1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18
19 #include <linux/cpuset.h>
20
21 /*
22 * Default limits for DL period; on the top end we guard against small util
23 * tasks still getting ridiculously long effective runtimes, on the bottom end we
24 * guard against timer DoS.
25 */
26 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
27 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
28 #ifdef CONFIG_SYSCTL
29 static const struct ctl_table sched_dl_sysctls[] = {
30 {
31 .procname = "sched_deadline_period_max_us",
32 .data = &sysctl_sched_dl_period_max,
33 .maxlen = sizeof(unsigned int),
34 .mode = 0644,
35 .proc_handler = proc_douintvec_minmax,
36 .extra1 = (void *)&sysctl_sched_dl_period_min,
37 },
38 {
39 .procname = "sched_deadline_period_min_us",
40 .data = &sysctl_sched_dl_period_min,
41 .maxlen = sizeof(unsigned int),
42 .mode = 0644,
43 .proc_handler = proc_douintvec_minmax,
44 .extra2 = (void *)&sysctl_sched_dl_period_max,
45 },
46 };
47
sched_dl_sysctl_init(void)48 static int __init sched_dl_sysctl_init(void)
49 {
50 register_sysctl_init("kernel", sched_dl_sysctls);
51 return 0;
52 }
53 late_initcall(sched_dl_sysctl_init);
54 #endif
55
dl_server(struct sched_dl_entity * dl_se)56 static bool dl_server(struct sched_dl_entity *dl_se)
57 {
58 return dl_se->dl_server;
59 }
60
dl_task_of(struct sched_dl_entity * dl_se)61 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
62 {
63 BUG_ON(dl_server(dl_se));
64 return container_of(dl_se, struct task_struct, dl);
65 }
66
rq_of_dl_rq(struct dl_rq * dl_rq)67 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
68 {
69 return container_of(dl_rq, struct rq, dl);
70 }
71
rq_of_dl_se(struct sched_dl_entity * dl_se)72 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
73 {
74 struct rq *rq = dl_se->rq;
75
76 if (!dl_server(dl_se))
77 rq = task_rq(dl_task_of(dl_se));
78
79 return rq;
80 }
81
dl_rq_of_se(struct sched_dl_entity * dl_se)82 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
83 {
84 return &rq_of_dl_se(dl_se)->dl;
85 }
86
on_dl_rq(struct sched_dl_entity * dl_se)87 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
88 {
89 return !RB_EMPTY_NODE(&dl_se->rb_node);
90 }
91
92 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)93 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
94 {
95 return dl_se->pi_se;
96 }
97
is_dl_boosted(struct sched_dl_entity * dl_se)98 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
99 {
100 return pi_of(dl_se) != dl_se;
101 }
102 #else
pi_of(struct sched_dl_entity * dl_se)103 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
104 {
105 return dl_se;
106 }
107
is_dl_boosted(struct sched_dl_entity * dl_se)108 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
109 {
110 return false;
111 }
112 #endif
113
114 #ifdef CONFIG_SMP
dl_bw_of(int i)115 static inline struct dl_bw *dl_bw_of(int i)
116 {
117 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
118 "sched RCU must be held");
119 return &cpu_rq(i)->rd->dl_bw;
120 }
121
dl_bw_cpus(int i)122 static inline int dl_bw_cpus(int i)
123 {
124 struct root_domain *rd = cpu_rq(i)->rd;
125 int cpus;
126
127 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
128 "sched RCU must be held");
129
130 if (cpumask_subset(rd->span, cpu_active_mask))
131 return cpumask_weight(rd->span);
132
133 cpus = 0;
134
135 for_each_cpu_and(i, rd->span, cpu_active_mask)
136 cpus++;
137
138 return cpus;
139 }
140
__dl_bw_capacity(const struct cpumask * mask)141 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
142 {
143 unsigned long cap = 0;
144 int i;
145
146 for_each_cpu_and(i, mask, cpu_active_mask)
147 cap += arch_scale_cpu_capacity(i);
148
149 return cap;
150 }
151
152 /*
153 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
154 * of the CPU the task is running on rather rd's \Sum CPU capacity.
155 */
dl_bw_capacity(int i)156 static inline unsigned long dl_bw_capacity(int i)
157 {
158 if (!sched_asym_cpucap_active() &&
159 arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
160 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
161 } else {
162 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
163 "sched RCU must be held");
164
165 return __dl_bw_capacity(cpu_rq(i)->rd->span);
166 }
167 }
168
dl_bw_visited(int cpu,u64 cookie)169 bool dl_bw_visited(int cpu, u64 cookie)
170 {
171 struct root_domain *rd = cpu_rq(cpu)->rd;
172
173 if (rd->visit_cookie == cookie)
174 return true;
175
176 rd->visit_cookie = cookie;
177 return false;
178 }
179
180 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)181 void __dl_update(struct dl_bw *dl_b, s64 bw)
182 {
183 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
184 int i;
185
186 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
187 "sched RCU must be held");
188 for_each_cpu_and(i, rd->span, cpu_active_mask) {
189 struct rq *rq = cpu_rq(i);
190
191 rq->dl.extra_bw += bw;
192 }
193 }
194 #else
dl_bw_of(int i)195 static inline struct dl_bw *dl_bw_of(int i)
196 {
197 return &cpu_rq(i)->dl.dl_bw;
198 }
199
dl_bw_cpus(int i)200 static inline int dl_bw_cpus(int i)
201 {
202 return 1;
203 }
204
dl_bw_capacity(int i)205 static inline unsigned long dl_bw_capacity(int i)
206 {
207 return SCHED_CAPACITY_SCALE;
208 }
209
dl_bw_visited(int cpu,u64 cookie)210 bool dl_bw_visited(int cpu, u64 cookie)
211 {
212 return false;
213 }
214
215 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)216 void __dl_update(struct dl_bw *dl_b, s64 bw)
217 {
218 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
219
220 dl->extra_bw += bw;
221 }
222 #endif
223
224 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)225 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
226 {
227 dl_b->total_bw -= tsk_bw;
228 __dl_update(dl_b, (s32)tsk_bw / cpus);
229 }
230
231 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)232 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
233 {
234 dl_b->total_bw += tsk_bw;
235 __dl_update(dl_b, -((s32)tsk_bw / cpus));
236 }
237
238 static inline bool
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)239 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
240 {
241 return dl_b->bw != -1 &&
242 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
243 }
244
245 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)246 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
247 {
248 u64 old = dl_rq->running_bw;
249
250 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
251 dl_rq->running_bw += dl_bw;
252 WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */
253 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
254 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
255 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
256 }
257
258 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)259 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
260 {
261 u64 old = dl_rq->running_bw;
262
263 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
264 dl_rq->running_bw -= dl_bw;
265 WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */
266 if (dl_rq->running_bw > old)
267 dl_rq->running_bw = 0;
268 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
269 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
270 }
271
272 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)273 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
274 {
275 u64 old = dl_rq->this_bw;
276
277 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
278 dl_rq->this_bw += dl_bw;
279 WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */
280 }
281
282 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)283 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
284 {
285 u64 old = dl_rq->this_bw;
286
287 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
288 dl_rq->this_bw -= dl_bw;
289 WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */
290 if (dl_rq->this_bw > old)
291 dl_rq->this_bw = 0;
292 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
293 }
294
295 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)296 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
297 {
298 if (!dl_entity_is_special(dl_se))
299 __add_rq_bw(dl_se->dl_bw, dl_rq);
300 }
301
302 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)303 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
304 {
305 if (!dl_entity_is_special(dl_se))
306 __sub_rq_bw(dl_se->dl_bw, dl_rq);
307 }
308
309 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)310 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311 {
312 if (!dl_entity_is_special(dl_se))
313 __add_running_bw(dl_se->dl_bw, dl_rq);
314 }
315
316 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)317 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
318 {
319 if (!dl_entity_is_special(dl_se))
320 __sub_running_bw(dl_se->dl_bw, dl_rq);
321 }
322
dl_rq_change_utilization(struct rq * rq,struct sched_dl_entity * dl_se,u64 new_bw)323 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
324 {
325 if (dl_se->dl_non_contending) {
326 sub_running_bw(dl_se, &rq->dl);
327 dl_se->dl_non_contending = 0;
328
329 /*
330 * If the timer handler is currently running and the
331 * timer cannot be canceled, inactive_task_timer()
332 * will see that dl_not_contending is not set, and
333 * will not touch the rq's active utilization,
334 * so we are still safe.
335 */
336 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
337 if (!dl_server(dl_se))
338 put_task_struct(dl_task_of(dl_se));
339 }
340 }
341 __sub_rq_bw(dl_se->dl_bw, &rq->dl);
342 __add_rq_bw(new_bw, &rq->dl);
343 }
344
345 static __always_inline
cancel_dl_timer(struct sched_dl_entity * dl_se,struct hrtimer * timer)346 void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer)
347 {
348 /*
349 * If the timer callback was running (hrtimer_try_to_cancel == -1),
350 * it will eventually call put_task_struct().
351 */
352 if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se))
353 put_task_struct(dl_task_of(dl_se));
354 }
355
356 static __always_inline
cancel_replenish_timer(struct sched_dl_entity * dl_se)357 void cancel_replenish_timer(struct sched_dl_entity *dl_se)
358 {
359 cancel_dl_timer(dl_se, &dl_se->dl_timer);
360 }
361
362 static __always_inline
cancel_inactive_timer(struct sched_dl_entity * dl_se)363 void cancel_inactive_timer(struct sched_dl_entity *dl_se)
364 {
365 cancel_dl_timer(dl_se, &dl_se->inactive_timer);
366 }
367
dl_change_utilization(struct task_struct * p,u64 new_bw)368 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
369 {
370 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
371
372 if (task_on_rq_queued(p))
373 return;
374
375 dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
376 }
377
378 static void __dl_clear_params(struct sched_dl_entity *dl_se);
379
380 /*
381 * The utilization of a task cannot be immediately removed from
382 * the rq active utilization (running_bw) when the task blocks.
383 * Instead, we have to wait for the so called "0-lag time".
384 *
385 * If a task blocks before the "0-lag time", a timer (the inactive
386 * timer) is armed, and running_bw is decreased when the timer
387 * fires.
388 *
389 * If the task wakes up again before the inactive timer fires,
390 * the timer is canceled, whereas if the task wakes up after the
391 * inactive timer fired (and running_bw has been decreased) the
392 * task's utilization has to be added to running_bw again.
393 * A flag in the deadline scheduling entity (dl_non_contending)
394 * is used to avoid race conditions between the inactive timer handler
395 * and task wakeups.
396 *
397 * The following diagram shows how running_bw is updated. A task is
398 * "ACTIVE" when its utilization contributes to running_bw; an
399 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
400 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
401 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
402 * time already passed, which does not contribute to running_bw anymore.
403 * +------------------+
404 * wakeup | ACTIVE |
405 * +------------------>+ contending |
406 * | add_running_bw | |
407 * | +----+------+------+
408 * | | ^
409 * | dequeue | |
410 * +--------+-------+ | |
411 * | | t >= 0-lag | | wakeup
412 * | INACTIVE |<---------------+ |
413 * | | sub_running_bw | |
414 * +--------+-------+ | |
415 * ^ | |
416 * | t < 0-lag | |
417 * | | |
418 * | V |
419 * | +----+------+------+
420 * | sub_running_bw | ACTIVE |
421 * +-------------------+ |
422 * inactive timer | non contending |
423 * fired +------------------+
424 *
425 * The task_non_contending() function is invoked when a task
426 * blocks, and checks if the 0-lag time already passed or
427 * not (in the first case, it directly updates running_bw;
428 * in the second case, it arms the inactive timer).
429 *
430 * The task_contending() function is invoked when a task wakes
431 * up, and checks if the task is still in the "ACTIVE non contending"
432 * state or not (in the second case, it updates running_bw).
433 */
task_non_contending(struct sched_dl_entity * dl_se)434 static void task_non_contending(struct sched_dl_entity *dl_se)
435 {
436 struct hrtimer *timer = &dl_se->inactive_timer;
437 struct rq *rq = rq_of_dl_se(dl_se);
438 struct dl_rq *dl_rq = &rq->dl;
439 s64 zerolag_time;
440
441 /*
442 * If this is a non-deadline task that has been boosted,
443 * do nothing
444 */
445 if (dl_se->dl_runtime == 0)
446 return;
447
448 if (dl_entity_is_special(dl_se))
449 return;
450
451 WARN_ON(dl_se->dl_non_contending);
452
453 zerolag_time = dl_se->deadline -
454 div64_long((dl_se->runtime * dl_se->dl_period),
455 dl_se->dl_runtime);
456
457 /*
458 * Using relative times instead of the absolute "0-lag time"
459 * allows to simplify the code
460 */
461 zerolag_time -= rq_clock(rq);
462
463 /*
464 * If the "0-lag time" already passed, decrease the active
465 * utilization now, instead of starting a timer
466 */
467 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
468 if (dl_server(dl_se)) {
469 sub_running_bw(dl_se, dl_rq);
470 } else {
471 struct task_struct *p = dl_task_of(dl_se);
472
473 if (dl_task(p))
474 sub_running_bw(dl_se, dl_rq);
475
476 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
477 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
478
479 if (READ_ONCE(p->__state) == TASK_DEAD)
480 sub_rq_bw(dl_se, &rq->dl);
481 raw_spin_lock(&dl_b->lock);
482 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
483 raw_spin_unlock(&dl_b->lock);
484 __dl_clear_params(dl_se);
485 }
486 }
487
488 return;
489 }
490
491 dl_se->dl_non_contending = 1;
492 if (!dl_server(dl_se))
493 get_task_struct(dl_task_of(dl_se));
494
495 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
496 }
497
task_contending(struct sched_dl_entity * dl_se,int flags)498 static void task_contending(struct sched_dl_entity *dl_se, int flags)
499 {
500 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
501
502 /*
503 * If this is a non-deadline task that has been boosted,
504 * do nothing
505 */
506 if (dl_se->dl_runtime == 0)
507 return;
508
509 if (flags & ENQUEUE_MIGRATED)
510 add_rq_bw(dl_se, dl_rq);
511
512 if (dl_se->dl_non_contending) {
513 dl_se->dl_non_contending = 0;
514 /*
515 * If the timer handler is currently running and the
516 * timer cannot be canceled, inactive_task_timer()
517 * will see that dl_not_contending is not set, and
518 * will not touch the rq's active utilization,
519 * so we are still safe.
