched_runtime; 3543 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 3544 int cpus, err = -1, cpu = task_cpu(p); 3545 struct dl_bw *dl_b = dl_bw_of(cpu); 3546 unsigned long cap; 3547 3548 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3549 return 0; 3550 3551 /* !deadline task may carry old deadline bandwidth */ 3552 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 3553 return 0; 3554 3555 /* 3556 * Either if a task, enters, leave, or stays -deadline but changes 3557 * its parameters, we may need to update accordingly the total 3558 * allocated bandwidth of the container. 3559 */ 3560 raw_spin_lock(&dl_b->lock); 3561 cpus = dl_bw_cpus(cpu); 3562 cap = dl_bw_capacity(cpu); 3563 3564 if (dl_policy(policy) && !task_has_dl_policy(p) && 3565 !__dl_overflow(dl_b, cap, 0, new_bw)) { 3566 if (hrtimer_active(&p->dl.inactive_timer)) 3567 __dl_sub(dl_b, p->dl.dl_bw, cpus); 3568 __dl_add(dl_b, new_bw, cpus); 3569 err = 0; 3570 } else if (dl_policy(policy) && task_has_dl_policy(p) && 3571 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) { 3572 /* 3573 * XXX this is slightly incorrect: when the task 3574 * utilization decreases, we should delay the total 3575 * utilization change until the task's 0-lag point. 3576 * But this would require to set the task's "inactive 3577 * timer" when the task is not inactive. 3578 */ 3579 __dl_sub(dl_b, p->dl.dl_bw, cpus); 3580 __dl_add(dl_b, new_bw, cpus); 3581 dl_change_utilization(p, new_bw); 3582 err = 0; 3583 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 3584 /* 3585 * Do not decrease the total deadline utilization here, 3586 * switched_from_dl() will take care to do it at the correct 3587 * (0-lag) time. 3588 */ 3589 err = 0; 3590 } 3591 raw_spin_unlock(&dl_b->lock); 3592 3593 return err; 3594 } 3595 3596 /* 3597 * This function initializes the sched_dl_entity of a newly becoming 3598 * SCHED_DEADLINE task. 3599 * 3600 * Only the static values are considered here, the actual runtime and the 3601 * absolute deadline will be properly calculated when the task is enqueued 3602 * for the first time with its new policy. 3603 */ 3604 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3605 { 3606 struct sched_dl_entity *dl_se = &p->dl; 3607 3608 dl_se->dl_runtime = attr->sched_runtime; 3609 dl_se->dl_deadline = attr->sched_deadline; 3610 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3611 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS; 3612 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3613 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 3614 } 3615 3616 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3617 { 3618 struct sched_dl_entity *dl_se = &p->dl; 3619 3620 attr->sched_priority = p->rt_priority; 3621 attr->sched_runtime = dl_se->dl_runtime; 3622 attr->sched_deadline = dl_se->dl_deadline; 3623 attr->sched_period = dl_se->dl_period; 3624 attr->sched_flags &= ~SCHED_DL_FLAGS; 3625 attr->sched_flags |= dl_se->flags; 3626 } 3627 3628 /* 3629 * This function validates the new parameters of a -deadline task. 3630 * We ask for the deadline not being zero, and greater or equal 3631 * than the runtime, as well as the period of being zero or 3632 * greater than deadline. Furthermore, we have to be sure that 3633 * user parameters are above the internal resolution of 1us (we 3634 * check sched_runtime only since it is always the smaller one) and 3635 * below 2^63 ns (we have to check both sched_deadline and 3636 * sched_period, as the latter can be zero). 3637 */ 3638 bool __checkparam_dl(const struct sched_attr *attr) 3639 { 3640 u64 period, max, min; 3641 3642 /* special dl tasks don't actually use any parameter */ 3643 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3644 return true; 3645 3646 /* deadline != 0 */ 3647 if (attr->sched_deadline == 0) 3648 return false; 3649 3650 /* 3651 * Since we truncate DL_SCALE bits, make sure we're at least 3652 * that big. 3653 */ 3654 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3655 return false; 3656 3657 /* 3658 * Since we use the MSB for wrap-around and sign issues, make 3659 * sure it's not set (mind that period can be equal to zero). 3660 */ 3661 if (attr->sched_deadline & (1ULL << 63) || 3662 attr->sched_period & (1ULL << 63)) 3663 return false; 3664 3665 period = attr->sched_period; 3666 if (!period) 3667 period = attr->sched_deadline; 3668 3669 /* runtime <= deadline <= period (if period != 0) */ 3670 if (period < attr->sched_deadline || 3671 attr->sched_deadline < attr->sched_runtime) 3672 return false; 3673 3674 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; 3675 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; 3676 3677 if (period < min || period > max) 3678 return false; 3679 3680 return true; 3681 } 3682 3683 /* 3684 * This function clears the sched_dl_entity static params. 