520 */
521 cancel_inactive_timer(dl_se);
522 } else {
523 /*
524 * Since "dl_non_contending" is not set, the
525 * task's utilization has already been removed from
526 * active utilization (either when the task blocked,
527 * when the "inactive timer" fired).
528 * So, add it back.
529 */
530 add_running_bw(dl_se, dl_rq);
531 }
532 }
533
is_leftmost(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)534 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
535 {
536 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
537 }
538
539 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
540
init_dl_bw(struct dl_bw * dl_b)541 void init_dl_bw(struct dl_bw *dl_b)
542 {
543 raw_spin_lock_init(&dl_b->lock);
544 if (global_rt_runtime() == RUNTIME_INF)
545 dl_b->bw = -1;
546 else
547 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
548 dl_b->total_bw = 0;
549 }
550
init_dl_rq(struct dl_rq * dl_rq)551 void init_dl_rq(struct dl_rq *dl_rq)
552 {
553 dl_rq->root = RB_ROOT_CACHED;
554
555 #ifdef CONFIG_SMP
556 /* zero means no -deadline tasks */
557 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
558
559 dl_rq->overloaded = 0;
560 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
561 #else
562 init_dl_bw(&dl_rq->dl_bw);
563 #endif
564
565 dl_rq->running_bw = 0;
566 dl_rq->this_bw = 0;
567 init_dl_rq_bw_ratio(dl_rq);
568 }
569
570 #ifdef CONFIG_SMP
571
dl_overloaded(struct rq * rq)572 static inline int dl_overloaded(struct rq *rq)
573 {
574 return atomic_read(&rq->rd->dlo_count);
575 }
576
dl_set_overload(struct rq * rq)577 static inline void dl_set_overload(struct rq *rq)
578 {
579 if (!rq->online)
580 return;
581
582 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
583 /*
584 * Must be visible before the overload count is
585 * set (as in sched_rt.c).
586 *
587 * Matched by the barrier in pull_dl_task().
588 */
589 smp_wmb();
590 atomic_inc(&rq->rd->dlo_count);
591 }
592
dl_clear_overload(struct rq * rq)593 static inline void dl_clear_overload(struct rq *rq)
594 {
595 if (!rq->online)
596 return;
597
598 atomic_dec(&rq->rd->dlo_count);
599 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
600 }
601
602 #define __node_2_pdl(node) \
603 rb_entry((node), struct task_struct, pushable_dl_tasks)
604
__pushable_less(struct rb_node * a,const struct rb_node * b)605 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
606 {
607 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
608 }
609
has_pushable_dl_tasks(struct rq * rq)610 static inline int has_pushable_dl_tasks(struct rq *rq)
611 {
612 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
613 }
614
615 /*
616 * The list of pushable -deadline task is not a plist, like in
617 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
618 */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)619 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
620 {
621 struct rb_node *leftmost;
622
623 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
624
625 leftmost = rb_add_cached(&p->pushable_dl_tasks,
626 &rq->dl.pushable_dl_tasks_root,
627 __pushable_less);
628 if (leftmost)
629 rq->dl.earliest_dl.next = p->dl.deadline;
630
631 if (!rq->dl.overloaded) {
632 dl_set_overload(rq);
633 rq->dl.overloaded = 1;
634 }
635 }
636
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)637 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
638 {
639 struct dl_rq *dl_rq = &rq->dl;
640 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
641 struct rb_node *leftmost;
642
643 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
644 return;
645
646 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
647 if (leftmost)
648 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
649
650 RB_CLEAR_NODE(&p->pushable_dl_tasks);
651
652 if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
653 dl_clear_overload(rq);
654 rq->dl.overloaded = 0;
655 }
656 }
657
658 static int push_dl_task(struct rq *rq);
659
need_pull_dl_task(struct rq * rq,struct task_struct * prev)660 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
661 {
662 return rq->online && dl_task(prev);
663 }
664
665 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
666 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
667
668 static void push_dl_tasks(struct rq *);
669 static void pull_dl_task(struct rq *);
670
deadline_queue_push_tasks(struct rq * rq)671 static inline void deadline_queue_push_tasks(struct rq *rq)
672 {
673 if (!has_pushable_dl_tasks(rq))
674 return;
675
676 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
677 }
678
deadline_queue_pull_task(struct rq * rq)679 static inline void deadline_queue_pull_task(struct rq *rq)
680 {
681 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
682 }
683
684 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
685
dl_task_offline_migration(struct rq * rq,struct task_struct * p)686 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
687 {
688 struct rq *later_rq = NULL;
689 struct dl_bw *dl_b;
690
691 later_rq = find_lock_later_rq(p, rq);
692 if (!later_rq) {
693 int cpu;
694
695 /*
696 * If we cannot preempt any rq, fall back to pick any
697 * online CPU:
698 */
699 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
700 if (cpu >= nr_cpu_ids) {
701 /*
702 * Failed to find any suitable CPU.
703 * The task will never come back!
704 */
705 WARN_ON_ONCE(dl_bandwidth_enabled());
706
707 /*
708 * If admission control is disabled we
709 * try a little harder to let the task
710 * run.
711 */
712 cpu = cpumask_any(cpu_active_mask);
713 }
714 later_rq = cpu_rq(cpu);
715 double_lock_balance(rq, later_rq);
716 }
717
718 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
719 /*
720 * Inactive timer is armed (or callback is running, but
721 * waiting for us to release rq locks). In any case, when it
722 * will fire (or continue), it will see running_bw of this
723 * task migrated to later_rq (and correctly handle it).
724 */
725 sub_running_bw(&p->dl, &rq->dl);
726 sub_rq_bw(&p->dl, &rq->dl);
727
728 add_rq_bw(&p->dl, &later_rq->dl);
729 add_running_bw(&p->dl, &later_rq->dl);
730 } else {
731 sub_rq_bw(&p->dl, &rq->dl);
732 add_rq_bw(&p->dl, &later_rq->dl);
733 }
734
735 /*
736 * And we finally need to fix up root_domain(s) bandwidth accounting,
737 * since p is still hanging out in the old (now moved to default) root
738 * domain.
739 */
740 dl_b = &rq->rd->dl_bw;
741 raw_spin_lock(&dl_b->lock);
742 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
743 raw_spin_unlock(&dl_b->lock);
744
745 dl_b = &later_rq->rd->dl_bw;
746 raw_spin_lock(&dl_b->lock);
747 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
748 raw_spin_unlock(&dl_b->lock);
749
750 set_task_cpu(p, later_rq->cpu);
751 double_unlock_balance(later_rq, rq);
752
753 return later_rq;
754 }
755
756 #else
757
758 static inline
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)759 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
760 {
761 }
762
763 static inline
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)764 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
765 {
766 }
767
768 static inline
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)769 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
770 {
771 }
772
773 static inline
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)774 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
775 {
776 }
777
deadline_queue_push_tasks(struct rq * rq)778 static inline void deadline_queue_push_tasks(struct rq *rq)
779 {
780 }
781
deadline_queue_pull_task(struct rq * rq)782 static inline void deadline_queue_pull_task(struct rq *rq)
783 {
784 }
785 #endif /* CONFIG_SMP */
786
787 static void
788 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
789 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
790 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
791 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
792
replenish_dl_new_period(struct sched_dl_entity * dl_se,struct rq * rq)793 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
794 struct rq *rq)
795 {
796 /* for non-boosted task, pi_of(dl_se) == dl_se */
797 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
798 dl_se->runtime = pi_of(dl_se)->dl_runtime;
799
800 /*
801 * If it is a deferred reservation, and the server
802 * is not handling an starvation case, defer it.
803 */
804 if (dl_se->dl_defer && !dl_se->dl_defer_running) {
805 dl_se->dl_throttled = 1;
806 dl_se->dl_defer_armed = 1;
807 }
808 }
809
810 /*
811 * We are being explicitly informed that a new instance is starting,
812 * and this means that:
813 * - the absolute deadline of the entity has to be placed at
814 * current time + relative deadline;
815 * - the runtime of the entity has to be set to the maximum value.
816 *
817 * The capability of specifying such event is useful whenever a -deadline
818 * entity wants to (try to!) synchronize its behaviour with the scheduler's
819 * one, and to (try to!) reconcile itself with its own scheduling
820 * parameters.
821 */
setup_new_dl_entity(struct sched_dl_entity * dl_se)822 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
823 {
824 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
825 struct rq *rq = rq_of_dl_rq(dl_rq);
826
827 WARN_ON(is_dl_boosted(dl_se));
828 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
829
830 /*
831 * We are racing with the deadline timer. So, do nothing because
832 * the deadline timer handler will take care of properly recharging
833 * the runtime and postponing the deadline
834 */
835 if (dl_se->dl_throttled)
836 return;
837
838 /*
839 * We use the regular wall clock time to set deadlines in the
840 * future; in fact, we must consider execution overheads (time
841 * spent on hardirq context, etc.).
842 */
843 replenish_dl_new_period(dl_se, rq);
844 }
845
846 static int start_dl_timer(struct sched_dl_entity *dl_se);
847 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
848
849 /*
850 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
851 * possibility of a entity lasting more than what it declared, and thus
852 * exhausting its runtime.
853 *
854 * Here we are interested in making runtime overrun possible, but we do
855 * not want a entity which is misbehaving to affect the scheduling of all
856 * other entities.
857 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
858 * is used, in order to confine each entity within its own bandwidth.
859 *
860 * This function deals exactly with that, and ensures that when the runtime
861 * of a entity is replenished, its deadline is also postponed. That ensures
862 * the overrunning entity can't interfere with other entity in the system and
863 * can't make them miss their deadlines. Reasons why this kind of overruns
864 * could happen are, typically, a entity voluntarily trying to overcome its
865 * runtime, or it just underestimated it during sched_setattr().
866 */
replenish_dl_entity(struct sched_dl_entity * dl_se)867 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
868 {
869 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
870 struct rq *rq = rq_of_dl_rq(dl_rq);
871
872 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
873
874 /*
875 * This could be the case for a !-dl task that is boosted.
876 * Just go with full inherited parameters.
877 *
878 * Or, it could be the case of a deferred reservation that
879 * was not able to consume its runtime in background and
880 * reached this point with current u > U.
881 *
882 * In both cases, set a new period.
883 */
884 if (dl_se->dl_deadline == 0 ||
885 (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
886 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
887 dl_se->runtime = pi_of(dl_se)->dl_runtime;
888 }
889
890 if (dl_se->dl_yielded && dl_se->runtime > 0)
891 dl_se->runtime = 0;
892
893 /*
894 * We keep moving the deadline away until we get some
895 * available runtime for the entity. This ensures correct
896 * handling of situations where the runtime overrun is
897 * arbitrary large.
898 */
899 while (dl_se->runtime <= 0) {
900 dl_se->deadline += pi_of(dl_se)->dl_period;
901 dl_se->runtime += pi_of(dl_se)->dl_runtime;
902 }
903
904 /*
905 * At this point, the deadline really should be "in
906 * the future" with respect to rq->clock. If it's
907 * not, we are, for some reason, lagging too much!
908 * Anyway, after having warn userspace abut that,
909 * we still try to keep the things running by
910 * resetting the deadline and the budget of the
911 * entity.
912 */
913 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
914 printk_deferred_once("sched: DL replenish lagged too much\n");
915 replenish_dl_new_period(dl_se, rq);
916 }
917
918 if (dl_se->dl_yielded)
919 dl_se->dl_yielded = 0;
920 if (dl_se->dl_throttled)
921 dl_se->dl_throttled = 0;
922
923 /*
924 * If this is the replenishment of a deferred reservation,
925 * clear the flag and return.
926 */
927 if (dl_se->dl_defer_armed) {
928 dl_se->dl_defer_armed = 0;
929 return;
930 }
931
932 /*
933 * A this point, if the deferred server is not armed, and the deadline
934 * is in the future, if it is not running already, throttle the server
935 * and arm the defer timer.
936 */
937 if (dl_se->dl_defer && !dl_se->dl_defer_running &&
938 dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
939 if (!is_dl_boosted(dl_se) && dl_se->server_has_tasks(dl_se)) {
940
941 /*
942 * Set dl_se->dl_defer_armed and dl_throttled variables to
943 * inform the start_dl_timer() that this is a deferred
944 * activation.
945 */
946 dl_se->dl_defer_armed = 1;
947 dl_se->dl_throttled = 1;
948 if (!start_dl_timer(dl_se)) {
949 /*
950 * If for whatever reason (delays), a previous timer was
951 * queued but not serviced, cancel it and clean the
952 * deferrable server variables intended for start_dl_timer().
953 */
954 hrtimer_try_to_cancel(&dl_se->dl_timer);
955 dl_se->dl_defer_armed = 0;
956 dl_se->dl_throttled = 0;
957 }
958 }
959 }
960 }
961
962 /*
963 * Here we check if --at time t-- an entity (which is probably being
964 * [re]activated or, in general, enqueued) can use its remaining runtime
965 * and its current deadline _without_ exceeding the bandwidth it is
966 * assigned (function returns true if it can't). We are in fact applying
967 * one of the CBS rules: when a task wakes up, if the residual runtime
968 * over residual deadline fits within the allocated bandwidth, then we
969 * can keep the current (absolute) deadline and residual budget without
970 * disrupting the schedulability of the system. Otherwise, we should
971 * refill the runtime and set the deadline a period in the future,
972 * because keeping the current (absolute) deadline of the task would
973 * result in breaking guarantees promised to other tasks (refer to
974 * Documentation/scheduler/sched-deadline.rst for more information).
975 *
976 * This function returns true if:
977 *
978 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
979 *
980 * IOW we can't recycle current parameters.
981 *
982 * Notice that the bandwidth check is done against the deadline. For
983 * task with deadline equal to period this is the same of using
984 * dl_period instead of dl_deadline in the equation above.
985 */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)986 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
987 {
988 u64 left, right;
989
990 /*
991 * left and right are the two sides of the equation above,
992 * after a bit of shuffling to use multiplications instead
993 * of divisions.
994 *
995 * Note that none of the time values involved in the two
996 * multiplications are absolute: dl_deadline and dl_runtime
997 * are the relative deadline and the maximum runtime of each
998 * instance, runtime is the runtime left for the last instance
999 * and (deadline - t), since t is rq->clock, is the time left
1000 * to the (absolute) deadline. Even if overflowing the u64 type
1001 * is very unlikely to occur in both cases, here we scale down
1002 * as we want to avoid that risk at all. Scaling down by 10
1003 * means that we reduce granularity to 1us. We are fine with it,
1004 * since this is only a true/false check and, anyway, thinking
1005 * of anything below microseconds resolution is actually fiction
1006 * (but still we want to give the user that illusion >;).
1007 */
1008 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
1009 right = ((dl_se->deadline - t) >> DL_SCALE) *
1010 (pi_of(dl_se)->dl_runtime >> DL_SCALE);
1011
1012 return dl_time_before(right, left);
1013 }
1014
1015 /*
1016 * Revised wakeup rule [1]: For self-suspending tasks, rather then
1017 * re-initializing task's runtime and deadline, the revised wakeup
1018 * rule adjusts the task's runtime to avoid the task to overrun its
1019 * density.
1020 *
1021 * Reasoning: a task may overrun the density if:
1022 * runtime / (deadline - t) > dl_runtime / dl_deadline
1023 *
1024 * Therefore, runtime can be adjusted to:
1025 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
1026 *
1027 * In such way that runtime will be equal to the maximum density
1028 * the task can use without breaking any rule.
1029 *
1030 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
1031 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
1032 */
1033 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)1034 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
1035 {
1036 u64 laxity = dl_se->deadline - rq_clock(rq);
1037
1038 /*
1039 * If the task has deadline < period, and the deadline is in the past,
1040 * it should already be throttled before this check.
1041 *
1042 * See update_dl_entity() comments for further details.
1043 */
1044 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
1045
1046 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
1047 }
1048
1049 /*
1050 * Regarding the deadline, a task with implicit deadline has a relative
1051 * deadline == relative period. A task with constrained deadline has a
1052 * relative deadline <= relative period.
1053 *
1054 * We support constrained deadline tasks. However, there are some restrictions
1055 * applied only for tasks which do not have an implicit deadline. See
1056 * update_dl_entity() to know more about such restrictions.
1057 *
1058 * The dl_is_implicit() returns true if the task has an implicit deadline.
1059 */
dl_is_implicit(struct sched_dl_entity * dl_se)1060 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
1061 {
1062 return dl_se->dl_deadline == dl_se->dl_period;
1063 }
1064
1065 /*
1066 * When a deadline entity is placed in the runqueue, its runtime and deadline
1067 * might need to be updated. This is done by a CBS wake up rule. There are two
1068 * different rules: 1) the original CBS; and 2) the Revisited CBS.
1069 *
1070 * When the task is starting a new period, the Original CBS is used. In this
1071 * case, the runtime is replenished and a new absolute deadline is set.
1072 *
1073 * When a task is queued before the begin of the next period, using the
1074 * remaining runtime and deadline could make the entity to overflow, see
1075 * dl_entity_overflow() to find more about runtime overflow. When such case
1076 * is detected, the runtime and deadline need to be updated.
1077 *
1078 * If the task has an implicit deadline, i.e., deadline == period, the Original
1079 * CBS is applied. The runtime is replenished and a new absolute deadline is
1080 * set, as in the previous cases.
1081 *
1082 * However, the Original CBS does not work properly for tasks with
1083 * deadline < period, which are said to have a constrained deadline. By
1084 * applying the Original CBS, a constrained deadline task would be able to run
1085 * runtime/deadline in a period. With deadline < period, the task would
1086 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1087 *
1088 * In order to prevent this misbehave, the Revisited CBS is used for
1089 * constrained deadline tasks when a runtime overflow is detected. In the
1090 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1091 * the remaining runtime of the task is reduced to avoid runtime overflow.
1092 * Please refer to the comments update_dl_revised_wakeup() function to find
1093 * more about the Revised CBS rule.
1094 */
update_dl_entity(struct sched_dl_entity * dl_se)1095 static void update_dl_entity(struct sched_dl_entity *dl_se)
1096 {
1097 struct rq *rq = rq_of_dl_se(dl_se);
1098
1099 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1100 dl_entity_overflow(dl_se, rq_clock(rq))) {
1101
1102 if (unlikely(!dl_is_implicit(dl_se) &&
1103 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1104 !is_dl_boosted(dl_se))) {
1105 update_dl_revised_wakeup(dl_se, rq);
1106 return;
1107 }
1108
1109 replenish_dl_new_period(dl_se, rq);
1110 } else if (dl_server(dl_se) && dl_se->dl_defer) {
1111 /*
1112 * The server can still use its previous deadline, so check if
1113 * it left the dl_defer_running state.
1114 */
1115 if (!dl_se->dl_defer_running) {
1116 dl_se->dl_defer_armed = 1;
1117 dl_se->dl_throttled = 1;
1118 }
1119 }
1120 }
1121
dl_next_period(struct sched_dl_entity * dl_se)1122 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1123 {
1124 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1125 }
1126
1127 /*
1128 * If the entity depleted all its runtime, and if we want it to sleep
1129 * while waiting for some new execution time to become available, we
1130 * set the bandwidth replenishment timer to the replenishment instant
1131 * and try to activate it.
1132 *
1133 * Notice that it is important for the caller to know if the timer
1134 * actually started or not (i.e., the replenishment instant is in
1135 * the future or in the past).
1136 */
start_dl_timer(struct sched_dl_entity * dl_se)1137 static int start_dl_timer(struct sched_dl_entity *dl_se)
1138 {
1139 struct hrtimer *timer = &dl_se->dl_timer;
1140 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1141 struct rq *rq = rq_of_dl_rq(dl_rq);
1142 ktime_t now, act;
1143 s64 delta;
1144
1145 lockdep_assert_rq_held(rq);
1146
1147 /*
1148 * We want the timer to fire at the deadline, but considering
1149 * that it is actually coming from rq->clock and not from
1150 * hrtimer's time base reading.
1151 *
1152 * The deferred reservation will have its timer set to
1153 * (deadline - runtime). At that point, the CBS rule will decide
1154 * if the current deadline can be used, or if a replenishment is
1155 * required to avoid add too much pressure on the system
1156 * (current u > U).
1157 */
1158 if (dl_se->dl_defer_armed) {
1159 WARN_ON_ONCE(!dl_se->dl_throttled);
1160 act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1161 } else {
1162 /* act = deadline - rel-deadline + period */
1163 act = ns_to_ktime(dl_next_period(dl_se));
1164 }
1165
1166 now = hrtimer_cb_get_time(timer);
1167 delta = ktime_to_ns(now) - rq_clock(rq);
1168 act = ktime_add_ns(act, delta);
1169
1170 /*
1171 * If the expiry time already passed, e.g., because the value
1172 * chosen as the deadline is too small, don't even try to
1173 * start the timer in the past!
1174 */
1175 if (ktime_us_delta(act, now) < 0)
1176 return 0;
1177
1178 /*
1179 * !enqueued will guarantee another callback; even if one is already in
1180 * progress. This ensures a balanced {get,put}_task_struct().
1181 *
1182 * The race against __run_timer() clearing the enqueued state is
1183 * harmless because we're holding task_rq()->lock, therefore the timer
1184 * expiring after we've done the check will wait on its task_rq_lock()
1185 * and observe our state.
1186 */
1187 if (!hrtimer_is_queued(timer)) {
1188 if (!dl_server(dl_se))
1189 get_task_struct(dl_task_of(dl_se));
1190 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1191 }
1192
1193 return 1;
1194 }
1195
__push_dl_task(struct rq * rq,struct rq_flags * rf)1196 static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1197 {
1198 #ifdef CONFIG_SMP
1199 /*
1200 * Queueing this task back might have overloaded rq, check if we need
1201 * to kick someone away.
1202 */
1203 if (has_pushable_dl_tasks(rq)) {
1204 /*
1205 * Nothing relies on rq->lock after this, so its safe to drop
1206 * rq->lock.
1207 */
1208 rq_unpin_lock(rq, rf);
1209 push_dl_task(rq);
1210 rq_repin_lock(rq, rf);
1211 }
1212 #endif
1213 }
1214
1215 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1216 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1217
dl_server_timer(struct hrtimer * timer,struct sched_dl_entity * dl_se)1218 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1219 {
1220 struct rq *rq = rq_of_dl_se(dl_se);
1221 u64 fw;
1222
1223 scoped_guard (rq_lock, rq) {
1224 struct rq_flags *rf = &scope.rf;
1225
1226 if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1227 return HRTIMER_NORESTART;
1228
1229 sched_clock_tick();
1230 update_rq_clock(rq);
1231
1232 if (!dl_se->dl_runtime)
1233 return HRTIMER_NORESTART;
1234
1235 if (!dl_se->server_has_tasks(dl_se)) {
1236 replenish_dl_entity(dl_se);
1237 return HRTIMER_NORESTART;
1238 }
1239
1240 if (dl_se->dl_defer_armed) {
1241 /*
1242 * First check if the server could consume runtime in background.
1243 * If so, it is possible to push the defer timer for this amount
1244 * of time. The dl_server_min_res serves as a limit to avoid
1245 * forwarding the timer for a too small amount of time.
1246 */
1247 if (dl_time_before(rq_clock(dl_se->rq),
1248 (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1249
1250 /* reset the defer timer */
1251 fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1252
1253 hrtimer_forward_now(timer, ns_to_ktime(fw));
1254 return HRTIMER_RESTART;
1255 }
1256
1257 dl_se->dl_defer_running = 1;
1258 }
1259
1260 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1261
1262 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1263 resched_curr(rq);
1264
1265 __push_dl_task(rq, rf);
1266 }
1267
1268 return HRTIMER_NORESTART;
1269 }
1270
1271 /*
1272 * This is the bandwidth enforcement timer callback. If here, we know
1273 * a task is not on its dl_rq, since the fact that the timer was running
1274 * means the task is throttled and needs a runtime replenishment.
1275 *
1276 * However, what we actually do depends on the fact the task is active,
1277 * (it is on its rq) or has been removed from there by a call to
1278 * dequeue_task_dl(). In the former case we must issue the runtime
1279 * replenishment and add the task back to the dl_rq; in the latter, we just
1280 * do nothing but clearing dl_throttled, so that runtime and deadline
1281 * updating (and the queueing back to dl_rq) will be done by the
1282 * next call to enqueue_task_dl().
1283 */
dl_task_timer(struct hrtimer * timer)1284 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1285 {
1286 struct sched_dl_entity *dl_se = container_of(timer,
1287 struct sched_dl_entity,
1288 dl_timer);
1289 struct task_struct *p;
1290 struct rq_flags rf;
1291 struct rq *rq;
1292
1293 if (dl_server(dl_se))
1294 return dl_server_timer(timer, dl_se);
1295
1296 p = dl_task_of(dl_se);
1297 rq = task_rq_lock(p, &rf);
1298
1299 /*
1300 * The task might have changed its scheduling policy to something
1301 * different than SCHED_DEADLINE (through switched_from_dl()).
1302 */
1303 if (!dl_task(p))
1304 goto unlock;
1305
1306 /*
1307 * The task might have been boosted by someone else and might be in the
1308 * boosting/deboosting path, its not throttled.
1309 */
1310 if (is_dl_boosted(dl_se))
1311 goto unlock;
1312
1313 /*
1314 * Spurious timer due to start_dl_timer() race; or we already received
1315 * a replenishment from rt_mutex_setprio().
1316 */
1317 if (!dl_se->dl_throttled)
1318 goto unlock;
1319
1320 sched_clock_tick();
1321 update_rq_clock(rq);
1322
1323 /*
1324 * If the throttle happened during sched-out; like:
1325 *
1326 * schedule()
1327 * deactivate_task()
1328 * dequeue_task_dl()
1329 * update_curr_dl()
1330 * start_dl_timer()
1331 * __dequeue_task_dl()
1332 * prev->on_rq = 0;
1333 *
1334 * We can be both throttled and !queued. Replenish the counter
1335 * but do not enqueue -- wait for our wakeup to do that.
1336 */
1337 if (!task_on_rq_queued(p)) {
1338 replenish_dl_entity(dl_se);
1339 goto unlock;
1340 }
1341
1342 #ifdef CONFIG_SMP
1343 if (unlikely(!rq->online)) {
1344 /*
1345 * If the runqueue is no longer available, migrate the
1346 * task elsewhere. This necessarily changes rq.
1347 */
1348 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1349 rq = dl_task_offline_migration(rq, p);
1350 rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1351 update_rq_clock(rq);
1352
1353 /*
1354 * Now that the task has been migrated to the new RQ and we
1355 * have that locked, proceed as normal and enqueue the task
1356 * there.