3685 */ 3686 static void __dl_clear_params(struct sched_dl_entity *dl_se) 3687 { 3688 dl_se->dl_runtime = 0; 3689 dl_se->dl_deadline = 0; 3690 dl_se->dl_period = 0; 3691 dl_se->flags = 0; 3692 dl_se->dl_bw = 0; 3693 dl_se->dl_density = 0; 3694 3695 dl_se->dl_throttled = 0; 3696 dl_se->dl_yielded = 0; 3697 dl_se->dl_non_contending = 0; 3698 dl_se->dl_overrun = 0; 3699 dl_se->dl_server = 0; 3700 dl_se->dl_defer = 0; 3701 dl_se->dl_defer_running = 0; 3702 dl_se->dl_defer_armed = 0; 3703 3704 #ifdef CONFIG_RT_MUTEXES 3705 dl_se->pi_se = dl_se; 3706 #endif 3707 } 3708 3709 void init_dl_entity(struct sched_dl_entity *dl_se) 3710 { 3711 RB_CLEAR_NODE(&dl_se->rb_node); 3712 init_dl_task_timer(dl_se); 3713 init_dl_inactive_task_timer(dl_se); 3714 __dl_clear_params(dl_se); 3715 } 3716 3717 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 3718 { 3719 struct sched_dl_entity *dl_se = &p->dl; 3720 3721 if (dl_se->dl_runtime != attr->sched_runtime || 3722 dl_se->dl_deadline != attr->sched_deadline || 3723 dl_se->dl_period != attr->sched_period || 3724 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS)) 3725 return true; 3726 3727 return false; 3728 } 3729 3730 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 3731 const struct cpumask *trial) 3732 { 3733 unsigned long flags, cap; 3734 struct dl_bw *cur_dl_b; 3735 int ret = 1; 3736 3737 rcu_read_lock_sched(); 3738 cur_dl_b = dl_bw_of(cpumask_any(cur)); 3739 cap = __dl_bw_capacity(trial); 3740 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 3741 if (__dl_overflow(cur_dl_b, cap, 0, 0)) 3742 ret = 0; 3743 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 3744 rcu_read_unlock_sched(); 3745 3746 return ret; 3747 } 3748 3749 enum dl_bw_request { 3750 dl_bw_req_deactivate = 0, 3751 dl_bw_req_alloc, 3752 dl_bw_req_free 3753 }; 3754 3755 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw) 3756 { 3757 unsigned long flags, cap; 3758 struct dl_bw *dl_b; 3759 bool overflow = 0; 3760 u64 dl_server_bw = 0; 3761 3762 rcu_read_lock_sched(); 3763 dl_b = dl_bw_of(cpu); 3764 raw_spin_lock_irqsave(&dl_b->lock, flags); 3765 3766 cap = dl_bw_capacity(cpu); 3767 switch (req) { 3768 case dl_bw_req_free: 3769 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu)); 3770 break; 3771 case dl_bw_req_alloc: 3772 overflow = __dl_overflow(dl_b, cap, 0, dl_bw); 3773 3774 if (!overflow) { 3775 /* 3776 * We reserve space in the destination 3777 * root_domain, as we can't fail after this point. 3778 * We will free resources in the source root_domain 3779 * later on (see set_cpus_allowed_dl()). 3780 */ 3781 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu)); 3782 } 3783 break; 3784 case dl_bw_req_deactivate: 3785 /* 3786 * cpu is not off yet, but we need to do the math by 3787 * considering it off already (i.e., what would happen if we 3788 * turn cpu off?). 3789 */ 3790 cap -= arch_scale_cpu_capacity(cpu); 3791 3792 /* 3793 * cpu is going offline and NORMAL and EXT tasks will be 3794 * moved away from it. We can thus discount dl_server 3795 * bandwidth contribution as it won't need to be servicing 3796 * tasks after the cpu is off. 3797 */ 3798 dl_server_bw = dl_server_read_bw(cpu); 3799 3800 /* 3801 * Not much to check if no DEADLINE bandwidth is present. 3802 * dl_servers we can discount, as tasks will be moved out the 3803 * offlined CPUs anyway. 3804 */ 3805 if (dl_b->total_bw - dl_server_bw > 0) { 3806 /* 3807 * Leaving at least one CPU for DEADLINE tasks seems a 3808 * wise thing to do. As said above, cpu is not offline 3809 * yet, so account for that. 3810 */ 3811 if (dl_bw_cpus(cpu) - 1) 3812 overflow = __dl_overflow(dl_b, cap, dl_server_bw, 0); 3813 else 3814 overflow = 1; 3815 } 3816 3817 break; 3818 } 3819 3820 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3821 rcu_read_unlock_sched(); 3822 3823 return overflow ? -EBUSY : 0; 3824 } 3825 3826 int dl_bw_deactivate(int cpu) 3827 { 3828 return dl_bw_manage(dl_bw_req_deactivate, cpu, 0); 3829 } 3830 3831 int dl_bw_alloc(int cpu, u64 dl_bw) 3832 { 3833 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw); 3834 } 3835 3836 void dl_bw_free(int cpu, u64 dl_bw) 3837 { 3838 dl_bw_manage(dl_bw_req_free, cpu, dl_bw); 3839 } 3840 3841 void print_dl_stats(struct seq_file *m, int cpu) 3842 { 3843 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 3844 } 3845