1357 */
1358 }
1359 #endif
1360
1361 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1362 if (dl_task(rq->donor))
1363 wakeup_preempt_dl(rq, p, 0);
1364 else
1365 resched_curr(rq);
1366
1367 __push_dl_task(rq, &rf);
1368
1369 unlock:
1370 task_rq_unlock(rq, p, &rf);
1371
1372 /*
1373 * This can free the task_struct, including this hrtimer, do not touch
1374 * anything related to that after this.
1375 */
1376 put_task_struct(p);
1377
1378 return HRTIMER_NORESTART;
1379 }
1380
init_dl_task_timer(struct sched_dl_entity * dl_se)1381 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1382 {
1383 struct hrtimer *timer = &dl_se->dl_timer;
1384
1385 hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1386 }
1387
1388 /*
1389 * During the activation, CBS checks if it can reuse the current task's
1390 * runtime and period. If the deadline of the task is in the past, CBS
1391 * cannot use the runtime, and so it replenishes the task. This rule
1392 * works fine for implicit deadline tasks (deadline == period), and the
1393 * CBS was designed for implicit deadline tasks. However, a task with
1394 * constrained deadline (deadline < period) might be awakened after the
1395 * deadline, but before the next period. In this case, replenishing the
1396 * task would allow it to run for runtime / deadline. As in this case
1397 * deadline < period, CBS enables a task to run for more than the
1398 * runtime / period. In a very loaded system, this can cause a domino
1399 * effect, making other tasks miss their deadlines.
1400 *
1401 * To avoid this problem, in the activation of a constrained deadline
1402 * task after the deadline but before the next period, throttle the
1403 * task and set the replenishing timer to the begin of the next period,
1404 * unless it is boosted.
1405 */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1406 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1407 {
1408 struct rq *rq = rq_of_dl_se(dl_se);
1409
1410 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1411 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1412 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1413 return;
1414 dl_se->dl_throttled = 1;
1415 if (dl_se->runtime > 0)
1416 dl_se->runtime = 0;
1417 }
1418 }
1419
1420 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1421 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1422 {
1423 return (dl_se->runtime <= 0);
1424 }
1425
1426 /*
1427 * This function implements the GRUB accounting rule. According to the
1428 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1429 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1430 * where u is the utilization of the task, Umax is the maximum reclaimable
1431 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1432 * as the difference between the "total runqueue utilization" and the
1433 * "runqueue active utilization", and Uextra is the (per runqueue) extra
1434 * reclaimable utilization.
1435 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1436 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1437 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1438 * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1439 * Since delta is a 64 bit variable, to have an overflow its value should be
1440 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1441 * not an issue here.
1442 */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1443 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1444 {
1445 u64 u_act;
1446 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1447
1448 /*
1449 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1450 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1451 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1452 * negative leading to wrong results.
1453 */
1454 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1455 u_act = dl_se->dl_bw;
1456 else
1457 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1458
1459 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1460 return (delta * u_act) >> BW_SHIFT;
1461 }
1462
dl_scaled_delta_exec(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1463 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1464 {
1465 s64 scaled_delta_exec;
1466
1467 /*
1468 * For tasks that participate in GRUB, we implement GRUB-PA: the
1469 * spare reclaimed bandwidth is used to clock down frequency.
1470 *
1471 * For the others, we still need to scale reservation parameters
1472 * according to current frequency and CPU maximum capacity.
1473 */
1474 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1475 scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1476 } else {
1477 int cpu = cpu_of(rq);
1478 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1479 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1480
1481 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1482 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1483 }
1484
1485 return scaled_delta_exec;
1486 }
1487
1488 static inline void
1489 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1490 int flags);
update_curr_dl_se(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1491 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1492 {
1493 s64 scaled_delta_exec;
1494
1495 if (unlikely(delta_exec <= 0)) {
1496 if (unlikely(dl_se->dl_yielded))
1497 goto throttle;
1498 return;
1499 }
1500
1501 if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1502 return;
1503
1504 if (dl_entity_is_special(dl_se))
1505 return;
1506
1507 scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1508
1509 dl_se->runtime -= scaled_delta_exec;
1510
1511 /*
1512 * The fair server can consume its runtime while throttled (not queued/
1513 * running as regular CFS).
1514 *
1515 * If the server consumes its entire runtime in this state. The server
1516 * is not required for the current period. Thus, reset the server by
1517 * starting a new period, pushing the activation.
1518 */
1519 if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1520 /*
1521 * If the server was previously activated - the starving condition
1522 * took place, it this point it went away because the fair scheduler
1523 * was able to get runtime in background. So return to the initial
1524 * state.
1525 */
1526 dl_se->dl_defer_running = 0;
1527
1528 hrtimer_try_to_cancel(&dl_se->dl_timer);
1529
1530 replenish_dl_new_period(dl_se, dl_se->rq);
1531
1532 /*
1533 * Not being able to start the timer seems problematic. If it could not
1534 * be started for whatever reason, we need to "unthrottle" the DL server
1535 * and queue right away. Otherwise nothing might queue it. That's similar
1536 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1537 */
1538 WARN_ON_ONCE(!start_dl_timer(dl_se));
1539
1540 return;
1541 }
1542
1543 throttle:
1544 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1545 dl_se->dl_throttled = 1;
1546
1547 /* If requested, inform the user about runtime overruns. */
1548 if (dl_runtime_exceeded(dl_se) &&
1549 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1550 dl_se->dl_overrun = 1;
1551
1552 dequeue_dl_entity(dl_se, 0);
1553 if (!dl_server(dl_se)) {
1554 update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1555 dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1556 }
1557
1558 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1559 if (dl_server(dl_se))
1560 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1561 else
1562 enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1563 }
1564
1565 if (!is_leftmost(dl_se, &rq->dl))
1566 resched_curr(rq);
1567 }
1568
1569 /*
1570 * The fair server (sole dl_server) does not account for real-time
1571 * workload because it is running fair work.
1572 */
1573 if (dl_se == &rq->fair_server)
1574 return;
1575
1576 #ifdef CONFIG_RT_GROUP_SCHED
1577 /*
1578 * Because -- for now -- we share the rt bandwidth, we need to
1579 * account our runtime there too, otherwise actual rt tasks
1580 * would be able to exceed the shared quota.
1581 *
1582 * Account to the root rt group for now.
1583 *
1584 * The solution we're working towards is having the RT groups scheduled
1585 * using deadline servers -- however there's a few nasties to figure
1586 * out before that can happen.
1587 */
1588 if (rt_bandwidth_enabled()) {
1589 struct rt_rq *rt_rq = &rq->rt;
1590
1591 raw_spin_lock(&rt_rq->rt_runtime_lock);
1592 /*
1593 * We'll let actual RT tasks worry about the overflow here, we
1594 * have our own CBS to keep us inline; only account when RT
1595 * bandwidth is relevant.
1596 */
1597 if (sched_rt_bandwidth_account(rt_rq))
1598 rt_rq->rt_time += delta_exec;
1599 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1600 }
1601 #endif
1602 }
1603
1604 /*
1605 * In the non-defer mode, the idle time is not accounted, as the
1606 * server provides a guarantee.
1607 *
1608 * If the dl_server is in defer mode, the idle time is also considered
1609 * as time available for the fair server, avoiding a penalty for the
1610 * rt scheduler that did not consumed that time.
1611 */
dl_server_update_idle_time(struct rq * rq,struct task_struct * p)1612 void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
1613 {
1614 s64 delta_exec, scaled_delta_exec;
1615
1616 if (!rq->fair_server.dl_defer)
1617 return;
1618
1619 /* no need to discount more */
1620 if (rq->fair_server.runtime < 0)
1621 return;
1622
1623 delta_exec = rq_clock_task(rq) - p->se.exec_start;
1624 if (delta_exec < 0)
1625 return;
1626
1627 scaled_delta_exec = dl_scaled_delta_exec(rq, &rq->fair_server, delta_exec);
1628
1629 rq->fair_server.runtime -= scaled_delta_exec;
1630
1631 if (rq->fair_server.runtime < 0) {
1632 rq->fair_server.dl_defer_running = 0;
1633 rq->fair_server.runtime = 0;
1634 }
1635
1636 p->se.exec_start = rq_clock_task(rq);
1637 }
1638
dl_server_update(struct sched_dl_entity * dl_se,s64 delta_exec)1639 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1640 {
1641 /* 0 runtime = fair server disabled */
1642 if (dl_se->dl_runtime)
1643 update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1644 }
1645
dl_server_start(struct sched_dl_entity * dl_se)1646 void dl_server_start(struct sched_dl_entity *dl_se)
1647 {
1648 struct rq *rq = dl_se->rq;
1649
1650 /*
1651 * XXX: the apply do not work fine at the init phase for the
1652 * fair server because things are not yet set. We need to improve
1653 * this before getting generic.
1654 */
1655 if (!dl_server(dl_se)) {
1656 u64 runtime = 50 * NSEC_PER_MSEC;
1657 u64 period = 1000 * NSEC_PER_MSEC;
1658
1659 dl_server_apply_params(dl_se, runtime, period, 1);
1660
1661 dl_se->dl_server = 1;
1662 dl_se->dl_defer = 1;
1663 setup_new_dl_entity(dl_se);
1664 }
1665
1666 if (!dl_se->dl_runtime)
1667 return;
1668
1669 dl_se->dl_server_active = 1;
1670 enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1671 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1672 resched_curr(dl_se->rq);
1673 }
1674
dl_server_stop(struct sched_dl_entity * dl_se)1675 void dl_server_stop(struct sched_dl_entity *dl_se)
1676 {
1677 if (!dl_se->dl_runtime)
1678 return;
1679
1680 dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1681 hrtimer_try_to_cancel(&dl_se->dl_timer);
1682 dl_se->dl_defer_armed = 0;
1683 dl_se->dl_throttled = 0;
1684 dl_se->dl_server_active = 0;
1685 }
1686
dl_server_init(struct sched_dl_entity * dl_se,struct rq * rq,dl_server_has_tasks_f has_tasks,dl_server_pick_f pick_task)1687 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1688 dl_server_has_tasks_f has_tasks,
1689 dl_server_pick_f pick_task)
1690 {
1691 dl_se->rq = rq;
1692 dl_se->server_has_tasks = has_tasks;
1693 dl_se->server_pick_task = pick_task;
1694 }
1695
__dl_server_attach_root(struct sched_dl_entity * dl_se,struct rq * rq)1696 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1697 {
1698 u64 new_bw = dl_se->dl_bw;
1699 int cpu = cpu_of(rq);
1700 struct dl_bw *dl_b;
1701
1702 dl_b = dl_bw_of(cpu_of(rq));
1703 guard(raw_spinlock)(&dl_b->lock);
1704
1705 if (!dl_bw_cpus(cpu))
1706 return;
1707
1708 __dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1709 }
1710
dl_server_apply_params(struct sched_dl_entity * dl_se,u64 runtime,u64 period,bool init)1711 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1712 {
1713 u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1714 u64 new_bw = to_ratio(period, runtime);
1715 struct rq *rq = dl_se->rq;
1716 int cpu = cpu_of(rq);
1717 struct dl_bw *dl_b;
1718 unsigned long cap;
1719 int retval = 0;
1720 int cpus;
1721
1722 dl_b = dl_bw_of(cpu);
1723 guard(raw_spinlock)(&dl_b->lock);
1724
1725 cpus = dl_bw_cpus(cpu);
1726 cap = dl_bw_capacity(cpu);
1727
1728 if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1729 return -EBUSY;
1730
1731 if (init) {
1732 __add_rq_bw(new_bw, &rq->dl);
1733 __dl_add(dl_b, new_bw, cpus);
1734 } else {
1735 __dl_sub(dl_b, dl_se->dl_bw, cpus);
1736 __dl_add(dl_b, new_bw, cpus);
1737
1738 dl_rq_change_utilization(rq, dl_se, new_bw);
1739 }
1740
1741 dl_se->dl_runtime = runtime;
1742 dl_se->dl_deadline = period;
1743 dl_se->dl_period = period;
1744
1745 dl_se->runtime = 0;
1746 dl_se->deadline = 0;
1747
1748 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1749 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1750
1751 return retval;
1752 }
1753
1754 /*
1755 * Update the current task's runtime statistics (provided it is still
1756 * a -deadline task and has not been removed from the dl_rq).
1757 */
update_curr_dl(struct rq * rq)1758 static void update_curr_dl(struct rq *rq)
1759 {
1760 struct task_struct *donor = rq->donor;
1761 struct sched_dl_entity *dl_se = &donor->dl;
1762 s64 delta_exec;
1763
1764 if (!dl_task(donor) || !on_dl_rq(dl_se))
1765 return;
1766
1767 /*
1768 * Consumed budget is computed considering the time as
1769 * observed by schedulable tasks (excluding time spent
1770 * in hardirq context, etc.). Deadlines are instead
1771 * computed using hard walltime. This seems to be the more
1772 * natural solution, but the full ramifications of this
1773 * approach need further study.
1774 */
1775 delta_exec = update_curr_common(rq);
1776 update_curr_dl_se(rq, dl_se, delta_exec);
1777 }
1778
inactive_task_timer(struct hrtimer * timer)1779 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1780 {
1781 struct sched_dl_entity *dl_se = container_of(timer,
1782 struct sched_dl_entity,
1783 inactive_timer);
1784 struct task_struct *p = NULL;
1785 struct rq_flags rf;
1786 struct rq *rq;
1787
1788 if (!dl_server(dl_se)) {
1789 p = dl_task_of(dl_se);
1790 rq = task_rq_lock(p, &rf);
1791 } else {
1792 rq = dl_se->rq;
1793 rq_lock(rq, &rf);
1794 }
1795
1796 sched_clock_tick();
1797 update_rq_clock(rq);
1798
1799 if (dl_server(dl_se))
1800 goto no_task;
1801
1802 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1803 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1804
1805 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1806 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1807 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1808 dl_se->dl_non_contending = 0;
1809 }
1810
1811 raw_spin_lock(&dl_b->lock);
1812 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1813 raw_spin_unlock(&dl_b->lock);
1814 __dl_clear_params(dl_se);
1815
1816 goto unlock;
1817 }
1818
1819 no_task:
1820 if (dl_se->dl_non_contending == 0)
1821 goto unlock;
1822
1823 sub_running_bw(dl_se, &rq->dl);
1824 dl_se->dl_non_contending = 0;
1825 unlock:
1826
1827 if (!dl_server(dl_se)) {
1828 task_rq_unlock(rq, p, &rf);
1829 put_task_struct(p);
1830 } else {
1831 rq_unlock(rq, &rf);
1832 }
1833
1834 return HRTIMER_NORESTART;
1835 }
1836
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1837 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1838 {
1839 struct hrtimer *timer = &dl_se->inactive_timer;
1840
1841 hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1842 }
1843
1844 #define __node_2_dle(node) \
1845 rb_entry((node), struct sched_dl_entity, rb_node)
1846
1847 #ifdef CONFIG_SMP
1848
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1849 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1850 {
1851 struct rq *rq = rq_of_dl_rq(dl_rq);
1852
1853 if (dl_rq->earliest_dl.curr == 0 ||
1854 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1855 if (dl_rq->earliest_dl.curr == 0)
1856 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1857 dl_rq->earliest_dl.curr = deadline;
1858 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1859 }
1860 }
1861
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1862 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1863 {
1864 struct rq *rq = rq_of_dl_rq(dl_rq);
1865
1866 /*
1867 * Since we may have removed our earliest (and/or next earliest)
1868 * task we must recompute them.
1869 */
1870 if (!dl_rq->dl_nr_running) {
1871 dl_rq->earliest_dl.curr = 0;
1872 dl_rq->earliest_dl.next = 0;
1873 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1874 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1875 } else {
1876 struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1877 struct sched_dl_entity *entry = __node_2_dle(leftmost);
1878
1879 dl_rq->earliest_dl.curr = entry->deadline;
1880 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1881 }
1882 }
1883
1884 #else
1885
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1886 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1887 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1888
1889 #endif /* CONFIG_SMP */
1890
1891 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1892 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1893 {
1894 u64 deadline = dl_se->deadline;
1895
1896 dl_rq->dl_nr_running++;
1897 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1898
1899 inc_dl_deadline(dl_rq, deadline);
1900 }
1901
1902 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1903 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1904 {
1905 WARN_ON(!dl_rq->dl_nr_running);
1906 dl_rq->dl_nr_running--;
1907 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1908
1909 dec_dl_deadline(dl_rq, dl_se->deadline);
1910 }
1911
__dl_less(struct rb_node * a,const struct rb_node * b)1912 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1913 {
1914 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1915 }
1916
1917 static __always_inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity * dl_se)1918 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1919 {
1920 if (!schedstat_enabled())
1921 return NULL;
1922
1923 if (dl_server(dl_se))
1924 return NULL;
1925
1926 return &dl_task_of(dl_se)->stats;
1927 }
1928
1929 static inline void
update_stats_wait_start_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1930 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1931 {
1932 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1933 if (stats)
1934 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1935 }
1936
1937 static inline void
update_stats_wait_end_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1938 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1939 {
1940 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1941 if (stats)
1942 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1943 }
1944
1945 static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1946 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1947 {
1948 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1949 if (stats)
1950 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1951 }
1952
1953 static inline void
update_stats_enqueue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1954 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1955 int flags)
1956 {
1957 if (!schedstat_enabled())
1958 return;
1959
1960 if (flags & ENQUEUE_WAKEUP)
1961 update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1962 }
1963
1964 static inline void
update_stats_dequeue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1965 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1966 int flags)
1967 {
1968 struct task_struct *p = dl_task_of(dl_se);
1969
1970 if (!schedstat_enabled())
1971 return;
1972
1973 if ((flags & DEQUEUE_SLEEP)) {
1974 unsigned int state;
1975
1976 state = READ_ONCE(p->__state);
1977 if (state & TASK_INTERRUPTIBLE)
1978 __schedstat_set(p->stats.sleep_start,
1979 rq_clock(rq_of_dl_rq(dl_rq)));
1980
1981 if (state & TASK_UNINTERRUPTIBLE)
1982 __schedstat_set(p->stats.block_start,
1983 rq_clock(rq_of_dl_rq(dl_rq)));
1984 }
1985 }
1986
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1987 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1988 {
1989 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1990
1991 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1992
1993 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1994
1995 inc_dl_tasks(dl_se, dl_rq);
1996 }
1997
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1998 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1999 {
2000 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2001
2002 if (RB_EMPTY_NODE(&dl_se->rb_node))
2003 return;
2004
2005 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
2006
2007 RB_CLEAR_NODE(&dl_se->rb_node);
2008
2009 dec_dl_tasks(dl_se, dl_rq);
2010 }
2011
2012 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)2013 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2014 {
2015 WARN_ON_ONCE(on_dl_rq(dl_se));
2016
2017 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
2018
2019 /*
2020 * Check if a constrained deadline task was activated
2021 * after the deadline but before the next period.
2022 * If that is the case, the task will be throttled and
2023 * the replenishment timer will be set to the next period.
2024 */
2025 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
2026 dl_check_constrained_dl(dl_se);
2027
2028 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
2029 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2030
2031 add_rq_bw(dl_se, dl_rq);
2032 add_running_bw(dl_se, dl_rq);
2033 }
2034
2035 /*
2036 * If p is throttled, we do not enqueue it. In fact, if it exhausted
2037 * its budget it needs a replenishment and, since it now is on
2038 * its rq, the bandwidth timer callback (which clearly has not
2039 * run yet) will take care of this.
2040 * However, the active utilization does not depend on the fact
2041 * that the task is on the runqueue or not (but depends on the
2042 * task's state - in GRUB parlance, "inactive" vs "active contending").
2043 * In other words, even if a task is throttled its utilization must
2044 * be counted in the active utilization; hence, we need to call
2045 * add_running_bw().
2046 */
2047 if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
2048 if (flags & ENQUEUE_WAKEUP)
2049 task_contending(dl_se, flags);
2050
2051 return;
2052 }
2053
2054 /*
2055 * If this is a wakeup or a new instance, the scheduling
2056 * parameters of the task might need updating. Otherwise,
2057 * we want a replenishment of its runtime.
2058 */
2059 if (flags & ENQUEUE_WAKEUP) {
2060 task_contending(dl_se, flags);
2061 update_dl_entity(dl_se);
2062 } else if (flags & ENQUEUE_REPLENISH) {
2063 replenish_dl_entity(dl_se);
2064 } else if ((flags & ENQUEUE_RESTORE) &&
2065 !is_dl_boosted(dl_se) &&
2066 dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2067 setup_new_dl_entity(dl_se);
2068 }
2069
2070 /*
2071 * If the reservation is still throttled, e.g., it got replenished but is a
2072 * deferred task and still got to wait, don't enqueue.
2073 */
2074 if (dl_se->dl_throttled && start_dl_timer(dl_se))
2075 return;
2076
2077 /*
2078 * We're about to enqueue, make sure we're not ->dl_throttled!
2079 * In case the timer was not started, say because the defer time
2080 * has passed, mark as not throttled and mark unarmed.
2081 * Also cancel earlier timers, since letting those run is pointless.
2082 */
2083 if (dl_se->dl_throttled) {
2084 hrtimer_try_to_cancel(&dl_se->dl_timer);
2085 dl_se->dl_defer_armed = 0;
2086 dl_se->dl_throttled = 0;
2087 }
2088
2089 __enqueue_dl_entity(dl_se);
2090 }
2091
dequeue_dl_entity(struct sched_dl_entity * dl_se,int flags)2092 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2093 {
2094 __dequeue_dl_entity(dl_se);
2095
2096 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2097 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2098
2099 sub_running_bw(dl_se, dl_rq);
2100 sub_rq_bw(dl_se, dl_rq);
2101 }
2102
2103 /*
2104 * This check allows to start the inactive timer (or to immediately
2105 * decrease the active utilization, if needed) in two cases:
2106 * when the task blocks and when it is terminating
2107 * (p->state == TASK_DEAD). We can handle the two cases in the same
2108 * way, because from GRUB's point of view the same thing is happening
2109 * (the task moves from "active contending" to "active non contending"
2110 * or "inactive")
2111 */
2112 if (flags & DEQUEUE_SLEEP)
2113 task_non_contending(dl_se);
2114 }
2115
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)2116 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2117 {
2118 if (is_dl_boosted(&p->dl)) {
2119 /*
2120 * Because of delays in the detection of the overrun of a
2121 * thread's runtime, it might be the case that a thread
2122 * goes to sleep in a rt mutex with negative runtime. As
2123 * a consequence, the thread will be throttled.
2124 *
2125 * While waiting for the mutex, this thread can also be
2126 * boosted via PI, resulting in a thread that is throttled
2127 * and boosted at the same time.
2128 *
2129 * In this case, the boost overrides the throttle.
2130 */
2131 if (p->dl.dl_throttled) {
2132 /*
2133 * The replenish timer needs to be canceled. No
2134 * problem if it fires concurrently: boosted threads
2135 * are ignored in dl_task_timer().
2136 */
2137 cancel_replenish_timer(&p->dl);
2138 p->dl.dl_throttled = 0;
2139 }
2140 } else if (!dl_prio(p->normal_prio)) {
2141 /*
2142 * Special case in which we have a !SCHED_DEADLINE task that is going
2143 * to be deboosted, but exceeds its runtime while doing so. No point in
2144 * replenishing it, as it's going to return back to its original
2145 * scheduling class after this. If it has been throttled, we need to
2146 * clear the flag, otherwise the task may wake up as throttled after
2147 * being boosted again with no means to replenish the runtime and clear
2148 * the throttle.
2149 */
2150 p->dl.dl_throttled = 0;
2151 if (!(flags & ENQUEUE_REPLENISH))
2152 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2153 task_pid_nr(p));
2154
2155 return;
2156 }
2157
2158 check_schedstat_required();
2159 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2160
2161 if (p->on_rq == TASK_ON_RQ_MIGRATING)
2162 flags |= ENQUEUE_MIGRATING;
2163
2164 enqueue_dl_entity(&p->dl, flags);
2165
2166 if (dl_server(&p->dl))
2167 return;
2168
2169 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2170 enqueue_pushable_dl_task(rq, p);
2171 }
2172
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)2173 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2174 {
2175 update_curr_dl(rq);
2176
2177 if (p->on_rq == TASK_ON_RQ_MIGRATING)
2178 flags |= DEQUEUE_MIGRATING;
2179
2180 dequeue_dl_entity(&p->dl, flags);
2181 if (!p->dl.dl_throttled && !dl_server(&p->dl))
2182 dequeue_pushable_dl_task(rq, p);
2183
2184 return true;
2185 }
2186
2187 /*
2188 * Yield task semantic for -deadline tasks is:
2189 *
2190 * get off from the CPU until our next instance, with
2191 * a new runtime. This is of little use now, since we
2192 * don't have a bandwidth reclaiming mechanism. Anyway,
2193 * bandwidth reclaiming is planned for the future, and
2194 * yield_task_dl will indicate that some spare budget
2195 * is available for other task instances to use it.
2196 */
yield_task_dl(struct rq * rq)2197 static void yield_task_dl(struct rq *rq)
2198 {
2199 /*
2200 * We make the task go to sleep until its current deadline by
2201 * forcing its runtime to zero. This way, update_curr_dl() stops
2202 * it and the bandwidth timer will wake it up and will give it
2203 * new scheduling parameters (thanks to dl_yielded=1).
2204 */
2205 rq->curr->dl.dl_yielded = 1;
2206
2207 update_rq_clock(rq);
2208 update_curr_dl(rq);
2209 /*
2210 * Tell update_rq_clock() that we've just updated,
2211 * so we don't do microscopic update in schedule()
2212 * and double the fastpath cost.
2213 */
2214 rq_clock_skip_update(rq);
2215 }
2216
2217 #ifdef CONFIG_SMP
2218
dl_task_is_earliest_deadline(struct task_struct * p,struct rq * rq)2219 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2220 struct rq *rq)
2221 {
2222 return (!rq->dl.dl_nr_running ||
2223 dl_time_before(p->dl.deadline,
2224 rq->dl.earliest_dl.curr));
2225 }
2226
2227 static int find_later_rq(struct task_struct *task);
2228
2229 static int
select_task_rq_dl(struct task_struct * p,int cpu,int flags)2230 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2231 {
2232 struct task_struct *curr, *donor;
2233 bool select_rq;
2234 struct rq *rq;
2235
2236 if (!(flags & WF_TTWU))
2237 goto out;
2238
2239 rq = cpu_rq(cpu);
2240
2241 rcu_read_lock();
2242 curr = READ_ONCE(rq->curr); /* unlocked access */
2243 donor = READ_ONCE(rq->donor);
2244
2245 /*
2246 * If we are dealing with a -deadline task, we must
2247 * decide where to wake it up.
2248 * If it has a later deadline and the current task
2249 * on this rq can't move (provided the waking task
2250 * can!) we prefer to send it somewhere else. On the
2251 * other hand, if it has a shorter deadline, we
2252 * try to make it stay here, it might be important.
2253 */
2254 select_rq = unlikely(dl_task(donor)) &&
2255 (curr->nr_cpus_allowed < 2 ||
2256 !dl_entity_preempt(&p->dl, &donor->dl)) &&
2257 p->nr_cpus_allowed > 1;
2258
2259 /*
2260 * Take the capacity of the CPU into account to
2261 * ensure it fits the requirement of the task.
2262 */
2263 if (sched_asym_cpucap_active())
2264 select_rq |= !dl_task_fits_capacity(p, cpu);
2265
2266 if (select_rq) {
2267 int target = find_later_rq(p);
2268
2269 if (target != -1 &&
2270 dl_task_is_earliest_deadline(p, cpu_rq(target)))
2271 cpu = target;
2272 }
2273 rcu_read_unlock();
2274
2275 out:
2276 return cpu;
2277 }
2278
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)2279 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2280 {
2281 struct rq_flags rf;
2282 struct rq *rq;
2283
2284 if (READ_ONCE(p->__state) != TASK_WAKING)
2285 return;
2286
2287 rq = task_rq(p);
2288 /*
2289 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2290 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2291 * rq->lock is not... So, lock it
2292 */
2293 rq_lock(rq, &rf);
2294 if (p->dl.dl_non_contending) {
2295 update_rq_clock(rq);
2296 sub_running_bw(&p->dl, &rq->dl);
2297 p->dl.dl_non_contending = 0;
2298 /*
2299 * If the timer handler is currently running and the
2300 * timer cannot be canceled, inactive_task_timer()
2301 * will see that dl_not_contending is not set, and
2302 * will not touch the rq's active utilization,
2303 * so we are still safe.
2304 */
2305 cancel_inactive_timer(&p->dl);
2306 }
2307 sub_rq_bw(&p->dl, &rq->dl);
2308 rq_unlock(rq, &rf);
2309 }
2310
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)2311 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2312 {
2313 /*
2314 * Current can't be migrated, useless to reschedule,
2315 * let's hope p can move out.
2316 */
2317 if (rq->curr->nr_cpus_allowed == 1 ||
2318 !cpudl_find(&rq->rd->cpudl, rq->donor, NULL))
2319 return;
2320
2321 /*
2322 * p is migratable, so let's not schedule it and
2323 * see if it is pushed or pulled somewhere else.
2324 */
2325 if (p->nr_cpus_allowed != 1 &&
2326 cpudl_find(&rq->rd->cpudl, p, NULL))
2327 return;
2328
2329 resched_curr(rq);
2330 }
2331
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)2332 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2333 {
2334 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2335 /*
2336 * This is OK, because current is on_cpu, which avoids it being
2337 * picked for load-balance and preemption/IRQs are still
2338 * disabled avoiding further scheduler activity on it and we've
2339 * not yet started the picking loop.
2340 */
2341 rq_unpin_lock(rq, rf);
2342 pull_dl_task(rq);
2343 rq_repin_lock(rq, rf);
2344 }
2345
2346 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2347 }
2348 #endif /* CONFIG_SMP */
2349
2350 /*
2351 * Only called when both the current and waking task are -deadline
2352 * tasks.
2353 */
wakeup_preempt_dl(struct rq * rq,struct task_struct * p,int flags)2354 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2355 int flags)
2356 {
2357 if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
2358 resched_curr(rq);
2359 return;
2360 }
2361
2362 #ifdef CONFIG_SMP
2363 /*
2364 * In the unlikely case current and p have the same deadline
2365 * let us try to decide what's the best thing to do...
2366 */
2367 if ((p->dl.deadline == rq->donor->dl.deadline) &&
2368 !test_tsk_need_resched(rq->curr))
2369 check_preempt_equal_dl(rq, p);
2370 #endif /* CONFIG_SMP */
2371 }
2372
2373 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2374 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2375 {
2376 hrtick_start(rq, dl_se->runtime);
2377 }
2378 #else /* !CONFIG_SCHED_HRTICK */
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2379 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2380 {
2381 }
2382 #endif
2383
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)2384 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2385 {
2386 struct sched_dl_entity *dl_se = &p->dl;
2387 struct dl_rq *dl_rq = &rq->dl;
2388
2389 p->se.exec_start = rq_clock_task(rq);
2390 if (on_dl_rq(&p->dl))
2391 update_stats_wait_end_dl(dl_rq, dl_se);
2392
2393 /* You can't push away the running task */
2394 dequeue_pushable_dl_task(rq, p);
2395
2396 if (!first)
2397 return;
2398
2399 if (rq->donor->sched_class != &dl_sched_class)
2400 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2401
2402 deadline_queue_push_tasks(rq);
2403
2404 if (hrtick_enabled_dl(rq))
2405 start_hrtick_dl(rq, &p->dl);
2406 }
2407
pick_next_dl_entity(struct dl_rq * dl_rq)2408 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2409 {
2410 struct rb_node *left = rb_first_cached(&dl_rq->root);
2411
2412 if (!left)
2413 return NULL;
2414
2415 return __node_2_dle(left);
2416 }
2417
2418 /*
2419 * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2420 * @rq: The runqueue to pick the next task from.
2421 */
__pick_task_dl(struct rq * rq)2422 static struct task_struct *__pick_task_dl(struct rq *rq)
2423 {
2424 struct sched_dl_entity *dl_se;
2425 struct dl_rq *dl_rq = &rq->dl;
2426 struct task_struct *p;
2427
2428 again:
2429 if (!sched_dl_runnable(rq))
2430 return NULL;
2431
2432 dl_se = pick_next_dl_entity(dl_rq);
2433 WARN_ON_ONCE(!dl_se);
2434
2435 if (dl_server(dl_se)) {
2436 p = dl_se->server_pick_task(dl_se);
2437 if (!p) {
2438 if (dl_server_active(dl_se)) {
2439 dl_se->dl_yielded = 1;
2440 update_curr_dl_se(rq, dl_se, 0);
2441 }
2442 goto again;
2443 }
2444 rq->dl_server = dl_se;
2445 } else {
2446 p = dl_task_of(dl_se);
2447 }
2448
2449 return p;
2450 }
2451
pick_task_dl(struct rq * rq)2452 static struct task_struct *pick_task_dl(struct rq *rq)
2453 {
2454 return __pick_task_dl(rq);
2455 }
2456
put_prev_task_dl(struct rq * rq,struct task_struct * p,struct task_struct * next)2457 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2458 {
2459 struct sched_dl_entity *dl_se = &p->dl;
2460 struct dl_rq *dl_rq = &rq->dl;
2461
2462 if (on_dl_rq(&p->dl))
2463 update_stats_wait_start_dl(dl_rq, dl_se);
2464
2465 update_curr_dl(rq);
2466
2467 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2468 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2469 enqueue_pushable_dl_task(rq, p);
2470 }
2471
2472 /*
2473 * scheduler tick hitting a task of our scheduling class.
2474 *
2475 * NOTE: This function can be called remotely by the tick offload that
2476 * goes along full dynticks. Therefore no local assumption can be made
2477 * and everything must be accessed through the @rq and @curr passed in
2478 * parameters.
2479 */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)2480 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2481 {
2482 update_curr_dl(rq);
2483
2484 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2485 /*
2486 * Even when we have runtime, update_curr_dl() might have resulted in us
2487 * not being the leftmost task anymore. In that case NEED_RESCHED will
2488 * be set and schedule() will start a new hrtick for the next task.
2489 */
2490 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2491 is_leftmost(&p->dl, &rq->dl))
2492 start_hrtick_dl(rq, &p->dl);
2493 }
2494
task_fork_dl(struct task_struct * p)2495 static void task_fork_dl(struct task_struct *p)
2496 {
2497 /*
2498 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2499 * sched_fork()
2500 */
2501 }
2502
2503 #ifdef CONFIG_SMP
2504
2505 /* Only try algorithms three times */
2506 #define DL_MAX_TRIES 3
2507
2508 /*
2509 * Return the earliest pushable rq's task, which is suitable to be executed
2510 * on the CPU, NULL otherwise:
2511 */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)2512 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2513 {
2514 struct task_struct *p = NULL;
2515 struct rb_node *next_node;
2516
2517 if (!has_pushable_dl_tasks(rq))
2518 return NULL;
2519
2520 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2521 while (next_node) {
2522 p = __node_2_pdl(next_node);
2523
2524 if (task_is_pushable(rq, p, cpu))
2525 return p;
2526
2527 next_node = rb_next(next_node);
2528 }
2529
2530 return NULL;
2531 }
2532
2533 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2534
find_later_rq(struct task_struct * task)2535 static int find_later_rq(struct task_struct *task)
2536 {
2537 struct sched_domain *sd;
2538 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2539 int this_cpu = smp_processor_id();
2540 int cpu = task_cpu(task);
2541
2542 /* Make sure the mask is initialized first */
2543 if (unlikely(!later_mask))
2544 return -1;
2545
2546 if (task->nr_cpus_allowed == 1)
2547 return -1;
2548
2549 /*
2550 * We have to consider system topology and task affinity
2551 * first, then we can look for a suitable CPU.
2552 */
2553 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2554 return -1;
2555
2556 /*
2557 * If we are here, some targets have been found, including
2558 * the most suitable which is, among the runqueues where the
2559 * current tasks have later deadlines than the task's one, the
2560 * rq with the latest possible one.
2561 *
2562 * Now we check how well this matches with task's
2563 * affinity and system topology.
2564 *
2565 * The last CPU where the task run is our first
2566 * guess, since it is most likely cache-hot there.
2567 */
2568 if (cpumask_test_cpu(cpu, later_mask))
2569 return cpu;
2570 /*
2571 * Check if this_cpu is to be skipped (i.e., it is
2572 * not in the mask) or not.
2573 */
2574 if (!cpumask_test_cpu(this_cpu, later_mask))
2575 this_cpu = -1;
2576
2577 rcu_read_lock();
2578 for_each_domain(cpu, sd) {
2579 if (sd->flags & SD_WAKE_AFFINE) {
2580 int best_cpu;
2581
2582 /*
2583 * If possible, preempting this_cpu is
2584 * cheaper than migrating.
2585 */
2586 if (this_cpu != -1 &&
2587 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2588 rcu_read_unlock();
2589 return this_cpu;
2590 }
2591
2592 best_cpu = cpumask_any_and_distribute(later_mask,
2593 sched_domain_span(sd));
2594 /*
2595 * Last chance: if a CPU being in both later_mask
2596 * and current sd span is valid, that becomes our
2597 * choice. Of course, the latest possible CPU is
2598 * already under consideration through later_mask.
2599 */
2600 if (best_cpu < nr_cpu_ids) {
2601 rcu_read_unlock();
2602 return best_cpu;
2603 }
2604 }
2605 }
2606 rcu_read_unlock();
2607
2608 /*
2609 * At this point, all our guesses failed, we just return
2610 * 'something', and let the caller sort the things out.
2611 */
2612 if (this_cpu != -1)
2613 return this_cpu;
2614
2615 cpu = cpumask_any_distribute(later_mask);
2616 if (cpu < nr_cpu_ids)
2617 return cpu;
2618
2619 return -1;
2620 }
2621
2622 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2623 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2624 {
2625 struct rq *later_rq = NULL;
2626 int tries;
2627 int cpu;
2628
2629 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2630 cpu = find_later_rq(task);
2631
2632 if ((cpu == -1) || (cpu == rq->cpu))
2633 break;
2634
2635 later_rq = cpu_rq(cpu);
2636
2637 if (!dl_task_is_earliest_deadline(task, later_rq)) {
2638 /*
2639 * Target rq has tasks of equal or earlier deadline,
2640 * retrying does not release any lock and is unlikely
2641 * to yield a different result.
2642 */
2643 later_rq = NULL;
2644 break;
2645 }
2646
2647 /* Retry if something changed. */
2648 if (double_lock_balance(rq, later_rq)) {
2649 if (unlikely(task_rq(task) != rq ||
2650 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2651 task_on_cpu(rq, task) ||
2652 !dl_task(task) ||
2653 is_migration_disabled(task) ||
2654 !task_on_rq_queued(task))) {
2655 double_unlock_balance(rq, later_rq);
2656 later_rq = NULL;
2657 break;
2658 }
2659 }
2660
2661 /*
2662 * If the rq we found has no -deadline task, or
2663 * its earliest one has a later deadline than our
2664 * task, the rq is a good one.
2665 */
2666 if (dl_task_is_earliest_deadline(task, later_rq))
2667 break;
2668
2669 /* Otherwise we try again. */
2670 double_unlock_balance(rq, later_rq);
2671 later_rq = NULL;
2672 }
2673
2674 return later_rq;
2675 }
2676
pick_next_pushable_dl_task(struct rq * rq)2677 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2678 {
2679 struct task_struct *p;
2680
2681 if (!has_pushable_dl_tasks(rq))
2682 return NULL;
2683
2684 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2685
2686 WARN_ON_ONCE(rq->cpu != task_cpu(p));
2687 WARN_ON_ONCE(task_current(rq, p));
2688 WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2689
2690 WARN_ON_ONCE(!task_on_rq_queued(p));
2691 WARN_ON_ONCE(!dl_task(p));
2692
2693 return p;
2694 }
2695
2696 /*
2697 * See if the non running -deadline tasks on this rq
2698 * can be sent to some other CPU where they can preempt
2699 * and start executing.
2700 */
push_dl_task(struct rq * rq)2701 static int push_dl_task(struct rq *rq)
2702 {
2703 struct task_struct *next_task;
2704 struct rq *later_rq;
2705 int ret = 0;
2706
2707 next_task = pick_next_pushable_dl_task(rq);
2708 if (!next_task)
2709 return 0;
2710
2711 retry:
2712 /*
2713 * If next_task preempts rq->curr, and rq->curr
2714 * can move away, it makes sense to just reschedule
2715 * without going further in pushing next_task.
2716 */
2717 if (dl_task(rq->donor) &&
2718 dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
2719 rq->curr->nr_cpus_allowed > 1) {
2720 resched_curr(rq);
2721 return 0;
2722 }
2723
2724 if (is_migration_disabled(next_task))
2725 return 0;
2726
2727 if (WARN_ON(next_task == rq->curr))
2728 return 0;
2729
2730 /* We might release rq lock */
2731 get_task_struct(next_task);
2732
2733 /* Will lock the rq it'll find */
2734 later_rq = find_lock_later_rq(next_task, rq);
2735 if (!later_rq) {
2736 struct task_struct *task;
2737
2738 /*
2739 * We must check all this again, since
2740 * find_lock_later_rq releases rq->lock and it is
2741 * then possible that next_task has migrated.
2742 */
2743 task = pick_next_pushable_dl_task(rq);
2744 if (task == next_task) {
2745 /*
2746 * The task is still there. We don't try
2747 * again, some other CPU will pull it when ready.
2748 */
2749 goto out;
2750 }
2751
2752 if (!task)
2753 /* No more tasks */
2754 goto out;
2755
2756 put_task_struct(next_task);
2757 next_task = task;
2758 goto retry;
2759 }
2760
2761 move_queued_task_locked(rq, later_rq, next_task);
2762 ret = 1;
2763
2764 resched_curr(later_rq);
2765
2766 double_unlock_balance(rq, later_rq);
2767
2768 out:
2769 put_task_struct(next_task);
2770
2771 return ret;
2772 }
2773
push_dl_tasks(struct rq * rq)2774 static void push_dl_tasks(struct rq *rq)
2775 {
2776 /* push_dl_task() will return true if it moved a -deadline task */
2777 while (push_dl_task(rq))
2778 ;
2779 }
2780
pull_dl_task(struct rq * this_rq)2781 static void pull_dl_task(struct rq *this_rq)
2782 {
2783 int this_cpu = this_rq->cpu, cpu;
2784 struct task_struct *p, *push_task;
2785 bool resched = false;
2786 struct rq *src_rq;
2787 u64 dmin = LONG_MAX;
2788
2789 if (likely(!dl_overloaded(this_rq)))
2790 return;
2791
2792 /*
2793 * Match the barrier from dl_set_overloaded; this guarantees that if we
2794 * see overloaded we must also see the dlo_mask bit.
2795 */
2796 smp_rmb();
2797
2798 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2799 if (this_cpu == cpu)
2800 continue;
2801
2802 src_rq = cpu_rq(cpu);
2803
2804 /*
2805 * It looks racy, and it is! However, as in sched_rt.c,
2806 * we are fine with this.
2807 */
2808 if (this_rq->dl.dl_nr_running &&
2809 dl_time_before(this_rq->dl.earliest_dl.curr,
2810 src_rq->dl.earliest_dl.next))
2811 continue;
2812
2813 /* Might drop this_rq->lock */
2814 push_task = NULL;
2815 double_lock_balance(this_rq, src_rq);
2816
2817 /*
2818 * If there are no more pullable tasks on the
2819 * rq, we're done with it.
2820 */
2821 if (src_rq->dl.dl_nr_running <= 1)
2822 goto skip;
2823
2824 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2825
2826 /*
2827 * We found a task to be pulled if:
2828 * - it preempts our current (if there's one),
2829 * - it will preempt the last one we pulled (if any).
2830 */
2831 if (p && dl_time_before(p->dl.deadline, dmin) &&
2832 dl_task_is_earliest_deadline(p, this_rq)) {
2833 WARN_ON(p == src_rq->curr);
2834 WARN_ON(!task_on_rq_queued(p));
2835
2836 /*
2837 * Then we pull iff p has actually an earlier
2838 * deadline than the current task of its runqueue.
2839 */
2840 if (dl_time_before(p->dl.deadline,
2841 src_rq->donor->dl.deadline))
2842 goto skip;
2843
2844 if (is_migration_disabled(p)) {
2845 push_task = get_push_task(src_rq);
2846 } else {
2847 move_queued_task_locked(src_rq, this_rq, p);
2848 dmin = p->dl.deadline;
2849 resched = true;
2850 }
2851
2852 /* Is there any other task even earlier? */
2853 }
2854 skip:
2855 double_unlock_balance(this_rq, src_rq);
2856
2857 if (push_task) {
2858 preempt_disable();
2859 raw_spin_rq_unlock(this_rq);
2860 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2861 push_task, &src_rq->push_work);
2862 preempt_enable();
2863 raw_spin_rq_lock(this_rq);
2864 }
2865 }
2866
2867 if (resched)
2868 resched_curr(this_rq);
2869 }
2870
2871 /*
2872 * Since the task is not running and a reschedule is not going to happen
2873 * anytime soon on its runqueue, we try pushing it away now.
2874 */
task_woken_dl(struct rq * rq,struct task_struct * p)2875 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2876 {
2877 if (!task_on_cpu(rq, p) &&
2878 !test_tsk_need_resched(rq->curr) &&
2879 p->nr_cpus_allowed > 1 &&
2880 dl_task(rq->donor) &&
2881 (rq->curr->nr_cpus_allowed < 2 ||
2882 !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
2883 push_dl_tasks(rq);
2884 }
2885 }
2886
set_cpus_allowed_dl(struct task_struct * p,struct affinity_context * ctx)2887 static void set_cpus_allowed_dl(struct task_struct *p,
2888 struct affinity_context *ctx)
2889 {
2890 struct root_domain *src_rd;
2891 struct rq *rq;
2892
2893 WARN_ON_ONCE(!dl_task(p));
2894
2895 rq = task_rq(p);
2896 src_rd = rq->rd;
2897 /*
2898 * Migrating a SCHED_DEADLINE task between exclusive
2899 * cpusets (different root_domains) entails a bandwidth
2900 * update. We already made space for us in the destination
2901 * domain (see cpuset_can_attach()).
2902 */
2903 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2904 struct dl_bw *src_dl_b;
2905
2906 src_dl_b = dl_bw_of(cpu_of(rq));
2907 /*
2908 * We now free resources of the root_domain we are migrating
2909 * off. In the worst case, sched_setattr() may temporary fail
2910 * until we complete the update.
2911 */
2912 raw_spin_lock(&src_dl_b->lock);
2913 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2914 raw_spin_unlock(&src_dl_b->lock);
2915 }
2916
2917 set_cpus_allowed_common(p, ctx);
2918 }
2919
2920 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2921 static void rq_online_dl(struct rq *rq)
2922 {
2923 if (rq->dl.overloaded)
2924 dl_set_overload(rq);
2925
2926 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2927 if (rq->dl.dl_nr_running > 0)
2928 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2929 }
2930
2931 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2932 static void rq_offline_dl(struct rq *rq)
2933 {
2934 if (rq->dl.overloaded)
2935 dl_clear_overload(rq);
2936
2937 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2938 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2939 }
2940
init_sched_dl_class(void)2941 void __init init_sched_dl_class(void)
2942 {
2943 unsigned int i;
2944
2945 for_each_possible_cpu(i)
2946 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2947 GFP_KERNEL, cpu_to_node(i));
2948 }
2949
dl_add_task_root_domain(struct task_struct * p)2950 void dl_add_task_root_domain(struct task_struct *p)
2951 {
2952 struct rq_flags rf;
2953 struct rq *rq;
2954 struct dl_bw *dl_b;
2955
2956 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2957 if (!dl_task(p) || dl_entity_is_special(&p->dl)) {
2958 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2959 return;
2960 }
2961
2962 rq = __task_rq_lock(p, &rf);
2963
2964 dl_b = &rq->rd->dl_bw;
2965 raw_spin_lock(&dl_b->lock);
2966
2967 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2968
2969 raw_spin_unlock(&dl_b->lock);
2970
2971 task_rq_unlock(rq, p, &rf);
2972 }
2973
dl_clear_root_domain(struct root_domain * rd)2974 void dl_clear_root_domain(struct root_domain *rd)
2975 {
2976 int i;
2977
2978 guard(raw_spinlock_irqsave)(&rd->dl_bw.lock);
2979 rd->dl_bw.total_bw = 0;
2980
2981 /*
2982 * dl_servers are not tasks. Since dl_add_task_root_domain ignores
2983 * them, we need to account for them here explicitly.
2984 */
2985 for_each_cpu(i, rd->span) {
2986 struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server;
2987
2988 if (dl_server(dl_se) && cpu_active(i))
2989 __dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i));
2990 }
2991 }
2992
dl_clear_root_domain_cpu(int cpu)2993 void dl_clear_root_domain_cpu(int cpu)
2994 {
2995 dl_clear_root_domain(cpu_rq(cpu)->rd);
2996 }
2997
2998 #endif /* CONFIG_SMP */
2999
switched_from_dl(struct rq * rq,struct task_struct * p)3000 static void switched_from_dl(struct rq *rq, struct task_struct *p)
3001 {
3002 /*
3003 * task_non_contending() can start the "inactive timer" (if the 0-lag
3004 * time is in the future). If the task switches back to dl before
3005 * the "inactive timer" fires, it can continue to consume its current
3006 * runtime using its current deadline. If it stays outside of
3007 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
3008 * will reset the task parameters.
3009 */
3010 if (task_on_rq_queued(p) && p->dl.dl_runtime)
3011 task_non_contending(&p->dl);
3012
3013 /*
3014 * In case a task is setscheduled out from SCHED_DEADLINE we need to
3015 * keep track of that on its cpuset (for correct bandwidth tracking).
3016 */
3017 dec_dl_tasks_cs(p);
3018
3019 if (!task_on_rq_queued(p)) {
3020 /*
3021 * Inactive timer is armed. However, p is leaving DEADLINE and
3022 * might migrate away from this rq while continuing to run on
3023 * some other class. We need to remove its contribution from
3024 * this rq running_bw now, or sub_rq_bw (below) will complain.
3025 */
3026 if (p->dl.dl_non_contending)
3027 sub_running_bw(&p->dl, &rq->dl);
3028 sub_rq_bw(&p->dl, &rq->dl);
3029 }
3030
3031 /*
3032 * We cannot use inactive_task_timer() to invoke sub_running_bw()
3033 * at the 0-lag time, because the task could have been migrated
3034 * while SCHED_OTHER in the meanwhile.
3035 */
3036 if (p->dl.dl_non_contending)
3037 p->dl.dl_non_contending = 0;
3038
3039 /*
3040 * Since this might be the only -deadline task on the rq,
3041 * this is the right place to try to pull some other one
3042 * from an overloaded CPU, if any.
3043 */
3044 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
3045 return;
3046
3047 deadline_queue_pull_task(rq);
3048 }
3049
3050 /*
3051 * When switching to -deadline, we may overload the rq, then
3052 * we try to push someone off, if possible.
3053 */
switched_to_dl(struct rq * rq,struct task_struct * p)3054 static void switched_to_dl(struct rq *rq, struct task_struct *p)
3055 {
3056 cancel_inactive_timer(&p->dl);
3057
3058 /*
3059 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3060 * track of that on its cpuset (for correct bandwidth tracking).
3061 */
3062 inc_dl_tasks_cs(p);
3063
3064 /* If p is not queued we will update its parameters at next wakeup. */
3065 if (!task_on_rq_queued(p)) {
3066 add_rq_bw(&p->dl, &rq->dl);
3067
3068 return;
3069 }
3070
3071 if (rq->donor != p) {
3072 #ifdef CONFIG_SMP
3073 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3074 deadline_queue_push_tasks(rq);
3075 #endif
3076 if (dl_task(rq->donor))
3077 wakeup_preempt_dl(rq, p, 0);
3078 else
3079 resched_curr(rq);
3080 } else {
3081 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3082 }
3083 }
3084
3085 /*
3086 * If the scheduling parameters of a -deadline task changed,
3087 * a push or pull operation might be needed.
3088 */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)3089 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
3090 int oldprio)
3091 {
3092 if (!task_on_rq_queued(p))
3093 return;
3094
3095 #ifdef CONFIG_SMP
3096 /*
3097 * This might be too much, but unfortunately
3098 * we don't have the old deadline value, and
3099 * we can't argue if the task is increasing
3100 * or lowering its prio, so...
3101 */
3102 if (!rq->dl.overloaded)
3103 deadline_queue_pull_task(rq);
3104
3105 if (task_current_donor(rq, p)) {
3106 /*
3107 * If we now have a earlier deadline task than p,
3108 * then reschedule, provided p is still on this
3109 * runqueue.
3110 */
3111 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3112 resched_curr(rq);
3113 } else {
3114 /*
3115 * Current may not be deadline in case p was throttled but we
3116 * have just replenished it (e.g. rt_mutex_setprio()).
3117 *
3118 * Otherwise, if p was given an earlier deadline, reschedule.
3119 */
3120 if (!dl_task(rq->curr) ||
3121 dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3122 resched_curr(rq);
3123 }
3124 #else
3125 /*
3126 * We don't know if p has a earlier or later deadline, so let's blindly
3127 * set a (maybe not needed) rescheduling point.
3128 */
3129 resched_curr(rq);
3130 #endif
3131 }
3132
3133 #ifdef CONFIG_SCHED_CORE
task_is_throttled_dl(struct task_struct * p,int cpu)3134 static int task_is_throttled_dl(struct task_struct *p, int cpu)
3135 {
3136 return p->dl.dl_throttled;
3137 }
3138 #endif
3139
3140 DEFINE_SCHED_CLASS(dl) = {
3141
3142 .enqueue_task = enqueue_task_dl,
3143 .dequeue_task = dequeue_task_dl,
3144 .yield_task = yield_task_dl,
3145
3146 .wakeup_preempt = wakeup_preempt_dl,
3147
3148 .pick_task = pick_task_dl,
3149 .put_prev_task = put_prev_task_dl,
3150 .set_next_task = set_next_task_dl,
3151
3152 #ifdef CONFIG_SMP
3153 .balance = balance_dl,
3154 .select_task_rq = select_task_rq_dl,
3155 .migrate_task_rq = migrate_task_rq_dl,
3156 .set_cpus_allowed = set_cpus_allowed_dl,
3157 .rq_online = rq_online_dl,
3158 .rq_offline = rq_offline_dl,
3159 .task_woken = task_woken_dl,
3160 .find_lock_rq = find_lock_later_rq,
3161 #endif
3162
3163 .task_tick = task_tick_dl,
3164 .task_fork = task_fork_dl,
3165
3166 .prio_changed = prio_changed_dl,
3167 .switched_from = switched_from_dl,
3168 .switched_to = switched_to_dl,
3169
3170 .update_curr = update_curr_dl,
3171 #ifdef CONFIG_SCHED_CORE
3172 .task_is_throttled = task_is_throttled_dl,
3173 #endif
3174 };
3175
3176 /*
3177 * Used for dl_bw check and update, used under sched_rt_handler()::mutex and
3178 * sched_domains_mutex.
3179 */
3180 u64 dl_cookie;
3181
sched_dl_global_validate(void)3182 int sched_dl_global_validate(void)
3183 {
3184 u64 runtime = global_rt_runtime();
3185 u64 period = global_rt_period();
3186 u64 new_bw = to_ratio(period, runtime);
3187 u64 cookie = ++dl_cookie;
3188 struct dl_bw *dl_b;
3189 int cpu, cpus, ret = 0;
3190 unsigned long flags;
3191
3192 /*
3193 * Here we want to check the bandwidth not being set to some
3194 * value smaller than the currently allocated bandwidth in
3195 * any of the root_domains.
3196 */
3197 for_each_online_cpu(cpu) {
3198 rcu_read_lock_sched();
3199
3200 if (dl_bw_visited(cpu, cookie))
3201 goto next;
3202
3203 dl_b = dl_bw_of(cpu);
3204 cpus = dl_bw_cpus(cpu);
3205
3206 raw_spin_lock_irqsave(&dl_b->lock, flags);
3207 if (new_bw * cpus < dl_b->total_bw)
3208 ret = -EBUSY;
3209 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3210
3211 next:
3212 rcu_read_unlock_sched();
3213
3214 if (ret)
3215 break;
3216 }
3217
3218 return ret;
3219 }
3220
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)3221 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3222 {
3223 if (global_rt_runtime() == RUNTIME_INF) {
3224 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3225 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3226 } else {
3227 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3228 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3229 dl_rq->max_bw = dl_rq->extra_bw =
3230 to_ratio(global_rt_period(), global_rt_runtime());
3231 }
3232 }
3233
sched_dl_do_global(void)3234 void sched_dl_do_global(void)
3235 {
3236 u64 new_bw = -1;
3237 u64 cookie = ++dl_cookie;
3238 struct dl_bw *dl_b;
3239 int cpu;
3240 unsigned long flags;
3241
3242 if (global_rt_runtime() != RUNTIME_INF)
3243 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3244
3245 for_each_possible_cpu(cpu) {
3246 rcu_read_lock_sched();
3247
3248 if (dl_bw_visited(cpu, cookie)) {
3249 rcu_read_unlock_sched();
3250 continue;
3251 }
3252
3253 dl_b = dl_bw_of(cpu);
3254
3255 raw_spin_lock_irqsave(&dl_b->lock, flags);
3256 dl_b->bw = new_bw;
3257 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3258
3259 rcu_read_unlock_sched();
3260 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3261 }
3262 }
3263
3264 /*
3265 * We must be sure that accepting a new task (or allowing changing the
3266 * parameters of an existing one) is consistent with the bandwidth
3267 * constraints. If yes, this function also accordingly updates the currently
3268 * allocated bandwidth to reflect the new situation.
3269 *
3270 * This function is called while holding p's rq->lock.
3271 */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)3272 int sched_dl_overflow(struct task_struct *p, int policy,
3273 const struct sched_attr *attr)
3274 {
3275 u64 period = attr->sched_period ?: attr->sched_deadline;
3276 u64 runtime = attr->sched_runtime;
3277 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3278 int cpus, err = -1, cpu = task_cpu(p);
3279 struct dl_bw *dl_b = dl_bw_of(cpu);
3280 unsigned long cap;
3281
3282 if (attr->sched_flags & SCHED_FLAG_SUGOV)
3283 return 0;
3284
3285 /* !deadline task may carry old deadline bandwidth */
3286 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3287 return 0;
3288
3289 /*
3290 * Either if a task, enters, leave, or stays -deadline but changes
3291 * its parameters, we may need to update accordingly the total
3292 * allocated bandwidth of the container.
3293 */
3294 raw_spin_lock(&dl_b->lock);
3295 cpus = dl_bw_cpus(cpu);
3296 cap = dl_bw_capacity(cpu);
3297
3298 if (dl_policy(policy) && !task_has_dl_policy(p) &&
3299 !__dl_overflow(dl_b, cap, 0, new_bw)) {
3300 if (hrtimer_active(&p->dl.inactive_timer))
3301 __dl_sub(dl_b, p->dl.dl_bw, cpus);
3302 __dl_add(dl_b, new_bw, cpus);
3303 err = 0;
3304 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
3305 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3306 /*
3307 * XXX this is slightly incorrect: when the task
3308 * utilization decreases, we should delay the total
3309 * utilization change until the task's 0-lag point.
3310 * But this would require to set the task's "inactive
3311 * timer" when the task is not inactive.
3312 */
3313 __dl_sub(dl_b, p->dl.dl_bw, cpus);
3314 __dl_add(dl_b, new_bw, cpus);
3315 dl_change_utilization(p, new_bw);
3316 err = 0;
3317 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3318 /*
3319 * Do not decrease the total deadline utilization here,
3320 * switched_from_dl() will take care to do it at the correct
3321 * (0-lag) time.
3322 */
3323 err = 0;
3324 }
3325 raw_spin_unlock(&dl_b->lock);
3326
3327 return err;
3328 }
3329
3330 /*
3331 * This function initializes the sched_dl_entity of a newly becoming
3332 * SCHED_DEADLINE task.
3333 *
3334 * Only the static values are considered here, the actual runtime and the
3335 * absolute deadline will be properly calculated when the task is enqueued
3336 * for the first time with its new policy.
3337 */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)3338 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3339 {
3340 struct sched_dl_entity *dl_se = &p->dl;
3341
3342 dl_se->dl_runtime = attr->sched_runtime;
3343 dl_se->dl_deadline = attr->sched_deadline;
3344 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3345 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3346 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3347 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3348 }
3349
__getparam_dl(struct task_struct * p,struct sched_attr * attr)3350 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3351 {
3352 struct sched_dl_entity *dl_se = &p->dl;
3353
3354 attr->sched_priority = p->rt_priority;
3355 attr->sched_runtime = dl_se->dl_runtime;
3356 attr->sched_deadline = dl_se->dl_deadline;
3357 attr->sched_period = dl_se->dl_period;
3358 attr->sched_flags &= ~SCHED_DL_FLAGS;
3359 attr->sched_flags |= dl_se->flags;
3360 }
3361
3362 /*
3363 * This function validates the new parameters of a -deadline task.
3364 * We ask for the deadline not being zero, and greater or equal
3365 * than the runtime, as well as the period of being zero or
3366 * greater than deadline. Furthermore, we have to be sure that
3367 * user parameters are above the internal resolution of 1us (we
3368 * check sched_runtime only since it is always the smaller one) and
3369 * below 2^63 ns (we have to check both sched_deadline and
3370 * sched_period, as the latter can be zero).
3371 */
__checkparam_dl(const struct sched_attr * attr)3372 bool __checkparam_dl(const struct sched_attr *attr)
3373 {
3374 u64 period, max, min;
3375
3376 /* special dl tasks don't actually use any parameter */
3377 if (attr->sched_flags & SCHED_FLAG_SUGOV)
3378 return true;
3379
3380 /* deadline != 0 */
3381 if (attr->sched_deadline == 0)
3382 return false;
3383
3384 /*
3385 * Since we truncate DL_SCALE bits, make sure we're at least
3386 * that big.
3387 */
3388 if (attr->sched_runtime < (1ULL << DL_SCALE))
3389 return false;
3390
3391 /*
3392 * Since we use the MSB for wrap-around and sign issues, make
3393 * sure it's not set (mind that period can be equal to zero).
3394 */
3395 if (attr->sched_deadline & (1ULL << 63) ||
3396 attr->sched_period & (1ULL << 63))
3397 return false;
3398
3399 period = attr->sched_period;
3400 if (!period)
3401 period = attr->sched_deadline;
3402
3403 /* runtime <= deadline <= period (if period != 0) */
3404 if (period < attr->sched_deadline ||
3405 attr->sched_deadline < attr->sched_runtime)
3406 return false;
3407
3408 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3409 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3410
3411 if (period < min || period > max)
3412 return false;
3413
3414 return true;
3415 }
3416
3417 /*
3418 * This function clears the sched_dl_entity static params.
3419 */
__dl_clear_params(struct sched_dl_entity * dl_se)3420 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3421 {
3422 dl_se->dl_runtime = 0;
3423 dl_se->dl_deadline = 0;
3424 dl_se->dl_period = 0;
3425 dl_se->flags = 0;
3426 dl_se->dl_bw = 0;
3427 dl_se->dl_density = 0;
3428
3429 dl_se->dl_throttled = 0;
3430 dl_se->dl_yielded = 0;
3431 dl_se->dl_non_contending = 0;
3432 dl_se->dl_overrun = 0;
3433 dl_se->dl_server = 0;
3434
3435 #ifdef CONFIG_RT_MUTEXES
3436 dl_se->pi_se = dl_se;
3437 #endif
3438 }
3439
init_dl_entity(struct sched_dl_entity * dl_se)3440 void init_dl_entity(struct sched_dl_entity *dl_se)
3441 {
3442 RB_CLEAR_NODE(&dl_se->rb_node);
3443 init_dl_task_timer(dl_se);
3444 init_dl_inactive_task_timer(dl_se);
3445 __dl_clear_params(dl_se);
3446 }
3447
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3448 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3449 {
3450 struct sched_dl_entity *dl_se = &p->dl;
3451
3452 if (dl_se->dl_runtime != attr->sched_runtime ||
3453 dl_se->dl_deadline != attr->sched_deadline ||
3454 dl_se->dl_period != attr->sched_period ||
3455 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3456 return true;
3457
3458 return false;
3459 }
3460
3461 #ifdef CONFIG_SMP
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)3462 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3463 const struct cpumask *trial)
3464 {
3465 unsigned long flags, cap;
3466 struct dl_bw *cur_dl_b;
3467 int ret = 1;
3468
3469 rcu_read_lock_sched();
3470 cur_dl_b = dl_bw_of(cpumask_any(cur));
3471 cap = __dl_bw_capacity(trial);
3472 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3473 if (__dl_overflow(cur_dl_b, cap, 0, 0))
3474 ret = 0;
3475 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3476 rcu_read_unlock_sched();
3477
3478 return ret;
3479 }
3480
3481 enum dl_bw_request {
3482 dl_bw_req_deactivate = 0,
3483 dl_bw_req_alloc,
3484 dl_bw_req_free
3485 };
3486
dl_bw_manage(enum dl_bw_request req,int cpu,u64 dl_bw)3487 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3488 {
3489 unsigned long flags, cap;
3490 struct dl_bw *dl_b;
3491 bool overflow = 0;
3492 u64 fair_server_bw = 0;
3493
3494 rcu_read_lock_sched();
3495 dl_b = dl_bw_of(cpu);
3496 raw_spin_lock_irqsave(&dl_b->lock, flags);
3497
3498 cap = dl_bw_capacity(cpu);
3499 switch (req) {
3500 case dl_bw_req_free:
3501 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3502 break;
3503 case dl_bw_req_alloc:
3504 overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3505
3506 if (!overflow) {
3507 /*
3508 * We reserve space in the destination
3509 * root_domain, as we can't fail after this point.
3510 * We will free resources in the source root_domain
3511 * later on (see set_cpus_allowed_dl()).
3512 */
3513 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3514 }
3515 break;
3516 case dl_bw_req_deactivate:
3517 /*
3518 * cpu is not off yet, but we need to do the math by
3519 * considering it off already (i.e., what would happen if we
3520 * turn cpu off?).
3521 */
3522 cap -= arch_scale_cpu_capacity(cpu);
3523
3524 /*
3525 * cpu is going offline and NORMAL tasks will be moved away
3526 * from it. We can thus discount dl_server bandwidth
3527 * contribution as it won't need to be servicing tasks after
3528 * the cpu is off.
3529 */
3530 if (cpu_rq(cpu)->fair_server.dl_server)
3531 fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw;
3532
3533 /*
3534 * Not much to check if no DEADLINE bandwidth is present.
3535 * dl_servers we can discount, as tasks will be moved out the
3536 * offlined CPUs anyway.
3537 */
3538 if (dl_b->total_bw - fair_server_bw > 0) {
3539 /*
3540 * Leaving at least one CPU for DEADLINE tasks seems a
3541 * wise thing to do. As said above, cpu is not offline
3542 * yet, so account for that.
3543 */
3544 if (dl_bw_cpus(cpu) - 1)
3545 overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0);
3546 else
3547 overflow = 1;
3548 }
3549
3550 break;
3551 }
3552
3553 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3554 rcu_read_unlock_sched();
3555
3556 return overflow ? -EBUSY : 0;
3557 }
3558
dl_bw_deactivate(int cpu)3559 int dl_bw_deactivate(int cpu)
3560 {
3561 return dl_bw_manage(dl_bw_req_deactivate, cpu, 0);
3562 }
3563
dl_bw_alloc(int cpu,u64 dl_bw)3564 int dl_bw_alloc(int cpu, u64 dl_bw)
3565 {
3566 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3567 }
3568
dl_bw_free(int cpu,u64 dl_bw)3569 void dl_bw_free(int cpu, u64 dl_bw)
3570 {
3571 dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3572 }
3573 #endif
3574
print_dl_stats(struct seq_file * m,int cpu)3575 void print_dl_stats(struct seq_file *m, int cpu)
3576 {
3577 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3578 }
3579